[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017014136A1 - デバイス基板、液晶表示装置、及びデバイス基板の製造方法 - Google Patents

デバイス基板、液晶表示装置、及びデバイス基板の製造方法 Download PDF

Info

Publication number
WO2017014136A1
WO2017014136A1 PCT/JP2016/070791 JP2016070791W WO2017014136A1 WO 2017014136 A1 WO2017014136 A1 WO 2017014136A1 JP 2016070791 W JP2016070791 W JP 2016070791W WO 2017014136 A1 WO2017014136 A1 WO 2017014136A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
flexible substrate
liquid crystal
photothermal conversion
Prior art date
Application number
PCT/JP2016/070791
Other languages
English (en)
French (fr)
Inventor
藤原 正樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/743,108 priority Critical patent/US20190072808A1/en
Publication of WO2017014136A1 publication Critical patent/WO2017014136A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • H01L27/1214
    • H01L27/1218
    • H01L27/1266
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/54Arrangements for reducing warping-twist
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present invention relates to a device substrate, a liquid crystal display device, and a device substrate manufacturing method.
  • a flexible display having a display unit capable of changing its shape flexibly has been attracting attention.
  • the liquid crystal display panel has flexibility, and the liquid crystal display panel can be curved and used.
  • Such a liquid crystal display panel includes a thin glass substrate as compared with a general liquid crystal display panel whose shape does not change. In recent years, it has been commercialized as a curved TV.
  • a thin glass substrate having a thickness of 0.5 mm or less has a lower rigidity than a conventional glass substrate. Therefore, a thin film transistor (TFT) or a color filter (A thin film layer (thin film device) such as CF) cannot be formed.
  • TFT thin film transistor
  • a thin film layer (thin film device) such as CF) cannot be formed.
  • the thickness of the glass substrate is set large in advance to 0.5 mm or more so as to ensure rigidity, and a thin film such as a TFT or a color filter (CF) is formed on the glass substrate.
  • a method of reducing the thickness of the glass substrate by forming a layer and then etching the glass substrate on which these layers are bonded with a chemical solution is known.
  • a glass supporting substrate having a thickness is prepared separately from the glass substrate for forming the thin film layer, and the thin glass is formed on the supporting substrate by an adhesive or other bonding method. It has been proposed to develop technology for forming a thin film layer on a glass substrate with a substrate attached, and finally peeling the thinner glass substrate from the support substrate.
  • organic EL has a high heat and chemical resistance such as polyimide (PI) and polyamide, and uses an organic film that clearly has better flexible performance than glass, and a structure that forms a device thereon may be used.
  • PI polyimide
  • Patent Document 1 a laser beam such as an excimer laser is formed on a glass support substrate in which the organic film is formed and a thin film layer (transfer target layer) is formed thereon. A method of peeling the thin film layer from the support substrate by irradiating the substrate from the support substrate side is known.
  • the method of laminating a thin glass substrate on a thick glass support substrate via an adhesive and laminating a thin film layer such as a TFT is included in the adhesive.
  • the TFT manufacturing apparatus or the like is contaminated by the components.
  • An object of the present invention is to provide a technique capable of easily manufacturing a device substrate for a liquid crystal display device having high flexibility that does not impair visibility and has a thickness that cannot be realized by a conventional manufacturing method.
  • the device substrate according to the present invention is a visible light transmissive flexible substrate having an SiO film made of one or more spin-on-glass techniques obtained by curing a coating solution containing a silanol compound containing an alkyl group, A thin film device formed on a flexible substrate.
  • the flexible substrate may be composed of only a SiO film made of one spin-on-glass technique.
  • the flexible substrate is an SiO film made of one spin-on-glass technique and a surface on the thin film device side or a surface on the opposite side of the thin film device side among the two surfaces of the SiO film. And a single heat-resistant organic film formed thereon.
  • the flexible substrate may include an SiO film made of two spin-on-glass techniques and one heat-resistant organic film interposed therebetween.
  • the flexible substrate has a SiO film made of one spin-on-glass technique and two heat-resistant organic films formed one on each of two surfaces of the SiO film. May be.
  • the heat-resistant organic film may be made of polyimide or polyamide.
  • the liquid crystal display device includes a color filter substrate made of the device substrate.
  • a system that does not have a colored resin material as a color filter but emits red, green, and blue light in order using a transparent resin may be used.
  • the liquid crystal display device may include a thin film transistor array substrate including the device substrate.
  • a method for manufacturing a device substrate for a liquid crystal display device includes a device substrate for a liquid crystal display device including a flexible substrate having visible light permeability and a thin film device formed on the flexible substrate.
  • a high melting point that absorbs the laser light and generates heat on the plate surface of the support substrate that can transmit the laser light and can support the device substrate, and peels off from the film immediately above by the heat.
  • a photothermal conversion film forming step in which a photothermal conversion film made of a metal or a high melting point alloy is formed, and a coating liquid for forming the flexible substrate is applied on the photothermal conversion film, and from the coating liquid
  • a flexible substrate forming step in which the flexible substrate is formed on the photothermal conversion film by curing the coating film, and the thin film device is formed on the flexible substrate, and the photothermal conversion film is formed on the support substrate Fixed through the device A thin film device forming step for obtaining a substrate, and laser light is irradiated from the side of the support substrate on which the thin film device is not formed toward the photothermal conversion film, thereby bonding the photothermal conversion film and the flexible substrate.
  • An irradiation step in which the force disappears or decreases, and a peeling step in which the support substrate and the photothermal conversion film are peeled off from the device substrate after the adhesive force of the photothermal conversion film disappears.
  • the photothermal conversion film is made of a refractory metal or a refractory alloy containing at least one selected from the group consisting of Ti, Mo, Ta, and W. May be.
  • a method for manufacturing a device substrate for a liquid crystal display device includes a device substrate for a liquid crystal display device including a flexible substrate having visible light permeability and a thin film device formed on the flexible substrate. And a release layer forming step of erasing, vaporizing and pulverizing by laser light on the plate surface of a support substrate capable of transmitting laser light and supporting the device substrate; and
  • the flexible substrate can be formed on the photothermal conversion film by applying a coating liquid for forming the flexible substrate on the photothermal conversion film and curing the coating film made of the coating liquid.
  • the release layer is made of a material having a large absorption of light of 300 nm to 400 nm selected from the group consisting of amorphous silicon, ITO, IZO, and In—Ga—Zn—O. It may be a thing.
  • the coating liquid contains a silanol compound containing an alkyl group, and the coating film becomes an SiO film containing an organic component after a heating reaction. There may be.
  • Explanatory drawing which represented typically the cross-sectional structure of the liquid crystal display panel which concerns on Embodiment 1 of this invention.
  • Explanatory drawing which represented typically the process of forming a photothermal conversion film on a support substrate
  • Explanatory drawing which represented the process of forming a flexible substrate on a photothermal conversion film typically In a state where the CF substrate and the TFT array substrate are bonded to each other while being fixed to the support substrate, laser light is irradiated through the support substrate, and the light energy converted by the photothermal conversion film is converted into heat energy.
  • Embodiment 3 Explanatory drawing which represented typically the process of making adhesive strength lose
  • Embodiment 1 of the present invention will be described with reference to FIGS.
  • a method for manufacturing a device substrate for a liquid crystal display device a method for manufacturing the CF substrate 11 and the TFT array substrate 12 will be exemplified.
  • a liquid crystal display panel 10 (an example of a liquid crystal display device) including the CF substrate 11 and the TFT array substrate 12 will be described.
  • FIG. 1 is a cross-sectional view schematically showing a cross-sectional configuration of a liquid crystal display panel 10 according to Embodiment 1 of the present invention.
  • a liquid crystal display panel 10 mainly includes a pair of device substrates 11 and 12 that are bonded to each other and a liquid crystal layer 13 interposed between the device substrates 11 and 12. And is driven by an active matrix method.
  • the liquid crystal layer 13 is sealed between the device substrates 11 and 12 so as to be surrounded by a sealing material (not shown).
  • the device substrates 11 and 12 are bonded to each other using the adhesive force of the sealing material.
  • the device substrates 11 and 12 maintain a certain gap by a spacer not shown.
  • the liquid crystal layer 13 contains liquid crystal molecules whose optical characteristics are changed by an electric field applied between the device substrates 11 and 12.
  • Both the device substrates 11 and 12 include light-transmitting flexible substrates 14 and 15 having a small thickness and flexibility.
  • a silanol compound containing an alkyl group based on, for example, an organosiloxane compound or an alkoxysilane compound used in the spin-on-glass (SOG) technique is used as a material for the flexible substrates 14 and 15.
  • cured material of the liquid coating film to contain is utilized.
  • thermally curing this coating film (coating film) a silicon oxide-based coating film containing an organic substance can be obtained. Silicon oxide-based coating films containing organic substances are used as the flexible substrates 14 and 15.
  • the thickness of the flexible substrates 14 and 15 is not particularly limited, but can be set to 50 ⁇ m or less, for example.
  • the flexible substrates 14 and 15 may be configured only by a silicon oxide-based thin film (SiO film) containing an organic material such as SOG.
  • the flexible substrates 14 and 15 may include one or a plurality of flexible substrates 14 and 15.
  • You may comprise as a multilayer film on which the polyimide film (henceforth, PI film) was laminated
  • the thickness (film thickness) of the PI film is preferably thinner.
  • the film thickness of the PI film is appropriately determined depending on the flexible function of the product, taking into consideration the shape retention and self-supporting property of the SiO film, the retardation of the PI film, and the like.
  • one device substrate 11 is the CF substrate 11, and the other device substrate 12 is the TFT array substrate 12.
  • the CF substrate 11 is disposed on the front side (upper side in FIG. 1) of the liquid crystal display panel 10, and the TFT array substrate 12 is disposed on the rear side (lower side in FIG. 1).
  • the CF substrate 11 is formed on the surface (inner surface) of the flexible substrate 14 on the liquid crystal layer 13 side, for example, a CF-side thin film layer made of a laminate of, for example, an acrylic resin colored in red, green, blue or the like with a pigment.
  • (Example of thin film device) 16 is formed.
  • the CF side thin film layer 16 is composed of, for example, a CF layer, a black matrix layer, an alignment film, a counter electrode, and the like.
  • a polarizing plate 17 is attached on the front surface (outer surface) (outer surface) of the CF substrate 11.
  • the TFT array substrate 12 has a TFT side thin film layer (thin film device) made of a laminate such as TFT on the surface (inner surface) on the liquid crystal layer 13 side of the flexible substrate 15 made of the material exemplified for the flexible substrate 14.
  • An example) 18 is formed.
  • the flexible substrate 15 and the flexible substrate 14 do not necessarily have the same configuration and film thickness.
  • the TFT-side thin film layer 18 includes, for example, a TFT made of an oxide semiconductor film, a pixel electrode made of a transparent conductive film, a wiring made of a metal thin film such as a gate wiring, a source wiring, and a capacitor wiring, an insulating layer, a protective film, a barrier film, It is composed of a resin spacer, an alignment film, etc. for maintaining a certain cell gap.
  • a polarizing plate 19 that forms a pair with the polarizing plate 17 on the CF substrate 11 side is attached to the surface (outer surface) on the back side (outside) of the TFT array
  • FIG. 2 schematically shows a process of forming a photothermal conversion film 21 made of a refractory metal or a refractory alloy containing at least one selected from the group consisting of Ti, Mo, Ta, and W on the support substrate 20.
  • the support substrate 20 is a plate-like material used as a base for forming the TFT array substrate 12.
  • the support substrate 20 is thicker than the flexible substrate 15 and has a rigidity capable of maintaining its shape. Further, the support substrate 20 must be transparent to the laser beam to be irradiated.
  • a known glass such as non-alkali glass or quartz glass can be used.
  • non-alkali glass of a size used for manufacturing an existing liquid crystal display device is employed, conventional equipment can be used for manufacturing as it is, and development of a special dedicated device is not required.
  • a support substrate 20 is disposed, and a photothermal conversion film 21 is formed on one surface (inner surface) 20a.
  • the photothermal conversion film is made of a material that sufficiently absorbs laser light having a wavelength that is sufficiently transmitted through the support substrate.
  • a refractory metal or a metal alloy is formed by sputtering film formation or the like.
  • the film thickness varies depending on the transmission characteristics, but at least 100 nm or more is required.
  • a release layer may be used instead of the photothermal exchange film 21.
  • the release layer is irradiated with laser light, the constituents are instantly vaporized / evaporated and explosively released (so-called ablation phenomenon), resulting in the loss or reduction of the adhesive force or the film itself disappearing / pulverizing. Then, the support substrate 20 is peeled off from another laminate.
  • amorphous silicon or ITO is used as a release layer, and laser with a wavelength of 355 nm or 308 nm is irradiated.
  • FIG. 3 is an explanatory view schematically showing a process of forming the flexible substrate 15 on the photothermal conversion film 21.
  • the flexible substrate 15 is, for example, an SOG such as a silicon oxide film containing an organic substance obtained by thermally curing a liquid coating film containing a silanol compound containing an alkyl group based on an organosiloxane compound.
  • a film formed by technology is used.
  • a surface treatment is performed by irradiating with a UV lamp or exposure to oxygen plasma to perform a pretreatment for improving the adhesion. After that, coating is performed on the photothermal conversion film 21.
  • the coating method of the SOG material 15a is not particularly limited, but a slit coater or a spin coater shown in the coating apparatus 23 is used because the thickness of the finally obtained flexible substrate 15 is easily controlled. preferable.
