[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017013929A1 - 光ファイバ - Google Patents

光ファイバ Download PDF

Info

Publication number
WO2017013929A1
WO2017013929A1 PCT/JP2016/064318 JP2016064318W WO2017013929A1 WO 2017013929 A1 WO2017013929 A1 WO 2017013929A1 JP 2016064318 W JP2016064318 W JP 2016064318W WO 2017013929 A1 WO2017013929 A1 WO 2017013929A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
optical fiber
core
cladding portion
index difference
Prior art date
Application number
PCT/JP2016/064318
Other languages
English (en)
French (fr)
Inventor
祥 遠藤
北村 隆之
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57834975&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017013929(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to US15/505,155 priority Critical patent/US10267984B2/en
Priority to CN201680002311.9A priority patent/CN106662705B/zh
Priority to EP16827493.4A priority patent/EP3173832B1/en
Publication of WO2017013929A1 publication Critical patent/WO2017013929A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0283Graded index region external to the central core segment, e.g. sloping layer or triangular or trapezoidal layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0283Graded index region external to the central core segment, e.g. sloping layer or triangular or trapezoidal layer
    • G02B6/0285Graded index layer adjacent to the central core segment and ending at the outer cladding index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +

Definitions

  • the present invention relates to an optical fiber and is suitable for reducing bending loss.
  • An optical fiber used for optical communication is used for an optical fiber cable laid in an office, a home, or the like, or a plurality of optical fibers arranged in a sheath.
  • an optical fiber is laid as described above, generally, at least a part thereof is bent and arranged.
  • an optical fiber is used for an optical fiber cable as mentioned above, since an optical fiber is generally helical in a sheath, it is arrange
  • an optical fiber of the present invention includes a core and a clad surrounding the core, the core including an inner core portion including a central axis of the core and having a constant refractive index in a radial direction;
  • An outer core portion surrounding the inner core portion, the cladding has an inner cladding portion having a constant refractive index in a radial direction and in contact with the core, and an outer cladding portion surrounding the inner cladding portion,
  • the refractive index of the inner core portion in the region in contact with the outer core portion is higher than the refractive index of the outer core portion, and the refractive index of the outer core portion gradually decreases from the inner peripheral side toward the outer peripheral side.
  • the refractive index of the inner cladding portion is equal to the refractive index at the outermost periphery of the outer core portion and is equal to or lower than the refractive index of the outer cladding portion.
  • the present inventors have confirmed that according to such an optical fiber, the bending loss can be reduced without increasing the refractive index of the core as in the optical fiber described in Patent Document 1. Further, since the refractive index of the inner cladding part, which is the same as the refractive index at the outermost periphery of the outer core part, is constant, and there is no need to provide a trench layer unlike the optical fiber described in Patent Document 2, it is complicated. Can be suppressed.
  • the refractive index of the inner cladding portion is preferably smaller than the refractive index of the outer cladding portion. According to the optical fiber having such a configuration, bending loss can be further reduced as compared with the case where the refractive index of the inner cladding portion and the refractive index of the outer cladding portion are equal to each other.
  • the refractive index of the inner cladding part and the refractive index of the outer cladding part are equal to each other.
  • the composition of the inner cladding portion and the composition of the outer cladding portion can be made similar, a simple configuration can be achieved.
  • the distance from the central axis to the inner periphery of the outer core part is r1
  • the distance from the central axis to the outer periphery of the outer core part is rs
  • the distance from the central axis to the distance r is
  • S is 0.3 or less.
  • the present inventors have found that the cutoff wavelength can be made smaller than 1.30 when S in this equation is 0.3 or less. Therefore, by satisfying the above formula (1), it is possible to suppress the communication band from becoming narrow due to the longer cutoff wavelength.
  • an optical fiber capable of suppressing bending loss while suppressing a decrease in mode field diameter of light and a complicated configuration.
  • FIG. 1 is a diagram illustrating a cross-sectional structure perpendicular to the longitudinal direction of an optical fiber according to the present embodiment.
  • the optical fiber 1 of the present embodiment includes a core 10 and a clad 20 that surrounds the outer peripheral surface of the core 10 without a gap, an inner protective layer 31 that covers the outer peripheral surface of the clad 20, and an inner protective layer. And an outer protective layer 32 covering the outer peripheral surface.
  • the core 10 includes an inner core part 11 including the central axis C of the core 10 and an outer core part 12 surrounding the outer peripheral surface of the inner core part 11 without a gap.
  • the clad 20 includes an inner clad portion 21 that surrounds the outer core portion 12 of the core 10 without a gap and an outer clad portion 22 that surrounds the inner clad portion 21 without a gap.
  • FIG. 2 is a diagram showing a refractive index distribution in the core 10 and the clad 20 in the optical fiber 1.
  • the portion showing the relative refractive index difference of the inner core portion 11 in FIG. 1 is 11
  • the portion showing the relative refractive index difference of the outer core portion 12 is 12, and the relative refractive index difference of the inner cladding portion 21.
  • the part which shows this is 21 and the part which shows the relative refractive index difference of the outer cladding part 22 is shown as 22.
  • the inner core portion 11 has a step-type refractive index distribution, and the refractive index in the inner core portion 11 is constant in the radial direction.
  • the refractive indexes of the inner cladding portion 21 and the outer cladding portion 22 are constant in the radial direction. Further, in the present embodiment, the refractive index of the inner cladding portion 21 is made lower than the refractive index of the outer cladding portion 22 and equal to the refractive index at the outermost periphery of the outer core portion 12.
  • the distance from the center axis C to the inner periphery of the outer core portion 12 (the distance from the center axis C to the outer periphery of the inner core portion 11) is r1
  • the center axis C to the outer core portion. 12 is the distance from the central axis C to the inner periphery of the inner cladding portion 21, and the distance from the central axis C to the outer periphery of the inner cladding portion 21 (the inner axis of the outer cladding portion 22 from the central axis C).
  • the distance to the circumference is r2.
  • the relative refractive index difference with respect to the outer cladding portion 22 in the inner core portion 11 is ⁇ 1
  • the relative refractive index difference with respect to the outer cladding portion 22 in the region in contact with the inner core portion 11 of the outer core portion 12 is ⁇ s
  • the outer core portion 12 is ⁇ 2.
  • the relative refractive index difference with respect to the outer cladding portion 22 in the region in contact with the inner cladding portion 21 is ⁇ 2.
  • the relative refractive index difference between the inner cladding portion 21 and the outer cladding portion 22 is also ⁇ 2.
  • the relative refractive index difference ⁇ 1 of the inner core portion 11 is, for example, 0.3% or more and 0.5% or less, and the relative refractive index difference ⁇ s of the region in contact with the inner core portion 11 in the outer core portion 12 is, for example, 0
  • the relative refractive index difference ⁇ 2 in the region in contact with the inner cladding portion 21 of the outer core portion 12 is set to be less than 0%, for example, ⁇ 0.02% or more.
  • the material constituting the core 10 and the clad 20 of the optical fiber 1 having such a refractive index distribution is not particularly limited, but is as follows, for example.
  • the outer cladding portion 22 is made of pure quartz
  • the inner cladding portion 21 is made of quartz to which a dopant such as fluorine (F) that lowers the refractive index is appropriately added.
  • the inner core portion 11 is made of quartz to which a dopant such as germanium (Ge) that increases the refractive index is added.
