[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017002969A1 - Lubricant composition, method for reducing friction of internal combustion engine, and method for producing lubricant composition - Google Patents

Lubricant composition, method for reducing friction of internal combustion engine, and method for producing lubricant composition Download PDF

Info

Publication number
WO2017002969A1
WO2017002969A1 PCT/JP2016/069709 JP2016069709W WO2017002969A1 WO 2017002969 A1 WO2017002969 A1 WO 2017002969A1 JP 2016069709 W JP2016069709 W JP 2016069709W WO 2017002969 A1 WO2017002969 A1 WO 2017002969A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
group
lubricating oil
oil composition
content
Prior art date
Application number
PCT/JP2016/069709
Other languages
French (fr)
Japanese (ja)
Inventor
啓司 大木
元治 石川
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2017526455A priority Critical patent/JP6657546B2/en
Priority to CN201680038159.XA priority patent/CN107683323A/en
Publication of WO2017002969A1 publication Critical patent/WO2017002969A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/12Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic compound containing atoms of elements not provided for in groups C10M141/02 - C10M141/10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/12Thio-acids; Thiocyanates; Derivatives thereof
    • C10M135/14Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond
    • C10M135/18Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond thiocarbamic type, e.g. containing the groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/18Complexes with metals

Definitions

  • the present invention relates to a lubricating oil composition, a friction reducing method for an internal combustion engine, and a manufacturing method for the lubricating oil composition.
  • an organic molybdenum compound such as MoDTC is included in the lubricating oil composition.
  • Patent Document 1 proposes.
  • the organomolybdenum compound has a higher friction reduction effect than the ashless friction modifier, and is particularly excellent in the friction reduction effect in the boundary lubrication region. For this reason, various engine oils to which an organic molybdenum compound is added have been developed. However, it is no longer sufficient to simply add an organic molybdenum compound in order to cope with further fuel saving (lower friction).
  • An object of this invention is to provide the lubricating oil composition excellent in the friction reduction effect and excellent in fuel-saving property.
  • the present invention provides the following lubricating oil composition [1] to [3], a friction reducing method for an internal combustion engine, and a manufacturing method for the lubricating oil composition.
  • [1] (X) lubricating base oil, (A) a dinuclear organomolybdenum compound represented by the following general formula (I), (B) a trinuclear organomolybdenum compound represented by the following general formula (II), and (C )
  • An ashless friction modifier having two or more hydroxyl groups in the molecule, and the sum of the content in terms of molybdenum atoms of the component (A) and the content in terms of molybdenum atoms of the component (B) is a lubricating oil.
  • a lubricating oil composition that is 0.012% by mass or more based on the total amount of the composition, and the content of the component (C) is less than 2.0% by mass based on the total amount of the lubricating oil composition.
  • R 1 to R 4 represent a hydrocarbon group having 7 to 22 carbon atoms, and R 1 to R 4 may be the same or different.
  • X 1 to X 4 each represents a sulfur atom or an oxygen atom.
  • Mo 3 S k E m L n A p Q z (II) [In formula (II), each E is independently oxygen or selenium. k is an integer of at least 1, m is 0 or an integer, and k + m is 4 to 10.
  • L is independently an anionic ligand having an organic group containing a carbon atom, the total number of carbon atoms of the organic group in each ligand is 14 or more, and each ligand may be the same, May be different.
  • n is an integer of 1 to 4.
  • A is an anion other than L.
  • p is 0 or an integer.
  • Q is a compound which donates a neutral electron independently.
  • z is an integer from 0 to 5 and includes non-stoichiometric values.
  • the sum of the content of the component (A) in terms of molybdenum atoms and the content of the component (B) in terms of molybdenum atoms is 0.012% by mass or more based on the total amount of the lubricating oil composition, and The manufacturing method of the lubricating oil composition which performs the said mixing process so that content of the said (C) component may be less than 2.0 mass% on the basis of lubricating oil composition whole quantity.
  • the lubricating oil composition and the friction reducing method for an internal combustion engine of the present invention are excellent in the friction reducing effect and can improve fuel efficiency.
  • the method for producing a lubricating oil composition of the present invention can produce a lubricating oil composition that has an excellent friction reducing effect and good fuel economy.
  • the lubricating oil composition of this embodiment comprises (X) a lubricating base oil, (A) a binuclear organomolybdenum compound represented by the following general formula (I), and (B) a trinuclear organic compound represented by the following general formula (II).
  • the total amount is 0.012% by mass or more based on the total amount of the lubricating oil composition, and the content of the component (C) is less than 2.0% by mass based on the total amount of the lubricating oil composition.
  • R 1 to R 4 represent a hydrocarbon group having 7 to 22 carbon atoms, and R 1 to R 4 may be the same or different.
  • X 1 to X 4 each represents a sulfur atom or an oxygen atom.
  • each E is independently oxygen or selenium.
  • k is an integer of at least 1
  • m is 0 or an integer
  • k + m is 4 to 10.
  • L is independently an anionic ligand having an organic group containing a carbon atom, the total number of carbon atoms of the organic group in each ligand is 14 or more, and each ligand may be the same, May be different.
  • n is an integer of 1 to 4.
  • A is an anion other than L.
  • p is 0 or an integer.
  • Q is a compound which donates a neutral electron independently.
  • z is an integer from 0 to 5 and includes non-stoichiometric values.
  • the lubricating oil composition of the present embodiment includes (X) a lubricating base oil.
  • the lubricating base oil of component (X) include mineral oil and / or synthetic oil.
  • Mineral oils include paraffin-based mineral oils, intermediate-based mineral oils and naphthenic-based mineral oils obtained by ordinary refining methods such as solvent refining and hydrogenation refining; wax produced by the Fischer-Tropsch process (gas-tri-liquid wax) And wax isomerized oil produced by isomerizing wax such as mineral oil-based wax.
  • the mineral oil is preferably classified as Group 3 in the base oil classification of the American Petroleum Institute.
  • synthetic oils include hydrocarbon synthetic oils and ether synthetic oils.
  • hydrocarbon-based synthetic oil examples include polybutene, polyisobutylene, 1-octene oligomer, 1-decene oligomer, ⁇ -olefin oligomer such as ethylene-propylene copolymer or the hydride thereof, alkylbenzene, alkylnaphthalene and the like.
  • ether synthetic oils include polyoxyalkylene glycol and polyphenyl ether.
  • the component (X) may be a single system using one of the above-described mineral oils and synthetic oils, but is a mixture of two or more mineral oils or a mixture of two or more synthetic oils.
  • a mixed system may be used, such as a mixture of one or more of mineral oil and synthetic oil.
  • the component (X) preferably has a kinematic viscosity at 100 ° C. of 2.5 to 3.0 mm 2 / s and a% C p by ndM ring analysis of 80% or more.
  • a kinematic viscosity at 100 ° C. of 2.5 to 3.0 mm 2 / s and a% C p by ndM ring analysis of 80% or more.
  • the component (X) component of the n-d-M ring analysis% C p of 80% or more with the friction coefficient by evaporation of the lubricating oil composition can be prevented from increasing with time, HTHS viscosity It is possible to suppress the increase in the friction coefficient. Accordingly, the component (X) has a kinematic viscosity at 100 ° C. of 2.5 to 3.0 mm 2 / s, and% C p by ndM ring analysis is 80% or more, thereby reducing friction. Excellent effect and good fuel economy.
  • the 100 ° C. kinematic viscosity of the component (X) is more preferably 2.6 to 3.0 mm 2 / s, and further preferably 2.7 to 3.0 mm 2 / s.
  • The% C p by ndM ring analysis of the component (X) is more preferably 82% or more, and further preferably 82 to 95%. It is more preferably 2.6 to 3.0 mm 2 / s, and further preferably 2.7 to 3.0 mm 2 / s.
  • the content of the component (X) is preferably 60% by mass or more based on the total amount of the lubricating oil composition, more preferably 70 to 95% by mass, and 75% to 90% by mass. Further preferred.
  • the lubricating oil composition of this embodiment includes (A) a binuclear organic molybdenum compound represented by the following general formula (I), and (B) a trinuclear organic molybdenum compound represented by the following general formula (II).
  • the sum of the component (A) in terms of molybdenum atoms and the component (B) in terms of molybdenum atoms is 0.012 based on the total amount of the lubricating oil composition. It is at least mass%.
  • R 1 to R 4 represent a hydrocarbon group having 7 to 22 carbon atoms, and R 1 to R 4 may be the same or different.
  • X 1 to X 4 each represents a sulfur atom or an oxygen atom.
  • Mo 3 S k E m L n A p Q z (II) [In formula (II), each E is independently oxygen or selenium. k is an integer of at least 1, m is 0 or an integer, and k + m is 4 to 10.
  • L is independently an anionic ligand having an organic group containing a carbon atom, the total number of carbon atoms of the organic group in each ligand is 14 or more, and each ligand may be the same, May be different.
  • n is an integer of 1 to 4.
  • A is an anion other than L.
  • p is 0 or an integer.
  • Q is a compound which donates a neutral electron independently.
  • z is an integer from 0 to 5 and includes non-stoichiometric values. ]
  • the lubricating oil composition of the present embodiment uses, as the organic molybdenum compound, a binuclear organic molybdenum compound of component (A) and a trinuclear organic molybdenum compound of component (B) in combination, and (A (C) None, which will be described later, by setting the total of the content in terms of molybdenum atoms of the component) and the content in terms of molybdenum atoms of the component (B) to 0.012% by mass or more based on the total amount of the lubricating oil composition.
  • the total of the content of the component (A) in terms of molybdenum atom and the content of the component (B) in terms of molybdenum atom is preferably 0.012 to 0.125% by mass based on the total amount of the lubricating oil composition. 0.015 to 0.120% by mass is more preferable, 0.020 to 0.080% by mass is further preferable, and 0.025 to 0.055% by mass is particularly preferable.
  • the content of the component (A) in terms of molybdenum atoms is 0.002 to 0.100% by mass based on the total amount of the lubricating oil composition, and the content in terms of molybdenum atoms of the component (B) is the total amount of lubricating oil composition.
  • the amount is preferably 0.001 to 0.030% by mass.
  • the content of component (A) in terms of molybdenum atoms is more preferably 0.005 to 0.080% by mass, and more preferably 0.010 to 0.050% by mass, based on the total amount of the lubricating oil composition.
  • the content of component (B) in terms of molybdenum atoms is more preferably 0.002 to 0.025% by mass, and more preferably 0.005 to 0.020% by mass, based on the total amount of the lubricating oil composition.
  • [Content of the component (A) in terms of molybdenum atom / Content of the component (B) in terms of molybdenum atom] is preferably 0.1 to 25.0, and preferably 0.1 to 7.5. More preferably, it is more preferably 1.0 to 5.0, and still more preferably 1.5 to 3.0.
  • R 1 to R 4 each represent a hydrocarbon group having 7 to 22 carbon atoms, and R 1 to R 4 may be the same or different.
  • the number of carbon atoms of R 1 to R 4 is 6 or less, the oil solubility is poor, and when it is 23 or more, the melting point becomes high, handling becomes worse, and the friction reducing ability is lowered.
  • the number of carbon atoms of R 1 to R 4 is preferably 7 to 18, more preferably 7 to 14, and particularly preferably 8 to 13.
  • the total number of carbon atoms of R 1 to R 4 is preferably 34 to 80, more preferably 36 to 60, and still more preferably 38 to 54.
  • Examples of the hydrocarbon group for R 1 to R 4 include an alkyl group, an alkenyl group, an alkylaryl group, a cycloalkyl group, and a cycloalkenyl group, and a branched or straight chain alkyl group or alkenyl group is preferable.
  • a chain or straight chain alkyl group is more preferred.
  • Examples of the branched or straight chain alkyl group include n-octyl group, 2-ethylhexyl group, isononyl group, n-decyl group, isodecyl group, dodecyl group, tridecyl group, isotridecyl group and the like.
  • the binuclear organomolybdenum compound represented by the general formula (I) is an alkyl group in which R 1 and R 2 are the same, R 3 and R It is preferable that 4 is the same alkyl group, and the alkyl groups of R 1 and R 2 are different from the alkyl groups of R 3 and R 4 .
  • X 1 to X 4 represent a sulfur atom or an oxygen atom, and X 1 to X 4 may be the same or different.
  • each L is independently an anionic ligand having an organic group containing a carbon atom, and the total number of carbon atoms of the organic group in each ligand is 14 or more.
  • Each ligand may be the same or different, but is preferably the same. If the total number of carbon atoms of the organic group in each ligand is 13 or less, the solubility in the base oil will be reduced.
  • the total number of carbon atoms of the organic group in each ligand is preferably 14 to 50, more preferably 16 to 30, and even more preferably 18 to 24.
  • the anionic ligand is preferably a monoanionic ligand (monovalent anionic ligand).
  • Each ligand is preferably any one selected from ligands represented by the following general formulas (III-A) to (III-D), for example.
  • X 31 to X 37 and Y are each independently an oxygen atom or a sulfur atom.
  • R 31 to R 35 are independent organic groups, and R 31 to R 35 are the same. It may or may not be.
  • the organic group of R 31 to R 33 has 14 or more carbon atoms.
  • carbon number of the organic group R 34 the sum of the carbon number of the organic group for R 35 is 14 or more.
  • the organic group of R 31 to R 33 preferably has 14 to 50 carbon atoms, more preferably 16 to 30 carbon atoms, and still more preferably 18 to 24 carbon atoms.
  • the total of the carbon number of the organic group of R 34 and the carbon number of the organic group of R 35 is preferably 14 to 50, more preferably 16 to 30, and more preferably 18 to 24. Is more preferable.
  • the number of carbon atoms in the organic group of R 34 and the number of carbon atoms in the organic group of R 35 are each preferably 7 to 30, more preferably 7 to 20, and more preferably 8 to 13. Is more preferable.
  • the organic group of R 34 and the organic group of R 35 may be the same or different, but are preferably different.
  • the carbon number of the organic group of R 34 and the carbon number of the organic group of R 35 may be the same or different, but are preferably different.
  • the ligand preferably includes a ligand represented by the above general formula (III-D).
  • the general formula (II) it is preferable that all the ligands are the same, and it is more preferable that all the ligands are the ligands represented by the above general formula (III-D).
  • the organic group is a hydrocarbyl group such as an alkyl group, an aryl group, a substituted aryl group, and an ether group. More preferably, each ligand has the same hydrocarbyl group.
  • hydrocarbyl refers to a substituent having a carbon atom that is directly bonded to the remainder of the ligand, and within the scope of this embodiment, the property is primarily hydrocarbyl.
  • substituents include the following. 1. Hydrocarbon substituents As hydrocarbon substituents, substituted with aliphatic substituents such as alkyl and alkenyl, alicyclic substituents such as cycloalkyl and cycloalkenyl, aromatic groups, aliphatic groups and alicyclic groups An aromatic nucleus, a cyclic group in which the ring is completed via another location in the ligand (ie any two of the indicated substituents may together form an alicyclic group) Can be mentioned. 2.
  • substituted hydrocarbon substituents include those in which the hydrocarbon substituent is substituted with a non-hydrocarbon group that does not change the properties of the hydrocarbyl.
  • the non-hydrocarbon group include halogen groups such as chloro and fluoro, amino groups, alkoxy groups, mercapto groups, alkyl mercapto groups, nitro groups, nitroso groups, and sulfoxy groups.
  • Preferred ligands include alkyl xanthates, carboxylates, dialkyldithiocarbamates, and mixtures thereof. Most preferred is a dialkyldithiocarbamate.
  • E oxygen or selenium
  • k + m is preferably 4 to 7.
  • Q in the general formula (II) include water, amine, alcohol, ether and phosphine. Qs may be the same or different, but are preferably the same.
  • the neutral electron donating compound Q is present to satisfy the empty coordination on the trinuclear molybdenum compound.
  • the anion of A in the general formula (II) may be a monovalent anion or a divalent anion. Specific examples of A include disulfide, hydroxide, alkoxide, amide and thiocyanate or derivatives thereof.
  • k is 4 to 7, n is either 1 or 2, L is a monoanionic ligand, and p is an anion charge based compound in A Is an integer that imparts electrical neutrality to m, and each of m and z is 0.
  • k is 4-7, L is a monoanionic ligand, n is 4, and each of p, m and z is 0.
  • the trinuclear organomolybdenum compound of the general formula (II) has, for example, a core represented by the following formula (IV-A) or (IV-B). Each core has a net electrical charge of +4. These cores are surrounded by anionic ligands and anions other than the anionic ligands present as needed.
  • the trinuclear molybdenum-sulfur compound may also contain cations other than molybdenum, such as (alkyl) ammonium, amine or sodium, if the anionic charge exceeds -4.
  • a preferred embodiment of the anionic ligand (L) and other anions (A) is a configuration having four monoanionic ligands.
  • Molybdenum-sulfur cores such as the structures represented by (IV-A) and (IV-B) above, bind to one or more polydentate ligands, ie, molybdenum atoms, to form oligomers. Can be interconnected by a ligand having more than one possible functional group.
  • the trinuclear organic molybdenum compound can be prepared, for example, by the following methods (1) to (3).
  • the solvent used in (1) to (3) may be, for example, aqueous or organic.
  • Molybdenum source such as (NH 4 ) 2 Mo 3 S 13 ⁇ n (H 2 O) in a suitable solvent, where n varies between 0 and 2, Is reacted with a suitable ligand source such as tetraalkyl thiuram disulfide.
  • a molybdenum source such as (NH 4 ) 2 Mo 3 S 13 .n (H 2 O)
  • a ligand source such as tetraalkylthiuram disulfide and dialkyldithiocarbamic acid, a cyanide ion, and sulfurous acid It reacts with a sulfur extracting agent such as ions.
  • Trinuclear molybdenum-sulfur such as [M ′] 2 [Mo 3 S 7 A 6 ] (where M ′ is a counter ion and A is a halogen such as Cl, Br, or I).
  • the halide salt is reacted with a ligand source such as a dialkyldithiocarbamic acid in a suitable solvent.
  • the lubricating oil composition of this embodiment may further contain a mononuclear organic molybdenum compound as the organic molybdenum compound as long as the friction reducing effect is not impaired.
  • the (B) trinuclear organomolybdenum compound is preferably a dithiocarbamate compound, such as a trinuclear molybdenum dithiocarbamate.
  • a particularly effective compound is a molybdenum dialkyldithiocarbamate compound represented by the formula Mo 3 S 7 ((alkyl) 2dtc) 4 .
  • the lubricating oil composition of the present embodiment includes an ashless friction modifier having two or more hydroxyl groups in the molecule as the component (C), and the component (C) is 2.0 based on the total amount of the lubricating oil composition. Contains less than mass%.
  • the friction reducing effect of the organic molybdenum compound is impaired, and the friction coefficient increases.
  • the lubricating oil composition of the present embodiment contains a specific amount of a specific organic molybdenum compound and contains a specific amount of the component (C), so that the friction coefficient can be drastically reduced.
  • a so-called ashless friction reducing agent is used that does not satisfy the condition of the component (C) (for example, one having one hydroxyl group in the molecule)
  • the friction reducing effect of the organic molybdenum compound is impaired. Increase the coefficient.
  • it uses (C) component if content will be 2.0 mass% or more, the friction reduction effect of an organic molybdenum compound will be impaired, and a friction coefficient will start to increase.
  • the content of the component (C) is preferably 0.1 to 1.5% by mass, more preferably 0.3 to 1.0% by mass based on the total amount of the lubricating oil composition.
  • Examples of the ashless friction modifier having two or more hydroxyl groups in the component (C) molecule include ester compounds, amine compounds, and amide compounds. Among these, amine compounds and amide compounds are preferable, and among them, amine compounds are preferable.
  • the number of hydroxyl groups in the molecule of component (C) is preferably 2 to 6 and more preferably 2 from the viewpoint of friction reduction effect and solubility in base oil.
  • R 51 is a hydrocarbon group having 1 to 32 carbon atoms.
  • the hydrocarbon group of R 51 preferably has 8 to 32 carbon atoms, more preferably 12 to 24 carbon atoms, and still more preferably 16 to 20 carbon atoms.
  • Examples of the hydrocarbon group for R 51 include an alkyl group, an alkenyl group, an alkylaryl group, a cycloalkyl group, and a cycloalkenyl group. Among these, an alkyl group or an alkenyl group is preferable, and an alkenyl group is preferable among them.
  • alkyl group for R 51 examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, Examples include pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, henecosyl group, docosyl group, tricosyl group and tetracosyl group, and these may be linear, branched or cyclic .
  • Examples of the alkenyl group in R 51 include a vinyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, an undecenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group, and a pentadecenyl group.
  • R 52 to R 56 are each a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms, and may be the same as or different from each other. All of R 52 to R 56 are preferably hydrogen atoms.
  • R 52 to R 56 are hydrocarbon groups, the hydrocarbon groups may be saturated or unsaturated, may be aliphatic or aromatic, and may be linear, branched or cyclic.
  • R 51 to R 56 are all the same, or different types of R 51 to R 56 may be different from each other. things (e.g., those existence of carbon number and double bond of R 51 are different) may be used as a mixture of two or more.
  • Examples of the compound represented by the general formula (V) include glycerol fatty acid monoesters such as glycerol monolaurate, glycerol monostearate, glycerol monomysterate, and glycerol monooleate. Of these, glycerin monooleate is preferred.