  • the coating film made of the SOG material 15a is formed, when the heat treatment (baking process) is performed, the coating film reacts to obtain the flexible substrate 15 made of a thin film mainly composed of SiO containing organic matter. .
  • the heat treatment (baking treatment) is performed at a temperature of 200 ° C. or higher, for example.
  • the thickness of the flexible substrate 15 is not particularly limited and is appropriately set depending on the purpose, but can be set to about 1 ⁇ m to 50 ⁇ m, for example.
  • the flexible substrate 15 is basically formed on the entire surface of the photothermal conversion film 21 on the support substrate 20.
  • the flexible substrate 15 is formed with SiO as a main component, visibility due to a phase difference important as a liquid crystal display device is not impaired. Although the phase difference was actually measured, it was at a level that could not be measured.
  • each component of the TFT-side thin film layer 18 is formed on the flexible substrate 15 using a known film formation technique, photolithography technique, or the like. It is formed while being patterned.
  • the barrier film 18a prevents an organic component present in the film of the flexible substrate 15 from moving to the TFT side thin film layer 18 side. Since the TFT or the like included in the TFT side thin film layer 18 may be affected by an organic component, the barrier film 18 a is formed so as to cover the surface of the flexible substrate 15. For example, a silicon nitride (SiN) film or a silicon nitride oxide film (SiNO) is used as the barrier film 18a.
  • the barrier film 18a is formed with a thickness of about 50 nm to 500 nm, for example.
  • the barrier film 18a is not an essential component, and is appropriately provided as necessary.
  • the TFT array substrate 12 (thin film with support substrate) is formed on the flexible substrate 15 having flexibility fixed to the support substrate 20. Device).
  • the CF substrate 11 is formed on the support substrate 20 via the photothermal conversion film 21, as in the case of the TFT array substrate 12 described above. That is, the photothermal conversion film 21 is formed on the support substrate 20, and the flexible substrate 14 is formed on the photothermal conversion film 21 by the same method as that for the flexible substrate 15 described above. Then, by forming the CF-side thin film layer 16 on the flexible substrate 14, the CF substrate 11 is obtained on the flexible substrate 15 having flexibility fixed to the support substrate 20.
  • a release layer may be used instead of the photothermal conversion film 21.
  • the CF substrate 11 and the TFT array substrate 12 fixed to the support substrate 20 are bonded to each other with the liquid crystal layer 13 interposed therebetween.
  • the CF substrate 11 and the TFT array substrate 12 are fixed to each other by using an adhesive force or the like of a sealing material interposed between them and surrounding the liquid crystal layer 13.
  • a known method is applied as a method for bonding the CF substrate 11 and the TFT array substrate 12.
  • the CF substrate 11 and the TFT array substrate 12 can be bonded to each other while being fixed to the support substrate 20 that is more rigid than the flexible substrate, thereby forming the liquid crystal display panel 10. . Therefore, the CF substrate 11 and the TFT array substrate 12 are excellent in handleability, workability, transportability, etc., and the manufacturing method of this embodiment can be produced by a conventional liquid crystal display device manufacturing apparatus / method. it can.
  • FIG. 4 shows a state in which the CF substrate 11 and the TFT array substrate 12 are bonded to each other while being fixed to the support substrate 20, the laser light 24 is irradiated through the support substrate 20, and the light energy absorbed by the photothermal conversion film 21 is absorbed.
  • It is explanatory drawing which represented typically the process which converts into heat energy and lose
  • the laser beam 24 is irradiated to peel the support substrate 20 from the liquid crystal display panel 10.
  • the photothermal conversion film 21 on the CF substrate 11 side and the photothermal conversion film 21 on the TFT array substrate 12 side are each irradiated with laser light 24 through the support substrate 20, and the light is absorbed and becomes heat, Due to the heat, the support substrate 20 with one photothermal conversion film 21 attached is peeled from the flexible substrate 14 on the CF substrate 11 side due to the difference in expansion and contraction due to the dissolution at the interface and the linear expansion coefficient.
  • the polarizing plate is bonded in a state where the shape is maintained by the support substrate 20 on the side of the TFT array substrate 12 which is firmer than the flexible substrate. Thereafter, a laser is irradiated from the support substrate 20 side of the TFT array 12 by the same method to peel the photothermal conversion film 21 and the support substrate 20 from the flexible substrate 15 on the TFT array substrate 12 side.
  • a laser having a wavelength that sufficiently transmits energy that can be transmitted to the support substrate 20 and peeled off by the photothermal conversion film 21 is used.
  • a UV laser, a green laser, or the like within a range that the support substrate 20 transmits can be used.
  • the type of laser other than the wavelength is not particularly limited, but the thermal influence in the film thickness direction can be reduced by using a pulse laser having a pulse width of several tens of nsec as compared with the CW laser.
  • the support substrate 20 with the photothermal conversion film 21 is mounted on the CF substrate 11 side using a 355 nm solid-state laser with a pulse width of 20 nsec, a 308 nm excimer laser with a pulse width of 30 nsec, and a 532 nm solid-state laser with a pulse width of 10 nsec. Peeling was performed from the flexible substrate 14 and the flexible substrate 15 on the TFT array substrate 12 side.
  • a laser that transmits the support substrate 20 and can emit a wavelength that is sufficiently absorbed by the release layer is selected.
  • the peeling layer absorbs the laser beam 24 and instantaneously evaporates (ablates) to peel off.
  • the layer disappears and is pulverized, and the support substrate 20 and the flexible substrate 14 are separated.
  • it can be realized by using an amorphous silicon as a release layer and irradiating a 355 nm UV solid-state laser that is easily absorbed.
  • the laser beam 24 When irradiating the laser beam 24 toward the liquid crystal display panel 10, the laser beam 24 may be sequentially irradiated from one surface side, or the laser beam 24 may be irradiated simultaneously from both surface sides.
  • the irradiation is performed on a large area, so that the productivity is dramatically improved by using a line beam or a galvano scan method depending on the optical system. To improve.
  • FIG. 5 is an explanatory view schematically showing the process of peeling the support substrate 20 from the flexible substrate 14 on the CF substrate 11 side on the CF substrate 11 side.
  • the predetermined laser beam 24 is irradiated from the outside of the support substrate 20 toward the photothermal conversion film 21 on the CF substrate 11 side
  • the laser beam 24 passes through the support substrate 20 and the photothermal conversion film. 21, and the adhesion (fixation) between the support substrate 20 and the flexible substrate 14 is canceled by the heat generated by the photothermal conversion film 21.
  • the support substrate 20 can be easily peeled from the liquid crystal display panel 10 side.
  • the support substrate 20 on the TFT array substrate 12 side is irradiated with laser light 24 from the outside of the support substrate 20 toward the back surface (outer surface) 20b of the support substrate 20 to cause the photothermal conversion film 21 to generate heat.
  • the support substrate 20 can be peeled from the flexible substrate 15 on the TFT array substrate 12 side.
  • each of the flexible substrates 14 and 15 after the support substrate 20 is peeled off may be appropriately washed to remove the residue.
  • the cleaning of the surface of the flexible substrate 14 is not essential, and the residue may be left as it is as long as the residue does not affect the display performance of the liquid crystal display panel 10.
  • a release layer is employed instead of the photothermal conversion film 21, debris is generated by ablation and visibility is often impaired, so that the residue is often removed by washing.
  • the liquid crystal display panel 10 for a flexible display including the flexible substrates 14 and 15 having a small thickness of about 1 ⁇ m to 50 ⁇ m is obtained.
  • polarizing plates 17 and 19 are attached to both outer sides of the liquid crystal display panel 10 using an adhesive or an adhesive.
  • the peeled side flexible substrate for example, A polarizing plate (for example, polarizing plate 17) may be attached to the flexible substrate 14) instead of the support. Then, after attaching the polarizing plate, the other supporting substrate 20 may be peeled off, and the remaining polarizing plate (for example, the polarizing plate 19) may be attached to the flexible substrate (for example, the flexible substrate 15).
  • the support substrate 20 may be peeled off, and the polarizing plate may be attached instead of the support substrate 20 to ensure the rigidity, the handleability, and the like of the liquid crystal display panel 10.
  • the flexible substrates 14 and 15 made of a silicon oxide film containing an organic substance are formed on the support substrate 20 via the release layer 21, and the flexibility of the flexible substrates 14 and 15 is formed. Since thin film devices (CF-side thin film layer 16 and TFT-side thin film layer 18) are formed on the substrates 14 and 15, the liquid crystal display panel 10 for a flexible display having a small thickness that cannot be realized by a conventional manufacturing method is easily manufactured. can do.
  • the SOG film (SiO film) single layer mainly composed of SiO has almost no phase difference and excellent visibility, but has a large elastic modulus and no crack resistance. Due to the abnormalities of the film due to the incorporated particles and the partial irradiation abnormality of the laser irradiation due to the shadow of the particles in the peeling process, there are drawbacks that are easily broken. For this reason, in order to improve shape retainability and self-supporting property, a thin PI film having a thickness of 3 ⁇ m or less that does not impair visibility is used as a reinforcing material to form a laminated structure with an SOG film (SiO film). By configuring this structure, the independence can be dramatically improved.
  • the flexible substrates 14A and 15A are composed of a SiO film / PI film having a PI film on the support substrate side or a PI film / SiO film / PI film / having a PI film on both sides of the SiO film. There is a structure.
  • the photothermal conversion film 21 made of a refractory metal or a refractory alloy is formed on the support substrate 20.
  • the photothermal exchange film 21 absorbs UV light
  • a laser in a wavelength region that transmits through the support substrate 20 and absorbs in the PI film is used for peeling, the photothermal exchange film 21 is not formed. May be.
  • an inorganic glass is used for the support substrate, and a PI film is formed directly thereon.
  • inorganic glass used in liquid crystal devices transmits 30 to 80% at 300 nm, and PI film begins to be absorbed at 400 nm or less, so it is supported by irradiating 355 nm solid laser or 308 nm excimer laser. It is possible to peel the PI film directly by ablation through the substrate (inorganic glass).
  • the method using the photothermal conversion film 21 is desirable as in the present embodiment.
  • FIG. 6 is an explanatory view schematically showing a process of forming the PI 26 film constituting the flexible substrate 15 ⁇ / b> A according to the second embodiment on the photothermal conversion film 21.
  • the flexible substrate 15A is made of, for example, an organic material having high heat resistance represented by PI.
  • the PI to be used is a material that transmits visible light as much as possible and has a transparency and a small phase difference depending on the skeleton structure and additives of the main material.
  • a film formed by SOG technology such as a silicon oxide film containing an organic material obtained by thermally curing a liquid coating film containing a silanol compound containing an alkyl group based on an organosiloxane compound on the PI. Is used.
  • a hexamethyldisiloxane (HMDS) reagent is exposed to vapor, or a silane coupling agent is applied by a spin coater in advance.
  • a spin coater After processing, PI is formed. PI is applied to the entire surface of a precursor polyamic acid (polyamic acid) dissolved in a solvent by a coating device 27 such as a slit coater or a spin coater.
  • the PI 26 is formed by imidization by heating the coated material 26 a to 200 ° C. or higher.
  • the PI film has a film thickness that provides the necessary strength for the finally obtained flexible substrate 15A, and is preferably as thin as possible from the viewpoint of reducing the phase difference.
  • a special PI that has a small phase difference and is colorless and transparent is formed at 1 ⁇ m and 2 ⁇ m, and then a trial production is performed by laminating SOG with a film thickness of 10 ⁇ m.
  • the phase difference was 10 nm or less.
  • FIG. 7 is an explanatory view schematically showing a process of forming the SiO film 150 constituting the flexible substrate 15 ⁇ / b> A according to the second embodiment on the PI film 26.
  • the coating method of the SOG material 15a is not particularly limited, but a slit coater or a spin coater shown in the coating apparatus 23 is used because the thickness of the finally obtained flexible substrate 15A can be easily controlled. preferable.
  • the coating film made of the SOG material 15a is formed, when a heat treatment (baking process) is performed, the coating film reacts to form an SiO film made of a silicon oxide-based thin film containing an organic substance mainly composed of SiO ( SOG film) 150 is obtained.
  • the thickness of the SiO film is 50 ⁇ m or less, and is not particularly limited. However, the thickness of the SiO film is larger than that of the PI film 26 in view of appropriately utilizing the characteristics of each film.
  • the heat treatment (baking treatment) is performed at a temperature of 200 ° C. or higher, for example. With respect to the prototype, a trial production was performed with a SOG film thickness of 10 ⁇ m on the 1 ⁇ m and 2 ⁇ m PI films 26, and a breaking strength about 15 times that of the SOG single layer was obtained.
  • the PI film 26 is generally a material having high heat resistance and chemical resistance, it is difficult to develop a material that can withstand the process of stripping plasma or organic resist for manufacturing a TFT element, and in particular, essential for a liquid crystal display device. It is even more difficult to develop materials that are compatible with visible light transparency and phase difference reduction. Therefore, the SOG / PI structure in which the SOG material excellent in process resistance composed mainly of SiO is coated on the PI film has the advantage that the development of the PI material can be simplified.
  • a three-layer structure in which a PI film is added on the SOG film (SiO film) / PI film may be used.
  • the PI formation of the upper layer improves the adhesion with the SOG film by performing surface modification by irradiating with a UV lamp as a pretreatment or by exposing to oxygen plasma as in the case of the PI formation of the lower layer described above.
  • a PI precursor polyamic acid (polyamic acid) dissolved in a solvent is applied on the entire surface of the SOG film, and then imidized by heating to 200 ° C. or more to form PI.
  • the PI should be as thin as possible from the viewpoint of reducing the phase difference, and is preferably 3 ⁇ m or less. Further, the film thickness may be different from that of the underlying PI film.
  • the thickness of the flexible substrate 15A is not particularly limited and is appropriately set depending on the purpose, but can be set to about 1 ⁇ m to 50 ⁇ m, for example.
  • the flexible substrate 15 ⁇ / b> A is basically formed on the entire surface of the photothermal conversion film 21 on the support substrate 20.
  • each component of the TFT-side thin film layer 18 is formed on the flexible substrate 15A by a known film forming technique, as in the thin film device forming step of the first embodiment.
