WO2017008615A1 - 一种气相沉积制备改性硅基负极材料的方法 - Google Patents
一种气相沉积制备改性硅基负极材料的方法 Download PDFInfo
- Publication number
- WO2017008615A1 WO2017008615A1 PCT/CN2016/086289 CN2016086289W WO2017008615A1 WO 2017008615 A1 WO2017008615 A1 WO 2017008615A1 CN 2016086289 W CN2016086289 W CN 2016086289W WO 2017008615 A1 WO2017008615 A1 WO 2017008615A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon
- nano
- amorphous carbon
- transition metal
- anode material
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/049—Manufacturing of an active layer by chemical means
- H01M4/0497—Chemical precipitation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention belongs to the field of lithium ion batteries, in particular to a negative electrode material, in particular to a method for modifying metal silicon by depositing a layer of amorphous carbon on the surface of silicon by vapor deposition.
- Lithium-ion batteries are increasingly used in these fields due to their high open circuit voltage, high energy density, light weight and low self-discharge.
- the commercial anode material of lithium ion battery is mainly graphite.
- Graphite has the advantages of low lithium insertion/deintercalation potential, suitable reversible capacity, abundant resources and low price, and is an ideal anode material for lithium ion batteries.
- its theoretical specific capacity is only 372 mAh/g, which limits the further improvement of the specific energy of lithium-ion batteries and cannot meet the needs of the increasingly high-energy portable mobile power sources.
- SEI solid electrolyte membrane
- the solid electrolyte membrane is formed by reacting an electrolyte, a negative electrode material, and lithium ions, and irreversibly consuming lithium ions, which is a major factor in forming an irreversible capacity.
- the second is that the electrolyte is easily embedded in the lithium ion intercalation process.
- the electrolyte is reduced, and the resulting gas product causes the graphite sheet to peel off.
- the graphite sheet peels off and a new interface is formed, resulting in further SEI formation, irreversible capacity increase, and circulation. The stability is degraded.
- the silicon-based anode has unique advantages and potential.
- the silicon anode material can form Li 12 Si 7 , Li 13 Si 4 , Li 7 Si 3 , Li 15 Si 4 , Li 22 Si 5 and other alloys with lithium during charge and discharge. It has the advantages of high capacity (Li 22 Si 5 , up to 4200 mAh/g), low voltage for deintercalating lithium, low reactivity with electrolyte, good safety performance, etc.
- silicon powder is used as negative electrode active material, charge and discharge process The volume of the medium particles varies greatly, causing the silicon particles to be powdered and the electrode cycleability to be very poor.
- silicon composites such as Si-Ni alloy, SiCN/C ceramic composite, Ti-Si alloy, Si-TiN composite, Cu 5 Si alloy, Ca 2 Si alloy.
- Materials such as CrSi 2 alloy, which are composited with graphite alone or in combination with graphite, have been improved in cycle performance but are still not ideal.
- researchers have also tried to make silicon-carbon materials using nano-silicon.
- one of the objects of the present invention is to provide a method for modifying a silicon negative electrode material by vapor deposition of amorphous carbon. The specific steps are as follows:
- step B) depositing the transition metal-loaded nano silicon obtained in the step B) with an amorphous carbon carbon source to obtain nano silicon deposited with amorphous carbon;
- step D) removing the transition metal on the nano-silicon deposited with the amorphous carbon obtained in the step C) by using an acidic medium solution, washing to neutrality, and then drying to obtain a modified nano-silicon anode material.
- the mass ratio of the nano silicon to the transition metal compound described in the step A) is 100: (30 to 50).
- the transition metal compound described in the step A) includes one or more of a chloride of nickel, a chloride of iron, and a chloride of cobalt.
- the molar concentration of the aqueous solution of the transition metal compound described in the step A) is preferably 0.05 to 0.3 mol/L.
- the heating temperature described in the step A) is 30 to 85 °C.
- step B) is hydrogen.
- amorphous carbon-carbon source described in step C) is a gaseous hydrocarbon.
- the deposition temperature in the step C) is 600 to 800 ° C, and the deposition time is 2 to 5 hours, which is not fixed.
- the amount of carbon deposited is 30-50% of the weight of the nano-silicon.
