WO2017002292A1 - 蓄電システム、コントローラおよび蓄電池の充放電方法 - Google Patents
蓄電システム、コントローラおよび蓄電池の充放電方法 Download PDFInfo
- Publication number
- WO2017002292A1 WO2017002292A1 PCT/JP2016/002298 JP2016002298W WO2017002292A1 WO 2017002292 A1 WO2017002292 A1 WO 2017002292A1 JP 2016002298 W JP2016002298 W JP 2016002298W WO 2017002292 A1 WO2017002292 A1 WO 2017002292A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power storage
- charge
- voltage value
- storage unit
- deterioration
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/486—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
- H02J7/0019—Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/0071—Regulation of charging or discharging current or voltage with a programmable schedule
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
- H02J3/322—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00302—Overcharge protection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- This technology relates to a storage system, a controller, and a storage battery charging / discharging method.
- Patent Document 1 describes an electric vehicle including a storage battery (see Patent Document 1).
- an object of the present technology is to provide a power storage system, a control device, and a storage battery charge / discharge method that can suppress the capacity deterioration of the storage battery.
- the present technology acquires a storage unit including one or more storage batteries, a storage unit that stores history information of the storage unit, and history information from the storage unit, and the charge setting voltage value of the storage unit becomes a normal charging voltage value.
- the charge setting voltage value of the power storage unit is changed to a low charge voltage value lower than the normal charge voltage value, and the power storage unit is set at the low charge voltage value.
- the control unit After charging / discharging, the control unit performs control to return the charge setting voltage value of the power storage unit to the normal charge voltage value, and the voltage change condition is the number of charge / discharge cycles of the power storage unit performed at the normal charge voltage value.
- the history information of a power storage unit including one or more storage batteries when history information of a power storage unit including one or more storage batteries is acquired, and the charge setting voltage value of the power storage unit is set to a normal charge voltage value, the history information satisfies a voltage change condition
- the charge set voltage value of the power storage unit is changed to a low charge voltage value lower than the normal charge voltage value, and after the power storage unit performs charging / discharging at the low charge voltage value, the charge set voltage value of the power storage unit is changed to A control unit that performs control to return to the normal charge voltage value is provided, and the voltage change condition is that the number of charge / discharge cycles of the power storage unit performed at the normal charge voltage value exceeds a predetermined number of cycles, the power storage unit outside the normal use temperature range Accumulated time outside temperature exceeding the threshold value, the internal resistance exceeded the predetermined value, the full charge capacity decreased from the initial capacity by the predetermined value, and the elapsed cumulative time predicted by life prediction exceeded At least one thing A controller.
- the history information of a power storage unit including one or more storage batteries when history information of a power storage unit including one or more storage batteries is acquired, and the charge setting voltage value of the power storage unit is set to a normal charge voltage value, the history information satisfies a voltage change condition
- the charge set voltage value of the power storage unit is changed to a low charge voltage value lower than the normal charge voltage value, and after the power storage unit performs charging / discharging at the low charge voltage value, the charge set voltage value of the power storage unit is changed to
- the voltage change condition includes returning to the normal charge voltage value.
- FIG. 1 is a block diagram illustrating an example of a configuration of a power storage system.
- FIG. 2 is a graph showing a change in capacity retention rate of the lithium ion secondary battery.
- FIG. 3 is a graph showing a change in capacity retention rate of the lithium ion secondary battery.
- FIG. 4 is a graph showing a change in capacity retention rate of the lithium ion secondary battery.
- FIG. 5 is a flowchart showing the operation of the power storage system.
- FIG. 6 is a schematic diagram used for explaining a method for estimating a deterioration life of a lithium ion secondary battery.
- FIG. 7 is a schematic diagram used for explaining a method for estimating a deterioration life of a lithium ion secondary battery.
- FIG. 1 is a block diagram illustrating an example of a configuration of a power storage system.
- FIG. 2 is a graph showing a change in capacity retention rate of the lithium ion secondary battery.
- FIG. 3 is a graph showing
- FIG. 8 shows a life estimation method according to the present technology, and is a schematic diagram used for explaining an estimation method when a plurality of conditions are changed.
- FIG. 9 is a block diagram illustrating an outline of a circuit configuration for realizing deterioration prediction applied to the power storage system according to the present technology.
- FIG. 10 is a block diagram of an example of the actual deterioration rate measurement unit according to the present technology.
- FIG. 11 is a block diagram of a first example of an application example of the present technology.
- FIG. 12 is a block diagram of a second example of an application example of the present technology.
- FIG. 1 shows an example of the configuration of a power storage system.
- the power storage system 81 includes a power storage module 82 and a controller 83. Electric power is transmitted and communicated between the power storage module 82 and the controller 83. Although only one power storage module is illustrated in FIG. 1, a plurality of power storage modules may be connected and each power storage module may be connected to the controller.
- the controller 83 is connected to a charging device (charging power source) 84 or a load 85 via a power cable and a communication bus.
- a charging device charging power source
- the controller 83 is connected to the charging device 84.
- the charging device 84 includes a direct current (DC) -DC converter or the like, and includes at least a charging voltage and charging current control unit 84a.
- the charging voltage and charging current control unit 84a sets the charging voltage and charging current to predetermined values according to the control of the controller 83 (main micro control unit 40).
- the controller 83 When discharging the power storage module 82, the controller 83 is connected to the load 85.
- the power of the power storage module 82 is supplied to the load 85 via the controller 83.
- the load 85 connected to the controller 83 is a motor-type inverter circuit in an electric vehicle, a household power system, or the like.
- the load 85 has at least a discharge current control unit 85a.
- the discharge current control unit 85a sets the discharge current to a predetermined value in accordance with the control of the main micro control unit 40 of the controller 83.
- the load 85 appropriately controls the magnitude of the discharge current (load current) flowing through the power storage module 82 by changing the load resistance.
- the outer case is desirably made of a material having high conductivity and emissivity.
- a material having high conductivity and emissivity By using a material having high conductivity and emissivity, excellent heat dissipation in the outer case can be obtained. By obtaining excellent heat dissipation, temperature rise in the outer case can be suppressed. Furthermore, the opening of the outer case can be minimized or eliminated, and high dustproof and drip-proof properties can be realized.
- a material such as aluminum, an aluminum alloy, copper, or a copper alloy is used.
- the power storage module 82 includes, for example, a positive electrode terminal 21, a negative electrode terminal 22, a power storage block BL as a power storage unit, a FET (Field (Effect Transistor), a voltage multiplexer 23, an ADC (Analog Digital Converter) 24, a temperature measurement unit 25, and a temperature multiplexer. 26, a monitoring unit 27, a temperature measurement unit 28, a current detection resistor 29, a current detection amplifier 30, an ADC 31, a sub-micro control unit 35, and a storage unit 36.
- a configuration different from the illustrated configuration may be added to the power storage module 82.
- a regulator that generates a voltage for operating each unit of the power storage module 82 from the voltage of the power storage block BL may be added.
- the power storage block BL is formed by connecting one or more submodules SMO.
- the power storage block BL is configured by connecting 16 submodules SMO1, submodule SMO2, submodule SMO3, submodule SMO4... And submodule SMO16 in series.
- submodule SMO when it is not necessary to distinguish each submodule, it is appropriately called a submodule SMO.
- a submodule SMO is formed by connecting a plurality of storage batteries (cells).
- the submodule SMO has a configuration including, for example, an assembled battery in which eight cells are connected in parallel.
- the capacity of the submodule SMO is, for example, about 24 Ah
- the voltage is, for example, about 3.0 V, which is substantially the same as the cell voltage.
- the storage block BL is formed by connecting a plurality of submodules SMO.
- the power storage block BL has, for example, a configuration in which 16 submodules SMO are connected in series. In this case, the capacity is about 24 Ah, and the voltage is about 48 V (3.0 V ⁇ 16).
- the number of cells constituting the submodule SMO and the mode of cell connection can be changed as appropriate. Furthermore, the number of submodules SMO constituting the power storage block BL and the connection mode of the submodules SMO can be changed as appropriate. Note that discharging and charging may be performed in units of power storage blocks BL, and discharging and charging may be performed in units of submodules or cells.
- the positive side of the submodule SMO1 is connected to the positive terminal 21 of the power storage module 82.
- the negative side of the submodule SMO 16 is connected to the negative terminal 22 of the power storage module 82.
- the positive terminal 21 is connected to the positive terminal of the controller 83.
- the negative terminal 22 is connected to the negative terminal of the controller 83.
- 16 FETs are provided between the terminals of the submodule SMO.
- the FET is for performing, for example, passive cell balance control.
- the FETs other than the FET2 are turned on, and the submodules SMO other than the submodule SMO2 are discharged to a predetermined voltage value.