  • the film is formed while being patterned into a predetermined shape using a photolithographic technique or the like.
  • the TFT array substrate 12 (thin film device with a support substrate) fixed to the support substrate 20 is obtained.
  • the CF substrate 11 is formed on the support substrate 20 via the photothermal conversion film 21, as in the case of the TFT array substrate 12 described above. That is, the photothermal conversion film 21 is formed on the support substrate 20, and the SiO film 140 / PI film 26 can be formed on the photothermal conversion film 21 by the same method as that of the flexible substrate 15A described above.
  • a flexible substrate 14A is formed. Then, by forming the CF-side thin film layer 16 on the flexible substrate 14A, the CF substrate 11 that is still fixed to the support substrate 20 is obtained. Note that the flexible substrate 15A on the TFT array substrate side and the flexible substrate 14A on the CF substrate side do not necessarily have the same configuration and film thickness, and may be other embodiments.
  • the CF substrate 11 and the TFT array substrate 12 fixed to the support substrate 20 are bonded to each other with the liquid crystal layer 13 interposed therebetween.
  • the TFT array substrate 12 can be attached to the liquid crystal display panel 10 while being fixed to the support substrate 20 which is more rigid than the flexible substrates 14A and 15A. Therefore, the CF substrate 11 and the TFT array substrate 12 are excellent in handleability, workability, transportability, etc., and the manufacturing method of this embodiment can be produced by a conventional liquid crystal display device manufacturing apparatus / method. it can.
  • FIG. 8 shows a state in which the CF substrate 11 and the TFT array substrate 12 are bonded to each other while being fixed to the support substrate 20.
  • the laser light 24 is irradiated through the support substrate 20, and the light energy absorbed by the photothermal conversion film 21 is absorbed.
  • It is explanatory drawing which represented typically the process which converts into heat energy and lose
  • the laser beam 24 is irradiated to peel the support substrate 20 from the liquid crystal display panel 10.
  • the photothermal conversion film 21 on the CF substrate 11 side and the photothermal conversion film 21 on the TFT array substrate 12 side are each irradiated with laser light 24 through the support substrate 20. Then, the light is absorbed and becomes heat, and the heat causes a difference in expansion and contraction due to the difference between the dissolution at the interface and the linear expansion coefficient, and the support substrate 20 on the CF substrate 11 side with the one photothermal conversion film attached. Peel from the flexible substrate 14A.
  • the polarizing plate is bonded in a state where the shape is maintained by the support substrate 20 on the side of the TFT array substrate 12 which is firmer than the flexible substrate. Thereafter, a laser is irradiated from the support substrate 20 side of the TFT array 12 by the same method to peel the photothermal conversion film 21 and the support substrate 20 from the flexible substrate 15A on the TFT array substrate 12 side.
  • the laser beam 24 As the type of the laser beam 24, a laser having a wavelength that sufficiently transmits energy that can be transmitted to the support substrate 20 and peeled off by the photothermal conversion film 21 is used as in the first embodiment.
  • the laser beam 24 When irradiating the laser beam 24 toward the liquid crystal display panel 10, the laser beam 24 may be irradiated sequentially from one surface side, or the laser beam 24 may be irradiated simultaneously from both surface sides.
  • FIG. 9 is an explanatory diagram schematically showing the process of peeling the support substrate 20 from the flexible substrate 14A on the CF substrate 11 side according to the second embodiment on the CF substrate 11 side.
  • the predetermined laser beam 24 is irradiated from the outside of the support substrate 20 toward the release layer 21 on the CF substrate 11 side
  • the laser beam 24 passes through the support substrate 20 and the photothermal conversion film 21.
  • the adhesion (fixation) between the support substrate 20 and the flexible substrate 14A is canceled by the heat generated by the photothermal conversion film 21.
  • the support substrate 20 can be easily peeled from the liquid crystal display panel 10 side.
  • the support substrate 20 on the TFT array substrate 12 side is irradiated with laser light 24 from the outside of the support substrate 20 toward the back surface (outer surface) 20b of the support substrate 20 to cause the photothermal conversion film 21 to generate heat.
  • the support substrate 20 can be peeled from the flexible substrate 15A on the TFT array substrate 12 side.
  • each flexible substrate 14A, 15A after the support substrate 20 is peeled off may be appropriately washed to remove the residue.
  • the peeling method in which the PI film is peeled directly by ablation through the supporting substrate (inorganic glass) described above debris is generated, and thus the residue needs to be removed.
  • the liquid crystal display panel 10 for a flexible display including the flexible substrates 14A and 15A having a small thickness of about 1 ⁇ m to 50 ⁇ m is obtained.
  • polarizing plates 17 and 19 as shown in FIG. 1 of the first embodiment are finally attached to both outer sides of the liquid crystal display panel 10 using an adhesive or an adhesive.
  • the PI film is formed immediately above the support substrate.
  • SOG SiO film
  • the flexible substrates 14B and 15B have a PI film / SiO film or SiO film / PI film / SiO film structure in which the support substrate side is SOG (SiO film).
  • a two-layer structure of PI film / SiO film is illustrated.
  • the photothermal conversion film 21 is formed on the support substrate 20.
  • a release layer may be used instead of the photothermal exchange film 21.
  • the release layer is irradiated with a laser beam, the adhesive force disappears or decreases due to an ablation phenomenon, or the film itself disappears and is pulverized, and the support substrate 20 is peeled off from another laminate.
  • amorphous silicon or ITO is used as a release layer, and laser with a wavelength of 355 nm or 308 nm is irradiated.
  • FIG. 10 is an explanatory view schematically showing a process of forming the SiO film 150 constituting the flexible substrate 15B according to the third embodiment on the photothermal conversion film 21. As shown in FIG.
  • the SiO film of the flexible substrate 15B includes, for example, a silicon oxide-based material containing an organic substance obtained by thermally curing a liquid coating film containing a silanol compound containing an alkyl group based on an organosiloxane compound.
  • a film formed by SOG technology such as a thin film is used.
  • the method for forming the SiO film 150 is the same as in the above embodiment.
  • the PI to be used is a material that transmits visible light as much as possible and has a transparency and a small phase difference depending on the skeleton structure and additives of the main material.
  • the PI film was pretreated by, for example, exposing a hexamethyldisiloxane (HMDS) reagent to vapor or applying a silane coupling agent with a spin coater for the purpose of maintaining adhesion directly above the support substrate. Thereafter, a PI film is formed.
  • a precursor polyamic acid (polyamic acid) dissolved in a solvent is applied to the entire surface by a slit coater, a spin coater, or the like. By heating this to 200 ° C. or higher, imidization is performed to form a PI film.
  • PI is preferably a thickness of 0.5 ⁇ m to 3 ⁇ m because the film thickness is sufficient to obtain the necessary strength for the finally obtained flexible substrate 15B and is thinner from the viewpoint of reducing the phase difference.
  • PI is generally a material with high heat resistance and chemical resistance, it is difficult to develop a material that can withstand the process of peeling the plasma and organic resist used to manufacture TFT elements. It is even more difficult to develop materials that are compatible with light transparency and retardation reduction. Therefore, in other manufacturing examples, it is possible to withstand TFT element manufacturing by forming an SOG / PI / SOG structure in which an SOG material having a main component of SiO and having excellent process resistance is further coated on PI. It is also possible to form a flexible substrate structure.
  • a surface treatment is performed by irradiating with a UV lamp or exposure to oxygen plasma to perform a pretreatment for improving the adhesion. Then, for example, coating is performed by a slit coater or a spin coater. Thereafter, when a heat treatment (baking treatment) is performed, the coating film reacts to obtain a silicon oxide thin film containing an organic substance mainly composed of SiO.
  • the thickness of the flexible substrate 15B is not particularly limited and is appropriately set depending on the purpose, but can be set to about 1 ⁇ m to 50 ⁇ m, for example.
  • the flexible substrate 15B is basically formed on the entire surface of the photothermal conversion film 21 on the support substrate 20.
  • each constituent element of the TFT-side thin film layer 18 is formed on the flexible substrate 15B in the same manner as in the thin film device forming process of the first embodiment by a known film forming technique.
  • the film is formed while being patterned into a predetermined shape using a photolithographic technique or the like.
  • the TFT array substrate 12 (thin film device with a support substrate) fixed to the support substrate 20 is obtained.
  • the CF substrate 11 is formed on the support substrate 20 via the photothermal conversion film 21, as in the case of the TFT array substrate 12 described above. That is, the photothermal conversion film 21 is formed on the support substrate 20, and the PI film 26 / SiO film 140 can be formed on the photothermal conversion film 21 by the same method as that of the flexible substrate 15B described above. A flexible substrate 14B is formed. Then, by forming the CF-side thin film layer 16 on the flexible substrate 14B, the CF substrate 11 that is still fixed to the support substrate 20 is obtained.
  • the flexible substrate 15B on the TFT array substrate side and the flexible substrate 14B on the CF substrate side do not necessarily have the same configuration and film thickness, and may be other embodiments.
  • a release layer may be used instead of the photothermal conversion film.
  • the CF substrate 11 and the TFT array substrate 12 fixed to the support substrate 20 are bonded to each other with the liquid crystal layer 13 interposed therebetween.
  • the TFT array substrate 12 can be bonded to the liquid crystal display panel 10 while being fixed to the support substrate 20 which is more rigid than the flexible substrates 14B and 15B. Therefore, the CF substrate 11 and the TFT array substrate 12 are excellent in handleability, workability, transportability, etc., and the manufacturing method of this embodiment can be produced by a conventional liquid crystal display device manufacturing apparatus / method. it can.
  • FIG. 11 shows a state in which the CF substrate 11 and the TFT array substrate 12 are bonded to each other while being fixed to the support substrate 20, the laser light 24 is irradiated through the support substrate 20, and the light energy absorbed by the photothermal conversion film 21 is absorbed.
  • It is explanatory drawing which represented typically the process which converts into heat energy and lose
  • FIG. As shown in FIG. 11, in order to peel the support substrate 20 from the liquid crystal display panel 10, irradiation with a laser beam 24 is performed.
  • the photothermal conversion film 21 on the CF substrate 11 side and the photothermal conversion film 21 on the TFT array substrate 12 side are each irradiated with laser light 24 through the support substrate 20. Then, the light is absorbed and becomes heat, and the heat causes a difference in expansion and contraction due to the difference between the dissolution at the interface and the linear expansion coefficient, and the support substrate 20 with one photothermal conversion film is attached to the CF substrate 11 side. Peel from the flexible substrate 14B.
  • the polarizing plate is bonded in a state where the shape is maintained by the support substrate 20 on the side of the TFT array substrate 12 which is firmer than the flexible substrate. Thereafter, a laser is irradiated from the support substrate 20 side of the TFT array 12 by the same method, and the photothermal conversion film 21 and the support substrate 20 are separated from the flexible substrate 15B on the TFT array substrate 12 side.
  • the laser beam 24 As the type of the laser beam 24, a laser having a wavelength that sufficiently transmits energy that is transmitted to the support substrate 20 and can be peeled off by the photothermal conversion film 21 is used as in the first embodiment.
  • the laser beam 24 When irradiating the laser beam 24 toward the liquid crystal display panel 10, the laser beam 24 may be irradiated sequentially from one surface side, or the laser beam 24 may be irradiated simultaneously from both surface sides.
  • a laser that transmits the support substrate 20 and can emit a wavelength that is sufficiently absorbed by the peeling layer is selected.
  • the release layer 21 absorbs the laser beam 24 and instantaneously evaporates (ablates).
  • the release layer 21 disappears and is pulverized, and the support substrate 20 and the flexible substrate 14B are separated.
  • it can be realized by using an amorphous silicon as a release layer and irradiating a 355 nm UV solid-state laser that is easily absorbed.
  • FIG. 12 is an explanatory view schematically showing the process of peeling the support substrate 20 from the flexible substrate 14B on the CF substrate 11 side according to the third embodiment on the CF substrate 11 side.
  • the predetermined laser beam 24 is irradiated from the outside of the support substrate 20 toward the release layer 21 on the CF substrate 11 side
  • the laser beam 24 passes through the support substrate 20 and the photothermal conversion film 21.
  • the adhesion (fixation) between the support substrate 20 and the flexible substrate 14B is canceled by the heat generated by the photothermal conversion film 21.
  • the support substrate 20 can be easily peeled from the liquid crystal display panel 10 side.
  • the support substrate 20 on the TFT array substrate 12 side is irradiated with laser light 24 from the outside of the support substrate 20 toward the back surface (outer surface) 20b of the support substrate 20 to cause the photothermal conversion film 21 to generate heat.
  • the support substrate 20 can be peeled from the flexible substrate 15B on the TFT array substrate 12 side.
  • each flexible substrate 14B, 15B after the support substrate 20 is peeled off may be appropriately washed to remove the residue.
  • a release layer is employed instead of the photothermal conversion film 21, debris is generated by ablation and visibility is often impaired, so that the residue is often removed by washing.
  • the liquid crystal display panel 10 for flexible display including the flexible substrates 14B and 15B having a small thickness of about 1 ⁇ m to 50 ⁇ m is obtained.
  • polarizing plates 17 and 19 as shown in FIG. 1 of the first embodiment are finally attached to both outer sides of the liquid crystal display panel 10 using an adhesive or an adhesive.
  • the irradiation step and the peeling step are performed after the CF substrate 11 and the TFT array substrate 12 are bonded to each other.
  • the present invention is not limited to this, for example, a device such as the CF substrate 11 You may perform an irradiation process and a peeling process in the state which does not bond a board
  • the liquid crystal display panel is exemplified as the display panel.
  • the present invention is not limited to this, and the present invention can be applied to a display panel that employs another display principle such as an organic EL display. it can.
  • the device substrate (display panel) manufacturing method of the present invention is not limited to the case of manufacturing device substrates (display panels) one by one, but a state in which a plurality of device substrates (display panels) are connected in a matrix.
  • the present invention can also be applied to the case of manufacturing together.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