- the acidic medium solution described in the step D) is a hydrochloric acid solution having a molar concentration of 0.01 to 0.5 mol/L.
- the invention provides a method for modifying a nano silicon anode material by using amorphous carbon deposition, using a transition metal as a catalyst, so that the amorphous carbon and the nano silicon are combined by a chemical bond, and the amorphous carbon is deposited on the nanometer.
- a composite anode material of nano-silicon and amorphous carbon is obtained on silicon.
- the amorphous carbon has a porous structure, which can effectively alleviate the volume expansion effect of silicon powder during charge and discharge, and the vapor deposition can uniformly coat each silicon powder particle.
- the coating modification avoids the agglomeration of the nano silicon and improves the cycle and structural stability of the material.
- the experimental data show that the negative electrode material provided by the invention can reach a gram of 560 mAh/g, and the lithium ion battery prepared from the material has a capacity retention rate of 85% or more when the charge and discharge cycle is 500 times, indicating the use of the present invention.
- the lithium ion prepared by the provided negative electrode material has a high capacity retention rate and good cycle performance.
- nano-silica:NiCl 2 100:30
- a 0.1 mol/L aqueous solution of NiCl 2 was placed, then nano-silicon was added, and the mixture was uniformly dispersed and dried at a temperature of 55 ° C to obtain nano-surface-loaded NiCl 2 . silicon. It is then reduced with hydrogen to obtain nano-silicon with metal Ni supported on the surface, and methane gas is introduced to deposit amorphous carbon on the surface of nano-silicon. The control time is 2h, and the amorphous carbon deposition accounts for 33% of the weight of nano-silicon. Finally, the metal Ni on the nano-silicon was removed with 0.1 mol/L hydrochloric acid solution, washed to neutrality, and then dried to obtain a modified nano-silicon anode material.
- nano-silicon:FeCl 3 100:40
- a 0.3 mol/L aqueous solution of FeCl 3 was prepared, then nano-silicon was added, and the mixture was uniformly dispersed and dried at a temperature of 65 ° C to obtain nano-surface-loaded FeCl 3 . silicon. It is then reduced with hydrogen to obtain nano-silicon loaded with metal Fe on the surface, and methane gas is introduced to deposit amorphous carbon on the surface of nano-silicon. The control time is 3 hours, and the amorphous carbon deposition accounts for 35% of the weight of nano-silicon. Finally, the metal Fe on the nano-silicon was removed by a 0.2 mol/L hydrochloric acid solution, washed to neutrality, and then dried to obtain a modified nano-silicon anode material.
- nano-silicon:CoCl 3 100:50
- a 0.5 mol/L aqueous solution of CoCl 3 was prepared, then nano-silicon was added, and the mixture was uniformly dispersed and dried at a temperature of 85 ° C to obtain nano-CoCl 3 supported on the surface. silicon. It is then reduced with hydrogen to obtain nano-silicon loaded with metal Co on the surface, and methane gas is introduced to deposit amorphous carbon on the surface of nano-silicon. The control time is 5h, and the amorphous carbon deposition accounts for 45% of the weight of nano-silicon. Finally, the metal Co on the nano-silicon was removed by a 0.3 mol/L hydrochloric acid solution, washed to neutrality, and then dried to obtain a modified nano-silicon anode material.
- nano-silica:NiCl 2 :FeCl 3 100:20:20
- 0.2 mol/L CoCl 3 and 0.15 mol/L FeCl 3 aqueous solution were placed, then nano-silicon was added, and the dispersion was stirred at 75 ° C.
