WO2017025440A1 - Dispositif d'eclairage et/ou de signalisation pour vehicule automobile - Google Patents
Dispositif d'eclairage et/ou de signalisation pour vehicule automobile Download PDFInfo
- Publication number
- WO2017025440A1 WO2017025440A1 PCT/EP2016/068684 EP2016068684W WO2017025440A1 WO 2017025440 A1 WO2017025440 A1 WO 2017025440A1 EP 2016068684 W EP2016068684 W EP 2016068684W WO 2017025440 A1 WO2017025440 A1 WO 2017025440A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zone
- light
- rods
- light source
- state
- Prior art date
Links
- 230000011664 signaling Effects 0.000 title description 8
- 239000004065 semiconductor Substances 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims description 29
- 230000003287 optical effect Effects 0.000 claims description 15
- 230000015572 biosynthetic process Effects 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 230000006870 function Effects 0.000 description 34
- 238000000926 separation method Methods 0.000 description 17
- 239000010410 layer Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 235000019557 luminance Nutrition 0.000 description 11
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 7
- 230000004913 activation Effects 0.000 description 7
- 230000000295 complement effect Effects 0.000 description 6
- 229910002601 GaN Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000033228 biological regulation Effects 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 238000005286 illumination Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 235000000112 undernutrition Nutrition 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000009131 signaling function Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/08—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/155—Surface emitters, e.g. organic light emitting diodes [OLED]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/60—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/60—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
- F21S41/65—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
- F21S41/663—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S43/00—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
- F21S43/10—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
- F21S43/13—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
- F21S43/14—Light emitting diodes [LED]
- F21S43/145—Surface emitters, e.g. organic light emitting diodes [OLED]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q1/00—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
- B60Q1/26—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
- B60Q1/28—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating front of vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q2400/00—Special features or arrangements of exterior signal lamps for vehicles
- B60Q2400/30—Daytime running lights [DRL], e.g. circuits or arrangements therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2105/00—Planar light sources
- F21Y2105/10—Planar light sources comprising a two-dimensional array of point-like light-generating elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2105/00—Planar light sources
- F21Y2105/10—Planar light sources comprising a two-dimensional array of point-like light-generating elements
- F21Y2105/12—Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the geometrical disposition of the light-generating elements, e.g. arranging light-generating elements in differing patterns or densities
Definitions
- the invention relates to the field of lighting and / or signaling, especially for motor vehicles. It relates more particularly to a device capable of generating two distinct lighting and / or signaling functions by selective activation of two zones of a light source.
- a motor vehicle is equipped with headlamps, or headlights, intended to illuminate the road in front of the vehicle, at night or in the case of reduced luminosity.
- headlamps can generally be used in two lighting modes: a first mode “high beam” and a second mode “low beam”.
- the "high beam” mode provides strong illumination of the road far ahead of the vehicle.
- the “low beam” mode provides more limited road lighting, but still offers good visibility without dazzling other road users.
- These two modes of lighting are complementary, and one passes from one to the other according to the traffic conditions. The switching from one mode to another can be done manually, the driver deciding the moment of this switching, or it can be done automatically, depending on the detection by appropriate means of the conditions required for such a change of mode. 'lighting.
- Each lighting function can be provided by a module, and the different modules are arranged side by side in the projector.
- the manufacturers wish to propose projectors in which a module is able to perform alternately one or other of the functions, so that the corresponding light beam exits through the same optical output face. We understand that this problem applies regardless of the combination of lighting functions that we want to put in place.
- daytime running light function is to signal the vehicle in conditions of luminosity assimilated to daylight.
- the activation of a daytime running light is operated by an automatic control means, so that the daytime running light is switched on. when the above-mentioned headlamps, high beam or dipped beam, are switched off.
- a known solution in existing automotive headlamps for providing a daytime running light beam is to use, in addition to the module or modules for generating the code and route beams, a separate module, for example, based on light-emitting diodes and electroluminescent light sources. light guides.
- the main disadvantage of this solution is that the vehicle signature, that is to say the appearance of the projector, differs depending on whether the vehicle is observed day or night. For reasons that are both aesthetic and obstruction of projectors, car market players are seeking to ensure that the signature of their lighting and / or signaling functions is the same day and night.
- the aim of the invention is to propose an alternative to these prior solutions, which makes it possible to propose a luminous device with a constant signature, that is to say with an aspect of the device seen from outside the vehicle which remains the same, and This means that the luminous device functions in daytime or nighttime conditions, and allows the respect of the photometric grids to be filled according to the regulations, for both the daylight beam and the Route or Code lighting beam.
- the invention relates to a lighting and / or signaling device for a motor vehicle in which there is provided a semiconductor light source comprising a plurality of electroluminescent rods of submillimeter dimensions, and projecting at least a portion of the light rays emitted by said light source.
- the electroluminescent rods are arranged to form a first zone and a second selectively activatable zone, the first zone being able to generate at least a portion of a first light beam in a first state and a portion of a second beam in a first zone. second state, the second zone being able to generate a portion of said second beam, together with the first zone in the second state.
- projection optics means for projecting at infinity an image of the light source directly or indirectly.
- a technology is applied to the automotive field consisting in producing the light-emitting zone by a forest of electroluminescent rods of submillimetric dimensions which is grown on a substrate, to achieve a three-dimensional topology. It will be understood that this three-dimensional topology has the advantage of multiplying the light emission surface with respect to the electroluminescent diodes known hitherto in the automobile field, namely substantially planar diodes.
- the light-generating rods which can be powered independently of each other, it is possible to provide specific areas that can be under-powered or supercharged depending on the lighting function that is desired realize, without the need to under-power or super-power the entire light source, and the fact that this is done from a single light source and a single projection optics allows to conserve a unique signature regardless of the mode of use of the light source.
- the second zone is able to assume a first state in which it is able to generate a portion of said second beam, together with the first zone when it is in said second state, and a second state in which is capable of generating a second state, part of a third beam, together with the first zone when it is in a third state;
- the first zone is able to generate on the one hand at least a part of said first light beam when it is electrically powered with an electric power greater than a first determined threshold and on the other hand a part of said second light beam when it is electrically powered with an electric power below a second determined threshold;
- the first light beam is a road-type beam, said second light beam being a day-light beam and the third beam a position-light beam.
- the electroluminescent rods can extend from the same substrate, and they can in particular be formed directly on this substrate. It can be provided that the substrate is based on silicon or silicon carbide. It is understood that the substrate is based on silicon since it comprises mainly silicon, for example at least 50% and in practice about 99%. Thus, it is possible to reduce the costs of obtaining the device according to the invention, since the silicon plates used can be up to 12 inches in size, up to a maximum of 4 inches for corundum used previously.
- each rod has a generally cylindrical shape, in particular of polygonal section; it can be expected that each rod is the same general shape, and in particular a hexagonal shape; the rods are each delimited by an end face and by a circumferential wall which extends along a longitudinal axis of the rod defining its height, the light being emitted at least from the circumferential wall; this light could also be emitted by the terminal face;
- Each rod may have an end face which is substantially perpendicular to the circumferential wall, and in different variants, it can be provided that this end face is substantially flat or curved or pointed at its center;
- the rods are arranged in matrix, that this matrix is regular, with a constant spacing between two successive rods of a given alignment, or that the rods are arranged in staggered rows; the height of a stick is between 1 and 10 micrometers;
- the largest dimension of the end face is less than 2 micrometers
- the distance separating two immediately adjacent rods is at least equal to 2 micrometers, and at most equal to 100 micrometers.
- the distance separating two immediately adjacent rods is preferably between 2 micrometers and 10 micrometers.
- the luminous flux and the luminance of a light source of the present invention are constrained by the regulations in force concerning lighting and / or signaling in the automotive field and by crosstalk between rods.
- current motor vehicle electrical architectures limit the power supply of the light source. So to get a lighting beam and / or signaling according to these regulations with such a light source and within these electrical architectures, the parameters of the light source of the invention such as the height and diameter of the rods or in this case the spacing of the rods on the substrate of the light source can be varied. It has thus been found that the distance separating two immediately adjacent rods must advantageously be between 2 micrometers and 10 micrometers, preferably between 2 micrometers and 10 micrometers.
- this range makes it easy to manufacture projection optics adapted to cooperate with the light source and whose resolving power will distinguish two distinct groups of rods and will not distinguish two separate rods.
- the semiconductor light source comprising a plurality of submillimeter-sized electroluminescent rods further comprises a layer of a polymeric material in which the rods are at least partially embedded; this polymeric material may be based on silicone, it being understood that the polymer material is based on silicone since it comprises mainly silicone, for example at least 50% and in practice about 99%.
- the layer of polymeric material may comprise a phosphor or a plurality of phosphors excited by the light generated by at least one of the plurality of rods.
- phosphor or light converter, and for example a phosphor, the presence of at least one luminescent material designed to absorb at least a portion of at least one excitation light emitted by a light source and to convert to at least a portion of said excitation light absorbed into an emission light having a wavelength different from that of the excitation light.
- This phosphor, or this plurality of phosphors may be at least partially embedded in the polymer, or rest on the layer of this polymeric material.
- the second zone at least partially surrounds the first zone; - the independent control of the lighting of the two zones between them is a control of ignition intensity; both zones can be powered simultaneously for emitting light rays in a given illumination surface to participate in the formation of a first illumination function, the second zone being undernourished with respect to the supply of the first zone, and the two zones can be powered simultaneously to emit light rays in a given illumination surface to participate in the formation of a second illumination function, the first zone being undernourished with respect to the supply of the second zone.
- the light source comprises a third zone formed of a plurality of said electroluminescent rods and selectively activatable with respect to the first and second zones, said third zone being able to generate at least a portion of a fourth light beam.
- This fourth light beam may in particular be a beam type dipped beam.
- the device comprises a second light source, and for example a conventional light emitting diode (LED) capable of generating at least a portion of this fourth light beam.
- the third zone is controlled so as to be selectively activatable from the first and second zones, the first and second zones being moreover activatable simultaneously, at ignition intensities which can to be distinct.
- the electroluminescent rods defining the third zone may in particular be separated from the rest of the electroluminescent rods of the light source by the presence of a separating element, such as a wall projecting from the substrate carrying the rods.
- the rods can be distributed so that the junction between the third zone on the one hand and the first and the second zone on the other hand forms a line in the light source corresponding to a cut-off of the beam of passing beam projected by the projection device.
- the third zone may be in two sub-zones capable of being powered at different current intensities.
- the distribution of electroluminescent rods is different or substantially different within each zone. And we can provide a separate ignition control system for each of the areas of the light source.
- the shaping optics may comprise an optical projection of the light emitted by the semiconductor light source.