デバイス基板11,12は、アルキル基を含むシラノール化合物を含有する塗工液を硬化させてなる1つ又は複数のスピンオングラス技術からなるSiO膜を有する可視光透過性の可撓基板14,15と、前記可撓基板14,15上に形成される薄膜デバイス16,18とを備える。

Description

デバイス基板、液晶表示装置、及びデバイス基板の製造方法
 本発明は、デバイス基板、液晶表示装置、及びデバイス基板の製造方法に関する。
 近年、柔軟に形状を変化させることができる表示部を備えたフレキシブルディスプレイが注目されている。例えば、液晶表示方式のフレキシブルディスプレイにおいては、液晶表示パネルが柔軟性を備えており、液晶表示パネルを湾曲させて使用することができる。このような液晶表示パネルは、形状が変化しない一般的な液晶表示パネルと比べて、厚みの薄いガラス基板を備えている。近年では、カーブドTVとして商品化されている。
 ところで、液晶表示パネルの製造工程において、0.5mm以下の厚みの薄いガラス基板は、従来のガラス基板と比べて剛性が低いため、直接、そのガラス基板上に、薄膜トランジスタ(TFT)やカラーフィルタ(CF)等の薄膜層(薄膜デバイス)を形成することができない。
 そこで、従来の液晶表示パネルの製造工程では、ガラス基板の厚みを剛性が確保できる程度の0.5mm以上に予め大きく設定しておき、そのガラス基板上にTFTやカラーフィルタ(CF)等の薄膜層を形成した後に、これらを貼り合せたガラス基板を薬液でエッチングすることで、ガラス基板の厚みを薄くする方法が知られている。
 また、他の方法としては、薄膜層を形成するためのガラス基板とは別に、厚みのあるガラス製の支持基板を用意し、その支持基板上に接着剤やその他の接着方法により厚みの薄いガラス基板を貼り付けてのガラス基板上に薄膜層を形成し、最終的により薄いガラス基板を支持基板から剥離する技術開発が提案されたりしてきた。
 これに対して、有機EL等ではポリイミド(PI)やポリアミド等の耐熱・耐薬品性が高く、ガラスより明らかにフレキシブル性能の良い有機膜を用い、その上にデバイスを形成する構造を用いる場合が多い。この場合は、特許文献1に示されるように、ガラス製の支持基板上に、前記有機膜を形成し、その上に薄膜層(被転写層)を形成したものに、エキシマレーザー等のレーザー光を支持基板側から照射することにより、薄膜層と、支持基板とを剥離する方法が知られている。特許文献1の記載によると、この方法では、分離層が効率良く吸収する波長のレーザー光を照射すると、その分離層を構成する物質が瞬時に気化・蒸発し、爆発的に放出されることによって、原子間又は分子間の結合力が消失し、薄膜層と支持基板とが互いに剥離される。
 液晶表示装置として有機ELパネルと同様に、前記PIやポリアミド等の有機材料をガラス上に形成することで、更に柔軟性の高い液晶パネルを作製する方法もある。しかしながら、材料の位相差によって、液晶パネルの視認性が大きく損なわれる問題があるため、この材料を用いる事が出来ず、薄いガラス基板を用いなければならない。薄いガラスは、屈曲により損傷し易く柔軟性に欠けており、曲率も限定的な範囲での使用に限定される。
特許第3809833号公報
(発明が解決しようとする課題)
 上記のように、厚みのあるガラス製の支持基板上に、厚みの薄いガラス基板を、接着剤を介して貼り付けてTFT等の薄膜層を積層していく方法では、接着剤中に含まれている成分により、TFT製造装置等が汚染される虞があった。また、この方法では、最終的に支持ガラスからの剥離を前提に、TFTプロセス中の接着性を維持しつつ、耐熱性や耐薬品性も十分に得られて、その上、ベーク処理時において高温下に曝された際に、ガラス基板が反って割れてしまうことや、搬送時に反ったガラス基板が周囲に干渉する等して、搬送不良が生じる虞が無い材料を開発することは非常に困難であった。
 また、上記のように、ガラス基板を薬液でエッチングして最終的にガラス基板の厚みを薄くする方法では、ガラス基板の厚みを均一に制御することが難しく、しかも、近年、要求されているような非常に薄いガラス基板(例えば、30μm程度の厚みのガラス基板)を得ることができなかった。また、この処理によってコストや薄い基板であることによるガラスの損傷による歩留りの問題からコスト的に課題があった。
 また、薄いガラスでは無く、PIやポリアミド等のガラスより明らかにフレキシブル性能の良い有機膜を分離層も兼ねて形成し、レーザー光を利用して、支持基板から薄膜層を剥離させる方法では、上述した問題は解決され、フレキシブル性が高いディスプレイが制動できるメリットがあるものの、材料の持つ位相差によって、液晶表示装置としては、著しく視認性の悪いパネルとなるため、そのような方法を採用することはできない課題があった。
 本発明の目的は、従来の製造方法では実現できないような厚みで、視認性を損なわないフレキシブル性の高い液晶表示装置用のデバイス基板等を容易に製造可能な技術を提供することである。
(課題を解決するための手段)
 本発明に係るデバイス基板は、アルキル基を含むシラノール化合物を含有する塗工液を硬化させてなる1つ又は複数のスピンオングラス技術からなるSiO膜を有する可視光透過性の可撓基板と、前記可撓基板上に形成される薄膜デバイスとを備える。
 前記デバイス基板において、前記可撓基板は、1つのスピンオングラス技術からなるSiO膜のみからなるものであってもよい。
 前記デバイス基板において、前記可撓基板は、1つのスピンオングラス技術からなるSiO膜と、前記SiO膜が有する2つの面のうち、前記薄膜デバイス側の面、又は前記薄膜デバイス側の反対側の面に形成される1つの耐熱性有機膜とを有するものであってもよい。
 前記デバイス基板において、前記可撓基板は、2つのスピンオングラス技術からなるSiO膜と、これらの間に介在される1つの耐熱性有機膜とを有するものであってもよい。
 前記デバイス基板において、前記可撓基板は、1つのスピンオングラス技術からなるSiO膜と、前記SiO膜が有する2つの面にそれぞれ1つずつ形成される2つの耐熱性有機膜とを有するものであってもよい。
 前記耐熱性有機膜は、ポリイミド又はポリアミドからなるものであってもよい。
 また、本発明に係る液晶表示装置は、前記デバイス基板からなるカラーフィルタ基板を備える。また、カラーフィルタとしての色付きの樹脂材料を有せず、透明な樹脂を用いて、バックライトで赤色,緑色,青色の光を順に発する方式であっても良い。
 前記液晶表示装置において、前記デバイス基板からなる薄膜トランジスタアレイ基板を備えるものであってもよい。
 また、本発明に係る液晶表示装置用のデバイス基板の製造方法は、可視光透過性を有する可撓基板と、この可撓基板上に形成される薄膜デバイスとを備える液晶表示装置用のデバイス基板の製造方法であって、レーザー光が透過可能でありかつ前記デバイス基板を支持可能な支持基板の板面上に、レーザー光を吸収して発熱し、その熱によって直上の膜と剥離する高融点金属、又は高融点合金からなる光熱変換膜が形成される光熱変換膜形成工程と、前記可撓基板を形成するための塗工液を前記光熱変換膜上に塗工し、前記塗工液からなる塗膜を硬化することで前記光熱変換膜上に前記可撓基板が形成される可撓基板形成工程と、前記可撓基板上に前記薄膜デバイスが形成され、前記支持基板に前記光熱変換膜を介して固定された前記デバイス基板が得られる薄膜デバイス形成工程と、前記支持基板の前記薄膜デバイスが形成されていない面側から前記光熱変換膜に向けてレーザー光が照射され、前記光熱変換膜と前記可撓基板の接着力が消失又は低減する照射工程と、前記光熱変換膜の接着力が消失等した後、前記支持基板と前記光熱変換膜が前記デバイス基板から剥離される剥離工程とを備える。
 前記液晶表示装置用のデバイス基板の製造方法において、前記光熱変換膜は、Ti、Mo、Ta、Wからなる群より選ばれる少なくとも1つを含む高融点金属、又は高融点合金からなるものであってもよい。
 また、本発明に係る液晶表示装置用のデバイス基板の製造方法は、可視光透過性を有する可撓基板と、この可撓基板上に形成される薄膜デバイスとを備える液晶表示装置用のデバイス基板の製造方法であって、レーザー光が透過可能でありかつ前記デバイス基板を支持可能な支持基板の板面上に、レーザー光よってアブレーション現象で消失・気化と粉砕される剥離層形成工程と、前記可撓基板を形成するための塗工液を前記光熱変換膜上に塗工し、前記塗工液からなる塗膜を硬化することで前記光熱変換膜上に前記可撓基板が形成される可撓基板形成工程と、前記可撓基板上に前記薄膜デバイスが形成され、前記支持基板に前記光熱変換膜を介して固定された前記デバイス基板が得られる薄膜デバイス形成工程と、前記支持基板の前記薄膜デバイスが形成されていない面側から前記剥離層に向けてレーザー光が照射され、前記剥離層と前記可撓基板の接着力が消失又は低減する照射工程と、前記剥離層の接着力が消失した後、前記支持基板と前記剥離層が前記デバイス基板から剥離される剥離工程とを備える。
 前記液晶表示装置用のデバイス基板の製造方法において、前記剥離層は、アモルファスシリコン,ITO,IZO,In-Ga-Zn-Oからなる群より選ばれる300nm~400nmの光の吸収が大きい材料からなるものであってもよい。
 前記デバイス基板の製造方法において、前記可撓基板形成工程において、前記塗工液がアルキル基を含むシラノール化合物を含有し、前記塗膜が、加熱反応後に有機成分を含有するSiO膜になるものであってもよい。
(発明の効果)
 本発明によれば、従来の製造方法では実現できないような厚みで、視認性を損なわないフレキシブル性の高い液晶表示装置用のデバイス基板等を容易に製造可能な技術を提供することができる。
本発明の実施形態1に係る液晶表示パネルの断面構成を模式的に表した説明図 支持基板上に光熱変換膜を形成する工程を模式的に表した説明図 光熱変換膜上に可撓基板を形成する工程を模式的に表した説明図 CF基板とTFTアレイ基板が支持基板に固定されたままで貼り合わされた状態において、支持基板越しにレーザー光を照射し、光熱変換膜によって、吸収した光エネルギーを熱エネルギーに変換して、光熱変換膜と可撓基板との界面で接着力を消失させる工程をCF基板側において模式的に表した説明図 支持基板がCF基板側の可撓基板から剥離される工程をCF基板側において模式的に表した説明図 光熱変換膜上に実施形態2に係る可撓基板を構成するPI膜を形成する工程を模式的に表した説明図 PI膜上に実施形態2に係る可撓基板を構成するSOG法によるSiO膜を形成する工程を模式的に表した説明図 CF基板とTFTアレイ基板が支持基板に固定されたままで貼り合わされた状態において、支持基板越しにレーザー光を照射し、光熱変換膜によって、吸収した光エネルギーを熱エネルギーに変換して、実施形態2の可撓基板との界面で接着力を消失させる工程を模式的に表した説明図 支持基板が実施形態2に係るCF基板側の可撓基板から剥離される工程をCF基板側において模式的に表した説明図 光熱変換膜上に実施形態3に係る可撓基板を構成するSOG法によるSiO膜を形成する工程を模式的に表した説明図 CF基板とTFTアレイ基板が支持基板に固定されたままで貼り合わされた状態において、支持基板越しにレーザー光を照射し、光熱変換膜によって、吸収した光エネルギーを熱エネルギーに変換して、実施形態3に係る可撓基板との界面で接着力を消失させる工程を模式的に表した説明図 支持基板が実施形態3に係るCF基板側の可撓基板から剥離される工程をCF基板側において模式的に表した説明図
 <実施形態1>
 本発明の実施形態1を、図1~図5を参照しつつ説明する。本実施形態では、液晶表示装置用のデバイス基板の製造方法として、CF基板11及びTFTアレイ基板12の製造方法を例示する。先ず、CF基板11及びTFTアレイ基板12を含む液晶表示パネル10(液晶表示装置の一例)について説明する。
 液晶表示パネル10は、フレキシブルディスプレイに利用されるものであり、柔軟性、可撓性等の特性を備えている。図1は、本発明の実施形態1に係る液晶表示パネル10の断面構成を模式的に表した断面図である。図1に示されるように、液晶表示パネル10は、主として、互いに対向する形で貼り合わせられる一対のデバイス基板11,12と、それらのデバイス基板11,12の間に介在される液晶層13とを備えており、アクティブマトリクス方式で駆動する。
