[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017010135A1 - Piezoelectric sensor - Google Patents

Piezoelectric sensor Download PDF

Info

Publication number
WO2017010135A1
WO2017010135A1 PCT/JP2016/062250 JP2016062250W WO2017010135A1 WO 2017010135 A1 WO2017010135 A1 WO 2017010135A1 JP 2016062250 W JP2016062250 W JP 2016062250W WO 2017010135 A1 WO2017010135 A1 WO 2017010135A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
layer
particles
piezoelectric element
elastomer
Prior art date
Application number
PCT/JP2016/062250
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 渉
吉川 均
Original Assignee
住友理工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友理工株式会社 filed Critical 住友理工株式会社
Priority to JP2016550878A priority Critical patent/JP6034543B1/en
Priority to CN201680040559.4A priority patent/CN107924986B/en
Priority to DE112016000917.8T priority patent/DE112016000917B4/en
Publication of WO2017010135A1 publication Critical patent/WO2017010135A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings

Definitions

  • the present invention relates to a piezoelectric sensor including an extendable piezoelectric element.
  • Piezoelectric materials that can convert mechanical energy into electrical energy are widely used for pressure sensors, acceleration sensors, vibration sensors, impact sensors, and the like.
  • Known piezoelectric materials include ceramics such as lead zirconate titanate (PZT), polymers such as polyvinylidene fluoride (PVDF) and polylactic acid, and composites in which polymer particles are filled in a polymer matrix.
  • PZT lead zirconate titanate
  • PVDF polymers
  • Plactic acid polylactic acid
  • Patent Document 1 describes a piezoelectric element in which an electrode made of conductive rubber and a piezoelectric crystal thin film such as PZT are formed on a substrate having stretch elasticity.
  • Patent Document 2 describes a piezoelectric element having a piezoelectric layer made of a fluorinated polymer, an electrode made of a conductive polymer, and a textile substrate.
  • Patent Document 3 describes a piezoelectric element having a composite in which a matrix having a resin and rubber is filled with piezoelectric particles, and an electrode made of conductive rubber.
  • Patent Document 4 describes a piezoelectric element having a piezoelectric sheet in which piezoelectric particles are filled in a resin matrix such as chlorinated polyethylene, and a flexible electrode in which carbon is filled in chlorinated polyethylene.
  • Patent Document 5 describes a piezoelectric element having a composite in which chloroprene rubber is filled with lead titanate powder and an electrode made of silver paste.
  • Patent Document 6 describes a fluctuating load detection sheet having a PVDF piezoelectric film, a pair of electrodes disposed on both sides thereof, and a strain amplification member provided on the electrodes.
  • a piezoelectric element using ceramics such as PZT as a piezoelectric layer as described in Patent Document 1 has a hard piezoelectric layer and poor stretchability. For this reason, when the piezoelectric element is applied to an adherend that expands and contracts, the movement of the adherend tends to be hindered.
  • the piezoelectric elements described in Patent Documents 2 and 6 use a resin for the piezoelectric layer. For this reason, the piezoelectric layer has flexibility, but lacks stretchability. Even if the piezoelectric layer can be extended, it is difficult to restore the original shape. Therefore, it is difficult to apply the piezoelectric element to an adherend that undergoes expansion and deformation.
  • the piezoelectric elements described in Patent Documents 3 to 5 use a composite of a polymer matrix and piezoelectric particles in the piezoelectric layer.
  • a polymer when a polymer is contained in the polymer matrix, it has flexibility but poor stretchability.
  • chloroprene rubber is used for the polymer matrix.
  • the piezoelectric layer has stretchability, but the electrode laminated thereon is made of a silver paste with poor stretchability. In this case, the expansion and contraction of the piezoelectric layer is restricted by the electrode, and the stretchability of the entire piezoelectric element is reduced.
  • Patent Document 3 describes the use of conductive rubber for the electrodes. However, Patent Document 3 does not discuss the expansion / contraction performance of the electrode and the behavior of the electrical resistance during expansion. Further, paragraph [0020] of Patent Document 3 describes that the distortion amount of the vibration source is about 5%, and in the examples, an application example in which the distortion amount is 3% is described. In patent document 3, the piezoelectric element is not assumed to be deformed at a relatively large elongation rate of 10% or more.
  • This invention is made in view of such a situation, and makes it a subject to provide a piezoelectric sensor provided with the piezoelectric element which can be extended-contracted and can be used even in the extended state.
  • the piezoelectric sensor of the present invention includes a piezoelectric element having a piezoelectric layer including an elastomer and piezoelectric particles and an electrode layer including an elastomer and a conductive material, and the elongation at break of the piezoelectric element is 10% or more. Is characterized in that the volume resistivity of the stretched state from the natural state to the stretched state by 10% in the uniaxial direction is 100 ⁇ ⁇ cm or less.
  • the matrix (base material) of the piezoelectric layer and electrode layer constituting the piezoelectric element are both elastomers.
  • the elongation at break of the piezoelectric element is 10% or more. Since the piezoelectric element is flexible and stretchable, even if the piezoelectric element is arranged on an adherend that repeatedly stretches or bends or an adherend that greatly expands and contracts, the movement of the adherend is hardly hindered. Further, even when the adherend has a complicated shape, the piezoelectric element can be arranged along the shape.
  • the electrode layer has a volume resistivity of 100 ⁇ ⁇ cm or less in a natural state and a stretched state from that state to a state where the electrode layer is stretched by 10% in a uniaxial direction.
  • the natural state means a state in which no load is applied and the body is not deformed.
  • the state of extending 10% in the uniaxial direction means a state in which the length in the uniaxial direction is 1.1 times the natural state.
  • the electrode layer not only has high conductivity in a natural state, but also has a high electrical conductivity with a small increase in electrical resistance even in an extended state extended up to 10% in a uniaxial direction. For this reason, even in the extended state, the output is unlikely to decrease, and the load applied to the piezoelectric layer can be accurately detected.
  • the volume resistivity of the electrode is measured in both a natural state and a state in which the electrode is stretched by 10% in the uniaxial direction. If any volume resistivity is 100 ⁇ ⁇ cm or less, the “natural state and then the uniaxial direction” It is determined that the condition that the volume resistivity of the stretched state until reaching the stretched state by 10% is 100 ⁇ ⁇ cm or less ”is satisfied.
  • the piezoelectric element can extend not only in a uniaxial direction but also in a biaxial direction, a diameter expansion direction, and the like.
  • the adherend is disposed on the adherend accompanied by deformation such as bending, stretching, and compression, and the adherend is not only deformed but also deformed.
  • the load applied to can be detected. That is, even when the secondary deformation is further performed in the primary deformation state of the adherend, the load applied to the adherend can be detected.
  • the piezoelectric sensor of the present invention has a higher sensitivity (S / N ratio (Signal-Noise Ratio)) than a capacitive sensor, it is easy to detect a small load.
  • the piezoelectric element of the piezoelectric sensor of the present invention can be placed directly on the human skin or indirectly through clothes to measure the pulse rate and respiratory rate.
  • FIG. 2 is a sectional view taken along the line II-II in FIG. It is a graph of the electromotive voltage in the state which expanded the piezoelectric element of Example 2 1%. It is a graph of the electromotive voltage in the state which expanded the piezoelectric element of Example 2 10%. It is a schematic diagram which shows a dispersed state in case a piezoelectric particle consists of a single particle. It is a schematic diagram which shows a dispersion
  • SYMBOLS 1 Piezoelectric sensor, 10: Piezoelectric element, 11: Piezoelectric layer, 12a, 12b: Electrode layer, 13a, 13b: Protective layer, 20a, 20b: Wiring, 30: Control circuit part.
  • 40 Piezoelectric element, 41: Piezoelectric layer, 42a, 42b: Electrode layer, 43a, 43b: Protective layer.
  • 80 Piezoelectric particles, 81: Elastomer, 82: Combined piezoelectric particles.
  • the piezoelectric sensor of the present invention is not limited to the following forms, and may be implemented in various forms that have been modified or improved by those skilled in the art without departing from the spirit of the present invention. Can do.
  • the piezoelectric sensor of the present invention includes a piezoelectric element having a piezoelectric layer including an elastomer and piezoelectric particles and an electrode layer including an elastomer and a conductive material.
  • elastomer constituting the piezoelectric layer one or more selected from crosslinked rubber and thermoplastic elastomer may be used.
  • elastic elastomers with relatively small elastic modulus urethane rubber, silicone rubber, nitrile rubber (NBR), hydrogenated nitrile rubber (H-NBR), acrylic rubber, natural rubber, isoprene rubber, ethylene-propylene-diene rubber (EPDM) Ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-acrylic ester copolymer, butyl rubber, styrene-butadiene rubber, fluororubber, epichlorohydrin rubber, chloroprene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, and the like.
  • an elastomer modified by introducing a functional group or the like may be used.
  • the modified elastomer include carboxyl group-modified nitrile rubber (X-NBR), carboxyl group-modified hydrogenated nitrile rubber (XH-NBR), and the like.
  • Piezoelectric particles are particles of a compound having piezoelectricity.
  • Ferroelectric materials having a perovskite crystal structure are known as piezoelectric compounds, for example, barium titanate, strontium titanate, potassium niobate, sodium niobate, lithium niobate, potassium sodium niobate , Lead zirconate titanate (PZT), barium strontium titanate (BST), bismuth lanthanum titanate (BLT), bismuth strontium tantalate (SBT), and the like.
  • PZT Lead zirconate titanate
  • BST barium strontium titanate
  • BLT bismuth lanthanum titanate
  • SBT bismuth strontium tantalate
  • the particle size of the piezoelectric particles is not particularly limited.
  • a large particle size piezoelectric particle and a small particle size piezoelectric particle can be mixed in the elastomer.
  • piezoelectric particles having a small particle diameter enter between piezoelectric particles having a large particle diameter, and pressure is easily transmitted to the piezoelectric particles. Thereby, the piezoelectric strain constant of the piezoelectric layer is increased, and the electromotive voltage can be increased.
  • the piezoelectric particles may be single particles or an aggregate of a plurality of particles.
  • an aggregate composed of a plurality of piezoelectric particles it becomes easy to balance the flexibility and the piezoelectricity. For example, when a large amount of piezoelectric particles is blended in the elastomer, the piezoelectricity is improved, but the flexibility is lowered because the volume ratio of the elastomer is reduced. On the other hand, when the amount of the piezoelectric particles is small, the volume ratio of the elastomer increases, so that flexibility is improved, but piezoelectricity is lowered.
  • the change in electromotive force is reduced even when the expansion and contraction is repeated, that is, the expansion and contraction durability is improved by increasing the flexibility of the piezoelectric layer, specifically, the elongation at break. ing. For this reason, it is desirable to ensure the desired piezoelectricity by reducing the blending amount of the piezoelectric particles as much as possible.
  • FIG. 5 schematically shows a dispersion state when the piezoelectric particles are made of single particles.
  • FIG. 6 schematically shows a dispersion state in the case where the piezoelectric particles are made of an aggregate.
  • the piezoelectric particles 80 are filled in an elastomer 81.
  • Each piezoelectric particle 80 has a substantially spherical shape. For this reason, usually, the connection between the piezoelectric particles 80 is ensured by blending a large amount of the piezoelectric particles 80 and bringing them close to the close-packed structure.
  • FIG. 5 schematically shows a dispersion state when the piezoelectric particles are made of single particles.
  • FIG. 6 schematically shows a dispersion state in the case where the piezoelectric particles are made of an aggregate.
  • the piezoelectric particles 80 are filled in an elastomer 81.
  • Each piezoelectric particle 80 has a substantially spherical shape. For this reason, usually, the connection between the piezoelectric
  • the piezoelectric sensor includes a piezoelectric element having a piezoelectric layer including an elastomer and piezoelectric particles, and an electrode layer including an elastomer and a conductive material, and the piezoelectric particles include an aggregate in which a plurality of piezoelectric particles are aggregated. It is good to. According to this configuration, a flexible and highly sensitive piezoelectric sensor can be realized.
  • Examples of aggregates in which a plurality of piezoelectric particles are aggregated include aggregates in which individual particles are aggregated by an electrostatic force or the like, and aggregates in which individual particles are chemically bonded. The latter combination is preferred from the viewpoint that individual particles are difficult to separate and that a connection structure of piezoelectric particles can be easily constructed.
  • bonded_body is not specifically limited, For example, after baking the powder which consists of a single particle, it can grind
  • the remaining piezoelectric particles are dispersed in a good solvent and subjected to ultrasonic treatment.
  • the good solvent refers to a polar solvent that hardly precipitates when the piezoelectric particles are dispersed.
  • any solvent that has an SP value (solubility parameter) of 8 or more and 13 or less and can dissolve the elastomer may be used.
  • An example is 2-methoxyethanol.
  • An aggregate of a plurality of piezoelectric particles can be defined as a particle having a diameter larger than twice the average particle diameter of each piezoelectric particle.
  • the diameter (d2) of the aggregate a median diameter measured by a laser diffraction / scattering particle size distribution measuring apparatus is employed.
  • the average particle diameter (d1) of the piezoelectric particles a scanning electron microscope (SEM) photograph of the aggregate is taken, and the average value of the maximum diameters of 100 or more piezoelectric particles arbitrarily selected so as not to be biased is adopted. To do. And what satisfies 2d1 ⁇ d2 is an aggregate.
  • the elastomer and the piezoelectric particles may be chemically bonded by surface-treating the piezoelectric particles.
  • a surface treatment agent having a functional group capable of reacting with an elastomer polymer is reacted with the piezoelectric particles in advance, and the piezoelectric particles are mixed with the elastomer polymer.
  • Examples include a method in which a hydroxyl group is generated by dissolving with an acid, an alkali, or subcritical water, and then mixed with an elastomer polymer having a functional group capable of reacting with the hydroxyl group.
  • the piezoelectric particles When the piezoelectric particles are chemically bonded to the elastomer, the piezoelectric particles are unlikely to be displaced even when the expansion and contraction is repeated. In addition, since the piezoelectric particles are difficult to peel from the elastomer, fluctuations from the initial values of physical properties and output are reduced. Therefore, the output is stabilized and the sag resistance of the piezoelectric layer is improved. In addition, since the elongation at break of the piezoelectric layer is increased, it is possible to suppress a decrease in piezoelectric performance due to local fracture during elongation. As a result, high piezoelectric performance can be maintained even in the extended state.
  • the blending amount of the piezoelectric particles may be determined by taking into account the flexibility of the piezoelectric layer, and thus the piezoelectric element, and the piezoelectric performance of the piezoelectric layer. When the amount of the piezoelectric particles is increased, the piezoelectric performance of the piezoelectric layer is improved, but the flexibility is lowered. Therefore, it is desirable to adjust the blending amount of the piezoelectric particles so that desired flexibility can be realized in the combination of the elastomer and the piezoelectric particles to be used.
  • the piezoelectric layer may contain reinforcing particles having a relative dielectric constant smaller than that of the piezoelectric particles, in addition to the elastomer and the piezoelectric particles.
  • the relative permittivity of the reinforcing particles is preferably 100 or less, and more preferably 30 or less, on condition that the relative permittivity of the reinforcement particles is smaller than that of the piezoelectric particles.
  • the structure in which piezoelectric particles having a large relative dielectric constant are connected is easy to transmit external force to the piezoelectric particles, an improvement in the piezoelectric strain constant of the above-described formula (a) can be expected.
  • the piezoelectric particles having a large relative dielectric constant are connected, the dielectric constant of the entire piezoelectric layer is increased.
  • both the piezoelectric particles and the reinforcing particles are included in the piezoelectric layer, the connection between the piezoelectric particles having a large relative dielectric constant is divided by the intervening reinforcing particles having a smaller relative dielectric constant. Thereby, the raise of the dielectric constant as the whole piezoelectric layer can be suppressed.
  • the piezoelectric strain constant can be maintained. That is, when the reinforcing particles are included in the piezoelectric layer, the dielectric constant of the entire piezoelectric layer can be made smaller than when only the piezoelectric particles are included while maintaining the piezoelectric strain constant. Therefore, a large electromotive field can be obtained by the above-described formula (a).
  • the reinforcing particles particles having a large electric resistance are desirable.
  • the electrical resistance of the reinforcing particles is large, the dielectric breakdown strength of the piezoelectric layer is increased. Thereby, in the polarization process of the piezoelectric layer which will be described later, the processing time can be shortened by applying a high electric field. In addition, since the number of piezoelectric elements that are destroyed during the polarization process can be reduced, productivity is improved.
  • the reinforcing particles are chemically bonded to the elastomer.
  • a network of reinforcing particles is formed in the elastomer, impurity ions obtained by ionizing a crosslinking agent, an additive, moisture in the air, and the like are difficult to move, and the electric resistance of the piezoelectric layer is increased.
  • the chemical bond between the reinforcing particles and the elastomer can be realized, for example, by surface-treating the reinforcing particles.
  • a surface treatment agent having a functional group capable of reacting with an elastomer polymer is reacted with the reinforcing particles in advance, and the reinforcing particles are mixed with the elastomer polymer.
  • generating a hydroxyl group etc. is mentioned.
  • the reinforcing particles are chemically bonded to the elastomer, the reinforcing particles are unlikely to be displaced even if the expansion and contraction are repeated.
  • the reinforcing particles are difficult to peel off from the elastomer, fluctuations from the initial values of physical properties and output are reduced. Therefore, the output is stabilized and the sag resistance of the piezoelectric layer is improved.
  • the elongation at break of the piezoelectric layer is increased, it is possible to suppress a decrease in piezoelectric performance due to local fracture during elongation. As a result, high piezoelectric performance can be maintained even in the extended state.
  • the type of reinforcing particles is not particularly limited.
  • particles such as oxides such as titanium dioxide, silica, and barium titanate, rubber, and resin can be used.
  • the applied load may be attenuated by the resin particles and may not be transmitted to the piezoelectric particles.
  • the reinforcing particles From the viewpoint of facilitating transmission of force to the piezoelectric particles, increasing the piezoelectric strain constant of the piezoelectric layer in the above-described formula (a), and increasing the electromotive force, the reinforcing particles have an elastic modulus higher than that of the matrix elastomer. It is better to use large particles.
  • metal oxide particles such as titanium dioxide are preferable because they have a small relative dielectric constant and a large effect of improving dielectric breakdown resistance.
  • a sol-gel method is preferable because particles having low crystallinity and a low relative dielectric constant can be obtained.
  • the piezoelectric layer is manufactured by curing a composition obtained by adding a powder of a piezoelectric particle or a crosslinking agent to an elastomer polymer under predetermined conditions. Thereafter, the piezoelectric layer is subjected to polarization treatment. That is, a voltage is applied to the piezoelectric layer to align the polarization direction of the piezoelectric particles in a predetermined direction.
  • the thinner piezoelectric layer is desirable.
  • the thickness of the piezoelectric layer is preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the thickness of the piezoelectric layer is desirably 10 ⁇ m or more, and more desirably 20 ⁇ m or more.
  • Electrode layer As the elastomer constituting the electrode layer, one or more selected from cross-linked rubber and thermoplastic elastomer may be used in the same manner as the elastomer of the piezoelectric layer.
  • the elastomer having a relatively small elastic modulus and good adhesion to the piezoelectric layer include acrylic rubber, silicone rubber, urethane rubber, urea rubber, fluorine rubber, and H-NBR.
  • the type of conductive material is not particularly limited.
  • electroconductive carbon materials such as metal nanowire which consists of metal carbide particle
  • particles coated with a metal such as silver-coated copper particles may be used.
  • the conductive material one of these can be used alone, or two or more can be mixed and used.
  • the electrode layer may contain a crosslinking agent, a dispersing agent, a reinforcing material, a plasticizer, an antiaging agent, a coloring agent, and the like as other components.
  • the volume resistivity of the electrode layer is 100 ⁇ ⁇ cm or less both in the natural state and in the stretched state from the stretched state to 10% in the uniaxial direction. More preferably, it is 10 ⁇ ⁇ cm or less.
  • the electric resistance of the electrode layer is large, the electromotive voltage generated in the piezoelectric layer drops at the electrode layer, and the output voltage becomes small. That is, the S / N ratio of the sensor decreases.
  • the output in the natural state and the output in the extended state are greatly different, which causes a problem that the load cannot be accurately detected. Therefore, it can be used even in a stretched state by combining a flexible piezoelectric layer that can stretch and maintain piezoelectricity even when stretched and a flexible electrode layer that can stretch and maintain conductivity even when stretched.
  • a piezoelectric element can be realized.
  • the blending amount of the conductive material may be appropriately determined so that the electrode layer can achieve a desired volume resistivity.
  • the amount of the conductive material is increased, the volume resistivity of the electrode layer can be reduced, but the flexibility is lowered.
  • Ketjen Black registered trademark
  • it is desirable that the blending amount of the conductive material is 5 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the elastomer.
  • the piezoelectric element is formed by laminating a piezoelectric layer and an electrode layer.
  • the pair of electrode layers may be arranged apart from each other in the polarization direction of the piezoelectric particles in the piezoelectric layer.
  • a pair of electrode layers may be arranged one on each of the two surfaces in the thickness direction of the piezoelectric layer.
  • the pair of electrode layers may be arranged separately on one surface intersecting with the thickness direction of the piezoelectric layer.
  • the electrode layer may be formed on the entire surface of the piezoelectric layer, or may be formed on only a part.
  • the breaking elongation of the piezoelectric element is 10% or more. More preferably, it is 30% or more.
  • the elongation at break is a value of elongation at break measured by a tensile test specified in JIS K6251: 2010. The tensile test is performed using a dumbbell-shaped No. 5 test piece and a tensile speed of 100 mm / min.
  • the elastic modulus of the piezoelectric element is desirably 10 MPa or more and 500 MPa or less.
  • the elastic modulus is a value calculated from a stress-elongation curve obtained by a tensile test specified in JIS K7127: 1999. The tensile test is performed using a test piece type 2 test piece and a tensile speed of 100 mm / min.
  • the piezoelectric element desirably satisfies the following formula (I) in a state where the piezoelectric element is stretched by 10% in the uniaxial direction.
  • the following formula (I) is an index indicating flexibility and whether or not it can be used at the time of extension. That is, a piezoelectric element satisfying the following formula (I) is flexible and can generate an electromotive force by deformation even when it is extended. On the other hand, when the following formula (I) is not satisfied, the change in the electromotive voltage when it expands is large, and accurate sensing becomes difficult.
  • V1 is an electromotive voltage (V) of the piezoelectric element in a natural state
  • V2 is an electromotive voltage (V) of the piezoelectric element in a state of being extended by 10% in a uniaxial direction.
  • the electromotive voltage V1 in the natural state may be measured as follows. First, the piezoelectric element is installed in a rebound resilience tester manufactured by Kobunshi Keiki Co., Ltd. in a natural state without stretching.
  • a steel ball having a diameter of 14 mm and a mass of 300 g suspended with a suspension length of 2000 mm is caused to make a pendulum movement with a swing width (distance from the test piece in the horizontal direction) of 15 mm and collide with the piezoelectric element.
  • the peak value of the electromotive voltage generated at the time of collision is measured with an oscilloscope (“TPS2012B” manufactured by Tektronix). This is repeated five times, and an average value of five times of the peak value of the electromotive voltage is set as the electromotive voltage V1 in the natural state.
  • the piezoelectric element was installed in a rebound resilience tester (same as above) in a state where the piezoelectric element was stretched by 10% in the uniaxial direction.
  • the electromotive voltage V2 is sufficient.
  • the piezoelectric element may have a protective layer in addition to the piezoelectric layer and the electrode layer.
  • the protective layer may be disposed so as to be stacked on at least the electrode layer of the piezoelectric layer and the electrode layer.
  • a protective layer may be disposed on one or both of the laminate direction outer side of the laminate of the piezoelectric layer and the electrode layer.
  • a protective layer may be disposed between electrode layers adjacent in the stacking direction.
  • the protective layer is preferably stretchable together with the piezoelectric layer and the electrode layer. It is desirable to use at least one kind selected from a crosslinked rubber and a thermoplastic elastomer for the protective layer. By disposing the protective layer made of elastomer, it is possible to ensure the insulation of the piezoelectric element and suppress the destruction of the piezoelectric element due to external mechanical stress. Further, as will be described later, the extension of the protective layer increases the strain of the piezoelectric layer, thereby improving the sensitivity of the sensor.
  • Examples of elastomers having a relatively small elastic modulus and good adhesion to the electrode layer include natural rubber, isoprene rubber, butyl rubber, acrylic rubber, silicone rubber, urethane rubber, urea rubber, fluorine rubber, NBR, and the like.
  • the protective layer has excellent sag resistance.
  • the protective layer plays a role of protecting the piezoelectric element from external mechanical stress, it is desirable that the protective layer is excellent in wear durability and tear durability.
  • the breaking elongation of the protective layer is larger than the breaking elongation of the piezoelectric layer.
  • a shearing force acts on the piezoelectric layer by extending the protective layer in the surface direction.
  • a tensile force in the surface direction is applied to the piezoelectric layer, and the distortion of the piezoelectric layer increases.
  • the amount of charge generated in the piezoelectric layer is increased, and the sensitivity of the sensor is improved.
  • the sensitivity improvement effect by the protective layer is more remarkable as the elastic modulus in the tensile direction of the protective layer is smaller.
  • the elastic modulus of the protective layer is smaller than the combined elastic modulus of a pair of laminates that are adjacent to the protective layer and that include a pair of electrode layers and a piezoelectric layer interposed therebetween.