- the control time is 3 h, and the amorphous carbon deposition accounts for the weight of nano-silicon. 39%, finally remove the metal Ni and Fe on the nano-silicon with 0.2mol/L hydrochloric acid solution, wash it to neutral, and then dry to obtain the modified nano-silicon anode material.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
一种气相沉积制备改性硅基负极材料的方法,首先将纳米硅与过渡金属化合物水溶液混合,进行加热至水分蒸发,再用还原剂将负载有过渡金属化合物的纳米硅进行还原,然后用无定形碳碳源将得到的负载有过渡金属的纳米硅进行沉积,最后利用酸性介质溶液将沉积有无定形碳的纳米硅上的过渡金属去除。以过渡金属作为催化剂,使得无定形碳与纳米硅之间通过化学键复合在一起,将无定形碳沉积在纳米硅上,得到纳米硅和无定形碳的复合负极材料,无定型碳具有多孔结构,能有效缓解硅粉在充放电中产生的体积膨胀效应,同时气相沉积能均匀对每个硅粉颗粒进行包覆改性,避免了纳米硅的团聚,提高了材料的循环性和结构稳定性。
Description
本发明属于锂离子电池领域,尤其涉及一种负极材料,具体涉及一种利用气相沉积在硅表面沉积一层无定型碳来对金属硅进行改性的方法。
随着汽车行业的发展,石油、天然气等不可再生石化燃料的耗竭日益受到关注,空气污染和室温效应也成为全球性的问题,以及国民经济的快速发展和人民生活水平的提高,我国对原油的依赖度与日俱增,已对我国能源安全构成直接威胁,另外,原油的价格波动也直接影响到我国国民经济的发展,随着国际原油价格的不断攀升,不仅增加了中国用高额外汇进口石油的经济压力,也使国内油品市场供求矛盾更加突出在我国石油消费结构中,交通工具消耗的石油占一半以上,且呈现连续性大幅度上升趋势,这些迫使人们不得不在寻找新能源、发展新的交通工具方面加快步伐动力电池和电动汽车的发展被放在越来越重要的位置。因此,以绿色二次电池为动力的二次能源越来越受到人们的重视,被视为是解决能源枯竭和环境污染的有效途径。
随着以绿色二次电池为动力的二次能源的迅速发展,各种新能源电动汽车及便携式电子设备、电动工具的广泛使用和高速发展,对化学电源的要求也相继提高。锂离子电池由于开路电压高、能量密度大、重量轻和自放电低等优点在这些领域得到日益广泛的应用。
目前,商品化的锂离子电池负极材料主要为石墨,石墨具有较低的锂嵌入/脱嵌电位、合适的可逆容量且资源丰富、价格低廉等优点,是比较理想的锂离子电池负极材料。但其理论比容量只有372mAh/g,因而限制了锂离子电池比能量的进一步提高,不能满足日益发展的高能量便携式移动电源的需求。同时,石墨作为负极材料时,在首次充放电过程中在其表面形成一层固体电解质膜(SEI)。固体电解质膜是电解液、负极材料和锂离子等相互反应形成,不可逆地消耗锂离子,是形成不可逆容量的一个主要的因素;其二是在锂离子嵌入的过程中,电解质容易与其共嵌在迁出的过程中,电解液被还原,生成的气体产物导致石墨片层剥落,尤其在含有PC的电解液中,石墨片层脱落将形成新界面,导致进一步SEI形成,不可逆容量增加,同时循环稳定性下降。碳材料作为锂离子电池负极材料依然存在充放电容量低、初次循环不可逆损失大、溶剂分子共插层和制备成本高等缺点,这些也是在目前锂离子电池研究方面所需解决的关键问题。
而硅基负极具有独特的优势和潜力,硅负极材料在充放电过程中,能与锂形成Li12Si7、
Li13Si4、Li7Si3、Li15Si4、Li22Si5等合金,具有高容量(Li22Si5,最高4200mAh/g)、脱嵌锂的电压低、与电解液反应活性低、安全性能好等优点但是研究发现,硅粉作为负极活性材料时,充放电过程中颗粒的体积变化很大,导致硅颗粒粉化,电极循环性非常差。
由于硅的体积效应,研究人员采用了各种硅的复合材料,如Si-Ni合金,SiCN/C陶瓷复合材料、Ti-Si合金、Si-TiN复合材料、Cu5Si合金、Ca2Si合金和CrSi2合金等材料,单独或则与石墨进行复合制作硅碳材料,在循环性能上得到了一定的改善但依然不够理想。除采用硅的复合材料,研究人员也尝试采用纳米硅来制作硅碳材料。如采用磁控溅射或者化学沉积在集流体上沉积硅薄膜的方法、采用化学气相沉积在石墨表面沉积纳米硅薄膜、采用纳米Si-Ni合金、采用高能机械球磨制作硅碳复合材料、或者采用平均粒度为80纳米的硅粉制作硅碳复合材料等方法,这些方法确实能在一定程度上改善硅的循环性能,但改善的程度有限,材料的循环性能依然不能满足需要。