 デバイス基板11,12の間において、液晶層13は、図示されないシール材によって取り囲まれる形で封止されている。デバイス基板11,12同士は、シール材の接着力等を利用して互いに貼り合わせられている。また、デバイス基板11,12は、図示されていないスペーサーによって、一定のギャップを保っている。液晶層13は、デバイス基板11,12間に印加される電界により光学特性が変化する液晶分子を含有している。
 デバイス基板11,12は、共に、厚みが薄く柔軟性を備えた光透過性の可撓基板14,15を備えている。本実施形態では、可撓基板14,15の材料として、スピン・オン・グラス(SOG)技術で利用される例えば有機シロキサン系化合物やアルコキシシラン系化合物等をベースとしたアルキル基を含むシラノール化合物を含有する液状塗膜の硬化物が利用される。この塗膜(塗工膜)を熱硬化させることで、有機物を含む酸化シリコン系の塗膜が得られる。この有機物を含む酸化シリコン系の塗膜が、可撓基板14,15として利用される。
 可撓基板14,15の厚みは、特に制限されないが、例えば、50μm以下に設定することも可能である。
 可撓基板14,15は、SOG等からなる有機物を含む酸化シリコン系の薄膜(SiO膜)のみで構成されてもよいし、後述するように、他の実施形態においては、1つ又は複数のポリイミド膜(以下、PI膜)が積層された多層膜として構成されてもよい。可撓基板がPI膜との多層膜として構成される場合、PI膜の厚み(膜厚)は、より薄い方が好ましい。PI膜の膜厚は、SiO膜の形状保持性及び自立性と、PI膜のリタデーション等を考慮しつつ、製品のフレキシブル機能によって適宜、決定される。
 デバイス基板11,12のうち、一方のデバイス基板11は、CF基板11であり、他方のデバイス基板12は、TFTアレイ基板12である。本実施形態の場合、CF基板11が液晶表示パネル10の正面側(図1の上側)に配され、TFTアレイ基板12が背面側(図1の下側)に配される。
 CF基板11は、可撓基板14の液晶層13側の表面(内面)上に、例えばアクリル系樹脂に顔料で赤・緑・青等に着色したCF層等の積層物からなるCF側薄膜層(薄膜デバイスの一例)16が形成されたものからなる。CF側薄膜層16は、例えば、CF層、ブラックマトリクス層、配向膜、対向電極等により構成される。CF基板11の正面側(外側)の表面(外面)上には、偏光板17が貼り付けられている。
 TFTアレイ基板12は、前記可撓基板14で例示した材料で構成される可撓基板15の液晶層13側の表面(内面)上に、TFT等の積層物からなるTFT側薄膜層(薄膜デバイスの一例)18が形成されたものからなる。なお、可撓基板15と可撓基板14とは、必ずしも構成及び膜厚が互いに同じである必要はない。TFT側薄膜層18は、例えば、酸化物半導体膜からなるTFT、透明導電膜からなる画素電極、ゲート配線、ソース配線、容量配線等の金属薄膜からなる配線、絶縁層、保護膜、バリア膜、一定のセルギャップを保つための樹脂スペーサー、配向膜等により構成される。TFTアレイ基板12の背面側(外側)の表面(外面)上には、CF基板11側の偏光板17と対をなす偏光板19が貼り付けられている。
 次いで、液晶表示パネル10の製造方法における各工程を説明する。ここでは、可撓基板14,15が、SOG法によるSiO膜のみからなる場合を例示する。先ず、TFTアレイ基板12の製造工程を説明する。
(光熱変換膜形成工程)
 図2は、支持基板20上にTi、Mo、Ta、Wからなる群より選ばれる少なくとも1つを含む高融点金属、又は高融点合金からなる光熱変換膜21を形成する工程を模式的に表した説明図である。支持基板20は、TFTアレイ基板12を形成するための基台として利用される板状物である。支持基板20は、可撓基板15と比べて厚みが大きく、それ自体で形状を保持できる剛性を備えている。また、支持基板20は、照射するレーザー光に対して、透過性を備えていなければならない。支持基板20としては、例えば、無アルカリガラス、石英ガラス等の公知のガラスを用いることができる。また、既存の液晶表示デバイスの製造に用いられるサイズの無アルカリガラスを採用すれば、従来設備をそのまま製造に用いる事が可能となり、特殊な専用装置の開発は不要となる。
 図2に示されるように、支持基板20が配置され、その片側の表面(内面)20a上に、光熱変換膜21を形成する。光熱変換膜は、支持基板を十分透過する波長のレーザー光に対して、十分吸収する材料から成り、例えば高融点金属や金属合金等をスパッタ成膜等により形成する。膜厚は、その透過特性によって異なるが少なくとも100nm以上は必要となる。
 また、他の製造例としては、光熱交換膜21の代わりに剥離層を用いても良い。剥離層はレーザー光が照射されると、構成物質が瞬時に気化・蒸発し、爆発的に放出される(所謂、アブレーション現象)ことにより接着力が消失又は減少または、膜自体が消失・粉砕して、支持基板20を、他の積層物から剥離させるものである。例としては、アモルファスシリコンやITOを剥離層として、355nmや308nmの波長のレーザーを照射する。
(可撓基板形成工程)
 上記のように、支持基板20上に光熱変換膜21が形成された後、光熱変換膜21に積層する形で可撓基板15が形成される。図3は、光熱変換膜21上に可撓基板15を形成する工程を模式的に表した説明図である。
 可撓基板15は、上述したように、例えば有機シロキサン系化合物をベースとしたアルキル基を含むシラノール化合物を含有する液状塗膜を熱硬化させて得られる有機物を含む酸化シリコン系の膜等のSOG技術で形成される膜を用いる。まず、SOG材を塗工する前に、密着力を向上させる理由から、例えば、UVランプを照射したり、酸素プラズマに曝す事で表面改質を行って、密着性が向上する事前処理を行った後、光熱変換膜21上に塗布をする。また、密着力を高める添加物をSOG材に混ぜてもよい。SOG材15aの塗工方法としては、特に制限されないが、最終的に得られる可撓基板15の厚みを均一に制御し易い等の理由により、塗工装置23に示すスリットコーター、又はスピンコーターが好ましい。
 SOG材15aからなる塗膜が形成された後、加熱処理(ベーキング処理)が施されると、塗膜が反応して有機物を含むSiOを主成分とする薄膜からなる可撓基板15が得られる。加熱処理(ベーキング処理)は、例えば、200℃以上の温度で実施される。
 可撓基板15の厚みとしては、特に制限はなく、目的に応じて適宜設定されるが、例えば、1μm~50μm程度に設定することができる。なお、可撓基板15は、支持基板20上の光熱変換膜21に対して、基本的に全面的に形成される。
 可撓基板15は、SiOを主成分として形成されるため、液晶表示装置として重要な位相差に起因する視認性を損なわない。実際に位相差を測定したが、計測不能レベルであった。
(薄膜デバイス形成工程)
 光熱変換膜21上に可撓基板15が形成された後、可撓基板15上に、TFT側薄膜層18の各構成要素が、公知の成膜技術、フォトリソグラフィ技術等を利用して所定形状にパターニングされつつ形成される。
 バリア膜18aは、可撓基板15の膜中に存在する有機成分が、TFT側薄膜層18側へ移行することを防止するものである。TFT側薄膜層18に含まれるTFT等は、有機成分の影響を受ける可能性があるため、可撓基板15の表面を覆うようにバリア膜18aが形成される。バリア膜18aとしては、例えば、窒化ケイ素(SiN)膜や窒化酸化シリコン膜(SiNO)が利用される。バリア膜18aは、例えば、50nm~500nm程度の厚みで形成される。なおバリア膜18aは必須の構成要素ではなく、必要に応じて適宜設けられる。
 可撓基板15上に、バリア膜18a等を含むTFT側薄膜層18が形成されると、支持基板20に固定されたフレキシブル性を持つ可撓基板15上にTFTアレイ基板12(支持基板付き薄膜デバイス)が得られる。
 CF基板11についても、上述したTFTアレイ基板12の場合と同様に、支持基板20上に光熱変換膜21を介してCF基板11が形成される。つまり、支持基板20上に光熱変換膜21が形成され、その光熱変換膜21上に、上述した可撓基板15の場合と同様の方法により、可撓基板14が形成される。そして、その可撓基板14上にCF側薄膜層16が形成されることで、支持基板20に固定されたフレキシブル性を持つ可撓基板15上にCF基板11が得られる。
 なお、CF基板11についても、前記TFTアレイ基板12の場合と同様に、光熱変換膜21の代わりに剥離層を用いても良い。
(貼合工程)
 次いで、支持基板20に固定されているCF基板11とTFTアレイ基板12とを、液晶層13を挟む形で互いに貼り合わせる。CF基板11とTFTアレイ基板12とは、それらの間に介在されかつ液晶層13の周りを取り囲むシール材の接着力等を利用して互いに固定される。CF基板11及びTFTアレイ基板12の貼り合わせ方法としては、公知の手法が適用される。
 このように、CF基板11とTFTアレイ基板12は、可撓基板と比べてより堅固な支持基板20に固定されたままの状態で互いに貼り合わせて、液晶表示パネル10の状態とすることができる。そのため、CF基板11及びTFTアレイ基板12の取扱性、作業性、搬送性等に優れており、かつ、本実施形態の製造方法は、従来の液晶ディスプレイデバイスの製造装置・方法で生産する事ができる。
(照射工程、及び剥離工程)
 図4は、CF基板11とTFTアレイ基板12が支持基板20に固定されたままで貼り合わされた状態において、支持基板20越しにレーザー光24を照射し、光熱変換膜21によって、吸収した光エネルギーを熱エネルギーに変換して、光熱変換膜21と可撓基板14との界面で接着力を消失させる工程をCF基板11側において模式的に表した説明図である。図4に示されるように、支持基板20を液晶表示パネル10から剥離するために、レーザー光24の照射が行われる。
 この工程では、CF基板11側の光熱変換膜21と、TFTアレイ基板12側の光熱変換膜21とを、それぞれ支持基板20越しにレーザー光24を照射して、光が吸収されて熱となり、その熱によって、界面での溶解と線膨張係数の違いによる伸縮差によって、一方の光熱変換膜21が付いた状態の支持基板20をCF基板11側の可撓基板14から剥離させる。可撓基板と比較してより堅固なTFTアレイ基板12側の支持基板20で形状を維持した状態で、偏光板を貼り合せる。その後、同様の方法でTFTアレイ12の支持基板20側からレーザーを照射して、光熱変換膜21と支持基板20をTFTアレイ基板12側の可撓基板15から剥離させる。
 レーザー光24の種類としては、支持基板20に対して透過し、光熱変換膜21によって剥離できるエネルギーを十分吸収する波長のレーザーを用いる。例えば、支持基板20が透過する範囲のUVレーザーやグリーンレーザー等が挙げられる。波長以外のレーザーの種類は特に制限は無いが、CWレーザーよりもパルス幅が数十nsecのパルスレーザーを用いる事で膜厚方向への熱的な影響を小さくする事ができる。なお、本件の実証では、パルス幅20nsecの355nm固体レーザーやパルス幅30nsecの308nmのエキシマレーザー及びパルス幅10nsecの532nm固体レーザーを用いて、光熱変換膜21付きの支持基板20をCF基板11側の可撓基板14やTFTアレイ基板12側の可撓基板15から剥離を行った。
 なお、他の製造例として、光熱変換膜21の代わりに剥離層を採用した場合は、支持基板20を透過して、剥離層で十分に吸収する波長が照射できるレーザーを選択する。支持基板20側からレーザー光24が照射されると支持基板20を透過したレーザー光24が剥離層に照射されると剥離層がレーザー光24を吸収して瞬間的に蒸発(アブレーション)し、剥離層が消失・粉砕されて、支持基板20と可撓基板14が分離される。例えば、アモルファスシリコンを剥離層として、吸収しやすい355nmのUV固体レーザーを照射する事で実現できる。
 レーザー光24を液晶表示パネル10に向かって照射する場合、片方の面側から順次、レーザー光24を照射してもよいし、両方の面側から同時にレーザー光24を照射してもよい。
 また、支持基板20付きの液晶表示パネル10に対するレーザー光24の照射方法としては、広面積への照射となるため、光学系によって、ラインビーム化やガルバノスキャン方式を用いる事で生産性が飛躍的に向上する。