- This projection optics creates a real, and possibly anamorphic, image of a part of the device, for example the source itself or a cache, or an intermediate image of the source, at a distance (finite or infinite) very large. in front of the dimensions of the device (of a ratio of the order of at least 30, preferably 100) of the device.
- This projection optics may consist of one or more reflectors, or a lens, or a combination of these two possibilities.
- the device thus takes place particularly in a front projector of a motor vehicle, able to emit different lighting functions, such as a daytime running light, a traffic light and a fire code.
- FIG. 1 is a sectional view of a device according to the invention, in which a source has been illustrated; semiconductor light device comprising electroluminescent rods, said rods not being represented to scale in order to make them visible, said source being oriented so that the rays emitted by the rods are directly directed towards an optical setting form of rays; Fig.
- FIG. 2 is a schematic perspective view of a semiconductor light source according to an embodiment of the invention, said light source having two separate areas of light emitting rods;
- Figure 3 is a schematic perspective view of a semiconductor light source, in which rows of electroluminescent rods have been made visible in section;
- Figure 4 is a sectional view of a particular embodiment of the invention, wherein two electroluminescent rods project from a substrate, said electroluminescent rods being encapsulated in a protective layer;
- FIG. 5 is a graph representative of the luminance of the beam to be emitted by the semiconductor source of the device of the invention for producing a road-type lighting light and a diurnal-type light respecting the regulatory photometry;
- FIGS. 6 and 7 are diagrammatic representations of embodiments of the semiconductor light source according to the invention, the electroluminescent rods being divided into three distinct zones (FIG. 6) or four distinct zones (FIG. 7). .
- a lighting and / or signaling device of a motor vehicle comprises a light source 1, in particular housed in a housing closed by an ice and which defines an internal volume of reception of this light source associated with a projection optics 2 adapted to infinitely image at least a portion of the light rays emitted by the light source.
- the light source 1 is centered on the optical axis 40 of the converging lens forming the projection optics 2 adapted to image the light source on the outside of the vehicle.
- the light source 1 is oriented so that the rays it emits are directly directed towards the lens.
- the light source does not emit mainly in the direction of the optical axis of the lens, but substantially perpendicular to it, and that the rays are deviated by an optical means, for example paraboloidal reflector type.
- the light source 1 comprises, according to the invention, a plurality of electroluminescent rods 8, of submillimetric dimensions, arranged in a plurality of zones, among which at least a first zone 4 and a second zone 6 (as visible in FIG. 2). .
- at least one of these zones participates in the formation of two distinct beams, this zone and the rods of which it is composed being placed in a first state, in particular by a power supply with a current of a first intensity, for participate in the formation of the first beam while this zone and the rods that compose it are placed in a second state, in particular by a power supply with a current of a second intensity, distinct from the first intensity, to participate in the formation of the second beam.
- the density and / or the height of the rods is such that the light source has at least a first zone and a second zone defined by a plurality of rods and having luminances distinct from a zone to the other when powered by the same electrical current.
- the light source 1 comprises a plurality of electroluminescent rods 8 which originate on at least one substrate 10.
- Each electroluminescent rod here formed using gallium nitride (GaN), extends perpendicularly, or substantially perpendicularly, projecting from substrate, here made based on silicon or silicon carbide other materials that can be used without departing from the context of the invention.
- the electroluminescent rods could be made from a compound based on aluminum nitride and gallium nitride (AlN / GaN), or from an aluminum-based compound, from indium and gallium.
- the substrate 10 has a lower face 12, on which is reported a first electrode 14, and an upper face 16, projecting from which extend the electroluminescent rods 8 and on which is reported a second electrode 18.
- Different layers of materials are superimposed on the upper face 16, in particular after the growth of electroluminescent rods from the substrate here obtained by an ascending approach.
- This layer is etched so as to connect a particular rod between them, the ignition of these electroluminescent rods can then be controlled simultaneously by a control module not shown here.
- electroluminescent rods extend from the substrate and, as can be seen in FIG. 3, they each comprise a gallium nitride core 19 around which are disposed quantum wells 20 formed by a radial superimposition of layers of different materials, here gallium nitride and gallium-indium nitride, and a shell 21 surrounding the quantum wells also made of gallium nitride.
- Each electroluminescent rod extends along a longitudinal axis 22 defining its height, the base of each rod being disposed in a plane 24 of the upper face 16 of the substrate 10.
- the electroluminescent rods 8 of the same light source advantageously have the same shape. They are each delimited by an end face 26 and a circumferential wall 28 which extends along the longitudinal axis.
- the electroluminescent rods are doped and polarized, the resultant light output from the semiconductor source is emitted essentially from the circumferential wall 28, it being understood that light rays may also emerge from the As a result, each electroluminescent rod acts as a single light-emitting diode and the light output of this source is improved on the one hand by the density of the electroluminescent rods 8 present and on the other by the size of the surface. illuminant defined by the circumferential wall and which therefore extends around the entire periphery, and the entire height of the stick.
- This circumferential wall 28 extends along the longitudinal axis 22 from the substrate 10 to the end face 26, the distance from the end face 26 to the upper face 16 of the substrate, from which the electroluminescent rods 8 originate. , defining the height of each stick.
- the height of a light emitting rod 8 is between 1 and 10 micrometers, while it is expected that the largest transverse dimension of the end face, perpendicular to the longitudinal axis 22 of the rod concerned, ie less than 2 micrometers. It will also be possible to define the surface of a rod, in a sectional plane perpendicular to this longitudinal axis 22, in a range of determined values, and in particular between 1.96 and 4 microns square. It is understood that during the formation of electroluminescent rods 8, the height can be changed from one zone of the light source to another, so as to increase the luminance of the corresponding zone when the average height of the rods the constituent is increased. Thus, a group of electroluminescent rods may have a height, or heights, different from another group of electroluminescent rods, these two groups constituting the same semiconductor light source comprising electroluminescent rods of submillimeter dimensions.
- the shape of the electroluminescent rods 8 may also vary from one device to another, in particular on the section of the rods and on the shape of the end face 26.
- Circular section electroluminescent rods have been illustrated in FIG. FIG. 3 shows electroluminescent rods 8 having a shape of polygonal section, and more particularly hexagonal section. It is understood that it is important that light can be emitted through the circumferential wall, that it has a polygonal or circular shape.
- the end face 26 may have a substantially planar shape and perpendicular to the circumferential wall, so that it extends substantially parallel to the upper face 16 of the substrate 10, as shown in FIG. 3, or although it may have a domed or pointed form at its center, so as to multiply the directions of emission of light exiting this end face, as shown in Figure 4.
- the electroluminescent rods 8 are arranged in two-dimensional matrix. This arrangement could be such that the rods are arranged in staggered rows.
- the invention covers other distributions of electroluminescent rods, in particular with rod densities which can be variable from one zone of the light source to another, and which can be variable within the zones of a same source. from light.
- FIG. 2 shows the separation distance d1 of two immediately adjacent electroluminescent rods in a first transverse direction and the separation distance d2 of two immediately adjacent electroluminescent rods in a second transverse direction. The separation distances d1 and d2 are measured between two longitudinal axes 22 of adjacent rods.
- the number of electroluminescent rods 8 projecting from the substrate 10 may vary from one zone to another, and therefore the separation distance between each rod may vary, in particular to locally increase the light intensity of the light source. , but it is agreed that one or the other separation distances dl, d2 must be at least equal to 2 micrometers, so that the light emitted by the circumferential wall 28 of each stick 8 can exit the matrix of electroluminescent rods. Furthermore, it is expected that these separation distances are not greater than 100 micrometers.
- one group of electroluminescent rods may have a density different from another group of electroluminescent rods, these two groups constituting the same semiconductor light source comprising electroluminescent rods of submillimeter dimensions.
- the semiconductor light source 1 may further comprise, as illustrated in FIG. 4, a layer 30 of a polymeric material in which the electroluminescent rods 8 are at least partially embedded.
- the layer 30 may thus extend over the whole extent of the substrate or only around a given group of electroluminescent rods 8.
- the polymer material which may in particular be based on silicone, creates a protective layer which makes it possible to protect the electroluminescent rods 8 without hindering the scattering of light rays.
- wavelength converting means and for example phosphors, able to absorb at least a portion of the rays emitted by one of the rods and to converting at least a portion of said absorbed excitation light into an emission light having a wavelength different from that of the excitation light. It can be provided without distinction whether the wavelength conversion means are embedded in the mass of the polymer material, or that they are arranged on the surface of the layer of this polymeric material.
- the light source may further comprise a coating 32 of light reflective material which is disposed between the electroluminescent rods 8 to deflect the rays, initially oriented towards the substrate, towards the end face 26 of the electroluminescent rods 8.
- the upper face 16 of the substrate 10 may comprise a reflecting means which returns the light rays, initially oriented towards the upper face 16, towards the exit face of the light source. This recovers rays that otherwise would be lost.
- This coating 32 is disposed between the electroluminescent rods 8 on the transparent conductive oxide layer 29.
- the light source 1 has electroluminescent rods arranged and configured to form zones among which at least one first zone participates in the formation of two distinct beams, this zone and the rods that compose it being placed in a first zone. state, in particular by a power supply with a current of a first intensity, to participate in the formation of the first beam while this zone and the rods that compose it are placed in a second state, in particular by a power supply with a current of a second intensity, distinct from the first intensity, to participate in the formation of the second beam.
- the set of rods is fed at a current of a first intensity or a current of a second intensity, according to the conditions of circulation and the state of the lighting and / or signaling device.
- the light source generally has a rectangular shape, but it will be understood that it can present without departing from the context of the invention other general forms, including a parallelogram shape.
- the electroluminescent rods may extend projecting from the substrate in a predetermined configuration, or may be connected or not to define a non-necessarily rectangular lighting surface.
- the light source 1 has an emitter portion 33 divided into two contiguous zones, among which a first zone 34 and a second zone 36, these two zones being arranged in series along the optical axis 40 defined by the light source and the shaping optics.
- the first zone 34 is disposed further than the second zone 36 with respect to the optical axis 40 and the main direction of emission of the rays, that is to say that it is located on the optical axis, compared to the second zone, closer to the exit of the light device.
- the separation 37 between the two zones 34, 36 follows here in the form of a right portion.
- this separation 37 can be obtained by the physical realization of a wall projecting from the substrate, but it can only be achieved by the determined wiring of a particular rod 8 between them.
- these zones 34, 36 are arranged a plurality of electroluminescent rods of submillimetric dimensions, the rods associated respectively with each of these two zones being electrically connected so that the zones can be activated selectively on either side of the separation.
- FIG. 2 shows the separation distance d3, in the first transverse direction, between a rod of the first zone 34 and a rod directly adjacent and of the second zone 36.