  • the outer core portion 12 is made of quartz to which a dopant for increasing the refractive index and a dopant for decreasing the refractive index are appropriately added, and the amount of these dopants is changed so that the refractive index decreases along the radial direction.
  • FIGS. 3 and 4 are diagrams showing the relationship between rs / r1 and bending loss in the optical fiber 1.
  • FIG. 3 the bending diameter of the optical fiber 1 is 30 mm, and in FIG. 4, the bending diameter of the optical fiber 1 is 20 mm.
  • 1550 nm light is propagated to the core 10.
  • the broken line indicates the bending loss of the optical fiber in which the outer core portion 12 is not provided. In this case, since the refractive index distribution is rectangular, the broken line is indicated by a rectangle. As shown in FIGS. 3 and 4, it can be seen that the bending loss is reduced by providing the outer core portion 12.
  • the relative refractive index difference area S of the outer core portion 12 can be defined from the width of the outer core portion 12 and the relative refractive index difference with respect to the outer cladding portion 22. Specifically, when the distance from the central axis C of the core 10 is r, and the relative refractive index difference with respect to the outer cladding portion 22 in the region r from the central axis C of the outer core portion 12 is ⁇ (r), the ratio
  • the refractive index difference area S can be expressed by the following formula (1).
  • FIG. 7 is a diagram showing the relationship between the relative refractive index difference area S and the cable cutoff wavelength.
  • the broken line indicates the cable cutoff wavelength of the optical fiber in which the outer core portion 12 is not provided, and is shown as a rectangle in the drawing.
  • the cable cutoff wavelength can be made smaller than 1.30 ⁇ m.
  • the refractive index difference area S is 0.25% ⁇ m or less
  • the cable cutoff wavelength can be 1.26 ⁇ m or less.
  • ITU-T G In 652, it is recommended that the cable cutoff wavelength is 1.26 ⁇ m or less, and this recommendation can be satisfied if the relative refractive index difference area S is 0.25% ⁇ m or less.
  • FIG. 8 is a diagram showing the relationship between the relative refractive index difference area S and the mode field diameter of light having a wavelength of 1310 nm.
  • the broken line indicates the mode field diameter of the optical fiber in which the outer core portion 12 is not provided, and is shown as a rectangle in the drawing.
  • the optical fiber 1 of the present embodiment compared with the mode field diameter of light having a wavelength of 1310 nm propagating through a general communication optical fiber having a step-type refractive index distribution, It can suppress that a mode field diameter becomes small.
  • the mode field diameter of light having a wavelength of 1310 nm can be reduced to approximately 9.5 ⁇ m or less.
  • the bending loss can be reduced by providing the outer core portion 12 as described above without increasing the refractive index of the core.
  • the refractive index of the inner cladding portion 21 that is equal to the refractive index in the outermost periphery of the outer core portion 12 is constant, and no trench layer having a lower refractive index than the inner cladding portion 21 is provided, It can suppress becoming a complicated structure.
  • FIG. 10 is a view showing the refractive index distribution in the core 10 and the clad 20 in the optical fiber according to the present embodiment in the same manner as FIG. As shown in FIG. 10, the optical fiber of the present embodiment is different from the optical fiber 1 of the first embodiment in that the refractive index of the inner cladding portion 21 and the refractive index of the outer cladding portion 22 are equal to each other.
  • the relative refractive index difference ⁇ 1 of the inner core portion 11 is 0.34%, and the radius r1 of the inner core portion 11 is 4.1 ⁇ m.
  • the relative refractive index difference ⁇ 2 in the region of the outer core portion 12 in contact with the inner cladding portion 21 is ⁇ 0% because it is the same as the relative refractive index difference of the inner cladding portion 21.
  • FIGS. 11 and 12 are diagrams showing the relationship between rs / r1 and bending loss in the optical fiber of the present embodiment in the same manner as in FIGS. 3 and 4 of the first embodiment.
  • the bending diameter of the optical fiber is 30 mm
  • the bending diameter of the optical fiber is 20 mm.
  • 1550 nm light is propagated to the core 10.
  • the bending loss is reduced by providing the outer core portion 12.
  • the bending loss decreases as rs / r1 increases. Further, it can be seen that the bending loss decreases as the value of ⁇ s ⁇ 2 increases. Further, FIG. 12 shows that, regardless of the value of ⁇ s ⁇ 2, when the bending diameter is 20 mm, the bending loss does not change so much in the region where rs / r1 is approximately 1.7 or more.
  • FIGS. 13 and 14 are diagrams showing the relationship between the relative refractive index difference area S and the bending loss by the same method as in FIGS.
  • the bending diameter of the optical fiber 1 is 30 mm
  • the bending diameter of the optical fiber 1 is 20 mm.
  • 1550 nm light is propagated to the core 10.
  • the bending loss decreases as the value of the relative refractive index difference area S increases.
  • the bending loss when the bending diameter is 20 mm, the bending loss can be substantially minimized if the relative refractive index difference area S is 0.1% ⁇ m or more. Further, from FIGS. 5 and 6 of the first embodiment and FIG. 14 of the present embodiment, the bending loss can be substantially minimized if the relative refractive index difference area S is 0.1% ⁇ m or more. It turns out that there are many cases.
  • FIG. 15 is a diagram showing the relationship between the relative refractive index difference area S and the cable cutoff wavelength in the same manner as in FIG.
  • the cable cutoff wavelength can be made smaller than 1.30 ⁇ m. If the rate difference area S is 0.25% ⁇ m or less, the cable cutoff wavelength can be 1.26 ⁇ m or less. Therefore, also in the optical fiber of the present embodiment, as in the case of the optical fiber 1 of the first embodiment, if the relative refractive index difference area S is 0.25% ⁇ m or less, ITU-T G. 652 recommendations can be met. This result substantially coincides with the relationship between the relative refractive index difference area S and the cable cutoff wavelength in the optical fiber 1 of the first embodiment described with reference to FIG.
  • FIG. 17 is a diagram showing the relationship between the relative refractive index difference area of the outer core portion of the optical fiber of FIG. 10 and the zero dispersion wavelength by the same method as in FIG. As shown in FIG. 17, in the optical fiber of the present embodiment, it is understood that the zero dispersion wavelength is reduced by providing the outer core portion 12 as in the case of the optical fiber 1 of the first embodiment. Further, it can be seen that the larger the value of ⁇ s ⁇ 2, the smaller the zero dispersion wavelength, and there exists a relative refractive index difference area S where the zero dispersion wavelength is most reduced according to the value of ⁇ s ⁇ 2.
  • the zero dispersion wavelength of the optical fiber is set to ITU-T G. It can be in the range of 1.300 ⁇ m to 1.324 ⁇ m recommended at 652. As described with reference to FIG. 9 in the first embodiment, when the relative refractive index difference ⁇ 2 is ⁇ 0.02%, the zero dispersion wavelength of the optical fiber is set in the range of 1.300 ⁇ m to 1.324 ⁇ m. Therefore, it is considered that the zero dispersion wavelength of the optical fiber can be in the range of 1.300 ⁇ m to 1.324 ⁇ m at least when the relative refractive index difference ⁇ 2 is ⁇ 0.02% or more and ⁇ 0% (0%) or less. .
  • the refractive index of the inner cladding portion 21 is made lower than the refractive index of the outer cladding portion 22, and in the optical fiber according to the second embodiment, the refractive index of the inner cladding portion 21 and the outer cladding.
  • the refractive indexes of the portions 22 were made equal to each other. That is, in the optical fiber of the present invention, the refractive index of the inner cladding portion 21 is set to be equal to or lower than the refractive index of the outer cladding portion 22. Therefore, the relative refractive index difference ⁇ 2 of the inner cladding portion 21 with respect to the outer cladding portion 22 may be 0 or less, and may be different from the above embodiment.
  • optical fiber which has one core has the inner core part 11, the outer core part 12, and the inner cladding part 21 of this embodiment, and each inner cladding part 21 is made into a clearance gap. It may be a multi-core fiber having an outer cladding portion 22 that surrounds it.
  • the optical fiber of the present invention it is possible to suppress bending loss while suppressing the reduction of the mode field diameter of light and the complication of the configuration. Can be used in the field.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