 図5は、支持基板20がCF基板11側の可撓基板14から剥離される工程をCF基板11側において模式的に表した説明図である。上述したように、所定のレーザー光24が、支持基板20の外側からCF基板11側の光熱変換膜21に向かって照射されると、そのレーザー光24が支持基板20を通過して光熱変換膜21に到達し、光熱変換膜21による発熱により、支持基板20と可撓基板14との間の接着(固定)が解消される。その結果、支持基板20を液晶表示パネル10側から容易に剥離することができる。
 TFTアレイ基板12側の支持基板20についても、同様に、支持基板20の外側から支持基板20の裏面(外面)20bに向かってレーザー光24を照射し、光熱変換膜21を発熱させることで、支持基板20を、TFTアレイ基板12側の可撓基板15から剥離することができる。
 なお、支持基板20が剥がされた後の各可撓基板14,15の表面を適宜、洗浄して、残留物を除去してもよい。ただし、可撓基板14の表面の洗浄は必須ではなく、残留物が、液晶表示パネル10の表示性能に影響しない程度のものであれば、残留物をそのままの状態にしておいてもよい。特に、光熱変換膜21の代わりに剥離層を採用した場合は、アブレーションでデブリが発生し、視認性が損なわれることから洗浄して、残留物を除去する場合が多い。
 以上のようにして、1μm~50μm程度の厚みが小さい可撓基板14,15を備えたフレキシブルディスプレイ用の液晶表示パネル10が得られる。なお、液晶表示パネル10の両外側には、図1に示されるように、最終的に、偏光板17,19が粘着剤や接着剤を利用して貼り付けられる。
 ところで、支持基板20を液晶表示パネル10側から剥離する際、片方の支持基板20を先に剥離し、もう片方の支持基板20を剥離する前に、剥離された側の可撓基板(例えば、可撓基板14)に対して、支持体代わりに偏光板(例えば、偏光板17)を貼り付けてもよい。そして、偏光板を貼り付けた後、もう片方の支持基板20を剥離し、残りの偏光板(例えば、偏光板19)を可撓基板(例えば、可撓基板15)に貼り付けてもよい。このように、支持基板20を剥離し、支持基板20に替えて偏光板を貼り付けることで、液晶表示パネル10の剛性、取扱性等を確保してもよい。
 以上のように、本実施形態の製造方法によれば、支持基板20上で剥離層21を介して有機物を含む酸化シリコン系の膜からなる可撓基板14,15を形成し、かつその可撓基板14,15上に薄膜デバイス(CF側薄膜層16、TFT側薄膜層18)を形成するため、従来の製造方法では実現できないような厚みの小さいフレキシブルディスプレイ用の液晶表示パネル10を容易に製造することができる。
 <実施形態2>
 本実施形態では、可撓基板14A,15Aが、SOG法によるSiO膜とPI膜の積層物からなる場合を例示する。なお、以降の各実施形態において、実施形態1と同じ構成については、同じ符号を付し、詳細な説明を省略する。
 上記実施形態1の場合、SiOを主成分とするSOG膜(SiO膜)単層は、位相差がほとんど無く視認性が秀でている反面、弾性率が大きくクラック耐性が無いことから膜中に取り込まれたパーティクルによる膜の異常や剥離工程でのパーティクルの影によるレーザー照射の部分的な照射異常などによって、破断しやすい欠点を持っている。このため、形状保持性、及び自立性を向上させるため、視認性を損なわない程度の薄い3μm以下のPI膜を補強材としてSOG膜(SiO膜)との積層構造で構成する。この構造を構成する事で、自立性は飛躍的に向上する事ができる。
 本実施形態において、可撓基板14A,15Aの構成は、支持基板側にPI膜を有するSiO膜/PI膜、又は、SiO膜の両側にPI膜を有するPI膜/SiO膜/PI膜/の構造がある。
(光熱変換膜形成工程)
 上記実施形態1の光熱変換膜形成工程と同様、支持基板20上に高融点金属、又は高融点合金からなる光熱変換膜21が形成される。
 ところで、PI膜は、UV光を吸収するため、他の製造例においては、支持基板20を透過してPI膜では吸収する波長域のレーザーを剥離に用いる場合、光熱交換膜21を形成しなくても良い。例えば、支持基板に無機ガラスを用いて、その直上にPI膜を形成する。一般的に液晶デバイスに用いられる無機ガラスは、300nmで30~80%透過する事とPI膜は、400nm以下では吸収され始める事から355nmの固体レーザーや308nmのエキシマレーザーを照射する事で、支持基板(無機ガラス)を透過して、直接PI膜をアブレーションで剥離する事が可能となる。しかしながら、PI膜をアブレーションで直接的に剥離するとデブリが発生し、視認性が損なわれる場合がある。また、照射するレーザーの強度分布を反映した凹凸が生じやすく、PI膜の位相差との関係もあり、液晶ディスプレイデバイスでは、視認性の悪化の原因となる。このため、本実施形態のように、光熱変換膜21を用いる手法が望ましい。
(可撓基板形成工程)
 上記のように、支持基板20上に光熱変換膜21が形成された後、光熱変換膜21に積層する形で可撓基板15Aが形成される。図6は、光熱変換膜21上に実施形態2に係る可撓基板15Aを構成するPI26膜を形成する工程を模式的に表した説明図である。
 可撓基板15Aは、上述したように、例えばPIに代表される耐熱性の高い有機材料を用いる。この場合、用いるPIは主材料の骨格構造や添加物等によって、極力可視光を透過して透明性を持ち、位相差が小さい材料である事を考慮したものが望ましい。このPI上に、例えば有機シロキサン系化合物をベースとしたアルキル基を含むシラノール化合物を含有する液状塗膜を熱硬化させて得られる有機物を含む酸化シリコン系の膜等のSOG技術で形成される膜を用いる。
 光熱変換膜12を形成した支持基板20上に密着性を保持する目的として、例えば、ヘキサメチルジシロキサン(HMDS)試薬を蒸気に晒したり、シランカップリング剤をスピンコーターで塗布したりして事前処理を行った後、PIを形成する。PIは、溶剤に溶かした前駆体のポリアミド酸(ポリアミック酸)をスリットコーターやスピンコーター等の塗工装置27によって、全面に塗布する。その塗布物26aを200℃以上に加熱する事でイミド化を行って、PI膜26を形成する。PI膜は、最終的に得られた可撓基板15Aに必要な強度が得られる膜厚で、かつ、位相差軽減の観点からは薄いほど良いため、0.5μm~3μmが望ましい。実施の試作では、位相差が小さく、無色透明である特殊なPIを用いて1μmと2μmで形成した後、10μmの膜厚でSOGを積層した試作を行い、液晶ディスプレイとして問題ないレベルである位相差が10nm以下であった。
 次に、SOG材を塗工する前に、密着力を向上させる理由から、例えば、UVランプを照射したり、酸素プラズマに曝す事で表面改質を行って、密着性が向上する事前処理を行った後、PI膜26上にSOG材を塗布する。図7は、PI膜26上に実施形態2に係る可撓基板15Aを構成するSiO膜150を形成する工程を模式的に表した説明図である。
 SOG材15aの塗工方法としては、特に制限されないが、最終的に得られる可撓基板15Aの厚みを均一に制御し易い等の理由により、塗工装置23に示すスリットコーター、又はスピンコーターが好ましい。
 SOG材15aからなる塗膜が形成された後、加熱処理(ベーキング処理)が施されると、塗膜が反応してSiOを主成分とする有機物を含む酸化シリコン系の薄膜からなるSiO膜(SOG膜)150が得られる。尚、SiO膜の膜厚は50μm以下で形成されて、特に限定しないが、各膜の特性を的確に活用する事を鑑みるとPI膜26より厚い膜厚となる。加熱処理(ベーキング処理)は、例えば、200℃以上の温度で実施される。実施の試作品に関しては、1μmと2μmのPI膜26上にSOGの膜厚を10μmで試作を行い、SOG単層と比較して、約15倍の破断強度が得られた。
 PI膜26は一般的に耐熱性や耐薬品性が高い材料であるが、TFT素子を製造するプラズマや有機物であるレジストを剥離する工程に耐え得る材料開発は難しく、特に、液晶ディスプレイデバイスとして必須の可視光透明性や位相差軽減との両立した材料開発は、更に困難となる。よって、主成分がSiOからなるプロセス耐性に秀でているSOG材料をPI膜上に被覆形成したSOG/PI構造は、PI材料開発を簡素化できる長所を併せ持っている。
 更に、可撓基板15Aの形状保持性及び自立性を向上させる目的で、他の製造例では、SOG膜(SiO膜)/PI膜上にPI膜を追加する3層構造にしても良い。上層のPI形成は、先に記述した下層のPI形成の様に、事前処理としてUVランプを照射したり、酸素プラズマに曝す事で表面改質を行って、SOG膜との密着性が向上する処理を行った後、SOG膜上に溶剤に溶かしたPIの前駆体のポリアミド酸(ポリアミック酸)を全面に塗布した後、200℃以上に加熱する事でイミド化を行って、PIを形成する。先の記述同様、PIは、位相差軽減の観点から膜厚は薄いほど良く、3μm以下が望ましい。また、下層のPI膜と膜厚は異なっても良い。
 可撓基板15Aの厚みとしては、特に制限はなく、目的に応じて適宜設定されるが、例えば、1μm~50μm程度に設定することができる。なお、可撓基板15Aは、支持基板20上の光熱変換膜21に対して、基本的に全面的に形成される。
(薄膜デバイス形成工程)
 光熱変換膜21上に可撓基板15Aが形成された後、可撓基板15A上に、実施形態1の薄膜デバイス形成工程と同様、TFT側薄膜層18の各構成要素が、公知の成膜技術、フォトリソグラフィ技術等を利用して所定形状にパターニングされつつ形成される。
 そして、可撓基板15A上に、TFT側薄膜層18が形成されると、支持基板20に固定された状態のTFTアレイ基板12(支持基板付き薄膜デバイス)が得られる。
 CF基板11についても、上述したTFTアレイ基板12の場合と同様に、支持基板20上に光熱変換膜21を介してCF基板11が形成される。つまり、支持基板20上に光熱変換膜21が形成され、その光熱変換膜21上に、上述した可撓基板15Aの場合と同様の方法により、SiO膜140/PI膜26の2層構造の可撓基板14Aが形成される。そして、その可撓基板14A上にCF側薄膜層16が形成されることで、支持基板20に固定されたままの状態のCF基板11が得られる。なお、TFTアレイ基板側の可撓基板15AとCF基板側の可撓基板14Aは、必ずしも同じ構成や膜厚で無くても良いし、他の実施形態であっても良い。
(貼合工程)
 次いで、実施形態1と同様、支持基板20に固定されているCF基板11とTFTアレイ基板12とを、液晶層13を挟む形で互いに貼り合わせる。このように、CF基板11
とTFTアレイ基板12は、可撓基板14A、15Aと比べてより堅固な支持基板20に固定されたままの状態で互いに貼り合わせて、液晶表示パネル10の状態とすることができる。そのため、CF基板11及びTFTアレイ基板12の取扱性、作業性、搬送性等に優れており、かつ、本実施形態の製造方法は、従来の液晶ディスプレイデバイスの製造装置・方法で生産する事ができる。
(照射工程、及び剥離工程)
 図8は、CF基板11とTFTアレイ基板12が支持基板20に固定されたままで貼り合わされた状態において、支持基板20越しにレーザー光24を照射し、光熱変換膜21によって、吸収した光エネルギーを熱エネルギーに変換して、実施形態2の光熱変換膜21と可撓基板14Aとの界面で接着力を消失させる工程を模式的に表した説明図である。図8に示されるように、実施形態1と同様、支持基板20を液晶表示パネル10から剥離するために、レーザー光24の照射が行われる。
 この工程では、CF基板11側の光熱変換膜21と、TFTアレイ基板12側の光熱変換膜21とを、それぞれ支持基板20越しにレーザー光24を照射する。すると、光が吸収されて熱となり、その熱によって、界面での溶解と線膨張係数の違いによる伸縮差が生じ、一方の光熱変換膜が付いた状態で支持基板20をCF基板11側の可撓基板14Aから剥離させる。可撓基板と比較してより堅固なTFTアレイ基板12側の支持基板20で形状を維持した状態で、偏光板を貼り合せる。その後、同様の方法でTFTアレイ12の支持基板20側からレーザーを照射して、光熱変換膜21と支持基板20をTFTアレイ基板12側の可撓基板15Aから剥離させる。
 レーザー光24の種類としては、上記実施形態1と同様、支持基板20に対して透過し、光熱変換膜21によって剥離できるエネルギーを十分吸収する波長のレーザーを用いる。レーザー光24を液晶表示パネル10に向かって照射する場合、片方の面側から順次、レーザー光24を照射してもよいし、両方の面側から同時にレーザー光24を照射してもよい。