发明内容
针对现有技术存在的问题,本发明的目的之一在于提供种利用气相沉积无定型碳对硅负极材料进行改性的方法,具体步骤如下:
A)将纳米硅与过渡金属化合物水溶液混合,进行加热至水分蒸发,得到负载有过渡金属化合物的纳米硅;
B)用还原剂将所述步骤A)得到的负载有过渡金属化合物的纳米硅进行还原,得到负载有过渡金属的纳米硅;
C)用无定形碳碳源将所述步骤B)得到的负载有过渡金属的纳米硅进行沉积,得到沉积有无定形碳的纳米硅;
D)利用酸性介质溶液将所述步骤C)中得到的沉积有无定形碳的纳米硅上的过渡金属去除,并进行洗涤至中性,然后烘干,得到改性纳米硅负极材料。
进一步,步骤A)中所述的纳米硅与过渡金属化合物的质量比为100:(30~50)。
进一步,步骤A)中所述的过渡金属化合物包括镍的氯化物、铁的氯化物和钴的氯化物中的一种或几种。
进一步,步骤A)中所述的过渡金属化合物水溶液的摩尔浓度优选为0.05~0.3mol/L。
进一步,步骤A)中所述的加热温度为30~85℃。
进一步,步骤B)中所述的还原剂为氢气。
进一步,步骤C)中所述的无定形碳碳源为气体碳氢化合物。
进一步,步骤C)中所述的沉积的温度为600~800℃,沉积的时间为2~5小时,无定
形碳的沉积量占纳米硅重量的30~50%。
进一步,步骤D)中所述的酸性介质溶液为盐酸溶液,摩尔浓度为0.01~0.5mol/L。
本发明提供的一种利用无定型碳沉积对纳米硅负极材料进行改性的方法,以过渡金属作为催化剂,使得无定形碳与纳米硅之间通过化学键复合在一起,将无定形碳沉积在纳米硅上,得到纳米硅和无定形碳的复合负极材料,无定型碳具有多孔结构,能有效缓解硅粉在充放电中产生的体积膨胀效应,同时气相沉积能均匀对每个硅粉颗粒进行包覆改性,避免了纳米硅的团聚,提高了材料的循环性和结构稳定性。实验数据表明,使用本发明提供的负极材料克比容量可达到560mAh/g,由该材料制备得到的锂离子电池在充放电循环500次的时候,容量保存率为85%以上,说明使用本发明提供的负极材料制备得到的锂离子容量保存率较高,具有较好的循环性能。
为了进一步说明本发明,以下结合实施例对本发明的技术方案作一定的介绍,但不能将其理解为对本发明保护范围的限定。
实施例1
按照纳米硅:NiCl2=100:30的质量比,配置0.1mol/L的NiCl2水溶液,然后加入纳米硅,在55℃的温度下搅拌分散均匀、烘干,得到表面负载有NiCl2的纳米硅。再用氢气对其进行还原,得到表面负载有金属Ni的纳米硅,通入甲烷气体,使无定型碳在纳米硅表面沉积,控制时间为2h,无定型碳沉积量占纳米硅重量的33%,最后用0.1mol/L的盐酸溶液对纳米硅上的金属Ni进行去除,并洗涤至中性,然后烘干,得到改性纳米硅负极材料。
实施例2
按照纳米硅:FeCl3=100:40的质量比,配置0.3mol/L的FeCl3水溶液,然后加入纳米硅,在65℃的温度下搅拌分散均匀、烘干,得到表面负载有FeCl3的纳米硅。再用氢气对其进行还原,得到表面负载有金属Fe的纳米硅,通入甲烷气体,使无定型碳在纳米硅表面沉积,控制时间为3h,无定型碳沉积量占纳米硅重量的35%,最后用0.2mol/L的盐酸溶液对纳米硅上的金属Fe进行去除,并洗涤至中性,然后烘干,得到改性纳米硅负极材料。
实施例3
按照纳米硅:CoCl3=100:50的质量比,配置0.5mol/L的CoCl3水溶液,然后加入纳米硅,在85℃的温度下搅拌分散均匀、烘干,得到表面负载有CoCl3的纳米硅。再用氢气对其进行还原,得到表面负载有金属Co的纳米硅,通入甲烷气体,使无定型碳在纳米硅表面沉积,控制时间为5h,无定型碳沉积量占纳米硅重量的45%,最后用0.3mol/L的盐酸溶液对纳米
硅上的金属Co进行去除,并洗涤至中性,然后烘干,得到改性纳米硅负极材料。
实施例4
按照纳米硅:NiCl2:FeCl3=100:20:20的质量比,配置0.2mol/L的CoCl3和0.15mol/L的FeCl3水溶液,然后加入纳米硅,在75℃的温度下搅拌分散均匀、烘干,得到表面负载有NiCl2和FeCl3的纳米硅。再用氢气对其进行还原,得到表面负载有金属Ni和Fe的纳米硅,通入甲烷气体,使无定型碳在纳米硅表面沉积,控制时间为3h,无定型碳沉积量占纳米硅重量的39%,最后用0.2mol/L的盐酸溶液对纳米硅上的金属Ni和Fe进行去除,并洗涤至中性,然后烘干,得到改性纳米硅负极材料。
对比例1
实施例1中未经处理的纳米硅。