 コア10は、コア10の中心軸Cを含む内側コア部11と、内側コア部11を囲むと共に内側コア部11よりも屈折率が低い外側コア部12とを有し、クラッド20は、径方向における屈折率が一定でありコア10に接する内側クラッド部21と、内側クラッド部21を囲む外側クラッド部22とを有し、内側コア部11における外側コア部12との境界と接する領域での屈折率は、外側コア部12の屈折率よりも高く、外側コア部12の屈折率は、内周側から外周側に向かって徐々に低くなり、内側クラッド部21の屈折率は、外側コア部12の最外周における屈折率と等しくされると共に外側クラッド部22の屈折率以下とされる。

Description

光ファイバ
 本発明は、光ファイバに関し、曲げ損失を低減する場合に好適なものである。
 光通信に用いられる光ファイバは、オフィスや家庭等に敷設されたり、複数の光ファイバがシース内に配置される光ファイバケーブルに用いられている。上記のように光ファイバが敷設される場合、一般にその少なくとも一部が曲げられた状態とされ配置される。また、上記のように光ファイバが光ファイバケーブルに用いられる場合、光ファイバは、一般的にシース内において螺旋状とされるため、全体的に曲げられた状態で配置される。
 光ファイバが曲げられた状態とされて光がコアを伝搬すると、光がコアから漏えいして損失するいわゆる曲げ損失が生じることが知られている。このような曲げ損失を抑制する光ファイバの一例として、コアとクラッドとの比屈折率差が大きくされた光ファイバが知られている。下記特許文献1には、このような光ファイバが記載されている。このような光ファイバによれば、コアの光の閉じ込め力が大きくなり、コアとクラッドとの比屈折率差が小さい場合と比べて、光がコアから漏えいしにくく、曲げ損失も低減することができる。また、曲げ損失を抑制する光ファイバの他の例として、コアの周りにクラッドよりも屈折率の低い低屈折率層が設けられる光ファイバが知られている。下記特許文献2にはこのような光ファイバが記載されている。このような光ファイバは、屈折率の観点から捉える場合に低屈折率層がトレンチ状となるため、トレンチ型光ファイバと呼ばれる場合がある。このような光ファイバによれば、低屈折率層が光を閉じ込めるため光がコアから漏えいしにくく、曲げ損失も低減することができる。
特許第4268115号公報 特開2013-88818号公報
 上記特許文献1に記載の光ファイバでは、コアの光の閉じ込め力が大きいために、光のモードフィールド径が小さくなる傾向がある。この場合、他の光ファイバと接続する場合に光が損失し易くなる。また、上記特許文献2に記載の光ファイバによれば、特許文献1に記載の光ファイバのように光のモードフィールド径が小さくなることを防ぐことができる。しかし、特許文献2に記載の光ファイバは、トレンチ層を設ける必要があるため、光ファイバの構成が複雑であり高コスト化する懸念がある。
 そこで、本発明は、光のモードフィールド径が小さくなること、及び、構成が複雑化することを抑制しつつ、曲げ損失を抑制することができる光ファイバを提供することを目的とする。
 上記課題を解決するため、本発明の光ファイバは、コアと前記コアを囲むクラッドとを備え、前記コアは、前記コアの中心軸を含み径方向における屈折率が一定である内側コア部と、前記内側コア部を囲む外側コア部とを有し、前記クラッドは、径方向における屈折率が一定であり前記コアに接する内側クラッド部と、前記内側クラッド部を囲む外側クラッド部とを有し、前記内側コア部における前記外側コア部に接する領域での屈折率は、前記外側コア部の屈折率よりも高く、前記外側コア部の屈折率は、内周側から外周側に向かって徐々に低くなり、前記内側クラッド部の屈折率は、前記外側コア部の最外周における屈折率と等しくされると共に前記外側クラッド部の屈折率以下とされることを特徴とするものである。
 このような光ファイバによれば、特許文献1に記載の光ファイバのようにコアの屈折率を高くしなくとも曲げ損失を低減することができることを本発明者等は確認した。また、外側コア部の最外周における屈折率と等しい屈折率とされる内側クラッド部の屈折率が一定であり、特許文献2に記載の光ファイバのようにトレンチ層を設ける必要が無いため、複雑な構成となることを抑制することができる。
 また、前記内側クラッド部の屈折率は前記外側クラッド部の屈折率よりも小さいことが好ましい。このような構成の光ファイバによれば、内側クラッド部の屈折率と外側クラッド部の屈折率とが互いに等しい場合と比べて、曲げ損失をより低減することができる。
 この場合、前記内側クラッド部の前記外側クラッド部に対する比屈折率差が-0.02%以上とされても良い。内側クラッド部の比屈折率差がこのような範囲とされることで、光ファイバの零分散波長をITU-T G.652で推奨される1.300μmから1.324μmとすることができる。
 或いは、前記内側クラッド部の屈折率と前記外側クラッド部の屈折率とが互いに等しいこととしても好ましい。この場合、内側クラッド部の組成と外側クラッド部の組成とを同様とすることができるため簡易な構成とすることができる。
 また、上記の光ファイバにおいて、前記中心軸から前記外側コア部の内周までの距離をr1とし、前記中心軸から前記外側コア部の外周までの距離をrsとし、前記中心軸から距離rにおける前記外側コア部の前記外側クラッド部に対する比屈折率差をΔ(r)とし、前記内側クラッド部の前記外側クラッド部に対する比屈折率差をΔ2とする場合に、下記式(1)で示されるSが0.3以下とされることが好ましい。
Figure JPOXMLDOC01-appb-I000002
この式のSが0.3以下とされることで、カットオフ波長を1.30より小さくできることを本発明者等は見出した。従って、上記式(1)を満たすことで、カットオフ波長の長波長化により通信帯域が狭くなることを抑制することができる。
 さらに、前記Sが0.25以下とされることが好ましい。この条件を満たすことで、ケーブルカットオフ波長を1.26μm以下とすることができ、さらに、モードフィールド径を9.5μm以下にすることができる。
 以上のように、本発明によれば、光のモードフィールド径が小さくなること、及び、構成が複雑化することを抑制しつつ、曲げ損失を抑制することができる光ファイバが提供される。