 図9は、支持基板20が実施形態2に係るCF基板11側の可撓基板14Aから剥離される工程をCF基板11側において模式的に表した説明図である。上述したように、所定のレーザー光24が、支持基板20の外側からCF基板11側の剥離層21に向かって照射されると、そのレーザー光24が支持基板20を通過して光熱変換膜21に到達し、光熱変換膜21による発熱により、支持基板20と可撓基板14Aとの間の接着(固定)が解消される。その結果、支持基板20を液晶表示パネル10側から容易に剥離することができる。
 TFTアレイ基板12側の支持基板20についても、同様に、支持基板20の外側から支持基板20の裏面(外面)20bに向かってレーザー光24を照射し、光熱変換膜21を発熱させることで、支持基板20を、TFTアレイ基板12側の可撓基板15Aから剥離することができる。
 なお、支持基板20が剥がされた後の各可撓基板14A,15Aの表面を適宜、洗浄して、残留物を除去してもよい。特に、先に記述した支持基板(無機ガラス)を透過して、直接PI膜をアブレーションで剥離する剥離方法では、デブリが発生するため、残留物を除去する必要がある。
 以上のようにして、1μm~50μm程度の厚みが小さい可撓基板14A,15Aを備えたフレキシブルディスプレイ用の液晶表示パネル10が得られる。なお、液晶表示パネル10の両外側には、実施形態1の図1に示されるような偏光板17,19が最終的に粘着剤や接着剤を利用して貼り付けられる。
 <実施形態3>
 本実施形態では、可撓基板14B,15Bが、PI膜とSOG膜の積層物からなる場合を例示する。本実施形態についても、可撓基板14B,15Bを、PI膜とSOG膜(SiO膜)との積層構造で構成する事で、形状保持性及び自立性が飛躍的に向上する。
 なお、上記実施形態2では、支持基板の直上にPI膜を形成する構成であったが、本実施形態では、支持基板の直上にSOG(SiO膜)を形成する構成を例示する。この場合の可撓基板14B,15Bの構成は、支持基板側をSOG(SiO膜)とするPI膜/SiO膜、又はSiO膜/PI膜/SiO膜の構造がある。本実施形態では、PI膜/SiO膜の2層構造を例示する。
(光熱変換膜形成工程)
 上記実施形態1の光熱変換膜形成工程と同様、支持基板20上に光熱変換膜21が形成される。
 なお、他の製造例においては、光熱交換膜21の代わりに剥離層を用いても良い。剥離層はレーザー光が照射されると、アブレーション現象により接着力が消失又は減少または、膜自体が消失・粉砕して、支持基板20を、他の積層物から剥離させるものである。例としては、アモルファスシリコンやITOを剥離層として、355nmや308nmの波長のレーザーを照射する。
(可撓基板形成工程)
 上記のように、支持基板20上に光熱変換膜または剥離層21が形成された後、光熱変換膜または剥離層21に積層する形で可撓基板15Bが形成される。図10は、光熱変換膜21上に実施形態3に係る可撓基板15Bを構成するSiO膜150を形成する工程を模式的に表した説明図である。
 可撓基板15BのSiO膜には、上述したように、例えば有機シロキサン系化合物をベースとしたアルキル基を含むシラノール化合物を含有する液状塗膜を熱硬化させて得られる有機物を含む酸化シリコン系の薄膜等のSOG技術で形成される膜を用いる。なお、SiO膜150を形成する方法等は、上記実施形態と同様である。
 可撓基板15Bでは、更に、SOG膜(SiO膜)150上に、例えばPI膜に代表される耐熱性の高い有機材料の膜が形成される。この場合、用いるPIは主材料の骨格構造や添加物等によって、極力可視光を透過して透明性を持ち、位相差が小さい材料である事を考慮したものが望ましい。
 PI膜は、支持基板直上に密着性を保持する目的として、例えば、ヘキサメチルジシロキサン(HMDS)試薬を蒸気に晒したり、シランカップリング剤をスピンコーターで塗布したりして事前処理を行った後、PI膜を形成する。PIは、溶剤に溶かした前駆体のポリアミド酸(ポリアミック酸)をスリットコーターやスピンコーター等によって、全面に塗布する。これを200℃以上に加熱する事でイミド化を行って、PI膜を形成する。PIは、最終的に得られた可撓基板15Bに必要な強度が得られる膜厚で、かつ、位相差軽減の観点からは薄いほど良いため、0.5μm~3μmが望ましい。
 PIは一般的に耐熱性や耐薬品性が高い材料であるが、TFT素子を製造するプラズマや有機物であるレジストを剥離する工程に耐え得る材料開発は難しく、特に、液晶ディスプレイデバイスとして必須の可視光透明性や位相差軽減との両立した材料開発は、更に困難となる。よって、他の製造例においては、主成分がSiOからなるプロセス耐性に秀でているSOG材料を更にPI上に被覆形成したSOG/PI/SOG構造にする事で、TFT素子製造に耐え得る可撓基板構造を形成する事も可能である。
 上層のSOG材を塗工する前に、密着力を向上させる理由から、例えば、UVランプを照射したり、酸素プラズマに曝す事で表面改質を行って、密着性が向上する事前処理を行った後、例えば、スリットコーター、又はスピンコーターによって塗工する。その後、加熱処理(ベーキング処理)が施されると、塗膜が反応してSiOを主成分とする有機物を含む酸化シリコン系の薄膜が得られる。
 可撓基板15Bの厚みとしては、特に制限はなく、目的に応じて適宜設定されるが、例えば、1μm~50μm程度に設定することができる。なお、可撓基板15Bは、支持基板20上の光熱変換膜21に対して、基本的に全面的に形成される。
(薄膜デバイス形成工程)
 光熱変換膜21上に可撓基板15Bが形成された後、可撓基板15B上に、実施形態1の薄膜デバイス形成工程と同様、TFT側薄膜層18の各構成要素が、公知の成膜技術、フォトリソグラフィ技術等を利用して所定形状にパターニングされつつ形成される。
 そして、可撓基板15B上に、TFT側薄膜層18が形成されると、支持基板20に固定された状態のTFTアレイ基板12(支持基板付き薄膜デバイス)が得られる。
 CF基板11についても、上述したTFTアレイ基板12の場合と同様に、支持基板20上に光熱変換膜21を介してCF基板11が形成される。つまり、支持基板20上に光熱変換膜21が形成され、その光熱変換膜21上に、上述した可撓基板15Bの場合と同様の方法により、PI膜26/SiO膜140の2層構造の可撓基板14Bが形成される。そして、その可撓基板14B上にCF側薄膜層16が形成されることで、支持基板20に固定されたままの状態のCF基板11が得られる。なお、TFTアレイ基板側の可撓基板15BとCF基板側の可撓基板14Bは、必ずしも同じ構成や膜厚で無くても良いし、他の実施形態であっても良い。
 また、CF基板11についても、前記TFTアレイ基板12の場合と同様に、光熱変換膜の代わりに剥離層を用いても良い。
(貼合工程)
 次いで、実施形態1と同様、支持基板20に固定されているCF基板11とTFTアレイ基板12とを、液晶層13を挟む形で互いに貼り合わせる。このように、CF基板11
とTFTアレイ基板12は、可撓基板14B、15Bと比べてより堅固な支持基板20に固定されたままの状態で互いに貼り合わせて、液晶表示パネル10の状態とすることができる。そのため、CF基板11及びTFTアレイ基板12の取扱性、作業性、搬送性等に優れており、かつ、本実施形態の製造方法は、従来の液晶ディスプレイデバイスの製造装置・方法で生産する事ができる。
(照射工程、及び剥離工程)
 図11は、CF基板11とTFTアレイ基板12が支持基板20に固定されたままで貼り合わされた状態において、支持基板20越しにレーザー光24を照射し、光熱変換膜21によって、吸収した光エネルギーを熱エネルギーに変換して、実施形態3に係る可撓基板14Bとの界面で接着力を消失させる工程を模式的に表した説明図である。図11に示されるように、支持基板20を液晶表示パネル10から剥離するために、レーザー光24の照射が行われる。
 この工程では、CF基板11側の光熱変換膜21と、TFTアレイ基板12側の光熱変換膜21とを、それぞれ支持基板20越しにレーザー光24を照射する。すると、光が吸収されて熱となり、その熱によって、界面での溶解と線膨張係数の違いによる伸縮差が生じ、一方の光熱変換膜が付いた状態の支持基板20をCF基板11側の可撓基板14Bから剥離させる。可撓基板と比較してより堅固なTFTアレイ基板12側の支持基板20で形状を維持した状態で、偏光板を貼り合せる。その後、同様の方法でTFTアレイ12の支持基板20側からレーザーを照射して、光熱変換膜21と支持基板20をTFTアレイ基板12側の可撓基板15Bから剥離させる。
 レーザー光24の種類としては、上記実施形態1と同様、支持基板20に対して透過し、光熱変換膜21によって剥離できるエネルギーを十分吸収する波長のレーザーを用いる。レーザー光24を液晶表示パネル10に向かって照射する場合、片方の面側から順次、レーザー光24を照射してもよいし、両方の面側から同時にレーザー光24を照射してもよい。
 なお、光熱変換膜21の代わりに剥離層を採用した場合は、支持基板20を透過して、剥離層で十分に吸収する波長が照射できるレーザーを選択する。支持基板20側からレーザー光24が照射されると支持基板20を透過したレーザー光24が剥離層21に照射されると剥離層21がレーザー光24を吸収して瞬間的に蒸発(アブレーション)し、剥離層21が消失・粉砕されて、支持基板20と可撓基板14Bが分離される。例えば、アモルファスシリコンを剥離層として、吸収しやすい355nmのUV固体レーザーを照射する事で実現できる。
 図12は、支持基板20が実施形態3に係るCF基板11側の可撓基板14Bから剥離される工程をCF基板11側において模式的に表した説明図である。上述したように、所定のレーザー光24が、支持基板20の外側からCF基板11側の剥離層21に向かって照射されると、そのレーザー光24が支持基板20を通過して光熱変換膜21に到達し、光熱変換膜21による発熱により、支持基板20と可撓基板14Bとの間の接着(固定)が解消される。その結果、支持基板20を液晶表示パネル10側から容易に剥離することができる。
 TFTアレイ基板12側の支持基板20についても、同様に、支持基板20の外側から支持基板20の裏面(外面)20bに向かってレーザー光24を照射し、光熱変換膜21を発熱させることで、支持基板20を、TFTアレイ基板12側の可撓基板15Bから剥離することができる。
 なお、支持基板20が剥がされた後の各可撓基板14B,15Bの表面を適宜、洗浄して、残留物を除去してもよい。特に、光熱変換膜21の代わりに剥離層を採用した場合は、アブレーションでデブリが発生し、視認性が損なわれることから洗浄して、残留物を除去する場合が多い。
 以上のようにして、1μm~50μm程度の厚みが小さい可撓基板14B,15Bを備えたフレキシブルディスプレイ用の液晶表示パネル10が得られる。なお、液晶表示パネル10の両外側には、実施形態1の図1に示されるような偏光板17,19が最終的に粘着剤や接着剤を利用して貼り付けられる。
 <他の実施形態等>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記実施形態では、CF基板11とTFTアレイ基板12を互いに貼り合せた後に、照射工程及び剥離工程を行っていたが、本発明はこれに限られず、例えば、CF基板11等のデバイス基板を、他のデバイス基板に貼り合せない状態で、照射工程及び剥離工程を行ってもよい。
 (2)上記実施形態では、表示パネルとして液晶表示パネルを例示したが本発明はこれに限られず、有機ELディスプレイ等の他の表示原理を採用する表示パネルにも、本発明を適用することができる。
 (3)本発明のデバイス基板(表示パネル)の製造方法は、デバイス基板(表示パネル)を1つずつ製造する場合のみならず、複数個のデバイス基板(表示パネル)をマトリクス状に繋げた状態で纏めて製造する場合にも適用可能である。
 10...液晶表示パネル(表示パネル)、11...CF基板(デバイス基板)、12...TFTアレイ基板(デバイス基板)、13...液晶層、14,15...可撓基板、16...CF側薄膜層(薄膜デバイス)、17...偏光板、18...TFT側薄膜層(薄膜デバイス)、18a...バリア膜、19...偏光板、20...支持基板、21...光熱変換膜、24...レーザー光、26...光吸収膜、140,150...SiO膜