  • R 61 is a hydrocarbon group having 1 to 32 carbon atoms.
  • the hydrocarbon group of R 61 preferably has 8 to 32 carbon atoms, more preferably 10 to 24, and still more preferably 12 to 20.
  • Examples of the hydrocarbon group for R 61 include an alkyl group, an alkenyl group, an alkylaryl group, a cycloalkyl group, and a cycloalkenyl group. Among these, an alkyl group or an alkenyl group is preferable.
  • alkyl group for R 61 examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, Examples include pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, henecosyl group, docosyl group, tricosyl group and tetracosyl group, and these may be linear, branched or cyclic .
  • alkenyl group in R 61 examples include vinyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group.
  • R 62 to R 69 are a hydrogen atom, a hydrocarbon group having 1 to 18 carbon atoms, or an oxygen-containing hydrocarbon group containing an ether bond or an ester bond, and may be the same or different from each other.
  • a hydrogen group is preferable, and a hydrogen atom is preferable among them. Further, it is preferable that all of R 62 to R 69 are hydrogen atoms.
  • the hydrocarbon group for R 62 to R 69 may be saturated or unsaturated, may be aliphatic or aromatic, may be linear, branched or cyclic, and is, for example, an aliphatic carbon such as an alkyl group or an alkenyl group.
  • a hydrogen group or an aromatic hydrocarbon group is mentioned.
  • oxygen-containing hydrocarbon group containing an ether bond or an ester bond examples are those having 1 to 18 carbon atoms, such as a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, an isopropoxymethyl group, an n-butoxymethyl group, t-butoxymethyl group, hexyloxymethyl group, octyloxymethyl group, 2-ethylhexyloxymethyl group, decyloxymethyl group, dodecyloxymethyl group, 2-butyloctyloxymethyl group, tetradecyloxymethyl group, hexadecyloxy group Methyl group, 2-hexyldecyloxymethyl group, allyloxymethyl group, phenoxy group, benzyloxy group, methoxyethyl group, methoxypropyl group, 1,1-bismethoxypropyl group, 1,2-bismethoxypropyl group, ethoxy Propyl group, (2-meth Cie
  • a and b each represent an integer of 1 to 20.
  • a + b is preferably 2 to 20, more preferably 2 to 10, still more preferably 2 to 4, and most preferably 2.
  • a single species in which R 61 to R 69 and ab are all the same may be used, or R 61 to R 69 , a to Two or more different types of b different in part (for example, different in the number of carbon atoms of R 61 and the presence or absence of a double bond) may be used.
  • Specific compounds of general formula (VI) include octyl diethanolamine, decyl diethanolamine, dodecyl diethanolamine, tetradecyl diethanolamine, hexadecyl diethanolamine, stearyl diethanolamine, oleyl diethanolamine, coconut oil diethanolamine, palm oil diethanolamine, rapeseed oil diethanolamine, beef tallow diethanolamine
  • An amine compound having two 2-hydroxyalkyl groups such as, polyoxyethylene octylamine, polyoxyethylene decylamine, polyoxyethylene dodecylamine, polyoxyethylene tetradecylamine, polyoxyethylene hexadecylamine, Polyoxyethylene stearylamine, polyoxyethylene oleylamine, polio Has two polyalkylene oxide structures such as polyethylene beef tallow amine, polyoxyethylene palm oil amine, polyoxyethylene palm oil amine, polyoxyethylene laurylamine, polyoxyethylene stearylamine, polyoxyethylene o
  • R 71 in the general formula (VII) is the same as the embodiment of R 61 in the general formula (VI). Further, the embodiments of R 72 to R 79 , a and b in the general formula (VII) are the same as the embodiments of R 62 to R 69 , a and b in the general formula (VI).
  • Specific compounds of the general formula (VII) include octyl diethanolamide, decyl diethanolamide, dodecyl diethanolamide, tetradecyl diethanolamide, hexadecyl diethanolamide, stearyl diethanolamide, oleyl diethanolamide, coconut oil diethanolamide, palm oil Amide compounds having two 2-hydroxyalkyl groups exemplified by diethanolamide, rapeseed oil diethanolamide, beef tallow diethanolamide, etc .; polyoxyethylene octylamide, polyoxyethylene decylamide, polyoxyethylene dodecylamide, polyoxyethylene Tetradecyl amide, polyoxyethylene hexadecyl amide, polyoxyethylene stearyl amide, polyoxyethylene oleyl amide, polio Two polyalkylene oxide structures such as polyethylene beef tallow amide, polyoxyethylene palm oil amide, polyoxyethylene palm oil amide, polyoxyethylene lauryl amide, polyoxyethylene ste
  • the lubricating oil composition of the present embodiment has [content of component (C) / (content of component (A) in terms of molybdenum atom + content of component (B) in terms of molybdenum atom)] of 3 It is preferably from 0.0 to 50.0, more preferably from 5.0 to 40.0, and even more preferably from 10.0 to 35.0. By setting it as this ratio, the friction reduction effect by the synergistic action of (A) component and (B) component, and (C) component can be exhibited more, and fuel-saving property can be made more favorable.
  • the total content of the component (A), the component (B) and the component (C) is preferably 80% by mass or more based on the total amount of the lubricating oil composition, 85
  • the content is more preferably at least mass%, and further preferably at least 87 mass%.
  • the lubricating oil composition of the present embodiment may contain other ashless friction modifiers as long as the friction reducing effect is not impaired.
  • the lubricating oil composition of this embodiment preferably contains (D) a viscosity index improver in order to further improve fuel economy.
  • a comb polymer As the viscosity index improver of component (D), a comb polymer is preferably used.
  • the “comb polymer” refers to a polymer having a structure in which the main chain has a number of trident branching points with linear side chains.
  • a comb polymer for example, a polymer having at least a structural unit derived from a macromonomer having a polymerizable functional group such as a (meth) acryloyl group, an ethenyl group, a vinyl ether group, and an allyl group is preferably exemplified.
  • the structural unit corresponds to a “linear side chain”.
  • various vinyl monomers such as alkyl (meth) acrylates, nitrogen atom-containing systems, halogen element-containing systems, hydroxyl group-containing systems, aliphatic hydrocarbon systems, alicyclic hydrocarbon systems, and aromatic hydrocarbon systems.
  • the number average molecular weight (Mn) of the macromonomer is preferably 200 to 100,000, more preferably 300 to 10,000, and still more preferably 400 to 50,000 or more.
  • As the viscosity index improver for the component (D) poly (meth) acrylate, olefin copolymer, polyisobutylene, or the like may be used.
  • the (D) component viscosity index improver preferably has a weight average molecular weight of 300,000 or more and an SSI of 10.0 or less in order to further improve fuel economy and prevent seizure. .
  • the weight average molecular weight (Mw) of the component (D) is more preferably 300,000 to 500,000, further preferably 350,000 to 420,000.
  • “weight average molecular weight” refers to a molecular weight in terms of polystyrene determined by gel permeation chromatography (GPC) measurement.
  • the molecular weight distribution (Mw / Mn) of the component (D) is preferably less than 2.0.
  • the lower limit of the molecular weight distribution of the component (D) is not particularly limited, but is usually 1.01 or more, preferably 1.05 or more, more preferably 1.10 or more.
  • the SSI of the component (D) is more preferably 8.0 or less, further preferably 5.0 or less, and particularly preferably less than 2.0. By setting the weight average molecular weight to 420,000 or less, the SSI can be easily set to 10.0 or less.
  • SSI means the shear stability index (Shear Stability Index), which indicates the ability to resist polymer degradation. Higher SSI indicates that the polymer is more unstable to shear and more susceptible to degradation.
  • Kv 0 is the value of the 100 ° C. kinematic viscosity of the mixture obtained by adding the component (D) to the base oil.
  • Kv 1 is the value of the 100 ° C. kinematic viscosity after passing the mixture of base oil plus component (D) through a 30 cycle high shear Bosch diesel injector according to the procedure of ASTM D6278.
  • Kv oil is the value of the 100 ° C. kinematic viscosity of the base oil.
  • a base oil a Group II base oil having a kinematic viscosity of 100 ° C. of 5.35 mm 2 / s and a viscosity index of 105 is used.
  • the content of the component (D) is preferably 0.2 to 5.0% by mass, and 0.4 to 3.0% by mass based on the total amount of the lubricating oil composition from the viewpoint of fuel economy. Is more preferable, and 0.8 to 2.5% by mass is even more preferable.
  • the content of the component (D) means the content of only the resin component of the component (D), and does not include the mass of the diluent oil or the like contained with the component (D), based on the solid content It is.
  • the monomer constituting the poly (meth) acrylate which is an example of the component (D) is an alkyl (meth) acrylate, preferably an alkyl having a linear alkyl group having 1 to 18 carbon atoms or a branched alkyl group having 3 to 34 carbon atoms. (Meth) acrylate.
  • (E) As a preferable monomer constituting poly (meth) acrylate, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) ) Acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, tetra (meth) acrylate, hexa (meth) acrylate , Octadecyl (meth) acrylate, and the like.
  • the alkyl group of these monomers may be linear or branched.
  • Examples of the alkyl (meth) acrylate having a branched alkyl group having 3 to 34 carbon atoms include isopropyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 3,5,5-trimethylhexyl (meth) acrylate, 2- Butyloctyl (meth) acrylate, 2-hexyldecyl (meth) acrylate, 2-octyldodecyl (meth) acrylate, 2-decyltetradecyl (meth) acrylate, 2-dodecylhexadecyl (meth) acrylate, 2-tetradecyloctadecyl (Meth) acrylate is mentioned.
  • the total content of the component (A), the component (B), the component (C), and the component (D) is 80% by mass or more based on the total amount of the lubricating oil composition. It is preferably 85% by mass or more, and more preferably 90% by mass or more.
  • the lubricating oil composition of the present embodiment contains at least one selected from a pour point depressant, a zinc dialkyldithiophosphate, an antioxidant, a metallic detergent and other ashless detergent as an optional additive component. May be.
  • the total content of these optional additives is about 0.1 to 15% by mass based on the total amount of the lubricating oil composition.
  • the lubricating oil composition of the present embodiment has a kinematic viscosity, a viscosity index, an HTHS viscosity (high temperature high shear viscosity), a rate of change in kinematic viscosity after a shear test, and NOACK from the viewpoint of reducing friction in a wide temperature range from low temperature to high temperature.
  • the value is preferably in the following range.
  • the 80 ° C. kinematic viscosity is preferably 5 to 9 mm 2 / s, and more preferably 6 to 8 mm 2 / s, from the viewpoint of fuel economy.
  • the 120 ° C. kinematic viscosity is preferably 3 to 5 mm 2 / s, and more preferably 3.5 to 4.5 mm 2 / s, from the viewpoint of securing oil pressure in a high temperature region.
  • the viscosity index is preferably 250 to 340, and more preferably 270 to 320.
  • the kinematic viscosity and the viscosity index were measured according to JIS K2283: 2000.
  • the 80 ° C. HTHS viscosity is preferably 3.7 to 4.6 mPa ⁇ s, and more preferably 4.0 to 4.3 mPa ⁇ s, from the viewpoint of fuel economy.
  • the 100 ° C. HTHS viscosity is preferably 2.7 to 3.6 mPa ⁇ s, more preferably 3.0 to 3.3 mPa ⁇ s.
  • the 150 ° C. HTHS viscosity is preferably 1.5 to 2.3 mPa ⁇ s, and more preferably 1.7 to 2.0 mPa ⁇ s, from the viewpoint of securing an oil film in a high temperature and high shear region.
  • the HTHS viscosity was measured in accordance with ASTM D4683 and ASTM D6616 using a TBS viscometer (Tapered Bearing Simulator Viscometer), a shear rate of 10 6 / s, a rotation speed (motor) of 3000 rpm, and an interval (interval between the rotor and the stator) of 3 ⁇ m. It measured on condition of this.
  • the rate of change in kinematic viscosity after the shear test is preferably 2.00% or less, and more preferably 1.00% or less. More specifically, the rate of change in kinematic viscosity after the shear test can be measured by the method described in the Examples.
  • the NOACK value at 250 ° C. for 1 hour, measured according to ASTM D5800, is preferably 20 to 50, and more preferably 30 to 40.
  • lubricating oil composition of the present embodiment is not particularly limited, it can be suitably used for various internal combustion engines such as four-wheeled vehicles and two-wheeled vehicles.
  • the internal combustion engine include a gasoline engine, a diesel engine, an engine using dimethyl ether as a fuel, a gas engine, and the like.
  • the friction reducing method for an internal combustion engine according to the present embodiment is to add the above-described lubricating oil composition according to the present embodiment to the internal combustion engine. According to the friction reducing method for an internal combustion engine of the present embodiment, the friction reducing effect can be dramatically improved by the synergistic action of the component (A), the component (B), and the component (C). Can be good.
  • R 1 to R 4 represent a hydrocarbon group having 7 to 22 carbon atoms, and R 1 to R 4 may be the same or different.
  • X 1 to X 4 each represents a sulfur atom or an oxygen atom.
  • Mo 3 S k E m L n A p Q z (II) [In formula (II), each E is independently oxygen or selenium. k is an integer of at least 1, m is 0 or an integer, and k + m is 4 to 10.
  • L is independently an anionic ligand having an organic group containing a carbon atom, the total number of carbon atoms of the organic group in each ligand is 14 or more, and each ligand may be the same, May be different.
  • n is an integer of 1 to 4.
  • A is an anion other than L.
  • p is 0 or an integer.
  • Q is a compound which donates a neutral electron independently.
  • z is an integer from 0 to 5 and includes non-stoichiometric values.
  • the lubricating oil composition of the present embodiment capable of dramatically improving the friction reduction effect and improving fuel economy can be easily manufactured.
  • Lubricating oil compositions of Examples and Comparative Examples were prepared with the compositions shown in Tables 1 to 6. The following materials were used for the preparation of the lubricating oil composition.
  • ⁇ (X) Component Lubricating Base Oil> [Lubricant base oil 1] Group III, 70N hydrorefined base oil, 100 ° C. kinematic viscosity: 2.9 mm 2 / S, viscosity index: 121,% C p by ndM ring analysis: 84.0%
  • Binuclear Organic Molybdenum Compound> [Organic molybdenum compound 1] Binuclear organomolybdenum of the general formula (I), wherein R 1 to R 4 each have 8 or 13 carbon atoms, R 1 to R 4 have a total of 42 carbon atoms, and X 1 to X 4 are oxygen atoms Compound. Molybdenum content 10.0 mass%, sulfur content 11.5 mass%.
  • the total number of carbon atoms of R 34 and R 35 in formula (III-D) is 21.
  • k is 7
  • L is a monoanionic ligand
  • n is 4, and each of p, m, and z is 0.
  • ⁇ Mononuclear organic molybdenum compound> [Organic molybdenum compound 3] A mixture of [2,2 ′-(dodecanoylimino) diethanolato] dioxomolybdenum (VI) and [3- (dodecanoyloxy) -1,2-propanediolato] dioxomolybdenum (VI). Molybdenum content 7.9 mass%, nitrogen content 2.8 mass%. [Organic molybdenum compound 4] Diisotridecylamine molybdate. Molybdenum content 10.0 mass%.
  • Comb polymer having at least a structural unit derived from a macromonomer having Mn of 500 or more as a resin component (Mw: 430,000, SSI: 13.5, Mw / Mn 2.0 or more)
  • Friction coefficient (reciprocating friction test) Using a TE77 reciprocating friction tester manufactured by Phoenix Tribology, the friction coefficient was measured under the following conditions.
  • the lubricating oil compositions of Comparative Examples 1 to 4 contain the ashless friction modifier of component (C), but do not contain any one of components (A) and (B). Since the friction coefficient of the lubricating oil compositions of Comparative Examples 1 to 4 is increased with respect to the lubricating oil composition of Example 1, the friction reducing effect by the synergistic action of the organic molybdenum compound and the component (C) It can be confirmed that it is necessary to use the component (A) and the component (B) in combination as an organic molybdenum compound in order to express the above.
  • the lubricating oil composition of Comparative Example 5 contains (A) component, (B) component, and (C) component, but has a small sum of contents in terms of molybdenum atoms of (A) component and (B) component It is. Since the friction coefficient of the lubricating oil composition of Comparative Example 5 is increased with respect to the lubricating oil compositions of Examples 1 to 5, a predetermined amount of component (A) is used in order to exhibit a friction reducing effect. And it can confirm that (B) component is required.
  • the lubricating oil composition in which the total content of the component (A) and the component (B) in terms of molybdenum atoms is 0.012% by mass or more is It can be confirmed that the friction reduction effect by the synergistic action can be expressed.
  • the lubricating oil compositions of Examples 1 to 4 are excellent in low-temperature stability because the organic molybdenum compound does not precipitate even in a low-temperature environment.
  • the lubricating oil compositions of Examples 1 to 3 did not generate fogging even in a low temperature environment and were extremely excellent in low temperature stability.
  • the lubricating oil composition of Comparative Example 6 contains the component (A) and the component (B), but does not contain the ashless friction modifier of the component (C). Compared with the lubricating oil composition of Comparative Example 6, the friction coefficient of the lubricating oil composition of Example 1 is dramatically reduced, so that the (A) component and the (B) component are used in combination as the organic molybdenum compound. And by using (C) component, it can confirm that the friction reduction effect by the synergistic action of an organomolybdenum compound and (C) component expresses.
  • the lubricating oil compositions of Comparative Examples 7 and 8 contain the components (A) and (B) and contain the ashless friction modifier, the ashless friction modifier contains 2 hydroxyl groups. It has no more than one. Since the friction coefficient of the lubricating oil compositions of Comparative Examples 7 and 8 is increased with respect to the lubricating oil composition of Comparative Example 6, the hydroxyl group with respect to the organomolybdenum compound of component (A) and component (B) When an ashless friction modifier that does not have two or more is added, it can be confirmed that the friction reducing effect of the organic molybdenum compound is impaired.
  • the lubricating oil composition of Comparative Example 9 contains the (A) component, the (B) component, and the (C) component, the content of the ashless friction modifier of the (C) component is large. Since the friction coefficient of the lubricating oil composition of Comparative Example 9 is increased with respect to the lubricating oil compositions of Examples 1 and 6 to 8, the content of the ashless friction modifier of component (C) is increased. If it is too much, it can be confirmed that the friction increases conversely.
  • the lubricating oil composition in which the content of the component (C) is less than 2.0% by mass based on the total amount of the lubricating oil composition It can be confirmed that the friction reducing effect is good.
  • the lubricating oil compositions of Examples 1, 6 and 7 in which the content of the component (C) is 1.0% by mass or less based on the total amount of the lubricating oil composition are confirmed to have a very good friction reducing effect. it can.
  • Examples 9 to 11 are obtained by changing the type of the component (C) in Example 1. From the results of Examples 1 and 9 to 11, it can be confirmed that the ashless friction modifier having two or more hydroxyl groups in the molecule exhibits a friction reducing effect regardless of the type. Further, from the comparison between Examples 1 and 9 to 11, among the components (C), the amine-based (Example 1) and the amide-based (Examples 9 and 10) are excellent in friction reduction effect, particularly the amine-based (Example It can be confirmed that the effect of 1) is extremely excellent.
  • Example 12 the type of the component (D) in Example 1 is changed.
  • the lubricating oil composition contains a viscosity index improver having a weight average molecular weight of 300,000 or more and an SSI of less than 2.0. While decreasing the viscosity, the rate of change in kinematic viscosity after the shear test can be reduced, and it can be confirmed that fuel economy and seizure can be improved.
  • the type of the component (X) in Example 1 is changed.
  • the lubricating base oil of component (X) has a kinematic viscosity at 100 ° C. of 2.5 to 3.0 mm 2 / s, and ndM ring analysis According% C p in by not less than 80%, while lower HTHS viscosity, it is possible to reduce the NOACK values can be confirmed that the fuel economy can be improved.
  • [mass% Mo] represents the content in terms of molybdenum atoms of the organic molybdenum compound relative to the total amount of the lubricating oil composition.
  • the lubricating oil composition of this embodiment has a good friction reducing effect and can improve fuel economy. For this reason, the lubricating oil composition of the present embodiment can be suitably used for various internal combustion engines such as four-wheeled vehicles and two-wheeled vehicles.
  • the internal combustion engine include a gasoline engine, a diesel engine, an engine using dimethyl ether as a fuel, a gas engine, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

Provided is a lubricant composition which has excellent friction reducing effect, while enabling excellent fuel consumption saving. A lubricant composition which contains (X) a lubricant base oil, (A) a dinuclear organic molybdenum compound represented by general formula (I), (B) a trinuclear organic molybdenum compound represented by general formula (II), and (C) an ashless friction modifier having two or more hydroxyl groups in each molecule, and wherein: the total of the content of the component (A) in terms of molybdenum atoms and the content of the component (B) in terms of molybdenum atoms is 0.012% by mass or more based on the total amount of the lubricant composition; the content of the component (C) is less than 2.0% by mass based on the total amount of the lubricant composition. (In formula (I), each of R1-R4 represents a hydrocarbon group having 4-22 carbon atoms, and the R1-R4 moieties may be the same as or different from each other; and each of X1-X4 represents a sulfur atom or an oxygen atom.) Mo3SkEmLnApQz (II) (In formula (II), E represents an oxygen atom or a selenium atom; k represents an integer of 1 or more; m represents 0 or an integer; k + m is 4-10; each L independently represents an anionic ligand having an organic group that contains a carbon atom; the total number of carbon atoms in the organic group in each ligand is 14 or more; the ligands may be the same as or different from each other; n represents an integer of from 1 to 4; A represents an anion other than L; p represents 0 or an integer; Q represents a compound that donates a neutral electron; and z represents an integer of from 0 to 5, and includes a non-stoichiometric amount.)

Description

潤滑油組成物、内燃機関の摩擦低減方法及び潤滑油組成物の製造方法Lubricating oil composition, friction reducing method for internal combustion engine, and manufacturing method of lubricating oil composition
 本発明は、潤滑油組成物、内燃機関の摩擦低減方法及び潤滑油組成物の製造方法に関する。 The present invention relates to a lubricating oil composition, a friction reducing method for an internal combustion engine, and a manufacturing method for the lubricating oil composition.
 近年、エネルギー損失および二酸化炭素を低減させるために、自動車の省燃費性の向上が注目されるようになってきている。
 自動車の省燃費性を向上させる対策としては、自動車車体の軽量化が進んでいるが、潤滑油についても省燃費性に寄与することが求められている。このため、潤滑油開発に携わる研究者によって、潤滑油の低粘度化や潤滑油による摩擦低減特性のさらなる向上が検討されている。
In recent years, in order to reduce energy loss and carbon dioxide, attention has been focused on improving fuel economy of automobiles.
As measures for improving the fuel efficiency of automobiles, the weight of automobile bodies is being reduced, but lubricating oils are also required to contribute to the fuel efficiency. For this reason, researchers who are involved in the development of lubricating oils are studying to lower the viscosity of lubricating oils and to further improve the friction reduction characteristics of lubricating oils.
 摩擦低減特性の検討の中で、潤滑油組成物中に、MoDTC等の有機モリブデン化合物を含有させることが行われている。有機モリブデン化合物を配合した潤滑油組成物としては、例えば特許文献1に提案されている。 In the study of friction reduction characteristics, an organic molybdenum compound such as MoDTC is included in the lubricating oil composition. As a lubricating oil composition containing an organic molybdenum compound, for example, Patent Document 1 proposes.
特開2015-010177号公報Japanese Patent Laying-Open No. 2015-010177
 有機モリブデン化合物は、無灰系摩擦調整剤と比較して摩擦低減効果が高く、特に境界潤滑領域の摩擦低減効果に優れている。このため、有機モリブデン化合物を添加した多種のエンジン油が展開されている。
 しかしながら、さらなる省燃費化(低摩擦化)に対応するためには、単に有機モリブデン化合物を添加するのみでは十分ではなくなっている。
 本発明は、摩擦低減効果に優れ、省燃費性に優れた潤滑油組成物を提供することを目的とする。
The organomolybdenum compound has a higher friction reduction effect than the ashless friction modifier, and is particularly excellent in the friction reduction effect in the boundary lubrication region. For this reason, various engine oils to which an organic molybdenum compound is added have been developed.
However, it is no longer sufficient to simply add an organic molybdenum compound in order to cope with further fuel saving (lower friction).
An object of this invention is to provide the lubricating oil composition excellent in the friction reduction effect and excellent in fuel-saving property.
 上記課題を解決するためには、有機モリブデン化合物に対して、無灰系摩擦調整剤を添加することが考えられる。しかし、有機モリブデン化合物に対して無灰系摩擦調整剤を添加した場合、有機モリブデン化合物の摩擦低減効果が損なわれ、摩擦係数が増加することが報告されている。
 本発明者らは、摩擦係数が増加すると考えられていた有機モリブデン化合物と、無灰系摩擦調整剤との組み合わせに関する検討を行い、特定の有機モリブデン化合物と、特定の無灰系摩擦調整剤との組み合わせであれば、飛躍的に摩擦を低減できることを見出し、上記課題を解決するに至った。
In order to solve the above problems, it is considered to add an ashless friction modifier to the organic molybdenum compound. However, it has been reported that when an ashless friction modifier is added to an organic molybdenum compound, the friction reducing effect of the organic molybdenum compound is impaired and the friction coefficient increases.
The present inventors have studied a combination of an organomolybdenum compound that was thought to increase the friction coefficient and an ashless friction modifier, a specific organomolybdenum compound, a particular ashless friction modifier, As a result, it has been found that the friction can be drastically reduced and the above-mentioned problems have been solved.
 すなわち、本発明では、以下[1]~[3]の潤滑油組成物、内燃機関の摩擦低減方法及び潤滑油組成物の製造方法を提供する。
[1](X)潤滑油基油、(A)下記一般式(I)に示す二核の有機モリブデン化合物、(B)下記一般式(II)に示す三核の有機モリブデン化合物、及び(C)分子内に水酸基を2つ以上有する無灰摩擦調整剤を含み、前記(A)成分のモリブデン原子換算の含有量と、前記(B)成分のモリブデン原子換算の含有量との合計が潤滑油組成物全量基準で0.012質量%以上であり、前記(C)成分の含有量が潤滑油組成物全量基準で2.0質量%未満である潤滑油組成物。
Figure JPOXMLDOC01-appb-C000004

[式(I)中、R~Rは炭素数7~22の炭化水素基を表し、R~Rは、同一であってもよいし、異なっていてもよい。X1~X4は、硫黄原子又は酸素原子を表す。]
 Mo (II)
[式(II)中、Eはそれぞれ独立して酸素又はセレンである。kは少なくとも1の整数であり、mは0又は整数であり、k+mは4~10である。Lはそれぞれ独立に、炭素原子を含有する有機基を有するアニオン性リガンドであり、各リガンドにおける該有機基の炭素原子の合計が14個以上であり、各リガンドは同一であってもよいし、異なっていてもよい。nは1から4の整数である。AはL以外のアニオンである。pは0又は整数である。Qはそれぞれ独立に中性電子を供与する化合物である。zは0から5の整数であり、且つ非化学量論の値を含む。]
[2]内燃機関に、上記[1]に記載の潤滑油組成物を添加する内燃機関の摩擦低減方法。
[3](X)潤滑油基油と、
 (A)上記一般式(I)に示す二核の有機モリブデン化合物と、
 (B)上記一般式(II)に示す三核の有機モリブデン化合物と、
 (C)分子内に水酸基を2つ以上有する無灰摩擦調整剤とを混合する工程を有し、
 前記(A)成分のモリブデン原子換算の含有量と、前記(B)成分のモリブデン原子換算の含有量との合計が潤滑油組成物全量基準で0.012質量%以上となるように、かつ、
 前記(C)成分の含有量が潤滑油組成物全量基準で2.0質量%未満となるように前記混合工程を行う、潤滑油組成物の製造方法。
That is, the present invention provides the following lubricating oil composition [1] to [3], a friction reducing method for an internal combustion engine, and a manufacturing method for the lubricating oil composition.
[1] (X) lubricating base oil, (A) a dinuclear organomolybdenum compound represented by the following general formula (I), (B) a trinuclear organomolybdenum compound represented by the following general formula (II), and (C ) An ashless friction modifier having two or more hydroxyl groups in the molecule, and the sum of the content in terms of molybdenum atoms of the component (A) and the content in terms of molybdenum atoms of the component (B) is a lubricating oil. A lubricating oil composition that is 0.012% by mass or more based on the total amount of the composition, and the content of the component (C) is less than 2.0% by mass based on the total amount of the lubricating oil composition.
Figure JPOXMLDOC01-appb-C000004

[In Formula (I), R 1 to R 4 represent a hydrocarbon group having 7 to 22 carbon atoms, and R 1 to R 4 may be the same or different. X 1 to X 4 each represents a sulfur atom or an oxygen atom. ]
Mo 3 S k E m L n A p Q z (II)
[In formula (II), each E is independently oxygen or selenium. k is an integer of at least 1, m is 0 or an integer, and k + m is 4 to 10. L is independently an anionic ligand having an organic group containing a carbon atom, the total number of carbon atoms of the organic group in each ligand is 14 or more, and each ligand may be the same, May be different. n is an integer of 1 to 4. A is an anion other than L. p is 0 or an integer. Q is a compound which donates a neutral electron independently. z is an integer from 0 to 5 and includes non-stoichiometric values. ]
[2] A method for reducing friction in an internal combustion engine, wherein the lubricating oil composition according to [1] is added to the internal combustion engine.
[3] (X) a lubricating base oil;
(A) a binuclear organomolybdenum compound represented by the above general formula (I);
(B) a trinuclear organomolybdenum compound represented by the above general formula (II);
(C) having a step of mixing with an ashless friction modifier having two or more hydroxyl groups in the molecule;
The sum of the content of the component (A) in terms of molybdenum atoms and the content of the component (B) in terms of molybdenum atoms is 0.012% by mass or more based on the total amount of the lubricating oil composition, and
The manufacturing method of the lubricating oil composition which performs the said mixing process so that content of the said (C) component may be less than 2.0 mass% on the basis of lubricating oil composition whole quantity.
 本発明の潤滑油組成物及び内燃機関の摩擦低減方法は、摩擦低減効果に優れ、省燃費性を良好にすることができる。また、本発明の潤滑油組成物の製造方法は、摩擦低減効果に優れ、省燃費性が良好な潤滑油組成物を製造することができる。 The lubricating oil composition and the friction reducing method for an internal combustion engine of the present invention are excellent in the friction reducing effect and can improve fuel efficiency. In addition, the method for producing a lubricating oil composition of the present invention can produce a lubricating oil composition that has an excellent friction reducing effect and good fuel economy.
 以下、本発明の実施形態を説明する。
[潤滑油組成物]
 本実施形態の潤滑油組成物は、(X)潤滑油基油、(A)下記一般式(I)に示す二核の有機モリブデン化合物、(B)下記一般式(II)に示す三核の有機モリブデン化合物、及び(C)分子内に水酸基を2つ以上有する無灰摩擦調整剤を含み、前記(A)成分のモリブデン原子換算の含有量と、前記(B)成分のモリブデン原子換算の含有量との合計が潤滑油組成物全量基準で0.012質量%以上であり、前記(C)成分の含有量が潤滑油組成物全量基準で2.0質量%未満であるものである。
Figure JPOXMLDOC01-appb-C000005

[式(I)中、R~Rは炭素数7~22の炭化水素基を表し、R~Rは、同一であってもよいし、異なっていてもよい。X1~X4は、硫黄原子又は酸素原子を表す。]
 Mo (II)
[式(II)中、Eはそれぞれ独立して酸素又はセレンである。kは少なくとも1の整数であり、mは0又は整数であり、k+mは4~10である。Lはそれぞれ独立に、炭素原子を含有する有機基を有するアニオン性リガンドであり、各リガンドにおける該有機基の炭素原子の合計が14個以上であり、各リガンドは同一であってもよいし、異なっていてもよい。nは1から4の整数である。AはL以外のアニオンである。pは0又は整数である。Qはそれぞれ独立に中性電子を供与する化合物である。zは0から5の整数であり、且つ非化学量論の値を含む。]
Embodiments of the present invention will be described below.
[Lubricating oil composition]
The lubricating oil composition of this embodiment comprises (X) a lubricating base oil, (A) a binuclear organomolybdenum compound represented by the following general formula (I), and (B) a trinuclear organic compound represented by the following general formula (II). An organomolybdenum compound, and (C) an ashless friction modifier having two or more hydroxyl groups in the molecule, the content in terms of molybdenum atom of the component (A), and the content in terms of molybdenum atom of the component (B) The total amount is 0.012% by mass or more based on the total amount of the lubricating oil composition, and the content of the component (C) is less than 2.0% by mass based on the total amount of the lubricating oil composition.
Figure JPOXMLDOC01-appb-C000005

[In Formula (I), R 1 to R 4 represent a hydrocarbon group having 7 to 22 carbon atoms, and R 1 to R 4 may be the same or different. X 1 to X 4 each represents a sulfur atom or an oxygen atom. ]
Mo 3 S k E m L n A p Q z (II)
[In formula (II), each E is independently oxygen or selenium. k is an integer of at least 1, m is 0 or an integer, and k + m is 4 to 10. L is independently an anionic ligand having an organic group containing a carbon atom, the total number of carbon atoms of the organic group in each ligand is 14 or more, and each ligand may be the same, May be different. n is an integer of 1 to 4. A is an anion other than L. p is 0 or an integer. Q is a compound which donates a neutral electron independently. z is an integer from 0 to 5 and includes non-stoichiometric values. ]
<(X)潤滑油基油>
 本実施形態の潤滑油組成物は、(X)潤滑油基油を含む。(X)成分の潤滑油基油としては、鉱油及び/又は合成油が挙げられる。
 鉱油としては、溶剤精製、水添精製等の通常の精製法により得られるパラフィン基系鉱油、中間基系鉱油及びナフテン基系鉱油等;フィッシャートロプシュプロセス等により製造されるワックス(ガストゥリキッドワックス)、鉱油系ワックス等のワックスを異性化することによって製造されるワックス異性化系油等が挙げられる。鉱油は、米国石油協会の基油分類において、グループ3に分類されるものが好ましい。
 合成油としては、炭化水素系合成油、エーテル系合成油等が挙げられる。炭化水素系合成油としては、ポリブテン、ポリイソブチレン、1-オクテンオリゴマー、1-デセンオリゴマー、エチレン-プロピレン共重合体等のα-オレフィンオリゴマー又はその水素化物、アルキルベンゼン、アルキルナフタレン等を挙げることができる。エーテル系合成油としては、ポリオキシアルキレングリコール、ポリフェニルエーテル等が挙げられる。
<(X) Lubricating base oil>
The lubricating oil composition of the present embodiment includes (X) a lubricating base oil. Examples of the lubricating base oil of component (X) include mineral oil and / or synthetic oil.
Mineral oils include paraffin-based mineral oils, intermediate-based mineral oils and naphthenic-based mineral oils obtained by ordinary refining methods such as solvent refining and hydrogenation refining; wax produced by the Fischer-Tropsch process (gas-tri-liquid wax) And wax isomerized oil produced by isomerizing wax such as mineral oil-based wax. The mineral oil is preferably classified as Group 3 in the base oil classification of the American Petroleum Institute.
Examples of synthetic oils include hydrocarbon synthetic oils and ether synthetic oils. Examples of the hydrocarbon-based synthetic oil include polybutene, polyisobutylene, 1-octene oligomer, 1-decene oligomer, α-olefin oligomer such as ethylene-propylene copolymer or the hydride thereof, alkylbenzene, alkylnaphthalene and the like. . Examples of ether synthetic oils include polyoxyalkylene glycol and polyphenyl ether.
 (X)成分は、上述の鉱油及び合成油のうちの一種を用いた単一系でも良いが、鉱油の二種以上を混合してなるもの、合成油の二種以上を混合してなるもの、鉱油及び合成油のそれぞれの一種又は二種以上を混合してなるもののように、混合系であってもよい。 The component (X) may be a single system using one of the above-described mineral oils and synthetic oils, but is a mixture of two or more mineral oils or a mixture of two or more synthetic oils. A mixed system may be used, such as a mixture of one or more of mineral oil and synthetic oil.
 (X)成分は、100℃動粘度が2.5~3.0mm/sであり、かつ、n-d-M環分析による%Cが80%以上であることが好ましい。
 (X)成分の100℃動粘度を2.5mm/s以上とすることにより、潤滑油組成物の蒸発により摩擦係数が経時的に増加することを抑制できる。また、(X)成分の100℃動粘度を3.0mm/s以下とすることにより、高温高せん断粘度(HTHS粘度)を低くして摩擦係数の増加を抑制できる。また、(X)成分のn-d-M環分析による%Cを80%以上とすることにより、潤滑油組成物の蒸発により摩擦係数が経時的に増加することを抑制できるとともに、HTHS粘度を低くして摩擦係数の増加を抑制できる。
 したがって、(X)成分が、100℃動粘度が2.5~3.0mm/sであり、かつ、n-d-M環分析による%Cが80%以上であることにより、摩擦低減効果に優れ、省燃費性を良好にすることができる。
The component (X) preferably has a kinematic viscosity at 100 ° C. of 2.5 to 3.0 mm 2 / s and a% C p by ndM ring analysis of 80% or more.
By setting the 100 ° C. kinematic viscosity of the component (X) to 2.5 mm 2 / s or more, it is possible to suppress the friction coefficient from increasing with time due to evaporation of the lubricating oil composition. Moreover, by setting the 100 ° C. kinematic viscosity of the component (X) to 3.0 mm 2 / s or less, the high-temperature high-shear viscosity (HTHS viscosity) can be lowered to suppress an increase in the friction coefficient. Further, with the (X) component of the n-d-M ring analysis% C p of 80% or more, with the friction coefficient by evaporation of the lubricating oil composition can be prevented from increasing with time, HTHS viscosity It is possible to suppress the increase in the friction coefficient.
Accordingly, the component (X) has a kinematic viscosity at 100 ° C. of 2.5 to 3.0 mm 2 / s, and% C p by ndM ring analysis is 80% or more, thereby reducing friction. Excellent effect and good fuel economy.
 (X)成分の100℃動粘度は、2.6~3.0mm/sであることがより好ましく、2.7~3.0mm/sであることがさらに好ましい。
 (X)成分のn-d-M環分析による%Cは、82%以上であることがより好ましく、82~95%であることがさらに好ましい。
2.6~3.0mm/sであることがより好ましく、2.7~3.0mm/sであることがさらに好ましい。
The 100 ° C. kinematic viscosity of the component (X) is more preferably 2.6 to 3.0 mm 2 / s, and further preferably 2.7 to 3.0 mm 2 / s.
The% C p by ndM ring analysis of the component (X) is more preferably 82% or more, and further preferably 82 to 95%.
It is more preferably 2.6 to 3.0 mm 2 / s, and further preferably 2.7 to 3.0 mm 2 / s.
 (X)成分の含有量は、潤滑油組成物全量基準で60質量%以上であることが好ましく、70~95質量%であることがより好ましく、75質量%以上90質量%以下であることがさらに好ましい。 The content of the component (X) is preferably 60% by mass or more based on the total amount of the lubricating oil composition, more preferably 70 to 95% by mass, and 75% to 90% by mass. Further preferred.
<有機モリブデン化合物>
 本実施形態の潤滑油組成物は、(A)下記一般式(I)に示す二核の有機モリブデン化合物、及び(B)下記一般式(II)に示す三核の有機モリブデン化合物を含む。また、本実施形態の潤滑油組成物は、(A)成分のモリブデン原子換算の含有量と、(B)成分のモリブデン原子換算の含有量との合計が潤滑油組成物全量基準で0.012質量%以上である。
Figure JPOXMLDOC01-appb-C000006

[式(I)中、R~Rは炭素数7~22の炭化水素基を表し、R~Rは、同一であってもよいし、異なっていてもよい。X1~X4は、硫黄原子又は酸素原子を表す。]
 Mo (II)
[式(II)中、Eはそれぞれ独立して酸素又はセレンである。kは少なくとも1の整数であり、mは0又は整数であり、k+mは4~10である。Lはそれぞれ独立に、炭素原子を含有する有機基を有するアニオン性リガンドであり、各リガンドにおける該有機基の炭素原子の合計が14個以上であり、各リガンドは同一であってもよいし、異なっていてもよい。nは1から4の整数である。AはL以外のアニオンである。pは0又は整数である。Qはそれぞれ独立に中性電子を供与する化合物である。zは0から5の整数であり、且つ非化学量論の値を含む。]
<Organic molybdenum compounds>
The lubricating oil composition of this embodiment includes (A) a binuclear organic molybdenum compound represented by the following general formula (I), and (B) a trinuclear organic molybdenum compound represented by the following general formula (II). In the lubricating oil composition of the present embodiment, the sum of the component (A) in terms of molybdenum atoms and the component (B) in terms of molybdenum atoms is 0.012 based on the total amount of the lubricating oil composition. It is at least mass%.
Figure JPOXMLDOC01-appb-C000006

[In Formula (I), R 1 to R 4 represent a hydrocarbon group having 7 to 22 carbon atoms, and R 1 to R 4 may be the same or different. X 1 to X 4 each represents a sulfur atom or an oxygen atom. ]
Mo 3 S k E m L n A p Q z (II)
[In formula (II), each E is independently oxygen or selenium. k is an integer of at least 1, m is 0 or an integer, and k + m is 4 to 10. L is independently an anionic ligand having an organic group containing a carbon atom, the total number of carbon atoms of the organic group in each ligand is 14 or more, and each ligand may be the same, May be different. n is an integer of 1 to 4. A is an anion other than L. p is 0 or an integer. Q is a compound which donates a neutral electron independently. z is an integer from 0 to 5 and includes non-stoichiometric values. ]
 通常、有機モリブデン化合物と無灰系摩擦低減剤とを併用した場合、有機モリブデン化合物の摩擦低減効果が損なわれ、摩擦係数が増加してしまう。
 しかし、本実施形態の潤滑油組成物は、有機モリブデン化合物として、(A)成分の二核の有機モリブデン化合物と、(B)成分の三核の有機モリブデン化合物とを併用し、かつ、(A)成分のモリブデン原子換算の含有量と、(B)成分のモリブデン原子換算の含有量との合計を潤滑油組成物全量基準で0.012質量%以上とすることにより、後述する(C)無灰系摩擦低減剤との相乗作用により、摩擦係数を飛躍的に低減することを可能としている。
 一方、(A)成分及び(B)成分の何れか一方を含有しない場合、後述する(C)無灰系摩擦低減剤を用いても、有機モリブデン化合物の摩擦低減効果が損なわれ、摩擦係数が増加してしまう。また、(A)成分及び(B)成分を併用しても、(A)成分及び(B)成分の含有量の合計が0.012質量%未満であると、摩擦低減効果のベースとなる有機モリブデン化合物の絶対量が不足して、摩擦係数が増加してしまう。
Usually, when an organic molybdenum compound and an ashless friction reducing agent are used in combination, the friction reducing effect of the organic molybdenum compound is impaired, and the friction coefficient increases.
However, the lubricating oil composition of the present embodiment uses, as the organic molybdenum compound, a binuclear organic molybdenum compound of component (A) and a trinuclear organic molybdenum compound of component (B) in combination, and (A (C) None, which will be described later, by setting the total of the content in terms of molybdenum atoms of the component) and the content in terms of molybdenum atoms of the component (B) to 0.012% by mass or more based on the total amount of the lubricating oil composition. The synergistic action with the ash-based friction reducing agent makes it possible to dramatically reduce the friction coefficient.
On the other hand, when not containing either (A) component or (B) component, even if it uses the (C) ashless friction reducing agent mentioned later, the friction reduction effect of an organic molybdenum compound is impaired, and a friction coefficient is It will increase. Moreover, even if it uses together (A) component and (B) component, when the sum total of content of (A) component and (B) component is less than 0.012 mass%, the organic which becomes the base of a friction reduction effect The absolute amount of molybdenum compound is insufficient and the friction coefficient increases.
 (A)成分のモリブデン原子換算の含有量と、(B)成分のモリブデン原子換算の含有量との合計は、潤滑油組成物全量基準で0.012~0.125質量%とすることが好ましく、0.015~0.120質量%とすることがより好ましく、0.020~0.080質量%とすることがさらに好ましく、0.025~0.055質量%とすることが特に好ましい。(A)成分及び(B)成分の含有量の合計を当該範囲とすることにより、後述する(C)成分との相乗作用による摩擦低減効果をより良好にすることができるとともに、低温環境で(A)成分及び(B)成分の影響による白濁や沈殿を抑制できる。 The total of the content of the component (A) in terms of molybdenum atom and the content of the component (B) in terms of molybdenum atom is preferably 0.012 to 0.125% by mass based on the total amount of the lubricating oil composition. 0.015 to 0.120% by mass is more preferable, 0.020 to 0.080% by mass is further preferable, and 0.025 to 0.055% by mass is particularly preferable. By making the total content of the component (A) and the component (B) within this range, the friction reduction effect due to the synergistic action with the component (C) described later can be improved, and in a low temperature environment ( White turbidity and precipitation due to the influence of component A) and component (B) can be suppressed.
 また、(A)成分のモリブデン原子換算の含有量が潤滑油組成物全量基準で0.002~0.100質量%であり、(B)成分のモリブデン原子換算の含有量が潤滑油組成物全量基準で0.001~0.030質量%であることが好ましい。
 (A)成分及び(B)成分の含有量を当該範囲とすることにより、後述する(C)成分との相乗作用による摩擦低減効果をより良好にすることができるとともに、低温環境で(A)成分及び(B)成分の影響による白濁や沈殿を抑制できる。
 (A)成分のモリブデン原子換算の含有量は、潤滑油組成物全量基準で0.005~0.080質量%であることがより好ましく、0.010~0.050質量%であることがさらに好ましい。
 (B)成分のモリブデン原子換算の含有量は、潤滑油組成物全量基準で0.002~0.025質量%であることがより好ましく、0.005~0.020質量%であることがさらに好ましい。
 また、[(A)成分のモリブデン原子換算の含有量/(B)成分のモリブデン原子換算の含有量]は、0.1~25.0であることが好ましく、0.1~7.5であることがより好ましく、1.0~5.0であることがさらに好ましく、1.5~3.0であることがよりさらに好ましい。
The content of the component (A) in terms of molybdenum atoms is 0.002 to 0.100% by mass based on the total amount of the lubricating oil composition, and the content in terms of molybdenum atoms of the component (B) is the total amount of lubricating oil composition. The amount is preferably 0.001 to 0.030% by mass.
By setting the content of the component (A) and the component (B) within the above range, the friction reduction effect due to the synergistic action with the component (C) described later can be improved, and in a low temperature environment (A) White turbidity and precipitation due to the influence of the component and the component (B) can be suppressed.
The content of component (A) in terms of molybdenum atoms is more preferably 0.005 to 0.080% by mass, and more preferably 0.010 to 0.050% by mass, based on the total amount of the lubricating oil composition. preferable.
The content of component (B) in terms of molybdenum atoms is more preferably 0.002 to 0.025% by mass, and more preferably 0.005 to 0.020% by mass, based on the total amount of the lubricating oil composition. preferable.
[Content of the component (A) in terms of molybdenum atom / Content of the component (B) in terms of molybdenum atom] is preferably 0.1 to 25.0, and preferably 0.1 to 7.5. More preferably, it is more preferably 1.0 to 5.0, and still more preferably 1.5 to 3.0.
 一般式(I)において、R~Rは炭素数7~22の炭化水素基を表し、R~Rは、同一であってもよいし、異なっていてもよい。R~Rの各炭素数が6以下になると油溶性が悪く、23以上になると融点が高くなりハンドリングが悪くなるとともに摩擦低減能が低くなる。上記観点から、R~Rの各炭素数は、好ましくは7~18、さらに好ましくは7~14、特に好ましくは8~13である。また、R~Rの炭素数の合計は34~80であることが好ましく、36~60であることがより好ましく、38~54であることがさらに好ましい。
 R~Rの炭化水素基としては、アルキル基、アルケニル基、アルキルアリール基、シクロアルキル基、シクロアルケニル基が挙げられ、分枝鎖または直鎖のアルキル基又はアルケニル基が好ましく、分枝鎖または直鎖のアルキル基がより好ましい。分枝鎖または直鎖のアルキル基としては、n-オクチル基、2-エチルヘキシル基、イソノニル基、n-デシル基、イソデシル基、ドデシル基、トリデシル基、イソトリデシル基等が挙げられる。
 また、基油への溶解性、貯蔵安定性及び摩擦低減能の観点から、一般式(I)に示す二核の有機モリブデン化合物は、R及びRが同一のアルキル基、R及びRが同一のアルキル基であって、R及びRのアルキル基とR及びRのアルキル基が異なることが好ましい。
In the general formula (I), R 1 to R 4 each represent a hydrocarbon group having 7 to 22 carbon atoms, and R 1 to R 4 may be the same or different. When the number of carbon atoms of R 1 to R 4 is 6 or less, the oil solubility is poor, and when it is 23 or more, the melting point becomes high, handling becomes worse, and the friction reducing ability is lowered. From the above viewpoint, the number of carbon atoms of R 1 to R 4 is preferably 7 to 18, more preferably 7 to 14, and particularly preferably 8 to 13. The total number of carbon atoms of R 1 to R 4 is preferably 34 to 80, more preferably 36 to 60, and still more preferably 38 to 54.
Examples of the hydrocarbon group for R 1 to R 4 include an alkyl group, an alkenyl group, an alkylaryl group, a cycloalkyl group, and a cycloalkenyl group, and a branched or straight chain alkyl group or alkenyl group is preferable. A chain or straight chain alkyl group is more preferred. Examples of the branched or straight chain alkyl group include n-octyl group, 2-ethylhexyl group, isononyl group, n-decyl group, isodecyl group, dodecyl group, tridecyl group, isotridecyl group and the like.
In addition, from the viewpoint of solubility in base oil, storage stability and friction reducing ability, the binuclear organomolybdenum compound represented by the general formula (I) is an alkyl group in which R 1 and R 2 are the same, R 3 and R It is preferable that 4 is the same alkyl group, and the alkyl groups of R 1 and R 2 are different from the alkyl groups of R 3 and R 4 .
 また、一般式(I)において、X~Xは硫黄原子又は酸素原子を表し、X~Xは同一であってもよいし、異なっていてもよい。
 X~Xとして硫黄原子及び酸素原子を含む場合、好ましくは硫黄原子と酸素原子の比が、硫黄原子/酸素原子=1/3~3/1、より好ましくは1/2~3/1、さらに好ましくは1.5/2.5~3/1である。X~Xの硫黄原子と酸素原子の比を前述の範囲とすることにより、耐腐食性や、潤滑油基油に対する溶解性の面で良好な性能が得られる。
 また、X~Xの全てが硫黄原子又は酸素原子であってもよい。
In the general formula (I), X 1 to X 4 represent a sulfur atom or an oxygen atom, and X 1 to X 4 may be the same or different.
When X 1 to X 4 contain a sulfur atom and an oxygen atom, the ratio of the sulfur atom to the oxygen atom is preferably sulfur atom / oxygen atom = 1/3 to 3/1, more preferably 1/2 to 3/1. More preferably, it is 1.5 / 2.5 to 3/1. By setting the ratio of sulfur atoms to oxygen atoms in X 1 to X 4 within the above range, good performance can be obtained in terms of corrosion resistance and solubility in lubricating base oil.
Further, all of X 1 to X 4 may be sulfur atoms or oxygen atoms.
 (B)成分の三核の有機モリブデン化合物は、上記一般式(II)に示すものである。
 一般式(II)において、Lはそれぞれ独立に、炭素原子を含有する有機基を有するアニオン性リガンドであり、各リガンドにおける該有機基の炭素原子の合計が14個以上である。各リガンドは同一であってもよいし、異なっていてもよいが、同一であることが好ましい。各リガンドにおける有機基の炭素原子の合計が13個以下であると、基油への溶解性が低下してしまう。各リガンドにおける該有機基の炭素原子の合計は、14~50個であることが好ましく、16~30個であることがより好ましく、18~24個であることがさらに好ましい。
 アニオン性リガンドは、モノアニオン性リガンド(1価のアニオン性リガンド)であることが好ましい。
The (B) component trinuclear organomolybdenum compound is represented by the above general formula (II).
In the general formula (II), each L is independently an anionic ligand having an organic group containing a carbon atom, and the total number of carbon atoms of the organic group in each ligand is 14 or more. Each ligand may be the same or different, but is preferably the same. If the total number of carbon atoms of the organic group in each ligand is 13 or less, the solubility in the base oil will be reduced. The total number of carbon atoms of the organic group in each ligand is preferably 14 to 50, more preferably 16 to 30, and even more preferably 18 to 24.
The anionic ligand is preferably a monoanionic ligand (monovalent anionic ligand).
 各リガンドは、例えば、下記一般式(III-A)~(III-D)に示すリガンドから選択される何れかであることが好ましい。
Figure JPOXMLDOC01-appb-C000007

[式(III-A)、(III-B)、(III-C)及び(III-D)中、X31~X37及びYは、それぞれ独立して、酸素原子又は硫黄原子である。また、式(III-A)、(III-B)、(III-C)及び(III-D)中、R31~R35はそれぞれ独立した有機基であり、R31~R35は同一であっても異なっていてもよい。R31~R33の有機基の炭素数は14個以上である。R34の有機基の炭素数と、R35の有機基の炭素数との合計は14個以上である。]
 R31~R33の有機基の炭素数は14~50個であることが好ましく、16~30個であることがより好ましく、18~24個であることがさらに好ましい。R34の有機基の炭素数と、R35の有機基の炭素数との合計は14~50個であることが好ましく、16~30個であることがより好ましく、18~24個であることがさらに好ましい。また、R34の有機基の炭素数及びR35の有機基の炭素数は、それぞれ7~30個であることが好ましく、7~20個であることがより好ましく、8~13個であることがさらに好ましい。
 R34の有機基と、R35の有機基とは、同一であっても異なっていてもよいが、異なることが好ましい。また、R34の有機基の炭素数と、R35の有機基の炭素数とは、同一であっても異なっていてもよいが、異なることが好ましい。
Each ligand is preferably any one selected from ligands represented by the following general formulas (III-A) to (III-D), for example.
Figure JPOXMLDOC01-appb-C000007

[In the formulas (III-A), (III-B), (III-C) and (III-D), X 31 to X 37 and Y are each independently an oxygen atom or a sulfur atom. In the formulas (III-A), (III-B), (III-C) and (III-D), R 31 to R 35 are independent organic groups, and R 31 to R 35 are the same. It may or may not be. The organic group of R 31 to R 33 has 14 or more carbon atoms. And carbon number of the organic group R 34, the sum of the carbon number of the organic group for R 35 is 14 or more. ]
The organic group of R 31 to R 33 preferably has 14 to 50 carbon atoms, more preferably 16 to 30 carbon atoms, and still more preferably 18 to 24 carbon atoms. The total of the carbon number of the organic group of R 34 and the carbon number of the organic group of R 35 is preferably 14 to 50, more preferably 16 to 30, and more preferably 18 to 24. Is more preferable. The number of carbon atoms in the organic group of R 34 and the number of carbon atoms in the organic group of R 35 are each preferably 7 to 30, more preferably 7 to 20, and more preferably 8 to 13. Is more preferable.
The organic group of R 34 and the organic group of R 35 may be the same or different, but are preferably different. Moreover, the carbon number of the organic group of R 34 and the carbon number of the organic group of R 35 may be the same or different, but are preferably different.
 一般式(II)において、リガンドは、上記一般式(III-D)に示すリガンドを含むことが好ましい。
 また、一般式(II)において、全てのリガンドは同一であることが好ましく、全てのリガンドが上記一般式(III-D)に示すリガンドであることがより好ましい。
In the general formula (II), the ligand preferably includes a ligand represented by the above general formula (III-D).
In the general formula (II), it is preferable that all the ligands are the same, and it is more preferable that all the ligands are the ligands represented by the above general formula (III-D).
 好ましくは、上記有機基は、アルキル基、アリール基、置換アリール基及びエーテル基等のヒドロカルビル基である。より好ましくは、それぞれのリガンドは、同一のヒドロカルビル基を有する。 Preferably, the organic group is a hydrocarbyl group such as an alkyl group, an aryl group, a substituted aryl group, and an ether group. More preferably, each ligand has the same hydrocarbyl group.
 「ヒドロカルビル」なる用語は、リガンドの残部に直接結合する炭素原子を有する置換基を示し、本実施形態の範囲内において、その特性が主にヒドロカルビルである。かかる置換基は、以下のものが挙げられる。
1.炭化水素置換基
 炭化水素置換基としては、アルキル、アルケニル等の脂肪族の置換基、シクロアルキル、シクロアルケニル等の脂環式の置換基、芳香族基、脂肪族基及び脂環式基に置換された芳香核、環がリガンド中のもう一つの箇所を介して完結している環式基(即ち、任意の2つの示された置換基がともに脂環式基を形成してもよい)が挙げられる。
2.置換された炭化水素置換基
 置換された炭化水素置換基としては、上記炭化水素置換基をヒドロカルビルの特性を変化させない非炭化水素基で置換したものが挙げられる。非炭化水素基としては、例えば、特にクロロ、フルオロ等のハロゲン基、アミノ基、アルコキシ基、メルカプト基、アルキルメルカプト基、ニトロ基、ニトロソ基、スルホキシ基等が挙げられる。
The term “hydrocarbyl” refers to a substituent having a carbon atom that is directly bonded to the remainder of the ligand, and within the scope of this embodiment, the property is primarily hydrocarbyl. Such substituents include the following.
1. Hydrocarbon substituents As hydrocarbon substituents, substituted with aliphatic substituents such as alkyl and alkenyl, alicyclic substituents such as cycloalkyl and cycloalkenyl, aromatic groups, aliphatic groups and alicyclic groups An aromatic nucleus, a cyclic group in which the ring is completed via another location in the ligand (ie any two of the indicated substituents may together form an alicyclic group) Can be mentioned.
2. Substituted hydrocarbon substituents Examples of substituted hydrocarbon substituents include those in which the hydrocarbon substituent is substituted with a non-hydrocarbon group that does not change the properties of the hydrocarbyl. Examples of the non-hydrocarbon group include halogen groups such as chloro and fluoro, amino groups, alkoxy groups, mercapto groups, alkyl mercapto groups, nitro groups, nitroso groups, and sulfoxy groups.
 好ましいリガンドは、アルキルキサントゲン酸塩、カルボン酸塩、ジアルキルジチオカルバミン酸塩、及びこれらの混合物を含む。最も好ましいものは、ジアルキルジチオカルバミン酸塩である。 Preferred ligands include alkyl xanthates, carboxylates, dialkyldithiocarbamates, and mixtures thereof. Most preferred is a dialkyldithiocarbamate.
 一般式(II)中、E(酸素又はセレン)は、例えば、後述するコアにおいて硫黄を置換し得るものである。k+mは4~7であることが好ましい。
 また、一般式(II)中のQとしては、水、アミン、アルコール、エーテル及びホスフィン等が挙げられる。Qはそれぞれ同一であっても異なっていてもよいが、それぞれ同一であることが好ましい。中性電子供与化合物Qは、三核モリブデン化合物上における空の配位を満たすために存在する。
 また、一般式(II)中のAのアニオンは、1価のアニオンであっても、2価のアニオンであってもよい。Aの具体例としては、ジスルフィド、ヒドロキシド、アルコキシド、アミド及びチオシアネート又はそれらの誘導体が挙げられる。
In the general formula (II), E (oxygen or selenium) is, for example, capable of substituting sulfur in the core described later. k + m is preferably 4 to 7.
Examples of Q in the general formula (II) include water, amine, alcohol, ether and phosphine. Qs may be the same or different, but are preferably the same. The neutral electron donating compound Q is present to satisfy the empty coordination on the trinuclear molybdenum compound.
Further, the anion of A in the general formula (II) may be a monovalent anion or a divalent anion. Specific examples of A include disulfide, hydroxide, alkoxide, amide and thiocyanate or derivatives thereof.
 一般式(II)の一実施形態は、kは4~7であり、nは1又は2のいずれかであり、Lはモノアニオン性リガンドであり、pはAにおけるアニオン電荷をベースとする化合物に電気的中性を付与する整数であり、かつ、m及びzのそれぞれが0である。
  また、一般式(II)のさらなる実施態様は、kが4~7であり、Lがモノアニオン性リガンドであり、nが4であり、かつ、p、m及びzのそれぞれが0である。
In one embodiment of general formula (II), k is 4 to 7, n is either 1 or 2, L is a monoanionic ligand, and p is an anion charge based compound in A Is an integer that imparts electrical neutrality to m, and each of m and z is 0.
In a further embodiment of general formula (II), k is 4-7, L is a monoanionic ligand, n is 4, and each of p, m and z is 0.
 また、一般式(II)の三核の有機モリブデン化合物は、例えば、下記式(IV-A)又は(IV-B)で表されるコアを有する。各コアは、+4の実効電荷(net electrical charge)を有する。これらのコアは、アニオン性リガンド、及び必要に応じて存在するアニオン性リガンド以外のアニオンによって囲まれている。
Figure JPOXMLDOC01-appb-C000008
The trinuclear organomolybdenum compound of the general formula (II) has, for example, a core represented by the following formula (IV-A) or (IV-B). Each core has a net electrical charge of +4. These cores are surrounded by anionic ligands and anions other than the anionic ligands present as needed.
Figure JPOXMLDOC01-appb-C000008
 当業者は、三核モリブデン-硫黄化合物の形成には、例えば、コア中に存在する硫黄及びE原子数に依存して、適切なアニオン性リガンド(L)及び他のアニオン(A)を選択することが必要であろうこと(「E」、「L」及び「A」は一般式(II)の「E」、「L」及び「A」を示す)、即ち、硫黄原子、存在するならE原子、L及び存在するならAにより構成される全アニオン電荷が-4でなければならないことを理解するであろう。三核モリブデン-硫黄化合物は、また、アニオン電荷が-4を超える場合、モリブデン以外のカチオン、例えば、(アルキル)アンモニウム、アミン又はナトリウムを含んでいてもよい。アニオン性リガンド(L)及び他のアニオン(A)の好ましい実施形態は、4個のモノアニオン性のリガンドを有する構成である。
 モリブデン-硫黄コア、例えば、上記(IV-A)及び(IV-B)で表される構造体は、1又は2以上の多座リガンド、即ち、モリブデン原子に結合して、オリゴマーを形成することが可能な官能基を1つより多く有するリガンドにより相互接続(interconnect)させることができる。
One skilled in the art will select the appropriate anionic ligand (L) and other anions (A) for the formation of the trinuclear molybdenum-sulfur compound, depending on, for example, the sulfur and number of E atoms present in the core. ("E", "L" and "A" represent "E", "L" and "A") in general formula (II)), that is, a sulfur atom, E if present. It will be understood that the total anionic charge constituted by the atom, L and A, if present, must be -4. The trinuclear molybdenum-sulfur compound may also contain cations other than molybdenum, such as (alkyl) ammonium, amine or sodium, if the anionic charge exceeds -4. A preferred embodiment of the anionic ligand (L) and other anions (A) is a configuration having four monoanionic ligands.
Molybdenum-sulfur cores, such as the structures represented by (IV-A) and (IV-B) above, bind to one or more polydentate ligands, ie, molybdenum atoms, to form oligomers. Can be interconnected by a ligand having more than one possible functional group.
 三核の有機モリブデン化合物は、例えば、以下の(1)~(3)の手法により調製することができる。(1)~(3)で用いる溶媒は、例えば水性のものであっても有機物のものであってもよい。
(1)適切な溶媒中で、(NHMo13・n(HO)等のモリブデン源(ここで、nは0と2との間で変化し、非化学量論の値を含む)を、テトラアルキルチウラムジスルフィド等の適切なリガンド源と反応させる。
(2)適切な溶媒中で、(NHMo13・n(H2O)等のモリブデン源と、テトラアルキルチウラムジスルフィド、ジアルキルジチオカルバミン酸等のリガンド源と、シアン化物イオン、亜硫酸イオン等の硫黄引き抜き剤とを反応させる。
(3)[M’][Mo](ここで、M’は対イオンであり、AはCl、Br、又はI等のハロゲンである)等の三核のモリブデン-硫黄ハロゲン化物塩を、適切な溶媒中でジアルキルジチオカルバミン酸等のリガンド源と反応させる。
The trinuclear organic molybdenum compound can be prepared, for example, by the following methods (1) to (3). The solvent used in (1) to (3) may be, for example, aqueous or organic.
(1) Molybdenum source such as (NH 4 ) 2 Mo 3 S 13 · n (H 2 O) in a suitable solvent, where n varies between 0 and 2, Is reacted with a suitable ligand source such as tetraalkyl thiuram disulfide.
(2) In an appropriate solvent, a molybdenum source such as (NH 4 ) 2 Mo 3 S 13 .n (H 2 O), a ligand source such as tetraalkylthiuram disulfide and dialkyldithiocarbamic acid, a cyanide ion, and sulfurous acid It reacts with a sulfur extracting agent such as ions.
(3) Trinuclear molybdenum-sulfur such as [M ′] 2 [Mo 3 S 7 A 6 ] (where M ′ is a counter ion and A is a halogen such as Cl, Br, or I). The halide salt is reacted with a ligand source such as a dialkyldithiocarbamic acid in a suitable solvent.
 なお、本実施形態の潤滑油組成物は、摩擦低減効果を損なわない範囲であれば、有機モリブデン化合物として、さらに、一核の有機モリブデン化合物を含有していてもよい。
 本実施形態においては、(B)三核の有機モリブデン化合物は、好ましくはジチオカルバミン酸塩化合物であり、例えば三核モリブデンジチオカルバミン酸塩である。特に有効な化合物は、式Mo((アルキル)2dtc)により表されるジアルキルジチオカルバミン酸モリブデン化合物である。
The lubricating oil composition of this embodiment may further contain a mononuclear organic molybdenum compound as the organic molybdenum compound as long as the friction reducing effect is not impaired.
In the present embodiment, the (B) trinuclear organomolybdenum compound is preferably a dithiocarbamate compound, such as a trinuclear molybdenum dithiocarbamate. A particularly effective compound is a molybdenum dialkyldithiocarbamate compound represented by the formula Mo 3 S 7 ((alkyl) 2dtc) 4 .
<(C)無灰摩擦調整剤>
 本実施形態の潤滑油組成物は、(C)成分として、分子内に水酸基を2つ以上有する無灰摩擦調整剤を含み、かつ該(C)成分を潤滑油組成物全量基準で2.0質量%未満含む。
<(C) Ashless friction modifier>
The lubricating oil composition of the present embodiment includes an ashless friction modifier having two or more hydroxyl groups in the molecule as the component (C), and the component (C) is 2.0 based on the total amount of the lubricating oil composition. Contains less than mass%.
 上述したように、通常、有機モリブデン化合物と無灰系摩擦低減剤とを併用した場合、有機モリブデン化合物の摩擦低減効果が損なわれ、摩擦係数が増加してしまう。しかし、本実施形態の潤滑油組成物は、特定の有機モリブデン化合物を特定量含有し、かつ、(C)成分を特定量含有することにより、摩擦係数を飛躍的に低減することを可能としている。
 一方、いわゆる無灰摩擦低減剤であっても、(C)成分の条件を満たさないもの(例えば分子内の水酸基が1つのもの)を用いた場合、有機モリブデン化合物の摩擦低減効果を損ない、摩擦係数を増加させてしまう。また、(C)成分を用いても、含有量が2.0質量%以上となると、有機モリブデン化合物の摩擦低減効果を損ない、摩擦係数が増加に転じてしまう。
As described above, when an organic molybdenum compound and an ashless friction reducing agent are used in combination, the friction reducing effect of the organic molybdenum compound is impaired, and the friction coefficient increases. However, the lubricating oil composition of the present embodiment contains a specific amount of a specific organic molybdenum compound and contains a specific amount of the component (C), so that the friction coefficient can be drastically reduced. .
On the other hand, even if a so-called ashless friction reducing agent is used that does not satisfy the condition of the component (C) (for example, one having one hydroxyl group in the molecule), the friction reducing effect of the organic molybdenum compound is impaired. Increase the coefficient. Moreover, even if it uses (C) component, if content will be 2.0 mass% or more, the friction reduction effect of an organic molybdenum compound will be impaired, and a friction coefficient will start to increase.
 (C)成分の含有量は、潤滑油組成物全量基準で0.1~1.5質量%であることが好ましく、0.3~1.0質量%であることがより好ましい。(C)成分の含有量を当該範囲とすることにより、有機モリブデン化合物との相乗作用による摩擦低減効果をより発揮することができ、省燃費性をより良好にすることができる。 The content of the component (C) is preferably 0.1 to 1.5% by mass, more preferably 0.3 to 1.0% by mass based on the total amount of the lubricating oil composition. By making content of (C) component into the said range, the friction reduction effect by a synergistic action with an organic molybdenum compound can be exhibited more, and fuel-saving property can be made more favorable.
 (C)成分の分子内に水酸基を2つ以上有する無灰摩擦調整剤としては、エステル化合物、アミン化合物、アミド化合物等が挙げられる。これらの中でも、アミン化合物及びアミド化合物が好ましく、その中でもアミン化合物が好ましい。(C)成分の分子内の水酸基の数は、摩擦低減効果及び基油への溶解性の観点から、2~6が好ましく、2がより好ましい。 Examples of the ashless friction modifier having two or more hydroxyl groups in the component (C) molecule include ester compounds, amine compounds, and amide compounds. Among these, amine compounds and amide compounds are preferable, and among them, amine compounds are preferable. The number of hydroxyl groups in the molecule of component (C) is preferably 2 to 6 and more preferably 2 from the viewpoint of friction reduction effect and solubility in base oil.
 (C)成分の一例であるエステル化合物としては、下記一般式(V)のものが挙げられる。
Figure JPOXMLDOC01-appb-C000009
(C) As an ester compound which is an example of a component, the thing of the following general formula (V) is mentioned.
Figure JPOXMLDOC01-appb-C000009
 一般式(V)において、R51は炭素数1~32の炭化水素基である。
 R51の炭化水素基の炭素数は、8~32が好ましく、12~24がより好ましく、16~20がさらに好ましい。
In the general formula (V), R 51 is a hydrocarbon group having 1 to 32 carbon atoms.
The hydrocarbon group of R 51 preferably has 8 to 32 carbon atoms, more preferably 12 to 24 carbon atoms, and still more preferably 16 to 20 carbon atoms.
 R51の炭化水素基としては、アルキル基、アルケニル基、アルキルアリール基、シクロアルキル基及びシクロアルケニル基が挙げられる。これらの中でも、アルキル基又はアルケニル基が好ましく、その中でもアルケニル基が好ましい。
 R51におけるアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基及びテトラコシル基が挙げられ、これらは直鎖状、分岐状、環状のいずれであってもよい。
 また、R51におけるアルケニル基としては、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基,トリデセニル基,テトラデセニル基,ペンタデセニル基,ヘキサデセニル基,ヘプタデセニル基,オクタデセニル基,ノナデセニル基,イコセニル基,ヘンイコセニル基,ドコセニル基,トリコセニル基,テトラコセニル基が挙げられるが、これらは直鎖状、分岐状、環状のいずれであってもよく、二重結合の位置も任意である。
Examples of the hydrocarbon group for R 51 include an alkyl group, an alkenyl group, an alkylaryl group, a cycloalkyl group, and a cycloalkenyl group. Among these, an alkyl group or an alkenyl group is preferable, and an alkenyl group is preferable among them.
Examples of the alkyl group for R 51 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, Examples include pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, henecosyl group, docosyl group, tricosyl group and tetracosyl group, and these may be linear, branched or cyclic .
Examples of the alkenyl group in R 51 include a vinyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, an undecenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group, and a pentadecenyl group. Group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, icocenyl group, henicocenyl group, dococenyl group, tricocenyl group, tetracocenyl group, which may be linear, branched or cyclic The position of the double bond is also arbitrary.
 R52~R56は、それぞれ水素原子又は炭素数1~18の炭化水素基であり、互いに同一でも異なってもよい。R52~R56は、全てが水素原子であることが好ましい。
 R52~R56が炭化水素基の場合、該炭化水素基は、飽和でも不飽和でもよく、脂肪族でも芳香族でもよく、直鎖状でも分岐状でも環状でもよい。
R 52 to R 56 are each a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms, and may be the same as or different from each other. All of R 52 to R 56 are preferably hydrogen atoms.
When R 52 to R 56 are hydrocarbon groups, the hydrocarbon groups may be saturated or unsaturated, may be aliphatic or aromatic, and may be linear, branched or cyclic.
 (C)成分として、上記一般式(V)に示す化合物を用いる場合、R51~R56が全て同一である単一種を用いてもよいし、R51~R56の一部が異なる異種のもの(例えば、R51の炭素数や二重結合の有無が異なるもの)を二種以上混合して用いてもよい。 When the compound represented by the general formula (V) is used as the component (C), a single species in which R 51 to R 56 are all the same may be used, or different types of R 51 to R 56 may be different from each other. things (e.g., those existence of carbon number and double bond of R 51 are different) may be used as a mixture of two or more.
 一般式(V)で示される化合物としては、グリセリンモノラウレート、グリセリンモノステアレート、グリセリンモノミステレート、グリセリンモノオレエート等のグリセリン脂肪酸モノエステルが挙げられる。この中でもグリセリンモノオレエートが好適である。 Examples of the compound represented by the general formula (V) include glycerol fatty acid monoesters such as glycerol monolaurate, glycerol monostearate, glycerol monomysterate, and glycerol monooleate. Of these, glycerin monooleate is preferred.
 (C)成分の一例であるアミン化合物としては、下記一般式(VI)のものが挙げられる。
Figure JPOXMLDOC01-appb-C000010
(C) As an amine compound which is an example of a component, the thing of the following general formula (VI) is mentioned.
Figure JPOXMLDOC01-appb-C000010
 上記一般式(VI)において、R61は炭素数1~32の炭化水素基である。
 R61の炭化水素基の炭素数は、8~32が好ましく、10~24がより好ましく、12~20がさらに好ましい。
In the general formula (VI), R 61 is a hydrocarbon group having 1 to 32 carbon atoms.
The hydrocarbon group of R 61 preferably has 8 to 32 carbon atoms, more preferably 10 to 24, and still more preferably 12 to 20.
 R61の炭化水素基としては、アルキル基、アルケニル基、アルキルアリール基、シクロアルキル基及びシクロアルケニル基が挙げられる。これらの中でも、アルキル基又はアルケニル基が好ましい。
 R61におけるアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基及びテトラコシル基が挙げられ、これらは直鎖状、分岐状、環状のいずれであってもよい。
 また、R61におけるアルケニル基としては、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基,トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基、ヘンイコセニル基、ドコセニル基、トリコセニル基、テトラコセニル基が挙げられるが、これらは直鎖状、分岐状、環状のいずれであってもよく、二重結合の位置も任意である。
Examples of the hydrocarbon group for R 61 include an alkyl group, an alkenyl group, an alkylaryl group, a cycloalkyl group, and a cycloalkenyl group. Among these, an alkyl group or an alkenyl group is preferable.
Examples of the alkyl group for R 61 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, Examples include pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, henecosyl group, docosyl group, tricosyl group and tetracosyl group, and these may be linear, branched or cyclic .
Examples of the alkenyl group in R 61 include vinyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group. Group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, icocenyl group, henicocenyl group, dococenyl group, tricocenyl group, tetracocenyl group, which may be linear, branched or cyclic The position of the double bond is also arbitrary.
 R62~R69は、水素原子、炭素数1~18の炭化水素基、又はエーテル結合若しくはエステル結合を含有する酸素含有炭化水素基であり、互いに同一でも異なってもよいが、水素原子又は炭化水素基が好ましく、その中でも水素原子が好ましい。また、R62~R69は全てが水素原子であることが好ましい。 R 62 to R 69 are a hydrogen atom, a hydrocarbon group having 1 to 18 carbon atoms, or an oxygen-containing hydrocarbon group containing an ether bond or an ester bond, and may be the same or different from each other. A hydrogen group is preferable, and a hydrogen atom is preferable among them. Further, it is preferable that all of R 62 to R 69 are hydrogen atoms.
 R62~R69の炭化水素基としては、飽和でも不飽和でもよく、脂肪族でも芳香族でもよく、直鎖状でも分岐状でも環状でもよく、例えば、アルキル基またはアルケニル基等の脂肪族炭化水素基、又は芳香族炭化水素基が挙げられる。より具体的には、メチル基、エチル基、プロピル基、ブチル基、ブテニル基、ヘキシル基、ヘキセニル基、オクチル基、オクテニル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、デセニル基、ドデシル基、ドデセニル基、トリデシル基、テトラデシル基、テトラデセニル基、ペンタデシル基、ヘキサデシル基、ヘキサデセニル基、ヘプタデシル基、オクタデシル基、オクタデセニル基、ステアリル基、イソステアリル基、オレイル基、リノール基、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、エチルシクロヘキシル基、プロピルシクロヘキシル基、ジメチルシクロヘキシル基、トリメチルシクロヘキシル基等の脂肪族炭化水素基、フェニル基、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、トリメチルフェニル基、ブチルフェニル基、ナフチル基などの芳香族炭化水素基等が挙げられる。
 この炭化水素基としては、炭素数1~18のものが好ましく、炭素数1~12のものがより好ましくは、炭素数1~4のものがよりさらに好ましく、炭素数2のものが最も好ましい。
The hydrocarbon group for R 62 to R 69 may be saturated or unsaturated, may be aliphatic or aromatic, may be linear, branched or cyclic, and is, for example, an aliphatic carbon such as an alkyl group or an alkenyl group. A hydrogen group or an aromatic hydrocarbon group is mentioned. More specifically, methyl group, ethyl group, propyl group, butyl group, butenyl group, hexyl group, hexenyl group, octyl group, octenyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, decenyl group, Dodecyl, dodecenyl, tridecyl, tetradecyl, tetradecenyl, pentadecyl, hexadecyl, hexadecenyl, heptadecyl, octadecyl, octadecenyl, stearyl, isostearyl, oleyl, linole, cyclopentyl, cyclohexyl Group, methylcyclohexyl group, ethylcyclohexyl group, propylcyclohexyl group, dimethylcyclohexyl group, aliphatic hydrocarbon group such as trimethylcyclohexyl group, phenyl group, methylphenyl group, ethylphenyl group, dimethylphenyl group Group, propylphenyl group, trimethylphenyl group, butylphenyl group, an aromatic hydrocarbon group and a naphthyl group.
The hydrocarbon group preferably has 1 to 18 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 1 to 4 carbon atoms, and most preferably 2 carbon atoms.
 エーテル結合又はエステル結合を含有する酸素含有炭化水素基としては、例えば炭素数1~18のものであり、メトキシメチル基、エトキシメチル基、プロポキシメチル基、イソプロポキシメチル基、n-ブトキシメチル基、t-ブトキシメチル基、ヘキシルオキシメチル基、オクチルオキシメチル基、2-エチルヘキシルオキシメチル基、デシルオキシメチル基、ドデシルオキシメチル基、2-ブチルオクチルオキシメチル基、テトラデシルオキシメチル基、ヘキサデシルオキシメチル基、2-ヘキシルドデシルオキシメチル基、アリルオキシメチル基、フェノキシ基、ベンジルオキシ基、メトキシエチル基、メトキシプロピル基、1,1-ビスメトキシプロピル基、1,2-ビスメトキシプロピル基、エトキシプロピル基、(2-メトキシエトキシ)プロピル基、(1-メチル-2-メトキシ)プロピル基、アセチルオキシメチル基、プロパノイルオキシメチル基、ブタノイルオキシメチル基、ヘキサノイルオキシメチル基、オクタノイルオキシメチル基、2-エチルヘキサノイルオキシメチル基、デカノイルオキシメチル基、ドデカノイルオキシメチル基、2-ブチルオクタノイルオキシメチル基、テトラデカノイルオキシメチル基、ヘキサデカノイルオキシメチル基、2-ヘキシルドデカノイルオキシメチル基、ベンゾイルオキシメチル基等が挙げられる。 Examples of the oxygen-containing hydrocarbon group containing an ether bond or an ester bond are those having 1 to 18 carbon atoms, such as a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, an isopropoxymethyl group, an n-butoxymethyl group, t-butoxymethyl group, hexyloxymethyl group, octyloxymethyl group, 2-ethylhexyloxymethyl group, decyloxymethyl group, dodecyloxymethyl group, 2-butyloctyloxymethyl group, tetradecyloxymethyl group, hexadecyloxy group Methyl group, 2-hexyldecyloxymethyl group, allyloxymethyl group, phenoxy group, benzyloxy group, methoxyethyl group, methoxypropyl group, 1,1-bismethoxypropyl group, 1,2-bismethoxypropyl group, ethoxy Propyl group, (2-meth Ciethoxy) propyl group, (1-methyl-2-methoxy) propyl group, acetyloxymethyl group, propanoyloxymethyl group, butanoyloxymethyl group, hexanoyloxymethyl group, octanoyloxymethyl group, 2-ethylhexa Noyloxymethyl group, decanoyloxymethyl group, dodecanoyloxymethyl group, 2-butyloctanoyloxymethyl group, tetradecanoyloxymethyl group, hexadecanoyloxymethyl group, 2-hexyldodecanoyloxymethyl group, benzoyl An oxymethyl group etc. are mentioned.
 また、上記一般式(VI)において、a及びbは、それぞれ1~20の整数を示す。
 a+bは2~20であることが好ましく、2~10であることがより好ましく、2~4であることがさらに好ましく、2であることが最も好ましい。
In the general formula (VI), a and b each represent an integer of 1 to 20.
a + b is preferably 2 to 20, more preferably 2 to 10, still more preferably 2 to 4, and most preferably 2.
 (C)成分として、上記一般式(VI)に示す化合物を用いる場合、R61~R69、a~bが全て同一である単一種を用いてもよいし、R61~R69、a~bの一部が異なる異種のもの(例えば、R61の炭素数や二重結合の有無が異なるもの)を二種以上混合して用いてもよい。 When the compound represented by the general formula (VI) is used as the component (C), a single species in which R 61 to R 69 and ab are all the same may be used, or R 61 to R 69 , a to Two or more different types of b different in part (for example, different in the number of carbon atoms of R 61 and the presence or absence of a double bond) may be used.
 一般式(VI)の具体的な化合物としては、オクチルジエタノールアミン、デシルジエタノールアミン、ドデシルジエタノールアミン、テトラデシルジエタノールアミン、ヘキサデシルジエタノールアミン、ステアリルジエタノールアミン、オレイルジエタノールアミン、ヤシ油ジエタノールアミン、パーム油ジエタノールアミン、ナタネ油ジエタノールアミン、牛脂ジエタノールアミン、等で例示される2-ヒドロキシアルキル基を2つ有するアミン化合物;ポリオキシエチレンオクチルアミン、ポリオキシエチレンデシルアミン、ポリオキシエチレンドデシルアミン、ポリオキシエチレンテトラデシルアミン、ポリオキシエチレンヘキサデシルアミン、ポリオキシエチレンステアリルアミン、ポリオキシエチレンオレイルアミン、ポリオキシエチレン牛脂アミン、ポリオキシエチレンヤシ油アミン、ポリオキシエチレンパーム油アミン、ポリオキシエチレンラウリルアミン、ポリオキシエチレンステアリルアミン、ポリオキシエチレンオレイルアミン、エチレンオキシドプロピレンオキシドステアリルアミン等のポリアルキレンオキサイド構造を2つ有するアミン化合物;が挙げられる。これらの中でも、ステアリルジエタノールアミン及びオレイルジエタノールアミンが好ましい。 Specific compounds of general formula (VI) include octyl diethanolamine, decyl diethanolamine, dodecyl diethanolamine, tetradecyl diethanolamine, hexadecyl diethanolamine, stearyl diethanolamine, oleyl diethanolamine, coconut oil diethanolamine, palm oil diethanolamine, rapeseed oil diethanolamine, beef tallow diethanolamine An amine compound having two 2-hydroxyalkyl groups, such as, polyoxyethylene octylamine, polyoxyethylene decylamine, polyoxyethylene dodecylamine, polyoxyethylene tetradecylamine, polyoxyethylene hexadecylamine, Polyoxyethylene stearylamine, polyoxyethylene oleylamine, polio Has two polyalkylene oxide structures such as polyethylene beef tallow amine, polyoxyethylene palm oil amine, polyoxyethylene palm oil amine, polyoxyethylene laurylamine, polyoxyethylene stearylamine, polyoxyethylene oleylamine, ethylene oxide propylene oxide stearylamine An amine compound; Among these, stearyl diethanolamine and oleyl diethanolamine are preferable.
 (C)成分の一例であるアミド化合物としては、下記一般式(VII)のものが挙げられる。
Figure JPOXMLDOC01-appb-C000011
(C) As an amide compound which is an example of a component, the thing of the following general formula (VII) is mentioned.
Figure JPOXMLDOC01-appb-C000011
 一般式(VII)のR71の実施の形態は、上記一般式(VI)のR61の実施の形態と同様である。また、一般式(VII)のR72~R79、a及びbの実施の形態は、上記一般式(VI)のR62~R69、a及びbの実施の形態と同様である。 The embodiment of R 71 in the general formula (VII) is the same as the embodiment of R 61 in the general formula (VI). Further, the embodiments of R 72 to R 79 , a and b in the general formula (VII) are the same as the embodiments of R 62 to R 69 , a and b in the general formula (VI).
 一般式(VII)の具体的な化合物としては、オクチルジエタノールアミド、デシルジエタノールアミド、ドデシルジエタノールアミド、テトラデシルジエタノールアミド、ヘキサデシルジエタノールアミド、ステアリルジエタノールアミド、オレイルジエタノールアミド、ヤシ油ジエタノールアミド、パーム油ジエタノールアミド、ナタネ油ジエタノールアミド、牛脂ジエタノールアミド、等で例示される2-ヒドロキシアルキル基を2つ有するアミド化合物;ポリオキシエチレンオクチルアミド、ポリオキシエチレンデシルアミド、ポリオキシエチレンドデシルアミド、ポリオキシエチレンテトラデシルアミド、ポリオキシエチレンヘキサデシルアミド、ポリオキシエチレンステアリルアミド、ポリオキシエチレンオレイルアミド、ポリオキシエチレン牛脂アミド、ポリオキシエチレンヤシ油アミド、ポリオキシエチレンパーム油アミド、ポリオキシエチレンラウリルアミド、ポリオキシエチレンステアリルアミド、ポリオキシエチレンオレイルアミド、エチレンオキシドプロピレンオキシドステアリルアミド等のポリアルキレンオキサイド構造を2つ有するアミド化合物;が挙げられる。これらの中でも、オレイルジエタノールアミドが好ましい。 Specific compounds of the general formula (VII) include octyl diethanolamide, decyl diethanolamide, dodecyl diethanolamide, tetradecyl diethanolamide, hexadecyl diethanolamide, stearyl diethanolamide, oleyl diethanolamide, coconut oil diethanolamide, palm oil Amide compounds having two 2-hydroxyalkyl groups exemplified by diethanolamide, rapeseed oil diethanolamide, beef tallow diethanolamide, etc .; polyoxyethylene octylamide, polyoxyethylene decylamide, polyoxyethylene dodecylamide, polyoxyethylene Tetradecyl amide, polyoxyethylene hexadecyl amide, polyoxyethylene stearyl amide, polyoxyethylene oleyl amide, polio Two polyalkylene oxide structures such as polyethylene beef tallow amide, polyoxyethylene palm oil amide, polyoxyethylene palm oil amide, polyoxyethylene lauryl amide, polyoxyethylene stearyl amide, polyoxyethylene oleyl amide, ethylene oxide propylene oxide stearyl amide An amide compound. Among these, oleyl diethanolamide is preferable.
 また、本実施形態の潤滑油組成物は、[(C)成分の含有量/((A)成分のモリブデン原子換算の含有量+(B)成分のモリブデン原子換算の含有量)]が、3.0~50.0であることが好ましく、5.0~40.0であることがより好ましく、10.0~35.0であることがさらに好ましい。かかる比率とすることにより、(A)成分及び(B)成分と、(C)成分との相乗作用による摩擦低減効果をより発揮することができ、省燃費性をより良好にすることができる。 In addition, the lubricating oil composition of the present embodiment has [content of component (C) / (content of component (A) in terms of molybdenum atom + content of component (B) in terms of molybdenum atom)] of 3 It is preferably from 0.0 to 50.0, more preferably from 5.0 to 40.0, and even more preferably from 10.0 to 35.0. By setting it as this ratio, the friction reduction effect by the synergistic action of (A) component and (B) component, and (C) component can be exhibited more, and fuel-saving property can be made more favorable.
 本実施形態の潤滑油組成物は、(A)成分、(B)成分及び(C)成分の含有量の合計が、潤滑油組成物全量基準で、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、87質量%以上であることがさらに好ましい。
 なお、本実施形態の潤滑油組成物は、摩擦低減効果を損なわない範囲であれば、その他の無灰摩擦調整剤を含有していてもよい。
In the lubricating oil composition of the present embodiment, the total content of the component (A), the component (B) and the component (C) is preferably 80% by mass or more based on the total amount of the lubricating oil composition, 85 The content is more preferably at least mass%, and further preferably at least 87 mass%.
The lubricating oil composition of the present embodiment may contain other ashless friction modifiers as long as the friction reducing effect is not impaired.
<(D)粘度指数向上剤>
 本実施形態の潤滑油組成物は、省燃費性をより向上させるために、(D)粘度指数向上剤を含有することが好ましい。
<(D) Viscosity index improver>
The lubricating oil composition of this embodiment preferably contains (D) a viscosity index improver in order to further improve fuel economy.
 (D)成分の粘度指数向上剤としては、櫛形ポリマーが好適に用いられる。「櫛形ポリマー」とは、線状の側鎖が出ている三叉分岐点を主鎖に数多くもつ構造を有するポリマーを指す。
 このような櫛形ポリマーとしては、例えば、(メタ)アクリロイル基、エテニル基、ビニルエーテル基、アリル基等の重合性官能基を有するマクロモノマーに由来する構成単位を少なくとも有する重合体が好ましく挙げられる。ここで、該構成単位が「線状の側鎖」に該当するものである。
 より具体的には、アルキル(メタ)アクリレートや、窒素原子含有系、ハロゲン元素含有系、水酸基含有系、脂肪族炭化水素系、脂環式炭化水素系、芳香族炭化水素系等の各種ビニル単量体に由来する構成単位を含む主鎖に対して、上記重合性官能基を有するマクロモノマーに由来する構成単位を含む側鎖を有する共重合体が好ましく挙げられる。
 マクロモノマーの数平均分子量(Mn)は、好ましくは200~100,000、より好ましくは300~10,000、さらに好ましくは400~50,000以上である。
 (D)成分の粘度指数向上剤としては、ポリ(メタ)アクリレート、オレフィンコポリマー、ポリイソブチレン等を用いてもよい。
As the viscosity index improver of component (D), a comb polymer is preferably used. The “comb polymer” refers to a polymer having a structure in which the main chain has a number of trident branching points with linear side chains.
As such a comb polymer, for example, a polymer having at least a structural unit derived from a macromonomer having a polymerizable functional group such as a (meth) acryloyl group, an ethenyl group, a vinyl ether group, and an allyl group is preferably exemplified. Here, the structural unit corresponds to a “linear side chain”.
More specifically, various vinyl monomers such as alkyl (meth) acrylates, nitrogen atom-containing systems, halogen element-containing systems, hydroxyl group-containing systems, aliphatic hydrocarbon systems, alicyclic hydrocarbon systems, and aromatic hydrocarbon systems. Preferred is a copolymer having a side chain containing a structural unit derived from a macromonomer having the above polymerizable functional group with respect to a main chain containing a structural unit derived from a monomer.
The number average molecular weight (Mn) of the macromonomer is preferably 200 to 100,000, more preferably 300 to 10,000, and still more preferably 400 to 50,000 or more.
As the viscosity index improver for the component (D), poly (meth) acrylate, olefin copolymer, polyisobutylene, or the like may be used.
 (D)成分の粘度指数向上剤は、省燃費性をより向上するとともに、焼付きを防止するために、重量平均分子量が300,000以上であり、かつSSIが10.0以下のものが好ましい。 The (D) component viscosity index improver preferably has a weight average molecular weight of 300,000 or more and an SSI of 10.0 or less in order to further improve fuel economy and prevent seizure. .
 (D)成分の重量平均分子量(Mw)は、300,000~500,000のものがより好ましく、350,000~420,000のものがさらに好ましい。
 なお、本実施形態において「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)測定によって求めたポリスチレン換算の分子量をいうものとする。
 また、エンジン始動時を想定した低温領域下での省燃費性能を良好とする観点から、(D)成分の分子量分布(Mw/Mn)は2.0未満であることが好ましい。なお、(D)成分の分子量分布が小さくなる程、エンジン始動時を想定した低温領域下での省燃費性能は、より向上する傾向にある。
 また、(D)成分の分子量分布の下限値としては特に制限はないが、通常1.01以上、好ましくは1.05以上、より好ましくは1.10以上である。
The weight average molecular weight (Mw) of the component (D) is more preferably 300,000 to 500,000, further preferably 350,000 to 420,000.
In the present embodiment, “weight average molecular weight” refers to a molecular weight in terms of polystyrene determined by gel permeation chromatography (GPC) measurement.
In addition, from the viewpoint of improving the fuel saving performance under a low temperature range assuming the engine starting time, the molecular weight distribution (Mw / Mn) of the component (D) is preferably less than 2.0. In addition, as the molecular weight distribution of the component (D) becomes smaller, the fuel saving performance under a low temperature region assuming the time of starting the engine tends to be further improved.
Further, the lower limit of the molecular weight distribution of the component (D) is not particularly limited, but is usually 1.01 or more, preferably 1.05 or more, more preferably 1.10 or more.
 (D)成分のSSIは8.0以下であることがより好ましく、5.0以下であることがさらに好ましく、2.0未満であることが特に好ましい。重量平均分子量を420,000以下とすることにより、SSIを10.0以下としやすくできる。
 ここで、SSIとは、せん断安定性指数(Shear Stability Index)を意味し、ポリマーの分解に抵抗する能力を示す。SSIが大きいほど、ポリマーはせん断に対して不安定で、より分解されやすいことを示す。
The SSI of the component (D) is more preferably 8.0 or less, further preferably 5.0 or less, and particularly preferably less than 2.0. By setting the weight average molecular weight to 420,000 or less, the SSI can be easily set to 10.0 or less.
Here, SSI means the shear stability index (Shear Stability Index), which indicates the ability to resist polymer degradation. Higher SSI indicates that the polymer is more unstable to shear and more susceptible to degradation.
Figure JPOXMLDOC01-appb-M000012

 SSIは、ポリマーに由来するせん断による粘度低下を示すもので、上記計算式により算出される。式中、Kvは、基油に(D)成分を加えた混合物の100℃動粘度の値である。Kv1は、基油に(D)成分を加えた混合物を、ASTM D6278の手順にしたがって、30サイクル高剪断ボッシュ・ディーゼルインジェクターに通過させた後の100℃動粘度の値である。また、Kvoilは、基油の100℃動粘度の値である。なお、基油としては、100℃動粘度5.35mm/s、粘度指数105のGroup II基油を使用する。
Figure JPOXMLDOC01-appb-M000012

SSI indicates a decrease in viscosity due to shear derived from a polymer, and is calculated by the above formula. In the formula, Kv 0 is the value of the 100 ° C. kinematic viscosity of the mixture obtained by adding the component (D) to the base oil. Kv 1 is the value of the 100 ° C. kinematic viscosity after passing the mixture of base oil plus component (D) through a 30 cycle high shear Bosch diesel injector according to the procedure of ASTM D6278. Kv oil is the value of the 100 ° C. kinematic viscosity of the base oil. As a base oil, a Group II base oil having a kinematic viscosity of 100 ° C. of 5.35 mm 2 / s and a viscosity index of 105 is used.
 (D)成分の含有量は、省燃費性の観点から、潤滑油組成物全量基準で0.2~5.0質量%であることが好ましく、0.4~3.0質量%であることがより好ましく、0.8~2.5質量%であることがさらに好ましい。
 ここで、(D)成分の含有量は、(D)成分の樹脂分のみの含有量を意味し、(D)成分とともに含有する希釈油等の質量は含まれない、固形分基準の含有量である。
The content of the component (D) is preferably 0.2 to 5.0% by mass, and 0.4 to 3.0% by mass based on the total amount of the lubricating oil composition from the viewpoint of fuel economy. Is more preferable, and 0.8 to 2.5% by mass is even more preferable.
Here, the content of the component (D) means the content of only the resin component of the component (D), and does not include the mass of the diluent oil or the like contained with the component (D), based on the solid content It is.
 (D)成分の一例であるポリ(メタ)アクリレートを構成するモノマーはアルキル(メタ)アクリレートであり、好ましくは炭素数1~18の直鎖アルキル基または炭素数3~34の分岐アルキル基のアルキル(メタ)アクリレートである。
 (E)ポリ(メタ)アクリレートを構成する好ましいモノマーとして、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、テトラ(メタ)アクリレート、ヘキサ(メタ)アクリレート、オクタデシル(メタ)アクリレートなどが挙げられ、これらモノマーを2種類以上使用してコポリマーとしてもよい。これらモノマーのアルキル基は直鎖状でもよいし、分岐鎖状のものでもよい。
 また、炭素数3~34の分岐アルキル基を有するアルキル(メタ)アクリレートとしては、イソプロピル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、3,5,5-トリメチルヘキシル(メタ)アクリレート、2-ブチルオクチル(メタ)アクリレート、2-ヘキシルデシル(メタ)アクリレート、2-オクチルドデシル(メタ)アクリレート、2-デシルテトラデシル(メタ)アクリレート、2-ドデシルヘキサデシル(メタ)アクリレート、2-テトラデシルオクタデシル(メタ)アクリレートが挙げられる。
The monomer constituting the poly (meth) acrylate which is an example of the component (D) is an alkyl (meth) acrylate, preferably an alkyl having a linear alkyl group having 1 to 18 carbon atoms or a branched alkyl group having 3 to 34 carbon atoms. (Meth) acrylate.
(E) As a preferable monomer constituting poly (meth) acrylate, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) ) Acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, tetra (meth) acrylate, hexa (meth) acrylate , Octadecyl (meth) acrylate, and the like. Two or more of these monomers may be used as a copolymer. The alkyl group of these monomers may be linear or branched.
Examples of the alkyl (meth) acrylate having a branched alkyl group having 3 to 34 carbon atoms include isopropyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 3,5,5-trimethylhexyl (meth) acrylate, 2- Butyloctyl (meth) acrylate, 2-hexyldecyl (meth) acrylate, 2-octyldodecyl (meth) acrylate, 2-decyltetradecyl (meth) acrylate, 2-dodecylhexadecyl (meth) acrylate, 2-tetradecyloctadecyl (Meth) acrylate is mentioned.
 本実施形態の潤滑油組成物は、(A)成分、(B)成分、(C)成分及び(D)成分の含有量の合計が、潤滑油組成物全量基準で、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 In the lubricating oil composition of the present embodiment, the total content of the component (A), the component (B), the component (C), and the component (D) is 80% by mass or more based on the total amount of the lubricating oil composition. It is preferably 85% by mass or more, and more preferably 90% by mass or more.
<任意添加成分>
 本実施形態の潤滑油組成物は、任意添加成分として、流動点降下剤、ジアルキルジチオリン酸亜鉛、酸化防止剤、金属系清浄剤及びその他の無灰系清浄剤から選ばれる1種以上を含有してもよい。
 これら任意添加成分の合計含有量は、潤滑油組成物全量基準で0.1~15質量%程度である。
<Optional components>
The lubricating oil composition of the present embodiment contains at least one selected from a pour point depressant, a zinc dialkyldithiophosphate, an antioxidant, a metallic detergent and other ashless detergent as an optional additive component. May be.
The total content of these optional additives is about 0.1 to 15% by mass based on the total amount of the lubricating oil composition.
<潤滑油組成物の物性>
 本実施形態の潤滑油組成物は、低温~高温の広い温度範囲の摩擦低減の観点から、動粘度、粘度指数、HTHS粘度(高温高せん断粘度)、せん断試験後の動粘度の変化率及びNOACK値が以下の範囲であることが好ましい。
<Physical properties of lubricating oil composition>
The lubricating oil composition of the present embodiment has a kinematic viscosity, a viscosity index, an HTHS viscosity (high temperature high shear viscosity), a rate of change in kinematic viscosity after a shear test, and NOACK from the viewpoint of reducing friction in a wide temperature range from low temperature to high temperature. The value is preferably in the following range.
 80℃動粘度は、省燃費性の観点から、5~9mm/sであることが好ましく、6~8mm/sであることがより好ましい。120℃動粘度は、高温領域において油圧を確保する観点から、3~5mm/sであることが好ましく、3.5~4.5mm/sであることがより好ましい。
 粘度指数は、250~340であることが好ましく、270~320であることがより好ましい。
 動粘度及び粘度指数は、JIS K2283:2000に準拠して測定した。
The 80 ° C. kinematic viscosity is preferably 5 to 9 mm 2 / s, and more preferably 6 to 8 mm 2 / s, from the viewpoint of fuel economy. The 120 ° C. kinematic viscosity is preferably 3 to 5 mm 2 / s, and more preferably 3.5 to 4.5 mm 2 / s, from the viewpoint of securing oil pressure in a high temperature region.
The viscosity index is preferably 250 to 340, and more preferably 270 to 320.
The kinematic viscosity and the viscosity index were measured according to JIS K2283: 2000.
 80℃HTHS粘度は、省燃費性の観点から、3.7~4.6mPa・sであることが好ましく、4.0~4.3mPa・sであることがより好ましい。100℃HTHS粘度は、2.7~3.6mPa・sであることが好ましく、3.0~3.3mPa・sであることがより好ましい。150℃HTHS粘度は、高温高せん断領域において油膜を確保する観点から、1.5~2.3mPa・sであることが好ましく、1.7~2.0mPa・sであることがより好ましい。
 HTHS粘度は、ASTM D4683及びASTM D6616に準拠して、TBS粘度計(Tapered Bearing Simulator Viscometer)を用い、せん断速度10/s、回転数(モーター)3000rpm、間隔(ローターとステーターとの間隔)3μmの条件で測定した。
The 80 ° C. HTHS viscosity is preferably 3.7 to 4.6 mPa · s, and more preferably 4.0 to 4.3 mPa · s, from the viewpoint of fuel economy. The 100 ° C. HTHS viscosity is preferably 2.7 to 3.6 mPa · s, more preferably 3.0 to 3.3 mPa · s. The 150 ° C. HTHS viscosity is preferably 1.5 to 2.3 mPa · s, and more preferably 1.7 to 2.0 mPa · s, from the viewpoint of securing an oil film in a high temperature and high shear region.
The HTHS viscosity was measured in accordance with ASTM D4683 and ASTM D6616 using a TBS viscometer (Tapered Bearing Simulator Viscometer), a shear rate of 10 6 / s, a rotation speed (motor) of 3000 rpm, and an interval (interval between the rotor and the stator) of 3 μm. It measured on condition of this.
 JPI-5S-29に準拠して測定した、せん断試験後の動粘度の変化率は2.00%以下であることが好ましく、1.00%以下であることがより好ましい。せん断試験後の動粘度の変化率は、より具体的には、実施例に記載の手法により測定できる。 The rate of change in kinematic viscosity after the shear test, measured according to JPI-5S-29, is preferably 2.00% or less, and more preferably 1.00% or less. More specifically, the rate of change in kinematic viscosity after the shear test can be measured by the method described in the Examples.
 ASTM D5800に準拠して測定した、250℃1時間のNOACK値は、20~50であることが好ましく、30~40であることがより好ましい。 The NOACK value at 250 ° C. for 1 hour, measured according to ASTM D5800, is preferably 20 to 50, and more preferably 30 to 40.
<潤滑油組成物の用途>
 本実施形態の潤滑油組成物の用途は特に限定されないが、四輪自動車、二輪自動車等の各種の内燃機関用に好適に使用できる。内燃機関としては、ガソリンエンジン、ディーゼルエンジン、ジメチルエーテルを燃料とするエンジン、ガスエンジン等が挙げられる。
<Use of lubricating oil composition>
Although the use of the lubricating oil composition of the present embodiment is not particularly limited, it can be suitably used for various internal combustion engines such as four-wheeled vehicles and two-wheeled vehicles. Examples of the internal combustion engine include a gasoline engine, a diesel engine, an engine using dimethyl ether as a fuel, a gas engine, and the like.
[内燃機関の摩擦低減方法]
 本実施形態の内燃機関の摩擦低減方法は、内燃機関に、上述した本実施形態の潤滑油組成物を添加するものである。
 本実施形態の内燃機関の摩擦低減方法によれば、(A)成分、(B)成分及び(C)成分の相乗作用により、飛躍的に摩擦低減効果を向上することができ、省燃費性を良好にすることができる。
[Method for reducing friction of internal combustion engine]
The friction reducing method for an internal combustion engine according to the present embodiment is to add the above-described lubricating oil composition according to the present embodiment to the internal combustion engine.
According to the friction reducing method for an internal combustion engine of the present embodiment, the friction reducing effect can be dramatically improved by the synergistic action of the component (A), the component (B), and the component (C). Can be good.
[潤滑油組成物の製造方法]
 本実施形態の潤滑油組成物の製造方法は、
 (X)潤滑油基油と、
 (A)下記一般式(I)に示す二核の有機モリブデン化合物と、
 (B)下記一般式(II)に示す三核の有機モリブデン化合物と、
 (C)分子内に水酸基を2つ以上有する無灰摩擦調整剤とを混合する工程を有し、
 前記(A)成分のモリブデン原子換算の含有量と、前記(B)成分のモリブデン原子換算の含有量との合計が潤滑油組成物全量基準で0.012質量%以上となるように、かつ、
 前記(C)成分の含有量が潤滑油組成物全量基準で2.0質量%未満となるように前記混合工程を行うものである。
Figure JPOXMLDOC01-appb-C000013

[式(I)中、R~Rは炭素数7~22の炭化水素基を表し、R~Rは、同一であってもよいし、異なっていてもよい。X1~X4は、硫黄原子又は酸素原子を表す。]
 Mo (II)
[式(II)中、Eはそれぞれ独立して酸素又はセレンである。kは少なくとも1の整数であり、mは0又は整数であり、k+mは4~10である。Lはそれぞれ独立に、炭素原子を含有する有機基を有するアニオン性リガンドであり、各リガンドにおける該有機基の炭素原子の合計が14個以上であり、各リガンドは同一であってもよいし、異なっていてもよい。nは1から4の整数である。AはL以外のアニオンである。pは0又は整数である。Qはそれぞれ独立に中性電子を供与する化合物である。zは0から5の整数であり、且つ非化学量論の値を含む。]
[Method for producing lubricating oil composition]
The manufacturing method of the lubricating oil composition of the present embodiment,
(X) a lubricating base oil;
(A) a dinuclear organomolybdenum compound represented by the following general formula (I):
(B) a trinuclear organic molybdenum compound represented by the following general formula (II):
(C) having a step of mixing with an ashless friction modifier having two or more hydroxyl groups in the molecule;
The sum of the content of the component (A) in terms of molybdenum atoms and the content of the component (B) in terms of molybdenum atoms is 0.012% by mass or more based on the total amount of the lubricating oil composition, and
The mixing step is performed so that the content of the component (C) is less than 2.0% by mass based on the total amount of the lubricating oil composition.
Figure JPOXMLDOC01-appb-C000013

[In Formula (I), R 1 to R 4 represent a hydrocarbon group having 7 to 22 carbon atoms, and R 1 to R 4 may be the same or different. X 1 to X 4 each represents a sulfur atom or an oxygen atom. ]
Mo 3 S k E m L n A p Q z (II)
[In formula (II), each E is independently oxygen or selenium. k is an integer of at least 1, m is 0 or an integer, and k + m is 4 to 10. L is independently an anionic ligand having an organic group containing a carbon atom, the total number of carbon atoms of the organic group in each ligand is 14 or more, and each ligand may be the same, May be different. n is an integer of 1 to 4. A is an anion other than L. p is 0 or an integer. Q is a compound which donates a neutral electron independently. z is an integer from 0 to 5 and includes non-stoichiometric values. ]
 本実施形態の潤滑油組成物の製造方法によれば、摩擦低減効果を飛躍的に向上することができ、省燃費性を良好にすることができる潤滑油組成物を簡易に製造することができる。 According to the manufacturing method of the lubricating oil composition of the present embodiment, the lubricating oil composition capable of dramatically improving the friction reduction effect and improving fuel economy can be easily manufactured. .
 次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
1.実施例及び比較例の潤滑油組成物の調製
 表1~6の組成で実施例及び比較例の潤滑油組成物を調製した。潤滑油組成物の調製には以下の材料を用いた。
<(X)成分の潤滑油基油>
[潤滑油基油1]
 GroupIII、70N水素化精製基油、100℃動粘度:2.9mm/S、粘度指数:121、n-d-M環分析による%C:84.0%
[潤滑油基油2]
 GroupII、70N水素化精製基油、100℃動粘度:2.9mm/S、粘度指数:105、n-d-M環分析による%C:72.5%
[潤滑油基油3]
 GroupIII、70N水素化精製基油、100℃動粘度:3.1mm/S、粘度指数:123、n-d-M環分析による%C:84.3%
[潤滑油基油4]
 GroupII、60N水素化精製基油、100℃動粘度:2.4mm/S、粘度指数:115、n-d-M環分析による%C:80.8%
1. Preparation of Lubricating Oil Compositions of Examples and Comparative Examples Lubricating oil compositions of Examples and Comparative Examples were prepared with the compositions shown in Tables 1 to 6. The following materials were used for the preparation of the lubricating oil composition.
<(X) Component Lubricating Base Oil>
[Lubricant base oil 1]
Group III, 70N hydrorefined base oil, 100 ° C. kinematic viscosity: 2.9 mm 2 / S, viscosity index: 121,% C p by ndM ring analysis: 84.0%
[Lubricant base oil 2]
Group II , 70N hydrorefined base oil, 100 ° C. kinematic viscosity: 2.9 mm 2 / S, viscosity index: 105,% C p by ndM ring analysis: 72.5%
[Lube base oil 3]
Group III, 70N hydrorefined base oil, 100 ° C. kinematic viscosity: 3.1 mm 2 / S, viscosity index: 123,% C p by ndM ring analysis: 84.3%
[Lubricant base oil 4]
Group II , 60N hydrorefined base oil, 100 ° C. kinematic viscosity: 2.4 mm 2 / S, viscosity index: 115,% C p by ndM ring analysis: 80.8%
<(A)成分の二核の有機モリブデン化合物>
[有機モリブデン化合物1]
 R~Rそれぞれの炭素数が8又は13、R~Rの炭素数の合計が42であり、X~Xが酸素原子である一般式(I)の二核の有機モリブデン化合物。モリブデン含有量10.0質量%、硫黄含有量11.5質量%。
<(A) Component Binuclear Organic Molybdenum Compound>
[Organic molybdenum compound 1]
Binuclear organomolybdenum of the general formula (I), wherein R 1 to R 4 each have 8 or 13 carbon atoms, R 1 to R 4 have a total of 42 carbon atoms, and X 1 to X 4 are oxygen atoms Compound. Molybdenum content 10.0 mass%, sulfur content 11.5 mass%.
<(B)成分の三核の有機モリブデン化合物>
[有機モリブデン化合物2]
 一般式(III-D)のリガンドを有し、一般式(IV-B)のコアを有する一般式(II)の三核の有機モリブデン化合物。一般式(III-D)のR34及びR35の炭素数の合計が21。一般式(II)のkが7、Lがモノアニオン性リガンド、nが4、p、m及びzのそれぞれが0。モリブデン含有量5.27質量%。
<(B) component trinuclear organomolybdenum compound>
[Organic molybdenum compound 2]
A trinuclear organomolybdenum compound of general formula (II) having a ligand of general formula (III-D) and having a core of general formula (IV-B). The total number of carbon atoms of R 34 and R 35 in formula (III-D) is 21. In general formula (II), k is 7, L is a monoanionic ligand, n is 4, and each of p, m, and z is 0. Molybdenum content 5.27 mass%.
<一核の有機モリブデン化合物>
[有機モリブデン化合物3]
 [2,2’‐(ドデカノイルイミノ)ジエタノラト]ジオキソモリブデン(VI)と[3-(ドデカノイルオキシ)-1,2-プロパンジオラト]ジオキソモリブデン(VI)との混合物。モリブデン含有量7.9質量%、窒素含有量2.8質量%。
[有機モリブデン化合物4]
 モリブデン酸ジイソトリデシルアミン。モリブデン含有量10.0質量%。
<Mononuclear organic molybdenum compound>
[Organic molybdenum compound 3]
A mixture of [2,2 ′-(dodecanoylimino) diethanolato] dioxomolybdenum (VI) and [3- (dodecanoyloxy) -1,2-propanediolato] dioxomolybdenum (VI). Molybdenum content 7.9 mass%, nitrogen content 2.8 mass%.
[Organic molybdenum compound 4]
Diisotridecylamine molybdate. Molybdenum content 10.0 mass%.
<(C)成分の無灰摩擦調整剤>
[無灰摩擦調整剤1]
 オレイルジエタノールアミン
[無灰摩擦調整剤2]
 ステアリルジエタノールアミン
[無灰摩擦調整剤3]
 オレイルジエタノールアミド
[無灰摩擦調整剤4]
 グリセリンモノオレエート
<Ashless friction modifier of component (C)>
[Ashless friction modifier 1]
Oleyl diethanolamine [Ashless friction modifier 2]
Stearyl diethanolamine [Ashless friction modifier 3]
Oleyl diethanolamide [Ashless friction modifier 4]
Glycerol monooleate
<その他の無灰摩擦調整剤>
[無灰摩擦調整剤5]
 ステアリルアミン
[無灰摩擦調整剤6]
 オレイルアルコール
<Other ashless friction modifiers>
[Ashless friction modifier 5]
Stearylamine [Ashless friction modifier 6]
Oleyl alcohol
<(D)成分の粘度指数向上剤>
[粘度指数向上剤1]
 樹脂分として、Mnが500以上のマクロモノマーに由来する構成単位を少なくとも有する櫛形ポリマー(Mw:370,000、SSI:0.9、Mw/Mn=2.0未満)
[粘度指数向上剤2]
 樹脂分として、Mnが500以上のマクロモノマーに由来する構成単位を少なくとも有する櫛形ポリマー(Mw:430,000、SSI:13.5、Mw/Mn=2.0以上)
<Viscosity index improver of component (D)>
[Viscosity index improver 1]
Comb polymer having at least a structural unit derived from a macromonomer having Mn of 500 or more as a resin component (Mw: 370,000, SSI: 0.9, Mw / Mn = less than 2.0)
[Viscosity index improver 2]
Comb polymer having at least a structural unit derived from a macromonomer having Mn of 500 or more as a resin component (Mw: 430,000, SSI: 13.5, Mw / Mn = 2.0 or more)
<流動点降下剤>
 ポリアルキルメタアクリレート(重量平均分子量:62,000)
<添加剤パッケージ>
 ジアルキルジリオリン酸亜鉛、酸化防止剤、金属系清浄剤、無灰系清浄剤を含有するパッケージ。
<Pour point depressant>
Polyalkyl methacrylate (weight average molecular weight: 62,000)
<Additive package>
Package containing zinc dialkyldiliophosphate, antioxidant, metallic detergent, ashless detergent.
2.測定及び評価
 表1~6の組成に調製した実施例及び比較例の潤滑油組成物について、以下の評価を行った。結果を表1~6に示す。
2-1.動粘度、粘度指数、HTHS粘度及びNOACK値
 明細書本文の記載に従い、潤滑油組成物の動粘度、粘度指数、HTHS粘度及びNOACK値(250℃、1時間)を測定した。
2. Measurement and Evaluation The following evaluations were performed on the lubricating oil compositions of Examples and Comparative Examples prepared to the compositions shown in Tables 1 to 6. The results are shown in Tables 1-6.
2-1. Kinematic Viscosity, Viscosity Index, HTHS Viscosity and NOACK Value According to the description in the specification, the kinematic viscosity, viscosity index, HTHS viscosity and NOACK value (250 ° C., 1 hour) of the lubricating oil composition were measured.
2-2.せん断試験後の動粘度変化率
 JIS K2283:2000に準拠して、試験前とせん断試験後の100℃の動粘度を測定し、下記式により、せん断試験後の動粘度変化率を算出した。また、せん断試験は、JPI-5S-29に基づき、ディーゼルインジェクターを用いたボッシュ法で30サイクルのせん断試験を行った。
 せん断試験後の動粘度変化率=(([試験前の動粘度]-[試験後の動粘度])/[試験前の動粘度])×100
2-2. Kinematic viscosity change rate after shear test Based on JIS K2283: 2000, the kinematic viscosity at 100 ° C before the test and after the shear test was measured, and the kinematic viscosity change rate after the shear test was calculated by the following formula. In addition, the shear test was a 30-cycle shear test based on JPI-5S-29 by the Bosch method using a diesel injector.
Change rate of kinematic viscosity after shear test = (([kinematic viscosity before test] − [kinematic viscosity after test]) / [kinematic viscosity before test]) × 100
2-3.摩擦係数(往復動摩擦試験)
 Phoenix Tribology社製のTE77往復動摩擦試験機を用い、下記の条件で摩擦係数を測定した。
(試験プレート)
材質:FC250
形状:長さ58mm×幅20mm×厚さ4mm
(試験シリンダーピン)
材質:SUJ-2
形状:直径6mm×長さ14mm
(慣らし運転条件)
ストローク8mm、20Hz、油温80℃、荷重10-200Nで60分間
(本試験条件)
ストローク8mm、20Hz、油温80℃、荷重80N
2-3. Friction coefficient (reciprocating friction test)
Using a TE77 reciprocating friction tester manufactured by Phoenix Tribology, the friction coefficient was measured under the following conditions.
(Test plate)
Material: FC250
Shape: 58mm long x 20mm wide x 4mm thick
(Test cylinder pin)
Material: SUJ-2
Shape: Diameter 6mm x Length 14mm
(Run-in condition)
Stroke 8mm, 20Hz, oil temperature 80 ° C, load 10-200N for 60 minutes (this test condition)
Stroke 8mm, 20Hz, oil temperature 80 ° C, load 80N
2-4.低温安定性
 実施例1~5、及び比較例5の潤滑油組成物を-5℃の環境で5日間静置し、室温(20℃)に復帰した際の沈殿の状態を目視で確認し、低温安定性を評価した。曇り及び沈殿が確認されたものを「A」、沈殿は確認されなかったが曇りが確認されたものを「B」、沈殿が確認されたものを「C」とした。
2-4. Low temperature stability The lubricating oil compositions of Examples 1 to 5 and Comparative Example 5 were allowed to stand for 5 days in an environment of −5 ° C., and the state of precipitation when returning to room temperature (20 ° C.) was visually confirmed. Low temperature stability was evaluated. “A” indicates that clouding and precipitation were confirmed, “B” indicates that precipitation was not confirmed but clouding was confirmed, and “C” indicates that precipitation was confirmed.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 比較例1~4の潤滑油組成物は、(C)成分の無灰系摩擦調整剤を含有するものの、(A)成分及び(B)成分の何れか一方を含有しないものである。実施例1の潤滑油組成物に対して、比較例1~4の潤滑油組成物の摩擦係数が増加していることから、有機モリブデン化合物と、(C)成分との相乗作用による摩擦低減効果を発現するためには、有機モリブデン化合物として(A)成分及び(B)成分を併用する必要があることが確認できる。また、比較例3及び4の結果から、二核又は三核の有機モリブデン化合物と、一核の有機モリブデン化合物とを併用しても、(C)成分との相乗作用による摩擦低減効果を発現できないことが確認できる。 The lubricating oil compositions of Comparative Examples 1 to 4 contain the ashless friction modifier of component (C), but do not contain any one of components (A) and (B). Since the friction coefficient of the lubricating oil compositions of Comparative Examples 1 to 4 is increased with respect to the lubricating oil composition of Example 1, the friction reducing effect by the synergistic action of the organic molybdenum compound and the component (C) It can be confirmed that it is necessary to use the component (A) and the component (B) in combination as an organic molybdenum compound in order to express the above. Further, from the results of Comparative Examples 3 and 4, even when a binuclear or trinuclear organic molybdenum compound and a mononuclear organic molybdenum compound are used in combination, the friction reducing effect due to the synergistic action with the component (C) cannot be exhibited. I can confirm that.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 比較例5の潤滑油組成物は、(A)成分、(B)成分及び(C)成分を含有するものの、(A)成分及び(B)成分のモリブデン原子換算の含有量の合計が少ないものである。実施例1~5の潤滑油組成物に対して、比較例5の潤滑油組成物の摩擦係数が増加していることから、摩擦低減効果を発現するためには、所定量の(A)成分及び(B)成分が必要であることが確認できる。
 また、実施例1~5の結果から、(A)成分及び(B)成分のモリブデン原子換算の含有量の合計が0.012質量%以上である潤滑油組成物は、(C)成分との相乗作用による摩擦低減効果を発現できることが確認できる。
 また、実施例1~4の潤滑油組成物は、低温環境下でも有機モリブデン化合物が沈殿せず、低温安定性に優れることが確認できる。特に、実施例1~3の潤滑油組成物は、低温環境下でも曇りも発生せず、低温安定性に極めて優れるものであった。
The lubricating oil composition of Comparative Example 5 contains (A) component, (B) component, and (C) component, but has a small sum of contents in terms of molybdenum atoms of (A) component and (B) component It is. Since the friction coefficient of the lubricating oil composition of Comparative Example 5 is increased with respect to the lubricating oil compositions of Examples 1 to 5, a predetermined amount of component (A) is used in order to exhibit a friction reducing effect. And it can confirm that (B) component is required.
Further, from the results of Examples 1 to 5, the lubricating oil composition in which the total content of the component (A) and the component (B) in terms of molybdenum atoms is 0.012% by mass or more is It can be confirmed that the friction reduction effect by the synergistic action can be expressed.
In addition, it can be confirmed that the lubricating oil compositions of Examples 1 to 4 are excellent in low-temperature stability because the organic molybdenum compound does not precipitate even in a low-temperature environment. In particular, the lubricating oil compositions of Examples 1 to 3 did not generate fogging even in a low temperature environment and were extremely excellent in low temperature stability.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 比較例6の潤滑油組成物は、(A)成分及び(B)成分を含有するものの、(C)成分の無灰系摩擦調整剤を含有しないものである。比較例6の潤滑油組成物に対して、実施例1の潤滑油組成物の摩擦係数が劇的に低下していることから、有機モリブデン化合物として(A)成分及び(B)成分を併用し、かつ(C)成分を用いることにより、有機モリブデン化合物と、(C)成分との相乗作用による摩擦低減効果が発現することが確認できる。
 また、比較例7及び8の潤滑油組成物は、(A)成分及び(B)成分を含有し、かつ無灰系摩擦調整剤を含有するものの、該無灰系摩擦調整剤が水酸基を2つ以上有さないものである。比較例6の潤滑油組成物に対して、比較例7及び8の潤滑油組成物の摩擦係数が増加していることから、(A)成分及び(B)成分の有機モリブデン化合物に対して水酸基を2つ以上有さない無灰系摩擦調整剤を添加した場合、有機モリブデン化合物の摩擦低減効果が損なわれることが確認できる。
The lubricating oil composition of Comparative Example 6 contains the component (A) and the component (B), but does not contain the ashless friction modifier of the component (C). Compared with the lubricating oil composition of Comparative Example 6, the friction coefficient of the lubricating oil composition of Example 1 is dramatically reduced, so that the (A) component and the (B) component are used in combination as the organic molybdenum compound. And by using (C) component, it can confirm that the friction reduction effect by the synergistic action of an organomolybdenum compound and (C) component expresses.
Moreover, although the lubricating oil compositions of Comparative Examples 7 and 8 contain the components (A) and (B) and contain the ashless friction modifier, the ashless friction modifier contains 2 hydroxyl groups. It has no more than one. Since the friction coefficient of the lubricating oil compositions of Comparative Examples 7 and 8 is increased with respect to the lubricating oil composition of Comparative Example 6, the hydroxyl group with respect to the organomolybdenum compound of component (A) and component (B) When an ashless friction modifier that does not have two or more is added, it can be confirmed that the friction reducing effect of the organic molybdenum compound is impaired.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 比較例9の潤滑油組成物は、(A)成分、(B)成分及び(C)成分を含有するものの、(C)成分の無灰系摩擦調整剤の含有量が多いものである。実施例1、6~8の潤滑油組成物に対して、比較例9の潤滑油組成物の摩擦係数が増加していることから、(C)成分の無灰系摩擦調整剤の含有量が多すぎる場合、摩擦が逆に増加してしまうことが確認できる。
 また、実施例1、6~8と、比較例6、9との対比から、(C)成分の含有量が潤滑油組成物全量基準で2.0質量%未満である潤滑油組成物は、摩擦低減効果が良好であることが確認できる。特に、(C)成分の含有量が潤滑油組成物全量基準で1.0質量%以下である実施例1、6及び7の潤滑油組成物は、摩擦低減効果が極めて良好であることが確認できる。
Although the lubricating oil composition of Comparative Example 9 contains the (A) component, the (B) component, and the (C) component, the content of the ashless friction modifier of the (C) component is large. Since the friction coefficient of the lubricating oil composition of Comparative Example 9 is increased with respect to the lubricating oil compositions of Examples 1 and 6 to 8, the content of the ashless friction modifier of component (C) is increased. If it is too much, it can be confirmed that the friction increases conversely.
Further, from the comparison between Examples 1 and 6 to 8 and Comparative Examples 6 and 9, the lubricating oil composition in which the content of the component (C) is less than 2.0% by mass based on the total amount of the lubricating oil composition, It can be confirmed that the friction reducing effect is good. In particular, the lubricating oil compositions of Examples 1, 6 and 7 in which the content of the component (C) is 1.0% by mass or less based on the total amount of the lubricating oil composition are confirmed to have a very good friction reducing effect. it can.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 実施例9~11は、実施例1の(C)成分の種類を変更したものである。実施例1、9~11の結果から、分子内に水酸基を2つ以上有する無灰摩擦調整剤は、種類を問わずに摩擦低減効果を発現することが確認できる。また、実施例1、9~11の対比から、(C)成分の中でもアミン系(実施例1)、アミド系(実施例9及び10)の摩擦低減効果が優れること、特にアミン系(実施例1)の効果が極めて優れることが確認できる。 Examples 9 to 11 are obtained by changing the type of the component (C) in Example 1. From the results of Examples 1 and 9 to 11, it can be confirmed that the ashless friction modifier having two or more hydroxyl groups in the molecule exhibits a friction reducing effect regardless of the type. Further, from the comparison between Examples 1 and 9 to 11, among the components (C), the amine-based (Example 1) and the amide-based (Examples 9 and 10) are excellent in friction reduction effect, particularly the amine-based (Example It can be confirmed that the effect of 1) is extremely excellent.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 実施例12は、実施例1の(D)成分の種類を変更したものである。実施例1と、実施例12との対比により、潤滑油組成物中に、重量平均分子量が300,000以上であり、SSIが2.0未満である粘度指数向上剤を含有することにより、HTHS粘度を低くするとともに、せん断試験後の動粘度変化率を小さくすることができ、省燃費性及び焼付き性を良好にできることが確認できる。
 実施例13~15は、実施例1の(X)成分の種類を変更したものである。実施例1と、実施例13~15との対比により、(X)成分の潤滑油基油の100℃動粘度が2.5~3.0mm/sであり、n-d-M環分析による%Cが80%以上であることにより、HTHS粘度を低くするとともに、NOACK値を小さくすることができ、省燃費性を良好にできることが確認できる。
In Example 12, the type of the component (D) in Example 1 is changed. By comparing Example 1 with Example 12, the lubricating oil composition contains a viscosity index improver having a weight average molecular weight of 300,000 or more and an SSI of less than 2.0. While decreasing the viscosity, the rate of change in kinematic viscosity after the shear test can be reduced, and it can be confirmed that fuel economy and seizure can be improved.
In Examples 13 to 15, the type of the component (X) in Example 1 is changed. By comparison between Example 1 and Examples 13 to 15, the lubricating base oil of component (X) has a kinematic viscosity at 100 ° C. of 2.5 to 3.0 mm 2 / s, and ndM ring analysis According% C p in by not less than 80%, while lower HTHS viscosity, it is possible to reduce the NOACK values can be confirmed that the fuel economy can be improved.
 表1~6中、[質量%Mo]は、潤滑油組成物全量に対する有機モリブデン化合物のモリブデン原子換算の含有量を示す。 In Tables 1 to 6, [mass% Mo] represents the content in terms of molybdenum atoms of the organic molybdenum compound relative to the total amount of the lubricating oil composition.
 本実施形態の潤滑油組成物は、摩擦低減効果が良好であり、省燃費性を良好にできる。このため、本実施形態の潤滑油組成物は、四輪自動車、二輪自動車等の各種の内燃機関用に好適に使用できる。内燃機関としては、ガソリンエンジン、ディーゼルエンジン、ジメチルエーテルを燃料とするエンジン、ガスエンジン等が挙げられる。 The lubricating oil composition of this embodiment has a good friction reducing effect and can improve fuel economy. For this reason, the lubricating oil composition of the present embodiment can be suitably used for various internal combustion engines such as four-wheeled vehicles and two-wheeled vehicles. Examples of the internal combustion engine include a gasoline engine, a diesel engine, an engine using dimethyl ether as a fuel, a gas engine, and the like.

Claims (13)

  1.  (X)潤滑油基油、
     (A)下記一般式(I)に示す二核の有機モリブデン化合物、
     (B)下記一般式(II)に示す三核の有機モリブデン化合物、及び
     (C)分子内に水酸基を2つ以上有する無灰摩擦調整剤を含み、
     前記(A)成分のモリブデン原子換算の含有量と、前記(B)成分のモリブデン原子換算の含有量との合計が潤滑油組成物全量基準で0.012質量%以上であり、
     前記(C)成分の含有量が潤滑油組成物全量基準で2.0質量%未満である潤滑油組成物。
    Figure JPOXMLDOC01-appb-C000001

    [式(I)中、R~Rは炭素数7~22の炭化水素基を表し、R~Rは、同一であってもよいし、異なっていてもよい。X1~X4は、硫黄原子又は酸素原子を表す。]
     Mo (II)
    [式(II)中、Eはそれぞれ独立して酸素又はセレンである。kは少なくとも1の整数であり、mは0又は整数であり、k+mは4~10である。Lはそれぞれ独立に、炭素原子を含有する有機基を有するアニオン性リガンドであり、各リガンドにおける該有機基の炭素原子の合計が14個以上であり、各リガンドは同一であってもよいし、異なっていてもよい。nは1から4の整数である。AはL以外のアニオンである。pは0又は整数である。Qはそれぞれ独立に中性電子を供与する化合物である。zは0から5の整数であり、且つ非化学量論の値を含む。]
    (X) a lubricating base oil,
    (A) a dinuclear organomolybdenum compound represented by the following general formula (I):
    (B) a trinuclear organic molybdenum compound represented by the following general formula (II), and (C) an ashless friction modifier having two or more hydroxyl groups in the molecule,
    The total of the content in terms of molybdenum atoms of the component (A) and the content in terms of molybdenum atoms of the component (B) is 0.012% by mass or more based on the total amount of the lubricating oil composition,
    A lubricating oil composition wherein the content of the component (C) is less than 2.0% by mass based on the total amount of the lubricating oil composition.
    Figure JPOXMLDOC01-appb-C000001

    [In Formula (I), R 1 to R 4 represent a hydrocarbon group having 7 to 22 carbon atoms, and R 1 to R 4 may be the same or different. X 1 to X 4 each represents a sulfur atom or an oxygen atom. ]
    Mo 3 S k E m L n A p Q z (II)
    [In formula (II), each E is independently oxygen or selenium. k is an integer of at least 1, m is 0 or an integer, and k + m is 4 to 10. L is independently an anionic ligand having an organic group containing a carbon atom, the total number of carbon atoms of the organic group in each ligand is 14 or more, and each ligand may be the same, May be different. n is an integer of 1 to 4. A is an anion other than L. p is 0 or an integer. Q is a compound which donates a neutral electron independently. z is an integer from 0 to 5 and includes non-stoichiometric values. ]
  2.  前記式(II)の各リガンドが、下記一般式(III-A)、(III-B)、(III-C)及び(III-D)に示すリガンドの群から選択される何れかである請求項1に記載の潤滑油組成物。
    Figure JPOXMLDOC01-appb-C000002

    [式(III-A)、(III-B)、(III-C)及び(III-D)中、X31~X37及びYは、それぞれ独立して、酸素原子又は硫黄原子である。また、式(III-A)、(III-B)、(III-C)及び(III-D)中、R31~R35はそれぞれ独立した有機基であり、R31~R35は同一であっても異なっていてもよい。R31~R33の有機基の炭素数は14個以上である。R34の有機基の炭素数と、R35の有機基の炭素数との合計は14個以上である。]
    Each ligand of the formula (II) is any one selected from the group of ligands represented by the following general formulas (III-A), (III-B), (III-C) and (III-D) Item 4. The lubricating oil composition according to Item 1.
    Figure JPOXMLDOC01-appb-C000002

    [In the formulas (III-A), (III-B), (III-C) and (III-D), X 31 to X 37 and Y are each independently an oxygen atom or a sulfur atom. In the formulas (III-A), (III-B), (III-C) and (III-D), R 31 to R 35 are independent organic groups, and R 31 to R 35 are the same. It may or may not be. The organic group of R 31 to R 33 has 14 or more carbon atoms. And carbon number of the organic group R 34, the sum of the carbon number of the organic group for R 35 is 14 or more. ]
  3.  前記(A)成分のモリブデン原子換算の含有量と、前記(B)成分のモリブデン原子換算の含有量との合計が、潤滑油組成物全量基準で0.012~0.125質量%である請求項1又は2に記載の潤滑油組成物。 The sum of the content of the component (A) in terms of molybdenum atoms and the content of the component (B) in terms of molybdenum atoms is 0.012 to 0.125% by mass based on the total amount of the lubricating oil composition. Item 3. The lubricating oil composition according to Item 1 or 2.
  4.  前記(A)成分のモリブデン原子換算の含有量が潤滑油組成物全量基準で0.002~0.100質量%であり、前記(B)成分のモリブデン原子換算の含有量が潤滑油組成物全量基準で0.001~0.030質量%である請求項1~3のいずれか1項に記載の潤滑油組成物。 The content in terms of molybdenum atom of the component (A) is 0.002 to 0.100 mass% based on the total amount of the lubricating oil composition, and the content in terms of molybdenum atom of the component (B) is the total amount of the lubricating oil composition The lubricating oil composition according to any one of claims 1 to 3, which is 0.001 to 0.030 mass% on a basis.
  5.  前記(C)成分の含有量が潤滑油組成物全量基準で0.1~1.5質量%である請求項1~4のいずれか1項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 4, wherein the content of the component (C) is 0.1 to 1.5% by mass based on the total amount of the lubricating oil composition.
  6.  [前記(C)成分の含有量/(前記(A)成分のモリブデン原子換算の含有量+前記(B)成分のモリブデン原子換算の含有量)]が、3.0~50.0である請求項1~5のいずれか1項に記載の潤滑油組成物。 [Content of component (C) / (content of component (A) in terms of molybdenum atom + content of component (B) in terms of molybdenum atom)] is 3.0 to 50.0. Item 6. The lubricating oil composition according to any one of Items 1 to 5.
  7.  前記(X)成分は、100℃動粘度が2.5~3.0mm/sであり、n-d-M環分析による%Cが80%以上である請求項1~6のいずれか1項に記載の潤滑油組成物。 7. The component (X) has a kinematic viscosity at 100 ° C. of 2.5 to 3.0 mm 2 / s, and% C p by ndM ring analysis is 80% or more. 2. The lubricating oil composition according to item 1.
  8.  さらに、(D)粘度指数向上剤を含む請求項1~7のいずれか1項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 7, further comprising (D) a viscosity index improver.
  9.  前記(D)成分は、重量平均分子量が300,000以上であり、SSIが10.0以下である請求項8に記載の潤滑油組成物。 The lubricating oil composition according to claim 8, wherein the component (D) has a weight average molecular weight of 300,000 or more and an SSI of 10.0 or less.
  10.  さらに、流動点降下剤、ジアルキルジリオリン酸亜鉛、酸化防止剤、金属系清浄剤及び無灰系清浄剤から選ばれる一種以上を含む請求項1~9のいずれか1項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 9, further comprising at least one selected from a pour point depressant, a zinc dialkyldiliophosphate, an antioxidant, a metallic detergent and an ashless detergent. object.
  11.  内燃機関に用いられる請求項1~10のいずれか1項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 10, which is used in an internal combustion engine.
  12.  内燃機関に、請求項1~10のいずれか1項に記載の潤滑油組成物を添加する内燃機関の摩擦低減方法。 A method for reducing the friction of an internal combustion engine, wherein the lubricating oil composition according to any one of claims 1 to 10 is added to the internal combustion engine.
  13.  (X)潤滑油基油と、
     (A)下記一般式(I)に示す二核の有機モリブデン化合物と、
     (B)下記一般式(II)に示す三核の有機モリブデン化合物と、
     (C)分子内に水酸基を2つ以上有する無灰摩擦調整剤とを混合する工程を有し、
     前記(A)成分のモリブデン原子換算の含有量と、前記(B)成分のモリブデン原子換算の含有量との合計が潤滑油組成物全量基準で0.012質量%以上となるように、かつ、
     前記(C)成分の含有量が潤滑油組成物全量基準で2.0質量%未満となるように前記混合工程を行う、潤滑油組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000003

    [式(I)中、R~Rは炭素数7~22の炭化水素基を表し、R~Rは、同一であってもよいし、異なっていてもよい。X1~X4は、硫黄原子又は酸素原子を表す。]
     Mo (II)
    [式(II)中、Eはそれぞれ独立して酸素又はセレンである。kは少なくとも1の整数であり、mは0又は整数であり、k+mは4~10である。Lはそれぞれ独立に、炭素原子を含有する有機基を有するアニオン性リガンドであり、各リガンドにおける該有機基の炭素原子の合計が14個以上であり、各リガンドは同一であってもよいし、異なっていてもよい。nは1から4の整数である。AはL以外のアニオンである。pは0又は整数である。Qはそれぞれ独立に中性電子を供与する化合物である。zは0から5の整数であり、且つ非化学量論の値を含む。]
    (X) a lubricating base oil;
    (A) a dinuclear organomolybdenum compound represented by the following general formula (I):
    (B) a trinuclear organic molybdenum compound represented by the following general formula (II):
    (C) having a step of mixing with an ashless friction modifier having two or more hydroxyl groups in the molecule;
    The sum of the content of the component (A) in terms of molybdenum atoms and the content of the component (B) in terms of molybdenum atoms is 0.012% by mass or more based on the total amount of the lubricating oil composition, and
    The manufacturing method of the lubricating oil composition which performs the said mixing process so that content of the said (C) component may be less than 2.0 mass% on the basis of lubricating oil composition whole quantity.
    Figure JPOXMLDOC01-appb-C000003

    [In Formula (I), R 1 to R 4 represent a hydrocarbon group having 7 to 22 carbon atoms, and R 1 to R 4 may be the same or different. X 1 to X 4 each represents a sulfur atom or an oxygen atom. ]
    Mo 3 S k E m L n A p Q z (II)
    [In formula (II), each E is independently oxygen or selenium. k is an integer of at least 1, m is 0 or an integer, and k + m is 4 to 10. L is independently an anionic ligand having an organic group containing a carbon atom, the total number of carbon atoms of the organic group in each ligand is 14 or more, and each ligand may be the same, May be different. n is an integer of 1 to 4. A is an anion other than L. p is 0 or an integer. Q is a compound which donates a neutral electron independently. z is an integer from 0 to 5 and includes non-stoichiometric values. ]
PCT/JP2016/069709 2015-07-01 2016-07-01 Lubricant composition, method for reducing friction of internal combustion engine, and method for producing lubricant composition WO2017002969A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017526455A JP6657546B2 (en) 2015-07-01 2016-07-01 Lubricating oil composition, method for reducing friction of internal combustion engine, and method for producing lubricating oil composition
CN201680038159.XA CN107683323A (en) 2015-07-01 2016-07-01 Lubricating oil composition, method for reducing friction of internal combustion engine, and method for producing lubricating oil composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015133096 2015-07-01
JP2015-133096 2015-07-01

Publications (1)

Publication Number Publication Date
WO2017002969A1 true WO2017002969A1 (en) 2017-01-05

Family

ID=57608376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069709 WO2017002969A1 (en) 2015-07-01 2016-07-01 Lubricant composition, method for reducing friction of internal combustion engine, and method for producing lubricant composition

Country Status (3)

Country Link
JP (1) JP6657546B2 (en)
CN (1) CN107683323A (en)
WO (1) WO2017002969A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142049A1 (en) * 2016-02-18 2017-08-24 出光興産株式会社 Lubricating oil composition and lubrication method
WO2018012265A1 (en) * 2016-07-11 2018-01-18 株式会社Adeka Lubricant composition and lubricant oil composition
JP2018145433A (en) * 2017-03-07 2018-09-20 インフィニューム インターナショナル リミテッド Method for lubricating surface
WO2018174126A1 (en) * 2017-03-23 2018-09-27 出光興産株式会社 Lubricating oil composition
JP2022518794A (en) * 2019-01-22 2022-03-16 トタル マーケティング セルヴィス Its use in molybdenum dinuclear complexes and lubricating compositions
WO2022210014A1 (en) * 2021-03-31 2022-10-06 出光興産株式会社 Lubricant oil composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112646632B (en) * 2019-10-10 2022-09-16 中国石油化工股份有限公司 Antifriction agent for engine oil and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837657A (en) * 1997-12-02 1998-11-17 Fang; Howard L. Method for reducing viscosity increase in sooted diesel oils
JP2002539274A (en) * 1998-03-31 2002-11-19 インフィニューム ユーエスエイ リミテッド パートナーシップ Lubricating oil with improved fuel economy retention characteristics
JP2003513150A (en) * 1999-10-25 2003-04-08 インフィニューム インターナショナル リミテッド Lubricating oil composition containing two molybdenum additives
US20070265176A1 (en) * 2006-05-09 2007-11-15 Marc-Andre Poirier Lubricating oil composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300291B1 (en) * 1999-05-19 2001-10-09 Infineum Usa L.P. Lubricating oil composition
US7026273B2 (en) * 2001-11-09 2006-04-11 Infineum International Limited Lubricating oil compositions
BRPI0813492B1 (en) * 2007-07-09 2017-06-06 Evonik Oil Additives Gmbh use of comb-shaped polymers to reduce fuel consumption
JP6097296B2 (en) * 2012-07-31 2017-03-15 出光興産株式会社 Lubricating oil composition for internal combustion engines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837657A (en) * 1997-12-02 1998-11-17 Fang; Howard L. Method for reducing viscosity increase in sooted diesel oils
JP2002539274A (en) * 1998-03-31 2002-11-19 インフィニューム ユーエスエイ リミテッド パートナーシップ Lubricating oil with improved fuel economy retention characteristics
JP2003513150A (en) * 1999-10-25 2003-04-08 インフィニューム インターナショナル リミテッド Lubricating oil composition containing two molybdenum additives
US20070265176A1 (en) * 2006-05-09 2007-11-15 Marc-Andre Poirier Lubricating oil composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142049A1 (en) * 2016-02-18 2017-08-24 出光興産株式会社 Lubricating oil composition and lubrication method
WO2018012265A1 (en) * 2016-07-11 2018-01-18 株式会社Adeka Lubricant composition and lubricant oil composition
JPWO2018012265A1 (en) * 2016-07-11 2018-08-09 株式会社Adeka Lubricant composition and lubricating oil composition
US10920167B2 (en) 2016-07-11 2021-02-16 Adeka Corporation Lubricant composition and lubricating oil composition
JP2018145433A (en) * 2017-03-07 2018-09-20 インフィニューム インターナショナル リミテッド Method for lubricating surface
JP7131928B2 (en) 2017-03-07 2022-09-06 インフィニューム インターナショナル リミテッド How to lubricate the surface
CN110402280A (en) * 2017-03-23 2019-11-01 出光兴产株式会社 Lubricating oil composition
JP2018159011A (en) * 2017-03-23 2018-10-11 出光興産株式会社 Lubricant composition
US11236284B2 (en) 2017-03-23 2022-02-01 Idemitsu Kosan Co., Ltd. Lubricating oil composition
JP7028411B2 (en) 2017-03-23 2022-03-02 出光興産株式会社 Lubricating oil composition
WO2018174126A1 (en) * 2017-03-23 2018-09-27 出光興産株式会社 Lubricating oil composition
JP2022518794A (en) * 2019-01-22 2022-03-16 トタル マーケティング セルヴィス Its use in molybdenum dinuclear complexes and lubricating compositions
WO2022210014A1 (en) * 2021-03-31 2022-10-06 出光興産株式会社 Lubricant oil composition

Also Published As

Publication number Publication date
CN107683323A (en) 2018-02-09
JP6657546B2 (en) 2020-03-04
JPWO2017002969A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP6657546B2 (en) Lubricating oil composition, method for reducing friction of internal combustion engine, and method for producing lubricating oil composition
EP3279292B1 (en) Lubricant oil composition and internal-combustion-engine friction reduction method
JP6149168B2 (en) Lubricating oil composition and internal combustion engine friction reducing method
JP3927724B2 (en) Lubricating oil composition for internal combustion engines
EP2609180B1 (en) Engine lubricant
CN102459542B (en) Lubricating composition containing friction modifier and viscosity modifier
JP6375117B2 (en) Lubricating oil composition for internal combustion engines
CN106967479A (en) Lubricating oil composition and method for producing same
CN1421516A (en) Lubricating oil composition
JP5570358B2 (en) Lubricating oil composition
CA2984685A1 (en) Ultra-fluid lubricating composition
CN106459813A (en) Lubricants containing blends of polymers
CN106459820A (en) Viscosity index improver, lubricating oil composition, and method for producing lubricating oil composition
US11041132B2 (en) Lubricating oil composition, internal combustion engine, and method for lubricating internal combustion engine
JP2017171768A (en) Lubricant composition, and lubrication method
WO2018180763A1 (en) Lubricating oil composition for two wheeled vehicle, method for improving fuel economy of two wheeled vehicle using the lubricating oil composition, and method for producing the lubricating oil composition
WO2018174126A1 (en) Lubricating oil composition
JP6955332B2 (en) Lubricating oil composition
CN106883903B (en) Preparation of ionic liquid modified tungsten disulfide compound extreme pressure antiwear agent and engine oil containing same
JP7341979B2 (en) lubricating oil composition
EP4317375A1 (en) Lubricating oil composition
JP2021046472A (en) Lubricant composition
CN106478851B (en) High molecular weight molybdenum modified succinimides dispersing agent, preparation method and application
JP2020076036A (en) Lubricant composition for internal combustion engine and producing method of the same, and controlling method of preignition
CN101294114A (en) Diblock monopolymers as lubricant additives and lubricant formulations containing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16818077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526455

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16818077

Country of ref document: EP

Kind code of ref document: A1