本発明の第1実施形態に係る光ファイバの長手方向に垂直な断面の構造を示す図である。 図1の光ファイバの屈折率分布を示す図である。 図1の光ファイバに1550nmの光が伝搬する場合における外側コア部の内径と外径との比と曲げ直径30mmでの曲げ損失との関係を示す図である。 図1の光ファイバに1550nmの光が伝搬する場合における外側コア部の内径と外径との比と曲げ直径20mmでの曲げ損失との関係を示す図である。 図1の光ファイバに1550nmの光が伝搬する場合における外側コア部の比屈折率差面積と曲げ直径30mmでの曲げ損失との関係を示す図である。 図1の光ファイバに1550nmの光が伝搬する場合における外側コア部の比屈折率差面積と曲げ直径20mmでの曲げ損失との関係を示す図である。 図1の光ファイバの外側コア部の比屈折率差面積とケーブルカットオフ波長との関係を示す図である。 図1の光ファイバの外側コア部の比屈折率差面積と波長1310nmの光のモードフィールド径との関係を示す図である。 図1の光ファイバの外側コア部の比屈折率差面積と零分散波長との関係を示す図である。 第2実施形態に係る光ファイバの屈折率分布を示す図である。 図10で説明される光ファイバに1550nmの光が伝搬する場合における外側コア部の内径と外径との比と曲げ直径30mmでの曲げ損失との関係を示す図である。 図10で説明される光ファイバに1550nmの光が伝搬する場合における外側コア部の内径と外径との比と曲げ直径20mmでの曲げ損失との関係を示す図である。 図10で説明される光ファイバに1550nmの光が伝搬する場合における外側コア部の比屈折率差面積と曲げ直径30mmでの曲げ損失との関係を示す図である。 図10で説明される光ファイバに1550nmの光が伝搬する場合における外側コア部の比屈折率差面積と曲げ直径20mmでの曲げ損失との関係を示す図である。 図10で説明される光ファイバの外側コア部の比屈折率差面積とケーブルカットオフ波長との関係を示す図である。 図10で説明される光ファイバの外側コア部の比屈折率差面積と波長1310nmの光のモードフィールド径との関係を示す図である。 図10の光ファイバの外側コア部の比屈折率差面積と零分散波長との関係を示す図である。
 以下、本発明に係る光ファイバの好適な実施形態について図面を参照しながら詳細に説明する。
 (第1実施形態)
 図1は、本実施形態に係る光ファイバの長手方向に垂直な断面の構造を示す図である。
 図1に示すように、本実施形態の光ファイバ1は、コア10とコア10の外周面を隙間なく囲むクラッド20と、クラッド20の外周面を被覆する内側保護層31と、内側保護層の外周面を被覆する外側保護層32とを備える。
 コア10は、コア10の中心軸Cを含む内側コア部11と、内側コア部11の外周面を隙間なく囲む外側コア部12とから成る。また、クラッド20は、コア10の外側コア部12を隙間なく囲む内側クラッド部21と、内側クラッド部21を隙間なく囲む外側クラッド部22とからなる。
 図2は、光ファイバ1におけるコア10、クラッド20における屈折率分布を示す図である。なお、図2では、図1の内側コア部11の比屈折率差を示す部位を11とし、外側コア部12の比屈折率差を示す部位を12とし、内側クラッド部21の比屈折率差を示す部位を21とし、外側クラッド部22の比屈折率差を示す部位を22として示している。図2に示すように、内側コア部11は、ステップ型の屈折率分布を有しており、内側コア部11における屈折率は径方向において一定とされる。外側コア部12の屈折率は、内周側から外周側に向かって徐々に低くされている。また、内側コア部11における外側コア部12と接する領域の屈折率は、外側コア部12における内側コア部11と接する領域の屈折率よりも高くされている。従って、内側コア部11の屈折率は、全体的に、外側コア部12の屈折率よりも高くされている。
 内側クラッド部21及び外側クラッド部22の屈折率は、径方向において一定とされる。また、本実施形態では、内側クラッド部21の屈折率は、外側クラッド部22の屈折率よりも低くされると共に、外側コア部12の最外周における屈折率と等しくされる。
 ここで、図2に示すように、中心軸Cから外側コア部12の内周までの距離(中心軸Cから内側コア部11の外周までの距離)をr1とし、中心軸Cから外側コア部12の外周までの距離(中心軸Cから内側クラッド部21の内周までの距離)をrsとし、中心軸Cから内側クラッド部21の外周までの距離(中心軸Cから外側クラッド部22の内周までの距離)をr2とする。さらに、内側コア部11における外側クラッド部22に対する比屈折率差をΔ1とし、外側コア部12の内側コア部11に接する領域における外側クラッド部22に対する比屈折率差をΔsとし、外側コア部12の内側クラッド部21に接する領域における外側クラッド部22に対する比屈折率差をΔ2とする。なお、この場合、内側クラッド部21における外側クラッド部22に対する比屈折率差もΔ2となる。
 内側コア部11の比屈折率差Δ1は、例えば、0.3%以上0.5%以下とされ、外側コア部12における内側コア部11と接する領域の比屈折率差Δsは、例えば、0.02%以上0.12%以下とされ、外側コア部12の内側クラッド部21に接する領域における比屈折率差Δ2は0%より小さくされ、例えば、-0.02%以上とされる。
 このような屈折率分布を有する光ファイバ1のコア10、クラッド20を構成する材料は、特に限定されないが、例えば、次のようにされる。具体的には、外側クラッド部22は純粋な石英から構成され、内側クラッド部21は、屈折率を低下させるフッ素(F)等のドーパントが適宜添加される石英から構成される。また、内側コア部11は屈折率を上昇させるゲルマニウム(Ge)等のドーパントが添加される石英から構成される。また、外側コア部12は、屈折率を上昇させるドーパントと屈折率を低下させるドーパントが適宜添加される石英から構成され、径方向に沿って屈折率が低下するようにこれらのドーパント量が変化される。