  • the composite elastic modulus of a set of laminated bodies is the sum of the elastic modulus of the piezoelectric layer and the elastic modulus of the pair of electrode layers.
  • Elastic modulus can be obtained as the slope of a stress-elongation (strain) curve with stress on the vertical axis and elongation (strain) on the horizontal axis.
  • strain stress-elongation
  • strain elongation
  • Conventional piezoelectric ceramics represented by PZT and piezoelectric resins represented by PVDF and polylactic acid can only be used in a region where the elongation is extremely small. That's fine.
  • the piezoelectric sensor of the present invention is flexible and can be expanded and contracted, it is necessary to design in consideration of an elastic modulus in a region where the elongation rate is large (the strain is large).
  • the protective layer can be elastically deformed in a region where the elongation rate is 25% or less, and the elastic modulus of the protective layer in the region is desirably smaller than 50 MPa.
  • the elastic modulus of the protective layer in the region where the elongation rate is 25% or less is preferably less than 20 MPa, and more preferably less than 10 MPa.
  • the sensitivity improvement effect by the protective layer is more remarkable as the difference between the elastic modulus in the tensile direction of the protective layer and the elastic modulus in the tensile direction of the piezoelectric layer is smaller. Therefore, the protective layer and the pair of laminates composed of the pair of electrode layers and the piezoelectric layer interposed therebetween can be elastically deformed in a region where the elongation is 25% or less, and further, the elongation is 10%. It is desirable that the elastic modulus of the protective layer and the combined elastic modulus of the set of laminates in the region of 25% or less satisfy the following formula ( ⁇ -1). It is more preferable that the following formula ( ⁇ -2) is satisfied. When the protective layer and the set of laminates satisfy the formula ( ⁇ -1) or the formula ( ⁇ -2), the sensitivity of the sensor can be improved even when the protective layer is extended by 10% or more.
  • the Poisson's ratio of the elastomer is about 0.5.
  • the thickness of the protective layer the greater the distortion increasing effect of the piezoelectric layer, and the greater the sensitivity improving effect of the sensor.
  • the thickness of the protective layer is increased, the piezoelectric element is increased.
  • the thickness of a protective layer suitably according to an installation place or a use. For example, it may be 5 ⁇ m or more and 5 mm or less.
  • FIG. 1 shows a top view of the piezoelectric sensor of the present embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • the protective layer 13a is shown in a transparent manner.
  • the piezoelectric sensor 1 includes a piezoelectric element 10 and a control circuit unit 30.
  • the piezoelectric element 10 includes a piezoelectric layer 11, a pair of electrode layers 12a and 12b, and a pair of protective layers 13a and 13b. The breaking elongation of the piezoelectric element 10 is 50%.
  • the piezoelectric layer 11 contains X-NBR and barium titanate particles.
  • the piezoelectric layer 11 has a square thin film shape.
  • the piezoelectric layer 11 is subjected to polarization treatment, and the barium titanate particles are polarized in the thickness direction (vertical direction) of the piezoelectric layer 11.
  • the electrode layer 12a includes acrylic rubber, conductive carbon black, and carbon nanotubes.
  • the electrode layer 12a has a square thin film shape.
  • the electrode layer 12 a is disposed on the upper surface of the piezoelectric layer 11.
  • a wiring 20a is connected to the right end of the electrode layer 12a.
  • the electrode layer 12b is made of the same material as the electrode layer 12a and has a square thin film shape.
  • the electrode layer 12 b is disposed on the lower surface of the piezoelectric layer 11.
  • a wiring 20b is connected to the right end of the electrode layer 12b.
  • the piezoelectric layer 11 and the electrode layers 12a and 12b have the same size.
  • the volume resistivity in a natural state of the electrode layers 12a and 12b is 0.2 ⁇ ⁇ cm, and the volume resistivity in a state where the electrode layers 12a and 12b are elongated by 10% in the left-right direction (uniaxial direction) is 0.1 ⁇ ⁇ cm.
  • the protective layer 13a is made of silicone rubber and has a square thin film shape.
  • the protective layer 13a is larger than the piezoelectric layer 11 and the electrode layers 12a and 12b, and covers the piezoelectric layer 11 and the electrode layers 12a and 12b from above.
  • the protective layer 13b is made of silicone rubber and has a square thin film shape.
  • the protective layer 13b is larger than the piezoelectric layer 11 and the electrode layers 12a and 12b, and covers the lower surface of the electrode layer 12b.
  • the electrode layer 12a and the control circuit unit 30 are electrically connected by a wiring 20a.
  • the electrode layer 12b and the control circuit unit 30 are electrically connected by the wiring 20b.
  • the matrix of the piezoelectric layer 11 and the electrode layers 12a and 12b constituting the piezoelectric element 10 are all elastomers.
  • the protective layers 13a and 13b are also made of an elastomer.
  • the elongation at break of the piezoelectric element 10 is 10% or more. Therefore, the piezoelectric element 10 is flexible and can be expanded and contracted. For this reason, even if it arrange
  • the electrode layers 12a and 12b have a volume resistivity of 100 ⁇ ⁇ cm or less in a natural state and a state in which the electrode layers 12a and 12b are stretched 10% in the uniaxial direction. That is, the electrode layers 12a and 12b not only have high conductivity in a natural state, but also have a high conductivity with a small increase in electrical resistance even in an extended state that extends up to 10% in a uniaxial direction. For this reason, even in the extended state, the output is unlikely to decrease, and the load applied to the piezoelectric layer 11 can be accurately detected.
  • the piezoelectric sensor 1 arrange
  • the load can be detected. That is, even when the secondary deformation is further performed in the primary deformation state of the adherend, the load applied to the adherend can be detected.
  • Piezoelectric sensor 1 has a higher sensitivity (S / N ratio) than a capacitive sensor, so it is easy to detect a small load. Further, since the load can be detected by a voltage value or a current value, the circuit configuration can be simplified as compared with the case where the load is detected from the capacitance. Further, since energization to the piezoelectric element 10 is unnecessary, a power source for driving is not necessary. Incidentally, if the capacitance of the piezoelectric element 10 is also measured, a function as a capacitance type sensor can be added to the piezoelectric sensor 1. For example, a static load such as a surface pressure distribution can be detected by a change in capacitance, and a dynamic load such as vibration can be detected by a change in voltage.
  • piezoelectric layers 1 to 4 100 parts by mass of a carboxyl group-modified hydrogenated nitrile rubber polymer (“Terban (registered trademark) XT8889” manufactured by LANXESS) as an elastomer was dissolved in acetylacetone to prepare a polymer solution. Next, barium titanate powder (“BT9DX-400” manufactured by Kyoritsu Material Co., Ltd.) as piezoelectric particles was added to the prepared polymer solution and kneaded.
  • Teban registered trademark
  • XT8889 barium titanate powder
  • the blending amount of the barium titanate powder with respect to 100 parts by mass of the polymer is 650 parts by mass for the piezoelectric layer 1, 480 parts by mass for the piezoelectric layer 2, and 350 for the piezoelectric layer 3.
  • the piezoelectric layer 4 was 800 parts by mass.
  • the kneaded material was repeatedly passed through three rolls five times to obtain a slurry.
  • 5 parts by mass of tetrakis (2-ethylhexyloxy) titanium as a cross-linking agent was added to the obtained slurry and kneaded with an air stirrer, and then the slurry was applied onto a substrate by a bar coating method. This was heated at 150 ° C. for 1 hour to produce piezoelectric layers 1 to 4 having a thickness of 50 ⁇ m.
  • piezoelectric layer 5 Except for using a polyurethane polymer (“N5139” manufactured by Tosoh Corporation) as an elastomer and using 2 parts by mass of polyisocyanate (“Coronate (registered trademark) HX” manufactured by Tosoh Corporation) as a crosslinking agent, A piezoelectric layer 5 was manufactured in the same manner as the piezoelectric layer 2.
  • a piezoelectric layer 7 was produced in the same manner as the piezoelectric layer 5 except that 1050 parts by mass of lead zirconate titanate powder (“PZT-ALT” manufactured by Hayashi Chemical Industry Co., Ltd.) was used as the piezoelectric particles.
  • PZT-ALT lead zirconate titanate powder
  • piezoelectric layer 8 A piezoelectric layer 8 was manufactured in the same manner as the piezoelectric layer 5 except that 350 parts by mass of potassium niobate powder (“Piezofine” manufactured by Furuuchi Chemical Co., Ltd.) was used as the piezoelectric particles.
  • piezoelectric layers 9 to 11 After adding 5 parts by mass of tetrakis (2-ethylhexyloxy) titanium as a crosslinking agent and titanium dioxide sol as reinforcing particles to the slurry used for the production of the piezoelectric layer 2 and kneading with an air stirrer, the slurry is obtained by a bar coating method. It was applied on the material. This was heated at 150 ° C. for 1 hour to produce piezoelectric layers 9 to 11 having a thickness of 50 ⁇ m.
  • the blending amount of the titanium dioxide sol with respect to 100 parts by mass of the polymer content of the slurry was 1 part by mass for the piezoelectric layer 9, 5 parts by mass for the piezoelectric layer 10, and 20 parts by mass for the piezoelectric layer 11. .
  • the titanium dioxide sol was manufactured as follows. First, 0.02 mol of acetylacetone was added to 0.01 mol of tetrai-propoxytitanium, an organometallic compound, for chelation. Next, 0.083 mol of isopropyl alcohol, 0.139 mol of methyl ethyl ketone, and 0.08 mol of water are added to the resulting chelated product, and the mixture is stirred. After the addition, the mixture is heated to 40 ° C. and further stirred for 2 hours. did. Then, it was allowed to stand at room temperature overnight to obtain a titanium dioxide sol.
  • piezoelectric layers 12, 13 A slurry in which reinforcing particles are dispersed is added to the slurry used for the production of the piezoelectric layer 2, and 5 parts by mass of tetrakis (2-ethylhexyloxy) titanium as a cross-linking agent is added and kneaded with an air stirrer. was applied on the substrate. This was heated at 150 ° C. for 1 hour to produce piezoelectric layers 12 and 13 having a thickness of 50 ⁇ m.
  • the blending amount of the slurry in which the reinforcing particles are dispersed with respect to 100 parts by mass of the polymer content of the slurry was 5 parts by mass for the piezoelectric layer 12 and 20 parts by mass for the piezoelectric layer 13 as shown in Table 2 below.
  • the slurry in which the reinforcing particles are dispersed was manufactured as follows. First, a titanium dioxide powder (anatase type, Wako Pure Chemical Industries, Ltd., product code 205-01715) as a reinforcing particle was added to a polymer solution prepared by dissolving a carboxyl group-modified hydrogenated nitrile rubber polymer (same as above) in acetylacetone. ) And kneaded. Next, the kneaded product was repeatedly passed through three rolls five times to obtain a slurry in which reinforcing particles were dispersed.
  • the piezoelectric layer 14 was formed in the same manner as the piezoelectric layers 1 to 4 except that 480 parts by mass of the powder a (a “BTD-UP” manufactured by Nippon Kagaku Kogyo Co., Ltd.) of barium titanate particles was used as the piezoelectric particles. Manufactured.
  • the piezoelectric layer 15 was manufactured in the same manner as the piezoelectric layers 1 to 4 except that 480 parts by mass of the powder b of the combination of barium titanate particles as the piezoelectric particles was used.
  • the combined powder b of the barium titanate particles used was a barium titanate powder (single particle powder, “BT-UP2” manufactured by Nippon Chemical Industry Co., Ltd.) for 180 minutes at 1050 ° C. Manufactured by grinding.
  • FIG. 7 shows an SEM photograph of the barium titanate powder (single particles) before firing.
  • FIG. 8 shows an SEM photograph of barium titanate powder b (combined body) after firing and pulverization. As shown in FIGS. 7 and 8, it can be confirmed that a combined body formed by aggregating a plurality of barium titanate particles is produced by firing and pulverizing.
  • piezoelectric layer a For comparison, a piezoelectric layer having a thickness of 40 ⁇ m made of PVDF (manufactured by Kureha Elastomer Co., Ltd.) was used as the piezoelectric layer a.
  • piezoelectric layer b a piezoelectric layer in which barium titanate particles are dispersed in an epoxy resin is defined as a piezoelectric layer b.
  • the piezoelectric layer b was manufactured as follows. First, 100 parts by mass of bisphenol A ("jER (registered trademark) 828" manufactured by Mitsubishi Chemical Corporation) is added with 4.8 parts by mass of a phenol novolac resin ("BRG # 558" manufactured by Showa Denko KK) as a curing agent. Next, 480 parts by mass of barium titanate powder (same as above) was added to the prepared polymer solution and kneaded, and the kneaded product was passed through three rolls five times to obtain a slurry. The obtained slurry was applied onto a substrate by a bar coating method, and this was heated at 150 ° C. for 1 hour to produce a piezoelectric layer b having a thickness of 50 ⁇ m.
  • jER registered trademark
  • BRG # 558 phenol novolac
  • Electrode layer 1 100 parts by mass of an epoxy group-containing acrylic rubber polymer (“Nipol (registered trademark) AR42W” manufactured by Nippon Zeon Co., Ltd.) as an elastomer was dissolved in butyl cellosolve acetate to prepare a polymer solution. Next, 10 parts by mass of conductive carbon black (“Ketjen Black EC600JD” manufactured by Lion Corporation) and 16 parts by mass of carbon nanotubes (“VGCF (registered trademark)” manufactured by Showa Denko KK) were added to the prepared polymer solution.
  • Nipol epoxy group-containing acrylic rubber polymer
  • AR42W manufactured by Nippon Zeon Co., Ltd.
  • a polyester acid amide amine salt as a dispersant were added and dispersed with a bead mill to prepare a conductive paint. Subsequently, the conductive paint was applied on a polyethylene terephthalate (PET) film subjected to a release treatment by a bar coating method. This was heated at 150 ° C. for 1 hour to produce an electrode layer having a thickness of 20 ⁇ m.
  • PET polyethylene terephthalate
  • Electrode layer 2 An electrode layer 2 was produced in the same manner as the electrode layer 1 except that a conductive paint was prepared without blending carbon nanotubes and a dispersant.
  • Electrode layer 3 The conductive carbon black was changed from “Ketjen Black EC600JD” manufactured by Lion Corporation to “# 3050B” manufactured by Mitsubishi Chemical Corporation, except that a conductive paint was prepared without blending carbon nanotubes and a dispersant.
  • the electrode layer 3 was produced in the same manner as the electrode layer 1.
  • Electrode layer 4 A silver paste (“Dotite (registered trademark) D-362” manufactured by Fujikura Kasei Co., Ltd.) was applied onto the release-treated PET film by a bar coating method. This was heated at 150 ° C. for 1 hour to produce an electrode layer 4 having a thickness of 20 ⁇ m.
  • Dotite (registered trademark) D-362 manufactured by Fujikura Kasei Co., Ltd.
  • Liquid A and B of silicone rubber polymer (“KE1935” manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed at the same mass, degassed by vacuum degassing, and then released onto a PET film that has been subjected to release treatment. The coating method was applied. This was heated at 150 ° C. for 1 hour to produce a protective layer having a thickness of 10 ⁇ m.
  • piezoelectric elements were manufactured as follows by appropriately combining the manufactured piezoelectric layer, electrode layer, and protective layer.
  • electrode layers were respectively arranged on two surfaces (upper surface and lower surface) in the thickness direction of the piezoelectric layer, and the piezoelectric layer and the electrode layer were pressure-bonded using a laminator (“LPD3223” manufactured by Fuji Pla Co., Ltd.).
  • LPD3223 manufactured by Fuji Pla Co., Ltd.
  • the protective layer which performed the excimer process previously was laminated
  • FIG. 9 shows a vertical sectional view of the manufactured piezoelectric element.
  • the piezoelectric element 40 is formed by laminating a protective layer 43a, an electrode layer 42a, a piezoelectric layer 41, an electrode layer 42b, and a protective layer 43b in order from the top.
  • the manufactured piezoelectric element has a square-shaped detection part of 30 mm in length and width.
  • Tables 1 and 2 show the configuration, characteristics, and evaluation results of the manufactured piezoelectric elements.
  • relative dielectric constant
  • volume resistivity volume resistivity
  • elastic modulus volume resistivity
  • elongation at break volume resistivity
  • electromotive force electromotive force
  • volume resistivity ( ⁇ ⁇ cm) Electric resistance value ( ⁇ ) ⁇ Cross sectional area of test piece (cm 2 ) / Distance between marked lines (cm) (c) (2) Volume resistivity in the stretched state Using a tensile tester (manufactured by Shimadzu Corporation), the test piece of the electrode layer was stretched in the length direction.
  • the electrical resistance between the marked lines was measured, and the volume resistivity was calculated according to the previous equation (c), which was taken as the volume resistivity when the electrode layer was extended by 10%.
  • the volume resistivity was calculated in the same manner for the case where the test piece was extended by 50%, and was taken as the volume resistivity when the electrode layer was extended by 50%.
  • the cross-sectional area of the test piece in the extended state was calculated on the assumption that the Poisson's ratio of the test piece was 0.5.
  • the piezoelectric element was subjected to a tensile test specified in JIS K 7127: 1999, and the elastic modulus was calculated from the obtained stress-elongation curve.
  • the tensile test was performed using a test piece type 2 test piece with a tensile speed of 100 mm / min.
  • the electromotive force was measured by a method similar to the pendulum type test defined in JIS K 6255: 2013. First, the piezoelectric element was installed in a rebound resilience tester manufactured by Kobunshi Keiki Co., Ltd. in a natural state. Next, a steel ball having a diameter of 14 mm and a mass of 300 g suspended with a suspension length of 2000 mm was caused to make a pendulum movement with a swing width (distance from the test piece in the horizontal direction) of 15 mm and collide with the piezoelectric element. Then, the peak value of the electromotive voltage generated at the time of collision was measured with an oscilloscope (“TPS2012B” manufactured by Tektronix).
  • TPS2012B oscilloscope
  • the piezoelectric element was installed in a rebound resilience tester (same as above) in a state where the piezoelectric element was stretched 10% in the uniaxial direction, and the average value of five times of the peak value of the electromotive force measured by the same method as described above was The electromotive voltage V2 was
  • the piezoelectric elements of Examples 1 to 8 in which reinforcing particles are not included in the piezoelectric layer will be described.
  • the breaking elongation of the piezoelectric elements was 40% or more.
  • the volume resistivity of the electrode layer was 3 ⁇ ⁇ cm or less at the natural state and 10% elongation, and 5 ⁇ ⁇ cm or less at 50% elongation.
  • the electrode layers constituting the piezoelectric elements of Examples 1 to 8 satisfy the condition that the volume resistivity in the natural state and the expanded state from the state to 10% in the uniaxial direction is 100 ⁇ ⁇ cm or less. I can judge.
  • the value of V2 / V1 is greater than 0.5%, which satisfies the condition of the above-described formula (I). Further, the rate of change in electromotive voltage after repeated expansion and contraction was 150% or less, and it was confirmed that the change in electromotive voltage was small even after repeated expansion and contraction and that the stretch durability was excellent. Further, when the elastic modulus of the piezoelectric element is large, there is a possibility that the movement of the adherend is hindered. In this regard, the elastic modulus of the piezoelectric elements of Examples 1 to 8 is 500 MPa or less. Therefore, as indicated by a circle in Table 1, it was confirmed that the piezoelectric elements of Examples 1 to 8 had good followability to the adherend and hardly hindered the movement of the adherend.
  • the elastic modulus is large as shown in Table 2, It did not restore to its original shape after stretching. For this reason, the electromotive voltage in an extended state could not be measured, and the stretch durability could not be evaluated. Further, in the piezoelectric element of Comparative Example 2, since the blending amount of the piezoelectric particles was large, the elastic modulus of the piezoelectric element was increased and the elongation at break was less than 10%. For this reason, the electromotive voltage in an extended state could not be measured, and the stretch durability could not be evaluated.
  • the volume resistivity of the electrode layer was greatly increased at the time of expansion, so that the electromotive voltage was greatly reduced.
  • the volume resistivity of the electrode layer was greatly increased at the time of expansion, and the electromotive voltage in the expanded state could be measured. Therefore, the stretch durability was not evaluated.
  • the piezoelectric elements of Examples 9 to 13 in which reinforcing particles are included in the piezoelectric layer will be described.
  • Table 2 the configurations of the piezoelectric elements of Examples 9 to 13 are the same as the configuration of the piezoelectric element of Example 3 except that reinforcing particles are blended in the piezoelectric layer. Therefore, like the piezoelectric element of Example 3, the piezoelectric elements of Examples 9 to 13 have a small change in electromotive voltage even after repeated expansion and contraction and are excellent in expansion and contraction durability.
  • the electromotive voltage in the natural state was larger than that of the piezoelectric element of Example 3. This is a great effect due to the incorporation of reinforcing particles.
  • the reinforcing particles have a hydroxyl group on the surface and are chemically bonded to the elastomer. For this reason, the rate of change in electromotive voltage after repeated expansion and contraction is further reduced.
  • the piezoelectric elements of Examples 14 and 15 using a bonded body in which individual particles are chemically bonded as piezoelectric particles will be described.
  • Tables 1 and 2 the configurations of the piezoelectric elements of Examples 14 and 15 are the same as the configurations of the piezoelectric element of Example 3 except that the piezoelectric particles used are different.
  • the elastic modulus was small and the elongation at break was large compared to the piezoelectric element of Example 3 using barium titanate particles (single particles).
  • the electromotive voltage of the piezoelectric elements of Examples 14 and 15 was larger than that of the piezoelectric element of Example 3.
  • the expansion / contraction durability of the piezoelectric elements of Examples 14 and 15 was equivalent to that of the piezoelectric element of Example 3.
  • the flexibility could be greatly improved while ensuring high piezoelectricity. This is because, when an aggregate of piezoelectric particles is used, a connection structure between the piezoelectric particles is easily formed, so that high piezoelectricity can be obtained without increasing the blending amount of the piezoelectric particles.
  • FIG. 10 shows the relationship between the volume ratio of barium titanate particles and the generated electric field.
  • FIG. 10 in the case of the combined body used in the piezoelectric layer 14, it can be seen that a large electric field is generated even at a low filling rate as compared with the single particles used in the piezoelectric layer 1.
  • a large electric field is generated even at a low filling rate as compared with the single particles before firing.
  • FIG. 3 is a graph of an electromotive voltage when vibration is applied in the thickness direction in a state where the piezoelectric element is extended by 1% in one direction of the plane direction.
  • FIG. 4 is a graph of an electromotive voltage when vibration is applied in the thickness direction in a state where the piezoelectric element is extended by 10% in one direction of the plane direction.
  • the electromotive voltage is indicated by a thick line, and the load is indicated by a thin line.
  • a sine wave-like vibration with a load pp of 1.7 N was applied to the piezoelectric element using a fatigue durability tester “APC-1000” manufactured by Asahi Seisakusho.
  • the piezoelectric element maintains the piezoelectric performance even in the extended state, and can detect the applied load.
  • Piezoelectric elements were manufactured by changing the type and thickness of the protective layer, and the electromotive voltages in the natural state and the extended state were measured.
  • the configuration of the piezoelectric element is protective layer / electrode layer / piezoelectric layer / electrode layer / protective layer, and the manufacturing method is as described above. The following three types were used as the protective layer.
  • Liquid A and B of silicone rubber polymer (“KE1935” manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed at the same mass, degassed by vacuum degassing, and then released onto a PET film that has been subjected to release treatment. The coating method was applied. This was heated at 150 ° C. for 1 hour to produce a protective layer 2 having a thickness of 1 mm.
  • the protective layer 2 is different in thickness of the protective layer used in the piezoelectric elements of Examples 1 to 15 described above.
  • Table 3 shows the measurement results of the configuration of the piezoelectric element, the composite elastic modulus of the laminate, the elastic modulus and breaking elongation of the protective layer, and the electromotive voltage of the piezoelectric element.
  • the elastic modulus, elongation at break, and electromotive force were measured according to the methods described above.
  • the composite elastic modulus of the laminate is a value obtained by separately obtaining and adding the elastic modulus of the piezoelectric layer and the elastic modulus of the electrode layer.
  • the electromotive voltage in the 20% stretched state is an average value of five times of the peak value of the electromotive force measured by installing the piezoelectric element in a rebound resilience tester (same as above) in a state where the piezoelectric element is stretched by 20% in one axis direction.
  • the elastic modulus of the protective layers 1 and 2 is smaller than 10 MPa, and the protective layers 1 and 2 satisfy the above elastic modulus formula ( ⁇ ).
  • the piezoelectric element of Example 17 having the protective layer 1 and the piezoelectric element of Example 18 having the protective layer 2 both satisfy the expressions ( ⁇ -1) and ( ⁇ -2). Therefore, in the piezoelectric elements of Examples 17 and 18, the electromotive voltage was larger than that of the piezoelectric element of Example 16 having no protective layer. In the piezoelectric elements of Examples 17 and 18, it can be seen that the effect of increasing the distortion of the piezoelectric layer by the protective layer is fully exhibited.
  • the electromotive voltage was larger than that of the piezoelectric element of Example 15 having a protective layer thickness of 10 ⁇ m. This is presumably because the effect of increasing the distortion of the piezoelectric layer is increased by the increase in the thickness of the protective layer.
  • the protective layer 3 satisfies the above-described elastic modulus formula ( ⁇ ), but does not satisfy the formula ( ⁇ -1). For this reason, the electromotive voltage of the piezoelectric element of the reference example was the same level as that of the piezoelectric element of Example 16 having no protective layer.
  • the laminate exceeded the elastic region when the elongation ratio was 10% or more. That is, although the piezoelectric element of Comparative Example 6 has a flexible protective layer, it was confirmed that the piezoelectric element cannot be used for applications that greatly expand because the piezoelectric layer has poor flexibility.
  • the piezoelectric sensor of the present invention can be applied to an adherend that stretches or bends (repeatedly expands and contracts and bends), it is a wearable that measures a pulse rate, a respiration rate, etc. without disturbing the natural movement of the living body. It is suitable as a simple biological information sensor. In addition, it can be used not only in an unstretched state but also in a stretched state (measurable), so it can also be used in joints that require expansion and contraction in humans and robots, and in processes where the sensor installation surface extends and returns during the manufacturing process. Can do. Further, it is suitable as a pressure sensor for robots (including industrial and communication), medical use, nursing care, health use, sports equipment, and automobiles.
  • the piezoelectric sensor of the present invention is particularly suitable for application as a human-machine interface (HMI) that comes into contact with people.
  • HMI human-machine interface
  • sports equipment such as sportswear such as sportswear (wearable such as shoes and gloves) and sports equipment such as balls, bats, rackets, various armor, weight training, traveling equipment, etc.
  • sportswear such as sportswear (wearable such as shoes and gloves)
  • sports equipment such as balls, bats, rackets, various armor, weight training, traveling equipment, etc.
  • the training effect can be quantified without impairing the hit feeling.
  • Digitized data and information can be sent to an IOT (Internet of Things) device as a control means.
  • IOT Internet of Things