半电池检测
为检验本发明方法制备的负极材料的电性能,用半电池测试方法进行测试,用以上实施例和比较例的负极材料:乙炔黑:PVDF(聚偏氟乙烯)=93:3:4(重量比),加适量NMP(N-甲基吡咯烷酮)调成浆状,涂布于铜箔上,经真空110℃干燥8小时制成负极片;以金属锂片为对电极,电解液为1mol/L LiPF6/EC+DEC+DMC=1:1:1,聚丙烯微孔膜为隔膜,组装成电池。充放电电压为0~2.0V,充放电速率为0.2C,对电池性能进行能测试,测试结果见表1。
全电池测试
用上实施例和比较例的负极材料:SP:SBR(固含量50%):CMC=94:2.5:1.5:2(重量比),加适量去离子水混合均匀调成浆状,涂于铜箔上,在90℃下抽真空干燥;将LiCoO2粉末:SP:KS-6:PVDF=94:1.5:2:2.5(重量比),以NMP做溶剂混合均匀进行调浆后,涂于铝箔上,在100℃下抽真空干燥;将干燥后的正、负极极片经过辊压、裁片、卷绕、注液、封口、化成工序,制成18650圆柱电池,隔膜为Celgard2400,电解液为1M LiPF6/DMC:EC:DEC,使用电池检测装置进行循环性能的检测,测试结果见表1。
表1不同实施例和比较例中负极材料的性能比较
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (8)
- 一种气相沉积制备改性硅基负极材料的方法,其制备步骤步骤如下:A)将纳米硅与过渡金属化合物水溶液混合,进行加热至水分蒸发,得到负载有过渡金属化合物的纳米硅;B)用还原剂将所述步骤A)得到的负载有过渡金属化合物的纳米硅进行还原,得到负载有过渡金属的纳米硅;C)用无定形碳碳源将所述步骤B)得到的负载有过渡金属的纳米硅进行沉积,得到沉积有无定形碳的纳米硅;D)利用酸性介质溶液将所述步骤C)中得到的沉积有无定形碳的纳米硅上的过渡金属去除,并进行洗涤至中性,然后烘干,得到改性纳米硅负极材料。
- 根据权利要求1所述的一种气相沉积制备改性硅基负极材料的方法,其特征在于步骤A)中纳米硅与过渡金属化合物的质量比为100:(30~50)。
- 根据权利要求1所述的一种气相沉积制备改性硅基负极材料的方法,其特征在于步骤A)中过渡金属化合物包括镍的氯化物、铁的氯化物和钴的氯化物中的一种或几种。
- 根据权利要求1所述的一种气相沉积制备改性硅基负极材料的方法,其特征在于步骤A)中加热温度为30~85℃。
- 根据权利要求1所述的一种气相沉积制备改性硅基负极材料的方法,其特征在于步骤A)中还原剂为氢气。
- 根据权利要求1所述的一种气相沉积制备改性硅基负极材料的方法,其特征在于步骤C)中无定形碳碳源包括气体碳氢化合物。
- 根据权利要求1所述的一种气相沉积制备改性硅基负极材料的方法,其特征在于步骤C)中沉积的温度为600~800℃,沉积的时间为2~5小时,无定形碳的沉积量占纳米硅重量的30~50%。
- 根据权利要求1所述的一种气相沉积制备改性硅基负极材料的方法,其特征在于步骤D)中酸性介质溶液为盐酸溶液,摩尔浓度为0.01~0.5mol/L。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510415053.4A CN105047878A (zh) | 2015-07-15 | 2015-07-15 | 一种气相沉积制备改性硅基负极材料的方法 |
CN201510415053.4 | 2015-07-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017008615A1 true WO2017008615A1 (zh) | 2017-01-19 |
Family
ID=54454257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/086289 WO2017008615A1 (zh) | 2015-07-15 | 2016-06-17 | 一种气相沉积制备改性硅基负极材料的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105047878A (zh) |
WO (1) | WO2017008615A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109942001A (zh) * | 2019-04-02 | 2019-06-28 | 骆驼集团武汉光谷研发中心有限公司 | 一种球形刺状结构的硅负极材料及其制备方法 |
CN113629227A (zh) * | 2021-07-02 | 2021-11-09 | 中国长江三峡集团有限公司 | 一种Al2O3/Al/Si纳米复合材料的合成方法 |
CN115101732A (zh) * | 2022-06-27 | 2022-09-23 | 深圳市德方纳米科技股份有限公司 | 复合硅基材料及其制备方法和应用 |
CN116799178A (zh) * | 2023-06-19 | 2023-09-22 | 浙江锂宸新材料科技有限公司 | 一种硅碳负极材料及其制备方法、锂离子电池 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105047878A (zh) * | 2015-07-15 | 2015-11-11 | 田东 | 一种气相沉积制备改性硅基负极材料的方法 |
CN107749470A (zh) * | 2017-10-17 | 2018-03-02 | 成都新柯力化工科技有限公司 | 一种用于锂电池的Si/C层状结构负极活性材料及制备方法 |
CN114665083B (zh) * | 2022-03-21 | 2024-07-02 | 深圳市贝特瑞新能源技术研究院有限公司 | 负极材料及其制备方法、锂离子电池 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102683656A (zh) * | 2012-04-26 | 2012-09-19 | 宁波杉杉新材料科技有限公司 | 高性能锂离子电池多孔薄膜硅基负极材料及其制备方法 |
CN104022266A (zh) * | 2014-05-27 | 2014-09-03 | 奇瑞汽车股份有限公司 | 一种硅基负极复合材料及其制备方法 |
CN104201386A (zh) * | 2014-09-24 | 2014-12-10 | 杭州金色能源科技有限公司 | 一种负极材料、其制备方法及锂离子电池 |
CN105047878A (zh) * | 2015-07-15 | 2015-11-11 | 田东 | 一种气相沉积制备改性硅基负极材料的方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE525761T1 (de) * | 2006-07-14 | 2011-10-15 | Korea Kumho Petrochem Co Ltd | Anodenaktives material für eine lithium- sekundärbatterie hybridisiert mit kohlenstoffnanofasern |
CN102437318B (zh) * | 2011-11-30 | 2014-11-26 | 奇瑞汽车股份有限公司 | 一种硅碳复合材料的制备方法、所制备的硅碳复合材料及含有该硅碳复合材料的锂离子电池负极和电池 |
-
2015
- 2015-07-15 CN CN201510415053.4A patent/CN105047878A/zh active Pending
-
2016
- 2016-06-17 WO PCT/CN2016/086289 patent/WO2017008615A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102683656A (zh) * | 2012-04-26 | 2012-09-19 | 宁波杉杉新材料科技有限公司 | 高性能锂离子电池多孔薄膜硅基负极材料及其制备方法 |
CN104022266A (zh) * | 2014-05-27 | 2014-09-03 | 奇瑞汽车股份有限公司 | 一种硅基负极复合材料及其制备方法 |
CN104201386A (zh) * | 2014-09-24 | 2014-12-10 | 杭州金色能源科技有限公司 | 一种负极材料、其制备方法及锂离子电池 |
CN105047878A (zh) * | 2015-07-15 | 2015-11-11 | 田东 | 一种气相沉积制备改性硅基负极材料的方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109942001A (zh) * | 2019-04-02 | 2019-06-28 | 骆驼集团武汉光谷研发中心有限公司 | 一种球形刺状结构的硅负极材料及其制备方法 |
CN109942001B (zh) * | 2019-04-02 | 2022-08-09 | 骆驼集团武汉光谷研发中心有限公司 | 一种球形刺状结构的硅负极材料及其制备方法 |