 次に、光ファイバ1において、上記値を用いて、以下のシミュレーションを行う。本シミュレーションにおいては、内側コア部11の比屈折率差Δ1を0.35%とし、内側コア部11の半径r1を4.2μmとし、外側コア部12の内側クラッド部21に接する領域の比屈折率差Δ2を-0.02%とした。なお、上記比屈折率差Δ1の値は、ステップ型の屈折率分布を有する一般的な通信用光ファイバのコアの比屈折率差と同等である。
 図3及び図4は、光ファイバ1におけるrs/r1と曲げ損失との関係を示す図である。図3では光ファイバ1の曲げ直径を30mmとし、図4では光ファイバ1の曲げ直径を20mmとし、それぞれの図においてコア10に1550nmの光が伝搬するものとした。図3、図4において、破線は、外側コア部12が設けられない光ファイバの曲げ損失を示し、この場合屈折率分布が矩形であることから図において矩形と示されている。図3、図4に示すように、外側コア部12が設けられることにより、曲げ損失が低減することが分かる。また、rs/r1が大きくなる、すなわち外側コア部12の外経が大きくなるほど曲げ損失が低減することが分かる。さらに、Δs-Δ2の値が大きいほど曲げ損失が低減することが分かる。また、図4より、Δs-Δ2の値によらず、曲げ直径が20mmにおいては、rs/r1が概ね1.7以上の領域では、曲げ損失の変化が然程生じないことが分かる。
 ここで、外側コア部12の幅と外側クラッド部22に対する比屈折率差とから、外側コア部12の比屈折率差面積Sを定義することができる。具体的には、コア10の中心軸Cからの距離をrとして、外側コア部12の中心軸Cから距離rの領域における外側クラッド部22に対する比屈折率差をΔ(r)とすると、比屈折率差面積Sは下記式(1)のように示すことができる。
Figure JPOXMLDOC01-appb-I000003
 図5及び図6は、比屈折率差面積Sと曲げ損失との関係を示す図である。図5では光ファイバ1の曲げ直径を30mmとし、図6では光ファイバ1の曲げ直径を20mmとし、それぞれの図においてコア10に1550nmの光が伝搬するものとした。なお、図5、図6において、破線は、図3、図4の破線と同様にして、外側コア部12が設けられない光ファイバの曲げ損失を示し、図において矩形と示されている。図5、図6に示すように、比屈折率差面積Sの値が大きくなるほど、曲げ損失が小さくなることが分かる。また、本実施形態の光ファイバ1においては、比屈折率差面積Sが0.1%μm以上であれば曲げ損失を概ね最小とすることができる。
 図7は、比屈折率差面積Sとケーブルカットオフ波長との関係を示す図である。図7において、破線は、外側コア部12が設けられない光ファイバのケーブルカットオフ波長を示し、図において矩形と示されている。図7に示すように、本実施形態の光ファイバ1では、比屈折率差面積Sが0.3%μm以下であれば、ケーブルカットオフ波長を1.30μmよりも小さくすることができ、比屈折率差面積Sが0.25%μm以下であれば、ケーブルカットオフ波長を1.26μm以下とすることができる。なお、ITU-T G.652では、ケーブルカットオフ波長が1.26μm以下であることが推奨されており、比屈折率差面積Sが0.25%μm以下であれば、この推奨を満たすことができる。
 図8は、比屈折率差面積Sと波長1310nmの光のモードフィールド径との関係を示す図である。図8において、破線は、外側コア部12が設けられない光ファイバのモードフィールド径を示し、図において矩形と示されている。図8に示すように、本実施形態の光ファイバ1によれば、ステップ型の屈折率分布を有する一般的な通信用光ファイバを伝搬する波長1310nmの光のモードフィールド径と比べて、光のモードフィールド径が小さくなることを抑制することができる。また、比屈折率差面積Sが0.3%μm以下であれば、波長1310nmの光のモードフィールド径を概ね9.5μm以下にすることができる。なお、ITU-T G.652では、波長1310nmの光のモードフィールド径が8.6~9.5μmとされることが推奨されており、Sが0.3%μm以下であれば、この推奨を満たすことができる。
 図9は、図1の光ファイバの外側コア部の比屈折率差面積と零分散波長との関係を示す図である。図9において、破線は、外側コア部12が設けられない光ファイバの零分散波長を示し、図において矩形と示されている。図9に示すように、外側コア部12が設けられることにより、零分散波長が小さくなることが分かる。また、Δs-Δ2の値が大きいほど零分散波長が小さくなり、それぞれのΔs-Δ2の値に応じて零分散波長が最も低減する比屈折率差面積Sが存在することが分かる。上記のように、比屈折率差Δ2が-0.02%である場合、光ファイバの零分散波長をITU-T G.652で推奨される1.300μmから1.324μmの範囲とすることができる。
 以上説明したように、本実施形態の光ファイバ1によれば、コアの屈折率を高くしなくとも、上記のような外側コア部12を設けることで、曲げ損失を低減することができる。また、外側コア部12の最外周における屈折率と等しい屈折率とされる内側クラッド部21の屈折率が一定であり、内側クラッド部21よりも屈折率がさらに低いトレンチ層を設けていないため、複雑な構成となることを抑制することができる。
 (第2実施形態)
 次に、本発明に係る光ファイバの第2実施形態について図10~図17を参照して詳細に説明する。なお、第1実施形態の光ファイバ1と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
 図10は、本実施形態に係る光ファイバにおけるコア10、クラッド20における屈折率分布を図2と同様にして示す図である。図10に示すように、本実施形態の光ファイバは、内側クラッド部21の屈折率と外側クラッド部22の屈折率とが互いに等しい点において、第1実施形態の光ファイバ1と異なる。
 ここで、本実施形態の光ファイバにおいて、以下のシミュレーションを行う。本シミュレーションにおいては、内側コア部11の比屈折率差Δ1を0.34%とし、内側コア部11の半径r1を4.1μmとした。なお、外側コア部12の内側クラッド部21に接する領域の比屈折率差Δ2は、内側クラッド部21の比屈折率差と同じであるため、-0%である。