- the FET is turned off after discharging.
- the voltage of each submodule SMO is, for example, a predetermined value (for example, 3.0 V, and the submodule SMO is balanced.
- the cell balance control method is not limited to the passive method, but the so-called active method or Other known methods can be applied.
- the voltage between the terminals of the submodule SMO is detected by a voltage detector (not shown).
- the voltage between the terminals of the submodule SMO is detected regardless of whether it is charging or discharging, for example.
- the voltage of each submodule SMO is detected by the voltage detection unit with a period of, for example, 250 ms (milliseconds).
- the voltage (analog voltage data) of each submodule SMO detected by the voltage detection unit is supplied to a voltage multiplexer (MUX (Multiplexer)) 23.
- MUX Multiplexer
- the voltage multiplexer 23 switches channels with a predetermined cycle, for example, and selects one analog voltage data from the 16 analog voltage data.
- One analog voltage data selected by the voltage multiplexer 23 is supplied to the ADC 24. Then, the voltage multiplexer 23 switches the channel and supplies the next analog voltage data to the ADC 24. That is, 16 analog voltage data are supplied from the voltage multiplexer 23 to the ADC 24 in a predetermined cycle.
- the channel switching in the voltage multiplexer 23 is performed according to control by the sub-micro control unit 35 of the power storage module 82 or the main micro-control unit 40 of the controller 83.
- the temperature measuring unit 25 detects the temperature of each submodule SMO.
- the temperature measuring unit 25 is composed of an element that detects a temperature, such as a thermistor.
- the temperature of the submodule SMO is detected with a predetermined period regardless of whether it is being charged or discharged, for example. Since the temperature of the submodule SMO and the temperature of the cells constituting the submodule SMO are not significantly different, in one embodiment, the temperature of the submodule SMO is measured. The individual temperatures of the eight cells may be measured, and the average value of the temperatures of the eight cells may be used as the temperature of the submodule SMO.
- Analog temperature data indicating the temperature of each submodule SMO detected by the temperature measuring unit 25 is supplied to the temperature multiplexer (MUX) 26.
- MUX temperature multiplexer
- the temperature multiplexer 26 switches channels with a predetermined cycle, for example, and selects one analog temperature data from the 16 analog temperature data.
- One analog temperature data selected by the temperature multiplexer 26 is supplied to the ADC 24. Then, the temperature multiplexer 26 switches the channel and supplies the next analog temperature data to the ADC 24. That is, 16 analog temperature data are supplied from the temperature multiplexer 26 to the ADC 24 in a predetermined cycle.
- the channel switching in the temperature multiplexer 26 is performed according to control by the sub micro control unit 35 of the power storage module 82 or the main micro control unit 40 of the controller 83.
- the ADC 24 converts the analog voltage data supplied from the voltage multiplexer 23 into digital voltage data.
- the ADC 24 converts the analog voltage data into, for example, 14 to 18 bit digital voltage data.
- various methods such as a successive approximation method and a ⁇ (delta sigma) method can be applied.
- the ADC 24 includes, for example, an input terminal, an output terminal, a control signal input terminal to which a control signal is input, and a clock pulse input terminal to which a clock pulse is input (the illustration of these terminals is omitted). ) Analog voltage data is input to the input terminal. The converted digital voltage data is output from the output terminal.
- a control signal (control command) supplied from the controller 83 is input to the control signal input terminal.
- the control signal is an acquisition instruction signal for instructing acquisition of analog voltage data supplied from the voltage multiplexer 23, for example.
- the acquisition instruction signal is input, the analog voltage data is acquired by the ADC 24, and the acquired analog voltage data is converted into digital voltage data. Then, digital voltage data is output via the output terminal in accordance with the synchronizing clock pulse input to the clock pulse input terminal.
- the output digital voltage data is supplied to the monitoring unit 27.
- an acquisition instruction signal for instructing acquisition of analog temperature data supplied from the temperature multiplexer 26 is input to the control signal input terminal.
- the ADC 24 acquires analog temperature data.
- the acquired analog temperature data is converted into digital temperature data by the ADC 24.
- the analog temperature data is converted into, for example, 14-18 bit digital temperature data.
- the converted digital temperature data is output via the output terminal, and the output digital temperature data is supplied to the monitoring unit 27.
- the functional block of the ADC 24 may have a function of a comparator that compares a voltage or temperature with a predetermined value.
- 16 digital voltage data and 16 digital temperature data are time-division multiplexed and transmitted from the ADC 24 to the monitoring unit 27.
- An identifier for identifying the submodule SMO may be described in the header of the transmission data to indicate which submodule SMO voltage or temperature.
- the digital voltage data of each submodule SMO obtained with a predetermined period and converted into digital data by the ADC 24 corresponds to the voltage information.
- Analog voltage data may be used as voltage information, and digital voltage data subjected to correction processing or the like may be used as voltage information.
- the temperature measuring unit 28 measures the temperature of the entire power storage module 82. The temperature in the outer case of the power storage module 82 is measured by the temperature measurement unit 28. Analog temperature data measured by the temperature measurement unit 28 is supplied to the temperature multiplexer 26, and is supplied from the temperature multiplexer 26 to the ADC 24. Then, the analog temperature data is converted into digital temperature data by the ADC 24. Digital temperature data is supplied from the ADC 24 to the monitoring unit 27.
- the power storage module 82 has a current detection unit that detects the value of the current (load current) flowing through the current path of the power storage module 82.
- the current detection unit detects a current value flowing through the 16 submodules SMO.
- the current detection unit includes, for example, a current detection resistor 29 connected between the negative electrode side of the submodule SMO16 and the negative electrode terminal 22, and a current detection amplifier 30 connected to both ends of the current detection resistor 29.
- Analog current data is detected by the current detection resistor 29. For example, the analog current data is detected with a predetermined cycle regardless of whether it is being charged or discharged.
- Detected analog current data is supplied to the current detection amplifier 30.
- the analog current data is amplified by the current detection amplifier 30.
- the gain of the current detection amplifier 30 is set to about 50 to 100 times, for example.
- the amplified analog current data is supplied to the ADC 31.
- the ADC 31 converts the analog current data supplied from the current detection amplifier 30 into digital current data.
- the ADC 31 converts the analog current data into, for example, 14-18 bit digital current data.
- Various conversion methods such as a successive approximation method and a ⁇ (delta sigma) method can be applied to the conversion method in the ADC 31.
- the ADC 31 includes, for example, an input terminal, an output terminal, a control signal input terminal to which a control signal is input, and a clock pulse input terminal to which a clock pulse is input (illustration of these terminals is omitted). .
- Analog current data is input to the input terminal.
- Digital current data is output from the output terminal.
- a control signal (control command) supplied from the controller 83 is input to the control signal input terminal of the ADC 31.
- the control signal is, for example, an acquisition instruction signal that instructs acquisition of analog current data supplied from the current detection amplifier 30.
- the acquisition instruction signal is input, the analog current data is acquired by the ADC 31, and the acquired analog current data is converted into digital current data.
- digital current data is output from the output terminal in accordance with the synchronizing clock pulse input to the clock pulse input terminal.
- the output digital current data is supplied to the monitoring unit 27.
- This digital current data is an example of current information.
- the ADC 24 and the ADC 31 may be configured as the same ADC.
- the monitoring unit 27 monitors the digital voltage data and digital temperature data supplied from the ADC 24, and monitors whether there is an abnormality in the submodule SMO. For example, if the voltage indicated by the digital voltage data is in the vicinity of a voltage that is a reference for overcharge or a voltage that is a reference for overdischarge, an error that indicates that there is an abnormality or that an abnormality may occur Generate a notification signal. Further, the monitoring unit 27 similarly generates an abnormality notification signal when the temperature of the submodule SMO or the temperature of the entire power storage module 82 is larger than the threshold value.
- the monitoring unit 27 monitors digital current data supplied from the ADC 31. When the current value indicated by the digital current data is larger than the threshold value, the monitoring unit 27 generates an abnormality notification signal. The abnormality notification signal generated by the monitoring unit 27 is transmitted to the sub-micro control unit 35 by the communication function of the monitoring unit 27.
- the monitoring unit 27 monitors the presence or absence of the above-described abnormality, and transmits the digital voltage data for each of the 16 submodules SMO supplied from the ADC 24 and the digital current data supplied from the ADC 31 to the sub-micro control unit 35.
- Digital voltage data and digital current data for each sub-module SMO may be directly supplied to the sub-micro control unit 35 without using the monitoring unit 27.
- Digital voltage data and digital current data for each submodule SMO to be transmitted are input to the sub-micro control unit 35.
- digital temperature data supplied from the ADC 24 is supplied from the monitoring unit 27 to the sub-micro control unit 35.
- the sub-micro control unit 35 is configured by a CPU (Central Processing Unit) having a communication function and controls each part of the power storage module 82. For example, when an abnormality notification signal is supplied from the monitoring unit 27, the sub micro control unit 35 notifies the main micro control unit 40 of the controller 83 of the abnormality using the communication function. In response to this notification, the main micro control unit 40 appropriately performs processing such as stopping charging or discharging. Note that the sub and main notations in the sub-micro control unit and the main micro-control unit are for convenience of explanation and do not have any special meaning.
- a CPU Central Processing Unit
- bidirectional communication conforming to serial communication standards such as I2C, SMBus (System Management Bus), SPI (Serial Peripheral Interface), CAN, etc. Done. Communication may be wired or wireless.
- the digital voltage data is input from the monitoring unit 27 to the sub-micro control unit 35.
- digital voltage data for each submodule SMO when the power storage module 82 is discharged is input to the sub-micro control unit 35.
- the magnitude of the load current (digital current data) when a load is connected to the power storage module 82 is input from the monitoring unit 27 to the sub-micro control unit 35.
- Digital temperature data indicating the temperature for each sub module SMO and the temperature in the power storage module 82 is input to the sub micro control unit 35.
- the sub-micro control unit 35 transmits the input digital voltage data for each sub-module SMO, digital temperature data indicating the temperature for each sub-module SMO, digital current data, and the like to the main micro-control unit 40.
- the storage unit 36 includes a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
- the storage unit 36 stores a program executed by the sub-micro control unit 35.
- the storage unit 36 is further used as a work area when the sub-micro control unit 35 executes processing.
- history information regarding the power storage module 82 is stored.
- the history information includes, for example, charge conditions such as a charge rate, a charge time, and the number of times of charge, a discharge rate, a discharge time, a discharge condition of the number of times of discharge, temperature information and the like. These pieces of information may be recorded in units of the power storage block BL, the submodule SMO, and the storage battery.
- the sub-micro control unit 35 may perform processing referring to history information.
- the controller 83 manages charge and discharge for one or a plurality of power storage modules 82. Specifically, the start and stop of charging of the power storage module 82, the start and stop of discharging of the power storage module 82, the setting of the charge rate and the discharge rate, and the like are performed.
- the controller 83 is configured to have an exterior case in the same manner as the power storage module 82.
- the controller 83 includes a main micro control unit 40, a positive terminal 41, a negative terminal 42, a positive terminal 43, a negative terminal 44, a charge control unit 45, a discharge control unit 46, a switch SW1 and a switch SW2.
- the switch SW1 is connected to the terminal 50a or the terminal 50b.
- the switch SW2 is connected to the terminal 51a or the terminal 51b.
- the positive terminal 31 is connected to the positive terminal 21 of the power storage module 82.
- the negative terminal 32 is connected to the negative terminal 22 of the power storage module 82.
- the positive terminal 33 and the negative terminal 34 are connected to a charging device 84 or a load 85 connected to the controller 83.
- the main micro control unit 40 is constituted by, for example, a CPU having a communication function, and controls each part of the controller 83.
- the main micro control unit 40 controls charging and discharging according to an abnormality notification signal transmitted from the sub micro control unit 35 of the power storage module 82. For example, when the possibility of overcharging is notified by the abnormality notification signal, the main micro control unit 40 turns off at least the switching element of the charging control unit 45 and stops charging. For example, when the risk of overdischarge is notified by the abnormality notification signal, the main micro control unit 40 turns off at least the switching element of the discharge control unit 46 and stops the discharge.
- the main micro control unit 40 turns off the switching elements of the charge control unit 45 and the discharge control unit 46 and uses the power storage module 82.
- Cancel For example, when the power storage module 82 is used as a power source for backup, the use of the power storage module 82 is stopped at an appropriate timing without immediately stopping the use of the power storage module 82.
- the main micro control unit 40 manages the charging and discharging of the power storage module 82 and refers to the charging information described later with reference to history information such as the voltage, temperature, and cycle number of the sub module SMO transmitted from the sub micro control unit 35. Control to perform the discharge method.
- the sub-micro control unit 35 may have a part of the functions of the main micro-control unit 40 described below.
- the main micro control unit 40 can communicate with the CPU and the like included in the charging device 84 and the load 85.
- the main micro control unit 40 sets a charging voltage and a charging rate (a magnitude of charging current) for the power storage module 82, and transmits the set charging voltage and charging rate to the charging device 84.
- the charging voltage and charging current control unit 84a appropriately sets the charging voltage and charging current according to the charging voltage and charging rate transmitted from the main micro control unit 40.
- the main micro control unit 40 sets the discharge rate (the magnitude of the discharge current) of the electricity storage module 82 and transmits the set discharge rate to the load 85.
- the discharge current control unit 85a of the load 85 appropriately sets the load so that the discharge current according to the discharge rate transmitted from the main micro control unit 40 is obtained.
- the charge control unit 45 includes a charge control switch 45a and a diode 45b connected in parallel with the charge control switch 45a in the forward direction with respect to the discharge current.
- the discharge control unit 46 includes a discharge control switch 46a and a diode 46b connected in parallel to the charge control current in parallel with the discharge control switch 46a.
- an IGBT Insulated Gate Gate Bipolar Transistor
- MOSFET Metal Metal Oxide Semiconductor Semiconductor Field Effect Transistor
- the storage unit 47 includes a ROM, a RAM, and the like. In the storage unit 47, for example, a program executed by the main micro control unit 40 is stored. The storage unit 47 is used as a work area when the main micro control unit 40 executes processing. The above history information may be stored in the storage unit 47.
- the switch SW1 is connected to the positive power supply line connected to the positive terminal 43.
- the switch SW1 is connected to the terminal 50a, and when the power storage module 82 is discharged, the switch SW1 is connected to the terminal 50b.
- the switch SW2 is connected to the negative power supply line connected to the negative terminal 44.
- the switch SW2 is connected to the terminal 51a, and when the power storage module 82 is discharged, the switch SW2 is connected to the terminal 51b. Switching of the switch SW1 and the switch SW2 is controlled by the main micro control unit 40.
- a storage battery used in the power storage system according to the present technology will be described.
- An example of the storage battery according to the present technology is a lithium ion secondary battery.
- the storage battery is not limited to a lithium ion secondary battery, and various secondary batteries such as a lead storage battery and a nickel metal hydride (NiMH) storage battery can be used.
- a material capable of inserting and extracting lithium can be used as the positive electrode active material, and a material capable of inserting and extracting lithium can be used as the negative electrode active material.
- the positive electrode active material examples include a composite oxide containing lithium and a transition metal element (referred to as “lithium transition metal composite oxide”), and a phosphate compound containing lithium and a transition metal element (“lithium transition metal phosphate”). Compound)).
- lithium transition metal composite oxide a composite oxide containing lithium and a transition metal element
- lithium transition metal phosphate a phosphate compound containing lithium and a transition metal element
- lithium transition metal composite oxide examples include a layered rock salt type lithium transition metal composite oxide, a spinel type lithium transition metal composite oxide, and the like.
- lithium transition metal composite oxide having a layered rock salt structure examples include, for example, the general formula LixM1O 2 (wherein M1 represents an element containing one or more transition metal elements.
- M1 represents an element containing one or more transition metal elements.
- the value of x varies depending on the charge / discharge state of the battery.
- lithium cobalt composite oxide Li x CoO 2
- lithium nickel composite oxide Li x NiO 2
- lithium nickel cobalt composite oxide Li x Ni 1-z Co z O 2 ( 0 ⁇ z ⁇ 1)
- a lithium nickel cobalt manganese complex oxide Li x Ni (1-vw ) Co v Mn w O 2 (0 ⁇ v + w ⁇ 1, v> 0, w> 0)
- lithium-cobalt-aluminum examples thereof include magnesium composite oxide (Li x Co (1-pq) Al p Mg q O 2 (0 ⁇ p + q ⁇ 1, p> 0, q> 0)).
- lithium transition metal composite oxide of a spinel structure for example, lithium manganese composite oxide (LiMn 2 O 4), lithium-manganese-nickel composite oxide (Li x Mn 2-t Ni t O 4 (0 ⁇ t ⁇ 2 )) And the like.
- lithium transition metal phosphate compound examples include an olivine type lithium transition metal phosphate compound.
- lithium transition metal phosphate compound having an olivine structure for example, a general formula Li y M2PO 4 (wherein M2 represents an element containing one or more transition metal elements.
- M2 represents an element containing one or more transition metal elements.
- the value of y depends on the charge / discharge state of the battery. Unlike, for example, a lithium-containing compound represented by 0.05 ⁇ y ⁇ 1.10. More specifically, for example, a lithium iron phosphate compound (Li y FePO 4 ), a lithium iron manganese phosphate compound (Li y Fe 1-u Mn u PO 4 (0 ⁇ u ⁇ 1)), and the like can be given.
- the positive electrode active material is not limited to those described above, and a wide variety of known materials can be used.
- the negative electrode active material a carbon material such as graphite, a silicon (Si) -containing material, a tin (Sn) -containing material, lithium titanate, or the like can be used. Note that the negative electrode active material is not limited to those described above, and widely known materials can be used.
- the configuration of the lithium ion secondary battery according to the present technology is not particularly limited, and known configurations can be widely used.
- the electrolyte solution for the lithium ion secondary battery according to the present technology is not particularly limited, and a wide variety of electrolyte solutions used in the industry can be used. In place of the electrolytic solution, a gel or solid electrolyte may be used.
- electrolyte solvent examples include lactone solvents such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, and ⁇ -caprolactone, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, ethyl methyl carbonate, Carbonate ester solvents such as diethyl carbonate, ether solvents such as 1,2-dimethoxyethane, 1-ethoxy-2-methoxyethane, 1,2-diethoxyethane, tetrahydrofuran or 2-methyltetrahydrofuran, and nitriles such as acetonitrile
- Nonaqueous solvents such as solvents, sulfolane-based solvents, phosphoric acids, phosphate ester solvents, and pyrrolidones are exemplified. Any one type of solvent may be used alone, or two or more types may be mixed and used.
- a mixture of a cyclic carbonate and a chain carbonate as the non-aqueous solvent, and it may contain a compound in which a part or all of the hydrogen of the cyclic carbonate or the chain carbonate includes a fluorination.
- the fluorinated compounds include fluoroethylene carbonate (4-fluoro-1,3-dioxolan-2-one: FEC) and difluoroethylene carbonate (4,5-difluoro-1,3-dioxolan-2-one: DFEC) is preferably used.
- Examples of the electrolyte salt include lithium hexafluorophosphate (LiPF 6 ), bis (pentafluoroethanesulfonyl) imide lithium (Li (C 2 F 5 SO 2 ) 2 N), lithium perchlorate (LiClO 4 ), Lithium hexafluoroarsenate (LiAsF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiSO 3 CF 3 ), lithium bis (trifluoromethanesulfonyl) imide (Li (CF 3 SO 2 ) 2 N), a lithium salt such as tris (trifluoromethanesulfonyl) methyllithium (LiC (SO 2 CF 3 ) 3, or the like can be used.
- LiPF 6 lithium hexafluorophosphate
- LiClO 4 bis (pentafluoroethanesulfonyl) im
- Lithium ion secondary batteries can be classified into square, cylindrical, laminated film, etc., depending on the shape and the like.
- the average output voltage of a typical cylindrical lithium ion secondary battery is, for example, about 3.0 V
- the full charge voltage is, for example, about 4.2 V
- the capacity is, for example, 3 Ah (3000 mAh). It is.
- Float charging is continuous constant voltage charging with a low additive voltage (low rate constant voltage, float charging voltage) to maintain the battery in a fully charged state. It is used for the purpose of replenishing the capacity lost due to intermittent discharge or self-discharge by regular charging. When the float charging is performed, the capacity deterioration tends to be promoted.
- normal voltage charging / discharging cycle refers to a charging / discharging cycle performed at a normally used charge setting voltage value (referred to as “normal charging voltage value”).
- Normal charge voltage value refers to a charge setting voltage value set in a normal voltage charge / discharge cycle. Specifically, for example, it is a general charge setting voltage value adopted according to the type of storage battery. For example, in the case of a typical lithium ion secondary battery, it is set to 4.20V.
- Low voltage charge / discharge cycle refers to a charge / discharge cycle performed at a charge setting voltage value (referred to as “low charge voltage value”) lower than the normal charge voltage value.
- the “low charge voltage value” refers to a charge voltage value obtained by subtracting a predetermined voltage value from a normal charge voltage value.
- the “predetermined voltage value” subtracted from the normal charging voltage value is preferably 0.1 V to 0.3 V, for example, from the viewpoint of preventing the user from recognizing a temporary capacity decrease due to a voltage change. More preferably, it is ⁇ 0.2V.
- the low charge voltage value is more preferably 4.0V to 4.1V.
- the predetermined number of times of performing the low voltage charge / discharge cycle is preferably 1 to 30 times and more preferably 1 to 5 times from the viewpoint of preventing the user from recognizing a temporary capacity decrease due to the voltage change. .
- a display for example, 100%
- a full charge state similar to a normal capacity display is performed on a display unit provided in the controller 83, the power storage module 82, and the like. Is preferred. This prevents the user from recognizing a temporary capacity decrease due to a voltage change.
- the change from the normal charge / discharge cycle to the low voltage charge / discharge cycle is, for example, as “charge voltage setting value change condition”, “the number of charge / discharge cycles performed at the normal charge voltage value exceeds a predetermined number of cycles”, and This is performed when at least one condition of “the accumulated temperature outside the temperature exceeds the threshold” is satisfied. Further, it is known that the internal resistance increases as the deterioration of the lithium ion secondary battery proceeds. Therefore, the initial internal resistance is memorized, and “an increase of a predetermined value was observed with respect to the initial internal resistance” was added to one of the above conditions, and at least one of those conditions was satisfied.
- the normal charge / discharge cycle may be changed to a low-voltage charge / discharge cycle because deterioration has progressed.
- the initial full charge capacity is stored, and “the full charge capacity has decreased by a predetermined amount from the initial value (initial capacity)” is added to one of the above conditions, and at least one of these conditions is satisfied.
- the normal charging / discharging cycle may be changed to the low voltage charging / discharging cycle, assuming that the deterioration has progressed.
- the “predetermined number of cycles” is set according to the capacity deterioration characteristics of the storage battery, and is, for example, 500 to 1000 cycles in the case of a typical lithium ion secondary battery.
- the count of the number of normal charge / discharge cycles is reset when a low voltage charge / discharge cycle is performed, and then starts counting from 0 when returning to the normal charge set value.
- “Accumulated time outside temperature” is the cumulative time spent outside the temperature range (referred to as “normal use temperature range”) of the storage battery under normal use conditions (for example, recommended use conditions).
- “Time spent outside the normal operating temperature range” means time spent in a temperature environment higher than the normal operating temperature range (including charging / discharging time), charging in a temperature environment lower than the normal operating temperature range Refers to the time when For example, in the case of a typical lithium ion secondary battery, the normal use temperature range is 0 ° C. or higher and 40 ° C. or lower.
- the normal use temperature range is not limited to this range.
- the threshold value is set to 300 hours to 500 hours, for example. A temperature condition may be added by this setting.
- LiFePO 4 LiFePO 4
- graphite LiFePO 4
- a coin-type battery (hereinafter referred to as “coin cell”) of 2016 size (diameter 20 mm, height 1.6 mm) was produced as follows.
- the positive electrode and the negative electrode were punched into a circular shape having a diameter of 15 mm.
- a microporous film made of polyethylene was prepared as a separator.
- LiPF 6 lithium hexafluorophosphate
- EC ethylene carbonate
- PC propylene carbonate
- a non-aqueous electrolyte was prepared by dissolving at a concentration.
- the produced positive electrode and negative electrode were laminated through a microporous film to form a laminate, and a nonaqueous electrolyte solution was accommodated in the exterior cup and the exterior can together with the laminate and caulked via a gasket. Thereby, the target coin cell was obtained.
- Normal charge / discharge cycle 1 and “normal charge / discharge cycle 1 + charge change 1” are as follows.
- “Normal charge / discharge cycle 1” Charge and discharge continuously.
- “Normal charge / discharge cycle 1 + charge change 1” Charge and discharge continuously.
- For every 100 charge / discharge cycles, 2 cycles of charge / discharge with the charge voltage reduced by 0.1V are performed. That is, constant current / constant voltage charge and constant current discharge with a charge end voltage of 3.5 V and a discharge end voltage of 2.0 V are performed every 100 times of charge and discharge.
- the line a3 and the line a6 it is shown by performing the charging / discharging method which concerns on this technique that the increase in a deterioration rate (decrease in a capacity maintenance rate) can be suppressed in a 60 degreeC use environment.
- the charging / discharging method according to the present technology it is possible to suppress the capacity deterioration of the secondary battery.
- FIG. 3 is a graph showing changes in the capacity maintenance rate of the lithium ion secondary battery. This graph is based on the measurement result of the lithium ion secondary battery described below, with the horizontal axis: days ( ⁇ days), the left vertical axis: capacity retention rate, and the right vertical axis: deterioration rate. Is a plot of the results (changes in capacity retention rate and deterioration rate) estimated by (1).
- the root rule is that battery capacity degradation is proportional to the square root of the number of cycles.