- this separation distance d3 measured between two longitudinal axes of electroluminescent rods, must be at least equal to 2 micrometers, so that the light emitted by the circumferential wall 28 of each rod 8 can exit the matrix of electroluminescent rods, and it seeks to have a separation distance d3 between two rods from two different sources that is substantially equal to the separation distance dl or d2 of two rods of the same zone of the light source.
- the two zones of the semiconductor light source may have distinct luminances, especially in the context of an application to a "multi-function" device, that is to say able to perform several different lighting functions.
- a multi-function device that is to say able to perform several different lighting functions.
- the device can perform a first code-type lighting function, a second road-type lighting function, a third fire-type lighting function. diurnal and a fourth function of the position light type (or "lantern").
- the second lighting function is carried out solely by activating the second zone 36, while the first zone of rods 34 is extinguished, or that this second function of lighting is achieved by simultaneous activation of the first and second zones of rods, activation of the rods of the second zone generating a beam complementary to the beam formed by the activation of the rods of the first zone to achieve by combining the road-type beam.
- At least the zone capable of participating in the formation of a Route-type beam comprises a sub-zone, selectively activatable with a power supply distinct from the zone to which this sub-zone zone is associated.
- the zone and the sub-zone are fed with different currents according to the lighting function that one wishes to achieve.
- these undernourishment and supercharging of one area and the other allow the realization with a common signature of a road lighting function and a daylight function.
- the graph of FIG. 5 is shown in solid lines, the distribution curve
- the substrate is common to all the rods composing the different zones of the semiconductor light source. The joined character of this arrangement being particularly advantageous for obtaining a homogeneous flux when the two zones of the semiconductor light source are simultaneously activated.
- a light device comprising, on the one hand, a semiconductor light source comprising electroluminescent rods grouped into a plurality of electrically powered zones according to several currents to take different states and, on the other hand, an optical system, will now be described.
- the emitting zones are not the same size and they do not have the same number of electroluminescent rods of dimensions submillimeter. In the case illustrated in FIG.
- the first zone 34 is larger than the second zone 36, at least in the direction of the optical axis 40 defined above, in a a ratio of approximately one to two.
- the two zones have a substantially rectangular shape, with a large side and a small side, and the areas are joined at one of their small side, which extends substantially perpendicular to the optical axis, in a provision of the so-called axial source, along the optical axis.
- provision may be made for the second zone, that is to say the largest zone of the two zones of the light source, to have a large side having a first dimension substantially equal to 4 millimeters and a small side having a second dimension substantially equal to 1 millimeter.
- the zones are joined at one of their long side, in a so-called transverse arrangement of the light source.
- the different areas of the light source are selectively activatable from each other.
- one of these zones when activated, to emit rays which form, after projection by the associated optics, a complementary beam of a projected beam when it is another zone of the transmitting part which is activated.
- complementary beam means a beam which, with another beam, forms a coherent beam when the zones are controlled so as to simultaneously produce the emission of the light beam of their own.
- FIG. 6 illustrates a particular embodiment of the invention according to which the semiconductor source comprises three contiguous zones ZR, ZJ and ZC from which can be identified a zone ZC disposed on one side of a cutoff line 54, and two zones ZR, ZJ disposed on the other side of this cutoff line.
- the zones are selectively activatable, and at least the zones ZR, ZJ arranged on the same side of the cut-off line are electrically powered with a variable supply current, the zone ZC disposed on the other side of the cut-off line. which can be supplied indifferently according to the invention by a variable or constant supply current.
- the zone ZC is absent, only zones ZR and ZJ being present.
- the cutoff In order for the Code beam to be legal, the cutoff must have sufficient contrast.
- a physical separation, non-emitting, of the zone ZC code and ZR road zone, ZJ the separation being able to be formed by an opaque wall extending protruding from the substrate between the electroluminescent rods arranged at the edge of each zone. This separation creates in the Route beam, obtained by the combined emission of the two zones 34,36 of the transmitting part, a zone darkened relative to the rest.
- this darkened zone is reduced to the maximum, that is to say that the zones 34,36 are as close as possible and that the wall can have a height less than 0.1 millimeter, and preferably less than 0.05 millimeter.
- zones ZR and ZJ are not activated.
- all the zones of the source are electrically powered, it being understood that according to the invention, at least one of the zones is powered with two currents of different intensity according to whether one seeks to obtain a Route beam or a diurnal beam.
- the first zone ZR that is to say the zone which is arranged substantially in the center of the source while the second zone ZJ is arranged around the first zone, is fed with a strong current, that is to say a current of intensity greater than a first determined threshold.
- the second zone ZJ is driven with a low current or even off, so that the luminance of the second zone is very low or zero.
- a Route beam corresponding to the characteristics of the graph of FIG. 5 is thus produced, with low intensity edges, since the rods on the sides of the source are grouped in the second zone ZJ driven with a weak current, and a peak of intensity in the center, since the rods grouped in the first zone ZR supercharged are all in the center of the source.
- the ZJ are fed, optionally the zone ZC, but the balance of light intensity between the center and the edges of the source is reversed.
- the first zone ZR is undernourished, with a current of intensity less than a second determined threshold.
- the second zone ZJ is fed with a standard intensity.
- a diurnal beam corresponding to the characteristics of the graph of FIG. 5 is thus produced, with a substantially constant intensity over the whole area, since the rods grouped in the first zone ZR are undernourished and do not create a peak of central intensity. In this way, we ensures, when changing from a road function to a daytime function, that the maximum value of the overall beam decreases more than the level of the edges, in order to obtain the desired diurnal day beam.
- zone ZR is even more undernourished with respect to its state for producing a diurnal beam
- zone ZJ is undernourished with a current of lower intensity than the current used to perform the daytime running function.
- a subzone ZC is provided in the zone Code ZC, which extends to the right of the first zone ZR, on the other side of the cutoff line 54.
- the zone Code ZC and the zone ZC can be supplied with different currents.
- this ZC subfield is used to supercharge the central part of the Code area.
- the central zones are supercharged, namely the ZR Route zone and the ZC sub-zone that extends to the right of the Route zone, while the peripheral zones are under-fed. , namely zones ZC and ZJ.
- zones ZC and ZJ are under-fed.
- it feeds the rods and the areas they form in a reverse manner to what has been said, that is to say by undernourishing the central areas, namely the zone ZR Road and subzone ZC which extends to the right of the zone Road, while one feeds in a normal way the zones in periphery, namely the zones ZC and ZJ.
- the rods are configured to form at least a first zone ZR and a second zone ZJ that can be activated selectively: the first zone ZR is capable of generating at least a portion of a first light beam, namely a Route beam, in a first state, electric supercharging or at least standard power supply, and a part of a second beam, namely a diurnal beam, in a second state of subtraction. power supply; and the second zone ZJ is able to generate a part of this second beam, namely the diurnal beam, together with the first zone in the second undernourishment state.
- this second zone ZJ can be driven to move from a first state, close to or equal to a standard state, in which it is able to generate a part of the beam diurnal, together with the first zone when the latter is in the state of undernourishment, to a second state of undernourishment, in which, optionally, it is able to generate a part of the Route beam, together with the first zone ZR when it is in said first state.
- the first zone ZR and the second zone ZJ can be driven in a third state, in which they are able to jointly generate a beam of the position light type.
- the present invention is particularly applicable to a front projector of a motor vehicle.
- the foregoing description clearly explains how the invention makes it possible to achieve the objectives that it has set itself and in particular to propose a light device that makes it possible to achieve, at a lower cost, and without loss of photometric quality, multi-function lighting. , that is to say a different lighting with a single optical shaping, including a device for achieving a code-type lighting, road-type lighting, a daytime lighting function and a fire function position.
- a semiconductor source comprising electroluminescent rods is used and that these rods are grouped into different zones which are fed to different feed streams so that they each participate in different lighting functions according to their state. It is thus possible to propose a common signature for several lighting functions and in particular a Route fire function, a daytime running light function and a position light function.
- electroluminescent rods comprising distinct zones of identifiable rods, in particular to play easily on variations of the power supply from one zone to another.
- the invention can not be limited to the embodiment specifically described in this document, and extends in particular to all equivalent means and any technically operating combination of these means.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
Un dispositif lumineux pour véhicule automobile comporte une source de lumière (1) à semi-conducteur, comprenant une pluralité de bâtonnets électroluminescents de dimensions submillimétriques, et une optique de projection d'au moins une partie des rayons lumineux émis par ladite source de lumière. Les bâtonnets électroluminescents sont agencés de manière à former une première zone et une deuxième zone activables sélectivement, la première zone (ZR) étant apte à générer au moins une partie d'un premier faisceau lumineux dans un premier état et une partie d'un deuxième faisceau dans un deuxième état, la deuxième zone (ZJ) étant apte à générer une partie dudit deuxième faisceau, conjointement avec la première zone dans le deuxième état.
Description
DISPOSITIF D'ECLAIRAGE ET/OU DE SIGNALISATION POUR
VEHICULE AUTOMOBILE
L'invention a trait au domaine de l'éclairage et/ou de la signalisation, notamment pour véhicules automobiles. Elle concerne plus particulièrement un dispositif apte à générer deux fonctions distinctes d'éclairage et/ou de signalisation par activation sélective de deux zones d'une source de lumière.
Un véhicule automobile est équipé de projecteurs, ou phares, destinés à illuminer la route devant le véhicule, la nuit ou en cas de luminosité réduite. Ces projecteurs peuvent généralement être utilisés selon deux modes d'éclairage : un premier mode « feux de route » et un deuxième mode « feux de croisement ». Le mode « feux de route » permet d'éclairer fortement la route loin devant le véhicule. Le mode « feux de croisement » procure un éclairage plus limité de la route, mais offrant néanmoins une bonne visibilité, sans éblouir les autres usagers de la route. Ces deux modes d'éclairage sont complémentaires, et l'on passe de l'un à l'autre en fonction des conditions de circulation. La commutation d'un mode à l'autre peut se faire manuellement, le conducteur décidant du moment de cette commutation, ou elle peut se faire automatiquement, en fonction de la détection par des moyens appropriés de conditions requises à un tel changement de mode d'éclairage. Chaque fonction d'éclairage peut être assurée par un module, et les différents modules sont disposés côte à côte dans le projecteur. Toutefois, notamment pour des questions de confort visuel pour le conducteur, de coût de revient, et d'esthétique, les constructeurs souhaitent proposer des projecteurs dans lesquels un module est apte à réaliser alternativement l'une ou l'autre des fonctions, afin que le faisceau lumineux correspondant sorte par la même face de sortie optique. On comprend que cette problématique s'applique quelle que soit la combinaison de fonctions d'éclairage que l'on souhaite mettre en place.