 図11及び図12は、本実施形態の光ファイバにおけるrs/r1と曲げ損失との関係を第1実施形態の図3、図4と同様の方法で示す図である。図11では光ファイバの曲げ直径を30mmとし、図12では光ファイバの曲げ直径を20mmとし、それぞれの図においてコア10に1550nmの光が伝搬するものとした。図11、図12に示すように、本実施形態の光ファイバにおいても、外側コア部12が設けられることにより、曲げ損失が低減することが分かる。なお、図11においてΔs-Δ2=0.002%のデータが破線より上側に位置しているが、計算の誤差であると考えられ、本来破線より下側に位置するものと考えられる。また、rs/r1が大きくなるほど曲げ損失が低減することが分かる。さらに、Δs-Δ2の値が大きいほど曲げ損失が低減することが分かる。また、図12より、Δs-Δ2の値によらず、曲げ直径が20mmにおいては、rs/r1が概ね1.7以上の領域では、曲げ損失の変化が然程生じないことが分かる。
 図13及び図14は、比屈折率差面積Sと曲げ損失との関係を図5、図6と同様の方法で示す図である。図13では光ファイバ1の曲げ直径を30mmとし、図14では光ファイバ1の曲げ直径を20mmとし、それぞれの図においてコア10に1550nmの光が伝搬するものとした。図13、図14に示すように、比屈折率差面積Sの値が大きくなるほど、曲げ損失が小さくなることが分かる。なお、図13においてΔs-Δ2=0.002%のデータが破線より上側に位置しているが、計算の誤差であると考えられ、本来破線より下側に位置するものと考えられる。また、本実施形態の光ファイバにおいては、曲げ直径が20mmの場合には、比屈折率差面積Sが0.1%μm以上であれば曲げ損失を概ね最小とすることができる。また、第1実施形態の図5、図6、及び、本実施形態の図14より、比屈折率差面積Sが0.1%μm以上であれば、曲げ損失を概ね最小とすることができる場合が多いことが分かる。
 なお、第1実施形態の図3から図6及び上記図11から図14より明らかなように、内側クラッド部21の屈折率が外側クラッド部22の屈折率よりも小さいことが、曲げ損失を低減できる観点から好ましい。
 図15は、比屈折率差面積Sとケーブルカットオフ波長との関係を図7と同様の方法で示す図である。図15に示すように、本実施形態の光ファイバでは、比屈折率差面積Sが0.3%μm以下であれば、ケーブルカットオフ波長を1.30μmよりも小さくすることができ、比屈折率差面積Sが0.25%μm以下であれば、ケーブルカットオフ波長を1.26μm以下とすることができる。従って、本実施形態の光ファイバにおいても第1実施形態の光ファイバ1と同様に、比屈折率差面積Sが0.25%μm以下であれば、ITU-T G.652の推奨を満たすことができる。この結果は、図7を用いて説明した第1実施形態の光ファイバ1における比屈折率差面積Sとケーブルカットオフ波長との関係と概ね一致する。
 図16は、比屈折率差面積Sと波長1310nmの光のモードフィールド径との関係を図8と同様の方法で示す図である。図16に示すように、本実施形態の光ファイバによれば、第1実施形態の光ファイバ1と同様に、ステップ型の屈折率分布を有する一般的な通信用光ファイバを伝搬する波長1310nmの光のモードフィールド径と比べて、光のモードフィールド径が小さくなることを抑制することができる。また、比屈折率差面積Sが0.3%μm以下であれば、波長1310nmの光のモードフィールド径を概ね9.7μm以下にすることができ、比屈折率差面積Sが0.25%μm以下であれば、波長1310nmの光のモードフィールド径を概ね9.5μm以下にすることができる。従って、比屈折率差面積Sが0.25%μm以下であれば、ITU-T G.652の推奨を満たすことができる。
 図17は、図10の光ファイバの外側コア部の比屈折率差面積と零分散波長との関係を図9と同様の方法で示す図である。図17に示すように、本実施形態の光ファイバにおいても第1実施形態の光ファイバ1と同様に、外側コア部12が設けられることにより零分散波長が小さくなることが分かる。また、Δs-Δ2の値が大きいほど零分散波長が小さくなり、それぞれのΔs-Δ2の値に応じて零分散波長が最も低減する比屈折率差面積Sが存在することが分かる。上記のように、比屈折率差Δ2が-0%である場合であっても、光ファイバの零分散波長をITU-T G.652で推奨される1.300μmから1.324μmの範囲とすることができる。第1実施形態において図9を用いて説明したように、比屈折率差Δ2が-0.02%である場合に光ファイバの零分散波長を1.300μmから1.324μmの範囲とすることができるため、少なくとも比屈折率差Δ2が-0.02%以上-0%(0%)以下では、光ファイバの零分散波長を1.300μmから1.324μmの範囲とすることができると考えられる。
 本実施形態の光ファイバは、内側クラッド部の組成と外側クラッド部の組成とを同様とすることができるため、第1実施形態の光ファイバ1よりも簡易な構成とすることができる。
 以上、本発明について、第1、第2実施形態を例に説明したが、本発明はこれらに限定されるものではない。
 第1実施形態に係る光ファイバ1では、内側クラッド部21の屈折率が外側クラッド部22の屈折率より低くされ、第2実施形態に係る光ファイバでは、内側クラッド部21の屈折率と外側クラッド部22の屈折率とが互いに等しくされた。つまり、本発明の光ファイバでは、内側クラッド部21の屈折率が外側クラッド部22の屈折率以下とされる。従って、内側クラッド部21の外側クラッド部22に対する比屈折率差Δ2は0以下であれば良く、上記実施形態と異なっていても良い。
 また、上記実施形態では、1つのコアを有する光ファイバについて説明したが、本実施形態の内側コア部11、外側コア部12、内側クラッド部21を複数有し、それぞれの内側クラッド部21を隙間なく囲む外側クラッド部22を有するマルチコアファイバとされても良い。
 以上説明したように、本発明の光ファイバによれば、光のモードフィールド径が小さくなること、及び、構成が複雑化することを抑制しつつ、曲げ損失を抑制することができ、光通信の分野に利用することができる。
1・・・光ファイバ
10・・・コア
11・・・内側コア部
12・・・外側コア部
20・・・クラッド
21・・・内側クラッド部
22・・・外側クラッド部