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

This piezoelectric sensor (1) is provided with a piezoelectric element (10) which includes a piezoelectric layer (11) containing elastomer and piezoelectric particles and which includes electrode layers (12a, 12b) containing elastomer and a conductive material. The breaking elongation of the piezoelectric element (10) is equal to or greater than 10%, and the volume resistivity of the electrode layers (12a, 12b) in the natural state and in the elongated state of being elongated in an axial direction by up to 10% from the natural state is not greater than 100 Ω·cm. The piezoelectric element (10) is capable of being elongated/retracted, and has the piezoelectric performance even in the elongated state.

Description

圧電センサPiezoelectric sensor
 本発明は、伸縮可能な圧電素子を備える圧電センサに関する。 The present invention relates to a piezoelectric sensor including an extendable piezoelectric element.
 機械エネルギーを電気エネルギーに変換できる圧電材料は、圧力センサ、加速度センサ、振動センサ、衝撃センサなどに広く利用されている。圧電材料としては、チタン酸ジルコン酸鉛(PZT)などのセラミックス、ポリフッ化ビニリデン(PVDF)やポリ乳酸などの高分子、高分子マトリックス中に圧電粒子が充填された複合体などが知られている。例えば、特許文献1には、伸縮弾性を有する基板に、導電性ゴムからなる電極と、PZTなどの圧電体結晶薄膜と、が形成された圧電素子が記載されている。特許文献2には、フッ素化ポリマーからなる圧電層と、導電性ポリマーからなる電極と、織物基材と、を有する圧電素子が記載されている。特許文献3には、樹脂およびゴムを有するマトリックスに圧電粒子が充填された複合体と、導電性ゴムからなる電極と、を有する圧電素子が記載されている。特許文献4には、塩素化ポリエチレンなどの樹脂マトリックスに圧電粒子が充填された圧電シートと、塩素化ポリエチレンにカーボンを充填した可撓性電極と、を有する圧電素子が記載されている。特許文献5には、クロロプレンゴムにチタン酸鉛粉末が充填された複合体と、銀ペーストからなる電極と、を有する圧電素子が記載されている。特許文献6には、PVDF製の圧電フィルムと、その両面に配置される一対の電極と、当該電極上に設けられる歪増幅部材と、を有する変動荷重検出用シートが記載されている。 Piezoelectric materials that can convert mechanical energy into electrical energy are widely used for pressure sensors, acceleration sensors, vibration sensors, impact sensors, and the like. Known piezoelectric materials include ceramics such as lead zirconate titanate (PZT), polymers such as polyvinylidene fluoride (PVDF) and polylactic acid, and composites in which polymer particles are filled in a polymer matrix. . For example, Patent Document 1 describes a piezoelectric element in which an electrode made of conductive rubber and a piezoelectric crystal thin film such as PZT are formed on a substrate having stretch elasticity. Patent Document 2 describes a piezoelectric element having a piezoelectric layer made of a fluorinated polymer, an electrode made of a conductive polymer, and a textile substrate. Patent Document 3 describes a piezoelectric element having a composite in which a matrix having a resin and rubber is filled with piezoelectric particles, and an electrode made of conductive rubber. Patent Document 4 describes a piezoelectric element having a piezoelectric sheet in which piezoelectric particles are filled in a resin matrix such as chlorinated polyethylene, and a flexible electrode in which carbon is filled in chlorinated polyethylene. Patent Document 5 describes a piezoelectric element having a composite in which chloroprene rubber is filled with lead titanate powder and an electrode made of silver paste. Patent Document 6 describes a fluctuating load detection sheet having a PVDF piezoelectric film, a pair of electrodes disposed on both sides thereof, and a strain amplification member provided on the electrodes.
特開2005-347364号公報JP 2005-347364 A 特表2014-529913号公報JP-T-2014-529913 特開2013-225608号公報JP 2013-225608 A 特開2002-111087号公報JP 2002-111087 A 特開平2-32574号公報JP-A-2-32574 特開2006-153842号公報JP 2006-153842 A
 特許文献1に記載されているような、圧電層にPZTなどのセラミックスを使用した圧電素子は、圧電層が硬く伸縮性に乏しい。このため、圧電素子を、伸縮変形する被着体に適用した場合、被着体の動きを阻害しやすい。また、特許文献2、6に記載された圧電素子は、圧電層に樹脂を使用している。このため、圧電層は可撓性を有するが、伸縮性に乏しい。仮に、圧電層が伸長できたとしても、元の形状に復元しにくい。よって、圧電素子を、伸縮変形する被着体に適用することは難しい。一方、特許文献3~5に記載された圧電素子は、圧電層に高分子マトリックスと圧電粒子との複合体を使用している。しかしながら、高分子マトリックスに樹脂が含まれる場合には、可撓性はあるものの伸縮性に乏しい。この点、特許文献5に記載された圧電層においては、高分子マトリックスにクロロプレンゴムが使用されている。このため、圧電層は伸縮性を有するが、それに積層される電極は、伸縮性に乏しい銀ペーストからなる。この場合、電極により圧電層の伸縮が規制され、圧電素子全体としての伸縮性が低下する。また、電極が伸長されると電気抵抗が増加するため、伸長時において出力が低下して、圧電層に加わった荷重を正確に検出することができない。この問題は、上述した他の特許文献に記載された圧電素子においても共通する。例えば、特許文献3には、電極に導電性ゴムを使用することが記載されている。しかし、特許文献3には、電極の伸縮性能や伸長時における電気抵抗の挙動については何ら検討されていない。また、特許文献3の段落[0020]には振動源の歪み量が5%程度と記載されており、実施例には歪み量を3%とした場合の適用例が記載されているように、特許文献3においては、圧電素子が10%以上の比較的大きな伸長率で変形される形態を想定していない。 A piezoelectric element using ceramics such as PZT as a piezoelectric layer as described in Patent Document 1 has a hard piezoelectric layer and poor stretchability. For this reason, when the piezoelectric element is applied to an adherend that expands and contracts, the movement of the adherend tends to be hindered. In addition, the piezoelectric elements described in Patent Documents 2 and 6 use a resin for the piezoelectric layer. For this reason, the piezoelectric layer has flexibility, but lacks stretchability. Even if the piezoelectric layer can be extended, it is difficult to restore the original shape. Therefore, it is difficult to apply the piezoelectric element to an adherend that undergoes expansion and deformation. On the other hand, the piezoelectric elements described in Patent Documents 3 to 5 use a composite of a polymer matrix and piezoelectric particles in the piezoelectric layer. However, when a polymer is contained in the polymer matrix, it has flexibility but poor stretchability. In this regard, in the piezoelectric layer described in Patent Document 5, chloroprene rubber is used for the polymer matrix. For this reason, the piezoelectric layer has stretchability, but the electrode laminated thereon is made of a silver paste with poor stretchability. In this case, the expansion and contraction of the piezoelectric layer is restricted by the electrode, and the stretchability of the entire piezoelectric element is reduced. In addition, since the electrical resistance increases when the electrode is extended, the output is reduced at the time of extension, and the load applied to the piezoelectric layer cannot be accurately detected. This problem is common to the piezoelectric elements described in other patent documents. For example, Patent Document 3 describes the use of conductive rubber for the electrodes. However, Patent Document 3 does not discuss the expansion / contraction performance of the electrode and the behavior of the electrical resistance during expansion. Further, paragraph [0020] of Patent Document 3 describes that the distortion amount of the vibration source is about 5%, and in the examples, an application example in which the distortion amount is 3% is described. In patent document 3, the piezoelectric element is not assumed to be deformed at a relatively large elongation rate of 10% or more.
 このように、従来は、大きく伸縮変形する被着体に適用することを想定していないため、圧電層だけではなく電極を含んだ圧電素子全体としての伸縮性について検討されていない。よって、伸長した状態においても圧電性能を維持できる圧電素子は実現されていない。 Thus, conventionally, since it is not assumed to be applied to an adherend that greatly deforms and stretches, the stretchability of the entire piezoelectric element including not only the piezoelectric layer but also the electrodes has not been studied. Therefore, a piezoelectric element that can maintain the piezoelectric performance even in the extended state has not been realized.
 本発明は、このような実情に鑑みてなされたものであり、伸縮可能であり、伸長された状態でも使用可能な圧電素子を備える圧電センサを提供することを課題とする。 This invention is made in view of such a situation, and makes it a subject to provide a piezoelectric sensor provided with the piezoelectric element which can be extended-contracted and can be used even in the extended state.
 本発明の圧電センサは、エラストマーおよび圧電粒子を含む圧電層と、エラストマーおよび導電材を含む電極層と、を有する圧電素子を備え、該圧電素子の破断伸びは10%以上であり、該電極層は、自然状態およびそれから一軸方向に10%伸長した状態に至るまでの伸長状態の体積抵抗率が100Ω・cm以下であることを特徴とする。 The piezoelectric sensor of the present invention includes a piezoelectric element having a piezoelectric layer including an elastomer and piezoelectric particles and an electrode layer including an elastomer and a conductive material, and the elongation at break of the piezoelectric element is 10% or more. Is characterized in that the volume resistivity of the stretched state from the natural state to the stretched state by 10% in the uniaxial direction is 100 Ω · cm or less.
 圧電素子を構成する圧電層および電極層のマトリックス(母材)は、いずれもエラストマーである。そして、圧電素子の破断伸びは10%以上である。圧電素子は、柔軟で伸縮可能であるため、繰り返し伸びたり曲がったりする被着体や大きく伸縮変形する被着体に圧電素子を配置しても、被着体の動きを阻害しにくい。また、被着体が複雑な形状を有する場合にも、その形状に沿うように圧電素子を配置することができる。 The matrix (base material) of the piezoelectric layer and electrode layer constituting the piezoelectric element are both elastomers. The elongation at break of the piezoelectric element is 10% or more. Since the piezoelectric element is flexible and stretchable, even if the piezoelectric element is arranged on an adherend that repeatedly stretches or bends or an adherend that greatly expands and contracts, the movement of the adherend is hardly hindered. Further, even when the adherend has a complicated shape, the piezoelectric element can be arranged along the shape.
 電極層は、自然状態およびそれから一軸方向に10%伸長した状態に至るまでの伸長状態の体積抵抗率が100Ω・cm以下である。自然状態とは、荷重が加わっておらず変形していない状態を意味する。一軸方向に10%伸長した状態とは、一軸方向における長さが自然状態の1.1倍である状態を意味する。電極層は、自然状態において高い導電性を有するだけでなく、一軸方向に最大10%まで伸長した伸長状態においても電気抵抗の増加が小さく、高い導電性を有する。このため、伸長された状態においても、出力が低下しにくく、圧電層に加わった荷重を正確に検出することができる。本発明においては、電極の体積抵抗率を自然状態と一軸方向に10%伸長した状態との両方において測定し、いずれの体積抵抗率も100Ω・cm以下であれば、「自然状態およびそれから一軸方向に10%伸長した状態に至るまでの伸長状態の体積抵抗率が100Ω・cm以下」という条件を満たすと判断する。なお、本発明の圧電センサにおいて、圧電素子は一軸方向だけでなく二軸方向、拡径方向などに伸長することができる。 The electrode layer has a volume resistivity of 100 Ω · cm or less in a natural state and a stretched state from that state to a state where the electrode layer is stretched by 10% in a uniaxial direction. The natural state means a state in which no load is applied and the body is not deformed. The state of extending 10% in the uniaxial direction means a state in which the length in the uniaxial direction is 1.1 times the natural state. The electrode layer not only has high conductivity in a natural state, but also has a high electrical conductivity with a small increase in electrical resistance even in an extended state extended up to 10% in a uniaxial direction. For this reason, even in the extended state, the output is unlikely to decrease, and the load applied to the piezoelectric layer can be accurately detected. In the present invention, the volume resistivity of the electrode is measured in both a natural state and a state in which the electrode is stretched by 10% in the uniaxial direction. If any volume resistivity is 100 Ω · cm or less, the “natural state and then the uniaxial direction” It is determined that the condition that the volume resistivity of the stretched state until reaching the stretched state by 10% is 100 Ω · cm or less ”is satisfied. In the piezoelectric sensor of the present invention, the piezoelectric element can extend not only in a uniaxial direction but also in a biaxial direction, a diameter expansion direction, and the like.
 このように、本発明の圧電センサによると、曲げ、伸び、圧縮などの変形を伴う被着体に配置して、被着体が変形していない状態においては勿論、変形時においても被着体に加わる荷重を検出することができる。すなわち、被着体の一次変形状態においてさらに二次変形した場合にも、被着体に加わった荷重を検出することができる。また、本発明の圧電センサは静電容量型センサと比較して、センサの感度(S/N比(Signal-Noise Ratio:信号雑音比))が高いため、小さな荷重を検出しやすい。例えば、本発明の圧電センサの圧電素子を、人体の皮膚に直接的に、あるいは服を介して間接的に配置して、脈拍数や呼吸数を測定することができる。 As described above, according to the piezoelectric sensor of the present invention, the adherend is disposed on the adherend accompanied by deformation such as bending, stretching, and compression, and the adherend is not only deformed but also deformed. The load applied to can be detected. That is, even when the secondary deformation is further performed in the primary deformation state of the adherend, the load applied to the adherend can be detected. In addition, since the piezoelectric sensor of the present invention has a higher sensitivity (S / N ratio (Signal-Noise Ratio)) than a capacitive sensor, it is easy to detect a small load. For example, the piezoelectric element of the piezoelectric sensor of the present invention can be placed directly on the human skin or indirectly through clothes to measure the pulse rate and respiratory rate.
本発明の圧電センサの一実施形態の上面図である。It is a top view of one embodiment of a piezoelectric sensor of the present invention. 図1のII-II断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG. 実施例2の圧電素子を1%伸長した状態における起電圧のグラフである。It is a graph of the electromotive voltage in the state which expanded the piezoelectric element of Example 2 1%. 実施例2の圧電素子を10%伸長した状態における起電圧のグラフである。It is a graph of the electromotive voltage in the state which expanded the piezoelectric element of Example 2 10%. 圧電粒子が単粒子からなる場合の分散状態を示す模式図である。It is a schematic diagram which shows a dispersed state in case a piezoelectric particle consists of a single particle. 圧電粒子が集合体からなる場合の分散状態を示す模式図である。It is a schematic diagram which shows a dispersion | distribution state in case a piezoelectric particle consists of aggregates. 焼成前のチタン酸バリウムの粉末(単粒子)のSEM写真である。It is a SEM photograph of powder (single particle) of barium titanate before baking. 焼成および粉砕後のチタン酸バリウムの粉末b(結合体)のSEM写真である。It is a SEM photograph of powder b (conjugate) of barium titanate after calcination and grinding. 実施例で製造した圧電素子の上下方向断面図である。It is an up-down direction sectional view of a piezoelectric element manufactured in an example. チタン酸バリウム粒子の体積割合と発生電界との関係を示すグラフである。It is a graph which shows the relationship between the volume ratio of a barium titanate particle, and a generated electric field.
1:圧電センサ、10:圧電素子、11:圧電層、12a、12b:電極層、13a、13b:保護層、20a、20b:配線、30:制御回路部。
40:圧電素子、41:圧電層、42a、42b:電極層、43a、43b:保護層。
80:圧電粒子、81:エラストマー、82:圧電粒子の結合体。
DESCRIPTION OF SYMBOLS 1: Piezoelectric sensor, 10: Piezoelectric element, 11: Piezoelectric layer, 12a, 12b: Electrode layer, 13a, 13b: Protective layer, 20a, 20b: Wiring, 30: Control circuit part.
40: Piezoelectric element, 41: Piezoelectric layer, 42a, 42b: Electrode layer, 43a, 43b: Protective layer.
80: Piezoelectric particles, 81: Elastomer, 82: Combined piezoelectric particles.
 以下、本発明の圧電センサの実施の形態について説明する。なお、本発明の圧電センサは、以下の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 Hereinafter, embodiments of the piezoelectric sensor of the present invention will be described. In addition, the piezoelectric sensor of the present invention is not limited to the following forms, and may be implemented in various forms that have been modified or improved by those skilled in the art without departing from the spirit of the present invention. Can do.
 本発明の圧電センサは、エラストマーおよび圧電粒子を含む圧電層と、エラストマーおよび導電材を含む電極層と、を有する圧電素子を備える。 The piezoelectric sensor of the present invention includes a piezoelectric element having a piezoelectric layer including an elastomer and piezoelectric particles and an electrode layer including an elastomer and a conductive material.
 <圧電層>
 圧電層を構成するエラストマーとしては、架橋ゴムおよび熱可塑性エラストマーから選ばれる一種以上を用いればよい。弾性率が比較的小さく柔軟なエラストマーとして、ウレタンゴム、シリコーンゴム、ニトリルゴム(NBR)、水素化ニトリルゴム(H-NBR)、アクリルゴム、天然ゴム、イソプレンゴム、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-酢酸ビニル共重合体、エチレン-酢酸ビニル-アクリル酸エステル共重合体、ブチルゴム、スチレン-ブタジエンゴム、フッ素ゴム、エピクロルヒドリンゴム、クロロプレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレンなどが挙げられる。また、官能基を導入するなどして変性したエラストマーを用いてもよい。変性エラストマーとしては、例えば、カルボキシル基変性ニトリルゴム(X-NBR)、カルボキシル基変性水素化ニトリルゴム(XH-NBR)などが挙げられる。
<Piezoelectric layer>
As the elastomer constituting the piezoelectric layer, one or more selected from crosslinked rubber and thermoplastic elastomer may be used. As elastic elastomers with relatively small elastic modulus, urethane rubber, silicone rubber, nitrile rubber (NBR), hydrogenated nitrile rubber (H-NBR), acrylic rubber, natural rubber, isoprene rubber, ethylene-propylene-diene rubber (EPDM) Ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-acrylic ester copolymer, butyl rubber, styrene-butadiene rubber, fluororubber, epichlorohydrin rubber, chloroprene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, and the like. Further, an elastomer modified by introducing a functional group or the like may be used. Examples of the modified elastomer include carboxyl group-modified nitrile rubber (X-NBR), carboxyl group-modified hydrogenated nitrile rubber (XH-NBR), and the like.
 圧電層に荷重が加わった時に発生する起電界(V/m)は、圧電層の圧電歪み定数(C/N)、誘電率(F/m)、および加わった荷重(N/m)により、次式(a)で示される。
起電界=圧電歪み定数/誘電率×荷重 ・・・(a)
起電界を大きくするという点においては、圧電層の誘電率は小さい方が望ましい。この場合、比誘電率が比較的小さいエラストマーを採用することが望ましい。例えば、比誘電率が15以下(測定周波数100Hz)のエラストマーとして、ウレタンゴム、シリコーンゴム、NBR、H-NBRなどが好適である。
The electromotive force (V / m) generated when a load is applied to the piezoelectric layer depends on the piezoelectric strain constant (C / N), dielectric constant (F / m), and applied load (N / m 2 ) of the piezoelectric layer. Is represented by the following equation (a).
Electromotive field = piezoelectric strain constant / dielectric constant × load (a)
In terms of increasing the electromotive field, it is desirable that the dielectric constant of the piezoelectric layer be small. In this case, it is desirable to employ an elastomer having a relatively low relative dielectric constant. For example, urethane rubber, silicone rubber, NBR, H-NBR, etc. are suitable as the elastomer having a relative dielectric constant of 15 or less (measurement frequency: 100 Hz).
 圧電粒子は、圧電性を有する化合物の粒子である。圧電性を有する化合物としては、ペロブスカイト型の結晶構造を有する強誘電体が知られており、例えば、チタン酸バリウム、チタン酸ストロンチウム、ニオブ酸カリウム、ニオブ酸ナトリウム、ニオブ酸リチウム、ニオブ酸カリウムナトリウム、チタン酸ジルコン酸鉛(PZT)、チタン酸バリウムストロンチウム(BST)、チタン酸ビスマスランタン(BLT)、タンタル酸ビスマスストロンチウム(SBT)などが挙げられる。圧電粒子としては、これらのうちの一種類あるいは二種類以上を用いればよい。 Piezoelectric particles are particles of a compound having piezoelectricity. Ferroelectric materials having a perovskite crystal structure are known as piezoelectric compounds, for example, barium titanate, strontium titanate, potassium niobate, sodium niobate, lithium niobate, potassium sodium niobate , Lead zirconate titanate (PZT), barium strontium titanate (BST), bismuth lanthanum titanate (BLT), bismuth strontium tantalate (SBT), and the like. As the piezoelectric particles, one or more of these may be used.
 圧電粒子の粒子径は、特に限定されない。例えば、平均粒子径が異なる複数種の圧電粒子粉末を用いると、エラストマー中に大粒径の圧電粒子と小粒径の圧電粒子とを混在させることができる。この場合、大粒径の圧電粒子の間に小粒径の圧電粒子が入り込み、圧電粒子に圧力が伝わりやすくなる。これにより、圧電層の圧電歪み定数が大きくなり、起電圧を大きくすることができる。 The particle size of the piezoelectric particles is not particularly limited. For example, when a plurality of types of piezoelectric particle powders having different average particle sizes are used, a large particle size piezoelectric particle and a small particle size piezoelectric particle can be mixed in the elastomer. In this case, piezoelectric particles having a small particle diameter enter between piezoelectric particles having a large particle diameter, and pressure is easily transmitted to the piezoelectric particles. Thereby, the piezoelectric strain constant of the piezoelectric layer is increased, and the electromotive voltage can be increased.
 圧電粒子は、単粒子でも複数の粒子が集合した集合体であってもよい。複数の圧電粒子からなる集合体を含む場合には、柔軟性と圧電性とのバランスが取りやすくなる。例えば、エラストマーに圧電粒子を多量に配合すると、圧電性は向上するが、エラストマーの体積割合が小さくなるため柔軟性は低下する。反対に、圧電粒子の配合量が少ないと、エラストマーの体積割合が大きくなるため柔軟性は向上するが、圧電性は低下する。本発明者の検討によると、圧電層の柔軟性、具体的には破断伸びが大きくなることにより、伸縮を繰り返しても起電圧の変化が小さくなる、すなわち伸縮耐久性が向上することが確認されている。このため、圧電粒子の配合量をできるだけ少なくして所望の圧電性を確保することが望ましい。 The piezoelectric particles may be single particles or an aggregate of a plurality of particles. In the case of including an aggregate composed of a plurality of piezoelectric particles, it becomes easy to balance the flexibility and the piezoelectricity. For example, when a large amount of piezoelectric particles is blended in the elastomer, the piezoelectricity is improved, but the flexibility is lowered because the volume ratio of the elastomer is reduced. On the other hand, when the amount of the piezoelectric particles is small, the volume ratio of the elastomer increases, so that flexibility is improved, but piezoelectricity is lowered. According to the study of the present inventors, it was confirmed that the change in electromotive force is reduced even when the expansion and contraction is repeated, that is, the expansion and contraction durability is improved by increasing the flexibility of the piezoelectric layer, specifically, the elongation at break. ing. For this reason, it is desirable to ensure the desired piezoelectricity by reducing the blending amount of the piezoelectric particles as much as possible.
 高い圧電性を得るためには、圧電粒子同士の繋がりが重要である。図5に、圧電粒子が単粒子からなる場合の分散状態を模式的に示す。図6に、圧電粒子が集合体からなる場合の分散状態を模式的に示す。図5に示すように、圧電粒子80は、エラストマー81中に充填されている。個々の圧電粒子80は、略球状を呈している。このため通常は、圧電粒子80を多量に配合して最密充填構造に近づけることにより、圧電粒子80同士の繋がりを確保する。これに対して、図6に示すように、複数の圧電粒子80が集合した塊状の集合体82を配合すると、その形状が立体障害になり、密な充填構造にならなくても圧電粒子80同士の繋がりを構築することができる。つまり、圧電粒子80の体積割合が小さくても所望の圧電性を確保することができる。これにより、圧電性、柔軟性、伸縮耐久性の全てを満足しやすくなる。例えば、圧電センサを、エラストマーおよび圧電粒子を含む圧電層と、エラストマーおよび導電材を含む電極層と、を有する圧電素子を備え、該圧電粒子は、複数の圧電粒子が集合した集合体を含む構成にするとよい。当該構成によると、柔軟で高感度の圧電センサを実現することができる。 In order to obtain high piezoelectricity, the connection between piezoelectric particles is important. FIG. 5 schematically shows a dispersion state when the piezoelectric particles are made of single particles. FIG. 6 schematically shows a dispersion state in the case where the piezoelectric particles are made of an aggregate. As shown in FIG. 5, the piezoelectric particles 80 are filled in an elastomer 81. Each piezoelectric particle 80 has a substantially spherical shape. For this reason, usually, the connection between the piezoelectric particles 80 is ensured by blending a large amount of the piezoelectric particles 80 and bringing them close to the close-packed structure. On the other hand, as shown in FIG. 6, when a massive aggregate 82 in which a plurality of piezoelectric particles 80 are aggregated is blended, the shape becomes a steric hindrance, and the piezoelectric particles 80 can be connected to each other even if a dense filling structure is not obtained. Connection can be established. That is, desired piezoelectricity can be ensured even if the volume ratio of the piezoelectric particles 80 is small. Thereby, it becomes easy to satisfy all of piezoelectricity, flexibility and stretch durability. For example, the piezoelectric sensor includes a piezoelectric element having a piezoelectric layer including an elastomer and piezoelectric particles, and an electrode layer including an elastomer and a conductive material, and the piezoelectric particles include an aggregate in which a plurality of piezoelectric particles are aggregated. It is good to. According to this configuration, a flexible and highly sensitive piezoelectric sensor can be realized.
 複数の圧電粒子が集合した集合体としては、個々の粒子が静電力などにより凝集した凝集体、個々の粒子が化学結合した結合体などが挙げられる。個々の粒子が分離しにくく圧電粒子の連結構造を構築しやすいという観点から、後者の結合体が好適である。結合体の製造方法は特に限定されないが、例えば、単粒子からなる粉末を焼成した後、粉砕して製造することができる。凝集体と結合体との違いは、次のようにして分析することができる。まず、圧電層を加熱してエラストマー成分を取り除く。次に、残った圧電粒子を良溶媒に分散させて、超音波処理する。その結果、個々の粒子に分離したら凝集体、分離しなければ結合体と判断する。ここで、良溶媒とは、圧電粒子を分散させた場合に沈降しにくい極性溶媒をいう。具体的には、SP値(溶解度パラメータ)が8以上13以下であり、かつエラストマーを溶解できる溶剤であればよい。例えば、2-メトキシエタノールが挙げられる。 Examples of aggregates in which a plurality of piezoelectric particles are aggregated include aggregates in which individual particles are aggregated by an electrostatic force or the like, and aggregates in which individual particles are chemically bonded. The latter combination is preferred from the viewpoint that individual particles are difficult to separate and that a connection structure of piezoelectric particles can be easily constructed. Although the manufacturing method of a conjugate | bonded_body is not specifically limited, For example, after baking the powder which consists of a single particle, it can grind | pulverize and can manufacture. The difference between the aggregate and the conjugate can be analyzed as follows. First, the piezoelectric layer is heated to remove the elastomer component. Next, the remaining piezoelectric particles are dispersed in a good solvent and subjected to ultrasonic treatment. As a result, it is determined that the particles are aggregates when separated into individual particles, and are combined when not separated. Here, the good solvent refers to a polar solvent that hardly precipitates when the piezoelectric particles are dispersed. Specifically, any solvent that has an SP value (solubility parameter) of 8 or more and 13 or less and can dissolve the elastomer may be used. An example is 2-methoxyethanol.
 複数の圧電粒子が集合した集合体は、個々の圧電粒子の平均粒子径の2倍より大きい直径を有する粒子として定義することができる。ここで、集合体の直径(d2)としては、レーザー回折・散乱式の粒子径分布測定装置において測定したメディアン径を採用する。圧電粒子の平均粒子径(d1)としては、集合体の走査型電子顕微鏡(SEM)写真を撮影し、偏りがないよう任意に選出された100個以上の圧電粒子の最大径の平均値を採用する。そして、2d1<d2を満たすものが集合体である。 An aggregate of a plurality of piezoelectric particles can be defined as a particle having a diameter larger than twice the average particle diameter of each piezoelectric particle. Here, as the diameter (d2) of the aggregate, a median diameter measured by a laser diffraction / scattering particle size distribution measuring apparatus is employed. As the average particle diameter (d1) of the piezoelectric particles, a scanning electron microscope (SEM) photograph of the aggregate is taken, and the average value of the maximum diameters of 100 or more piezoelectric particles arbitrarily selected so as not to be biased is adopted. To do. And what satisfies 2d1 <d2 is an aggregate.