Claims (13)

  1.  アルキル基を含むシラノール化合物を含有する塗工液を硬化させてなる1つ又は複数のスピンオングラス技術からなるSiO膜を有する可視光透過性の可撓基板と、
     前記可撓基板上に形成される薄膜デバイスと、を備えるデバイス基板。
  2.  前記可撓基板は、1つのスピンオングラス技術からなるSiO膜のみからなる請求項1に記載のデバイス基板。
  3.  前記可撓基板は、1つのスピンオングラス技術からなるSiO膜と、前記SiO膜が有する2つの面のうち、前記薄膜デバイス側の面、又は前記薄膜デバイス側の反対側の面に形成される1つの耐熱性有機膜とを有する請求項1に記載のデバイス基板。
  4.  前記可撓基板は、2つのスピンオングラス技術からなるSiO膜と、これらの間に介在される1つの耐熱性有機膜とを有する請求項1に記載のデバイス基板。
  5.  前記可撓基板は、1つのスピンオングラス技術からなるSiO膜と、前記SiO膜が有する2つの面にそれぞれ1つずつ形成される2つの耐熱性有機膜とを有する請求項1に記載のデバイス基板。
  6.  前記耐熱性有機膜は、ポリイミド又はポリアミドからなる請求項3から請求項5の何れか一項に記載のデバイス基板。
  7.  請求項1から請求項6の何れか一項に記載のデバイス基板からなるカラーフィルタ基板を備える液晶表示装置。
  8.  請求項1から請求項6の何れか一項に記載のデバイス基板からなる薄膜トランジスタアレイ基板を備える液晶表示装置。
  9.  可視光透過性を有する可撓基板と、この可撓基板上に形成される薄膜デバイスとを備える液晶表示装置用のデバイス基板の製造方法であって、
     レーザー光が透過可能でありかつ前記デバイス基板を支持可能な支持基板の板面上に、レーザー光を吸収して発熱し、その熱によって直上の膜と剥離する光熱変換膜が形成される光熱変換膜形成工程と、
     前記可撓基板を形成するための塗工液を前記光熱変換膜上に塗工し、前記塗工液からなる塗膜を硬化することで前記光熱変換膜上に前記可撓基板が形成される可撓基板形成工程と、
     前記可撓基板上に前記薄膜デバイスが形成される薄膜デバイス形成工程と、
     前記支持基板の前記薄膜デバイスが形成されていない面側から前記光熱変換膜に向けてレーザー光が照射され、前記光熱変換膜と前記可撓基板の接着力が消失又は低減する照射工程と、
     前記光熱変換膜の接着力が消失等した後、前記支持基板と前記光熱変換膜が前記デバイス基板から剥離される剥離工程とを備える液晶表示装置用のデバイス基板の製造方法。
  10.  前記光熱変換膜は、Ti、Mo、Ta、Wからなる群より選ばれる少なくとも1つを含む高融点金属、又は高融点合金からなる請求項9に記載の液晶表示装置用のデバイス基板の製造方法。
  11.  可視光透過性を有する可撓基板と、この可撓基板上に形成される薄膜デバイスとを備える液晶表示装置用のデバイス基板の製造方法であって、
     レーザー光が透過可能でありかつ前記デバイス基板を支持可能な支持基板の板面上に、レーザー光よってアブレーション現象で消失・粉砕される剥離層を形成する剥離層形成工程と、
     前記可撓基板を形成するための塗工液を前記剥離層上に塗工し、前記塗工液からなる塗膜を硬化することで前記剥離層上に前記可撓基板が形成される可撓基板形成工程と、
     前記可撓基板上に前記薄膜デバイスが形成され、前記支持基板に前記剥離層を介して固定された前記デバイス基板が得られる薄膜デバイス形成工程と、
     前記支持基板の前記薄膜デバイスが形成されていない面側から前記剥離層に向けてレーザー光が照射され、前記剥離層と前記可撓基板の接着力が消失又は低減する照射工程と、
     前記剥離層の接着力が消失した後、前記支持基板と前記剥離層が前記デバイス基板から剥離される剥離工程とを備える液晶表示装置用のデバイス基板の製造方法。
  12.  前記剥離層は、アモルファスシリコン,ITO,IZO,In-Ga-Zn-Oからなる群より選ばれる300nm~400nmの光の吸収が大きい材料からなる請求項11に記載の液晶表示装置用のデバイス基板の製造方法。
  13.  前記可撓基板形成工程において、前記塗工液がアルキル基を含むシラノール化合物を含有し、前記塗膜が、加熱反応後に有機成分を含有するSiO膜になるものからなる請求項9から請求項12の何れか一項に記載の液晶表示装置用のデバイス基板の製造方法。
PCT/JP2016/070791 2015-07-21 2016-07-14 デバイス基板、液晶表示装置、及びデバイス基板の製造方法 WO2017014136A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/743,108 US20190072808A1 (en) 2015-07-21 2016-07-14 Device substrate, liquid crystal display apparatus, and device substrate manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-144219 2015-07-21
JP2015144219 2015-07-21

Publications (1)

Publication Number Publication Date
WO2017014136A1 true WO2017014136A1 (ja) 2017-01-26

Family

ID=57835012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070791 WO2017014136A1 (ja) 2015-07-21 2016-07-14 デバイス基板、液晶表示装置、及びデバイス基板の製造方法

Country Status (2)

Country Link
US (1) US20190072808A1 (ja)
WO (1) WO2017014136A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365128A (zh) * 2018-01-19 2018-08-03 昆山国显光电有限公司 制备柔性显示设备的方法和柔性显示设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11586072B2 (en) * 2019-11-20 2023-02-21 Central Wisdom Technology Consulting Corp. Display structure having a laser light wavelength conversion layer
US11539009B2 (en) * 2020-04-26 2022-12-27 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and manufacturing method thereof, display terminal
CN114763725B (zh) * 2021-01-13 2024-09-27 群创光电股份有限公司 窗户与透明显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162993A (ja) * 1998-11-26 2000-06-16 Ricoh Co Ltd イメージングデバイス
WO2004064018A1 (ja) * 2003-01-15 2004-07-29 Semiconductor Energy Laboratory Co., Ltd. 剥離方法及びその剥離方法を用いた表示装置の作製方法
WO2013005254A1 (ja) * 2011-07-06 2013-01-10 パナソニック株式会社 フレキシブルデバイスの製造方法及びフレキシブルデバイス
JP2014046272A (ja) * 2012-08-31 2014-03-17 Konica Minolta Inc ガスバリア性フィルムの製造方法及び電子デバイス
EP2832536A1 (en) * 2013-04-09 2015-02-04 LG Chem, Ltd. Laminate, and element comprising substrate manufactured using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162993A (ja) * 1998-11-26 2000-06-16 Ricoh Co Ltd イメージングデバイス
WO2004064018A1 (ja) * 2003-01-15 2004-07-29 Semiconductor Energy Laboratory Co., Ltd. 剥離方法及びその剥離方法を用いた表示装置の作製方法
WO2013005254A1 (ja) * 2011-07-06 2013-01-10 パナソニック株式会社 フレキシブルデバイスの製造方法及びフレキシブルデバイス
JP2014046272A (ja) * 2012-08-31 2014-03-17 Konica Minolta Inc ガスバリア性フィルムの製造方法及び電子デバイス
EP2832536A1 (en) * 2013-04-09 2015-02-04 LG Chem, Ltd. Laminate, and element comprising substrate manufactured using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365128A (zh) * 2018-01-19 2018-08-03 昆山国显光电有限公司 制备柔性显示设备的方法和柔性显示设备

Also Published As

Publication number Publication date
US20190072808A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
US9239495B2 (en) Display device, electronic device including display device, and method for manufacturing display device
JP5150138B2 (ja) 表示装置の製造方法
JP2011248072A (ja) 画像表示装置の製造方法
JP6637766B2 (ja) 表示装置及びその製造方法
US20130069890A1 (en) Touch display device and a method of manufacturing the same
WO2017014136A1 (ja) デバイス基板、液晶表示装置、及びデバイス基板の製造方法
KR20090017014A (ko) 가요성 표시 장치의 제조 방법
TW201040642A (en) Electronic devices having plastic substrates
CN104681746B (zh) 制造有机发光显示装置的方法
KR20150096324A (ko) 발광 장치
JP2013145808A (ja) 剥離方法、液晶ディスプレイの製造方法、有機elディスプレイの製造方法、およびタッチパネルの製造方法
JP2001166301A (ja) バックライト内蔵型液晶表示装置及びその製造方法
TW201248954A (en) Mother substrate structure of light emitting devices and light emitting device and method of fabricating the same
JP5750125B2 (ja) 多層構造、多層構造を製造する方法、および多層構造を用いたタッチ感応ディスプレイ
JP2013235196A (ja) 液晶表示装置及びその製造方法
US9360728B2 (en) Liquid crystal display panel and method of manufacturing the same
JP2012027177A (ja) フレキシブルtft基板の製造方法
JP2019512742A (ja) フレキシブルディスプレイ装置の製造方法
JP2017062361A (ja) 調光フィルム及び調光フィルムの製造方法
KR20200115091A (ko) 데코 필름, 이를 갖는 윈도우 필름과 적층체, 및 그의 제조방법
TWI534679B (zh) 觸控面板及其製法
JP2011119169A (ja) 電気光学装置、及び電気光学装置の製造方法
WO2016098268A1 (ja) 電極付きカラーフィルタ基板、該基板を含む表示装置、ならびに該基板の製造方法
US20140184987A1 (en) Display devices including inorganic components and methods of making and using the same
JP2001166300A (ja) バックライト内蔵型液晶表示装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16827696

Country of ref document: EP

Kind code of ref document: A1