 

Claims (6)

  1.  コアと前記コアを囲むクラッドとを備え、
     前記コアは、前記コアの中心軸を含み径方向における屈折率が一定である内側コア部と、前記内側コア部を囲む外側コア部とを有し、
     前記クラッドは、径方向における屈折率が一定であり前記コアに接する内側クラッド部と、前記内側クラッド部を囲む外側クラッド部とを有し、
     前記内側コア部における前記外側コア部に接する領域での屈折率は、前記外側コア部の屈折率よりも高く、
     前記外側コア部の屈折率は、内周側から外周側に向かって徐々に低くなり、
     前記内側クラッド部の屈折率は、前記外側コア部の最外周における屈折率と等しくされると共に前記外側クラッド部の屈折率以下とされる
    ことを特徴とする光ファイバ。
  2.  前記内側クラッド部の屈折率は前記外側クラッド部の屈折率よりも小さい
    ことを特徴とする請求項1に記載の光ファイバ。
  3.  前記内側クラッド部の前記外側クラッド部に対する比屈折率差が-0.02%以上とされる
    ことを特徴とする請求項2に記載の光ファイバ。
  4.  前記内側クラッド部の屈折率と前記外側クラッド部の屈折率とが互いに等しい
    ことを特徴とする請求項1に記載の光ファイバ。
  5.  前記中心軸から前記外側コア部の内周までの距離をr1とし、前記中心軸から前記外側コア部の外周までの距離をrsとし、
     前記中心軸から距離rにおける前記外側コア部の前記外側クラッド部に対する比屈折率差をΔ(r)とし、
     前記内側クラッド部の前記外側クラッド部に対する比屈折率差をΔ2とする場合に、
     下記式(1)で示されるSが0.3以下とされる
    ことを特徴とする請求項1から4のいずれか1項に記載の光ファイバ。
    Figure JPOXMLDOC01-appb-I000001
  6.  前記Sが0.25以下とされる
    ことを特徴とする請求項5に記載の光ファイバ。

     
PCT/JP2016/064318 2015-07-17 2016-05-13 光ファイバ WO2017013929A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/505,155 US10267984B2 (en) 2015-07-17 2016-05-13 Optical fiber
CN201680002311.9A CN106662705B (zh) 2015-07-17 2016-05-13 光纤
EP16827493.4A EP3173832B1 (en) 2015-07-17 2016-05-13 Optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-142741 2015-07-17
JP2015142741A JP6321589B2 (ja) 2015-07-17 2015-07-17 光ファイバ

Publications (1)

Publication Number Publication Date
WO2017013929A1 true WO2017013929A1 (ja) 2017-01-26

Family

ID=57834975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064318 WO2017013929A1 (ja) 2015-07-17 2016-05-13 光ファイバ

Country Status (5)

Country Link
US (1) US10267984B2 (ja)
EP (1) EP3173832B1 (ja)
JP (1) JP6321589B2 (ja)
CN (1) CN106662705B (ja)
WO (1) WO2017013929A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018337A (ja) * 2019-07-22 2021-02-15 住友電気工業株式会社 シングルモード光ファイバおよびシングルモード光ファイバの製造方法
CN115356787A (zh) * 2022-10-21 2022-11-18 南京信息工程大学 一种大气相干长度的计算和预报方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3896038A4 (en) * 2018-12-12 2022-08-17 Furukawa Electric Co., Ltd. GLASS FIBER AND METHOD OF MAKING GLASS FIBER
CN114641714A (zh) 2020-03-17 2022-06-17 住友电气工业株式会社 光纤
CN111458789B (zh) * 2020-04-26 2021-11-09 中天科技光纤有限公司 光纤
CN113625390B (zh) * 2021-10-14 2021-12-31 长飞光纤光缆股份有限公司 一种色散优化弯曲不敏感光纤