Les constructeurs se sont vus imposer ces dernières années la mise en place à l'avant de leurs véhicules de dispositifs permettant la réalisation d'une fonction d'éclairage diurne, connue également sous la dénomination DRL d'après l'acronyme anglais « Daytime Running Light ». La fonction d'éclairage diurne est de signaler le véhicule dans des conditions de luminosité assimilées au plein jour. L' activation d'un feu diurne est opérée par un moyen automatique de commande, de sorte que le feu diurne est allumé en
permanence dès lors que les feux d'éclairage précédemment cités, feux de route ou feux de croisement, sont éteints.
Une solution connue dans les projecteurs automobiles existants pour fournir un faisceau d'éclairage diurne est d'utiliser, en plus du ou des modules destinés à générer les faisceaux Code et Route, un module séparé, par exemple, à base de diodes électroluminescentes et de guides de lumière. L'inconvénient principal de cette solution est que la signature du véhicule, c'est-à-dire l'aspect allumé du projecteur, diffère selon que l'on observe le véhicule de jour ou de nuit. Pour des raisons aussi bien esthétiques que d'encombrement des projecteurs, les acteurs du marché automobile cherchent à ce que la signature de leurs fonctions d'éclairage et/ou de signalisation soit la même de jour et de nuit.
L'invention vise à proposer une alternative à ces solutions antérieures, qui permette de proposer un dispositif lumineux à la signature constante, c'est-à-dire avec un aspect du dispositif vu depuis l'extérieur du véhicule qui reste le même, et ce, que le dispositif lumineux fonctionne dans des conditions diurnes ou nocturnes, et qui permette le respect des grilles photométriques à remplir d'après la réglementation, aussi bien pour le faisceau d'éclairage diurne que pour le faisceau d'éclairage Route ou Code.
Dans ce contexte, l'invention a pour objet un dispositif d'éclairage et/ou de signalisation pour véhicule automobile dans lequel on prévoit une source de lumière à semi-conducteur, comprenant une pluralité de bâtonnets électroluminescents de dimensions submillimétriques, et une optique de projection d'au moins une partie des rayons lumineux émis par ladite source de lumière. Les bâtonnets électroluminescents sont agencés de manière à former une première zone et une deuxième zone activables sélectivement, la première zone étant apte à générer au moins une partie d'un premier faisceau lumineux dans un premier état et une partie d'un deuxième faisceau dans un deuxième état, la deuxième zone étant apte à générer une partie dudit deuxième faisceau, conjointement avec la première zone dans le deuxième état.
Par optique de projection, on entend des moyens permettant de projeter à l'infini une image de la source de lumière directement ou indirectement. Selon un aspect de invention, on applique au domaine automobile une technologie consistant à réaliser la zone émettrice de lumière par une forêt de bâtonnets électroluminescents de dimensions submillimétriques que l'on fait croître sur un substrat,
pour réaliser une topologie en trois dimensions. On comprend que cette topologie en trois dimensions présente l'avantage de multiplier la surface d'émission lumineuse par rapport aux diodes électroluminescentes connues jusque-là dans le domaine de l'automobile, à savoir des diodes sensiblement planes. Par la multiplication des bâtonnets générateurs de lumière, qui peuvent être alimentés indépendamment les uns des autres, il est possible de prévoir des zones spécifiques que l'on peut sous-alimenter ou suralimenter en fonction de la fonction d'éclairage que l'on souhaite réaliser, sans qu'il soit nécessaire de sous- alimenter ou suralimenter l'ensemble de la source de lumière, et le fait que ceci soit réalisée à partir d'une unique source de lumière et d'une unique optique de projection permet de conserver une signature unique quel que soit le mode d'utilisation de la source de lumière.
Selon différentes caractéristiques de l'invention, on pourra prévoir que :
- la deuxième zone est apte à prendre un premier état dans lequel elle est apte à générer une partie dudit deuxième faisceau, conjointement avec la première zone lorsque celle-ci est dans ledit deuxième état, et un deuxième état dans lequel est apte à générer une partie d'un troisième faisceau, conjointement avec la première zone lorsque celle-ci est dans un troisième état ;
- la première zone est apte à générer d'une part au moins une partie dudit premier faisceau lumineux lorsqu'elle est alimentée électriquement avec une puissance électrique supérieure à un premier seuil déterminé et d'autre une partie dudit deuxième faisceau lumineux lorsqu'elle est alimentée électriquement avec une puissance électrique inférieure à un deuxième seuil déterminé ;
- le premier faisceau lumineux est un faisceau de type route, ledit deuxième faisceau lumineux étant un faisceau de type feu diurne etle troisième faisceau un faisceau de type feu de position.
Les bâtonnets électroluminescents peuvent s'étendre à partir d'un même substrat, et ils peuvent notamment être formés directement sur ce substrat. On peut prévoir que le substrat soit à base de Silicium ou de carbure de silicium. On comprend que le substrat est à base de silicium dès lors qu'il comporte majoritairement du silicium, par exemple au moins 50% et dans la pratique environ 99%. Ainsi, il est possible de réduire les coûts d'obtention du dispositif selon l'invention, puisque les plaques de silicium utilisées
peuvent prendre une taille allant jusqu'à 12 pouces, contre au maximum 4 pouces pour le corindon utilisé précédemment.
Selon des caractéristiques propres à la constitution des bâtonnets électroluminescents et à la disposition de ces bâtonnets électroluminescents sur le substrat, on pourra prévoir que, chaque caractéristique pouvant être prise seule ou en combinaison avec les autres :
- chaque bâtonnet présente une forme générale cylindrique, notamment de section polygonale ; on pourra prévoir que chaque bâtonnet est la même forme générale, et notamment une forme hexagonale ; - les bâtonnets sont chacun délimités par une face terminale et par une paroi circonférentielle qui s'étend le long d'un axe longitudinal du bâtonnet définissant sa hauteur, la lumière étant émise au moins à partir de la paroi circonférentielle ; cette lumière pourrait également être émise par la face terminale ;
- chaque bâtonnet peut présenter une face terminale qui est sensiblement perpendiculaire à la paroi circonférentielle, et dans différentes variantes, on peut prévoir que cette face terminale est sensiblement plane ou bombée, ou pointue, en son centre ;
- les bâtonnets sont agencés en matrice, que cette matrice soit régulière, avec un espacement constant entre deux bâtonnets successifs d'un alignement donné, ou que les bâtonnets soient disposés en quinconce ; - la hauteur d'un bâtonnet est comprise entre 1 et 10 micromètres ;
- la plus grande dimension de la face terminale est inférieure à 2 micromètres ;
- la distance qui sépare deux bâtonnets immédiatement adjacents est au minimum égale à 2 micromètres, et au maximum égale à 100 micromètres.
- la distance qui sépare deux bâtonnets immédiatement adjacents est préférentiellement comprise entre 2 micromètres et 10 micromètres.
Le flux lumineux et la luminance d'une source lumineuse de la présente invention sont contraints par les réglementations en vigueur concernant l'éclairage et/ou la signalisation dans le domaine automobile et par la diaphonie entre bâtonnets. En outre les architectures électriques actuelles des véhicules automobiles limitent la puissance d'alimentation de la source lumineuse. Ainsi pour obtenir un faisceau d'éclairage et/ou de
signalisation conforme à ces règlements avec une telle source lumineuse et dans la limite de ces architectures électriques, les paramètres de la source de lumière de l'invention comme la hauteur et le diamètre des bâtonnets ou en l'occurrence l'espacement des bâtonnets sur le substrat de la source lumineuse peuvent être variés. Il a ainsi été constaté que la distance qui sépare deux bâtonnets immédiatement adjacents doit avantageusement être comprise entre 2 micromètres et 10 micromètres, de préférence entre 2 micromètres et 10 micromètres.
D'autre part, cette fourchette permet de fabriquer facilement des optiques de projection apte à coopérer avec la source lumineuse et dont le pouvoir de résolution permettra de distinguer deux groupes distincts de bâtonnets et ne permettra pas de distinguer deux bâtonnets distincts.
Selon d'autres caractéristiques, on pourra prévoir que la source de lumière à semiconducteur comprenant une pluralité de bâtonnets électroluminescents de dimensions submillimétriques comporte en outre une couche d'un matériau polymère dans laquelle les bâtonnets sont au moins partiellement noyés ; ce matériau polymère peut être à base de silicone, étant entendu que le matériau polymère est à base de silicone dès lors qu'il comporte majoritairement du silicone, par exemple au moins 50% et dans la pratique environ 99%. La couche de matériau polymère peut comprendre un luminophore ou une pluralité de luminophores excités par la lumière générée par au moins un de la pluralité de bâtonnets. On entend par luminophore, ou convertisseur de lumière, et par exemple un phosphore, la présence d'au moins un matériau luminescent conçu pour absorber au moins une partie d'au moins une lumière d'excitation émise par une source lumineuse et pour convertir au moins une partie de ladite lumière d'excitation absorbée en une lumière d'émission ayant une longueur d'onde différente de celle de la lumière d'excitation. Ce luminophore, ou cette pluralité de luminophores, peut être au moins partiellement noyé dans le polymère, ou bien reposer sur la couche de ce matériau polymère.
Selon une série de caractéristiques propres à l'agencement des deux zones, on pourra prévoir que :
- la deuxième zone entoure au moins en partie la première zone ; - le contrôle indépendant de l'allumage des deux zones entre elles est un contrôle d'intensité d'allumage ; les deux zones peuvent être alimentées simultanément pour
émettre des rayons lumineux dans une surface d'éclairage déterminée pour participer à la formation d'une première fonction d'éclairage, la deuxième zone étant sous-alimentée par rapport à l'alimentation de la première zone, et les deux zones peuvent être alimentées simultanément pour émettre des rayons lumineux dans une surface d'éclairage déterminée pour participer à la formation d'une deuxième fonction d'éclairage, la première zone étant sous-alimentée par rapport à l'alimentation de la deuxième zone.
On pourra prévoir que la source de lumière comprend une troisième zone formée d'une pluralité desdits bâtonnets électroluminescents et activable sélectivement par rapport aux première et deuxième zones, ladite troisième zone étant apte à générer au moins une partie d'un quatrième faisceau lumineux. Ce quatrième faisceau lumineux peut notamment être un faisceau de type feu de croisement.
On pourra également prévoir que le dispositif comporte une deuxième source de lumière, et par exemple une diode électroluminescente (LED) classique, apte à générer au moins une partie de ce quatrième faisceau lumineux. Dans une configuration particulière d'un dispositif selon l'invention, la troisième zone est commandée pour être activable sélectivement de la première et de la deuxième zone, la première et la deuxième zone étant par ailleurs activables simultanément, à des intensités d'allumage pouvant être distinctes.
Les bâtonnets électroluminescents définissant la troisième zone peuvent notamment être séparés du reste des bâtonnets électroluminescents de la source de lumière par la présence d'un élément de séparation, comme une paroi s'étendant en saillie du substrat porteur des bâtonnets. Les bâtonnets peuvent être répartis de sorte que la jonction entre la troisième zone d'une part et la première et la deuxième zone d'autre part forme une ligne dans la source de lumière correspondant à une coupure du faisceau de feu de croisement projeté par le dispositif de projection.
Selon une caractéristique de l'invention, la troisième zone peut être en deux sous- zones aptes à être alimentées à des intensités de courant différentes.
Pour chacune des zones évoquées ci-dessus, on pourra prévoir que la répartition des bâtonnets électroluminescents est différente, ou sensiblement différente, à l'intérieur de chaque zone.
Et on pourra prévoir un système de contrôle de l'allumage distinct pour chacune des zones de la source de lumière.
Selon l'invention, l'optique de mise en forme peut comprendre une optique de projection de la lumière émise par la source de lumière à semi-conducteur. Cette optique de projection crée une image réelle, et éventuellement anamorphosée, d'une partie du dispositif, par exemple la source elle-même ou un cache, ou d'une image intermédiaire de la source, à distance (finie ou infinie) très grande devant les dimensions du dispositif (d'un rapport de l'ordre d'au moins 30, de préférence 100) du dispositif. Cette optique de projection peut consister en un ou plusieurs réflecteurs, ou bien en une lentille, ou encore en une combinaison de ces deux possibilités.
Le dispositif prend ainsi particulièrement place dans un projecteur avant de véhicule automobile, apte à émettre des fonctions d'éclairage différentes, comme un feu diurne, un feu route et un feu code.
D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à l'aide de la description et des dessins parmi lesquels : la figure 1 est une vue en coupe d'un dispositif selon l'invention, dans laquelle on a illustré une source de lumière à semi-conducteur comprenant des bâtonnets électroluminescents, lesdits bâtonnets n'étant pas représentés à l'échelle afin de les rendre visible, ladite source étant orientée de sorte que les rayons émis par les bâtonnets soient directement dirigés vers une optique de mise en forme des rayons ; la figure 2 est une représentation schématique en perspective d'une source de lumière à semi-conducteur selon un mode de réalisation de l'invention, ladite source de lumière comportant deux zones distinctes de bâtonnets électroluminescents ; la figure 3 est une représentation schématique en perspective d'une source de lumière à semi-conducteur, dans laquelle on a rendu visible en coupe des rangées de bâtonnets électroluminescents ; la figure 4 est une vue en coupe d'un mode de réalisation particulier de l'invention, dans lequel deux bâtonnets électroluminescents s'étendent en saillie d'un substrat, lesdits bâtonnets électroluminescents étant encapsulés dans une couche protectrice ;
la figure 5 est un graphe représentatif de la luminance du faisceau à émettre par la source à semi-conducteur du dispositif de l'invention pour réaliser un feu d'éclairage de type route et un feu de type diurne respectant la photométrie réglementaire ; et - les figures 6 et 7 sont des représentations schématiques de modes de réalisation de la source de lumière à semi-conducteur selon l'invention, les bâtonnets électroluminescents étant répartis en trois zones distinctes (figure 6) ou quatre zones distinctes (figure 7).
Un dispositif d'éclairage et/ou de signalisation d'un véhicule automobile comporte une source de lumière 1, notamment logée dans un boîtier fermé par une glace et qui définit un volume interne de réception de cette source de lumière associée à une optique de projection 2 adaptée à imager à l'infini au moins une partie des rayons lumineux émis par la source de lumière. Sur la figure 1, la source de lumière 1 est centrée sur l'axe optique 40 de la lentille convergente formant l'optique de projection 2 adaptée pour imager la source de lumière à l'extérieur du véhicule. La source de lumière 1 est orientée de sorte les rayons qu'elle émet soient directement dirigés vers la lentille. Pour des raisons d'encombrement du dispositif lumineux par exemple, on pourra prévoir que la source de lumière n'émet pas principalement dans la direction de l'axe optique de la lentille, mais sensiblement perpendiculairement à celui-ci, et que les rayons soient déviés par un moyen optique, par exemple de type réflecteur paraboloïdal.
La source de lumière 1 comprend selon l'invention une pluralité de bâtonnets électroluminescents 8, de dimensions submillimétriques, disposés en une pluralité de zones, parmi lesquelles au moins une première zone 4 et une deuxième zone 6 (tel que visible sur la figure 2). Selon l'invention, au moins une de ces zones participe à la formation de deux faisceaux distincts, cette zone et les bâtonnets qui la composent étant placés dans un premier état, notamment par une alimentation électrique avec un courant d'une première intensité, pour participer à la formation du premier faisceau tandis que cette zone et les bâtonnets qui la composent sont placés dans un deuxième état, notamment par une alimentation électrique avec un courant d'une deuxième intensité, distincte de la
première intensité, pour participer à la formation du deuxième faisceau.
On peut prévoir dans ce contexte que la densité et/ou la hauteur des bâtonnets soit telle que la source de lumière ait au moins une première zone et une deuxième zone définies par une pluralité de bâtonnets et présentant des luminances distinctes d'une zone à l'autre lorsqu'elles sont alimentées par le même courant électrique.
On va dans un premier temps décrire la structure d'une source de lumière 1 à semiconducteurs comportant des bâtonnets électroluminescents de dimensions submillimétriques, notamment en se référant aux figures 3 et 4.
La source de lumière 1 comprend une pluralité de bâtonnets électroluminescents 8 qui prennent naissance sur au moins un substrat 10. Chaque bâtonnet électroluminescent, ici formé par utilisation de nitrure de gallium (GaN), s'étend perpendiculairement, ou sensiblement perpendiculairement, en saillie du substrat, ici réalisé à base de silicium ou de carbure de silicium d'autres matériaux pouvant être utilisés sans sortir du contexte de l'invention. A titre d'exemple, les bâtonnets électroluminescents pourraient être réalisés à partir d'un composé à base de nitrure d'aluminium et de nitrure de gallium (AIN/GaN), ou à partir d'un composé à base d'aluminium, d'indium et de gallium.
Le substrat 10 présente une face inférieure 12, sur laquelle est rapportée une première électrode 14, et une face supérieure 16, en saillie de laquelle s'étendent les bâtonnets électroluminescents 8 et sur laquelle est rapportée une deuxième électrode 18. Différentes couches de matériaux sont superposées sur la face supérieure 16, notamment après la croissance des bâtonnets électroluminescents depuis le substrat ici obtenue par une approche ascendante. Parmi ces différentes couches, on peut trouver au moins une couche de matériau conducteur électriquement, afin de permettre l'alimentation électrique des bâtonnets. Cette couche est gravée de manière à relier tel ou tel bâtonnet entre eux, l'allumage de ces bâtonnets électroluminescents pouvant alors être commandé simultanément par un module de commande ici non représenté. On pourra prévoir qu'au moins deux bâtonnets électroluminescents ou au moins deux groupes de bâtonnets électroluminescents sont agencés pour être allumés de manière distincte par l'intermédiaire d'un système de contrôle de l'allumage. Les bâtonnets électroluminescents s'étirent depuis le substrat et, tel que cela est visible sur la figure 3, ils comportent chacun un noyau 19 en nitrure de gallium, autour duquel sont disposés des puits quantiques 20 formés par une superposition radiale de
couches de matériaux différents, ici du nitrure de gallium et du nitrure de gallium-indium, et une coque 21 entourant les puits quantiques également réalisé en nitrure de gallium.
Chaque bâtonnet électroluminescent s'étend selon un axe longitudinal 22 définissant sa hauteur, la base de chaque bâtonnet étant disposée dans un plan 24 de la face supérieure 16 du substrat 10.
Les bâtonnets électroluminescents 8 d'une même source de lumière présentent avantageusement la même forme. Ils sont chacun délimités par une face terminale 26 et par une paroi circonférentielle 28 qui s'étend le long de l'axe longitudinal. Lorsque les bâtonnets électroluminescents sont dopés et font l'objet d'une polarisation, la lumière résultante en sortie de la source à semi-conducteurs est émise essentiellement à partir de la paroi circonférentielle 28, étant entendu que des rayons lumineux peuvent sortir également de la face terminale 26. Il en résulte que chaque bâtonnet électroluminescent agit comme une unique diode électroluminescente et que le rendement lumineux de cette source est amélioré d'une part par la densité des bâtonnets électroluminescents 8 présents et d'autre part par la taille de la surface éclairante définie par la paroi circonférentielle et qui s'étend donc sur tout le pourtour, et toute la hauteur, du bâtonnet.
La paroi circonférentielle 28 d'un bâtonnet électroluminescent 8, correspondant à la coquille de nitrure de gallium, est recouverte par une couche d'oxyde conducteur transparent (OCT) 29 qui forme l'anode de chaque bâtonnet complémentaire à la cathode formée par le substrat. Cette paroi circonférentielle 28 s'étend le long de l'axe longitudinal 22 depuis le substrat 10 jusqu'à la face terminale 26, la distance de la face terminale 26 à la face supérieure 16 du substrat, depuis laquelle prennent naissance les bâtonnets électroluminescents 8, définissant la hauteur de chaque bâtonnet. A titre d'exemple, on prévoit que la hauteur d'un bâtonnet électroluminescent 8 est comprise entre 1 et 10 micromètres, tandis que l'on prévoit que la plus grande dimension transversale de la face terminale, perpendiculairement à l'axe longitudinal 22 du bâtonnet concerné, soit inférieure à 2 micromètres. On pourra également prévoir de définir la surface d'un bâtonnet, dans un plan de coupe perpendiculaire à cet axe longitudinal 22, dans une plage de valeurs déterminées, et notamment entre 1.96 et 4 micromètres carré. On comprend que lors de la formation des bâtonnets électroluminescents 8, la hauteur peut être modifiée d'une zone de la source de lumière à l'autre, de manière à accroître la luminance de la zone correspondante lorsque la hauteur moyenne des bâtonnets
la constituant est augmentée. Ainsi, un groupe de bâtonnets électroluminescents peut avoir une hauteur, ou des hauteurs, différentes d'un autre groupe de bâtonnets électroluminescents, ces deux groupes étant constitutifs de la même source de lumière à semi-conducteur comprenant des bâtonnets électroluminescents de dimensions submillimétriques.
La forme des bâtonnets électroluminescents 8 peut également varier d'un dispositif à l'autre, notamment sur la section des bâtonnets et sur la forme de la face terminale 26. Il a été illustré sur la figure 2 des bâtonnets électroluminescents de section circulaire, et sur la figure 3 des bâtonnets électroluminescents 8 présentant une forme de section polygonale, et plus particulièrement hexagonale. On comprend qu'il importe que de la lumière puisse être émise à travers la paroi circonférentielle, que celle-ci présente une forme polygonale ou circulaire.
Par ailleurs, la face terminale 26 peut présenter une forme sensiblement plane et perpendiculaire à la paroi circonférentielle, de sorte qu'elle s'étend sensiblement parallèlement à la face supérieure 16 du substrat 10, tel que cela est illustré sur la figure 3, ou bien elle peut présenter une forme bombée ou en pointe en son centre, de manière à multiplier les directions d'émission de la lumière sortant de cette face terminale, tel que cela est illustré sur la figure 4.
Sur les figures 2 et 3, les bâtonnets électroluminescents 8 sont agencés en matrice à deux dimensions. Cet agencement pourrait être tel que les bâtonnets soient agencés en quinconce. L'invention couvre d'autres répartitions des bâtonnets électroluminescents, avec notamment des densités de bâtonnets qui peuvent être variables d'une zone de la source de lumière à l'autre, et qui peuvent être variables au sein des zones d'une même source de lumière. On a représenté sur la figure 2 la distance de séparation dl de deux bâtonnets électroluminescents immédiatement adjacents dans une première direction transversale et la distance de séparation d2 de deux bâtonnets électroluminescents immédiatement adjacents dans une deuxième direction transversale. Les distances de séparation dl et d2 sont mesurées entre deux axes longitudinaux 22 de bâtonnets adjacents. Le nombre de bâtonnets électroluminescents 8 s'étendant en saillie du substrat 10 peut varier d'une zone à l'autre, et donc la distance de séparation entre chaque bâtonnet peut varier, notamment pour augmenter localement l'intensité lumineuse de la source de lumière, mais on convient que l'une ou l'autre des distances de séparation dl, d2 doit être
au minimum égale à 2 micromètres, afin que la lumière émise par la paroi circonférentielle 28 de chaque bâtonnet 8 puisse sortir de la matrice de bâtonnets électroluminescents. Par ailleurs, on prévoit que ces distances de séparation ne soient pas supérieures à 100 micromètres. On comprend, comme cela a pu être précisé précédemment pour la hauteur des bâtonnets, qu'il est possible, dans le respect des distances de séparation imposées entre deux bâtonnets adjacents, que l'on peut, lors de la formation des bâtonnets électroluminescents 8, modifier la densité des bâtonnets d'une zone de la source de lumière à l'autre, de manière à accroître la luminance de la zone comprenant la plus forte densité de bâtonnets. Ainsi, un groupe de bâtonnets électroluminescents peut présenter une densité différente d'un autre groupe de bâtonnets électroluminescents, ces deux groupes étant constitutifs de la même source de lumière à semi-conducteur comprenant des bâtonnets électroluminescents de dimensions submillimétriques.
La source de lumière 1 à semi-conducteur peut comporter en outre, tel qu'illustré sur la figure 4, une couche 30 d'un matériau polymère dans laquelle les bâtonnets électroluminescents 8 sont au moins partiellement noyées. La couche 30 peut ainsi s'étendre sur toute l'étendue du substrat ou seulement autour d'un groupe déterminé de bâtonnets électroluminescents 8. Le matériau polymère, qui peut notamment être à base de silicone, crée une couche protectrice qui permet de protéger les bâtonnets électroluminescents 8 sans gêner la diffusion des rayons lumineux. En outre, il est possible d'intégrer dans cette couche 30 de matériau polymère des moyens de conversion de longueur d'onde, et par exemple des luminophores, aptes à absorber au moins une partie des rayons émis par l'un des bâtonnets et à convertir au moins une partie de ladite lumière d'excitation absorbée en une lumière d'émission ayant une longueur d'onde différente de celle de la lumière d'excitation. On pourra prévoir indifféremment que les moyens de conversion de longueur d'onde sont noyés dans la masse du matériau polymère, ou bien qu'ils sont disposés en surface de la couche de ce matériau polymère.
La source de lumière peut comporter en outre un revêtement 32 de matériau réfléchissant la lumière qui est disposé entre les bâtonnets électroluminescents 8 pour dévier les rayons, initialement orientés vers le substrat, vers la face terminale 26 des bâtonnets électroluminescents 8. En d'autres termes, la face supérieure 16 du substrat 10 peut comporter un moyen réfléchissant qui renvoie les rayons lumineux, initialement
orientés vers la face supérieure 16, vers la face de sortie de la source de lumière. On récupère ainsi des rayons qui autrement seraient perdus. Ce revêtement 32 est disposé entre les bâtonnets électroluminescents 8 sur la couche d'oxyde conducteur transparent 29.
Selon l'invention, la source de lumière 1 présente des bâtonnets électroluminescents agencés et configurés pour former des zones parmi lesquelles au moins une première zone participe à la formation de deux faisceaux distincts, cette zone et les bâtonnets qui la composent étant placés dans un premier état, notamment par une alimentation électrique avec un courant d'une première intensité, pour participer à la formation du premier faisceau tandis que cette zone et les bâtonnets qui la composent sont placés dans un deuxième état, notamment par une alimentation électrique avec un courant d'une deuxième intensité, distincte de la première intensité, pour participer à la formation du deuxième faisceau.. L'ensemble des bâtonnets est alimenté à un courant d'une première intensité ou à un courant d'une deuxième intensité, selon les conditions de circulation et l'état du dispositif d'éclairage et/ou de signalisation. Sur la figure 2, la source de lumière présente globalement une forme rectangulaire, mais on comprendra qu'il peut présenter sans sortir du contexte de l'invention d'autres formes générales, et notamment une forme de parallélogramme. Et que selon l'invention, les bâtonnets électroluminescents peuvent s'étendre en saillie du substrat selon une configuration déterminée, ou bien peuvent être raccordés ou non pour définir une surface d'éclairage non forcément rectangulaire.
Dans un premier exemple illustré sur les figures 2 et 3, la source de lumière 1 présente une partie émettrice 33 divisée en deux zones jointives, parmi lesquelles une première zone 34 et une deuxième zone 36, ces deux zones étant disposées en série le long de l'axe optique 40 défini par la source de lumière et l'optique de mise en forme. La première zone 34 est disposée plus en avant que la deuxième zone 36 par rapport à l'axe optique 40 et la direction principale d'émission des rayons, c'est-à-dire qu'elle se situe sur l'axe optique, par rapport à la deuxième zone, plus proche de la sortie du dispositif lumineux. La séparation 37 entre les deux zones 34, 36 suit ici la forme d'une portion de droite. Tel que cela sera décrit plus en détails ci-après, cette séparation 37 peut être obtenue par la réalisation physique d'un muret s'étendant en saillie du substrat, mais elle peut être uniquement réalisée par le câblage déterminé de tel ou tel bâtonnet 8 entre eux.
Dans chacune de ces zones 34,36 sont disposés une pluralité de bâtonnets électroluminescents de dimensions submillimétriques, les bâtonnets associés respectivement à chacune de ces deux zones étant connectés électriquement pour que les zones soient activables sélectivement, de part et d'autre de la séparation 37. On a représenté sur la figure 2 la distance de séparation d3, dans la première direction transversale, entre un bâtonnet de la première zone 34 et un bâtonnet directement adjacent et de la deuxième zone 36. On convient que cette distance de séparation d3, mesurée entre deux axes longitudinaux de bâtonnets électroluminescents, doit être au minimum égale à 2 micromètres, afin que la lumière émise par la paroi circonférentielle 28 de chaque bâtonnet 8 puisse sortir de la matrice de bâtonnets électroluminescents, et on cherche à avoir une distance de séparation d3 entre deux bâtonnets de deux sources différentes qui est sensiblement égale à la distance de séparation dl ou d2 de deux bâtonnets d'une même zone de la source de lumière.
Il est notable que les deux zones de la source de lumière à semi-conducteur peuvent présenter des luminances distinctes, notamment dans le cadre d'une application à un dispositif « multi-fonction », c'est-à-dire capable d'effectuer plusieurs fonctions d'éclairage distinctes. Dans la description qui suit, on s'attarde plus particulièrement sur une application dans laquelle le dispositif peut effectuer une première fonction d'éclairage de type code, une deuxième fonction d'éclairage de type route, une troisième fonction d'éclairage de type feu diurne et une quatrième fonction de type feu de position (ou « lanterne »). Plusieurs distinctions peuvent être faites entre les deux zones de la surface émettrice, respectivement associées à l'une ou l'autre des fonctions d'éclairage, étant entendu que dans cette application, on souhaite que activation de la première zone de bâtonnets 34 permette la réalisation de la première fonction d'éclairage, c'est-à-dire l'émission d'un faisceau code, qui nécessite donc une luminance modérée mais un fort flux, tandis que activation de la deuxième zone de bâtonnets 36 permet la réalisation de la deuxième fonction d'éclairage, c'est à dire l'émission d'un faisceau route, qui nécessite donc une forte luminance, mais avec un flux modéré. On pourra prévoir, sans sortir du contexte de l'invention, que la deuxième fonction d'éclairage est réalisée uniquement par Γ activation de la deuxième zone 36, tandis que la première zone de bâtonnets 34 est éteinte, ou bien que cette deuxième fonction d'éclairage est réalisée par activation simultanée des première et deuxième zones de bâtonnets, activation des bâtonnets de la
deuxième zone générant un faisceau complémentaire au faisceau formé par l'activation des bâtonnets de la première zone pour réaliser par combinaison le faisceau de type route.
Dans les exemples qui vont suivre, on souhaite qu'au moins la zone apte à participer à la formation d'un faisceau de type Route, comporte une sous-zone, activable sélectivement avec une alimentation électrique distincte de la zone à laquelle cette sous- zone est associée. Selon l'invention, la zone et la sous-zone sont alimentées à des courants différents selon la fonction d'éclairage que l'on souhaite réaliser. Notamment, ces sous- alimentation et suralimentation d'une zone et l'autre permettent la réalisation avec une signature commune d'une fonction d'éclairage route et d'une fonction d'éclairage diurne. On a représenté sur le graphe de la figure 5, en traits plein, la courbe de distribution
50 de luminance L à respecter sur la source, en fonction de la position par rapport au centre de la source, pour l'obtention d'un faisceau de type route respectant la réglementation, et on a représenté sur le même graphe, en traits pointillés, la courbe de distribution 51 de luminance L à respecter sur la source, en fonction de la position par rapport au centre de la source, pour l'obtention d'un faisceau de type diurne respectant la réglementation. On peut voir que pour un faisceau Route, l'intensité lumineuse doit être forte au centre de la source et diminuer progressivement vers l'extérieur de la source, tandis que pour un faisceau diurne, l'intensité lumineuse doit être plus régulière d'un bord à l'autre de la source, sans pic d'intensité au centre. Avantageusement, le substrat est commun à l'ensemble des bâtonnets composant les différentes zones de la source de lumière à semi-conducteur. Le caractère jointif de cet agencement étant particulièrement intéressant pour l'obtention d'un flux homogène lorsque les deux zones de la source de lumière à semi-conducteur sont activées simultanément.
On va maintenant décrire différents modes de réalisation d'un dispositif lumineux comportant d'une part une source de lumière à semi-conducteur comprenant des bâtonnets électroluminescents regroupés en plusieurs zones alimentés électriquement selon plusieurs courants pour prendre différents états et d'autre part une optique de projection apte à imager à l'infini au moins une partie des rayons lumineux émis par les différentes zones de bâtonnets de la source de lumière. Sur les figures 2 et 7 à 9, les zones émettrices n'ont pas la même taille et elles ne présentent pas le même nombre de bâtonnets électroluminescents de dimensions
submillimétriques. Dans le cas illustré sur la figure 2, où la source de lumière présente deux zones de bâtonnets identifiables, la première zone 34 est plus grande que la deuxième zone 36, au moins dans la direction de l'axe optique 40 défini précédemment, dans un rapport allant sensiblement du simple au double. Les deux zones présentent une forme sensiblement rectangulaire, avec un grand côté et un petit côté, et les zones sont jointes au niveau d'un de leur petit côté, qui s'étend sensiblement perpendiculairement à l'axe optique, dans une disposition de la source dite axiale, le long de l'axe optique. A titre d'exemple, on pourra prévoir que la deuxième zone, c'est-à-dire la zone la plus grande des deux zones de la source de lumière, présente un grand côté ayant une première dimension sensiblement égale à 4 millimètres et un petit côté ayant une deuxième dimension sensiblement égale à 1 millimètre. On pourra prévoir en variante de réalisation que les zones sont jointes au niveau d'un de leur grand côté, dans une disposition dite transversale de la source de lumière.
Les différentes zones de la source de lumière sont activables sélectivement l'une de l'autre. On pourra notamment prévoir que l'une de ces zones, lorsqu'elle est activée, émet des rayons qui forment après projection par l'optique associée un faisceau complémentaire d'un faisceau projeté lorsque c'est une autre zone de la partie émettrice qui est activée. On entend par faisceau complémentaire un faisceau qui forme avec un autre faisceau un faisceau cohérent lorsque les zones sont pilotées pour réaliser simultanément l'émission du faisceau lumineux qui leur est propre. Ces faisceaux complémentaires se superposent pour former un faisceau lumineux réglementaire pour véhicule automobile.
Sur la figure 6, on a illustré un mode de réalisation particulier de l'invention selon lequel la source à semi-conducteurs comporte trois zones jointives ZR, ZJ et ZC parmi lesquelles on peut identifier une zone ZC disposée d'un côté d'une ligne de coupure 54, et deux zones ZR,ZJ disposées de l'autre côté de cette ligne de coupure. Les zones sont activables sélectivement, et au moins les zones ZR,ZJ disposées d'un même côté de la ligne de coupure sont alimentées électriquement avec un courant d'alimentation variable, la zone ZC disposée de l'autre côté de la ligne de coupure pouvant être alimentée indifféremment selon l'invention par un courant d'alimentation variable ou constant. Selon une variante, la zone ZC est absente, seules les zones ZR et ZJ étant présentes.
Afin que le faisceau Code soit réglementaire, la coupure doit présenter un contraste suffisant. On peut prévoir à cet effet une séparation physique, non émettrice, de la zone
Code ZC et de la zone route ZR, ZJ, la séparation pouvant être formée par un muret opaque s' étendant en saillie du substrat entre les bâtonnets électroluminescents disposés à la bordure de chaque zone. Cette séparation crée dans le faisceau Route, obtenu par l'émission combinée des deux zones 34,36 de la partie émettrice, une zone assombrie par rapport au reste. Afin d'avoir un faisceau Route le plus homogène possible, il est important que cette zone assombrie soit réduite au maximum, c'est-à-dire que les zones 34,36 soient le plus jointives possibles et que le muret puisse présenter une hauteur inférieure à 0,1 millimètre, et de préférence inférieure à 0,05 millimètre.
On comprend que pour l'obtention d'un faisceau Code, seule la zone ZC est alimentée, les zones ZR et ZJ n'étant pas activées. Pour l'obtention d'un faisceau Route aussi bien que pour l'obtention d'un faisceau diurne, l'ensemble des zones de la source est alimentée électriquement, étant compris que selon l'invention, au moins une des zones est alimentée avec deux courants d'intensité différente selon que l'on cherche à obtenir un faisceau Route ou un faisceau diurne. Pour l'obtention d'un faisceau Route, la première zone ZR, c'est-à-dire la zone qui est disposée sensiblement au centre de la source tandis que la deuxième zone ZJ est disposée autour de la première zone, est alimentée avec un fort courant, c'est-à-dire un courant d'intensité supérieure à un premier seuil déterminé. Simultanément, la deuxième zone ZJ est pilotée avec un faible courant ou même éteinte, de sorte que la luminance de la deuxième zone est très faible ou nulle. On réalise ainsi un faisceau Route répondant aux caractéristiques du graphe de la figure 5, avec des bords à faible intensité, puisque les bâtonnets sur les côtés de la source sont regroupés dans la deuxième zone ZJ pilotée avec un faible courant, et un pic d'intensité au centre, puisque les bâtonnets regroupés dans la première zone ZR suralimentée sont tous au centre de la source. De façon inverse, pour la réalisation d'un faisceau diurne, au moins les zones ZR et
ZJ sont alimentées, optionnellement la zone ZC, mais l'équilibre d'intensité lumineuse entre le centre et les bords de la source s'inverse. La première zone ZR est sous-alimentée, avec un courant d'intensité inférieure à un deuxième seuil déterminé. Simultanément, la deuxième zone ZJ est alimentée avec une intensité standard. On réalise ainsi un faisceau diurne répondant aux caractéristiques du graphe de la figure 5, avec une intensité sensiblement constante sur toute la zone, puisque les bâtonnets regroupés dans la première zone ZR sont sous-alimentés et ne crée pas de pic d'intensité central. De la sorte, on
s'assure, lors du passage d'une fonction route à une fonction diurne, que la valeur maximale du faisceau global baisse plus que le niveau des bords, afin d'obtenir le faisceau diurne souhaité et réglementaire.
Pour réaliser un faisceau de type feu de position, la zone ZR est encore davantage sous-alimentée par rapport à son état pour la réalisation d'un faisceau diurne, et la zone ZJ est sous-alimenté avec un courant d'intensité plus faible que le courant utilisé pour réaliser la fonction de feu diurne.
Selon un autre mode de réalisation, illustré sur la figure 7, on prévoit une sous-zone ZC dans la zone Code ZC, qui s'étend au droit de la première zone ZR, de l'autre côté de la ligne de coupure 54. Comme la première zone ZR et la deuxième zone ZJ, la zone Code ZC et la sous zone ZC peuvent être alimentées avec des courants différents.
Lors de la réalisation d'un faisceau Code, cette sous-zone ZC est utilisée pour suralimenter la partie centrale de la zone Code. Lors de la réalisation d'un faisceau Route, on suralimente les zones centrales, à savoir la zone Route ZR et la sous zone ZC qui s'étend au droit de la zone Route, tandis que l'on sous-alimente les zones en périphérie, à savoir les zones ZC et ZJ. Et pour la réalisation d'un faisceau diurne, on alimente les bâtonnets et les zones qu'ils forment de façon inverse à ce qui vient d'être dit, c'est-à-dire en sous-alimentant les zones centrales, à savoir la zone Route ZR et la sous zone ZC qui s'étend au droit de la zone Route, tandis que l'on alimente de façon normale les zones en périphérie, à savoir les zones ZC et ZJ.
On comprend que dans les cas d'application qui viennent d'être décrit, les bâtonnets sont configurés pour former au moins une première zone ZR et une deuxième zone ZJ activables sélectivement : la première zone ZR est apte à générer au moins une partie d'un premier faisceau lumineux, à savoir un faisceau Route, dans un premier état, de suralimentation électrique ou au moins d'alimentation électrique standard, et une partie d'un deuxième faisceau, à savoir un faisceau diurne, dans un deuxième état de sous- alimentation électrique ; et la deuxième zone ZJ est apte à générer une partie de ce deuxième faisceau, à savoir le faisceau diurne, conjointement avec la première zone dans le deuxième état de sous-alimentation. Par ailleurs, cette deuxième zone ZJ peut être pilotée pour passer d'un premier état, proche ou égal d'un état standard, dans lequel elle est apte à générer une partie du faisceau
diurne, conjointement avec la première zone lorsque celle-ci est dans l'état de sous- alimentation, à un deuxième état de sous-alimentation, dans lequel, de façon facultative, elle est apte à générer une partie du faisceau Route, conjointement avec la première zone ZR lorsque celle-ci est dans ledit premier état. En outre, la première zone ZR et la deuxième zone ZJ peuvent être pilotées dans un troisième état, dans lequel elles sont aptes à générer conjointement un faisceau de type feu de position.
La présente invention s'applique tout particulièrement à un projecteur avant de véhicule automobile. La description qui précède explique clairement comment l'invention permet d'atteindre les objectifs qu'elle s'est fixés et notamment de proposer un dispositif lumineux qui permette de réaliser à moindre coût, et sans perte de qualité photométrique, un éclairage multi-fonction, c'est-à-dire un éclairage différent avec une unique optique de mise en forme, et notamment un dispositif permettant de réaliser un éclairage de type code, un éclairage de type route, une fonction d'éclairage diurne et une fonction de feu de position. Il est particulièrement avantageux selon l'invention que l'on utilise une source à semi-conducteur comprenant des bâtonnets électroluminescents et que l'on regroupe ces bâtonnets en différentes zones que l'on alimente à des courants d'alimentation différents pour qu'ils participent chacun à des fonctions d'éclairage différentes en fonction de leur état. On peut ainsi proposer une signature commune pour plusieurs fonctions d'éclairage et notamment une fonction de feu Route, une fonction de feu diurne et de feu de position.
Bien entendu, diverses modifications peuvent être apportées par l'homme du métier à la structure du dispositif lumineux qui vient d'être décrite à titre d'exemple non limitatif, dès lors qu'elle utilise au moins une source de lumière à semi-conducteur à bâtonnets électroluminescents comprenant des zones de bâtonnets distinctes identifiables, notamment pour jouer facilement sur des variations de l'alimentation électrique d'une zone à l'autre. En tout état de cause, l'invention ne saurait se limiter au mode de réalisation spécifiquement décrit dans ce document, et s'étend en particulier à tous moyens équivalents et à toute combinaison techniquement opérante de ces moyens.
Claims
1. Dispositif lumineux pour véhicule automobile, comprenant une source de lumière (1) à semi-conducteur comprenant une pluralité de bâtonnets électroluminescents (8) de dimensions submillimétriques, et une optique de projection (2) d'au moins une partie des rayons lumineux émis par ladite source de lumière, lesdits bâtonnets électroluminescents étant agencés de manière à former une première zone (34, ZR) et une deuxième zone (36, ZJ) activables sélectivement, la première zone étant apte à générer au moins une partie d'un premier faisceau lumineux dans un premier état et une partie d'un deuxième faisceau dans un deuxième état, la deuxième zone étant apte à générer une partie dudit deuxième faisceau, conjointement avec la première zone dans le deuxième état.
2. Dispositif selon l'une revendications 1, caractérisé en ce que la première zone (34, ZR) est dans ledit premier état, apte à générer d'une part au moins une partie dudit premier faisceau lumineux, lorsqu'elle est alimentée électriquement avec un courant d'intensité électrique supérieure à un premier seuil déterminé et dans ledit deuxième état, apte à générer au moins une partie dudit deuxième faisceau lumineux, lorsqu'elle est alimentée électriquement avec un courant d'intensité électrique inférieure à un deuxième seuil déterminé.
3. Dispositif selon l'une des revendications précédentes, caractérisé en ce que ledit premier faisceau lumineux est un faisceau de type route, ledit deuxième faisceau lumineux étant un faisceau de type feu diurne.
4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la deuxième zone (36, ZJ) est apte à prendre un premier état dans lequel elle est apte à générer une partie dudit deuxième faisceau, conjointement avec la première zone (34, ZR) lorsque celle-ci est dans ledit deuxième état, et un deuxième état dans lequel la deuxième zone est apte à générer une partie d'un troisième faisceau, conjointement avec la première zone lorsque celle-ci est dans un troisième état.
5. Dispositif selon la revendication précédente, caractérisé en ce que ledit troisième faisceau est un faisceau de type feu de position.
6. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la source de lumière (1) à semi-conducteur comprend une pluralité de bâtonnets électroluminescents (8) qui s'étendent en saillie d'un substrat (10).
7. Dispositif selon la revendication précédente, caractérisé en ce que le substrat (10) est à base de Silicium.
8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les bâtonnets électroluminescents (8) sont chacun délimités par une face terminale (26) et par une paroi circonférentielle (28) qui s'étend le long d'un axe longitudinal du bâtonnet définissant sa hauteur, la lumière étant émise au moins à partir de la paroi circonférentielle.
9. Dispositif selon la revendication précédente, caractérisé en ce que la hauteur d'un bâtonnet (8) est comprise entre 1 et 10 micromètres.
10. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la deuxième zone (ZJ) entoure au moins en partie la première zone (ZR).
11. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les deux zones (ZR, ZJ) sont alimentées électriquement simultanément pour émettre des rayons lumineux dans une surface d'éclairage déterminée pour participer à la formation d'une première fonction d'éclairage, la deuxième zone étant sous-alimentée par rapport à l'alimentation de la première zone.
12. Dispositif selon la revendication précédente, caractérisé en ce que les deux zones (ZR, ZJ) sont alimentées électriquement simultanément pour émettre des rayons lumineux dans une surface d'éclairage déterminée pour participer à la formation d'une deuxième fonction d'éclairage, la première zone étant sous-alimentée par rapport à l'alimentation de la deuxième zone.
13. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la source de lumière (1) comprend une troisième zone (ZC) formée d'une pluralité desdits bâtonnets électroluminescents (8) et activable sélectivement par rapport aux première (ZR) et deuxième (ZJ) zones, ladite troisième zone étant apte à générer au moins une partie d'un quatrième faisceau lumineux.
14. Dispositif selon la revendication précédente, caractérisé en ce que ledit quatrième faisceau lumineux est un faisceau de type feu de croisement.
15. Dispositif selon l'une des revendications 12 ou 13, caractérisé en ce que les bâtonnets électroluminescents (8) définissant la troisième zone (ZC) sont séparés du reste des bâtonnets électroluminescents de la source de lumière (1) par la présence d'un élément de séparation.
16. Dispositif selon l'une quelconque des revendications 12 à 14, caractérisé en ce que la troisième zone est arrangée en deux sous-zones aptes à être alimentées à des intensités de courant différentes.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1557620 | 2015-08-07 | ||
FR1557620A FR3039881B1 (fr) | 2015-08-07 | 2015-08-07 | Dispositif d’eclairage et/ou de signalisation pour vehicule automobile |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017025440A1 true WO2017025440A1 (fr) | 2017-02-16 |
Family
ID=55129969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2016/068684 WO2017025440A1 (fr) | 2015-08-07 | 2016-08-04 | Dispositif d'eclairage et/ou de signalisation pour vehicule automobile |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3039881B1 (fr) |
WO (1) | WO2017025440A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018001938A1 (fr) * | 2016-06-30 | 2018-01-04 | Valeo Vision | Dispositif d'éclairage et/ou de signalisation amélioré, notamment pour véhicule automobile |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3063129B1 (fr) | 2017-02-17 | 2019-04-12 | Valeo Vision | Module lumineux a encombrement reduit |
FR3063334B1 (fr) * | 2017-02-28 | 2021-06-25 | Valeo Vision | Dispositif d'eclairage et/ou de signalisation pour vehicule automobile |
FR3075922B1 (fr) * | 2017-12-22 | 2021-06-11 | Valeo Vision | Module lumineux a elements electroluminescents a coupure progressive |
FR3114371A1 (fr) * | 2020-07-29 | 2022-03-25 | Valeo Vision | Dispositif lumineux d’éclairage et de signalisation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2058585A2 (fr) * | 2007-11-07 | 2009-05-13 | Zizala Lichtsysteme GmbH | Source de lumière pour un phare de véhicule automobile ou unité d'éclairage d'un phare de véhicule automobile |
WO2010014032A1 (fr) * | 2008-07-07 | 2010-02-04 | Glo Ab | Del nanostructurée |
EP2752615A1 (fr) * | 2011-09-01 | 2014-07-09 | Koito Manufacturing Co., Ltd. | Appareil de phare d'automobile |
US20150155432A1 (en) * | 2013-12-03 | 2015-06-04 | Samsung Electronics Co., Ltd. | Nano structure semiconductor light emitting device, and system having the same |
US20150221823A1 (en) * | 2014-02-03 | 2015-08-06 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
-
2015
- 2015-08-07 FR FR1557620A patent/FR3039881B1/fr active Active
-
2016
- 2016-08-04 WO PCT/EP2016/068684 patent/WO2017025440A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2058585A2 (fr) * | 2007-11-07 | 2009-05-13 | Zizala Lichtsysteme GmbH | Source de lumière pour un phare de véhicule automobile ou unité d'éclairage d'un phare de véhicule automobile |
WO2010014032A1 (fr) * | 2008-07-07 | 2010-02-04 | Glo Ab | Del nanostructurée |
EP2752615A1 (fr) * | 2011-09-01 | 2014-07-09 | Koito Manufacturing Co., Ltd. | Appareil de phare d'automobile |
US20150155432A1 (en) * | 2013-12-03 | 2015-06-04 | Samsung Electronics Co., Ltd. | Nano structure semiconductor light emitting device, and system having the same |
US20150221823A1 (en) * | 2014-02-03 | 2015-08-06 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018001938A1 (fr) * | 2016-06-30 | 2018-01-04 | Valeo Vision | Dispositif d'éclairage et/ou de signalisation amélioré, notamment pour véhicule automobile |
FR3053437A1 (fr) * | 2016-06-30 | 2018-01-05 | Valeo Vision | Dispositif d'eclairage et/ou de signalisation ameliore, notamment pour vehicule automobile |
US10641449B2 (en) | 2016-06-30 | 2020-05-05 | Valeo Vision | Lighting and/or signalling device, more particularly for an automotive vehicle |
Also Published As
Publication number | Publication date |
---|---|
FR3039881B1 (fr) | 2017-09-08 |
FR3039881A1 (fr) | 2017-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR3039880B1 (fr) | Dispositif d’eclairage et/ou de signalisation pour vehicule automobile | |
EP3127747A1 (fr) | Dispositif d'éclairage et/ou de signalisation pour véhicule automobile | |
EP3267096B1 (fr) | Dispositif d'eclairage et/ou de signalisation pour vehicule automobile | |
WO2017025440A1 (fr) | Dispositif d'eclairage et/ou de signalisation pour vehicule automobile | |
EP3214660B1 (fr) | Source de lumiere a semi-conducteurs et systeme d'aide a la conduite pour vehicule automobile comportant une telle source | |
WO2017025445A1 (fr) | Dispositif d'eclairage et/ou de signalisation pour vehicule automobile | |
EP3376096B1 (fr) | Dispositif lumineux, notamment d'éclairage et/ou de signalisation, pour véhicule automobile | |
FR2875577A1 (fr) | Dispositif d'eclairage et de signalisation pour vehicule automobile | |
EP2816277B1 (fr) | Dispositif d'éclairage d'un véhicule utilisant une lentille optique multifonction | |
WO2011092121A1 (fr) | Dispositif optique, notamment pour véhicule automobile | |
WO2018002251A1 (fr) | Dispositif d'eclairage et/ou de signalisation pour vehicule automobile | |
EP3379141A1 (fr) | Source de lumiere monolithique pour un module lumineux de vehicule automobile | |
EP3124853A1 (fr) | Dispositif d'éclairage et/ou de signalisation pour véhicule | |
WO2017025441A1 (fr) | Dispositif d'eclairage et/ou de signalisation pour vehicule automobile | |
EP3124856B1 (fr) | Dispositif d'éclairage pour véhicule automobile | |
EP3589516B1 (fr) | Dispositif lumineux pour vehicule automobile comprenant une source de lumiere comportant une pluralité d'élements émissifs | |
WO2017025444A1 (fr) | Dispositif d'eclairage et/ou de signalisation pour vehicule automobile | |
FR3053758A1 (fr) | Dispositif d'eclairage et/ou de signalisation pour vehicule automobile | |
FR2994247A1 (fr) | Dispositif d'eclairage a guide(s) de lumiere a face arriere a profil de conique et a elements de diffusion definis sur une ligne de foyer | |
FR3058500B1 (fr) | Source de lumiere a semi-conducteur et dispositif lumineux pour vehicule automobile comportant une telle source | |
WO2018007387A1 (fr) | Source lumineuse et module lumineux correspondant pour vehicule automobile | |
FR3041068A1 (fr) | Dispositif d'eclairage et/ou de signalisation pour vehicule automobile | |
FR3053764A1 (fr) | Dispositif lumineux indicateur de direction pour vehicule automobile | |
WO2018007386A1 (fr) | Dispositif d'eclairage et/ou de signalisation pour vehicule automobile | |
FR3061542A1 (fr) | Dispositif d'eclairage et/ou de signalisation lineaire pour vehicule automobile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16747537 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16747537 Country of ref document: EP Kind code of ref document: A1 |