 圧電粒子を表面処理するなどして、エラストマーと圧電粒子とを化学結合させてもよい。圧電粒子を表面処理する方法としては、エラストマーポリマーと反応可能な官能基を有する表面処理剤を圧電粒子に予め反応させておき、当該圧電粒子をエラストマーポリマーと混合する方法や、圧電粒子の表面を酸、アルカリまたは亜臨界水で溶解して水酸基を生成させた後、水酸基と反応可能な官能基を有するエラストマーポリマーと混合する方法などが挙げられる。圧電粒子がエラストマーに化学結合していると、伸縮を繰り返しても圧電粒子が位置ずれしにくい。また、エラストマーから圧電粒子が剥離しにくいため、物性や出力の初期値からの変動が少なくなる。このため、出力が安定すると共に、圧電層の耐へたり性が向上する。また、圧電層の破断伸びが大きくなるため、伸長時に局所破壊などによる圧電性能の低下を抑制することができる。その結果、伸長した状態においても高い圧電性能を維持することができる。 The elastomer and the piezoelectric particles may be chemically bonded by surface-treating the piezoelectric particles. As a method of surface-treating the piezoelectric particles, a surface treatment agent having a functional group capable of reacting with an elastomer polymer is reacted with the piezoelectric particles in advance, and the piezoelectric particles are mixed with the elastomer polymer. Examples include a method in which a hydroxyl group is generated by dissolving with an acid, an alkali, or subcritical water, and then mixed with an elastomer polymer having a functional group capable of reacting with the hydroxyl group. When the piezoelectric particles are chemically bonded to the elastomer, the piezoelectric particles are unlikely to be displaced even when the expansion and contraction is repeated. In addition, since the piezoelectric particles are difficult to peel from the elastomer, fluctuations from the initial values of physical properties and output are reduced. Therefore, the output is stabilized and the sag resistance of the piezoelectric layer is improved. In addition, since the elongation at break of the piezoelectric layer is increased, it is possible to suppress a decrease in piezoelectric performance due to local fracture during elongation. As a result, high piezoelectric performance can be maintained even in the extended state.
 圧電粒子の配合量は、圧電層、ひいては圧電素子の柔軟性と、圧電層の圧電性能と、を考量して決定すればよい。圧電粒子の配合量が多くなると、圧電層の圧電性能は向上するが柔軟性は低下する。したがって、使用するエラストマーと圧電粒子との組み合わせにおいて、所望の柔軟性を実現できるよう、圧電粒子の配合量を調整することが望ましい。 The blending amount of the piezoelectric particles may be determined by taking into account the flexibility of the piezoelectric layer, and thus the piezoelectric element, and the piezoelectric performance of the piezoelectric layer. When the amount of the piezoelectric particles is increased, the piezoelectric performance of the piezoelectric layer is improved, but the flexibility is lowered. Therefore, it is desirable to adjust the blending amount of the piezoelectric particles so that desired flexibility can be realized in the combination of the elastomer and the piezoelectric particles to be used.
 圧電層は、エラストマーおよび圧電粒子に加えて、圧電粒子よりも比誘電率が小さい補強粒子を含んでいてもよい。補強粒子の比誘電率は、圧電粒子の比誘電率よりも小さいことを条件として、例えば100以下、さらには30以下であることが望ましい。 The piezoelectric layer may contain reinforcing particles having a relative dielectric constant smaller than that of the piezoelectric particles, in addition to the elastomer and the piezoelectric particles. The relative permittivity of the reinforcing particles is preferably 100 or less, and more preferably 30 or less, on condition that the relative permittivity of the reinforcement particles is smaller than that of the piezoelectric particles.
 比誘電率が大きい圧電粒子が連結した構造は、外力が圧電粒子に伝わりやすいため、前述した式(a)の圧電歪み定数の向上が期待できる。しかしながら、比誘電率が大きい圧電粒子が連結することで、圧電層全体としての誘電率が上昇してしまう。これに対して、圧電層に圧電粒子と補強粒子との両方が含まれる場合、比誘電率が大きい圧電粒子同士の繋がりが、それよりも比誘電率が小さい補強粒子の介在により分断される。これにより、圧電層全体としての誘電率の上昇を抑制することができる。一方、補強粒子と圧電粒子とにより粒子の連結構造は維持されているため、圧電歪み定数を維持することができる。すなわち、圧電層に補強粒子が含まれる場合には、圧電歪み定数を維持したまま、圧電粒子のみが含まれる場合よりも圧電層全体の誘電率を小さくすることができる。よって、前述した式(a)により、大きな起電界を得ることができる。 Since the structure in which piezoelectric particles having a large relative dielectric constant are connected is easy to transmit external force to the piezoelectric particles, an improvement in the piezoelectric strain constant of the above-described formula (a) can be expected. However, when the piezoelectric particles having a large relative dielectric constant are connected, the dielectric constant of the entire piezoelectric layer is increased. On the other hand, when both the piezoelectric particles and the reinforcing particles are included in the piezoelectric layer, the connection between the piezoelectric particles having a large relative dielectric constant is divided by the intervening reinforcing particles having a smaller relative dielectric constant. Thereby, the raise of the dielectric constant as the whole piezoelectric layer can be suppressed. On the other hand, since the connection structure of the particles is maintained by the reinforcing particles and the piezoelectric particles, the piezoelectric strain constant can be maintained. That is, when the reinforcing particles are included in the piezoelectric layer, the dielectric constant of the entire piezoelectric layer can be made smaller than when only the piezoelectric particles are included while maintaining the piezoelectric strain constant. Therefore, a large electromotive field can be obtained by the above-described formula (a).
 補強粒子としては、電気抵抗が大きい粒子が望ましい。補強粒子の電気抵抗が大きいと、圧電層の絶縁破壊強度が大きくなる。これにより、後述する圧電層の分極処理において、高い電界を印加して処理時間を短くすることができる。加えて、分極処理中に破壊する圧電素子の数を減らすことができるため、生産性が向上する。 As the reinforcing particles, particles having a large electric resistance are desirable. When the electrical resistance of the reinforcing particles is large, the dielectric breakdown strength of the piezoelectric layer is increased. Thereby, in the polarization process of the piezoelectric layer which will be described later, the processing time can be shortened by applying a high electric field. In addition, since the number of piezoelectric elements that are destroyed during the polarization process can be reduced, productivity is improved.
 また、補強粒子は、エラストマーに化学結合していることが望ましい。この場合、エラストマー中に補強粒子のネットワークが形成されるため、架橋剤、添加剤、空気中の水分などがイオン化した不純物イオンが動きにくくなり、圧電層の電気抵抗が増加する。補強粒子とエラストマーとの化学結合は、例えば、補強粒子を表面処理するなどして実現することができる。表面処理の方法としては、エラストマーポリマーと反応可能な官能基を有する表面処理剤を補強粒子に予め反応させておき、当該補強粒子をエラストマーポリマーと混合する方法や、補強粒子の表面を酸、アルカリまたは亜臨界水で溶解して水酸基を生成させた後、水酸基と反応可能な官能基を有するエラストマーポリマーと混合する方法などが挙げられる。補強粒子がエラストマーに化学結合していると、伸縮を繰り返しても補強粒子が位置ずれしにくい。また、エラストマーから補強粒子が剥離しにくいため、物性や出力の初期値からの変動が少なくなる。このため、出力が安定すると共に、圧電層の耐へたり性が向上する。また、圧電層の破断伸びが大きくなるため、伸長時に局所破壊などによる圧電性能の低下を抑制することができる。その結果、伸長した状態においても高い圧電性能を維持することができる。 Also, it is desirable that the reinforcing particles are chemically bonded to the elastomer. In this case, since a network of reinforcing particles is formed in the elastomer, impurity ions obtained by ionizing a crosslinking agent, an additive, moisture in the air, and the like are difficult to move, and the electric resistance of the piezoelectric layer is increased. The chemical bond between the reinforcing particles and the elastomer can be realized, for example, by surface-treating the reinforcing particles. As a surface treatment method, a surface treatment agent having a functional group capable of reacting with an elastomer polymer is reacted with the reinforcing particles in advance, and the reinforcing particles are mixed with the elastomer polymer. Or the method of mixing with the elastomer polymer which has a functional group which can react with a hydroxyl group after melt | dissolving with subcritical water and producing | generating a hydroxyl group etc. is mentioned. When the reinforcing particles are chemically bonded to the elastomer, the reinforcing particles are unlikely to be displaced even if the expansion and contraction are repeated. Further, since the reinforcing particles are difficult to peel off from the elastomer, fluctuations from the initial values of physical properties and output are reduced. Therefore, the output is stabilized and the sag resistance of the piezoelectric layer is improved. In addition, since the elongation at break of the piezoelectric layer is increased, it is possible to suppress a decrease in piezoelectric performance due to local fracture during elongation. As a result, high piezoelectric performance can be maintained even in the extended state.
 補強粒子の種類は特に限定されない。例えば、二酸化チタン、シリカ、チタン酸バリウムなどの酸化物、ゴム、樹脂などの粒子を用いることができる。但し、ゴム粒子などの比較的柔らかい粒子を含む場合には、加わった荷重が樹脂粒子にて減衰し、圧電粒子に伝わりにくくなるおそれがある。圧電粒子に力を伝達しやすくして、前述した式(a)における圧電層の圧電歪み定数を大きくし、起電界を大きくするという観点から、補強粒子としては、マトリックスのエラストマーよりも弾性率が大きい粒子を採用する方がよい。例えば、比誘電率が小さく、耐絶縁破壊性の向上効果が大きいなどの理由から、二酸化チタンなどの金属酸化物粒子が好適である。金属酸化物粒子の製造方法としては、結晶性が低く比誘電率が小さい粒子が得られるという理由から、ゾルゲル法が好適である。 The type of reinforcing particles is not particularly limited. For example, particles such as oxides such as titanium dioxide, silica, and barium titanate, rubber, and resin can be used. However, when relatively soft particles such as rubber particles are included, the applied load may be attenuated by the resin particles and may not be transmitted to the piezoelectric particles. From the viewpoint of facilitating transmission of force to the piezoelectric particles, increasing the piezoelectric strain constant of the piezoelectric layer in the above-described formula (a), and increasing the electromotive force, the reinforcing particles have an elastic modulus higher than that of the matrix elastomer. It is better to use large particles. For example, metal oxide particles such as titanium dioxide are preferable because they have a small relative dielectric constant and a large effect of improving dielectric breakdown resistance. As a method for producing metal oxide particles, a sol-gel method is preferable because particles having low crystallinity and a low relative dielectric constant can be obtained.
 圧電層は、エラストマーポリマーに圧電粒子の粉末や架橋剤などを加えた組成物を、所定の条件下で硬化させて製造される。その後、圧電層には分極処理が施される。すなわち、圧電層に電圧を印加して、圧電粒子の分極方向を所定の方向に揃える。 The piezoelectric layer is manufactured by curing a composition obtained by adding a powder of a piezoelectric particle or a crosslinking agent to an elastomer polymer under predetermined conditions. Thereafter, the piezoelectric layer is subjected to polarization treatment. That is, a voltage is applied to the piezoelectric layer to align the polarization direction of the piezoelectric particles in a predetermined direction.
 本発明者が検討したところ、薄膜状の圧電素子においては、圧電層の引張方向に垂直な断面積が小さい方が、加えられた荷重に対する感度が大きいことが確認された。よって、圧電層は薄い方が望ましい。例えば、圧電層の厚さは200μm以下、さらには100μm以下が望ましい。一方、薄過ぎると分極処理時に絶縁破壊しやすくなる。このため、圧電層の厚さは、10μm以上、さらには20μm以上が望ましい。 As a result of investigation by the present inventors, it was confirmed that in a thin film piezoelectric element, the smaller the cross-sectional area perpendicular to the tensile direction of the piezoelectric layer, the greater the sensitivity to the applied load. Therefore, the thinner piezoelectric layer is desirable. For example, the thickness of the piezoelectric layer is preferably 200 μm or less, and more preferably 100 μm or less. On the other hand, if it is too thin, it tends to break down during polarization treatment. For this reason, the thickness of the piezoelectric layer is desirably 10 μm or more, and more desirably 20 μm or more.
 <電極層>
 電極層を構成するエラストマーとしては、圧電層のエラストマーと同様に、架橋ゴムおよび熱可塑性エラストマーから選ばれる一種以上を用いればよい。弾性率が比較的小さく柔軟であり、圧電層に対する粘着性が良好なエラストマーとして、アクリルゴム、シリコーンゴム、ウレタンゴム、ウレアゴム、フッ素ゴム、H-NBRなどが挙げられる。
<Electrode layer>
As the elastomer constituting the electrode layer, one or more selected from cross-linked rubber and thermoplastic elastomer may be used in the same manner as the elastomer of the piezoelectric layer. Examples of the elastomer having a relatively small elastic modulus and good adhesion to the piezoelectric layer include acrylic rubber, silicone rubber, urethane rubber, urea rubber, fluorine rubber, and H-NBR.
 導電材の種類は、特に限定されない。例えば、銀、金、銅、ニッケル、ロジウム、パラジウム、クロム、チタン、白金、鉄、およびこれらの合金などからなる金属粒子、酸化亜鉛、酸化チタンなどからなる金属酸化物粒子、チタンカーボネートなどからなる金属炭化物粒子、銀、金、銅、白金、およびニッケルなどからなる金属ナノワイヤ、カーボンブラック、カーボンナノチューブ、グラファイト、およびグラフェンなどの導電性炭素材料の中から、適宜選択すればよい。また、銀被覆銅粒子など、金属で被覆された粒子を用いてもよい。導電材としては、これらの一種を単独で、あるいは二種以上を混合して用いることができる。なお、電極層は、その他の成分として、架橋剤、分散剤、補強材、可塑剤、老化防止剤、着色剤などを含んでいてもよい。 The type of conductive material is not particularly limited. For example, metal particles made of silver, gold, copper, nickel, rhodium, palladium, chromium, titanium, platinum, iron, and alloys thereof, metal oxide particles made of zinc oxide, titanium oxide, etc., titanium carbonate, etc. What is necessary is just to select suitably from electroconductive carbon materials, such as metal nanowire which consists of metal carbide particle | grains, silver, gold | metal | money, copper, platinum, nickel, etc., carbon black, a carbon nanotube, graphite, and graphene. Alternatively, particles coated with a metal such as silver-coated copper particles may be used. As the conductive material, one of these can be used alone, or two or more can be mixed and used. In addition, the electrode layer may contain a crosslinking agent, a dispersing agent, a reinforcing material, a plasticizer, an antiaging agent, a coloring agent, and the like as other components.
 電極層の体積抵抗率は、自然状態およびそれから一軸方向に10%伸長した状態に至るまでの伸長状態のいずれにおいても100Ω・cm以下である。10Ω・cm以下であるとより好適である。電極層の電気抵抗が大きいと、圧電層で発生した起電圧が電極層で降下してしまい、出力される電圧が小さくなる。すなわち、センサのS/N比が低下する。また、伸長により電気抵抗が大きく上昇する電極層を用いると、自然状態における出力と伸長状態における出力とが大きく異なり、荷重を正確に検出できないという問題が生じる。したがって、伸縮可能で伸長しても圧電性を維持できる柔軟な圧電層と、伸縮可能で伸長しても導電性を維持できる柔軟な電極層とを組み合わせることにより、伸長された状態でも使用可能な圧電素子を実現することができる。 The volume resistivity of the electrode layer is 100 Ω · cm or less both in the natural state and in the stretched state from the stretched state to 10% in the uniaxial direction. More preferably, it is 10 Ω · cm or less. When the electric resistance of the electrode layer is large, the electromotive voltage generated in the piezoelectric layer drops at the electrode layer, and the output voltage becomes small. That is, the S / N ratio of the sensor decreases. In addition, when an electrode layer whose electric resistance is greatly increased by extension is used, the output in the natural state and the output in the extended state are greatly different, which causes a problem that the load cannot be accurately detected. Therefore, it can be used even in a stretched state by combining a flexible piezoelectric layer that can stretch and maintain piezoelectricity even when stretched and a flexible electrode layer that can stretch and maintain conductivity even when stretched. A piezoelectric element can be realized.
 導電材の配合量は、電極層が所望の体積抵抗率を実現できるよう、適宜決定すればよい。導電材の配合量が多くなると、電極層の体積抵抗率を小さくすることができるが柔軟性は低下する。例えば、導電材としてケッチェンブラック(登録商標)を使用した場合、エラストマー100質量部に対して、導電材の配合量を5質量部以上50質量部以下にすることが望ましい。 The blending amount of the conductive material may be appropriately determined so that the electrode layer can achieve a desired volume resistivity. When the amount of the conductive material is increased, the volume resistivity of the electrode layer can be reduced, but the flexibility is lowered. For example, when Ketjen Black (registered trademark) is used as the conductive material, it is desirable that the blending amount of the conductive material is 5 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the elastomer.
 <圧電素子>
 圧電素子は、圧電層と電極層とが積層されてなる。例えば、一対の電極層を、圧電層中の圧電粒子の分極方向に離間して配置すればよい。圧電粒子が圧電層の厚さ方向に分極している場合には、一対の電極層を、圧電層の厚さ方向の二面に一つずつ配置すればよい。圧電粒子が圧電層の厚さ方向に交差する面方向に分極している場合には、一対の電極層を、圧電層の厚さ方向に交差する一面上に離間して配置すればよい。電極層は、圧電層の表面全体に形成してもよく、一部のみに形成してもよい。
<Piezoelectric element>
The piezoelectric element is formed by laminating a piezoelectric layer and an electrode layer. For example, the pair of electrode layers may be arranged apart from each other in the polarization direction of the piezoelectric particles in the piezoelectric layer. When the piezoelectric particles are polarized in the thickness direction of the piezoelectric layer, a pair of electrode layers may be arranged one on each of the two surfaces in the thickness direction of the piezoelectric layer. In the case where the piezoelectric particles are polarized in the plane direction intersecting with the thickness direction of the piezoelectric layer, the pair of electrode layers may be arranged separately on one surface intersecting with the thickness direction of the piezoelectric layer. The electrode layer may be formed on the entire surface of the piezoelectric layer, or may be formed on only a part.
 圧電素子の破断伸びは、10%以上である。30%以上であるとより好適である。本明細書において、破断伸びは、JIS K6251:2010に規定される引張試験により測定される切断時伸びの値である。引張試験は、ダンベル状5号形の試験片を用い、引張速度を100mm/minとして行うものとする。 The breaking elongation of the piezoelectric element is 10% or more. More preferably, it is 30% or more. In this specification, the elongation at break is a value of elongation at break measured by a tensile test specified in JIS K6251: 2010. The tensile test is performed using a dumbbell-shaped No. 5 test piece and a tensile speed of 100 mm / min.
 圧電素子の弾性率は、10MPa以上500MPa以下であることが望ましい。本明細書において、弾性率は、JIS K7127:1999に規定される引張試験により得られる応力-伸び曲線から算出した値である。引張試験は、試験片タイプ2の試験片を用い、引張速度を100mm/minとして行うものとする。 The elastic modulus of the piezoelectric element is desirably 10 MPa or more and 500 MPa or less. In this specification, the elastic modulus is a value calculated from a stress-elongation curve obtained by a tensile test specified in JIS K7127: 1999. The tensile test is performed using a test piece type 2 test piece and a tensile speed of 100 mm / min.
 圧電素子は、一軸方向に10%伸長した状態において、次式(I)を満たすことが望ましい。次式(I)は、柔軟性、および伸長時においても使用できるか否かを示す指標である。すなわち、次式(I)を満たす圧電素子は、柔軟であり、伸長時においても変形により起電圧を生じさせることができる。一方、次式(I)を満たさない場合には、伸長した際の起電圧の変化が大きく、正確なセンシングが難しくなる。
0.5<V2/V1 ・・・(I)
[式(I)中、V1は自然状態における圧電素子の起電圧(V)、V2は一軸方向に10%伸長した状態における圧電素子の起電圧(V)。]
 自然状態における起電圧V1は、次のようにして測定すればよい。まず、圧電素子を伸長しない自然状態で高分子計器(株)製の反発弾性試験機に設置する。次に、懸垂長さ2000mmにて吊り下げられた直径14mm、質量300gの鋼球を、振り幅(水平方向における試験片からの距離)15mmにて振り子運動させて圧電素子に衝突させる。そして、衝突時に生じる起電圧のピーク値をオシロスコープ(テクトロニクス社製「TPS2012B」)で測定する。これを五回繰り返して、起電圧のピーク値の五回の平均値を自然状態の起電圧V1とする。また、圧電素子を一軸方向に10%伸長した状態で反発弾性試験機(同上)に設置して、上記同様の方法にて測定された起電圧のピーク値の五回の平均値を、伸長状態の起電圧V2とすればよい。
The piezoelectric element desirably satisfies the following formula (I) in a state where the piezoelectric element is stretched by 10% in the uniaxial direction. The following formula (I) is an index indicating flexibility and whether or not it can be used at the time of extension. That is, a piezoelectric element satisfying the following formula (I) is flexible and can generate an electromotive force by deformation even when it is extended. On the other hand, when the following formula (I) is not satisfied, the change in the electromotive voltage when it expands is large, and accurate sensing becomes difficult.
0.5 <V2 / V1 (I)
[In Formula (I), V1 is an electromotive voltage (V) of the piezoelectric element in a natural state, and V2 is an electromotive voltage (V) of the piezoelectric element in a state of being extended by 10% in a uniaxial direction. ]
The electromotive voltage V1 in the natural state may be measured as follows. First, the piezoelectric element is installed in a rebound resilience tester manufactured by Kobunshi Keiki Co., Ltd. in a natural state without stretching. Next, a steel ball having a diameter of 14 mm and a mass of 300 g suspended with a suspension length of 2000 mm is caused to make a pendulum movement with a swing width (distance from the test piece in the horizontal direction) of 15 mm and collide with the piezoelectric element. Then, the peak value of the electromotive voltage generated at the time of collision is measured with an oscilloscope (“TPS2012B” manufactured by Tektronix). This is repeated five times, and an average value of five times of the peak value of the electromotive voltage is set as the electromotive voltage V1 in the natural state. In addition, the piezoelectric element was installed in a rebound resilience tester (same as above) in a state where the piezoelectric element was stretched by 10% in the uniaxial direction. The electromotive voltage V2 is sufficient.
 圧電素子は、圧電層、電極層に加えて保護層を有してもよい。保護層は、圧電層および電極層のうち、少なくとも電極層に積層されるように配置すればよい。例えば、圧電層と電極層との積層体の積層方向外側の一方または両方に、保護層を配置すればよい。また、一対の電極層間に圧電層が介装されたユニットを複数積層する場合には、積層方向に隣接する電極層間に保護層を配置してもよい。 The piezoelectric element may have a protective layer in addition to the piezoelectric layer and the electrode layer. The protective layer may be disposed so as to be stacked on at least the electrode layer of the piezoelectric layer and the electrode layer. For example, a protective layer may be disposed on one or both of the laminate direction outer side of the laminate of the piezoelectric layer and the electrode layer. In addition, when a plurality of units in which a piezoelectric layer is interposed between a pair of electrode layers are stacked, a protective layer may be disposed between electrode layers adjacent in the stacking direction.
 保護層は、圧電層および電極層と共に伸縮可能であることが望ましい。保護層にも、架橋ゴムおよび熱可塑性エラストマーから選ばれる一種以上を用いることが望ましい。エラストマー製の保護層を配置することにより、圧電素子の絶縁性を確保し、外部からの機械的応力による圧電素子の破壊を抑制することができる。また、後述するように、保護層が伸長することにより圧電層の歪みを増加させて、センサの感度を向上させることができる。 The protective layer is preferably stretchable together with the piezoelectric layer and the electrode layer. It is desirable to use at least one kind selected from a crosslinked rubber and a thermoplastic elastomer for the protective layer. By disposing the protective layer made of elastomer, it is possible to ensure the insulation of the piezoelectric element and suppress the destruction of the piezoelectric element due to external mechanical stress. Further, as will be described later, the extension of the protective layer increases the strain of the piezoelectric layer, thereby improving the sensitivity of the sensor.
 弾性率が比較的小さく柔軟であり、電極層に対する粘着性が良好なエラストマーとして、天然ゴム、イソプレンゴム、ブチルゴム、アクリルゴム、シリコーンゴム、ウレタンゴム、ウレアゴム、フッ素ゴム、NBRなどが挙げられる。繰り返し使用した場合にセンサの感度の変化を小さくするためには、保護層は耐へたり性に優れることが望ましい。また、保護層は、外部の機械的応力から圧電素子を保護する役割を果たすため、摩耗耐久性や引き裂き耐久性に優れることが望ましい。また、伸長時に保護層が破断して圧電素子が破壊することを防ぐため、保護層の破断伸びは圧電層の破断伸びよりも大きいことが望ましい。 Examples of elastomers having a relatively small elastic modulus and good adhesion to the electrode layer include natural rubber, isoprene rubber, butyl rubber, acrylic rubber, silicone rubber, urethane rubber, urea rubber, fluorine rubber, NBR, and the like. In order to reduce the change in sensitivity of the sensor after repeated use, it is desirable that the protective layer has excellent sag resistance. In addition, since the protective layer plays a role of protecting the piezoelectric element from external mechanical stress, it is desirable that the protective layer is excellent in wear durability and tear durability. Also, in order to prevent the protective layer from breaking and the piezoelectric element from being broken when stretched, it is desirable that the breaking elongation of the protective layer is larger than the breaking elongation of the piezoelectric layer.
 例えば、圧電素子の積層方向に力を加えた場合(圧電素子を圧縮した場合)、保護層が面方向に伸長することにより、圧電層にせん断力が作用する。これにより、圧電層には、積層方向の押圧力に加えて面方向の引張力が加わることになり、圧電層の歪みが増大する。その結果、圧電層で発生する電荷量が増大し、センサの感度が向上する。保護層による感度向上効果は、保護層の引張方向における弾性率が小さい程顕著である。保護層の弾性率は、保護層に隣接し一対の電極層とその間に介装される圧電層からなる一組の積層体の合成弾性率よりも小さいことが望ましい。ここで、一組の積層体の合成弾性率とは、圧電層の弾性率と一対の電極層の弾性率との和である。 For example, when a force is applied in the stacking direction of the piezoelectric elements (when the piezoelectric elements are compressed), a shearing force acts on the piezoelectric layer by extending the protective layer in the surface direction. Thereby, in addition to the pressing force in the stacking direction, a tensile force in the surface direction is applied to the piezoelectric layer, and the distortion of the piezoelectric layer increases. As a result, the amount of charge generated in the piezoelectric layer is increased, and the sensitivity of the sensor is improved. The sensitivity improvement effect by the protective layer is more remarkable as the elastic modulus in the tensile direction of the protective layer is smaller. It is desirable that the elastic modulus of the protective layer is smaller than the combined elastic modulus of a pair of laminates that are adjacent to the protective layer and that include a pair of electrode layers and a piezoelectric layer interposed therebetween. Here, the composite elastic modulus of a set of laminated bodies is the sum of the elastic modulus of the piezoelectric layer and the elastic modulus of the pair of electrode layers.
 弾性率は、縦軸に応力、横軸に伸び(歪み)をとった応力-伸び(歪み)曲線の傾きとして得ることができる。しかし、弾性体の場合には、歪みの増加に伴い傾きが変化するため、どこの歪み領域で傾きを求めるかにより弾性率の値が異なる。従来のPZTに代表される圧電セラミックスや、PVDF、ポリ乳酸に代表される圧電樹脂は、伸長率が極小さい領域でしか使用することができないため、歪み量が極小さい領域の弾性率を考慮すればよい。しかしながら、本発明の圧電センサは、柔軟で伸縮可能であるため、伸長率が大きい(歪みが大きい)領域における弾性率をも考慮して設計する必要がある。 Elastic modulus can be obtained as the slope of a stress-elongation (strain) curve with stress on the vertical axis and elongation (strain) on the horizontal axis. However, in the case of an elastic body, since the inclination changes with an increase in strain, the value of the elastic modulus differs depending on in which strain region the inclination is obtained. Conventional piezoelectric ceramics represented by PZT and piezoelectric resins represented by PVDF and polylactic acid can only be used in a region where the elongation is extremely small. That's fine. However, since the piezoelectric sensor of the present invention is flexible and can be expanded and contracted, it is necessary to design in consideration of an elastic modulus in a region where the elongation rate is large (the strain is large).
 例えば、保護層は伸長率が25%以下の領域で弾性変形可能であり、同領域における保護層の弾性率は、50MPaより小さいことが望ましい。これを式に示すと次式(α)になる。伸長率が25%以下の領域における保護層の弾性率は、20MPaより小さく、さらには10MPaより小さいとより好適である。
Figure JPOXMLDOC01-appb-M000001
For example, the protective layer can be elastically deformed in a region where the elongation rate is 25% or less, and the elastic modulus of the protective layer in the region is desirably smaller than 50 MPa. This is expressed by the following equation (α). The elastic modulus of the protective layer in the region where the elongation rate is 25% or less is preferably less than 20 MPa, and more preferably less than 10 MPa.
Figure JPOXMLDOC01-appb-M000001
 また、保護層による感度向上効果は、保護層の引張方向における弾性率と、圧電層の引張方向における弾性率と、の差が小さい程顕著である。したがって、保護層と、一対の電極層とその間に介装される圧電層からなる一組の積層体と、は伸長率が25%以下の領域で弾性変形可能であり、さらに伸長率が10%以上25%以下の領域における保護層の弾性率と一組の積層体の合成弾性率とは、次式(β-1)を満たすことが望ましい。次式(β-2)を満たすとより好適である。保護層と一組の積層体とが式(β-1)または式(β-2)を満たす場合には、10%以上伸長された状態においてもセンサの感度を向上させることができる。
Figure JPOXMLDOC01-appb-M000002
Further, the sensitivity improvement effect by the protective layer is more remarkable as the difference between the elastic modulus in the tensile direction of the protective layer and the elastic modulus in the tensile direction of the piezoelectric layer is smaller. Therefore, the protective layer and the pair of laminates composed of the pair of electrode layers and the piezoelectric layer interposed therebetween can be elastically deformed in a region where the elongation is 25% or less, and further, the elongation is 10%. It is desirable that the elastic modulus of the protective layer and the combined elastic modulus of the set of laminates in the region of 25% or less satisfy the following formula (β-1). It is more preferable that the following formula (β-2) is satisfied. When the protective layer and the set of laminates satisfy the formula (β-1) or the formula (β-2), the sensitivity of the sensor can be improved even when the protective layer is extended by 10% or more.
Figure JPOXMLDOC01-appb-M000002
 エラストマーのポアソン比は略0.5である。このため、保護層がエラストマーからなる場合には、厚さ方向に加えられた力がそのまま面方向の力として作用する。このため、保護層の厚さが大きいほど、圧電層の歪み増大効果が大きく、センサの感度向上効果が大きくなる。一方、保護層の厚さが大きくなると、圧電素子が大きくなる。このため、保護層の厚さは、設置場所や用途に応じて適宜設定すればよい。例えば、5μm以上5mm以下にするとよい。 The Poisson's ratio of the elastomer is about 0.5. For this reason, when the protective layer is made of an elastomer, the force applied in the thickness direction acts as the force in the surface direction as it is. For this reason, the greater the thickness of the protective layer, the greater the distortion increasing effect of the piezoelectric layer, and the greater the sensitivity improving effect of the sensor. On the other hand, when the thickness of the protective layer is increased, the piezoelectric element is increased. For this reason, what is necessary is just to set the thickness of a protective layer suitably according to an installation place or a use. For example, it may be 5 μm or more and 5 mm or less.
 <圧電センサ>
 本発明の圧電センサの一実施形態を図面を用いて説明する。図1に、本実施形態の圧電センサの上面図を示す。図2に、図1のII-II断面図を示す。図1においては、保護層13aを透過して示す。図1、図2に示すように、圧電センサ1は、圧電素子10と、制御回路部30と、を備えている。圧電素子10は、圧電層11と、一対の電極層12a、12bと、一対の保護層13a、13bと、を備えている。圧電素子10の破断伸びは、50%である。
<Piezoelectric sensor>
An embodiment of a piezoelectric sensor of the present invention will be described with reference to the drawings. FIG. 1 shows a top view of the piezoelectric sensor of the present embodiment. FIG. 2 is a cross-sectional view taken along the line II-II in FIG. In FIG. 1, the protective layer 13a is shown in a transparent manner. As shown in FIGS. 1 and 2, the piezoelectric sensor 1 includes a piezoelectric element 10 and a control circuit unit 30. The piezoelectric element 10 includes a piezoelectric layer 11, a pair of electrode layers 12a and 12b, and a pair of protective layers 13a and 13b. The breaking elongation of the piezoelectric element 10 is 50%.
 圧電層11は、X-NBRとチタン酸バリウム粒子とを含んでいる。圧電層11は、正方形の薄膜状を呈している。圧電層11には分極処理が施されており、チタン酸バリウム粒子は、圧電層11の厚さ方向(上下方向)に分極している。電極層12aは、アクリルゴム、導電性カーボンブラック、およびカーボンナノチューブを含んでいる。電極層12aは、正方形の薄膜状を呈している。電極層12aは、圧電層11の上面に配置されている。電極層12aの右端には、配線20aが接続されている。電極層12bは、電極層12aと同じ材料からなり、正方形の薄膜状を呈している。電極層12bは、圧電層11の下面に配置されている。電極層12bの右端には、配線20bが接続されている。上方から見て、圧電層11および電極層12a、12bの大きさは同じである。電極層12a、12bの自然状態の体積抵抗率は0.2Ω・cm、左右方向(一軸方向)に10%伸長した状態の体積抵抗率は0.1Ω・cmである。保護層13aは、シリコーンゴム製であって、正方形の薄膜状を呈している。保護層13aは、圧電層11および電極層12a、12bよりも大きく、上方から圧電層11および電極層12a、12bを被覆している。保護層13bは、シリコーンゴム製であって、正方形の薄膜状を呈している。保護層13bは、圧電層11および電極層12a、12bよりも大きく、電極層12bの下面を被覆している。 電極層12aと制御回路部30とは、配線20aにより電気的に接続されている。電極層12bと制御回路部30とは、配線20bにより電気的に接続されている。圧電素子10に荷重が加わると、圧電層11に電荷が発生する。発生した電荷は、制御回路部30にて電圧や電流の変化として検出される。これにより、加えられた荷重が検出される。 The piezoelectric layer 11 contains X-NBR and barium titanate particles. The piezoelectric layer 11 has a square thin film shape. The piezoelectric layer 11 is subjected to polarization treatment, and the barium titanate particles are polarized in the thickness direction (vertical direction) of the piezoelectric layer 11. The electrode layer 12a includes acrylic rubber, conductive carbon black, and carbon nanotubes. The electrode layer 12a has a square thin film shape. The electrode layer 12 a is disposed on the upper surface of the piezoelectric layer 11. A wiring 20a is connected to the right end of the electrode layer 12a. The electrode layer 12b is made of the same material as the electrode layer 12a and has a square thin film shape. The electrode layer 12 b is disposed on the lower surface of the piezoelectric layer 11. A wiring 20b is connected to the right end of the electrode layer 12b. When viewed from above, the piezoelectric layer 11 and the electrode layers 12a and 12b have the same size. The volume resistivity in a natural state of the electrode layers 12a and 12b is 0.2 Ω · cm, and the volume resistivity in a state where the electrode layers 12a and 12b are elongated by 10% in the left-right direction (uniaxial direction) is 0.1 Ω · cm. The protective layer 13a is made of silicone rubber and has a square thin film shape. The protective layer 13a is larger than the piezoelectric layer 11 and the electrode layers 12a and 12b, and covers the piezoelectric layer 11 and the electrode layers 12a and 12b from above. The protective layer 13b is made of silicone rubber and has a square thin film shape. The protective layer 13b is larger than the piezoelectric layer 11 and the electrode layers 12a and 12b, and covers the lower surface of the electrode layer 12b. The electrode layer 12a and the control circuit unit 30 are electrically connected by a wiring 20a. The electrode layer 12b and the control circuit unit 30 are electrically connected by the wiring 20b. When a load is applied to the piezoelectric element 10, electric charges are generated in the piezoelectric layer 11. The generated electric charge is detected by the control circuit unit 30 as a change in voltage or current. Thereby, the applied load is detected.
 本実施形態において、圧電素子10を構成する圧電層11および電極層12a、12bのマトリックスは、いずれもエラストマーである。また、保護層13a、13bもエラストマー製である。そして、圧電素子10の破断伸びは10%以上である。したがって、圧電素子10は、柔軟で伸縮可能である。このため、圧電素子10を伸びたり曲がったりする被着体に配置しても、被着体の動きを阻害しにくい。また、被着体が複雑な形状を有する場合にも、その形状に沿うように圧電素子10を配置することができる。 In the present embodiment, the matrix of the piezoelectric layer 11 and the electrode layers 12a and 12b constituting the piezoelectric element 10 are all elastomers. The protective layers 13a and 13b are also made of an elastomer. The elongation at break of the piezoelectric element 10 is 10% or more. Therefore, the piezoelectric element 10 is flexible and can be expanded and contracted. For this reason, even if it arrange | positions to the to-be-adhered body which expands or bends the piezoelectric element 10, it is hard to inhibit a motion of an to-be-adhered body. Further, even when the adherend has a complicated shape, the piezoelectric element 10 can be arranged along the shape.
 電極層12a、12bは、自然状態およびそれから一軸方向に10%伸長した状態に至るまでの伸長状態の体積抵抗率が100Ω・cm以下である。すなわち、電極層12a、12bは、自然状態において高い導電性を有するだけでなく、一軸方向に最大10%まで伸長した伸長状態においても電気抵抗の増加が小さく、高い導電性を有する。このため、伸長された状態においても、出力が低下しにくく、圧電層11に加わった荷重を正確に検出することができる。 The electrode layers 12a and 12b have a volume resistivity of 100 Ω · cm or less in a natural state and a state in which the electrode layers 12a and 12b are stretched 10% in the uniaxial direction. That is, the electrode layers 12a and 12b not only have high conductivity in a natural state, but also have a high conductivity with a small increase in electrical resistance even in an extended state that extends up to 10% in a uniaxial direction. For this reason, even in the extended state, the output is unlikely to decrease, and the load applied to the piezoelectric layer 11 can be accurately detected.
 このように、圧電センサ1によると、曲げ、伸び、圧縮などの変形を伴う被着体に配置して、被着体が変形していない状態においては勿論、変形時においても被着体に加わる荷重を検出することができる。すなわち、被着体の一次変形状態においてさらに二次変形した場合にも、被着体に加わった荷重を検出することができる。 Thus, according to the piezoelectric sensor 1, it arrange | positions to the to-be-adhered body accompanying deformation | transformation, such as bending, extension, and compression, and adds to an to-be-adhered body also at the time of a deformation | transformation as well as the state to which an to-be-adhered body is not deform | transforming. The load can be detected. That is, even when the secondary deformation is further performed in the primary deformation state of the adherend, the load applied to the adherend can be detected.
 圧電センサ1は、静電容量型センサと比較して、センサの感度(S/N比)が高いため、小さな荷重を検出しやすい。また、荷重を電圧値や電流値で検出できるため、静電容量から荷重を検出する場合と比較して、回路構成を簡素化することができる。また、圧電素子10への通電が不要であるため、駆動のための電源も必要ない。ちなみに、圧電素子10の静電容量についても測定すれば、圧電センサ1に静電容量型センサとしての機能を付加することができる。例えば、静電容量の変化により面圧分布などの静荷重を検出し、電圧の変化により振動などの動荷重を検出することができる。 Piezoelectric sensor 1 has a higher sensitivity (S / N ratio) than a capacitive sensor, so it is easy to detect a small load. Further, since the load can be detected by a voltage value or a current value, the circuit configuration can be simplified as compared with the case where the load is detected from the capacitance. Further, since energization to the piezoelectric element 10 is unnecessary, a power source for driving is not necessary. Incidentally, if the capacitance of the piezoelectric element 10 is also measured, a function as a capacitance type sensor can be added to the piezoelectric sensor 1. For example, a static load such as a surface pressure distribution can be detected by a change in capacitance, and a dynamic load such as vibration can be detected by a change in voltage.
 次に、実施例を挙げて本発明をより具体的に説明する。 Next, the present invention will be described more specifically with reference to examples.
 <圧電層の製造>
 [圧電層1~4]
 まず、エラストマーとしてのカルボキシル基変性水素化ニトリルゴムポリマー(ランクセス社製「テルバン(登録商標)XT8889」)100質量部をアセチルアセトンに溶解して、ポリマー溶液を調製した。次に、調製したポリマー溶液に、圧電粒子としてのチタン酸バリウムの粉末(共立マテリアル(株)製「BT9DX-400」)を加えて混練した。ポリマー分100質量部に対するチタン酸バリウムの粉末の配合量は、後出の表1、表2に示すように、圧電層1では650質量部、圧電層2では480質量部、圧電層3では350質量部、圧電層4では800質量部とした。続いて、混練物を三本ロールに五回繰り返し通して、スラリーを得た。そして、得られたスラリーに、架橋剤のテトラキス(2-エチルヘキシルオキシ)チタン5質量部を加えてエア攪拌機で混練した後、スラリーをバーコート法により基材上に塗布した。これを150℃で1時間加熱して、厚さ50μmの圧電層1~4を製造した。
<Manufacture of piezoelectric layer>
[Piezoelectric layers 1 to 4]
First, 100 parts by mass of a carboxyl group-modified hydrogenated nitrile rubber polymer (“Terban (registered trademark) XT8889” manufactured by LANXESS) as an elastomer was dissolved in acetylacetone to prepare a polymer solution. Next, barium titanate powder (“BT9DX-400” manufactured by Kyoritsu Material Co., Ltd.) as piezoelectric particles was added to the prepared polymer solution and kneaded. As shown in Tables 1 and 2 below, the blending amount of the barium titanate powder with respect to 100 parts by mass of the polymer is 650 parts by mass for the piezoelectric layer 1, 480 parts by mass for the piezoelectric layer 2, and 350 for the piezoelectric layer 3. In the mass part, the piezoelectric layer 4 was 800 parts by mass. Subsequently, the kneaded material was repeatedly passed through three rolls five times to obtain a slurry. Then, 5 parts by mass of tetrakis (2-ethylhexyloxy) titanium as a cross-linking agent was added to the obtained slurry and kneaded with an air stirrer, and then the slurry was applied onto a substrate by a bar coating method. This was heated at 150 ° C. for 1 hour to produce piezoelectric layers 1 to 4 having a thickness of 50 μm.
 [圧電層5]
 エラストマーとしてポリウレタンポリマー(東ソー(株)製「N5139」)を用いた点、および架橋剤としてポリイソシアネート(東ソー(株)製「コロネート(登録商標)HX」)を2質量部用いた点以外は、圧電層2と同様にして圧電層5を製造した。
[Piezoelectric layer 5]
Except for using a polyurethane polymer (“N5139” manufactured by Tosoh Corporation) as an elastomer and using 2 parts by mass of polyisocyanate (“Coronate (registered trademark) HX” manufactured by Tosoh Corporation) as a crosslinking agent, A piezoelectric layer 5 was manufactured in the same manner as the piezoelectric layer 2.
 [圧電層6]
 まず、エラストマーとしてのシリコーンゴムポリマー(信越化学工業(株)製「KE-1935」)のA液とB液とを同じ質量で混合した混合液100質量部に、チタン酸バリウムの粉末(同上)を480質量部加えて混練した。次に、混練物を三本ロールに五回繰り返し通して、スラリーを得た。そして、得られたスラリーをバーコート法により基材上に塗布した。これを150℃で1時間加熱して、厚さ50μmの圧電層6を製造した。
[Piezoelectric layer 6]
First, barium titanate powder (same as above) was added to 100 parts by mass of a mixture of liquid A and liquid B of silicone rubber polymer (“KE-1935” manufactured by Shin-Etsu Chemical Co., Ltd.) as an elastomer. Was added and kneaded. Next, the kneaded product was repeatedly passed through three rolls five times to obtain a slurry. And the obtained slurry was apply | coated on the base material by the bar-coat method. This was heated at 150 ° C. for 1 hour to produce a piezoelectric layer 6 having a thickness of 50 μm.
 [圧電層7]
 圧電粒子としてチタン酸ジルコン酸鉛の粉末(林化学工業(株)製「PZT-ALT」)を1050質量部用いた点以外は、圧電層5と同様にして圧電層7を製造した。
[Piezoelectric layer 7]
A piezoelectric layer 7 was produced in the same manner as the piezoelectric layer 5 except that 1050 parts by mass of lead zirconate titanate powder (“PZT-ALT” manufactured by Hayashi Chemical Industry Co., Ltd.) was used as the piezoelectric particles.
 [圧電層8]
 圧電粒子としてニオブ酸カリウムの粉末(フルウチ化学(株)製「ピエゾファイン」)を350質量部用いた点以外は、圧電層5と同様にして圧電層8を製造した。
[Piezoelectric layer 8]
A piezoelectric layer 8 was manufactured in the same manner as the piezoelectric layer 5 except that 350 parts by mass of potassium niobate powder (“Piezofine” manufactured by Furuuchi Chemical Co., Ltd.) was used as the piezoelectric particles.
 [圧電層9~11]
 圧電層2の製造に使用したスラリーに、架橋剤のテトラキス(2-エチルヘキシルオキシ)チタン5質量部と補強粒子としての二酸化チタンゾルとを加えてエア攪拌機で混練した後、スラリーをバーコート法により基材上に塗布した。これを150℃で1時間加熱して、厚さ50μmの圧電層9~11を製造した。スラリーのポリマー分100質量部に対する二酸化チタンゾルの配合量は、後出の表2に示すように、圧電層9では1質量部、圧電層10では5質量部、圧電層11では20質量部とした。
[Piezoelectric layers 9 to 11]
After adding 5 parts by mass of tetrakis (2-ethylhexyloxy) titanium as a crosslinking agent and titanium dioxide sol as reinforcing particles to the slurry used for the production of the piezoelectric layer 2 and kneading with an air stirrer, the slurry is obtained by a bar coating method. It was applied on the material. This was heated at 150 ° C. for 1 hour to produce piezoelectric layers 9 to 11 having a thickness of 50 μm. As shown in Table 2 below, the blending amount of the titanium dioxide sol with respect to 100 parts by mass of the polymer content of the slurry was 1 part by mass for the piezoelectric layer 9, 5 parts by mass for the piezoelectric layer 10, and 20 parts by mass for the piezoelectric layer 11. .
 二酸化チタンゾルは、次のようにして製造した。まず、有機金属化合物のテトラi-プロポキシチタン0.01molに、アセチルアセトン0.02molを加えてキレート化した。次に、得られたキレート化物に、イソプロピルアルコール0.083molと、メチルエチルケトン0.139molと、水0.08molと、を添加しながら撹拌し、添加終了後に40℃に昇温してさらに2時間撹拌した。それから室温で一晩静置して、二酸化チタンゾルを得た。 The titanium dioxide sol was manufactured as follows. First, 0.02 mol of acetylacetone was added to 0.01 mol of tetrai-propoxytitanium, an organometallic compound, for chelation. Next, 0.083 mol of isopropyl alcohol, 0.139 mol of methyl ethyl ketone, and 0.08 mol of water are added to the resulting chelated product, and the mixture is stirred. After the addition, the mixture is heated to 40 ° C. and further stirred for 2 hours. did. Then, it was allowed to stand at room temperature overnight to obtain a titanium dioxide sol.
 [圧電層12、13]
 圧電層2の製造に使用したスラリーに、補強粒子が分散したスラリーを加え、さらに架橋剤のテトラキス(2-エチルヘキシルオキシ)チタン5質量部を加えてエア攪拌機で混練した後、スラリーをバーコート法により基材上に塗布した。これを150℃で1時間加熱して、厚さ50μmの圧電層12、13を製造した。スラリーのポリマー分100質量部に対する補強粒子が分散したスラリーの配合量は、後出の表2に示すように、圧電層12では5質量部、圧電層13では20質量部とした。
[Piezoelectric layers 12, 13]
A slurry in which reinforcing particles are dispersed is added to the slurry used for the production of the piezoelectric layer 2, and 5 parts by mass of tetrakis (2-ethylhexyloxy) titanium as a cross-linking agent is added and kneaded with an air stirrer. Was applied on the substrate. This was heated at 150 ° C. for 1 hour to produce piezoelectric layers 12 and 13 having a thickness of 50 μm. The blending amount of the slurry in which the reinforcing particles are dispersed with respect to 100 parts by mass of the polymer content of the slurry was 5 parts by mass for the piezoelectric layer 12 and 20 parts by mass for the piezoelectric layer 13 as shown in Table 2 below.
 補強粒子が分散したスラリーは、次のようにして製造した。まず、カルボキシル基変性水素化ニトリルゴムポリマー(同上)をアセチルアセトンに溶解して調製したポリマー溶液に、補強粒子としての二酸化チタンの粉末(アナターゼ型、和光純薬工業(株)、製品コード205-01715)を加えて混練した。次に、混練物を三本ロールに五回繰り返し通して、補強粒子が分散したスラリーを得た。 The slurry in which the reinforcing particles are dispersed was manufactured as follows. First, a titanium dioxide powder (anatase type, Wako Pure Chemical Industries, Ltd., product code 205-01715) as a reinforcing particle was added to a polymer solution prepared by dissolving a carboxyl group-modified hydrogenated nitrile rubber polymer (same as above) in acetylacetone. ) And kneaded. Next, the kneaded product was repeatedly passed through three rolls five times to obtain a slurry in which reinforcing particles were dispersed.
 [圧電層14]
 圧電粒子としてチタン酸バリウム粒子の結合体の粉末a(日本化学工業(株)製「BTD-UP」)を480質量部用いた点以外は、圧電層1~4と同様にして圧電層14を製造した。
[Piezoelectric layer 14]
The piezoelectric layer 14 was formed in the same manner as the piezoelectric layers 1 to 4 except that 480 parts by mass of the powder a (a “BTD-UP” manufactured by Nippon Kagaku Kogyo Co., Ltd.) of barium titanate particles was used as the piezoelectric particles. Manufactured.
 [圧電層15]
 圧電粒子としてチタン酸バリウム粒子の結合体の粉末bを480質量部用いた点以外は、圧電層1~4と同様にして圧電層15を製造した。使用したチタン酸バリウム粒子の結合体の粉末bは、チタン酸バリウムの粉末(単粒子の粉末、日本化学工業(株)製「BT-UP2」)を1050℃で180分間焼成した後、ボールミルで粉砕して製造した。
[Piezoelectric layer 15]
The piezoelectric layer 15 was manufactured in the same manner as the piezoelectric layers 1 to 4 except that 480 parts by mass of the powder b of the combination of barium titanate particles as the piezoelectric particles was used. The combined powder b of the barium titanate particles used was a barium titanate powder (single particle powder, “BT-UP2” manufactured by Nippon Chemical Industry Co., Ltd.) for 180 minutes at 1050 ° C. Manufactured by grinding.
 図7に、焼成前のチタン酸バリウムの粉末(単粒子)のSEM写真を示す。図8に、焼成および粉砕後のチタン酸バリウムの粉末b(結合体)のSEM写真を示す。図7、図8に示すように、焼成および粉砕することにより、複数のチタン酸バリウム粒子が集合してなる結合体が生成されていることが確認できる。 FIG. 7 shows an SEM photograph of the barium titanate powder (single particles) before firing. FIG. 8 shows an SEM photograph of barium titanate powder b (combined body) after firing and pulverization. As shown in FIGS. 7 and 8, it can be confirmed that a combined body formed by aggregating a plurality of barium titanate particles is produced by firing and pulverizing.
 [圧電層a]
 比較のため、PVDF(クレハエラストマー(株)製)からなる厚さ40μmの圧電層を圧電層aとした。
[Piezoelectric layer a]
For comparison, a piezoelectric layer having a thickness of 40 μm made of PVDF (manufactured by Kureha Elastomer Co., Ltd.) was used as the piezoelectric layer a.
 [圧電層b]
 比較のため、エポキシ樹脂にチタン酸バリウム粒子が分散されてなる圧電層を圧電層bとした。圧電層bは、次のように製造した。まず、ビスフェノールA(三菱化学(株)製「jER(登録商標)828」)100質量部に、硬化剤としてフェノールノボラック樹脂(昭和電工(株)製「BRG♯558」4.8質量部を加えてポリマー溶液を調製した。次に、調製したポリマー溶液に、チタン酸バリウムの粉末(同上)を480質量部加えて混練した。続いて、混練物を三本ロールに五回繰り返し通して、スラリーを得た。そして、得られたスラリーをバーコート法により基材上に塗布した。これを150℃で1時間加熱して、厚さ50μmの圧電層bを製造した。
[Piezoelectric layer b]
For comparison, a piezoelectric layer in which barium titanate particles are dispersed in an epoxy resin is defined as a piezoelectric layer b. The piezoelectric layer b was manufactured as follows. First, 100 parts by mass of bisphenol A ("jER (registered trademark) 828" manufactured by Mitsubishi Chemical Corporation) is added with 4.8 parts by mass of a phenol novolac resin ("BRG # 558" manufactured by Showa Denko KK) as a curing agent. Next, 480 parts by mass of barium titanate powder (same as above) was added to the prepared polymer solution and kneaded, and the kneaded product was passed through three rolls five times to obtain a slurry. The obtained slurry was applied onto a substrate by a bar coating method, and this was heated at 150 ° C. for 1 hour to produce a piezoelectric layer b having a thickness of 50 μm.
 <電極層の製造>
 [電極層1]
 まず、エラストマーとしてのエポキシ基含有アクリルゴムポリマー(日本ゼオン(株)製「Nipol(登録商標)AR42W」)100質量部を、ブチルセロソルブアセテートに溶解して、ポリマー溶液を調製した。次に、調製したポリマー溶液に、導電性カーボンブラック(ライオン(株)製「ケッチェンブラックEC600JD」)10質量部と、カーボンナノチューブ(昭和電工(株)製「VGCF(登録商標)」)16質量部と、分散剤としてのポリエステル酸アマイドアミン塩12質量部と、を添加して、ビーズミルにて分散させて導電塗料を調製した。続いて、導電塗料を離型処理されたポリエチレンテレフタレート(PET)製のフィルム上にバーコート法により塗布した。これを150℃で1時間加熱して、厚さ20μmの電極層を製造した。
<Manufacture of electrode layer>
[Electrode layer 1]
First, 100 parts by mass of an epoxy group-containing acrylic rubber polymer (“Nipol (registered trademark) AR42W” manufactured by Nippon Zeon Co., Ltd.) as an elastomer was dissolved in butyl cellosolve acetate to prepare a polymer solution. Next, 10 parts by mass of conductive carbon black ("Ketjen Black EC600JD" manufactured by Lion Corporation) and 16 parts by mass of carbon nanotubes ("VGCF (registered trademark)" manufactured by Showa Denko KK) were added to the prepared polymer solution. Part and 12 parts by mass of a polyester acid amide amine salt as a dispersant were added and dispersed with a bead mill to prepare a conductive paint. Subsequently, the conductive paint was applied on a polyethylene terephthalate (PET) film subjected to a release treatment by a bar coating method. This was heated at 150 ° C. for 1 hour to produce an electrode layer having a thickness of 20 μm.
 [電極層2]
 カーボンナノチューブおよび分散剤を配合せずに導電塗料を調製した点以外は、電極層1と同様にして電極層2を製造した。
[Electrode layer 2]
An electrode layer 2 was produced in the same manner as the electrode layer 1 except that a conductive paint was prepared without blending carbon nanotubes and a dispersant.
 [電極層3]
 導電性カーボンブラックを、ライオン(株)製「ケッチェンブラックEC600JD」から三菱化学(株)製「#3050B」に変更し、カーボンナノチューブおよび分散剤を配合せずに導電塗料を調製した点以外は、電極層1と同様にして電極層3を製造した。
[Electrode layer 3]
The conductive carbon black was changed from “Ketjen Black EC600JD” manufactured by Lion Corporation to “# 3050B” manufactured by Mitsubishi Chemical Corporation, except that a conductive paint was prepared without blending carbon nanotubes and a dispersant. The electrode layer 3 was produced in the same manner as the electrode layer 1.
 [電極層4]
 銀ペースト(藤倉化成(株)製「ドータイト(登録商標)D-362」)を、離型処理されたPETフィルム上にバーコート法により塗布した。これを150℃で1時間加熱して、厚さ20μmの電極層4を製造した。
[Electrode layer 4]
A silver paste (“Dotite (registered trademark) D-362” manufactured by Fujikura Kasei Co., Ltd.) was applied onto the release-treated PET film by a bar coating method. This was heated at 150 ° C. for 1 hour to produce an electrode layer 4 having a thickness of 20 μm.
 <保護層の製造>
 [保護層]
 シリコーンゴムポリマー(信越化学工業(株)製「KE1935」)のA液とB液とを同じ質量で混合し、真空脱泡して気泡を抜いた後、離型処理されたPETフィルム上にバーコート法により塗布した。これを150℃で1時間加熱して、厚さ10μmの保護層を製造した。
<Manufacture of protective layer>
[Protective layer]
Liquid A and B of silicone rubber polymer (“KE1935” manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed at the same mass, degassed by vacuum degassing, and then released onto a PET film that has been subjected to release treatment. The coating method was applied. This was heated at 150 ° C. for 1 hour to produce a protective layer having a thickness of 10 μm.
 <圧電素子の製造>
 製造した圧電層、電極層、保護層を適宜組み合わせて、次のようにして種々の圧電素子を製造した。まず、圧電層の厚さ方向の二面(上面および下面)に各々電極層を配置して、ラミネーター(フジプラ(株)製「LPD3223」)を用いて圧電層と電極層とを圧着した。次に、予めエキシマ処理を施した保護層を電極層に積層して、ラミネーター(同上)を用いて保護層と電極層とを圧着した。エキシマ処理には、浜松ホトニクス(株)製エキシマランプ光源「FLAT EXCIMER」を使用した。得られた保護層/電極層/圧電層/電極層/保護層からなる積層体の電極層に直流電源を接続し、圧電層に10V/μmの電界を1時間印加して、分極処理を行った。図9に、製造された圧電素子の上下方向断面図を示す。図9に示すように、圧電素子40は、上から順に保護層43a、電極層42a、圧電層41、電極層42b、保護層43bが積層されてなる。製造された圧電素子は、縦、横30mmの正方形状の検出部を有する。
<Manufacture of piezoelectric elements>
Various piezoelectric elements were manufactured as follows by appropriately combining the manufactured piezoelectric layer, electrode layer, and protective layer. First, electrode layers were respectively arranged on two surfaces (upper surface and lower surface) in the thickness direction of the piezoelectric layer, and the piezoelectric layer and the electrode layer were pressure-bonded using a laminator (“LPD3223” manufactured by Fuji Pla Co., Ltd.). Next, the protective layer which performed the excimer process previously was laminated | stacked on the electrode layer, and the protective layer and the electrode layer were crimped | bonded using the laminator (same as the above). For excimer treatment, an excimer lamp light source “FLAT EXCIMER” manufactured by Hamamatsu Photonics Co., Ltd. was used. A direct current power source is connected to the electrode layer of the laminate comprising the obtained protective layer / electrode layer / piezoelectric layer / electrode layer / protective layer, and an electric field of 10 V / μm is applied to the piezoelectric layer for 1 hour to perform polarization treatment. It was. FIG. 9 shows a vertical sectional view of the manufactured piezoelectric element. As shown in FIG. 9, the piezoelectric element 40 is formed by laminating a protective layer 43a, an electrode layer 42a, a piezoelectric layer 41, an electrode layer 42b, and a protective layer 43b in order from the top. The manufactured piezoelectric element has a square-shaped detection part of 30 mm in length and width.
 <圧電素子の評価>
 表1および表2に、製造した圧電素子の構成、特性、および評価結果を示す。表1および表2中、ε(比誘電率)、体積抵抗率、弾性率、破断伸び、起電圧、伸縮耐久性の測定方法は、以下の通りである。
<Evaluation of piezoelectric element>
Tables 1 and 2 show the configuration, characteristics, and evaluation results of the manufactured piezoelectric elements. In Tables 1 and 2, the methods for measuring ε (relative dielectric constant), volume resistivity, elastic modulus, elongation at break, electromotive force, and stretching durability are as follows.
 [エラストマーの比誘電率]
 圧電粒子および補強粒子を配合せずに、ポリマーのみから製造した成形体を、サンプルホルダー(ソーラトロン社製、12962A型)に設置し、誘電率測定インターフェイス(同社製、1296型)および周波数応答アナライザー(同社製、1255B型)を併用して、比誘電率を測定した(周波数100Hz)。
[Relative permittivity of elastomer]
A molded body made only from a polymer without blending piezoelectric particles and reinforcing particles was placed in a sample holder (Solartron, model 12962A), and a dielectric constant measurement interface (manufactured by the company, model 1296) and a frequency response analyzer ( The relative permittivity was measured (frequency: 100 Hz) using a 1255B type manufactured by the same company.
 [圧電粒子、補強粒子の比誘電率]
 測定により比誘電率が既知となったエラストマーのポリマーに、圧電粒子または補強粒子を配合して複合体を製造した。この際、配合量が異なる種々の複合体を製造し、各々について、エラストマーの比誘電率を測定したのと同じ方法で比誘電率を測定した。そして、次式(b)により、配合した粒子の比誘電率を算出した。
Logε=VLogε+VLogε ・・・(b)
[ε:複合体の比誘電率、V:粒子の体積比率(%)、ε:粒子の比誘電率、V:エラストマーの体積比率(%)、ε:エラストマーの比誘電率。]
 [電極層の体積抵抗率]
 (1)自然状態の体積抵抗率
 厚さ20μmの電極層を幅10mm、長さ40mmの短冊状に切り出して試験片とし、長さ方向に20mm離間する位置に標線を付けた。標線位置に銅箔製の端子を取り付けて、標線間の電気抵抗を測定した。測定された電気抵抗値と試験片の寸法とに基づいて、次式(c)により体積抵抗率を算出し、電極層の自然状態の体積抵抗率とした。
体積抵抗率(Ω・cm)=電気抵抗値(Ω)×試験片の断面積(cm)/標線間距離(cm) ・・・(c)
 (2)伸長状態の体積抵抗率
 引張試験機((株)島津製作所製)を用いて、電極層の試験片を長さ方向に伸長した。試験片を10%伸長させた状態で、標線間の電気抵抗を測定し、先の式(c)により体積抵抗率を算出し、電極層の10%伸長時の体積抵抗率とした。試験片を50%伸長させた場合についても同様に体積抵抗率を算出し、電極層の50%伸長時の体積抵抗率とした。伸長状態における試験片の断面積は、試験片のポアソン比を0.5と仮定して算出した。
[Relative permittivity of piezoelectric particles and reinforcing particles]
A composite was manufactured by blending piezoelectric particles or reinforcing particles with an elastomeric polymer whose relative dielectric constant was known by measurement. At this time, various composites having different blending amounts were produced, and the relative dielectric constant was measured for each of the composites in the same manner as the measurement of the relative dielectric constant of the elastomer. Then, the relative dielectric constant of the blended particles was calculated by the following formula (b).
Log ε = V f Log ε f + V p Log ε p (b)
[Ε: dielectric constant of the composite, V f : particle volume ratio (%), ε f : particle dielectric constant, V p : elastomer volume ratio (%), ε p : elastomer dielectric constant. ]
[Volume resistivity of electrode layer]
(1) Volume resistivity in a natural state An electrode layer having a thickness of 20 μm was cut into a strip shape having a width of 10 mm and a length of 40 mm to form a test piece, and a marked line was attached to a position separated by 20 mm in the length direction. A copper foil terminal was attached to the marked line position, and the electrical resistance between the marked lines was measured. Based on the measured electric resistance value and the dimension of the test piece, the volume resistivity was calculated by the following formula (c), and the volume resistivity in the natural state of the electrode layer was obtained.
Volume resistivity (Ω · cm) = Electric resistance value (Ω) × Cross sectional area of test piece (cm 2 ) / Distance between marked lines (cm) (c)
(2) Volume resistivity in the stretched state Using a tensile tester (manufactured by Shimadzu Corporation), the test piece of the electrode layer was stretched in the length direction. In a state where the test piece was extended by 10%, the electrical resistance between the marked lines was measured, and the volume resistivity was calculated according to the previous equation (c), which was taken as the volume resistivity when the electrode layer was extended by 10%. The volume resistivity was calculated in the same manner for the case where the test piece was extended by 50%, and was taken as the volume resistivity when the electrode layer was extended by 50%. The cross-sectional area of the test piece in the extended state was calculated on the assumption that the Poisson's ratio of the test piece was 0.5.
 [弾性率]
 圧電素子についてJIS K 7127:1999に規定される引張試験を行い、得られた応力-伸び曲線から弾性率を算出した。引張試験は、試験片タイプ2の試験片を用い、引張速度を100mm/minとして行った。
[Elastic modulus]
The piezoelectric element was subjected to a tensile test specified in JIS K 7127: 1999, and the elastic modulus was calculated from the obtained stress-elongation curve. The tensile test was performed using a test piece type 2 test piece with a tensile speed of 100 mm / min.
 [破断伸び]
 圧電素子についてJIS K 6251:2010に規定される引張試験を行い、切断時伸びを算出した。引張試験は、ダンベル状5号形の試験片を用い、引張速度を100mm/minとして行った。
[Elongation at break]
The piezoelectric element was subjected to a tensile test specified in JIS K 6251: 2010, and the elongation at break was calculated. The tensile test was performed using a dumbbell-shaped No. 5 test piece with a tensile speed of 100 mm / min.
 [起電圧]
 JIS K 6255:2013に規定される振子式試験に類似する方法で起電圧を測定した。まず、圧電素子を自然状態で高分子計器(株)製の反発弾性試験機に設置した。次に、懸垂長さ2000mmにて吊り下げられた直径14mm、質量300gの鋼球を、振り幅(水平方向における試験片からの距離)15mmにて振り子運動させて圧電素子に衝突させた。そして、衝突時に生じる起電圧のピーク値をオシロスコープ(テクトロニクス社製「TPS2012B」)で測定した。これを五回繰り返して、起電圧のピーク値の五回の平均値を自然状態の起電圧V1とした。また、圧電素子を一軸方向に10%伸長した状態で反発弾性試験機(同上)に設置して、上記同様の方法にて測定された起電圧のピーク値の五回の平均値を、伸長状態の起電圧V2とした。
[Electromotive voltage]
The electromotive force was measured by a method similar to the pendulum type test defined in JIS K 6255: 2013. First, the piezoelectric element was installed in a rebound resilience tester manufactured by Kobunshi Keiki Co., Ltd. in a natural state. Next, a steel ball having a diameter of 14 mm and a mass of 300 g suspended with a suspension length of 2000 mm was caused to make a pendulum movement with a swing width (distance from the test piece in the horizontal direction) of 15 mm and collide with the piezoelectric element. Then, the peak value of the electromotive voltage generated at the time of collision was measured with an oscilloscope (“TPS2012B” manufactured by Tektronix). This was repeated five times, and the average value of the five peak values of the electromotive voltage was taken as the natural state electromotive voltage V1. In addition, the piezoelectric element was installed in a rebound resilience tester (same as above) in a state where the piezoelectric element was stretched 10% in the uniaxial direction, and the average value of five times of the peak value of the electromotive force measured by the same method as described above was The electromotive voltage V2 was
 [伸縮耐久性]
 圧電素子について伸縮試験を行い、試験前後における起電圧の変化により伸縮耐久性を評価した。伸縮試験においては、圧電素子を面方向の一方向に10%伸長した後復元させるというサイクルを1万回繰り返した。伸縮は、2サイクル/秒の速さで行った。そして、前述した自然状態の起電圧の測定方法により、試験前後の圧電素子の起電圧を測定し、次式(d)により、初期の起電圧に対する変化率を算出した。
起電圧の変化率(%)=V1/V3×100 ・・・(d)
[V1:初期(自然状態)の起電圧(V)、V3:伸縮試験後の起電圧(V)。]
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[Stretch durability]
The piezoelectric element was subjected to an expansion / contraction test, and the expansion / contraction durability was evaluated by a change in electromotive force before and after the test. In the expansion / contraction test, a cycle in which the piezoelectric element was expanded 10% in one direction of the plane and then restored was repeated 10,000 times. Stretching was performed at a rate of 2 cycles / second. Then, the electromotive force of the piezoelectric element before and after the test was measured by the method for measuring the electromotive voltage in the natural state described above, and the rate of change with respect to the initial electromotive voltage was calculated by the following equation (d).
Rate of change in electromotive voltage (%) = V1 / V3 × 100 (d)
[V1: Initial (natural state) electromotive voltage (V), V3: Electromotive voltage after expansion / contraction test (V). ]
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 まず、圧電層に補強粒子が含まれない実施例1~8の圧電素子について説明する。表1に示すように、実施例1~8の圧電素子によると、圧電素子の破断伸びは40%以上であった。電極層の体積抵抗率は、自然状態および10%伸長時で3Ω・cm以下、50%伸長時で5Ω・cm以下であった。これにより、実施例1~8の圧電素子を構成する電極層は、自然状態およびそれから一軸方向に10%伸長した状態に至るまでの伸長状態の体積抵抗率が100Ω・cm以下という条件を満足すると判断できる。また、実施例1~8の圧電素子におけるV2/V1の値は0.5%より大きく、前述した式(I)の条件を満足している。また、伸縮を繰り返した後の起電圧の変化率も150%以下であり、伸縮を繰り返した後でも起電圧の変化が小さく、伸縮耐久性に優れることが確認された。また、圧電素子の弾性率が大きいと、被着体の動きを阻害するおそれがある。この点、実施例1~8の圧電素子の弾性率は500MPa以下である。よって、表1に〇印で示すように、実施例1~8の圧電素子は、被着体に対する追従性が良好であり、被着体の動きを阻害しにくいことが確認された。 First, the piezoelectric elements of Examples 1 to 8 in which reinforcing particles are not included in the piezoelectric layer will be described. As shown in Table 1, according to the piezoelectric elements of Examples 1 to 8, the breaking elongation of the piezoelectric elements was 40% or more. The volume resistivity of the electrode layer was 3 Ω · cm or less at the natural state and 10% elongation, and 5 Ω · cm or less at 50% elongation. As a result, the electrode layers constituting the piezoelectric elements of Examples 1 to 8 satisfy the condition that the volume resistivity in the natural state and the expanded state from the state to 10% in the uniaxial direction is 100 Ω · cm or less. I can judge. In the piezoelectric elements of Examples 1 to 8, the value of V2 / V1 is greater than 0.5%, which satisfies the condition of the above-described formula (I). Further, the rate of change in electromotive voltage after repeated expansion and contraction was 150% or less, and it was confirmed that the change in electromotive voltage was small even after repeated expansion and contraction and that the stretch durability was excellent. Further, when the elastic modulus of the piezoelectric element is large, there is a possibility that the movement of the adherend is hindered. In this regard, the elastic modulus of the piezoelectric elements of Examples 1 to 8 is 500 MPa or less. Therefore, as indicated by a circle in Table 1, it was confirmed that the piezoelectric elements of Examples 1 to 8 had good followability to the adherend and hardly hindered the movement of the adherend.
 これに対して、PVDF製の圧電層を有する比較例1の圧電素子、およびエポキシ樹脂をマトリックスとする圧電層を有する比較例5の圧電素子においては、表2に示すように弾性率が大きく、伸長させた後に元の形状に復元しなかった。このため、伸長状態の起電圧を測定することができず、伸縮耐久性を評価するに至らなかった。また、比較例2の圧電素子においては、圧電粒子の配合量が多いため、圧電素子の弾性率が大きくなり、破断伸びも10%未満であった。このため、伸長状態の起電圧を測定することができず、伸縮耐久性を評価するに至らなかった。また、比較例3の圧電素子においては、伸長時に電極層の体積抵抗率が大幅に増加したため、起電圧が大幅に低下した。また、銀ペースト製の電極層を有する比較例4の圧電素子においては、伸長時に電極層の体積抵抗率が大幅に増加して絶縁状態になったため、伸長状態の起電圧を測定することができず、伸縮耐久性を評価するに至らなかった。 On the other hand, in the piezoelectric element of Comparative Example 1 having a piezoelectric layer made of PVDF and the piezoelectric element of Comparative Example 5 having a piezoelectric layer having an epoxy resin as a matrix, the elastic modulus is large as shown in Table 2, It did not restore to its original shape after stretching. For this reason, the electromotive voltage in an extended state could not be measured, and the stretch durability could not be evaluated. Further, in the piezoelectric element of Comparative Example 2, since the blending amount of the piezoelectric particles was large, the elastic modulus of the piezoelectric element was increased and the elongation at break was less than 10%. For this reason, the electromotive voltage in an extended state could not be measured, and the stretch durability could not be evaluated. Moreover, in the piezoelectric element of Comparative Example 3, the volume resistivity of the electrode layer was greatly increased at the time of expansion, so that the electromotive voltage was greatly reduced. In addition, in the piezoelectric element of Comparative Example 4 having the electrode layer made of silver paste, the volume resistivity of the electrode layer was greatly increased at the time of expansion, and the electromotive voltage in the expanded state could be measured. Therefore, the stretch durability was not evaluated.
 次に、圧電層に補強粒子が含まれる実施例9~13の圧電素子について説明する。表2に示すように、実施例9~13の圧電素子の構成は、圧電層に補強粒子が配合されている点を除いて、実施例3の圧電素子の構成と同じである。したがって、実施例9~13の圧電素子は、実施例3の圧電素子と同様に、伸縮を繰り返した後でも起電圧の変化が小さく、伸縮耐久性に優れる。また、実施例9~13の圧電素子においては、実施例3の圧電素子と比較して、自然状態における起電圧が大きくなった。これは、補強粒子を配合したことによる大きな効果である。また、補強粒子は表面に水酸基を有し、エラストマーに化学結合している。このため、伸縮を繰り返した後の起電圧の変化率がより小さくなった。 Next, the piezoelectric elements of Examples 9 to 13 in which reinforcing particles are included in the piezoelectric layer will be described. As shown in Table 2, the configurations of the piezoelectric elements of Examples 9 to 13 are the same as the configuration of the piezoelectric element of Example 3 except that reinforcing particles are blended in the piezoelectric layer. Therefore, like the piezoelectric element of Example 3, the piezoelectric elements of Examples 9 to 13 have a small change in electromotive voltage even after repeated expansion and contraction and are excellent in expansion and contraction durability. In the piezoelectric elements of Examples 9 to 13, the electromotive voltage in the natural state was larger than that of the piezoelectric element of Example 3. This is a great effect due to the incorporation of reinforcing particles. The reinforcing particles have a hydroxyl group on the surface and are chemically bonded to the elastomer. For this reason, the rate of change in electromotive voltage after repeated expansion and contraction is further reduced.
 次に、圧電粒子として個々の粒子が化学結合した結合体を用いた実施例14、15の圧電素子について説明する。表1、2に示すように、実施例14、15の圧電素子の構成は、使用した圧電粒子が異なる点を除いて、実施例3の圧電素子の構成と同じである。実施例14、15の圧電素子によると、チタン酸バリウム粒子(単粒子)を用いた実施例3の圧電素子と比較して、弾性率が小さく、破断伸びが大きくなった。一方、実施例14、15の圧電素子の起電圧は、実施例3の圧電素子のそれよりも大きくなった。そして、実施例14、15の圧電素子の伸縮耐久性は、実施例3の圧電素子のそれと同等レベルであった。このように、実施例14、15の圧電素子によると、高い圧電性を確保しつつ柔軟性を大幅に向上させることができた。これは、圧電粒子の集合体を用いると、圧電粒子同士の連結構造が形成されやすくなるため、圧電粒子の配合量を増加させなくても高い圧電性が得られるためである。 Next, the piezoelectric elements of Examples 14 and 15 using a bonded body in which individual particles are chemically bonded as piezoelectric particles will be described. As shown in Tables 1 and 2, the configurations of the piezoelectric elements of Examples 14 and 15 are the same as the configurations of the piezoelectric element of Example 3 except that the piezoelectric particles used are different. According to the piezoelectric elements of Examples 14 and 15, the elastic modulus was small and the elongation at break was large compared to the piezoelectric element of Example 3 using barium titanate particles (single particles). On the other hand, the electromotive voltage of the piezoelectric elements of Examples 14 and 15 was larger than that of the piezoelectric element of Example 3. The expansion / contraction durability of the piezoelectric elements of Examples 14 and 15 was equivalent to that of the piezoelectric element of Example 3. Thus, according to the piezoelectric elements of Examples 14 and 15, the flexibility could be greatly improved while ensuring high piezoelectricity. This is because, when an aggregate of piezoelectric particles is used, a connection structure between the piezoelectric particles is easily formed, so that high piezoelectricity can be obtained without increasing the blending amount of the piezoelectric particles.
 図10に、チタン酸バリウム粒子の体積割合と発生電界との関係を示す。図10に示すように、圧電層14で使用した結合体の場合、圧電層1で使用した単粒子と比較して、低充填率でも大きな電界が発生することがわかる。同様に、圧電層15で使用した結合体の場合、焼成前の単粒子と比較して、低充填率でも大きな電界が発生することがわかる。 FIG. 10 shows the relationship between the volume ratio of barium titanate particles and the generated electric field. As shown in FIG. 10, in the case of the combined body used in the piezoelectric layer 14, it can be seen that a large electric field is generated even at a low filling rate as compared with the single particles used in the piezoelectric layer 1. Similarly, in the case of the combined body used in the piezoelectric layer 15, it can be seen that a large electric field is generated even at a low filling rate as compared with the single particles before firing.
 一例として、実施例2の圧電素子に振動を加えた場合に発生する起電圧のグラフを示す。図3は、圧電素子を面方向の一方向に1%伸長した状態で厚さ方向に振動を加えた場合の起電圧のグラフである。図4は、圧電素子を面方向の一方向に10%伸長した状態で厚さ方向に振動を加えた場合の起電圧のグラフである。図3、図4中、起電圧は太線で、荷重は細線で示されている。圧電素子には、(有)旭製作所製の疲労耐久試験機「APC-1000」を用いて、荷重p-pが1.7Nのサイン波状の振動を加えた。 As an example, a graph of an electromotive voltage generated when vibration is applied to the piezoelectric element of Example 2 is shown. FIG. 3 is a graph of an electromotive voltage when vibration is applied in the thickness direction in a state where the piezoelectric element is extended by 1% in one direction of the plane direction. FIG. 4 is a graph of an electromotive voltage when vibration is applied in the thickness direction in a state where the piezoelectric element is extended by 10% in one direction of the plane direction. In FIGS. 3 and 4, the electromotive voltage is indicated by a thick line, and the load is indicated by a thin line. A sine wave-like vibration with a load pp of 1.7 N was applied to the piezoelectric element using a fatigue durability tester “APC-1000” manufactured by Asahi Seisakusho.
 図3、図4に示すように、圧電素子は、伸長された状態においても圧電性能を維持しており、加えられた荷重を検出できることがわかる。 As shown in FIGS. 3 and 4, it can be seen that the piezoelectric element maintains the piezoelectric performance even in the extended state, and can detect the applied load.
 <圧電素子における保護層の検討>
 保護層の種類、厚さを変更して圧電素子を製造し、自然状態および伸長状態の起電圧を測定した。圧電素子の構成は保護層/電極層/圧電層/電極層/保護層であり、製造方法は上述した通りである。保護層としては、次の三種類を使用した。
<Examination of protective layer in piezoelectric element>
Piezoelectric elements were manufactured by changing the type and thickness of the protective layer, and the electromotive voltages in the natural state and the extended state were measured. The configuration of the piezoelectric element is protective layer / electrode layer / piezoelectric layer / electrode layer / protective layer, and the manufacturing method is as described above. The following three types were used as the protective layer.
 [保護層1]
 シリコーンゴムポリマー(信越化学工業(株)製「KE2004-5」)のA液とB液とを同じ質量で混合し、真空脱泡して気泡を抜いた後、離型処理されたPETフィルム上にバーコート法により塗布した。これを150℃で1時間加熱して、厚さ1mmの保護層1を製造した。
[Protective layer 1]
On the PET film that has been subjected to mold release treatment after mixing A liquid and B liquid of silicone rubber polymer (“KE2004-5” manufactured by Shin-Etsu Chemical Co., Ltd.) with the same mass, vacuum degassing to remove bubbles It was applied by a bar coating method. This was heated at 150 ° C. for 1 hour to produce a protective layer 1 having a thickness of 1 mm.
 [保護層2]
 シリコーンゴムポリマー(信越化学工業(株)製「KE1935」)のA液とB液とを同じ質量で混合し、真空脱泡して気泡を抜いた後、離型処理されたPETフィルム上にバーコート法により塗布した。これを150℃で1時間加熱して、厚さ1mmの保護層2を製造した。なお、保護層2は、上述した実施例1~15の圧電素子に使用した保護層の厚さ違いである。
[Protective layer 2]
Liquid A and B of silicone rubber polymer (“KE1935” manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed at the same mass, degassed by vacuum degassing, and then released onto a PET film that has been subjected to release treatment. The coating method was applied. This was heated at 150 ° C. for 1 hour to produce a protective layer 2 having a thickness of 1 mm. The protective layer 2 is different in thickness of the protective layer used in the piezoelectric elements of Examples 1 to 15 described above.
 [保護層3]
 市販のNBRシート(商品コード「07-012-02-04」、厚さ2mm)を使用した。
[Protective layer 3]
A commercially available NBR sheet (product code “07-012-02-04”, thickness 2 mm) was used.
 表3に、圧電素子の構成、積層体の合成弾性率、保護層の弾性率および破断伸び、圧電素子の起電圧の測定結果を示す。弾性率、破断伸び、起電圧の測定は、上述した方法に準じて行った。積層体の合成弾性率は、圧電層の弾性率と電極層の弾性率とを別々に求め、それらを足し算した値である。20%伸長状態の起電圧は、圧電素子を一軸方向に20%伸長した状態で反発弾性試験機(同上)に設置して測定された起電圧のピーク値の五回の平均値である。
Figure JPOXMLDOC01-appb-T000005
Table 3 shows the measurement results of the configuration of the piezoelectric element, the composite elastic modulus of the laminate, the elastic modulus and breaking elongation of the protective layer, and the electromotive voltage of the piezoelectric element. The elastic modulus, elongation at break, and electromotive force were measured according to the methods described above. The composite elastic modulus of the laminate is a value obtained by separately obtaining and adding the elastic modulus of the piezoelectric layer and the elastic modulus of the electrode layer. The electromotive voltage in the 20% stretched state is an average value of five times of the peak value of the electromotive force measured by installing the piezoelectric element in a rebound resilience tester (same as above) in a state where the piezoelectric element is stretched by 20% in one axis direction.
Figure JPOXMLDOC01-appb-T000005
 表3に示すように、保護層1、2の弾性率は10MPaより小さく、保護層1、2は、上述した弾性率の式(α)を満たす。また、保護層1を有する実施例17の圧電素子、保護層2を有する実施例18の圧電素子は、いずれも式(β-1)および式(β-2)を満たす。したがって、実施例17、18の圧電素子においては、保護層を有さない実施例16の圧電素子よりも、起電圧が大きくなった。実施例17、18の圧電素子においては、保護層による圧電層の歪み増大効果が存分に発揮されていることがわかる。また、保護層の厚さが1mmの実施例18の圧電素子においては、保護層の厚さが10μmの実施例15の圧電素子と比較して、起電圧が大きくなった。これは、保護層の厚さが大きい分だけ、圧電層の歪み増大効果が大きくなったためと考えられる。一方、参考例の圧電素子においては、保護層3は上述した弾性率の式(α)を満たすものの、式(β-1)を満たさない。このため、参考例の圧電素子の起電圧は、保護層を有さない実施例16の圧電素子と同等レベルであった。また、PVDF製の圧電層を有する比較例6の圧電素子においては、伸長率10%以上になると積層体が弾性領域を超えてしまった。すなわち、比較例6の圧電素子は柔軟な保護層を有しているが、圧電層の柔軟性が乏しいため、大きく伸長する用途には使用できないことが確認された。 As shown in Table 3, the elastic modulus of the protective layers 1 and 2 is smaller than 10 MPa, and the protective layers 1 and 2 satisfy the above elastic modulus formula (α). The piezoelectric element of Example 17 having the protective layer 1 and the piezoelectric element of Example 18 having the protective layer 2 both satisfy the expressions (β-1) and (β-2). Therefore, in the piezoelectric elements of Examples 17 and 18, the electromotive voltage was larger than that of the piezoelectric element of Example 16 having no protective layer. In the piezoelectric elements of Examples 17 and 18, it can be seen that the effect of increasing the distortion of the piezoelectric layer by the protective layer is fully exhibited. In addition, in the piezoelectric element of Example 18 having a protective layer thickness of 1 mm, the electromotive voltage was larger than that of the piezoelectric element of Example 15 having a protective layer thickness of 10 μm. This is presumably because the effect of increasing the distortion of the piezoelectric layer is increased by the increase in the thickness of the protective layer. On the other hand, in the piezoelectric element of the reference example, the protective layer 3 satisfies the above-described elastic modulus formula (α), but does not satisfy the formula (β-1). For this reason, the electromotive voltage of the piezoelectric element of the reference example was the same level as that of the piezoelectric element of Example 16 having no protective layer. Moreover, in the piezoelectric element of Comparative Example 6 having a piezoelectric layer made of PVDF, the laminate exceeded the elastic region when the elongation ratio was 10% or more. That is, although the piezoelectric element of Comparative Example 6 has a flexible protective layer, it was confirmed that the piezoelectric element cannot be used for applications that greatly expand because the piezoelectric layer has poor flexibility.
 本発明の圧電センサは、伸びたり曲がったりする(伸縮や屈曲が繰り返される)被着体に適用することができるため、生体の自然な動きを妨げずに脈拍数や呼吸数などを計測するウエアラブルな生体情報センサなどとして好適である。また、未伸長状態に限らず伸ばした状態でも使用できる(計測可能である)ため、人やロボットにおいて伸縮が必要な関節部や、製造工程でセンサ設置面が伸びて戻る工程においても使用することができる。また、ロボット(産業用、コミュニケーション用を含む)、医療用、介護用、健康用、スポーツ機器、自動車などの圧力センサとして好適である。 Since the piezoelectric sensor of the present invention can be applied to an adherend that stretches or bends (repeatedly expands and contracts and bends), it is a wearable that measures a pulse rate, a respiration rate, etc. without disturbing the natural movement of the living body. It is suitable as a simple biological information sensor. In addition, it can be used not only in an unstretched state but also in a stretched state (measurable), so it can also be used in joints that require expansion and contraction in humans and robots, and in processes where the sensor installation surface extends and returns during the manufacturing process. Can do. Further, it is suitable as a pressure sensor for robots (including industrial and communication), medical use, nursing care, health use, sports equipment, and automobiles.
 本発明の圧電センサは、特に人と触れ合うヒューマン-マシン-インターフェイス(HMI)としての応用に適している。例えば、マットレス、車椅子のシートなどに配置すれば、脈拍や位置、動きの情報を取得できる。また、スポーツ用品、例えばスポーツウエアなどの体に触れる(靴、グローブなどのウェアラブルな)用具や、ボール、バット、ラケット、各種防具、ウエイトトレーニング、走行機器などのスポーツ用具に配置して、当たった位置、その強さ、重さ(加速度)などを測定することにより、打感を損なわずにトレーニングの効果などを数値化することができる。勿論、スポーツ、医療に限らず、日常的な用品(衣服、帽子、眼鏡、靴、ベルト、マスク、ペンダントなど)に対しても同様に適用することができる。数値化したデータ、情報は、IOT(Internet of Things)機器に送って制御手段とすることができる。 The piezoelectric sensor of the present invention is particularly suitable for application as a human-machine interface (HMI) that comes into contact with people. For example, if it is placed on a mattress, a wheelchair seat, etc., information on the pulse, position, and movement can be acquired. Also, placed on sports equipment such as sportswear such as sportswear (wearable such as shoes and gloves) and sports equipment such as balls, bats, rackets, various armor, weight training, traveling equipment, etc. By measuring the position, its strength, weight (acceleration), etc., the training effect can be quantified without impairing the hit feeling. Of course, the present invention is not limited to sports and medical care, and can be similarly applied to daily goods (clothes, hats, glasses, shoes, belts, masks, pendants, etc.). Digitized data and information can be sent to an IOT (Internet of Things) device as a control means.

Claims (9)

  1.  エラストマーおよび圧電粒子を含む圧電層と、エラストマーおよび導電材を含む電極層と、を有する圧電素子を備え、
     該圧電素子の破断伸びは10%以上であり、
     該電極層は、自然状態およびそれから一軸方向に10%伸長した状態に至るまでの伸長状態の体積抵抗率が100Ω・cm以下であることを特徴とする圧電センサ。
    A piezoelectric element having a piezoelectric layer including an elastomer and piezoelectric particles, and an electrode layer including an elastomer and a conductive material;
    The elongation at break of the piezoelectric element is 10% or more,
    The piezoelectric layer is characterized in that the electrode layer has a volume resistivity of 100 Ω · cm or less in a natural state and a state in which the electrode layer extends to 10% in a uniaxial direction.
  2.  前記圧電素子は、一軸方向に10%伸長した状態において、次式(I)を満たす請求項1に記載の圧電センサ。
    0.5<V2/V1 ・・・(I)
    [式(I)中、V1は自然状態における圧電素子の起電圧(V)、V2は一軸方向に10%伸長した状態における圧電素子の起電圧(V)。]
    The piezoelectric sensor according to claim 1, wherein the piezoelectric element satisfies the following formula (I) in a state where the piezoelectric element extends by 10% in a uniaxial direction.
    0.5 <V2 / V1 (I)
    [In Formula (I), V1 is an electromotive voltage (V) of the piezoelectric element in a natural state, and V2 is an electromotive voltage (V) of the piezoelectric element in a state of being extended by 10% in a uniaxial direction. ]
  3.  前記圧電素子は、前記圧電層および前記電極層のうち少なくとも該電極層に積層される保護層を有する請求項1または請求項2に記載の圧電センサ。 3. The piezoelectric sensor according to claim 1, wherein the piezoelectric element has a protective layer stacked on at least the electrode layer of the piezoelectric layer and the electrode layer.
  4.  前記保護層の弾性率は、該保護層に隣接し一対の前記電極層とその間に介装される前記圧電層からなる一組の積層体の合成弾性率よりも小さい請求項3に記載の圧電センサ。 4. The piezoelectric according to claim 3, wherein the elastic modulus of the protective layer is smaller than a combined elastic modulus of a pair of laminated bodies that are adjacent to the protective layer and include the pair of electrode layers and the piezoelectric layer interposed therebetween. Sensor.
  5.  前記圧電粒子は、複数の圧電粒子が集合した集合体を含む請求項1ないし請求項4のいずれかに記載の圧電センサ。 The piezoelectric sensor according to any one of claims 1 to 4, wherein the piezoelectric particles include an aggregate in which a plurality of piezoelectric particles are aggregated.
  6.  前記圧電層において、前記エラストマーと前記圧電粒子とは化学結合している請求項1ないし請求項5のいずれかに記載の圧電センサ。 6. The piezoelectric sensor according to claim 1, wherein the elastomer and the piezoelectric particles are chemically bonded in the piezoelectric layer.
  7.  前記圧電粒子は、表面処理されている請求項6に記載の圧電センサ。 The piezoelectric sensor according to claim 6, wherein the piezoelectric particles are surface-treated.
  8.  前記圧電層は、比誘電率が100以下の補強粒子を含む請求項1ないし請求項7のいずれかに記載の圧電センサ。 The piezoelectric sensor according to any one of claims 1 to 7, wherein the piezoelectric layer includes reinforcing particles having a relative dielectric constant of 100 or less.
  9.  前記補強粒子は、金属酸化物である請求項8に記載の圧電センサ。 The piezoelectric sensor according to claim 8, wherein the reinforcing particles are a metal oxide.
PCT/JP2016/062250 2015-07-16 2016-04-18 Piezoelectric sensor WO2017010135A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016550878A JP6034543B1 (en) 2015-07-16 2016-04-18 Piezoelectric sensor
CN201680040559.4A CN107924986B (en) 2015-07-16 2016-04-18 Piezoelectric sensor
DE112016000917.8T DE112016000917B4 (en) 2015-07-16 2016-04-18 Piezoelectric sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-141858 2015-07-16
JP2015141858 2015-07-16

Publications (1)

Publication Number Publication Date
WO2017010135A1 true WO2017010135A1 (en) 2017-01-19

Family

ID=57757278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062250 WO2017010135A1 (en) 2015-07-16 2016-04-18 Piezoelectric sensor

Country Status (4)

Country Link
JP (1) JP6696885B2 (en)
CN (1) CN107924986B (en)
DE (1) DE112016000917B4 (en)
WO (1) WO2017010135A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221892A1 (en) * 2016-06-23 2017-12-28 日本化学工業株式会社 Filler for piezoelectric materials, composite piezoelectric material, composite piezoelectric element, filler for composite piezoelectric materials, and method for producing alkali niobate compound
WO2019044318A1 (en) * 2017-08-29 2019-03-07 住友理工株式会社 Vital sign detection device
JPWO2018047878A1 (en) * 2016-09-06 2019-06-24 積水化学工業株式会社 Piezoelectric sensor
JP6714788B1 (en) * 2018-09-26 2020-06-24 住友理工株式会社 Capacitance sensor, manufacturing method thereof, and mesh-like flexible electrode for capacitance sensor
WO2020157999A1 (en) 2019-01-31 2020-08-06 住友理工株式会社 Piezoelectric sensor and method for manufacturing same
JPWO2020261837A1 (en) * 2019-06-28 2020-12-30
CN115014591A (en) * 2022-06-24 2022-09-06 电子科技大学 Anti-extravasation monitoring sensor for CT enhanced scanning, preparation method and monitoring equipment
US11751477B2 (en) * 2019-10-25 2023-09-05 Interface Technology (Chengdu) Co., Ltd. Piezoelectric film, preparation method thereof and piezoelectric film sensor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019056565A (en) * 2017-09-19 2019-04-11 株式会社デンソー Vibration detector
JP7045777B2 (en) * 2018-01-31 2022-04-01 住友理工株式会社 Transducer and power generation system using it
KR102079298B1 (en) * 2018-03-13 2020-04-07 한국과학기술원 Piezoelectric energy harvester and method of manufacturing the same
FR3082781B1 (en) * 2018-06-21 2022-12-02 Michelin & Cie PNEUMATICS INCLUDING A PIEZOELECTRIC COMPOSITE
FR3083005B1 (en) * 2018-06-21 2020-11-20 Michelin & Cie ELASTOMERIC MATRIX DEVICE INCLUDING PIEZOELECTRIC CHARGES AND ELECTRODES
CN109247920B (en) * 2018-09-06 2021-09-28 上海平脉科技有限公司 High-sensitivity pressure sensor
US11460362B2 (en) * 2019-07-23 2022-10-04 Toyota Motor Engineering & Manufacturing North America, Inc. Flexible printed pressure transducer with sensor diffusion stack materials and methods incorporating the same
JP2021053169A (en) * 2019-09-30 2021-04-08 住友理工株式会社 Piezoelectric sensor and biological information acquisition garment
TWI751524B (en) 2020-04-10 2022-01-01 馗鼎奈米科技股份有限公司 Method for electrically polarizing piezoelectric film
DE102020121337A1 (en) * 2020-08-13 2022-02-17 Tdk Electronics Ag Piezoelectric transducer and method for adjusting the electromechanical properties of a piezoelectric transducer
AT526049B1 (en) * 2022-11-30 2023-11-15 Net Automation Gmbh Device for detecting the pressure forces between two bodies that can be positioned against one another under the influence of force
WO2024195565A1 (en) * 2023-03-22 2024-09-26 三菱ケミカル株式会社 Laminated piezoelectric sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160045A (en) * 2006-11-30 2008-07-10 Matsushita Electric Ind Co Ltd Flexible pressure-sensitive material, piezoelectric element using the same, and manufacturing method therefor
JP2011083122A (en) * 2009-10-07 2011-04-21 Konica Minolta Holdings Inc Actuator
JP2012251896A (en) * 2011-06-03 2012-12-20 Tokai Rubber Ind Ltd Flexible electrode structure and transducer including electrode having flexible electrode structure
US20140260653A1 (en) * 2013-03-15 2014-09-18 Brigham Young University Composite material used as a strain gauge
JP2015189776A (en) * 2014-03-27 2015-11-02 住友理工株式会社 Dielectric film and transducer using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2552972A1 (en) * 2004-10-28 2006-04-28 Matsushita Electric Industrial Co., Ltd. Piezoelectric element and method of manufacturing the same
KR100695727B1 (en) * 2005-06-10 2007-03-15 (주)피에조랩 Piezo-electric composit sensor
JP5046367B2 (en) * 2006-10-23 2012-10-10 公益財団法人鉄道総合技術研究所 Piezoelectric material, method for manufacturing the same, vibration damping device, and driving device
JP5186160B2 (en) * 2007-08-31 2013-04-17 東海ゴム工業株式会社 Flexible electrode and actuator using the same
ITRM20110461A1 (en) * 2011-09-07 2013-03-08 Pielleitalia S R L "COMPOSITE MATERIAL INCLUDING A LAYER OF POLYMERIC PIEZOELECTRIC MATERIAL COUPLED WITH A TEXTILE SUBSTRATE AND PROCEDURE FOR REALIZING SUCH COMPOSITE MATERIAL"
KR101628584B1 (en) * 2011-09-30 2016-06-08 후지필름 가부시키가이샤 Electroacoustic converter film, flexible display, vocal cord microphone, and musical instrument sensor
KR20140007955A (en) * 2011-10-17 2014-01-20 도카이 고무 고교 가부시키가이샤 Dielectric film and transducer using same
JP5924405B2 (en) * 2012-04-17 2016-05-25 株式会社村田製作所 Pressure sensor
KR20140087014A (en) * 2012-11-21 2014-07-08 도카이 고무 고교 가부시키가이샤 Flexible electrical conductive member and transducer using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160045A (en) * 2006-11-30 2008-07-10 Matsushita Electric Ind Co Ltd Flexible pressure-sensitive material, piezoelectric element using the same, and manufacturing method therefor
JP2011083122A (en) * 2009-10-07 2011-04-21 Konica Minolta Holdings Inc Actuator
JP2012251896A (en) * 2011-06-03 2012-12-20 Tokai Rubber Ind Ltd Flexible electrode structure and transducer including electrode having flexible electrode structure
US20140260653A1 (en) * 2013-03-15 2014-09-18 Brigham Young University Composite material used as a strain gauge
JP2015189776A (en) * 2014-03-27 2015-11-02 住友理工株式会社 Dielectric film and transducer using the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11239409B2 (en) 2016-06-23 2022-02-01 Nippon Chemical Industrial Co., Ltd. Piezoelectric material filler, composite piezoelectric material, composite piezoelectric device, composite piezoelectric material filler, and method for producing alkali niobate compound
WO2017221892A1 (en) * 2016-06-23 2017-12-28 日本化学工業株式会社 Filler for piezoelectric materials, composite piezoelectric material, composite piezoelectric element, filler for composite piezoelectric materials, and method for producing alkali niobate compound
US11659768B2 (en) 2016-06-23 2023-05-23 Nippon Chemical Industrial Co., Ltd. Piezoelectric material filler, composite piezoelectric material, composite piezoelectric device, composite piezoelectric material filler, and method for producing alkali niobate compound
JPWO2018047878A1 (en) * 2016-09-06 2019-06-24 積水化学工業株式会社 Piezoelectric sensor
JP7271084B2 (en) 2016-09-06 2023-05-11 積水化学工業株式会社 piezo sensor
WO2019044318A1 (en) * 2017-08-29 2019-03-07 住友理工株式会社 Vital sign detection device
JP2019037672A (en) * 2017-08-29 2019-03-14 住友理工株式会社 Biological information detection device
JP6714788B1 (en) * 2018-09-26 2020-06-24 住友理工株式会社 Capacitance sensor, manufacturing method thereof, and mesh-like flexible electrode for capacitance sensor
US11737710B2 (en) 2019-01-31 2023-08-29 Sumitomo Riko Company Limited Piezoelectric sensor and method for manufacturing the same
WO2020157999A1 (en) 2019-01-31 2020-08-06 住友理工株式会社 Piezoelectric sensor and method for manufacturing same
CN114009062A (en) * 2019-06-28 2022-02-01 富士胶片株式会社 Piezoelectric film
US20220109098A1 (en) * 2019-06-28 2022-04-07 Fujifilm Corporation Piezoelectric film
JP7217807B2 (en) 2019-06-28 2023-02-03 富士フイルム株式会社 piezoelectric film
WO2020261837A1 (en) * 2019-06-28 2020-12-30 富士フイルム株式会社 Piezoelectric film
JPWO2020261837A1 (en) * 2019-06-28 2020-12-30
TWI828913B (en) * 2019-06-28 2024-01-11 日商富士軟片股份有限公司 Piezoelectric film
US11910719B2 (en) 2019-06-28 2024-02-20 Fujifilm Corporation Piezoelectric film
US11751477B2 (en) * 2019-10-25 2023-09-05 Interface Technology (Chengdu) Co., Ltd. Piezoelectric film, preparation method thereof and piezoelectric film sensor
CN115014591A (en) * 2022-06-24 2022-09-06 电子科技大学 Anti-extravasation monitoring sensor for CT enhanced scanning, preparation method and monitoring equipment
CN115014591B (en) * 2022-06-24 2024-05-17 电子科技大学 CT enhanced scanning anti-extravasation monitoring sensor, preparation method and monitoring equipment

Also Published As

Publication number Publication date
JP2017028323A (en) 2017-02-02
JP6696885B2 (en) 2020-05-20
DE112016000917B4 (en) 2020-12-31
CN107924986B (en) 2021-02-23
DE112016000917T5 (en) 2017-11-09
CN107924986A (en) 2018-04-17

Similar Documents

Publication Publication Date Title
JP6696885B2 (en) Piezoelectric sensor
JP6886266B2 (en) Transducer using flexible piezoelectric material
JP5633769B1 (en) Flexible transducer
JP6249852B2 (en) Dielectric film manufacturing method
WO2014098017A1 (en) Conductive material and transducer using same
US20140090884A1 (en) Elastic conductive material
WO2012050128A1 (en) Flexible conductive material and transducer, flexible circuit board, and electromagnetic shield using said flexible conductive material
JP5711124B2 (en) Flexible conductive materials and transducers
JP2009227985A (en) Elastomer transducer and conductive rubber composition, and dielectric rubber composition
KR20140007955A (en) Dielectric film and transducer using same
JP6487507B2 (en) Biological information detection device
Natarajan et al. Robust triboelectric generators by all-in-one commercial rubbers
JP5464808B2 (en) Dielectric material and actuator using the same
WO2019150850A1 (en) Transducer and power-generating system using same
JP6034543B1 (en) Piezoelectric sensor
JP6002524B2 (en) Transducer
US11737710B2 (en) Piezoelectric sensor and method for manufacturing the same
WO2021065085A1 (en) Piezoelectric sensor and bioinformation acquisition garment
JP7079704B2 (en) Piezoelectric sensor
JP6666958B2 (en) Capacitance type extension sensor system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016550878

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824116

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016000917

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824116

Country of ref document: EP

Kind code of ref document: A1