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264941A (en) * 1975-11-26 1977-05-28 Furukawa Electric Co Ltd:The Rod-shaped substrate for optical fiber
DE4127868A1 (de) * 1991-08-22 1993-02-25 Rheydt Kabelwerk Ag Einmoden-faser mit rampenfoermigem brechzahl-profil
JP2001508554A (ja) * 1996-12-31 2001-06-26 コーニング インコーポレイテッド 多層ファイバを備えた光カプラ
US20020186942A1 (en) * 2001-05-01 2002-12-12 Bubnov Mikhail M. Low-loss highly phosphorus-doped fibers for Raman amplification
JP2004537851A (ja) * 2001-08-02 2004-12-16 コーニング・インコーポレーテッド 高吸収のエルビウムが添加された増幅光ファイバ
JP2005181414A (ja) * 2003-12-16 2005-07-07 Hitachi Cable Ltd 光ファイバの製造方法
JP2011107672A (ja) * 2009-11-18 2011-06-02 Sehf-Korea Co Ltd 低曲げ損失光ファイバ
JP2013035722A (ja) * 2011-08-09 2013-02-21 Furukawa Electric Co Ltd:The 光ファイバ母材および光ファイバの製造方法
JP2013088818A (ja) * 2011-10-17 2013-05-13 Sehf-Korea Co Ltd 曲げ損失強化光ファイバ
US20130230290A1 (en) * 2012-03-01 2013-09-05 Alan Frank Evans Few mode optical fibers

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278931A (en) 1992-12-31 1994-01-11 Corning Incorporated Low bend loss singlemode optical waveguide fiber
US5729645A (en) 1996-08-13 1998-03-17 The Trustees Of The University Of Pennsylvania Graded index optical fibers
EP1107027B1 (en) * 1999-04-13 2011-10-12 Sumitomo Electric Industries, Ltd. Optical fiber and optical communication system comprising the same
JP2005534963A (ja) 2002-07-31 2005-11-17 コーニング・インコーポレーテッド 大なる実効面積、低傾斜及び低ゼロ分散である非ゼロ分散シフト光ファイバ
US7221838B2 (en) 2004-06-23 2007-05-22 Furukawa Electric North America, Inc. Optical fibers with reduced splice loss and methods for making same
JP4268115B2 (ja) 2004-10-28 2009-05-27 古河電気工業株式会社 シングルモード光ファイバ
US20070204657A1 (en) 2006-03-02 2007-09-06 Barish Eric L Manufacture of depressed index optical fibers
WO2009062131A1 (en) 2007-11-09 2009-05-14 Draka Comteq, B.V. Microbend- resistant optical fiber
US8081854B2 (en) * 2008-12-19 2011-12-20 Sehf-Korea Co., Ltd. Low bend loss optical fiber
US7876990B1 (en) 2009-11-25 2011-01-25 Corning Incorporated Low loss optical fiber
US9481599B2 (en) * 2010-12-21 2016-11-01 Corning Incorporated Method of making a multimode optical fiber
US9042692B2 (en) * 2013-08-27 2015-05-26 Corning Cable Systems Llc Universal optical fibers for optical fiber connectors

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264941A (en) * 1975-11-26 1977-05-28 Furukawa Electric Co Ltd:The Rod-shaped substrate for optical fiber
DE4127868A1 (de) * 1991-08-22 1993-02-25 Rheydt Kabelwerk Ag Einmoden-faser mit rampenfoermigem brechzahl-profil
JP2001508554A (ja) * 1996-12-31 2001-06-26 コーニング インコーポレイテッド 多層ファイバを備えた光カプラ
US20020186942A1 (en) * 2001-05-01 2002-12-12 Bubnov Mikhail M. Low-loss highly phosphorus-doped fibers for Raman amplification
JP2004537851A (ja) * 2001-08-02 2004-12-16 コーニング・インコーポレーテッド 高吸収のエルビウムが添加された増幅光ファイバ
JP2005181414A (ja) * 2003-12-16 2005-07-07 Hitachi Cable Ltd 光ファイバの製造方法
JP2011107672A (ja) * 2009-11-18 2011-06-02 Sehf-Korea Co Ltd 低曲げ損失光ファイバ
JP2013035722A (ja) * 2011-08-09 2013-02-21 Furukawa Electric Co Ltd:The 光ファイバ母材および光ファイバの製造方法
JP2013088818A (ja) * 2011-10-17 2013-05-13 Sehf-Korea Co Ltd 曲げ損失強化光ファイバ
US20130230290A1 (en) * 2012-03-01 2013-09-05 Alan Frank Evans Few mode optical fibers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3173832A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018337A (ja) * 2019-07-22 2021-02-15 住友電気工業株式会社 シングルモード光ファイバおよびシングルモード光ファイバの製造方法
CN115356787A (zh) * 2022-10-21 2022-11-18 南京信息工程大学 一种大气相干长度的计算和预报方法

Also Published As

Publication number Publication date
EP3173832A4 (en) 2018-03-21
EP3173832B1 (en) 2020-09-16
JP6321589B2 (ja) 2018-05-09
CN106662705A (zh) 2017-05-10
CN106662705B (zh) 2020-04-28
US20170269294A1 (en) 2017-09-21
US10267984B2 (en) 2019-04-23
EP3173832A1 (en) 2017-05-31
JP2017026698A (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5916525B2 (ja) マルチコアファイバ
WO2017013929A1 (ja) 光ファイバ
JP6177994B2 (ja) マルチコアファイバ
JP5606942B2 (ja) 短いカットオフ波長を有するノンゼロ分散シフト光ファイバ
JP5616245B2 (ja) 大きな実効面積を有するノンゼロ分散シフト光ファイバ
JP6722271B2 (ja) マルチコアファイバ
JP7371062B2 (ja) 光ファイバ
WO2012063775A1 (ja) マルチコアファイバ
JP6050847B2 (ja) マルチコアファイバ
WO2016175209A1 (ja) マルチコアファイバ
US10310176B2 (en) Multi-core fiber
JP5468711B2 (ja) マルチコアファイバ
WO2016047749A1 (ja) 光ファイバ
WO2022034662A1 (ja) マルチコア光ファイバ及び設計方法
JP5557953B2 (ja) 光ファイバ
WO2012128250A1 (ja) 光ファイバ、光ファイバコードおよび光ファイバケーブル
WO2017130487A1 (ja) マルチコアファイバ
WO2018168170A1 (ja) マルチコアファイバ
JP6096268B2 (ja) マルチコアファイバ
WO2000052507A1 (fr) Fibre optique
WO2016129367A1 (ja) 分散シフト光ファイバ
WO2020241531A1 (ja) 光ファイバ
WO2013129050A1 (ja) 光ファイバおよびそれを含む光通信システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15505155

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016827493

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016827493

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE