WO2017022794A1 - Holder for rolling bearing and rolling bearing - Google Patents
Holder for rolling bearing and rolling bearing Download PDFInfo
- Publication number
- WO2017022794A1 WO2017022794A1 PCT/JP2016/072798 JP2016072798W WO2017022794A1 WO 2017022794 A1 WO2017022794 A1 WO 2017022794A1 JP 2016072798 W JP2016072798 W JP 2016072798W WO 2017022794 A1 WO2017022794 A1 WO 2017022794A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluororesin
- ppm
- rolling bearing
- layer
- base material
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/56—Selection of substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/66—Special parts or details in view of lubrication
Definitions
- the present invention relates to a rolling bearing cage and a rolling bearing, and in particular, has excellent wear resistance and seizure resistance on the cage surface, and can maintain the excellent wear resistance and seizure resistance for a long period of time,
- the present invention relates to a rolling bearing using the cage.
- ⁇ Sliding surfaces such as rolling bearings and cages are supplied with lubricating oil or lubricating grease to reduce rolling friction or sliding friction. Further, a surface treatment for improving the slidability is applied to the sliding surface.
- One of the surface treatments is a method of forming a fluorine resin film. For example, a method of improving wear resistance and adhesion to a substrate by irradiating a polytetrafluoroethylene (hereinafter referred to as PTFE) coating formed on a sliding portion of a sliding member with a dose of 50 to 250 kGy. Is known (Patent Document 1).
- a fluororesin film is formed on the surface of a base material excellent in heat resistance selected from metal materials such as polyimide resin, copper, aluminum and alloys thereof, ceramics, and glass, and at a temperature equal to or higher than the melting point of the fluororesin.
- a base material excellent in heat resistance selected from metal materials such as polyimide resin, copper, aluminum and alloys thereof, ceramics, and glass, and at a temperature equal to or higher than the melting point of the fluororesin.
- the fluororesin As a sliding member made of fluororesin used for non-lubricated bearings, dynamic seals, etc., the fluororesin is heated above its crystalline melting point, and ionizing radiation is emitted within the range of irradiation dose of 1 kGy to 10 MGy in the absence of oxygen. Irradiated fluororesins are known (Patent Document 3).
- Patent Document 1 is a method for improving adhesion to a base material because it is used under non-lubricated and low surface pressure conditions.
- Lubricating oil required for sliding surfaces of various machines It is difficult to apply in the case of medium, high slip speed and high surface pressure.
- the fluororesin coating described in Patent Document 2 is intended to simultaneously cause a cross-linking reaction of a fluororesin and a chemical reaction between the fluororesin and a substrate surface, thereby achieving strong adhesion between the two.
- an iron substrate such as a cage or a cage, it is difficult to generate a chemical reaction with the surface of the substrate, and there is a problem that strong adhesion cannot be achieved.
- the sliding member described in Patent Document 3 is used for a non-lubricated bearing, a dynamic seal, and the like, and relates to a sliding member made of a fluororesin rather than a film shape. Therefore, the characteristics as a coating material are unknown, and it is difficult to apply to rolling bearing applications that require high slip speed and high surface pressure in lubricating oil. Similar to the coating produced by the method described in Patent Literature 1, the coating described in Patent Literature 4 is evaluated with a flat plate test piece, a low surface pressure, a low sliding speed, and no lubrication. It is not known whether it can be used under pressure, high slip speed and oil lubrication.
- the present invention has been made to cope with such a problem, and is a rolling bearing holding having a sliding surface excellent in slidability even under conditions of high sliding speed and high surface pressure in lubricating oil. It is an object of the present invention to provide a rolling bearing using the cage and the cage.
- the rolling bearing cage of the present invention holds a rolling element of a rolling bearing used in an oil lubricated environment, and has a base material and a sliding layer formed on the surface of the base material.
- This sliding layer is a fluororesin layer, and the fluororesin present on the surface of the sliding layer that is not in contact with the base material of the fluororesin layer and its neighboring layers has at least a three-dimensional structure. That the surface of the sliding layer and its neighboring layers have at least a three-dimensional structure is not limited to the fact that the entire portion of the sliding layer is made of only a three-dimensional fluoropolymer, and does not impair the characteristics of the three-dimensional structure.
- the fluororesin having a two-dimensional structure may be included in this part.
- the fact that the surface on the substrate side and the vicinity thereof have an uncrosslinked two-dimensional structure is not limited to the fact that this entire portion of the sliding layer is made of only a two-dimensional structure fluororesin, As long as the characteristics are not impaired, a part of the fluororesin having a three-dimensional structure may be included in this part.
- the vicinity means a layer less than 2.5 ⁇ m from the target surface.
- the surface of the sliding layer that is not in contact with the base material and the fluororesin existing in the neighboring layer have a three-dimensional structure, and the surface in contact with the base material and the vicinity thereof.
- the fluororesin present in the layer has a two-dimensional structure.
- the content of the three-dimensional structure of the fluororesin continuously decreases from the surface of the fluororesin layer toward the surface in contact with the base material.
- the three-dimensional structure of the fluororesin present on the surface of the sliding layer that is not in contact with the base material and in the vicinity thereof is continuous toward the surface in contact with the base material. ing.
- the fluororesin is a PTFE resin, and the thickness of the sliding layer is 5 ⁇ m or more and less than 40 ⁇ m.
- the base material is an iron-based metal material.
- the rolling bearing of the present invention is a rolling bearing using the cage of the present invention.
- the fluororesin present on the surface of the sliding layer that is not in contact with the base material and its neighboring layers has at least a three-dimensional structure. Therefore, the lubricating oil has a high sliding speed and a high surface pressure. Wear can be suppressed even under conditions, and the life of the bearing can be maintained for a long time. Moreover, the rolling bearing using this cage is excellent in slidability in lubricating oil.
- the rolling bearing cage of the present invention has a sliding layer formed on a substrate.
- An example of a sectional view of the sliding layer is shown in FIG.
- FIG. 1 shows an example in which the cross section is a gradient material.
- the sliding layer 21 is composed of a cross-linked fluororesin layer formed on the surface of the metal substrate 22.
- the cross-linked fluororesin layer has a cross-linked structure in which the fluororesin layer has a three-dimensional structure in which the surface 23 of the fluororesin layer that is not in contact with the metal substrate and the fluororesin present in the vicinity thereof.
- the surface 24 of the fluororesin layer in contact with the metal substrate 22 and the fluororesin present in the vicinity thereof have an uncrosslinked structure having a two-dimensional structure.
- the content of the three-dimensional structure of the fluororesin existing between the surface 23 and the surface 24 in contact with the substrate is continuous from the surface 23 of the fluororesin layer toward the surface 24 in contact with the substrate. It has become less.
- FIG. 2 shows a cross-sectional view of another sliding layer formed on the substrate.
- FIG. 2 shows an example in which the cross section of the sliding layer is a uniform material.
- the sliding layer 21 consists of a crosslinked fluororesin layer formed on the surface 22 of the iron-based metal substrate.
- the sliding layer 21 made of a crosslinked fluororesin has a crosslinked structure consisting of a three-dimensional structure from the surface 24 in contact with the metal substrate to the surface 23 of the sliding layer.
- Examples of the base material that can be used for the rolling bearing cage of the present invention include an aluminum material, an iron-based metal material, a polyimide material, or a ceramic material.
- a ferrous metal material is preferable as the rolling bearing cage.
- the iron-based metal material include bearing steel used for rolling bearings, carburized steel, carbon steel for machine structure, cold rolled steel, hot rolled steel, and the like.
- the ferrous metal material is adjusted to a predetermined surface hardness by quenching and tempering after processing into the shape of the cage.
- a ferrous metal material cage using chromium molybdenum steel (SCM415) it is preferable to use an ferrous metal material whose Hv value is adjusted to 484 to 595.
- the sliding layer is made of a fluororesin layer formed on the surface of the iron-based metal material.
- fluororesins include PTFE, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (hereinafter referred to as PFA), tetrafluoroethylene-hexafluoropropylene copolymer (hereinafter referred to as FEP), ethylene-tetrafluoroethylene copolymer.
- PFA tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer
- FEP tetrafluoroethylene-hexafluoropropylene copolymer
- ethylene-tetrafluoroethylene copolymer examples include polymers, polyvinylidene fluoride, and polyvinyl fluoride. These resins can be used alone or as a mixture. Of these, PTFE which is excellent in heat resistance and slidability is preferable.
- the fluororesin layer before cross-linking can be produced by applying and drying, followed by baking using an aqueous dispersion in which PTFE resin particles are dispersed.
- the aqueous dispersion may contain a nonionic surfactant such as polyoxyethylene alkyl ether, an inorganic pigment such as carbon black, and water as a main solvent.
- an antifoamer, a desiccant, a thickener, a leveling agent, a repellency inhibitor, etc. can be mix
- the cross-linked fluororesin layer is a cross-linked fluororesin layer in which at least the surface and the vicinity thereof are cross-linked.
- a method for forming the sliding layer on the surface of the iron-based metal material will be described below.
- the roughness (Ra) of the metal material surface is adjusted in advance to 1.0 to 2.0 ⁇ m using shot blasting before forming the sliding layer. Thereafter, it is preferably immersed in an organic solvent such as petroleum benzine and subjected to ultrasonic degreasing for about 5 minutes to 1 hour.
- aqueous coating solution for forming the fluororesin layer Before the aqueous coating solution for forming the fluororesin layer, in order to improve the dispersibility of the aqueous dispersion, it is rotated for 1 hour at, for example, 40 rpm using a ball mill. Redistribute. The re-dispersed aqueous coating solution is filtered using a 100 mesh wire net and painted using a spray method. (3) Drying of aqueous coating solution for forming the fluororesin layer The aqueous coating solution is applied and then dried. As drying conditions, for example, drying in a thermostat at 90 ° C. for about 30 minutes is preferable.
- the layer thickness of the fluororesin layer after drying is 5 ⁇ m or more and less than 40 ⁇ m, preferably 15 to 30 ⁇ m. If the thickness is less than 5 ⁇ m, the metal substrate may be exposed due to peeling or initial wear due to poor adhesion of the coating. If it is 40 ⁇ m or more, cracks during film formation or peeling during operation may deteriorate the lubrication state.
- any coating method can be used as long as it can form a film such as a dipping method and a brush coating method in addition to the spray method.
- the spray method is preferable in view of making the surface roughness and coating shape of the coating as small as possible and considering the uniformity of the layer thickness.
- Examples of radiation include ⁇ rays (particle beams of helium-4 nuclei emitted from radionuclides that undergo ⁇ decay), ⁇ rays (negative electrons and positrons emitted from nuclei), and electron beams (almost constant kinetic energy).
- Particle beam such as electron beam, generally generated by accelerating thermionic electrons in vacuum; gamma ray (emitted and absorbed by transitions between energy levels of nuclei and elementary particles, pair annihilation of elementary particles, pair production, etc.) Ionizing radiation such as an electromagnetic wave having a short wavelength).
- electron beams and ⁇ rays are preferable, and electron beams are more preferable.
- an electron beam has advantages such as easy availability of an electron beam irradiation apparatus, simple irradiation operation, and the ability to employ a continuous irradiation process.
- the cross-linking of the fluororesin layer does not proceed sufficiently except in the temperature range where the irradiation temperature is 30 ° C. lower than the melting point of the fluororesin layer to 50 ° C. higher than the melting point.
- the range of oxygen concentration is preferably 0 to 300 ppm.
- an inert atmosphere by nitrogen gas injection is preferable from the viewpoint of operability and cost.
- the irradiation dose is 250 kGy or less, crosslinking is insufficient, the wear amount is large, and the metal substrate may be exposed.
- the irradiation dose exceeds 750 kGy crosslinking proceeds more than necessary, and the hardness of the coating increases, so that the coating becomes brittle and damage to the coating such as peeling may easily occur.
- the acceleration voltage upon irradiation is 40 kV or more and 500 kV Less than, preferably 50 to 100 kV. If it is less than 40 kV, the penetration of the electron beam into the vicinity of the surface layer of the fluororesin layer becomes shallow, and if it is 500 kV or more, the entire fluororesin layer is cross-linked.
- the intensity of the radiation attenuates inside the polymer, so that the radiation can reach the irradiated surface sufficiently, but the other surface cannot be tilted.
- the acceleration voltage when irradiated is preferably 500 kV or more, preferably 800 to 1200 kV.
- the fluororesin layer is irradiated with radiation at this acceleration voltage, the radiation reaches all layer surfaces from the irradiated surface to the substrate surface, and a crosslinked fluororesin layer crosslinked from the surface to the substrate surface is obtained.
- the layer thickness of the sliding layer obtained by the method described above is 5 ⁇ m or more and less than 40 ⁇ m, preferably 15 ⁇ m or more and less than 30 ⁇ m. If the layer thickness is less than 5 ⁇ m, the metal substrate may be exposed due to peeling due to poor adhesion of the coating or due to initial wear. If it is 40 ⁇ m or more, cracks during film formation or peeling during operation may deteriorate the lubrication state. By setting the layer thickness in the range of 5 ⁇ m or more and less than 40 ⁇ m, it is possible to prevent the metal substrate from being exposed due to initial wear and to prevent peeling during operation over a long period of time.
- the fluororesin layer used in the present invention has a crosslinked structure.
- a fluorine-based resin particularly a PTFE resin
- a PTFE resin is chemically very stable and extremely stable against an organic solvent, so that it is difficult to identify the molecular structure or molecular weight.
- the PTFE resin forms a three-dimensional structure by cross-linking, it becomes more difficult to dissolve in a solvent, and structural analysis becomes more difficult.
- 19 F Magical Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) Method High Speed Magnetic Nuclear Resonance
- Test piece A PTFE resin layer was formed on a metal flat plate of 30 mm ⁇ 30 mm and 2 mm thickness made of SPCC. As the PTFE resin layer, a top coating (model number: EK-3700C21R) manufactured by Daikin was used. The drying time was 30 minutes in a constant temperature bath at 90 ° C., followed by baking in a heating furnace at 380 ° C. for 30 minutes.
- Test piece coating test example A1 PTFE coating (irradiation dose: 0 kGy, layer thickness: 20 ⁇ m)
- Experimental Example A2 PTFE coating (irradiation dose: 500 kGy, layer thickness: 20 ⁇ m)
- Experimental Example A3 PTFE coating (irradiation dose: 1000 kGy, layer thickness: 20 ⁇ m)
- NMR measurement was performed using an NMR device JNM-ECX400 manufactured by JEOL Ltd., using a suitable measurement nuclide ( 19 F), resonance frequency (376.2 MHz), MAS (Magic Angle Spinning) rotation speed (15 and 12 kHz), sample amount (about 70 ⁇ L in a 4 mm solid state NMR tube), waiting time (10 seconds) and measurement temperature (about 24 ° C.).
- FIGS. 3 shows NMR of Experimental Example A1
- FIG. 4 shows NMR of Experimental Example A2
- FIG. 5 shows an enlarged view of the NMR chart of Experimental Example A3.
- the upper row represents the MAS rotational speed 15 kHz
- the lower row represents the MAS rotational speed 12 kHz.
- FIG. 6 is a graph obtained by normalizing the signal intensity at ⁇ 82 ppm, the intensity of which increases with crosslinking, with the signal intensity at ⁇ 122 ppm as the main signal.
- the upper part represents the measured value
- the lower part represents the graph. It is considered that the higher the signal intensity ratio is, the more the degree of crosslinking proceeds.
- ⁇ 122 ppm is the signal of the F atom in the —CF 2 —CF 2 — bond
- ⁇ 82 ppm is the signal of the F atom of —CF 3 in the —CF 2 —CF 3 bond. Therefore, the signals of ⁇ 82 ppm and ⁇ 162 ppm at a MAS rotational speed of 15 kHz, and ⁇ 58 ppm, ⁇ 90 ppm, ⁇ 154 ppm and ⁇ 186 ppm at a MAS rotational speed of 12 kHz are spinning side bands (SSB). A broad signal is observed in the range of ⁇ 122 ppm to ⁇ 130 ppm hidden by the ⁇ 122 ppm signal.
- SSB spinning side bands
- This signal is the signal of the F atom of —CF 2 — in the —CF 2 —CF 3 bond that should be observed at ⁇ 126 ppm. Therefore, the uncrosslinked PTFE resin layer not irradiated with radiation is an NMR chart having signals of ⁇ 122 ppm attributed to —CF 2 —CF 2 — bonds, ⁇ 82 ppm and ⁇ 126 ppm attributed to —CF 2 —CF 3. expressed.
- a solid 19 F MAS NMR of a PTFE resin layer (Experimental Example A2, 500 kGy) irradiated with a radiation dose of 500 kGy was measured under the same conditions as those for the uncrosslinked PTFE resin layer, and ⁇ 68 ppm and ⁇ 70 ppm except for the spinning sideband. , ⁇ 80 ppm, ⁇ 82 ppm, ⁇ 109 ppm, ⁇ 112 ppm, ⁇ 122 ppm, ⁇ 126 ppm, ⁇ 152 ppm, and ⁇ 186 ppm were observed (FIG. 4 top and FIG. 4 bottom).
- the normalized signal intensity ratio increases as the irradiation dose increases.
- the irradiation dose was 500 kGy, a clearly crosslinked structure appeared, and when the irradiation dose was doubled to 1000 kGy, the normalized signal intensity ratio was about three times, indicating that the crosslinking was more advanced.
- the PTFE resin gradient material has a chemical shift value ( ⁇ ppm) appearing in a solid 19 F Magic angle Spinning (MAS) nuclear magnetic resonance (NMR) chart as compared with the uncrosslinked PTFE resin.
- MAS Magic angle Spinning
- NMR nuclear magnetic resonance
- at least one chemical shift value selected from ⁇ 68 ppm, ⁇ 70 ppm, ⁇ 77 ppm, ⁇ 80 ppm, ⁇ 109 ppm, ⁇ 112 ppm, ⁇ 152 ppm, and ⁇ 186 ppm appears.
- the surface layer has a three-dimensional structure in which the signal intensity of the chemical shift value appearing at ⁇ 82 ppm is increased as compared with the signal intensity of the uncrosslinked PTFE resin.
- Test piece A PTFE resin layer was formed on a metal plate having a thickness of 30 mm ⁇ 30 mm and a thickness of 2 mm made by SPCC using a top coating made by Daikin (model number: EK-3700C21R). The drying time was 30 minutes in a constant temperature bath at 90 ° C., followed by baking in a heating furnace at 380 ° C. for 30 minutes. Thereafter, the specimen was irradiated with an electron beam from the surface of the PTFE resin layer under the following conditions.
- Atmosphere in chamber at the time of irradiation heated nitrogen
- Electron flow 8.1 mA for Experimental Example B2, 12.7 mA for Experimental Example B3, Experimental Example B4, Experimental Example B5, and Experimental Example B6
- Irradiation width (conveyor moving direction): 27.5cm
- Test piece coating experiment example B1 PTFE coating (irradiation dose: 0 kGy, layer thickness: 20 ⁇ m)
- Experimental Example B2 PTFE coating (irradiation dose: 85 kGy, layer thickness: 20 ⁇ m)
- Experimental Example B3 PTFE coating (irradiation dose: 250 kGy, layer thickness: 20 ⁇ m)
- Experimental Example B4 PTFE coating (irradiation dose: 500 kGy, layer thickness: 20 ⁇ m)
- Experimental Example B5 PTFE coating (irradiation dose: 750 kGy, layer thickness: 20 ⁇ m)
- Experimental Example B6 PTFE coating (irradiation dose: 1000 kGy, layer thickness: 20 ⁇ m)
- At least one chemical shift selected from -68 ppm, -70 ppm, -77 ppm, -80 ppm, -109 ppm, -112 ppm, -152 ppm, and -186 ppm It can be said that it has a three-dimensional structure in which the value appears or the signal intensity of the chemical shift value appearing at ⁇ 82 ppm is increased compared to the signal intensity of the uncrosslinked PTFE resin.
- FIG. 7 shows the structure of a rolling bearing cage having the sliding layer.
- FIG. 7 is a perspective view of a ferrous metal cage for a rolling bearing using needle rollers as rolling elements.
- the cage 1 is provided with pockets 2 for holding needle rollers, and each needle is composed of a column portion 3 positioned between the pockets and both side annular portions 4 and 5 for fixing the column portion 3. Maintain the distance between the rollers.
- the column portion 3 is bent into a mountain fold or a valley fold at the center portion of the column portion, and has a complicated shape of a flat plate having a circular bulge in a plan view at the joint portion with both annular portions 4 and 5. It is said that.
- the manufacturing method of this cage is a method in which an annulus is cut out from a base material and a pocket 2 is formed by stamping by pressing, a flat plate is pressed, cut into an appropriate length, and then rolled into an annular shape.
- a method of joining by welding can be employed.
- a sliding layer of PTFE resin film is formed on the surface portion of the cage 1.
- the surface portion of the cage that forms the sliding layer is a portion that contacts the lubricating oil or grease, and the sliding layer is formed on the entire surface of the cage 1 including the surface of the pocket 2 that contacts the needle roller. Is preferred.
- FIG. 8 is a perspective view showing a needle roller bearing which is an embodiment of a rolling bearing.
- the needle roller bearing 6 includes a plurality of needle rollers 7 and a cage 1 that holds the needle rollers 7 at regular intervals or at unequal intervals.
- a shaft such as a crankshaft or a piston pin is directly inserted into the inner diameter side of the cage 1, and the outer diameter side of the cage 1 is a housing. It is used by being fitted into the engagement hole of a certain connecting rod. Since the needle roller 7 having no inner and outer rings and having a smaller diameter than the length is used as a rolling element, the needle roller bearing 6 is more compact than a general rolling bearing having inner and outer rings. Become.
- FIG. 9 shows a longitudinal sectional view of a four-cycle engine using the needle roller bearing.
- FIG. 9 is a longitudinal sectional view of a four-cycle engine using a needle roller bearing as an example of the rolling bearing of the present invention.
- the intake valve 8a is opened, the exhaust valve 9a is closed, and an air-fuel mixture obtained by mixing gasoline and air is sucked into the combustion chamber 10 through the intake pipe 8, and the intake valve 8a is closed and the piston 11 is closed.
- a compression stroke in which the air-fuel mixture is compressed an explosion stroke in which the compressed air-fuel mixture is exploded, and an exhaust stroke in which the exploded combustion gas is exhausted through the exhaust pipe 9 by opening the exhaust valve 9a.
- the piston 11 that performs linear reciprocating motion by combustion in these strokes, the crankshaft 12 that outputs rotational motion, the connecting rod 13 that connects the piston 11 and the crankshaft 12, and converts linear reciprocating motion into rotational motion,
- the crankshaft 12 rotates about the rotation center shaft 14 and balances rotation by a balance weight 15.
- the connecting rod 13 is formed by providing a large end 16 below the linear rod and a small end 17 above.
- the crankshaft 12 is rotatably supported via a needle roller bearing 6 a attached to the engagement hole of the large end portion 16 of the connecting rod 13.
- the piston pin 18 that connects the piston 11 and the connecting rod 13 is rotatably supported via a needle roller bearing 6b attached to the engagement hole of the small end portion 17 of the connecting rod 13.
- FIG. 8 illustrates a needle roller bearing as the bearing
- the rolling bearing of the present invention is a cylindrical roller bearing, a tapered roller bearing, a self-aligning roller bearing, a needle roller bearing, a thrust cylindrical roller bearing, or a thrust cone other than those described above. It can also be used as a roller bearing, a thrust needle roller bearing, a thrust spherical roller bearing, a foil bearing and the like. In particular, it can be suitably used for a rolling bearing that is used in an oil-lubricated environment and uses a ferrous metal material cage.
- Example 1 and Comparative Example 1 A needle bearing cage (base surface hardness Hv: 484 to 595) made of chromium molybdenum steel (SCM415) ⁇ 44 mm ⁇ width 22 mm, which has been quenched and tempered, was prepared and used for the formation of the PTFE resin layer used in Experimental Example A1.
- the PTFE surface sliding layer was coated, dried, and fired under the same conditions as in Experimental Example A1, except that the coating liquid was the same as the coating liquid and the thickness of the coating layer was changed to the thickness shown in Table 1.
- the electron beam irradiation is performed with the irradiation dose shown in Table 1, and the PTFE inclination of the three-dimensional structure to the two-dimensional structure is directed from the surface of the coating layer to the surface on the substrate side.
- Material was used.
- “two-dimensional ⁇ three-dimensional PTFE” represents a PTFE structure from the surface on the substrate side to the surface. Comparative Example 1 was not irradiated as in Experimental Example A1.
- the surface treated needle bearing cage was evaluated by the following method.
- An outline of the wear amount test apparatus is shown in FIG. In a state where a concave mating member 19 made of SUJ2 and quenched and tempered HRC62 and having a concave surface roughness of 0.1 to 0.2 ⁇ mRa is pressed from the vertical direction to the cage 1 attached to the rotary shaft with a predetermined load 20, together with the rotary shaft
- the friction characteristics of the coating applied to the surface of the cage 1 were evaluated by rotating the cage 1, and the amount of wear was measured.
- the measurement conditions are load: 440 N, lubricating oil: mineral oil (10W-30), sliding speed: 930.6 m / min, measurement time: 100 hours.
- the adhesiveness of the PTFE coating was also evaluated by visually observing the amount of peeling at that time.
- the peeling amount is “large” when the peeling area at the maximum peeling location is 1 mm 2 or more, and the “small” is when the peeling area at the maximum peeling location is less than 1 mm 2 .
- the radius of the concave R portion was set to a size 20 to 55 ⁇ m larger than the cage radius. Lubricating oil was used in an amount soaking up to half the height of the cage. The results are shown in Table 1.
- the cage for rolling bearings of the present invention can suppress wear even under conditions of high sliding speed and high surface pressure in lubricating oil, and is particularly used in lubricating oil using a ferrous metal material cage. And can be used in the field of rolling bearings using this cage.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Provided are a rolling bearing and a holder, the rolling bearing having a sliding surface with excellent slidability even under conditions of high slip velocity and high surface pressure lubricating oil. The holder holds the rolling element of the rolling bearing used in a lubricating oil environment, and the holder has a base material and a sliding layer formed on the surface of the base material. The sliding layer is a fluororesin layer in which either: (1) the fluororesin has a three-dimensional structure in the sliding layer surface where the fluororesin layer does not make contact with the base material and in layers proximal thereto, the fluororesin has a two-dimensional structure in the surface where the fluororesin layer makes contact with the base material and in layers proximal thereto, and the content ratio of the three-dimensional structure of the fluororesin continuously decreases from the sliding layer surface toward the surface in contact with the base material; or (2) the three-dimensional structure of the fluororesin is continuous from the sliding layer surface toward the surface in contact with the base material.
Description
本発明は、転がり軸受用保持器および転がり軸受に関し、特に保持器表面の耐摩耗性・耐焼付き性に優れ、その優れた耐摩耗性・耐焼付き性を長期間維持できる転がり軸受用保持器、この保持器を用いた転がり軸受に関する。
TECHNICAL FIELD The present invention relates to a rolling bearing cage and a rolling bearing, and in particular, has excellent wear resistance and seizure resistance on the cage surface, and can maintain the excellent wear resistance and seizure resistance for a long period of time, The present invention relates to a rolling bearing using the cage.
転がり軸受や保持器などの摺動面は、潤滑油や潤滑グリースなどが供給されて転がり摩擦またはすべり摩擦を低減している。また、更に摺動性を向上させるための表面処理が摺動面になされている。表面処理の1つにフッ素系樹脂被膜を形成する方法がある。例えば、摺動部材の摺動部に形成したポリテトラフルオロエチレン(以下、PTFEという)被膜に50~250kGyの線量の放射線を照射することにより、耐摩耗性および基材との密着性を高める方法が知られている(特許文献1)。
¡Sliding surfaces such as rolling bearings and cages are supplied with lubricating oil or lubricating grease to reduce rolling friction or sliding friction. Further, a surface treatment for improving the slidability is applied to the sliding surface. One of the surface treatments is a method of forming a fluorine resin film. For example, a method of improving wear resistance and adhesion to a substrate by irradiating a polytetrafluoroethylene (hereinafter referred to as PTFE) coating formed on a sliding portion of a sliding member with a dose of 50 to 250 kGy. Is known (Patent Document 1).
ポリイミド樹脂、銅、アルミニウムおよびそれらの合金等の金属材料、セラミックス、およびガラスから選択された、耐熱性に優れた基材の表面にフッ素樹脂の被膜を形成し、フッ素樹脂の融点以上の温度で電離性放射線を照射する改質フッ素樹脂被覆材の製造方法が知られている(特許文献2)。
A fluororesin film is formed on the surface of a base material excellent in heat resistance selected from metal materials such as polyimide resin, copper, aluminum and alloys thereof, ceramics, and glass, and at a temperature equal to or higher than the melting point of the fluororesin. A method for producing a modified fluororesin coating material that emits ionizing radiation is known (Patent Document 2).
無潤滑軸受やダイナミックシール等に使用されるフッ素樹脂からなる摺動部材として、フッ素樹脂をその結晶融点以上に加熱し、酸素不在のもとで照射線量1kGy~10MGyの範囲内において電離性放射線を照射したフッ素樹脂が知られている(特許文献3)。
As a sliding member made of fluororesin used for non-lubricated bearings, dynamic seals, etc., the fluororesin is heated above its crystalline melting point, and ionizing radiation is emitted within the range of irradiation dose of 1 kGy to 10 MGy in the absence of oxygen. Irradiated fluororesins are known (Patent Document 3).
PTFEにより構成されるフィルムまたはシート状傾斜材料と、アルミニウム、鉄、ステンレス、ポリイミドおよびセラミックスからなる群より選択される基材とが積層されているフィルムまたはシート状製品であって、該材料の、基材と接していない一の面ならびにその近傍層に存在するポリマーが三次元構造を有し、該材料の基材と接している他の面ならびにその近傍層に存在するポリマーが二次元構造を有し該一の面と該他の面との間に存在するポリマーの三次元構造の含率が連続的に変化しており、該材料の厚さが5~500μmであるフィルムまたはシート状製品が知られている(特許文献4)。
A film or sheet-like product in which a film or sheet-like gradient material composed of PTFE and a substrate selected from the group consisting of aluminum, iron, stainless steel, polyimide and ceramics are laminated, One surface that is not in contact with the base material and the polymer existing in the neighboring layer have a three-dimensional structure, and the other surface that is in contact with the base material of the material and the polymer existing in the neighboring layer have a two-dimensional structure. A film or sheet-like product in which the content of the three-dimensional structure of the polymer existing between the one surface and the other surface varies continuously, and the thickness of the material is 5 to 500 μm Is known (Patent Document 4).
一方、自動車、バイク等のエンジンに用いられる転がり軸受、特に保持器付き針状ころ軸受があり、この保持器表面の焼付きを防止するために保持器表面に銀めっきがなされている。この保持器付き針状ころ軸受は、針状ころを等間隔に保持するプレス製金属保持器から構成され、この保持器の表面全体に銀めっきが施されている(特許文献5)。
On the other hand, there are rolling bearings used for engines such as automobiles and motorcycles, in particular needle roller bearings with a cage, and the cage surface is silver-plated to prevent seizure of the cage surface. This needle roller bearing with a cage is composed of a pressed metal cage that holds the needle rollers at regular intervals, and the entire surface of the cage is silver-plated (Patent Document 5).
しかしながら、特許文献1に示す製造方法は、無潤滑下、低面圧の条件下で使用するため、基材との密着性を高める方法であり、各種機械の摺動面に要求される潤滑油中、高滑り速度、高面圧の条件の場合は適用が困難である。
特許文献2に記載のフッ素樹脂被膜は、フッ素樹脂の架橋反応およびフッ素樹脂と基材表面との化学反応を同時に生じさせ、それによって両者の強固な接着を達成することを目的としており、転がり軸受や保持器などの鉄基材の場合、基材表面との化学反応を生成することが困難であり、強固な接着は達成できないという問題がある。
特許文献3に記載の摺動部材は、無潤滑軸受やダイナミックシール等に使用され、被膜の形状ではなくフッ素樹脂からなる摺動部材に関する。そのため、被覆材としての特性は不明であり、更に潤滑油中、高滑り速度、高面圧を要求される転がり軸受用途に適用が困難である。
特許文献4に記載の被膜も特許文献1に記載の方法で製造される被膜と同様、平板試験片、低面圧、低滑り速度、無潤滑での評価であり、保持器試験片、高面圧、高滑り速度、油潤滑下で使用できるか否かは知られていない。
特許文献5に記載の銀めっきが施されている保持器においては、摺動面の摩耗量の経時変化がより少ない保持器が求められており、銀めっきに代わる摺動材が要求されている。また、銀めっきは、エンジンオイル中に含まれる硫黄成分によって硫化するという問題を有している。保持器表面に施された銀めっきが硫化すると、保持器から剥離や脱落が発生し、保持器の素地が露出する。 However, the manufacturing method shown inPatent Document 1 is a method for improving adhesion to a base material because it is used under non-lubricated and low surface pressure conditions. Lubricating oil required for sliding surfaces of various machines It is difficult to apply in the case of medium, high slip speed and high surface pressure.
The fluororesin coating described in Patent Document 2 is intended to simultaneously cause a cross-linking reaction of a fluororesin and a chemical reaction between the fluororesin and a substrate surface, thereby achieving strong adhesion between the two. In the case of an iron substrate such as a cage or a cage, it is difficult to generate a chemical reaction with the surface of the substrate, and there is a problem that strong adhesion cannot be achieved.
The sliding member described inPatent Document 3 is used for a non-lubricated bearing, a dynamic seal, and the like, and relates to a sliding member made of a fluororesin rather than a film shape. Therefore, the characteristics as a coating material are unknown, and it is difficult to apply to rolling bearing applications that require high slip speed and high surface pressure in lubricating oil.
Similar to the coating produced by the method described inPatent Literature 1, the coating described in Patent Literature 4 is evaluated with a flat plate test piece, a low surface pressure, a low sliding speed, and no lubrication. It is not known whether it can be used under pressure, high slip speed and oil lubrication.
In the cage that has been subjected to silver plating described inPatent Document 5, a cage that requires less change with time in the amount of wear on the sliding surface is required, and a sliding material that replaces silver plating is required. . Further, silver plating has a problem that it is sulfided by a sulfur component contained in engine oil. When the silver plating applied to the surface of the cage is sulfided, peeling or dropping occurs from the cage, and the base material of the cage is exposed.
特許文献2に記載のフッ素樹脂被膜は、フッ素樹脂の架橋反応およびフッ素樹脂と基材表面との化学反応を同時に生じさせ、それによって両者の強固な接着を達成することを目的としており、転がり軸受や保持器などの鉄基材の場合、基材表面との化学反応を生成することが困難であり、強固な接着は達成できないという問題がある。
特許文献3に記載の摺動部材は、無潤滑軸受やダイナミックシール等に使用され、被膜の形状ではなくフッ素樹脂からなる摺動部材に関する。そのため、被覆材としての特性は不明であり、更に潤滑油中、高滑り速度、高面圧を要求される転がり軸受用途に適用が困難である。
特許文献4に記載の被膜も特許文献1に記載の方法で製造される被膜と同様、平板試験片、低面圧、低滑り速度、無潤滑での評価であり、保持器試験片、高面圧、高滑り速度、油潤滑下で使用できるか否かは知られていない。
特許文献5に記載の銀めっきが施されている保持器においては、摺動面の摩耗量の経時変化がより少ない保持器が求められており、銀めっきに代わる摺動材が要求されている。また、銀めっきは、エンジンオイル中に含まれる硫黄成分によって硫化するという問題を有している。保持器表面に施された銀めっきが硫化すると、保持器から剥離や脱落が発生し、保持器の素地が露出する。 However, the manufacturing method shown in
The fluororesin coating described in Patent Document 2 is intended to simultaneously cause a cross-linking reaction of a fluororesin and a chemical reaction between the fluororesin and a substrate surface, thereby achieving strong adhesion between the two. In the case of an iron substrate such as a cage or a cage, it is difficult to generate a chemical reaction with the surface of the substrate, and there is a problem that strong adhesion cannot be achieved.
The sliding member described in
Similar to the coating produced by the method described in
In the cage that has been subjected to silver plating described in
本発明はこのような問題に対処するためになされたものであり、潤滑油中、高滑り速度、高面圧の条件下においても、摺動性に優れた摺動面を有する転がり軸受用保持器およびこの保持器を用いた転がり軸受の提供を目的とする。
The present invention has been made to cope with such a problem, and is a rolling bearing holding having a sliding surface excellent in slidability even under conditions of high sliding speed and high surface pressure in lubricating oil. It is an object of the present invention to provide a rolling bearing using the cage and the cage.
本発明の転がり軸受用保持器は、油潤滑環境下で使用される転がり軸受の転動体を保持し、基材と、この基材表面に形成されている摺動層とを有している。この摺動層はフッ素樹脂層であり、このフッ素樹脂層の上記基材と接していない摺動層表面ならびにその近傍層に存在するフッ素樹脂が少なくとも三次元構造を有することを特徴とする。摺動層表面ならびにその近傍層が少なくとも三次元構造を有するとは、摺動層におけるこの部分全体が三次元構造のフッ素樹脂のみからなることに限定されず、三次元構造の特徴を損なわない範囲内で、この部分に二次元構造のフッ素樹脂が一部含まれていてもよい。同様に、基材側の面およびその近傍が未架橋の二次元構造を有するとは、摺動層におけるこの部分全体が二次元構造のフッ素樹脂のみからなることに限定されず、二次元構造の特徴を損なわない範囲内で、この部分に三次元構造のフッ素樹脂が一部含まれていてもよい。また、本発明における近傍とは対象面から2.5μm未満の層をいう。
The rolling bearing cage of the present invention holds a rolling element of a rolling bearing used in an oil lubricated environment, and has a base material and a sliding layer formed on the surface of the base material. This sliding layer is a fluororesin layer, and the fluororesin present on the surface of the sliding layer that is not in contact with the base material of the fluororesin layer and its neighboring layers has at least a three-dimensional structure. That the surface of the sliding layer and its neighboring layers have at least a three-dimensional structure is not limited to the fact that the entire portion of the sliding layer is made of only a three-dimensional fluoropolymer, and does not impair the characteristics of the three-dimensional structure. Of these, a part of the fluororesin having a two-dimensional structure may be included in this part. Similarly, the fact that the surface on the substrate side and the vicinity thereof have an uncrosslinked two-dimensional structure is not limited to the fact that this entire portion of the sliding layer is made of only a two-dimensional structure fluororesin, As long as the characteristics are not impaired, a part of the fluororesin having a three-dimensional structure may be included in this part. In the present invention, the vicinity means a layer less than 2.5 μm from the target surface.
上記摺動層の第一の態様は、上記基材と接していない摺動層表面ならびにその近傍層に存在するフッ素樹脂が三次元構造を有すると共に、上記基材と接している面ならびにその近傍層に存在するフッ素樹脂が二次元構造を有している。特に、フッ素樹脂層の表面より基材と接している面に向かって、フッ素樹脂の三次元構造の含率が連続的に少なくなっている。また、上記摺動層の第二の態様は、上記基材と接していない摺動層表面ならびにその近傍層に存在するフッ素樹脂の三次元構造が基材と接している面に向かって連続している。
In the first aspect of the sliding layer, the surface of the sliding layer that is not in contact with the base material and the fluororesin existing in the neighboring layer have a three-dimensional structure, and the surface in contact with the base material and the vicinity thereof. The fluororesin present in the layer has a two-dimensional structure. In particular, the content of the three-dimensional structure of the fluororesin continuously decreases from the surface of the fluororesin layer toward the surface in contact with the base material. In the second aspect of the sliding layer, the three-dimensional structure of the fluororesin present on the surface of the sliding layer that is not in contact with the base material and in the vicinity thereof is continuous toward the surface in contact with the base material. ing.
上記フッ素樹脂がPTFE樹脂であり、また摺動層の層厚さが5μm以上40μm未満であることを特徴とする。
また、上記基材が鉄系金属材であることを特徴とする。 The fluororesin is a PTFE resin, and the thickness of the sliding layer is 5 μm or more and less than 40 μm.
The base material is an iron-based metal material.
また、上記基材が鉄系金属材であることを特徴とする。 The fluororesin is a PTFE resin, and the thickness of the sliding layer is 5 μm or more and less than 40 μm.
The base material is an iron-based metal material.
本発明の転がり軸受は上記本発明の保持器を使用した転がり軸受であることを特徴とする。
The rolling bearing of the present invention is a rolling bearing using the cage of the present invention.
本発明の転がり軸受用保持器は、基材と接していない摺動層表面ならびにその近傍層に存在するフッ素樹脂が少なくとも三次元構造を有するので、潤滑油中、高滑り速度、高面圧の条件下においても摩耗を抑制でき軸受の寿命を長期間にわたり維持できる。また、この保持器を用いた転がり軸受は、潤滑油中での摺動性に優れる。
In the rolling bearing retainer of the present invention, the fluororesin present on the surface of the sliding layer that is not in contact with the base material and its neighboring layers has at least a three-dimensional structure. Therefore, the lubricating oil has a high sliding speed and a high surface pressure. Wear can be suppressed even under conditions, and the life of the bearing can be maintained for a long time. Moreover, the rolling bearing using this cage is excellent in slidability in lubricating oil.
本発明の転がり軸受用保持器は、基材上に形成された摺動層を有している。摺動層の断面図の一例を図1に示す。図1は断面が傾斜材料となる例である。摺動層21は、金属基材22の表面に形成された架橋フッ素樹脂層からなる。架橋フッ素樹脂層は、該フッ素樹脂層の、金属基材と接していない表面23およびその近傍に存在するフッ素樹脂が三次元構造からなる架橋構造を有している。また、該フッ素樹脂層の、金属基材22と接している面24およびその近傍に存在するフッ素樹脂が二次元構造からなる未架橋構造を有している。上記表面23と基材と接している面24との間に存在するフッ素樹脂の三次元構造の含率が、フッ素樹脂層の表面23より基材と接している面24に向かって、連続的に少なくなっている。
The rolling bearing cage of the present invention has a sliding layer formed on a substrate. An example of a sectional view of the sliding layer is shown in FIG. FIG. 1 shows an example in which the cross section is a gradient material. The sliding layer 21 is composed of a cross-linked fluororesin layer formed on the surface of the metal substrate 22. The cross-linked fluororesin layer has a cross-linked structure in which the fluororesin layer has a three-dimensional structure in which the surface 23 of the fluororesin layer that is not in contact with the metal substrate and the fluororesin present in the vicinity thereof. Further, the surface 24 of the fluororesin layer in contact with the metal substrate 22 and the fluororesin present in the vicinity thereof have an uncrosslinked structure having a two-dimensional structure. The content of the three-dimensional structure of the fluororesin existing between the surface 23 and the surface 24 in contact with the substrate is continuous from the surface 23 of the fluororesin layer toward the surface 24 in contact with the substrate. It has become less.
基材上に形成されている他の摺動層の断面図を図2に示す。図2は摺動層の断面が均一材料となる例である。摺動層21は、鉄系金属基材の表面22に形成された架橋フッ素樹脂層からなる。架橋フッ素樹脂からなる摺動層21は金属基材と接している面24から摺動層の表面23まで全て三次元構造からなる架橋構造を有している。
FIG. 2 shows a cross-sectional view of another sliding layer formed on the substrate. FIG. 2 shows an example in which the cross section of the sliding layer is a uniform material. The sliding layer 21 consists of a crosslinked fluororesin layer formed on the surface 22 of the iron-based metal substrate. The sliding layer 21 made of a crosslinked fluororesin has a crosslinked structure consisting of a three-dimensional structure from the surface 24 in contact with the metal substrate to the surface 23 of the sliding layer.
本発明の転がり軸受用保持器に使用できる基材としては、アルミニウム材、鉄系金属材、ポリイミド材、またはセラミックス材等が挙げられる。これらの中で転がり軸受用保持器としては、鉄系金属材が好ましい。
鉄系金属材は、転がり軸受などに使用される軸受鋼、浸炭鋼、機械構造用炭素鋼、冷間圧延鋼、または熱間圧延鋼等が挙げられる。鉄系金属材は保持器の形状に加工後、焼入焼戻し処理することで所定の表面硬度に調整する。例えばクロムモリブデン鋼(SCM415)を用いた鉄系金属材製保持器の場合、Hv値を484~595に調整した鉄系金属材を使用することが好ましい。 Examples of the base material that can be used for the rolling bearing cage of the present invention include an aluminum material, an iron-based metal material, a polyimide material, or a ceramic material. Among these, a ferrous metal material is preferable as the rolling bearing cage.
Examples of the iron-based metal material include bearing steel used for rolling bearings, carburized steel, carbon steel for machine structure, cold rolled steel, hot rolled steel, and the like. The ferrous metal material is adjusted to a predetermined surface hardness by quenching and tempering after processing into the shape of the cage. For example, in the case of a ferrous metal material cage using chromium molybdenum steel (SCM415), it is preferable to use an ferrous metal material whose Hv value is adjusted to 484 to 595.
鉄系金属材は、転がり軸受などに使用される軸受鋼、浸炭鋼、機械構造用炭素鋼、冷間圧延鋼、または熱間圧延鋼等が挙げられる。鉄系金属材は保持器の形状に加工後、焼入焼戻し処理することで所定の表面硬度に調整する。例えばクロムモリブデン鋼(SCM415)を用いた鉄系金属材製保持器の場合、Hv値を484~595に調整した鉄系金属材を使用することが好ましい。 Examples of the base material that can be used for the rolling bearing cage of the present invention include an aluminum material, an iron-based metal material, a polyimide material, or a ceramic material. Among these, a ferrous metal material is preferable as the rolling bearing cage.
Examples of the iron-based metal material include bearing steel used for rolling bearings, carburized steel, carbon steel for machine structure, cold rolled steel, hot rolled steel, and the like. The ferrous metal material is adjusted to a predetermined surface hardness by quenching and tempering after processing into the shape of the cage. For example, in the case of a ferrous metal material cage using chromium molybdenum steel (SCM415), it is preferable to use an ferrous metal material whose Hv value is adjusted to 484 to 595.
摺動層は、上記鉄系金属材表面に形成されたフッ素樹脂層からなる。
フッ素樹脂としては、PTFE、テトラフルオロエチレン-パーフルオロ(アルキルビニルエーテル)共重合体(以下、PFAという)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(以下、FEPという)、エチレン-テトラフルオロエチレン共重合体、ポリフッ化ビニリデン、ポリフッ化ビニルが挙げられる。これらの樹脂は単独でも混合物としても使用できる。また、これらの中で、耐熱性および摺動性に優れるPTFEが好ましい。 The sliding layer is made of a fluororesin layer formed on the surface of the iron-based metal material.
Examples of fluororesins include PTFE, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (hereinafter referred to as PFA), tetrafluoroethylene-hexafluoropropylene copolymer (hereinafter referred to as FEP), ethylene-tetrafluoroethylene copolymer. Examples include polymers, polyvinylidene fluoride, and polyvinyl fluoride. These resins can be used alone or as a mixture. Of these, PTFE which is excellent in heat resistance and slidability is preferable.
フッ素樹脂としては、PTFE、テトラフルオロエチレン-パーフルオロ(アルキルビニルエーテル)共重合体(以下、PFAという)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(以下、FEPという)、エチレン-テトラフルオロエチレン共重合体、ポリフッ化ビニリデン、ポリフッ化ビニルが挙げられる。これらの樹脂は単独でも混合物としても使用できる。また、これらの中で、耐熱性および摺動性に優れるPTFEが好ましい。 The sliding layer is made of a fluororesin layer formed on the surface of the iron-based metal material.
Examples of fluororesins include PTFE, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (hereinafter referred to as PFA), tetrafluoroethylene-hexafluoropropylene copolymer (hereinafter referred to as FEP), ethylene-tetrafluoroethylene copolymer. Examples include polymers, polyvinylidene fluoride, and polyvinyl fluoride. These resins can be used alone or as a mixture. Of these, PTFE which is excellent in heat resistance and slidability is preferable.
架橋する前のフッ素樹脂層は、PTFE樹脂粒子を分散させた水分散液を用いて、塗布・乾燥後、焼成して製造することができる。PTFE樹脂粒子を分散させた水分散液としては、例えば、ダイキン工業株式会社製ポリフロン=PTFEエナメルが挙げられる。水分散液には、ポリオキシエチレンアルキルエーテルなどの非イオン界面活性剤、カーボンブラックなどの無機顔料、主溶媒としての水が配合できる。また、消泡剤、乾燥剤、増粘剤、レベリング剤、ハジキ防止剤などを配合できる。
架橋フッ素樹脂層は、上記塗布乾燥された未架橋フッ素樹脂層の少なくとも表面およびその近傍が架橋された架橋フッ素樹脂層である。 The fluororesin layer before cross-linking can be produced by applying and drying, followed by baking using an aqueous dispersion in which PTFE resin particles are dispersed. Examples of the aqueous dispersion in which PTFE resin particles are dispersed include, for example, Polyflon = PTFE enamel manufactured by Daikin Industries, Ltd. The aqueous dispersion may contain a nonionic surfactant such as polyoxyethylene alkyl ether, an inorganic pigment such as carbon black, and water as a main solvent. Moreover, an antifoamer, a desiccant, a thickener, a leveling agent, a repellency inhibitor, etc. can be mix | blended.
The cross-linked fluororesin layer is a cross-linked fluororesin layer in which at least the surface and the vicinity thereof are cross-linked.
架橋フッ素樹脂層は、上記塗布乾燥された未架橋フッ素樹脂層の少なくとも表面およびその近傍が架橋された架橋フッ素樹脂層である。 The fluororesin layer before cross-linking can be produced by applying and drying, followed by baking using an aqueous dispersion in which PTFE resin particles are dispersed. Examples of the aqueous dispersion in which PTFE resin particles are dispersed include, for example, Polyflon = PTFE enamel manufactured by Daikin Industries, Ltd. The aqueous dispersion may contain a nonionic surfactant such as polyoxyethylene alkyl ether, an inorganic pigment such as carbon black, and water as a main solvent. Moreover, an antifoamer, a desiccant, a thickener, a leveling agent, a repellency inhibitor, etc. can be mix | blended.
The cross-linked fluororesin layer is a cross-linked fluororesin layer in which at least the surface and the vicinity thereof are cross-linked.
鉄系金属材表面への摺動層の形成方法について以下説明する。
(1)鉄系金属材の表面処理
鉄系金属材は、摺動層形成前にショットブラスト等を用いて、予め金属材表面の粗さ(Ra)を1.0~2.0μmに調整し、その後、石油ベンジン等の有機溶剤内に浸漬させ、5分~1時間程度超音波脱脂を行なうことが好ましい。 A method for forming the sliding layer on the surface of the iron-based metal material will be described below.
(1) Surface treatment of iron-based metal materials For iron-based metal materials, the roughness (Ra) of the metal material surface is adjusted in advance to 1.0 to 2.0 μm using shot blasting before forming the sliding layer. Thereafter, it is preferably immersed in an organic solvent such as petroleum benzine and subjected to ultrasonic degreasing for about 5 minutes to 1 hour.
(1)鉄系金属材の表面処理
鉄系金属材は、摺動層形成前にショットブラスト等を用いて、予め金属材表面の粗さ(Ra)を1.0~2.0μmに調整し、その後、石油ベンジン等の有機溶剤内に浸漬させ、5分~1時間程度超音波脱脂を行なうことが好ましい。 A method for forming the sliding layer on the surface of the iron-based metal material will be described below.
(1) Surface treatment of iron-based metal materials For iron-based metal materials, the roughness (Ra) of the metal material surface is adjusted in advance to 1.0 to 2.0 μm using shot blasting before forming the sliding layer. Thereafter, it is preferably immersed in an organic solvent such as petroleum benzine and subjected to ultrasonic degreasing for about 5 minutes to 1 hour.
(2)フッ素樹脂層を形成する水系塗布液の塗装
フッ素樹脂層を形成する水系塗布液前に、水分散液の分散性を向上させるために、ボールミルを用いて、例えば40rpmで1時間回転させ再分散する。この再分散した水系塗布液を100メッシュの金網を用いて濾過し、スプレー法を用いて塗装する。
(3)フッ素樹脂層を形成する水系塗布液の乾燥
水系塗布液を塗布後乾燥する。乾燥条件としては、例えば90℃の恒温槽内で30分程度の乾燥が好ましい。乾燥後のフッ素樹脂層の層厚さは5μm以上40μm未満、好ましくは15~30μmの範囲内である。5μm未満であると、被膜の密着不良による剥離や初期摩耗により、金属基材が露出するおそれがある。40μm以上であると、被膜形成時のクラック発生や運転中に剥離して潤滑状態が悪化するおそれがある。
なお、フッ素樹脂層の塗装方法としては、スプレー法以外にディッピング法、刷毛塗り法など被膜を形成できるものであれば使用できる。被膜の表面粗さ、塗布形状をできるだけ小さくし、層厚さの均一性を考慮するとスプレー法が好ましい。 (2) Application of aqueous coating solution for forming the fluororesin layer Before the aqueous coating solution for forming the fluororesin layer, in order to improve the dispersibility of the aqueous dispersion, it is rotated for 1 hour at, for example, 40 rpm using a ball mill. Redistribute. The re-dispersed aqueous coating solution is filtered using a 100 mesh wire net and painted using a spray method.
(3) Drying of aqueous coating solution for forming the fluororesin layer The aqueous coating solution is applied and then dried. As drying conditions, for example, drying in a thermostat at 90 ° C. for about 30 minutes is preferable. The layer thickness of the fluororesin layer after drying is 5 μm or more and less than 40 μm, preferably 15 to 30 μm. If the thickness is less than 5 μm, the metal substrate may be exposed due to peeling or initial wear due to poor adhesion of the coating. If it is 40 μm or more, cracks during film formation or peeling during operation may deteriorate the lubrication state.
As a method for coating the fluororesin layer, any coating method can be used as long as it can form a film such as a dipping method and a brush coating method in addition to the spray method. The spray method is preferable in view of making the surface roughness and coating shape of the coating as small as possible and considering the uniformity of the layer thickness.
フッ素樹脂層を形成する水系塗布液前に、水分散液の分散性を向上させるために、ボールミルを用いて、例えば40rpmで1時間回転させ再分散する。この再分散した水系塗布液を100メッシュの金網を用いて濾過し、スプレー法を用いて塗装する。
(3)フッ素樹脂層を形成する水系塗布液の乾燥
水系塗布液を塗布後乾燥する。乾燥条件としては、例えば90℃の恒温槽内で30分程度の乾燥が好ましい。乾燥後のフッ素樹脂層の層厚さは5μm以上40μm未満、好ましくは15~30μmの範囲内である。5μm未満であると、被膜の密着不良による剥離や初期摩耗により、金属基材が露出するおそれがある。40μm以上であると、被膜形成時のクラック発生や運転中に剥離して潤滑状態が悪化するおそれがある。
なお、フッ素樹脂層の塗装方法としては、スプレー法以外にディッピング法、刷毛塗り法など被膜を形成できるものであれば使用できる。被膜の表面粗さ、塗布形状をできるだけ小さくし、層厚さの均一性を考慮するとスプレー法が好ましい。 (2) Application of aqueous coating solution for forming the fluororesin layer Before the aqueous coating solution for forming the fluororesin layer, in order to improve the dispersibility of the aqueous dispersion, it is rotated for 1 hour at, for example, 40 rpm using a ball mill. Redistribute. The re-dispersed aqueous coating solution is filtered using a 100 mesh wire net and painted using a spray method.
(3) Drying of aqueous coating solution for forming the fluororesin layer The aqueous coating solution is applied and then dried. As drying conditions, for example, drying in a thermostat at 90 ° C. for about 30 minutes is preferable. The layer thickness of the fluororesin layer after drying is 5 μm or more and less than 40 μm, preferably 15 to 30 μm. If the thickness is less than 5 μm, the metal substrate may be exposed due to peeling or initial wear due to poor adhesion of the coating. If it is 40 μm or more, cracks during film formation or peeling during operation may deteriorate the lubrication state.
As a method for coating the fluororesin layer, any coating method can be used as long as it can form a film such as a dipping method and a brush coating method in addition to the spray method. The spray method is preferable in view of making the surface roughness and coating shape of the coating as small as possible and considering the uniformity of the layer thickness.
(4)焼成
フッ素樹脂層の乾燥後、加熱炉内、空気中でフッ素樹脂の融点以上の温度、好ましくは(融点(Tm)+30℃)~(融点(Tm)+100℃)、5~40分の範囲内で焼成する。フッ素樹脂がPTFEの場合、好ましくは380℃の加熱炉内で30分間焼成する。 (4) Firing After drying the fluororesin layer, in the heating furnace, in air, at a temperature higher than the melting point of the fluororesin, preferably (melting point (Tm) + 30 ° C.) to (melting point (Tm) + 100 ° C.), 5 to 40 minutes Firing within the range of. When the fluororesin is PTFE, it is preferably fired in a heating furnace at 380 ° C. for 30 minutes.
フッ素樹脂層の乾燥後、加熱炉内、空気中でフッ素樹脂の融点以上の温度、好ましくは(融点(Tm)+30℃)~(融点(Tm)+100℃)、5~40分の範囲内で焼成する。フッ素樹脂がPTFEの場合、好ましくは380℃の加熱炉内で30分間焼成する。 (4) Firing After drying the fluororesin layer, in the heating furnace, in air, at a temperature higher than the melting point of the fluororesin, preferably (melting point (Tm) + 30 ° C.) to (melting point (Tm) + 100 ° C.), 5 to 40 minutes Firing within the range of. When the fluororesin is PTFE, it is preferably fired in a heating furnace at 380 ° C. for 30 minutes.
(5)フッ素樹脂層の架橋
焼成後の被膜に、照射温度がフッ素樹脂層の融点より30℃低い温度から該融点の50℃高い温度以下、好ましくはフッ素樹脂層の融点より10℃低い温度から該融点の20℃高い温度以下にて、また、照射線量が250kGy超750kGy以下で放射線を照射してフッ素樹脂層を架橋させる。放射線としては、α線(α崩壊を行なう放射性核種から放出されるヘリウム-4の原子核の粒子線)、β線(原子核から放出される陰電子および陽電子)、電子線(ほぼ一定の運動エネルギーを持つ電子ビーム;一般に、熱電子を真空中で加速してつくる)などの粒子線;γ線(原子核、素粒子のエネルギー準位間の遷移や素粒子の対消滅、対生成などによって放出・吸収される波長の短い電磁波)などの電離放射線を用いることができる。これらの放射線の中でも、架橋効率や操作性の観点から、電子線およびγ線が好ましく、電子線がより好ましい。特に電子線は、電子線照射装置が入手しやすいこと、照射操作が簡単であること、連続的な照射工程を採用することができることなどの利点を有している。 (5) Crosslinking of fluororesin layer From the temperature lower than the melting point of the fluororesin layer to an irradiation temperature of 30 ° C lower than the melting point of the fluororesin layer, preferably 50 ° C lower than the melting point, preferably 10 ° C lower than the melting point of the fluororesin layer. The fluororesin layer is cross-linked by irradiating with radiation at a temperature not higher than 20 ° C. above the melting point and with an irradiation dose of more than 250 kGy and 750 kGy or less. Examples of radiation include α rays (particle beams of helium-4 nuclei emitted from radionuclides that undergo α decay), β rays (negative electrons and positrons emitted from nuclei), and electron beams (almost constant kinetic energy). Particle beam such as electron beam, generally generated by accelerating thermionic electrons in vacuum; gamma ray (emitted and absorbed by transitions between energy levels of nuclei and elementary particles, pair annihilation of elementary particles, pair production, etc.) Ionizing radiation such as an electromagnetic wave having a short wavelength). Among these radiations, from the viewpoint of crosslinking efficiency and operability, electron beams and γ rays are preferable, and electron beams are more preferable. In particular, an electron beam has advantages such as easy availability of an electron beam irradiation apparatus, simple irradiation operation, and the ability to employ a continuous irradiation process.
焼成後の被膜に、照射温度がフッ素樹脂層の融点より30℃低い温度から該融点の50℃高い温度以下、好ましくはフッ素樹脂層の融点より10℃低い温度から該融点の20℃高い温度以下にて、また、照射線量が250kGy超750kGy以下で放射線を照射してフッ素樹脂層を架橋させる。放射線としては、α線(α崩壊を行なう放射性核種から放出されるヘリウム-4の原子核の粒子線)、β線(原子核から放出される陰電子および陽電子)、電子線(ほぼ一定の運動エネルギーを持つ電子ビーム;一般に、熱電子を真空中で加速してつくる)などの粒子線;γ線(原子核、素粒子のエネルギー準位間の遷移や素粒子の対消滅、対生成などによって放出・吸収される波長の短い電磁波)などの電離放射線を用いることができる。これらの放射線の中でも、架橋効率や操作性の観点から、電子線およびγ線が好ましく、電子線がより好ましい。特に電子線は、電子線照射装置が入手しやすいこと、照射操作が簡単であること、連続的な照射工程を採用することができることなどの利点を有している。 (5) Crosslinking of fluororesin layer From the temperature lower than the melting point of the fluororesin layer to an irradiation temperature of 30 ° C lower than the melting point of the fluororesin layer, preferably 50 ° C lower than the melting point, preferably 10 ° C lower than the melting point of the fluororesin layer. The fluororesin layer is cross-linked by irradiating with radiation at a temperature not higher than 20 ° C. above the melting point and with an irradiation dose of more than 250 kGy and 750 kGy or less. Examples of radiation include α rays (particle beams of helium-4 nuclei emitted from radionuclides that undergo α decay), β rays (negative electrons and positrons emitted from nuclei), and electron beams (almost constant kinetic energy). Particle beam such as electron beam, generally generated by accelerating thermionic electrons in vacuum; gamma ray (emitted and absorbed by transitions between energy levels of nuclei and elementary particles, pair annihilation of elementary particles, pair production, etc.) Ionizing radiation such as an electromagnetic wave having a short wavelength). Among these radiations, from the viewpoint of crosslinking efficiency and operability, electron beams and γ rays are preferable, and electron beams are more preferable. In particular, an electron beam has advantages such as easy availability of an electron beam irradiation apparatus, simple irradiation operation, and the ability to employ a continuous irradiation process.
照射温度がフッ素樹脂層の融点より30℃低い温度から該融点の50℃高い温度以下の温度範囲以外ではフッ素樹脂層の架橋が十分に進まない。また、照射雰囲気は架橋を効率的に行なうため、真空引きや不活性ガス注入により照射領域の酸素濃度を低くする必要がある。酸素濃度の範囲は0~300ppmが好ましい。酸素濃度を以上のような濃度範囲に維持するには操作性やコスト面の観点から窒素ガス注入による不活性雰囲気が好ましい。
照射線量が250kGy以下であると架橋が不十分となり、摩耗量が大きく、金属基材が露出してしまう場合がある。また、照射線量が750kGy超であると架橋が必要以上に進み、被膜の硬度が上昇することで、脆化し、剥離等の被膜損傷が起こりやすくなる場合がある。 The cross-linking of the fluororesin layer does not proceed sufficiently except in the temperature range where the irradiation temperature is 30 ° C. lower than the melting point of the fluororesin layer to 50 ° C. higher than the melting point. In addition, in order to efficiently perform crosslinking in the irradiation atmosphere, it is necessary to lower the oxygen concentration in the irradiation region by evacuation or inert gas injection. The range of oxygen concentration is preferably 0 to 300 ppm. In order to maintain the oxygen concentration in the above concentration range, an inert atmosphere by nitrogen gas injection is preferable from the viewpoint of operability and cost.
When the irradiation dose is 250 kGy or less, crosslinking is insufficient, the wear amount is large, and the metal substrate may be exposed. In addition, when the irradiation dose exceeds 750 kGy, crosslinking proceeds more than necessary, and the hardness of the coating increases, so that the coating becomes brittle and damage to the coating such as peeling may easily occur.
照射線量が250kGy以下であると架橋が不十分となり、摩耗量が大きく、金属基材が露出してしまう場合がある。また、照射線量が750kGy超であると架橋が必要以上に進み、被膜の硬度が上昇することで、脆化し、剥離等の被膜損傷が起こりやすくなる場合がある。 The cross-linking of the fluororesin layer does not proceed sufficiently except in the temperature range where the irradiation temperature is 30 ° C. lower than the melting point of the fluororesin layer to 50 ° C. higher than the melting point. In addition, in order to efficiently perform crosslinking in the irradiation atmosphere, it is necessary to lower the oxygen concentration in the irradiation region by evacuation or inert gas injection. The range of oxygen concentration is preferably 0 to 300 ppm. In order to maintain the oxygen concentration in the above concentration range, an inert atmosphere by nitrogen gas injection is preferable from the viewpoint of operability and cost.
When the irradiation dose is 250 kGy or less, crosslinking is insufficient, the wear amount is large, and the metal substrate may be exposed. In addition, when the irradiation dose exceeds 750 kGy, crosslinking proceeds more than necessary, and the hardness of the coating increases, so that the coating becomes brittle and damage to the coating such as peeling may easily occur.
フッ素樹脂が摺動層表面より基材と接している面に向かって、フッ素樹脂の三次元構造の含率が連続的に少なくなる傾斜材料とする場合、照射するときの加速電圧は40kV以上500kV未満、好ましくは50~100kVである。40kV未満であるとフッ素樹脂層の表面層近傍への電子線の侵入が浅くなり、500kV以上であるとフッ素樹脂層全体に架橋が進む。放射線をフッ素樹脂層に照射すると、ポリマー内部で放射線の強度が減衰するため、放射線を照射した面には放射線が充分届くが、他の面には充分な放射線が届かないことを利用して傾斜材料を形成する。
In the case of a gradient material in which the content of the three-dimensional structure of the fluororesin continuously decreases from the surface of the sliding layer to the surface in contact with the base material, the acceleration voltage upon irradiation is 40 kV or more and 500 kV Less than, preferably 50 to 100 kV. If it is less than 40 kV, the penetration of the electron beam into the vicinity of the surface layer of the fluororesin layer becomes shallow, and if it is 500 kV or more, the entire fluororesin layer is cross-linked. When radiation is applied to the fluororesin layer, the intensity of the radiation attenuates inside the polymer, so that the radiation can reach the irradiated surface sufficiently, but the other surface cannot be tilted. Form material.
また、フッ素樹脂が摺動層表面より基材と接している面に向かって、フッ素樹脂の三次元構造が連続している均一材料とする場合、照射するときの加速電圧は500kV以上、好ましくは800~1200kVである。この加速電圧で放射線をフッ素樹脂層に照射すると、照射される表面から基材面に至る全層面に放射線が届き、表面から基材面まで架橋された架橋フッ素樹脂層が得られる。
When the fluororesin is a uniform material in which the three-dimensional structure of the fluororesin is continuous from the surface of the sliding layer toward the surface in contact with the base material, the acceleration voltage when irradiated is preferably 500 kV or more, preferably 800 to 1200 kV. When the fluororesin layer is irradiated with radiation at this acceleration voltage, the radiation reaches all layer surfaces from the irradiated surface to the substrate surface, and a crosslinked fluororesin layer crosslinked from the surface to the substrate surface is obtained.
上述した方法により得られた摺動層の層厚さは、5μm以上40μm未満、好ましくは15μm以上30μm未満である。層厚さが5μm未満であると、被膜の密着不良による剥離や初期摩耗の摩耗により、金属基材が露出するおそれがある。40μm以上であると、被膜形成時のクラック発生や運転中に剥離して潤滑状態が悪化するおそれがある。層厚さを5μm以上40μm未満の範囲とすることで、初期摩耗による金属基材の露出を防止でき、運転中における剥離を長期間にわたって防止できる。
The layer thickness of the sliding layer obtained by the method described above is 5 μm or more and less than 40 μm, preferably 15 μm or more and less than 30 μm. If the layer thickness is less than 5 μm, the metal substrate may be exposed due to peeling due to poor adhesion of the coating or due to initial wear. If it is 40 μm or more, cracks during film formation or peeling during operation may deteriorate the lubrication state. By setting the layer thickness in the range of 5 μm or more and less than 40 μm, it is possible to prevent the metal substrate from being exposed due to initial wear and to prevent peeling during operation over a long period of time.
次に本発明に用いるフッ素樹脂層が架橋構造を有していることについて説明する。一般に、フッ素系樹脂、特にPTFE樹脂は化学的に非常に安定で、有機溶媒などに対しても極めて安定であるため、分子構造あるいは分子量などを同定することは困難である。さらにPTFE樹脂は架橋による三次元構造を形成しているため、さらに溶媒に溶解し難くなり、構造分析はいっそう困難となる。しかしながら19F Magic angle Spinning(MAS)核磁気共鳴(NMR)法(High speed magic angle nuclear magnetic resonance)による測定ならびに解析により、PTFE樹脂の三次元構造を同定することが可能となる。
Next, it will be described that the fluororesin layer used in the present invention has a crosslinked structure. In general, a fluorine-based resin, particularly a PTFE resin, is chemically very stable and extremely stable against an organic solvent, so that it is difficult to identify the molecular structure or molecular weight. Furthermore, since the PTFE resin forms a three-dimensional structure by cross-linking, it becomes more difficult to dissolve in a solvent, and structural analysis becomes more difficult. However, the measurement and analysis by 19 F Magical Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) Method (High Speed Magnetic Nuclear Resonance) makes it possible to identify the three-dimensional structure of PTFE resin.
架橋による三次元構造の形成を確認するために、以下の実験Aおよび実験Bを行なった。実験Aは傾斜材料の形成を、実験Bは均一材料の形成を確認するためである。
[実験A]
(1)試験片の作成
試験片:SPCC製30mm×30mm、厚さ2mmの金属平板にPTFE樹脂層を形成した。PTFE樹脂層として、ダイキン社製トップ塗料(型番:EK-3700C21R)を用いた。乾燥時間は90℃の恒温槽内で30分間乾燥し、380℃の加熱炉内で30分間焼成した。
その後、以下の条件で試験片にPTFE樹脂層表面側から電子線照射を行なった。
使用装置:浜松ホトニクス株式会社製EBエンジン
加速電圧:70kV
照射線量:実験例A1が0kGy(未照射)、実験例A2が500kGy、実験例A3が1000kGy
照射時の被膜温度:340℃
照射時のチャンバー内雰囲気:窒素 In order to confirm the formation of a three-dimensional structure by crosslinking, the following Experiment A and Experiment B were performed. The experiment A is for confirming the formation of the gradient material, and the experiment B is for confirming the formation of the uniform material.
[Experiment A]
(1) Preparation of test piece Test piece: A PTFE resin layer was formed on a metal flat plate of 30 mm × 30 mm and 2 mm thickness made of SPCC. As the PTFE resin layer, a top coating (model number: EK-3700C21R) manufactured by Daikin was used. The drying time was 30 minutes in a constant temperature bath at 90 ° C., followed by baking in a heating furnace at 380 ° C. for 30 minutes.
Thereafter, the specimen was irradiated with an electron beam from the surface of the PTFE resin layer under the following conditions.
Equipment used: EB engine manufactured by Hamamatsu Photonics Co., Ltd. Acceleration voltage: 70 kV
Irradiation dose: Experimental example A1 is 0 kGy (unirradiated), Experimental example A2 is 500 kGy, Experimental example A3 is 1000 kGy
Film temperature during irradiation: 340 ° C
Chamber atmosphere during irradiation: Nitrogen
[実験A]
(1)試験片の作成
試験片:SPCC製30mm×30mm、厚さ2mmの金属平板にPTFE樹脂層を形成した。PTFE樹脂層として、ダイキン社製トップ塗料(型番:EK-3700C21R)を用いた。乾燥時間は90℃の恒温槽内で30分間乾燥し、380℃の加熱炉内で30分間焼成した。
その後、以下の条件で試験片にPTFE樹脂層表面側から電子線照射を行なった。
使用装置:浜松ホトニクス株式会社製EBエンジン
加速電圧:70kV
照射線量:実験例A1が0kGy(未照射)、実験例A2が500kGy、実験例A3が1000kGy
照射時の被膜温度:340℃
照射時のチャンバー内雰囲気:窒素 In order to confirm the formation of a three-dimensional structure by crosslinking, the following Experiment A and Experiment B were performed. The experiment A is for confirming the formation of the gradient material, and the experiment B is for confirming the formation of the uniform material.
[Experiment A]
(1) Preparation of test piece Test piece: A PTFE resin layer was formed on a metal flat plate of 30 mm × 30 mm and 2 mm thickness made of SPCC. As the PTFE resin layer, a top coating (model number: EK-3700C21R) manufactured by Daikin was used. The drying time was 30 minutes in a constant temperature bath at 90 ° C., followed by baking in a heating furnace at 380 ° C. for 30 minutes.
Thereafter, the specimen was irradiated with an electron beam from the surface of the PTFE resin layer under the following conditions.
Equipment used: EB engine manufactured by Hamamatsu Photonics Co., Ltd. Acceleration voltage: 70 kV
Irradiation dose: Experimental example A1 is 0 kGy (unirradiated), Experimental example A2 is 500 kGy, Experimental example A3 is 1000 kGy
Film temperature during irradiation: 340 ° C
Chamber atmosphere during irradiation: Nitrogen
(2)実験例の試験片被膜
実験例A1:PTFE被膜(照射線量:0kGy、層厚さ:20μm)
実験例A2:PTFE被膜(照射線量:500kGy、層厚さ:20μm)
実験例A3:PTFE被膜(照射線量:1000kGy、層厚さ:20μm) (2) Test piece coating test example A1: PTFE coating (irradiation dose: 0 kGy, layer thickness: 20 μm)
Experimental Example A2: PTFE coating (irradiation dose: 500 kGy, layer thickness: 20 μm)
Experimental Example A3: PTFE coating (irradiation dose: 1000 kGy, layer thickness: 20 μm)
実験例A1:PTFE被膜(照射線量:0kGy、層厚さ:20μm)
実験例A2:PTFE被膜(照射線量:500kGy、層厚さ:20μm)
実験例A3:PTFE被膜(照射線量:1000kGy、層厚さ:20μm) (2) Test piece coating test example A1: PTFE coating (irradiation dose: 0 kGy, layer thickness: 20 μm)
Experimental Example A2: PTFE coating (irradiation dose: 500 kGy, layer thickness: 20 μm)
Experimental Example A3: PTFE coating (irradiation dose: 1000 kGy, layer thickness: 20 μm)
(3)NMR測定
測定は、日本電子株式会社製NMR装置JNM-ECX400を用いて、好適な測定核種(19F)、共鳴周波数(376.2MHz)、MAS(Magic Angle Spinning)回転数(15および12kHz)、サンプル量(4mm固体NMR管に約70μL)、待ち時間(recycle delay time)(10秒)ならびに測定温度(約24℃)で行なった。 (3) NMR measurement The measurement was performed using an NMR device JNM-ECX400 manufactured by JEOL Ltd., using a suitable measurement nuclide ( 19 F), resonance frequency (376.2 MHz), MAS (Magic Angle Spinning) rotation speed (15 and 12 kHz), sample amount (about 70 μL in a 4 mm solid state NMR tube), waiting time (10 seconds) and measurement temperature (about 24 ° C.).
測定は、日本電子株式会社製NMR装置JNM-ECX400を用いて、好適な測定核種(19F)、共鳴周波数(376.2MHz)、MAS(Magic Angle Spinning)回転数(15および12kHz)、サンプル量(4mm固体NMR管に約70μL)、待ち時間(recycle delay time)(10秒)ならびに測定温度(約24℃)で行なった。 (3) NMR measurement The measurement was performed using an NMR device JNM-ECX400 manufactured by JEOL Ltd., using a suitable measurement nuclide ( 19 F), resonance frequency (376.2 MHz), MAS (Magic Angle Spinning) rotation speed (15 and 12 kHz), sample amount (about 70 μL in a 4 mm solid state NMR tube), waiting time (10 seconds) and measurement temperature (about 24 ° C.).
(4)結果
結果を図3~図6に示す。図3は実験例A1のNMR、図4は実験例A2のNMR、図5は実験例A3のNMRチャートの拡大図をそれぞれ表す。図3~図5において上段はMAS回転数15kHz、下段はMAS回転数12kHzをそれぞれ表す。図6は架橋に伴い強度が増加する-82ppmでのシグナル強度を主シグナルである-122ppmでのシグナル強度で規格化し、グラフにしたものである。図6において上段は測定値、下段はグラフを表す。このシグナル強度比が高いほど架橋度が進行しているものと考えられる。 (4) Results The results are shown in FIGS. 3 shows NMR of Experimental Example A1, FIG. 4 shows NMR of Experimental Example A2, and FIG. 5 shows an enlarged view of the NMR chart of Experimental Example A3. 3 to 5, the upper row represents the MASrotational speed 15 kHz, and the lower row represents the MAS rotational speed 12 kHz. FIG. 6 is a graph obtained by normalizing the signal intensity at −82 ppm, the intensity of which increases with crosslinking, with the signal intensity at −122 ppm as the main signal. In FIG. 6, the upper part represents the measured value, and the lower part represents the graph. It is considered that the higher the signal intensity ratio is, the more the degree of crosslinking proceeds.
結果を図3~図6に示す。図3は実験例A1のNMR、図4は実験例A2のNMR、図5は実験例A3のNMRチャートの拡大図をそれぞれ表す。図3~図5において上段はMAS回転数15kHz、下段はMAS回転数12kHzをそれぞれ表す。図6は架橋に伴い強度が増加する-82ppmでのシグナル強度を主シグナルである-122ppmでのシグナル強度で規格化し、グラフにしたものである。図6において上段は測定値、下段はグラフを表す。このシグナル強度比が高いほど架橋度が進行しているものと考えられる。 (4) Results The results are shown in FIGS. 3 shows NMR of Experimental Example A1, FIG. 4 shows NMR of Experimental Example A2, and FIG. 5 shows an enlarged view of the NMR chart of Experimental Example A3. 3 to 5, the upper row represents the MAS
放射線照射を行なっていないPTFE樹脂層(実験例A1、0kGy)を上記の条件で測定すると、MAS回転数15kHzにおいて、化学シフト値(δppm)である、-82ppm、-122ppm、-162ppmのシグナルが観測された(図3上段)。また、MAS回転数12kHzにおいて、同じく、-58ppm、-82ppm、-90ppm、-122ppm、-154ppm、-186ppmのシグナルが観測された(図3下段)。-122ppmは-CF2-CF2-結合におけるF原子のシグナルであり、-82ppmは-CF2-CF3結合における-CF3のF原子のシグナルであることが知られている。このことから、MAS回転数15kHzにおける-82ppmおよび-162ppm、MAS回転数12kHzにおける-58ppm、-90ppm、-154ppm、-186ppmのシグナルはスピニングサイドバンド(Spinning Side Band:SSB)である。なお、-122ppm~-130ppmの領域で-122ppmのシグナルに隠れてブロードになっているシグナルが観測されている。このシグナルは-126ppmに観測されるはずの-CF2-CF3結合における-CF2-のF原子のシグナルである。従って、放射線照射を行なっていない未架橋のPTFE樹脂層は-CF2-CF2-結合に帰属する-122ppm、-CF2-CF3に帰属する-82ppmおよび-126ppmのシグナルを有するNMRチャートで表される。
When a PTFE resin layer not subjected to radiation irradiation (Experimental Example A1, 0 kGy) was measured under the above conditions, signals of -82 ppm, -122 ppm, and -162 ppm, which are chemical shift values (δ ppm), were obtained at a MAS rotational speed of 15 kHz. Observed (the upper part of FIG. 3). Similarly, signals of −58 ppm, −82 ppm, −90 ppm, −122 ppm, −154 ppm, and −186 ppm were observed at the MAS rotational speed of 12 kHz (lower part of FIG. 3). It is known that −122 ppm is the signal of the F atom in the —CF 2 —CF 2 — bond, and −82 ppm is the signal of the F atom of —CF 3 in the —CF 2 —CF 3 bond. Therefore, the signals of −82 ppm and −162 ppm at a MAS rotational speed of 15 kHz, and −58 ppm, −90 ppm, −154 ppm and −186 ppm at a MAS rotational speed of 12 kHz are spinning side bands (SSB). A broad signal is observed in the range of −122 ppm to −130 ppm hidden by the −122 ppm signal. This signal is the signal of the F atom of —CF 2 — in the —CF 2 —CF 3 bond that should be observed at −126 ppm. Therefore, the uncrosslinked PTFE resin layer not irradiated with radiation is an NMR chart having signals of −122 ppm attributed to —CF 2 —CF 2 — bonds, −82 ppm and −126 ppm attributed to —CF 2 —CF 3. expressed.
500kGyの線量の放射線を照射したPTFE樹脂層(実験例A2、500kGy)の固体19F MAS NMRを未架橋のPTFE樹脂層と同じ条件で測定すると、スピニングサイドバンドを除いて、-68ppm、-70ppm、-80ppm、-82ppm、-109ppm、-112ppm、-122ppm、-126ppm、-152ppm、および-186ppmのシグナルが観測された(図4上段および図4下段)。-68ppm、-70ppm、-80ppm、-109ppm、-112ppm、-152ppm、および-186ppmのシグナルが放射線照射により新たに出現し、-82ppmのシグナルはその強度が未照射より増加していた。
A solid 19 F MAS NMR of a PTFE resin layer (Experimental Example A2, 500 kGy) irradiated with a radiation dose of 500 kGy was measured under the same conditions as those for the uncrosslinked PTFE resin layer, and −68 ppm and −70 ppm except for the spinning sideband. , −80 ppm, −82 ppm, −109 ppm, −112 ppm, −122 ppm, −126 ppm, −152 ppm, and −186 ppm were observed (FIG. 4 top and FIG. 4 bottom). Signals of −68 ppm, −70 ppm, −80 ppm, −109 ppm, −112 ppm, −152 ppm, and −186 ppm newly appeared upon irradiation, and the intensity of the −82 ppm signal increased from that of unirradiated.
1000kGyの線量の放射線を照射したフッ素樹脂層(実験例A3、1000kGy)の固体19F MAS NMRを未架橋のPTFE樹脂層と同じ条件で測定すると、スピニングサイドバンドを除いて、-68ppm、-70ppm、-77ppm、-80ppm、-82ppm、-109ppm、-112ppm、-122ppm、-126ppm、-152ppm、および-186ppmのシグナルが観測された(図5上段および図5下段)。-68ppm、-70ppm、-77ppm、-80ppm、-109ppm、-112ppm、-152ppm、および-186ppmのシグナルが放射線照射により新たに出現し、-82ppmのシグナルはそのシグナル強度が500kGy照射時より増加していた。
When a solid 19 F MAS NMR of a fluororesin layer (Experimental Example A3, 1000 kGy) irradiated with a radiation dose of 1000 kGy was measured under the same conditions as those of an uncrosslinked PTFE resin layer, −68 ppm and −70 ppm except for the spinning sideband. , -77 ppm, -80 ppm, -82 ppm, -109 ppm, -112 ppm, -122 ppm, -126 ppm, -152 ppm, and -186 ppm were observed (the upper part of FIG. 5 and the lower part of FIG. 5). -68ppm, -70ppm, -77ppm, -80ppm, -109ppm, -112ppm, -152ppm, and -186ppm new signals appear by irradiation, and the signal intensity of -82ppm is higher than that at 500kGy irradiation. It was.
上記シグナルは、帰属するF原子を下線で表せば、例えば-70ppmは=CF-CF
3、-109ppmは-CF
2-CF(CF3)-CF
2-、-152ppmは=CF-CF=、-186ppmは≡CFに帰属されることが知られている(Beate Fuchs and Ulrich Scheler., Branching and Cross-Linking in Radiation-Modified Poly(tetrafluoroethylene):A Solid-State NMR Investigation.Macromolecules,33,120-124.2000年)。
In the above signal, if the assigned F atom is underlined, for example, -70 ppm is = CF-C F 3 , -109 ppm is -C F 2 -CF (CF 3 ) -C F 2- , -152 ppm is = C F -C F =, -186 ppm is known to be assigned to ≡C F (Beate Fuchs and Ulrich Scheler., Branching and Cross-Linking in Radiation-Modified Poly (tetrafluorethylene) Int. Macromolecules, 33, 120-124.2000).
これらのシグナルは化学的に非等価なフッ素原子の存在を示すと同時にPTFE樹脂層が架橋による三次元構造を形成していることを示す。また、上記文献によれば、観測されるシグナルのシグナル強度は照射線量500kGyよりも照射線量1000kGyの方が強くなり、少なくとも照射線量3000kGyまでは、照射線量の増加に伴ってシグナルのシグナル強度が高くなることが知られている。なお、上記文献に記載されていないシグナルについては、放射線の照射条件の違いによりフッ素樹脂層の構造が異なっていることが考えられるが、架橋構造が形成されていることは、=CF-CF
3、-CF
2-CF(CF3)-CF
2-、=CF-CF=、≡CF等の構造が存在することから明白である。
These signals indicate the presence of chemically non-equivalent fluorine atoms and at the same time indicate that the PTFE resin layer forms a three-dimensional structure due to crosslinking. Further, according to the above document, the signal intensity of the observed signal is stronger at the irradiation dose of 1000 kGy than the irradiation dose of 500 kGy, and the signal intensity of the signal increases as the irradiation dose increases at least up to the irradiation dose of 3000 kGy. It is known to be. For signals that are not described in the above document, the structure of the fluororesin layer is considered to be different depending on the irradiation conditions of the radiation. However, the formation of a crosslinked structure means that = CF—C F 3 and -C F 2 -CF (CF 3 ) -C F 2- , = C F -C F =, ≡C F and so on are clearly present.
図6に示すように、規格化シグナル強度比は、照射線量が増加するに従って増加している。照射線量が500kGyで明らかに架橋構造が出現し、照射線量が1000kGyに2倍になると、規格化シグナル強度比は約3倍になっており、架橋がより進行していることが分かった。
As shown in FIG. 6, the normalized signal intensity ratio increases as the irradiation dose increases. When the irradiation dose was 500 kGy, a clearly crosslinked structure appeared, and when the irradiation dose was doubled to 1000 kGy, the normalized signal intensity ratio was about three times, indicating that the crosslinking was more advanced.
以上のことから、PTFE樹脂傾斜材は、未架橋PTFE樹脂に比較して、固体19F Magic angle Spinning(MAS)核磁気共鳴(NMR)チャートに出現する化学シフト値(δppm)が上記未架橋PTFE樹脂の-82ppm、-122ppm、-126ppmに加えて、-68ppm、-70ppm、-77ppm、-80ppm、-109ppm、-112ppm、-152ppm、および-186ppmから選ばれる少なくとも1つの化学シフト値が出現するか、または-82ppmに出現する化学シフト値のシグナル強度が、上記未架橋PTFE樹脂のシグナル強度に比較して、増加している三次元構造を表面層に有しているといえる。
From the above, the PTFE resin gradient material has a chemical shift value (δ ppm) appearing in a solid 19 F Magic angle Spinning (MAS) nuclear magnetic resonance (NMR) chart as compared with the uncrosslinked PTFE resin. In addition to −82 ppm, −122 ppm, and −126 ppm of the resin, at least one chemical shift value selected from −68 ppm, −70 ppm, −77 ppm, −80 ppm, −109 ppm, −112 ppm, −152 ppm, and −186 ppm appears. Alternatively, it can be said that the surface layer has a three-dimensional structure in which the signal intensity of the chemical shift value appearing at −82 ppm is increased as compared with the signal intensity of the uncrosslinked PTFE resin.
上記実験例A1に用いたフッ素樹脂層を形成する水系塗布液を90℃の恒温槽内で30分程度の乾燥条件により塗布後乾燥後、空気中で380℃の加熱炉内で30分間焼成して、厚さ4μmの未架橋フッ素樹脂被膜を作製した。このフィルムを5枚密接して積層し、一方の面から、上記A2の実験条件にて電子線照射を行なった。照射後、照射面と反対側のフッ素樹脂被膜を分離して、日本電子株式会社製NMR装置JNM-ECX400を用いて、上記実験例に従いNMR測定を行なった。測定結果、架橋に伴うシグナルが痕跡状態であった。このことから、電子線は照射面と反対側の面には到達しておらず、照射面から内部に向かって減衰していることが分かった。以上より、摺動層の表面から基材側に向かって三次元構造から二次元構造へ変化する傾斜材料が得られることが分かる。
After applying the aqueous coating liquid for forming the fluororesin layer used in Experimental Example A1 in a 90 ° C. constant temperature bath under drying conditions of about 30 minutes, drying, followed by baking in air at 380 ° C. for 30 minutes. Thus, an uncrosslinked fluororesin film having a thickness of 4 μm was produced. Five films were laminated in close contact, and electron beam irradiation was performed from one side under the experimental conditions of A2. After irradiation, the fluororesin film on the side opposite to the irradiated surface was separated, and NMR measurement was performed according to the above experimental example using an NMR device JNM-ECX400 manufactured by JEOL Ltd. As a result of the measurement, the signal accompanying crosslinking was in a trace state. From this, it was found that the electron beam did not reach the surface opposite to the irradiated surface but was attenuated from the irradiated surface toward the inside. From the above, it is understood that a gradient material that changes from a three-dimensional structure to a two-dimensional structure from the surface of the sliding layer toward the base material side can be obtained.
[実験B]
(1)試験片の作成
試験片:SPCC製30mm×30mm、厚さ2mmの金属平板にPTFE樹脂層をダイキン社製トップ塗料(型番:EK-3700C21R)を用いて形成した。乾燥時間は90℃の恒温槽内で30分間乾燥し、380℃の加熱炉内で30分間焼成した。
その後、以下の条件で試験片にPTFE樹脂層表面側から電子線照射を行なった。
使用装置:株式会社NHVコーポレーション社製EPS-3000
加速電圧:1.16MV
照射線量:実験例B1が0kGy(未照射)、実験例B2が85kGy、実験例B3が250kGy、実験例B4が500kGy、実験例B5が750kGy、実験例B6が1000kGy
線量率:実験例B2が3.9kGy/s、実験例B3、実験例B4、実験例B5および実験例B6が6.1kGy/s
コンベア速度:実験例B2が3m/分、実験例B3および実験例B5が2m/分、実験例B4および実験例B6が1m/分
照射時の被膜温度:310℃
照射時のチャンバー内雰囲気:加熱窒素
電子流:実験例B2が8.1mA、実験例B3、実験例B4、実験例B5および実験例B6が12.7mA
照射幅(コンベア移動方向):27.5cm [Experiment B]
(1) Preparation of test piece Test piece: A PTFE resin layer was formed on a metal plate having a thickness of 30 mm × 30 mm and a thickness of 2 mm made by SPCC using a top coating made by Daikin (model number: EK-3700C21R). The drying time was 30 minutes in a constant temperature bath at 90 ° C., followed by baking in a heating furnace at 380 ° C. for 30 minutes.
Thereafter, the specimen was irradiated with an electron beam from the surface of the PTFE resin layer under the following conditions.
Equipment used: EPS-3000 manufactured by NHV Corporation
Acceleration voltage: 1.16MV
Irradiation dose: Experimental example B1 is 0 kGy (unirradiated), Experimental example B2 is 85 kGy, Experimental example B3 is 250 kGy, Experimental example B4 is 500 kGy, Experimental example B5 is 750 kGy, Experimental example B6 is 1000 kGy
Dose rate: Experimental example B2 is 3.9 kGy / s, Experimental example B3, Experimental example B4, Experimental example B5 and Experimental example B6 are 6.1 kGy / s
Conveyor speed: 3 m / min for experimental example B2, 2 m / min for experimental example B3 and experimental example B5, 1 m / min for experimental example B4 and experimental example B6 Coating temperature at irradiation: 310 ° C.
Atmosphere in chamber at the time of irradiation: heated nitrogen Electron flow: 8.1 mA for Experimental Example B2, 12.7 mA for Experimental Example B3, Experimental Example B4, Experimental Example B5, and Experimental Example B6
Irradiation width (conveyor moving direction): 27.5cm
(1)試験片の作成
試験片:SPCC製30mm×30mm、厚さ2mmの金属平板にPTFE樹脂層をダイキン社製トップ塗料(型番:EK-3700C21R)を用いて形成した。乾燥時間は90℃の恒温槽内で30分間乾燥し、380℃の加熱炉内で30分間焼成した。
その後、以下の条件で試験片にPTFE樹脂層表面側から電子線照射を行なった。
使用装置:株式会社NHVコーポレーション社製EPS-3000
加速電圧:1.16MV
照射線量:実験例B1が0kGy(未照射)、実験例B2が85kGy、実験例B3が250kGy、実験例B4が500kGy、実験例B5が750kGy、実験例B6が1000kGy
線量率:実験例B2が3.9kGy/s、実験例B3、実験例B4、実験例B5および実験例B6が6.1kGy/s
コンベア速度:実験例B2が3m/分、実験例B3および実験例B5が2m/分、実験例B4および実験例B6が1m/分
照射時の被膜温度:310℃
照射時のチャンバー内雰囲気:加熱窒素
電子流:実験例B2が8.1mA、実験例B3、実験例B4、実験例B5および実験例B6が12.7mA
照射幅(コンベア移動方向):27.5cm [Experiment B]
(1) Preparation of test piece Test piece: A PTFE resin layer was formed on a metal plate having a thickness of 30 mm × 30 mm and a thickness of 2 mm made by SPCC using a top coating made by Daikin (model number: EK-3700C21R). The drying time was 30 minutes in a constant temperature bath at 90 ° C., followed by baking in a heating furnace at 380 ° C. for 30 minutes.
Thereafter, the specimen was irradiated with an electron beam from the surface of the PTFE resin layer under the following conditions.
Equipment used: EPS-3000 manufactured by NHV Corporation
Acceleration voltage: 1.16MV
Irradiation dose: Experimental example B1 is 0 kGy (unirradiated), Experimental example B2 is 85 kGy, Experimental example B3 is 250 kGy, Experimental example B4 is 500 kGy, Experimental example B5 is 750 kGy, Experimental example B6 is 1000 kGy
Dose rate: Experimental example B2 is 3.9 kGy / s, Experimental example B3, Experimental example B4, Experimental example B5 and Experimental example B6 are 6.1 kGy / s
Conveyor speed: 3 m / min for experimental example B2, 2 m / min for experimental example B3 and experimental example B5, 1 m / min for experimental example B4 and experimental example B6 Coating temperature at irradiation: 310 ° C.
Atmosphere in chamber at the time of irradiation: heated nitrogen Electron flow: 8.1 mA for Experimental Example B2, 12.7 mA for Experimental Example B3, Experimental Example B4, Experimental Example B5, and Experimental Example B6
Irradiation width (conveyor moving direction): 27.5cm
(2)実験例の試験片被膜
実験例B1:PTFE被膜(照射線量:0kGy、層厚さ:20μm)
実験例B2:PTFE被膜(照射線量:85kGy、層厚さ:20μm)
実験例B3:PTFE被膜(照射線量:250kGy、層厚さ:20μm)
実験例B4:PTFE被膜(照射線量:500kGy、層厚さ:20μm)
実験例B5:PTFE被膜(照射線量:750kGy、層厚さ:20μm)
実験例B6:PTFE被膜(照射線量:1000kGy、層厚さ:20μm) (2) Test piece coating experiment example B1: PTFE coating (irradiation dose: 0 kGy, layer thickness: 20 μm)
Experimental Example B2: PTFE coating (irradiation dose: 85 kGy, layer thickness: 20 μm)
Experimental Example B3: PTFE coating (irradiation dose: 250 kGy, layer thickness: 20 μm)
Experimental Example B4: PTFE coating (irradiation dose: 500 kGy, layer thickness: 20 μm)
Experimental Example B5: PTFE coating (irradiation dose: 750 kGy, layer thickness: 20 μm)
Experimental Example B6: PTFE coating (irradiation dose: 1000 kGy, layer thickness: 20 μm)
実験例B1:PTFE被膜(照射線量:0kGy、層厚さ:20μm)
実験例B2:PTFE被膜(照射線量:85kGy、層厚さ:20μm)
実験例B3:PTFE被膜(照射線量:250kGy、層厚さ:20μm)
実験例B4:PTFE被膜(照射線量:500kGy、層厚さ:20μm)
実験例B5:PTFE被膜(照射線量:750kGy、層厚さ:20μm)
実験例B6:PTFE被膜(照射線量:1000kGy、層厚さ:20μm) (2) Test piece coating experiment example B1: PTFE coating (irradiation dose: 0 kGy, layer thickness: 20 μm)
Experimental Example B2: PTFE coating (irradiation dose: 85 kGy, layer thickness: 20 μm)
Experimental Example B3: PTFE coating (irradiation dose: 250 kGy, layer thickness: 20 μm)
Experimental Example B4: PTFE coating (irradiation dose: 500 kGy, layer thickness: 20 μm)
Experimental Example B5: PTFE coating (irradiation dose: 750 kGy, layer thickness: 20 μm)
Experimental Example B6: PTFE coating (irradiation dose: 1000 kGy, layer thickness: 20 μm)
(3)NMR測定および結果
NMR測定は、実験例B1、B4、B6について、実験Aで用いた装置を用いて、実験Aと同一条件で行なった。NMR測定の結果、実験例B1は実験例A1と、実験例B4は実験例A2と、実験例B6は実験例A3と、それぞれ同一のNMRチャートが得られた。
NMR測定結果から、実験Bにおいても、架橋PTFE樹脂は、未架橋PTFE樹脂に比較して、固体19F Magic angle Spinning(MAS)核磁気共鳴(NMR)チャートに出現する化学シフト値(δppm)が上記未架橋PTFE樹脂の-82ppm、-122ppm、-126ppmに加えて、-68ppm、-70ppm、-77ppm、-80ppm、-109ppm、-112ppm、-152ppm、および-186ppmから選ばれる少なくとも1つの化学シフト値が出現するか、または-82ppmに出現する化学シフト値のシグナル強度が、上記未架橋PTFE樹脂のシグナル強度に比較して、増加している三次元構造を有しているといえる。 (3) NMR measurement and result NMR measurement was carried out under the same conditions as in Experiment A using the apparatus used in Experiment A for Experimental Examples B1, B4, and B6. As a result of NMR measurement, the same NMR chart was obtained as in Experimental Example B1, Experimental Example B1, Experimental Example B4 in Experimental Example A2, and Experimental Example B6 in Experimental Example A3.
From the NMR measurement results, also in Experiment B, the cross-linked PTFE resin has a chemical shift value (δ ppm) appearing in the solid 19 F Magic angle Spinning (MAS) nuclear magnetic resonance (NMR) chart as compared to the non-cross-linked PTFE resin. In addition to -82 ppm, -122 ppm, and -126 ppm of the uncrosslinked PTFE resin, at least one chemical shift selected from -68 ppm, -70 ppm, -77 ppm, -80 ppm, -109 ppm, -112 ppm, -152 ppm, and -186 ppm It can be said that it has a three-dimensional structure in which the value appears or the signal intensity of the chemical shift value appearing at −82 ppm is increased compared to the signal intensity of the uncrosslinked PTFE resin.
NMR測定は、実験例B1、B4、B6について、実験Aで用いた装置を用いて、実験Aと同一条件で行なった。NMR測定の結果、実験例B1は実験例A1と、実験例B4は実験例A2と、実験例B6は実験例A3と、それぞれ同一のNMRチャートが得られた。
NMR測定結果から、実験Bにおいても、架橋PTFE樹脂は、未架橋PTFE樹脂に比較して、固体19F Magic angle Spinning(MAS)核磁気共鳴(NMR)チャートに出現する化学シフト値(δppm)が上記未架橋PTFE樹脂の-82ppm、-122ppm、-126ppmに加えて、-68ppm、-70ppm、-77ppm、-80ppm、-109ppm、-112ppm、-152ppm、および-186ppmから選ばれる少なくとも1つの化学シフト値が出現するか、または-82ppmに出現する化学シフト値のシグナル強度が、上記未架橋PTFE樹脂のシグナル強度に比較して、増加している三次元構造を有しているといえる。 (3) NMR measurement and result NMR measurement was carried out under the same conditions as in Experiment A using the apparatus used in Experiment A for Experimental Examples B1, B4, and B6. As a result of NMR measurement, the same NMR chart was obtained as in Experimental Example B1, Experimental Example B1, Experimental Example B4 in Experimental Example A2, and Experimental Example B6 in Experimental Example A3.
From the NMR measurement results, also in Experiment B, the cross-linked PTFE resin has a chemical shift value (δ ppm) appearing in the solid 19 F Magic angle Spinning (MAS) nuclear magnetic resonance (NMR) chart as compared to the non-cross-linked PTFE resin. In addition to -82 ppm, -122 ppm, and -126 ppm of the uncrosslinked PTFE resin, at least one chemical shift selected from -68 ppm, -70 ppm, -77 ppm, -80 ppm, -109 ppm, -112 ppm, -152 ppm, and -186 ppm It can be said that it has a three-dimensional structure in which the value appears or the signal intensity of the chemical shift value appearing at −82 ppm is increased compared to the signal intensity of the uncrosslinked PTFE resin.
また、上記実験例B1に用いたフッ素樹脂層を形成する水系塗布液を90℃の恒温槽内で30分程度の乾燥条件により塗布後乾燥後、空気中で380℃の加熱炉内で30分間焼成して、厚さ4μmの未架橋フッ素樹脂被膜を作製した。このフィルムを5枚密接して積層し、一方の面から、上記実験例B4の条件にて電子線照射を行なった。照射後、照射面と反対側のフッ素樹脂被膜を分離して、日本電子株式会社製NMR装置JNM-ECX400を用いて、上記実験例に従いNMR測定を行なった。測定の結果、架橋に伴うシグナルが照射面と同様に認められた。このことから表面から基材面まで架橋された架橋フッ素樹脂層であることが分かった。
In addition, after applying the aqueous coating liquid for forming the fluororesin layer used in Experimental Example B1 in a 90 ° C. constant temperature bath under drying conditions of about 30 minutes, drying in the air, in a heating furnace at 380 ° C. for 30 minutes. Firing was performed to produce an uncrosslinked fluororesin film having a thickness of 4 μm. Five films were laminated in close contact, and electron beam irradiation was performed from one surface under the conditions of Experimental Example B4. After irradiation, the fluororesin film on the side opposite to the irradiated surface was separated, and NMR measurement was performed according to the above experimental example using an NMR device JNM-ECX400 manufactured by JEOL Ltd. As a result of the measurement, a signal accompanying crosslinking was observed in the same manner as on the irradiated surface. From this, it was found that the cross-linked fluororesin layer was cross-linked from the surface to the substrate surface.
上記摺動層を有する転がり軸受用保持器の構造を図7に示す。図7は針状ころを転動体とする転がり軸受用鉄系金属製保持器の斜視図である。
保持器1は、針状ころを保持するためのポケット2が設けられ、各ポケットの間に位置する柱部3と、この柱部3を固定する両側円環部4、5とで、各針状ころの間隔を保持する。柱部3は針状ころを保持するため、柱部の中央部で山折・谷折に屈曲され、両側円環部4、5との結合部において平面視円形の膨らみを有する平板の複雑な形状とされている。本保持器の製造方法は、素形材より円環を削り出し、ポケット2をプレス加工により打抜きで形成する方法、平板をプレス加工した後、適当な長さに切断し、円環状に丸めて溶接により接合する方法などを採用することができる。この保持器1の表面部位にPTFE樹脂被膜の摺動層が形成されている。摺動層を形成する保持器の表面部位は潤滑油またはグリースと接触する部位であり、針状ころと接触するポケット2の表面を含めた保持器1の全表面に摺動層を形成することが好ましい。 FIG. 7 shows the structure of a rolling bearing cage having the sliding layer. FIG. 7 is a perspective view of a ferrous metal cage for a rolling bearing using needle rollers as rolling elements.
Thecage 1 is provided with pockets 2 for holding needle rollers, and each needle is composed of a column portion 3 positioned between the pockets and both side annular portions 4 and 5 for fixing the column portion 3. Maintain the distance between the rollers. In order to hold the needle roller, the column portion 3 is bent into a mountain fold or a valley fold at the center portion of the column portion, and has a complicated shape of a flat plate having a circular bulge in a plan view at the joint portion with both annular portions 4 and 5. It is said that. The manufacturing method of this cage is a method in which an annulus is cut out from a base material and a pocket 2 is formed by stamping by pressing, a flat plate is pressed, cut into an appropriate length, and then rolled into an annular shape. A method of joining by welding can be employed. A sliding layer of PTFE resin film is formed on the surface portion of the cage 1. The surface portion of the cage that forms the sliding layer is a portion that contacts the lubricating oil or grease, and the sliding layer is formed on the entire surface of the cage 1 including the surface of the pocket 2 that contacts the needle roller. Is preferred.
保持器1は、針状ころを保持するためのポケット2が設けられ、各ポケットの間に位置する柱部3と、この柱部3を固定する両側円環部4、5とで、各針状ころの間隔を保持する。柱部3は針状ころを保持するため、柱部の中央部で山折・谷折に屈曲され、両側円環部4、5との結合部において平面視円形の膨らみを有する平板の複雑な形状とされている。本保持器の製造方法は、素形材より円環を削り出し、ポケット2をプレス加工により打抜きで形成する方法、平板をプレス加工した後、適当な長さに切断し、円環状に丸めて溶接により接合する方法などを採用することができる。この保持器1の表面部位にPTFE樹脂被膜の摺動層が形成されている。摺動層を形成する保持器の表面部位は潤滑油またはグリースと接触する部位であり、針状ころと接触するポケット2の表面を含めた保持器1の全表面に摺動層を形成することが好ましい。 FIG. 7 shows the structure of a rolling bearing cage having the sliding layer. FIG. 7 is a perspective view of a ferrous metal cage for a rolling bearing using needle rollers as rolling elements.
The
図8は転がり軸受の一実施例である針状ころ軸受を示す斜視図である。図8に示すように、針状ころ軸受6は複数の針状ころ7と、この針状ころ7を一定間隔、もしくは不等間隔で保持する保持器1とで構成される。エンジンのコンロッド部用軸受の場合、軸受内輪および軸受外輪は設けられず、直接に、保持器1の内径側にクランク軸やピストンピン等の軸が挿入され、保持器1の外径側がハウジングであるコンロッドの係合穴に嵌め込まれて使用される。内外輪を有さず、長さに比べて直径が小さい針状ころ7を転動体として用いるので、この針状ころ軸受6は、内外輪を有する一般の転がり軸受に比べて、コンパクトなものとなる。
FIG. 8 is a perspective view showing a needle roller bearing which is an embodiment of a rolling bearing. As shown in FIG. 8, the needle roller bearing 6 includes a plurality of needle rollers 7 and a cage 1 that holds the needle rollers 7 at regular intervals or at unequal intervals. In the case of an engine connecting rod part bearing, no bearing inner ring and bearing outer ring are provided, and a shaft such as a crankshaft or a piston pin is directly inserted into the inner diameter side of the cage 1, and the outer diameter side of the cage 1 is a housing. It is used by being fitted into the engagement hole of a certain connecting rod. Since the needle roller 7 having no inner and outer rings and having a smaller diameter than the length is used as a rolling element, the needle roller bearing 6 is more compact than a general rolling bearing having inner and outer rings. Become.
上記針状ころ軸受を使用した4サイクルエンジンの縦断面図を図9に示す。図9は本発明の転がり軸受の一例として針状ころ軸受を使用した4サイクルエンジンの縦断面図である。4サイクルエンジンは、吸気バルブ8aを開き、排気バルブ9aを閉じてガソリンと空気を混合した混合気を吸気管8を介して燃焼室10に吸入する吸入行程と、吸気バルブ8aを閉じてピストン11を押し上げて混合気を圧縮する圧縮行程と、圧縮された混合気を爆発させる爆発行程と、爆発した燃焼ガスを排気バルブ9aを開き排気管9を介して排気する排気行程とを有する。そして、これらの行程で燃焼により直線往復運動を行なうピストン11と、回転運動を出力するクランク軸12と、ピストン11とクランク軸12とを連結し、直線往復運動を回転運動に変換するコンロッド13とを有する。クランク軸12は、回転中心軸14を中心に回転し、バランスウェイト15によって回転のバランスをとっている。
Fig. 9 shows a longitudinal sectional view of a four-cycle engine using the needle roller bearing. FIG. 9 is a longitudinal sectional view of a four-cycle engine using a needle roller bearing as an example of the rolling bearing of the present invention. In the four-cycle engine, the intake valve 8a is opened, the exhaust valve 9a is closed, and an air-fuel mixture obtained by mixing gasoline and air is sucked into the combustion chamber 10 through the intake pipe 8, and the intake valve 8a is closed and the piston 11 is closed. And a compression stroke in which the air-fuel mixture is compressed, an explosion stroke in which the compressed air-fuel mixture is exploded, and an exhaust stroke in which the exploded combustion gas is exhausted through the exhaust pipe 9 by opening the exhaust valve 9a. The piston 11 that performs linear reciprocating motion by combustion in these strokes, the crankshaft 12 that outputs rotational motion, the connecting rod 13 that connects the piston 11 and the crankshaft 12, and converts linear reciprocating motion into rotational motion, Have The crankshaft 12 rotates about the rotation center shaft 14 and balances rotation by a balance weight 15.
コンロッド13は、直線状棒体の下方に大端部16を、上方に小端部17を設けたものからなる。クランク軸12は、コンロッド13の大端部16の係合穴に取り付けられた針状ころ軸受6aを介して回転自在に支持されている。また、ピストン11とコンロッド13を連結するピストンピン18は、コンロッド13の小端部17の係合穴に取り付けられた針状ころ軸受6bを介して回転自在に支持されている。
摺動性に優れた針状ころ軸受を使用することにより、小型化あるいは高出力化された2サイクルエンジンや4サイクルエンジンであっても耐久性に優れる。 The connectingrod 13 is formed by providing a large end 16 below the linear rod and a small end 17 above. The crankshaft 12 is rotatably supported via a needle roller bearing 6 a attached to the engagement hole of the large end portion 16 of the connecting rod 13. The piston pin 18 that connects the piston 11 and the connecting rod 13 is rotatably supported via a needle roller bearing 6b attached to the engagement hole of the small end portion 17 of the connecting rod 13.