CN113629227A (zh) * | 2021-07-02 | 2021-11-09 | 中国长江三峡集团有限公司 | 一种Al2O3/Al/Si纳米复合材料的合成方法 |
CN113629227B (zh) * | 2021-07-02 | 2022-07-12 | 中国长江三峡集团有限公司 | 一种Al2O3/Al/Si纳米复合材料的合成方法 |
CN115101732A (zh) * | 2022-06-27 | 2022-09-23 | 深圳市德方纳米科技股份有限公司 | 复合硅基材料及其制备方法和应用 |
CN116799178A (zh) * | 2023-06-19 | 2023-09-22 | 浙江锂宸新材料科技有限公司 | 一种硅碳负极材料及其制备方法、锂离子电池 |
Also Published As
Publication number | Publication date |
---|---|
CN105047878A (zh) | 2015-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017008615A1 (zh) | 一种气相沉积制备改性硅基负极材料的方法 | |
CN107482182B (zh) | 碳包覆离子掺杂磷酸锰锂电极材料及其制备方法 | |
CN104934579B (zh) | 一种多孔石墨掺杂与碳包覆石墨负极材料的制备方法 | |
WO2022016951A1 (zh) | 硅基负极材料、负极和锂离子电池及其制备方法 | |
CN108598444B (zh) | 锂离子电池复合负极材料三氧化二钒/石墨烯及制备方法 | |
CN109309199B (zh) | 一种锂离子电池负极红磷/碳纳米管复合材料制备方法 | |
CN109659511B (zh) | 一种SiO2包覆三元正极材料及其制备方法 | |
CN107275590A (zh) | 一种多孔硅碳复合材料及其制备方法和应用 | |
WO2021088354A1 (zh) | 核壳状铁酸镍及制备方法、铁酸镍@c材料及制备方法与应用 | |
WO2016202162A1 (zh) | 一种锂离子负极材料Li4Ti5O12/C的合成方法 | |
CN105355892A (zh) | 一种锂离子电池负极的制备方法 | |
WO2017008625A1 (zh) | 一种气相沉积制备锡基负极材料的方法 | |
CN116682951A (zh) | 正极活性材料、正极片及其制备方法和锂离子电池 | |
CN106099066A (zh) | 一种二氧化锗/石墨烯复合材料及其制备方法 | |
CN113690420B (zh) | 一种氮硫掺杂硅碳复合材料及其制备方法和应用 | |
CN111029541A (zh) | 类蜂窝状锂离子电池用硅碳复合电极材料及其制备方法 | |
CN103730664A (zh) | 一种锂硫电池正极材料及其制备方法和应用 | |
CN103117388B (zh) | 碳包覆四氧化三铁及其制备方法和在锂离子电池中的应用 | |
WO2019104948A1 (zh) | 一种钼掺杂改性的锰酸锂复合材料、其制备方法及锂离子电池 | |
WO2023226555A1 (zh) | 改性磷酸铁前驱体、改性磷酸铁锂及其制备方法 | |
CN109817467B (zh) | 一种复合正极材料及其制备方法以及一种化学电源及其制备方法 | |
CN114583137B (zh) | 一种在碳表面进行硫掺杂磷修饰的方法及其应用 | |
WO2017008614A1 (zh) | 一种无定形碳沉积改性钛酸锂负极材料的制备方法 | |
CN114094075B (zh) | 一种硒化铁-氧化铁纳米管/石墨烯气凝胶复合负极材料及其制备方法与应用 | |
CN101527370A (zh) | 一种动力锂离子电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16823762 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS TO RULE 112(1) EPC |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16823762 Country of ref document: EP Kind code of ref document: A1 |