By using a needle roller bearing with excellent slidability, even a two-cycle engine or a four-cycle engine reduced in size or increased in output has excellent durability.
摺動性に優れた針状ころ軸受を使用することにより、小型化あるいは高出力化された2サイクルエンジンや4サイクルエンジンであっても耐久性に優れる。 The connecting
By using a needle roller bearing with excellent slidability, even a two-cycle engine or a four-cycle engine reduced in size or increased in output has excellent durability.
図8では軸受として針状ころ軸受について例示したが、本発明の転がり軸受は、上記以外の円筒ころ軸受、円すいころ軸受、自動調心ころ軸受、針状ころ軸受、スラスト円筒ころ軸受、スラスト円すいころ軸受、スラスト針状ころ軸受、スラスト自動調心ころ軸受、フォイル軸受等としても使用できる。特に、油潤滑環境下で使用され、鉄系金属材製保持器を使用する転がり軸受に好適に使用できる。
Although FIG. 8 illustrates a needle roller bearing as the bearing, the rolling bearing of the present invention is a cylindrical roller bearing, a tapered roller bearing, a self-aligning roller bearing, a needle roller bearing, a thrust cylindrical roller bearing, or a thrust cone other than those described above. It can also be used as a roller bearing, a thrust needle roller bearing, a thrust spherical roller bearing, a foil bearing and the like. In particular, it can be suitably used for a rolling bearing that is used in an oil-lubricated environment and uses a ferrous metal material cage.
実施例1および比較例1
焼入焼戻し処理したクロムモリブデン鋼(SCM415)製φ44mm×幅22mmのニードル軸受保持器(基材表面硬度 Hv:484~595)を準備して、上記実験例A1で用いたPTFE樹脂層形成に用いた塗布液と同一の塗布液を用いて、被覆層の層厚さを表1記載の厚さとする以外は、実験例A1と同一の条件でPTFE表面摺動層を塗布・乾燥・焼成した。実験例A2で用いた電子線照射装置を用いて、表1に示す照射線量で電子線照射して、被覆層の表面から基材側の面に向かって三次元構造から二次元構造のPTFE傾斜材料とした。なお、表1の摺動層の材質欄において、「二次元→三次元PTFE」は、基材側の面から表面へのPTFE構造を表す。比較例1は実験例A1と同様未照射とした。 Example 1 and Comparative Example 1
A needle bearing cage (base surface hardness Hv: 484 to 595) made of chromium molybdenum steel (SCM415) φ44 mm ×width 22 mm, which has been quenched and tempered, was prepared and used for the formation of the PTFE resin layer used in Experimental Example A1. The PTFE surface sliding layer was coated, dried, and fired under the same conditions as in Experimental Example A1, except that the coating liquid was the same as the coating liquid and the thickness of the coating layer was changed to the thickness shown in Table 1. Using the electron beam irradiation apparatus used in Experimental Example A2, the electron beam irradiation is performed with the irradiation dose shown in Table 1, and the PTFE inclination of the three-dimensional structure to the two-dimensional structure is directed from the surface of the coating layer to the surface on the substrate side. Material was used. In the material column of the sliding layer in Table 1, “two-dimensional → three-dimensional PTFE” represents a PTFE structure from the surface on the substrate side to the surface. Comparative Example 1 was not irradiated as in Experimental Example A1.
焼入焼戻し処理したクロムモリブデン鋼(SCM415)製φ44mm×幅22mmのニードル軸受保持器(基材表面硬度 Hv:484~595)を準備して、上記実験例A1で用いたPTFE樹脂層形成に用いた塗布液と同一の塗布液を用いて、被覆層の層厚さを表1記載の厚さとする以外は、実験例A1と同一の条件でPTFE表面摺動層を塗布・乾燥・焼成した。実験例A2で用いた電子線照射装置を用いて、表1に示す照射線量で電子線照射して、被覆層の表面から基材側の面に向かって三次元構造から二次元構造のPTFE傾斜材料とした。なお、表1の摺動層の材質欄において、「二次元→三次元PTFE」は、基材側の面から表面へのPTFE構造を表す。比較例1は実験例A1と同様未照射とした。 Example 1 and Comparative Example 1
A needle bearing cage (base surface hardness Hv: 484 to 595) made of chromium molybdenum steel (SCM415) φ44 mm ×
表面処理された上記ニードル軸受保持器を以下の方法で評価した。摩耗量試験装置の概要を図10に示す。
SUJ2製、焼入れ焼戻し処理HRC62、凹部表面粗さ0.1~0.2μmRaの凹状相手材19を垂直方向から回転軸に取り付けた保持器1に所定の荷重20で押し付けた状態で、回転軸とともに保持器1を回転させることにより保持器1表面に施した被膜の摩擦特性を評価し摩耗量を測定した。測定条件は、荷重:440N、潤滑油:鉱油(10W-30)、滑り速度:930.6m/分、測定時間:100時間である。また、その時の剥離量を目視で観察することでPTFE被膜の密着性についても評価した。剥離量が「大」とは最大剥離箇所の剥離面積が1mm2以上の場合であり、「小」とは最大剥離箇所の剥離面積が1mm2未満の場合である。なお凹R部半径は、保持器半径よりも20~55μm大きい寸法で設定した。潤滑油は保持器の半分の高さまで浸漬する量を使用した。結果を表1に示す。 The surface treated needle bearing cage was evaluated by the following method. An outline of the wear amount test apparatus is shown in FIG.
In a state where aconcave mating member 19 made of SUJ2 and quenched and tempered HRC62 and having a concave surface roughness of 0.1 to 0.2 μmRa is pressed from the vertical direction to the cage 1 attached to the rotary shaft with a predetermined load 20, together with the rotary shaft The friction characteristics of the coating applied to the surface of the cage 1 were evaluated by rotating the cage 1, and the amount of wear was measured. The measurement conditions are load: 440 N, lubricating oil: mineral oil (10W-30), sliding speed: 930.6 m / min, measurement time: 100 hours. Moreover, the adhesiveness of the PTFE coating was also evaluated by visually observing the amount of peeling at that time. The peeling amount is “large” when the peeling area at the maximum peeling location is 1 mm 2 or more, and the “small” is when the peeling area at the maximum peeling location is less than 1 mm 2 . The radius of the concave R portion was set to a size 20 to 55 μm larger than the cage radius. Lubricating oil was used in an amount soaking up to half the height of the cage. The results are shown in Table 1.
SUJ2製、焼入れ焼戻し処理HRC62、凹部表面粗さ0.1~0.2μmRaの凹状相手材19を垂直方向から回転軸に取り付けた保持器1に所定の荷重20で押し付けた状態で、回転軸とともに保持器1を回転させることにより保持器1表面に施した被膜の摩擦特性を評価し摩耗量を測定した。測定条件は、荷重:440N、潤滑油:鉱油(10W-30)、滑り速度:930.6m/分、測定時間:100時間である。また、その時の剥離量を目視で観察することでPTFE被膜の密着性についても評価した。剥離量が「大」とは最大剥離箇所の剥離面積が1mm2以上の場合であり、「小」とは最大剥離箇所の剥離面積が1mm2未満の場合である。なお凹R部半径は、保持器半径よりも20~55μm大きい寸法で設定した。潤滑油は保持器の半分の高さまで浸漬する量を使用した。結果を表1に示す。 The surface treated needle bearing cage was evaluated by the following method. An outline of the wear amount test apparatus is shown in FIG.
In a state where a
本発明の転がり軸受用保持器は、潤滑油中、高滑り速度、高面圧の条件下においても摩耗を抑制できるので、特に、鉄系金属材製保持器を用いた潤滑油中で使用される保持器およびこの保持器を用いた転がり軸受の分野で使用できる。
The cage for rolling bearings of the present invention can suppress wear even under conditions of high sliding speed and high surface pressure in lubricating oil, and is particularly used in lubricating oil using a ferrous metal material cage. And can be used in the field of rolling bearings using this cage.
1 保持器
2 ポケット
3 柱部
4 円環部
5 円環部
6 針状ころ軸受
7 針状ころ
8 吸気管
9 排気管
10 燃焼室
11 ピストン
12 クランク軸
13 コンロッド
14 回転中心軸
15 バランスウェイト
16 大端部
17 小端部
18 ピストンピン
19 凹状相手材
20 荷重
21 摺動層
22 金属基材
23 金属基材と接していない表面
24 金属基材と接している面 DESCRIPTION OFSYMBOLS 1 Cage 2 Pocket 3 Column part 4 Ring part 5 Ring part 6 Needle roller bearing 7 Needle roller 8 Intake pipe 9 Exhaust pipe 10 Combustion chamber 11 Piston 12 Crankshaft 13 Connecting rod 14 Rotation center axis 15 Balance weight 16 Large End 17 Small end 18 Piston pin 19 Concave mating material 20 Load 21 Sliding layer 22 Metal base 23 Surface not in contact with metal base 24 Surface in contact with metal base
2 ポケット
3 柱部
4 円環部
5 円環部
6 針状ころ軸受
7 針状ころ
8 吸気管
9 排気管
10 燃焼室
11 ピストン
12 クランク軸
13 コンロッド
14 回転中心軸
15 バランスウェイト
16 大端部
17 小端部
18 ピストンピン
19 凹状相手材
20 荷重
21 摺動層
22 金属基材
23 金属基材と接していない表面
24 金属基材と接している面 DESCRIPTION OF
Claims (8)
- 油潤滑環境下で使用される転がり軸受の転動体を保持する転がり軸受用保持器であって、
前記転がり軸受用保持器は、基材と、この基材表面に形成されている摺動層とを有し、
前記摺動層はフッ素樹脂層であり、このフッ素樹脂層の前記基材と接していない摺動層表面ならびにその近傍層に存在するフッ素樹脂が少なくとも三次元構造を有することを特徴とする転がり軸受用保持器。 A rolling bearing retainer for holding rolling elements of a rolling bearing used in an oil lubricated environment,
The rolling bearing retainer has a base material and a sliding layer formed on the surface of the base material,
A rolling bearing, wherein the sliding layer is a fluororesin layer, and the fluororesin present on the surface of the sliding layer that is not in contact with the base material of the fluororesin layer and in the vicinity thereof has at least a three-dimensional structure. Retainer. - 前記フッ素樹脂の前記基材と接している面ならびにその近傍層に存在するフッ素樹脂が二次元構造を有していることを特徴とする請求項1記載の転がり軸受用保持器。 The rolling bearing retainer according to claim 1, wherein the surface of the fluororesin that is in contact with the base material and the fluororesin present in the vicinity thereof have a two-dimensional structure.
- 前記摺動層表面より前記基材と接している面に向かって、前記フッ素樹脂の三次元構造の含率が連続的に少なくなっていることを特徴とする請求項2記載の転がり軸受用保持器。 The rolling bearing holding according to claim 2, wherein the content of the three-dimensional structure of the fluororesin continuously decreases from the surface of the sliding layer toward the surface in contact with the base material. vessel.
- 前記摺動層表面より前記基材と接している面に向かって、前記フッ素樹脂の三次元構造が連続していることを特徴とする請求項1記載の転がり軸受用保持器。 The rolling bearing cage according to claim 1, wherein the three-dimensional structure of the fluororesin is continuous from the surface of the sliding layer toward the surface in contact with the base material.
- 前記フッ素樹脂がポリテトラフルオロエチレン樹脂であることを特徴とする請求項1記載の転がり軸受用保持器。 The rolling bearing retainer according to claim 1, wherein the fluororesin is a polytetrafluoroethylene resin.
- 前記摺動層の層厚さが5μm以上40μm未満であることを特徴とする請求項1記載の転がり軸受用保持器。 The rolling bearing cage according to claim 1, wherein the sliding layer has a thickness of 5 μm or more and less than 40 μm.
- 前記基材が鉄系金属材であることを特徴とする請求項1記載の転がり軸受用保持器。 The rolling bearing retainer according to claim 1, wherein the base material is a ferrous metal material.
- 請求項7記載の転がり軸受用保持器を使用した転がり軸受。 A rolling bearing using the rolling bearing cage according to claim 7.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-153734 | 2015-08-03 | ||
JP2015-153733 | 2015-08-03 | ||
JP2015153733A JP2017032092A (en) | 2015-08-03 | 2015-08-03 | Holder for rolling bearing, and rolling bearing |
JP2015153734A JP2017032093A (en) | 2015-08-03 | 2015-08-03 | Holder for rolling bearing, and rolling bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017022794A1 true WO2017022794A1 (en) | 2017-02-09 |
Family
ID=57943048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/072798 WO2017022794A1 (en) | 2015-08-03 | 2016-08-03 | Holder for rolling bearing and rolling bearing |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017022794A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112020616A (en) * | 2018-04-27 | 2020-12-01 | Thk株式会社 | Separation body, machine element, motion guide device, and industrial machine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH109257A (en) * | 1996-04-25 | 1998-01-13 | Koyo Seiko Co Ltd | Tapered roller bearing and its pre-loading method |
JP2008286375A (en) * | 2007-05-21 | 2008-11-27 | Ntn Corp | Composition for sliding member and rolling bearing |
JP5454903B2 (en) * | 2010-02-19 | 2014-03-26 | 株式会社レイテック | Gradient material product and manufacturing method thereof |
-
2016
- 2016-08-03 WO PCT/JP2016/072798 patent/WO2017022794A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH109257A (en) * | 1996-04-25 | 1998-01-13 | Koyo Seiko Co Ltd | Tapered roller bearing and its pre-loading method |
JP2008286375A (en) * | 2007-05-21 | 2008-11-27 | Ntn Corp | Composition for sliding member and rolling bearing |
JP5454903B2 (en) * | 2010-02-19 | 2014-03-26 | 株式会社レイテック | Gradient material product and manufacturing method thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112020616A (en) * | 2018-04-27 | 2020-12-01 | Thk株式会社 | Separation body, machine element, motion guide device, and industrial machine |
US11028261B2 (en) | 2018-04-27 | 2021-06-08 | Kureha Gohsen Co., Ltd. | Separator, mechanical element, operation guide device and manufacturing apparatus |
DE112019001684B4 (en) | 2018-04-27 | 2023-11-09 | Thk Co., Ltd. | Spacer, mechanical element, operation management device and manufacturing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6769775B2 (en) | Sliding members, rolling bearings and cages | |
WO2015115655A1 (en) | Sliding member, rolling axle bearing, and holder | |
JP6591820B2 (en) | Foil bearing | |
JP2009150518A (en) | Sliding member for thrust bearing | |
JP6457285B2 (en) | Roller bearing cage and rolling bearing | |
WO2017022794A1 (en) | Holder for rolling bearing and rolling bearing | |
JP6517523B2 (en) | Sliding member, rolling bearing and cage | |
JP2018059629A (en) | Holder for rolling bearing and rolling bearing | |
JP2017032142A (en) | Slide member, rolling bearing and holder | |
US7258926B2 (en) | Solid lubricant and sliding members | |
JP6577193B2 (en) | Roller bearing cage and rolling bearing | |
WO2018062407A1 (en) | Rolling bearing retainer and rolling bearing | |
JP2017032092A (en) | Holder for rolling bearing, and rolling bearing | |
WO2017022801A1 (en) | Sliding member, roller bearing and retainer | |
JP2017032143A (en) | Slide member, rolling bearing and holder | |
JP2016186355A (en) | Rolling bearing cage and rolling bearing | |
JP2017032093A (en) | Holder for rolling bearing, and rolling bearing | |
JP2020051439A (en) | Slide member, rolling bearing and holder | |
JP2020051444A (en) | Driving wheel bearing device | |
JP2018059628A (en) | Holder for rolling bearing and rolling bearing | |
JP2020051506A (en) | Holder for rolling bearing, and rolling bearing | |
JP2946272B2 (en) | Rolling bearing | |
WO2018030275A1 (en) | Method for heating roller bearing retainer | |
JP6517562B2 (en) | Main motor bearing | |
JP2007002912A (en) | Rolling bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16833073 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16833073 Country of ref document: EP Kind code of ref document: A1 |