- capacity initial value ⁇ coefficient ⁇ time (* coefficient depends on temperature). A coefficient was calculated from the measurement results and a life estimation formula was derived to create a graph.
- LiFePO 4 LiFePO 4
- graphite LiFePO 4
- Lines b1 to b7 are measurement results when the manufactured coin cell is charged and discharged under the following conditions.
- Line b1 Temperature condition 23 ° C Normal charge / discharge cycle 1
- Line b2 Temperature condition 35 ° C. Normal charge / discharge cycle 1
- Line b3 temperature condition 45 ° C. Normal charge / discharge cycle 1
- Line b4 Temperature condition 23 ° C. Normal charge / discharge cycle 1 + float charge 1
- Line b5 Temperature condition 40 ° C Normal charge / discharge cycle 1 + float charge 1
- Line b6 Temperature condition 23 ° C. : Normal charge / discharge cycle 1 + float charge 1 + charge change 1
- Line b7 Temperature condition 40 ° C : Normal charge / discharge cycle 1 + float charge 1 + charge change 1
- Normal charge / discharge cycle 1 is the same as described above. “Normal charge / discharge cycle 1 + float charge 1”, “normal charge / discharge cycle 1 + float charge 1 + charge change 1” are as follows. “Normal charge / discharge cycle 1 + float charge 1" Float charge for 12 hours when fully charged. The charging end voltage: 3.6 V, the discharge end voltage: 2.0 V, constant current and constant voltage charging and constant current discharging are performed. “Normal charge / discharge cycle 1 + float charge 1 + charge change 1" Float charge for 12 hours when fully charged. The charging end voltage: 3.6 V, the discharge end voltage: 2.0 V, constant current and constant voltage charging and constant current discharging are performed.
- FIG. 4 is a graph showing changes in the capacity retention rate of the secondary battery.
- the horizontal axis ⁇ days
- the left vertical axis capacity retention rate
- the right vertical axis deterioration rate coordinates
- LiFePO 4 LiFePO 4
- graphite LiFePO 4
- LiMn 2 O 4 LiMn 2 O 4
- Lines c1 to c9 are measurement results when the manufactured coin cell is charged and discharged under the following conditions.
- Line c1 Temperature condition 23 ° C.
- Normal charge / discharge cycle 1 Cathode active material: LiFePO 4 Line c2: Temperature condition 45 ° C Normal charge / discharge cycle 1
- the positive electrode active material LiFePO 4 Line c3: temperature condition 60 ° C.
- Cathode active material LiFePO 4 Line c4: temperature condition 23 ° C.
- Cathode active material LiFePO 4 Line c5: temperature condition 40 ° C.
- Cathode active material LiFePO 4 Line c6: temperature condition 23 ° C.
- Normal charge / discharge cycle 2 Cathode active material: LiMn 2 O 4 Line c7: temperature condition 45 ° C.
- Normal charge / discharge cycle 2 Cathode active material: LiMn 2 O 4 Line c8: temperature condition 23 ° C.
- Cathode active material LiMn 2 O 4
- Normal charge / discharge cycle 1 and “normal charge / discharge cycle 1 + float charge 1” are the same as described above.
- Normal charge / discharge cycle 2 and “normal charge / discharge cycle 2 + float charge 2” are as follows.
- step S ⁇ b> 12 An example of the operation of the above-described power storage system will be described with reference to FIG.
- the controller 83 EMU: Energy Management Unit
- EMS Energy Management System, not shown
- step S13 the controller 83 performs a communication check.
- the controller 83 confirms whether the communication between the system controller and each of the main microcontroller unit 40 and the sub-microcontroller unit 35 is normal.
- step S14 the cell is checked.
- the controller 83 collects voltage information (V) and temperature information (T) for each sub-module SMO of the power storage module 82 by performing communication, and within a predetermined voltage range (Vmin ⁇ V ⁇ Vmax), it is determined whether it is within a predetermined temperature range (Tmin ⁇ T ⁇ Tmax). At this time, if the collected voltage information and temperature information are at least one outside the predetermined voltage range and outside the predetermined temperature range, the process proceeds to step S19. When the collected voltage information and temperature information are within the predetermined voltage range and the predetermined temperature range, the process proceeds to step S15.
- step S15 the load power is confirmed.
- the controller 83 confirms the power (load value) required by the external load 15 by communicating with the system controller that is the host controller.
- step S ⁇ b> 16 the controller 83 gives a charge / discharge command to the power storage module 82.
- step S17 the power storage module 82 receives a command from the controller 83, and starts charging / discharging the submodule SMO.
- the controller 83 gives a command to the power storage module 82 to charge / discharge at the normal charging voltage set value (Vmax).
- step S18 the voltage is confirmed.
- step S ⁇ b> 20 the controller 83 collects history information of the power storage module 82.
- step S21 the controller 83 performs cumulative deterioration calculation.
- the process proceeds to step S22.
- the cycle accumulated value Dc number of charge / discharge cycles
- the process proceeds to step S22. If the accumulated deterioration value DT does not exceed the threshold value, and if the cycle accumulated value Dc does not exceed the predetermined number of cycles, the process returns to step S14.
- step S22 the controller 83 changes the charge / discharge conditions.
- the controller 83 gives an instruction to change the setting value of the charging voltage for each submodule SMO, and changes the setting value of the charging voltage for each submodule SMO.
- the charging voltage set value is set to the low charging voltage value (Vmax ').
- the power storage module 82 receives a command from the controller 83 and starts charging / discharging of the submodule SMO.
- step S24 voltage information (V) and temperature information (T) for each sub-module SMO of the power storage module 82 are collected, and it is determined whether or not the voltage is within a predetermined voltage range (Vmin ⁇ V ⁇ Vmax ′). . At this time, if the collected voltage information is within the predetermined voltage range, the process returns to step S23, and charging / discharging is continued for each submodule SMO within the predetermined voltage range. If the collected voltage information is outside the predetermined voltage range (Vmin ⁇ V ⁇ Vmax ′), the process proceeds to step S25, and the charge / discharge operation is paused for each submodule SMO that has reached the predetermined voltage.
- step S26 the controller 83 gives a command to change the setting value of the charging voltage for each submodule SMO, and changes the setting value of the charging voltage for each submodule SMO.
- the charging voltage set value is set to the conventional value, that is, the normal charging voltage value (Vmax). Then, it returns to step S14.
- the power storage system by performing the charge / discharge method according to the present technology, it is possible to suppress the capacity deterioration without causing the user to recognize a temporary capacity decrease due to the voltage change.
- the storage battery can be operated with little influence on the actual operation time and capacity in actual operation, and as a result, a power storage system sufficiently satisfying the life performance can be provided.
- Second Embodiment Deterioration prediction according to a second embodiment of the present technology will be described.
- the deterioration prediction according to the present technology may be applied to the power storage system according to the first embodiment of the present technology together with the charge / discharge method according to the present technology described above.
- the deterioration prediction operation may be performed by at least one of the controller 83 and the power storage module 82.
- the deterioration prediction according to the present technology may be applied to a storage battery, a battery pack using the storage battery, an electronic device including the storage battery, and the like. Below, the example which applied the deterioration prediction which concerns on 2nd Embodiment of this technique to a storage battery is demonstrated.
- FIG. 6 shows the relationship between the passage of time and the deterioration rate.
- initial charging referred to as initial charging
- the unused capacity is the initial capacity Capa (0)
- the capacity after X days of the initial charge is Capa (x)
- the deterioration rate R after t days of the initial charge is expressed as follows.
- the capacity deterioration rate prediction on the Y day is performed (0 ⁇ X, Y).
- the number of days of X which is the reference date for life prediction, is not particularly limited and may be a preset date such as a periodic inspection date of the battery, and the number of days in the battery life range can be selected.
- the vehicle inspection date is X
- the next vehicle inspection date is set to Y, and it can be predicted whether or not the battery performance can be secured until the next vehicle inspection.
- Y is a value indicating how many days later capacity degradation is predicted from the X day which is the reference date for the lifetime prediction, and can be arbitrarily selected according to the prediction application.
- T temperature
- SOC State Of Charge: charge depth
- Y float charge
- DOD Depth Of Discharge
- a plurality of conditions (Z 1 , Z 2 ... Z n ) are allowed as conditions in the prediction period (Y days). Conditions are described below stacking method of degradation at the time of transition from Z n-1 to Z n.
- a positive electrode active material having an olivine structure which is an example of a positive electrode active material used in a battery, has very excellent chemical stability. That is, the deterioration with time from the positive electrode is negligibly small, and the cell capacity loss is determined by the amount of lithium lost due to side reactions on the negative electrode graphite surface. For this reason, when the cell deteriorated to the capacity deterioration rate R% is continuously used under different conditions, it can be considered that the loss amount of lithium corresponding to the deterioration rate R% is taken over at the start of the next use. As a result, the deterioration rate when the conditions are switched can be accumulated and calculated.
- the deterioration master curve is obtained in advance by a mathematical formula, stored as a table in a nonvolatile memory, and a deterioration prediction value can be obtained by referring to the table.
- the deterioration prediction value can be obtained by a mathematical expression (program). By specifying the conditions, the corresponding deterioration master curve is determined.
- the deterioration prediction value after Y1 day is obtained by performing new aging for Y1 days from the point corresponding to the deterioration rate R% (point of X1corr day).
- the actual deterioration rate R (%) is set to the number of days X1corr at the point where the actual deterioration rate R (%) intersects with the deterioration master curve 1 ′ by parallel translation with the horizontal axis (days of battery). In this way, the date of switching to the new condition is converted to a new date of X1corr instead of X.
- the deterioration rate of X1 corr + Y1 day can be obtained.
- Y2 days will elapse under the conditions of temperature A ° C. and float charging.
- the deterioration master curve 2 ′ is selected.
- the number of days X2corr at which the deterioration prediction value crosses the deterioration master curve 2 ′ in parallel with the horizontal axis (days of battery aging) is set to the new condition.
- the deterioration rate is predicted to change.
- the deterioration master curve is a change curve with respect to time of the battery capacity deterioration rate when the battery is stored (or cycled) at a constant temperature and a constant SOC (or DOD) or when the float charging is performed.
- the deterioration master curve may be obtained from the actual deterioration data of the battery, but since the number of necessary data is diverse and the time-dependent data collection period is as long as about 10 years, the deterioration master curve should be constructed with only measured data. Is not realistic.
- the deterioration master data in the present technology is preferably a value obtained by calculation based on a mathematical formula. More preferably, a value calculated from the product of a value calculated from the temperature of the outer wall of the battery, a value calculated from the number of days elapsed after the initial charge of the battery, and a value calculated from the battery state of the battery, for example, SOC. is there.
- the value calculated from the temperature T of the outer wall of the battery is calculated by an expression including exp ( ⁇ A / T) (T is an absolute temperature).
- a value calculated from the number of days elapsed after the initial charge of the battery is calculated by an expression including (days) ⁇ B ( ⁇ represents a power) (where 0.3 ⁇ B ⁇ 0.7).
- the value calculated from the charge depth SOC of the battery is calculated by an expression including exp (C ⁇ SOC / T).
- A, B, and C are preferably obtained by fitting the battery actual measurement data. C shows the dependence on deterioration time, and is 0.1 or more and 1.5 or less, preferably 0.35 or more and 0.65 or less.
- the temperature T means the temperature of the outer surface of the battery cell, not the environmental temperature where the battery cell is placed.
- the SOC can be the stored SOC itself in the case of storage, and when the SOC varies with time, such as in a cycle, the time average value in the SOC range should be used. Can do. It should be noted that the number of cycles in the number of elapsed days is irrelevant to the prediction of the deterioration life if the time average value of the SOC is equal.
- the deterioration rate ratio for each SOC is obtained by the following equation, and each SOC fluctuation point is weighted by this deterioration rate ratio. It can be performed.
- FIG. 8 shows deterioration master curves 1a, 1b, 1c, 1d, deterioration master curves 2a, 2b, 2c, 2d and deterioration master curves 3a, 3b.
- thick lines 1 to 14 represent transitions of changes in capacity maintenance rate (sometimes abbreviated as “maintenance rate”) as described below.
- the deterioration rate is obtained by “100 ⁇ maintenance rate”.
- the deterioration master curve 1b is selected.
- the actual deterioration rate R (%) is translated with the horizontal axis (days of battery aging), and the number of days X1corr at the point where the deterioration master curve 1b is crossed is set to the new condition.
- the deterioration rate is predicted to change.
- the number of times of charging / discharging in the period Y1 day may be arbitrary. The same applies to other storage periods.
- the deterioration master curve 1c is selected.
- the number of days X2corr at which the predicted deterioration value at the end of the bold line 2 is translated with the horizontal axis (the number of days of battery aging) and intersects with the deterioration master curve 1c is set as the switching date to the new condition.
- the thick line 3 on the deterioration master curve 1c during the period from X2corr to Y2 the deterioration rate is predicted to change.
- the deterioration master curve 1b is selected.
- the number of days X3corr at which the predicted deterioration value at the end of the thick line 3 is translated with the horizontal axis (the number of days of battery aging) and intersects with the deterioration master curve 1b is set as the switching date to the new condition.
- the thick line 4 on the deterioration master curve 1b during the period from X3corr to Y3 days the deterioration rate is predicted to change.
- the deterioration master curve 1c is selected.
- the number of days X4corr at which the predicted deterioration value at the end of the thick line 4 is translated with the horizontal axis (the number of days of battery aging) and crosses the deterioration master curve 1c is set as the switching date to the new condition.
- the thick line 5 on the deterioration master curve 1c during the period from X4corr to Y4 days the deterioration rate is predicted to change.
- the deterioration master curve 2a is selected.
- the number of days X5corr at which the predicted deterioration value at the end of the thick line 5 is translated with the horizontal axis (the number of days of battery aging) and crosses the deterioration master curve 2a is set as the switching date to the new condition.
- the thick line 6 on the deterioration master curve 2a during the period from X5corr to Y5 the deterioration rate is predicted to change.
- the deterioration master curve 2c is selected.
- the number of days X6corr of the point where the predicted deterioration value at the end of the thick line 6 is translated with the horizontal axis (the number of days of battery aging) and intersects with the deterioration master curve 2c is set to the new condition.
- the thick line 7 on the deterioration master curve 2c during the period from X6corr to Y6 the deterioration rate is predicted to change.
- the deterioration master curve 2b is selected.
- the number of days X7corr at which the predicted deterioration value at the end of the thick line 7 is translated with the horizontal axis (days of battery aging) and intersects with the deterioration master curve 2b is set as the switching date to the new condition.
- the thick line 8 on the deterioration master curve 2b during the period from X7corr to Y7 the deterioration rate is predicted to change.
- the deterioration master curve 2d is selected.
- the number of days X8corr at the point where the predicted deterioration value at the end of the thick line 8 is translated with the horizontal axis (days of battery aging) and intersects with the deterioration master curve 2d is set as the new switching date.
- the thick line 9 on the deterioration master curve 2d during the period from X8corr to Y8 the deterioration rate is predicted to change.
- the deterioration master curve 3b is selected.
- the number of days X9corr at the point where the predicted deterioration value at the end of the thick line 9 is translated with the horizontal axis (the number of days of battery aging) and intersects with the deterioration master curve 3b is set to the new condition.
- the thick line 10 of the deterioration master curve 3b during the period from X9corr to Y9 the deterioration rate is predicted to change.
- the deterioration master curve 2c is selected.
- the predicted number X10corr of the point where the predicted deterioration value at the end of the thick line 10 is translated with the horizontal axis (the number of days of battery aging) and intersects the deterioration master curve 2c is set as the new condition.
- the thick line 11 of the deterioration master curve 2c during the period from X10corr to Y10 days the deterioration rate is predicted to change.
- the deterioration master curve 3a is selected.
- the number of days X11corr at which the predicted deterioration value at the end of the thick line 11 is translated with the horizontal axis (the number of days of battery aging) and intersects with the deterioration master curve 3a is set to the new condition.
- the thick line 12 of the deterioration master curve 3a during the period from X11corr to Y11 the deterioration rate is predicted to change.
- the deterioration master curve 1d is selected.
- the number of days X12corr at which the predicted deterioration value at the end of the thick line 12 crosses the horizontal axis (the number of days of battery aging) and crosses the deterioration master curve 1d is set as the switching date to the new condition.
- the thick line 13 of the deterioration master curve 1d during the period from X12corr to Y12 the deterioration rate is predicted to change.
- the deterioration master curve 1b is selected.
- the number of days X13orr of the point where the predicted deterioration value at the end of the thick line 13 is translated with the horizontal axis (the number of days of battery aging) and intersects the deterioration master curve 1b is set to the new condition.
- the thick line 14 of the deterioration master curve 1b during the period from X13corr to Y13 the deterioration rate is predicted to change.
- the battery deterioration prediction value at the time when the number of days (Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 + Y8 + Y9 + Y10 + Y11 + Y12 + Y13) has elapsed is obtained.
- the battery deterioration rate at the time of vehicle inspection can be predicted. it can.
- the above-described transition of conditions is an example, and various transitions are possible.
- the actual conditions such as the type of power storage device (electric vehicle, hybrid vehicle, household power storage device, etc.), battery usage (business use, home use, etc.), usage region (cold region, warm region, etc.) It is possible to set the transition of conditions according to the actual situation to some extent in consideration. For example, an automobile manufacturer or the like can provide information on such a condition transition.
- Fig. 9 shows an outline of the circuit configuration for realizing the deterioration prediction according to the present technology.
- condition transition information is input from a condition input unit 62 to a microcontroller unit (represented as MCU in FIG. 9) 61.
- the conditions temperature, SOC, float charge, elapsed days
- a plurality of conditions are input in order.
- Degradation master curve data is input from the master curve memory (non-volatile memory) 63 to the microcontroller unit 61.
- the deterioration master curve data for example, the battery measured time-lapse data is fitted to the data obtained by the mathematical formula, the deterioration rate ratio for each SOC is obtained, and each SOC fluctuation point is weighted by this deterioration rate ratio. Etc., which are stored in advance.
- the actual deterioration rate data measured from the actual deterioration rate measuring unit 65 is supplied to the microcontroller unit 61.
- the actual deterioration rate measurement unit 65 measures the current deterioration rate of the battery unit 66.
- the output unit 64 is connected to the microcontroller unit 61, and the deterioration predicted value under the conditions set by the output unit 64 is displayed or the deterioration predicted value is printed.
- the actual deterioration rate measuring unit 65 is schematically configured as shown in FIG.
- a current measurement unit 72 and a charge / discharge control unit 73 are inserted in the current path of the battery unit 66.
- the current (charging current or discharging current) measured by the current measuring unit 72 is supplied to the microcontroller unit 71.
- the microcontroller unit 71 generates a control signal for controlling the charge / discharge control unit 73.
- Capa (x) can be obtained for the capacity after X days of the initial charge by the microcontroller unit 71 integrating the discharge current when the battery unit 66 is charged to full charge and is completely discharged from full charge. it can.
- R% is calculated
- Capacity maintenance rate 100 ⁇ capacity deterioration rate.
- the deterioration state can be obtained by comparing this capacity when using the battery with the battery capacity before the start of use.
- the actual deterioration rate may be estimated by a conventionally known method as a method for measuring the actual deterioration rate.
- the battery deterioration rate may be estimated from a change in the internal resistance of the battery, a voltage drop of the battery, or the like.
- the deterioration prediction according to the present technology it is possible to provide a deterioration prediction considering the capacity deterioration in the float charging.
- the deterioration prediction according to the present technology when the float charging is performed together with the cycle history and the storage history, it is considered that the accumulated time held in the high voltage region at the time of charging greatly affects the life of the storage battery. By grasping the time held in the high voltage region, the actual life of the storage battery can be estimated more accurately.
- the deterioration is progressing. You may make it change from a normal charging / discharging cycle to a low voltage charging / discharging cycle.
- JP-A-2014-81238 (Patent Document 1) describes a life estimation method for estimating deterioration of a storage battery from a temperature history.
- Japanese Patent Laid-Open No. 2003-161768 describes a method for estimating the life of a storage battery based on the Arrhenius law equation.
- Japanese Unexamined Patent Application Publication No. 2009-244025 describes a method for estimating the life of a storage battery based on the Arrhenius law equation with charge / discharge cycles and temperature.
- Japanese Patent Application Laid-Open No. 2003-7349 discloses a predetermined charging voltage and secondly a charging voltage setting.
- Japanese Patent Laid-Open No. 2007-325324 describes that the set voltage is lowered at the end of charging of the battery after deterioration.
- the life of the storage battery can be predicted.
- the actual life of the backup power supply for UPS can be predicted more accurately, and deterioration prediction and life improvement can be achieved by the technique of the present technology.
- Application example 1 An example in which the present technology is applied to a residential power storage device will be described with reference to FIG.
- the power storage device 100 for the house 101 power is supplied from the centralized power system 102 such as the thermal power generation 102a, the nuclear power generation 102b, and the hydroelectric power generation 102c through the power network 109, the information network 112, the smart meter 107, the power hub 108, and the like. It is supplied to the power storage device 103.
- power is supplied to the power storage device 103 from an independent power source such as the home power generation device 104.
- the electric power supplied to the power storage device 103 is stored. Electric power used in the house 101 is fed using the power storage device 103.
- the same power storage device can be used not only for the house 101 but also for buildings.
- the power storage device 103 is obtained by connecting a plurality of power storage modules in parallel.
- the house 101 is provided with a home power generation device 104, a power consumption device 105, a power storage device 103, a control device 110 that controls each device, a smart meter 107, and a sensor 111 that acquires various types of information.
- Each device is connected by a power network 109 and an information network 112.
- a solar cell, a fuel cell, or the like is used as the home power generation device 104, and the generated power is supplied to the power consumption device 105 and / or the power storage device 103.
- the power consuming device 105 is a refrigerator 105a, an air conditioner (air conditioner) 105b, a television receiver (television) 105c, a bath (bus) 105d, and the like.
- the electric power consumption device 105 includes an electric vehicle 106.
- the electric vehicle 106 is an electric vehicle 106a, a hybrid car 106b, and an electric motorcycle 106c.
- the power storage device 103 is composed of a secondary battery or a capacitor. For example, it is constituted by a lithium ion secondary battery. A plurality of power storage modules can be used as the power storage device 103.
- the lithium ion secondary battery may be a stationary type or used in the electric vehicle 106.
- the smart meter 107 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company.
- the power network 109 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
- the various sensors 111 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by the various sensors 111 is transmitted to the control device 110. Based on the information from the sensor 111, the weather condition, the human condition, etc. can be grasped, and the power consumption device 105 can be automatically controlled to minimize the energy consumption. Furthermore, the control device 110 can transmit information regarding the house 101 to an external power company or the like via the Internet.
- the power hub 108 performs processing such as branching of power lines and DC / AC conversion.
- the communication method of the information network 112 connected to the control device 110 includes a method using a communication interface such as UART (Universal Asynchronous Receiver-Transmitter), Bluetooth (registered trademark), ZigBee (registered trademark). And a sensor network based on a wireless communication standard such as Wi-Fi (registered trademark).
- the Bluetooth (registered trademark) system is applied to multimedia communication and can perform one-to-many connection communication.
- ZigBee uses the physical layer of IEEE (Institute of Electrical and Electronics Electronics) (802.15.4). IEEE802.15.4 is a name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
- the control device 110 is connected to an external server 113.
- the server 113 may be managed by any one of the house 101, the power company, and the service provider.
- the information transmitted and received by the server 113 is, for example, information related to power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device (for example, a television receiver) in the home, or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, for example, a television receiver, a mobile phone, a PDA (Personal Digital Assistant) or the like.
- the control device 110 that controls each unit includes a CPU, a RAM, a ROM, and the like, and is stored in the power storage device 103 in this example.
- a function of the control device 110 for example, a function such as the monitoring unit 27 or a function such as the controller 83 can be applied.
- the control device 110 is connected to the power storage device 103, the home power generation device 104, the power consumption device 105, the various sensors 111, the server 113 and the information network 112, and adjusts, for example, the amount of commercial power used and the amount of power generation. have. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
- electric power is generated not only from the centralized power system 102 such as the thermal power generation 102a, the nuclear power generation 102b, and the hydroelectric power generation 102c but also from the home power generation device 104 (solar power generation, wind power generation) to the power storage device 103.
- the home power generation device 104 solar power generation, wind power generation
- the electric power obtained by solar power generation is stored in the power storage device 103, and midnight power with a low charge is stored in the power storage device 103 at night, and the power stored by the power storage device 103 is discharged during a high daytime charge. You can also use it.
- control device 110 is stored in the power storage device 103 .
- control device 110 may be stored in the smart meter 107 or may be configured independently.
- the power storage device 100 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
- FIG. 12 schematically shows an example of the configuration of a hybrid vehicle that employs a series hybrid system to which the present technology is applied.
- the series hybrid system is a vehicle that runs on a power driving force conversion device using electric power generated by a generator driven by an engine or electric power once stored in a battery.
- the hybrid vehicle 200 includes an engine 201, a generator 202, a power driving force conversion device 203, driving wheels 204a, driving wheels 204b, wheels 205a, wheels 205b, a battery 208, a vehicle control device 209, various sensors 210, and a charging port 211. Is installed. As the battery 208, a power storage module can be used.
- the hybrid vehicle 200 is often stored outdoors. In winter, the outdoor temperature may drop to around -20 ° C. Even in such an environment, the present technology can correctly determine the state (degradation level) of the battery 208.
- Hybrid vehicle 200 travels using electric power / driving force conversion device 203 as a power source.
- An example of the power driving force conversion device 203 is a motor.
- the electric power / driving force converter 203 is operated by the electric power of the battery 208, and the rotational force of the electric power / driving force converter 203 is transmitted to the driving wheels 204a and 204b.
- DC-AC DC-AC
- AC-DC conversion AC-DC conversion
- the power driving force converter 203 can be applied to either an AC motor or a DC motor.
- the various sensors 210 control the engine speed via the vehicle control device 209 and control the opening (throttle opening) of a throttle valve (not shown).
- the various sensors 210 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
- the rotational force of the engine 201 is transmitted to the generator 202, and the electric power generated by the generator 202 by the rotational force can be stored in the battery 208.
- the resistance force at the time of deceleration is applied as a rotational force to the power driving force conversion device 203, and the regenerative power generated by the power driving force conversion device 203 by this rotational force is applied to the battery 208. Accumulated.
- Battery 208 can be connected to an external power source of the hybrid vehicle to receive electric power from the external power source with charging port 211 as an input port and store the received power.
- an information processing device that performs information processing related to vehicle control based on information related to the secondary battery may be provided.
- an information processing apparatus for example, there is an information processing apparatus that displays a remaining battery capacity based on information on the remaining battery capacity.
- the function of the vehicle control device 209 for example, the function of the controller 83 can be applied.
- the present technology is also effective for a parallel hybrid vehicle in which the engine and motor outputs are both driving sources, and the system is switched between the three modes of driving with only the engine, driving with the motor, and engine and motor. Applicable. Furthermore, the present technology can be effectively applied to a so-called electric vehicle that travels only by a drive motor without using an engine.
- a power storage unit including one or more storage batteries; A storage unit for storing history information of the power storage unit; When the history information is acquired from the storage unit and the charge setting voltage value of the power storage unit is set to a normal charge voltage value, and the history information satisfies a voltage change condition, the power storage unit is charged. After the set voltage value is changed to a low charge voltage value lower than the normal charge voltage value, and the power storage unit performs charging / discharging at the low charge voltage value, the charge set voltage value of the power storage unit is changed to the normal charge voltage.
- a control unit that performs control to return to a value The voltage change condition is that the number of charge / discharge cycles of the power storage unit performed at the normal charge voltage value exceeds a predetermined number of cycles, and the cumulative over-time when the power storage unit is used outside the normal use temperature range is a threshold value.
- a power storage system that is at least one of having exceeded, internal resistance has exceeded a predetermined value, full charge capacity has decreased by a predetermined value from the initial capacity, and elapsed elapsed time predicted by life prediction has been exceeded. [2]
- the control unit performs change from the low charge voltage value to the normal charge voltage value after the power storage unit performs charge / discharge at the low charge voltage value for 1 cycle to 5 cycles [1]. Power storage system.
- a display unit for displaying a charge amount of the power storage unit In the charge / discharge performed at the low charge voltage value, the power storage system according to any one of [1] to [5], wherein a display indicating full charge is performed on the display unit when the charge is completed.
- the power storage unit includes two or more storage batteries
- the control is performed for each assembled battery when the power storage unit includes a plurality of assembled batteries including the two or more storage batteries.
- the control unit calculates a deterioration predicted value after (X + Y) days after the initial charge from the deterioration master data for the power storage unit having the deterioration rate R at the time when X days have elapsed after the initial charge,
- the storage unit stores a plurality of the deterioration master data,
- the control unit identifies the deterioration master data using a condition set by the condition setting unit, In the specified deterioration master data, the number of elapsed days Xcorr giving the deterioration rate R is derived, and the deterioration predicted value after the first charge (Xcorr + Y) is obtained from the specified deterioration master data [1] to [8] ]
- the electrical storage system as described in any one of.
- the condition in the estimation of the Y days is composed of n conditions Z 1 , Z 2 ... Z n (1 ⁇ n),
- the second deterioration transition to the master data specified by the condition Z n from the first deterioration master data specified by the condition Z n-2 the final deterioration index in the first deterioration master data the second The power storage system according to [9], wherein the transition is performed so that the start deterioration rate in the deterioration master data is obtained.
- the storage battery is a lithium ion secondary battery using at least one of an olivine type lithium transition metal phosphate compound and a layered rock salt type lithium transition metal complex oxide as a positive electrode active material [1] to [10].
- the electrical storage system as described in any one of. [12] The power storage system according to any one of [1] to [11], wherein power is supplied from the power storage unit to a power network and / or a power generation device, and power is supplied from the power network and / or the power generation device to the power storage unit. . [13] When history information of a power storage unit including one or more storage batteries is acquired, and the charge setting voltage value of the power storage unit is set to a normal charge voltage value, and the history information satisfies a voltage change condition The charge setting voltage value of the power storage unit is changed to a low charge voltage value lower than the normal charge voltage value, and the power storage unit performs charging / discharging at the low charge voltage value.
- a control unit that performs control to return the value to the normal charging voltage value;
- the voltage change condition is that the number of charge / discharge cycles of the power storage unit performed at the normal charge voltage value exceeds a predetermined number of cycles, and the cumulative over-time when the power storage unit is used outside the normal use temperature range is a threshold value.
- a controller that is at least one of exceeded, internal resistance exceeded a predetermined value, full charge capacity decreased by a predetermined value from the initial capacity, and elapsed elapsed time predicted by life prediction exceeded.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
1.第1の実施の形態(蓄電システムの例)
2.第2の実施の形態(劣化予測の例)
3.応用例
4.変形例
なお、以下に説明する実施の形態等は本技術の好適な具体例であり、本技術の内容がこれらの実施の形態等に限定されるものではない。また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また、例示した効果と異なる効果が存在することを否定するものではない。
(蓄電システムの構成)
本技術の第1の実施の形態に係る蓄電システムについて説明する。図1は蓄電システムの構成の一例を示す。この蓄電システム81は、蓄電モジュール82と、コントローラ83とを含む構成を有する。蓄電モジュール82とコントローラ83との間で電力の伝送および通信がなされる。図1では一つの蓄電モジュールのみを図示しているが、複数の蓄電モジュールを接続して、各蓄電モジュールをコントローラに接続してもよい。
蓄電モジュール82の構成の一例について説明する。蓄電モジュール82を構成する各部は、例えば、所定の形状の外装ケースに収納される。外装ケースは、高い伝導率および輻射率を有する材料を用いることが望ましい。高い伝導率および輻射率を有する材料を用いることにより、外装ケースにおける優れた放熱性を得ることができる。優れた放熱性を得ることで、外装ケース内の温度上昇を抑制できる。さらに、外装ケースの開口部を最小限または、廃止することができ、高い防塵防滴性を実現できる。外装ケースは、例えば、アルミニウムまたはアルミニウム合金、銅、銅合金等の材料が使用される。
コントローラ83の構成の一例について説明する。コントローラ83は、1または複数の蓄電モジュール82に対して、充電や放電の管理を行うものである。具体的には、蓄電モジュール82の充電の開始および停止、蓄電モジュール82の放電の開始および停止、充電レートおよび放電レートの設定等を行う。コントローラ83は、例えば、蓄電モジュール82と同様に外装ケースを有する構成とされる。
本技術に係る蓄電システムで使用する蓄電池について説明する。本技術に係る蓄電池の一例は、リチウムイオン二次電池である。なお、蓄電池は、リチウムイオン二次電池に限定されるものではなく、鉛蓄電池やニッケル水素(NiMH)蓄電池等の種々の二次電池を用いることができる。
蓄電池は、低温環境下で充電を行ったり、高温環境下に置かれたり、高温環境下で充放電を行ったり、低温環境下で充電したり、フロート充電を行ったりすると、容量劣化等の性能劣化が促進してしまう傾向にある。例えば、蓄電池の一例であるリチウムイオン二次電池では、以下の性能劣化が生じてしまう。
リチウムイオン二次電池は、低温下(例えば、0℃以下)で充電を行うと、正極から放出されたリチウムイオンが負極に吸収されにくくなり、負極の表面上に金属リチウムが析出し電極抵抗が増大してしまう。そして、析出した金属リチウムの層がさらに堆積することにより、リチウムイオンの吸収が妨げられる。電極での反応が妨げられることにより充放電の効率が低下し、リチウムイオン二次電池の性能(容量やサイクル寿命等)が劣化する。このため、低温下(例えば、0℃以下)における充電は、リチウムイオン二次電池の性能劣化を激しくしてしまう。
リチウムイオン二次電池は、高温下で充放電を行ったり、高温下に置かれたりすると、容量劣化が促進してしまう傾向にある。
フロート充電は、電池を完全な充電状態に維持するために、低い加算電圧(低率定電圧、フロート充電電圧)の連続定電圧充電である。間欠的な使用による放電または自己放電で失った容量を、定常的な充電によって補充する目的で採用される。フロート充電を行った場合には、容量劣化が促進してしまう傾向にある。
本技術の第1の実施の形態に係る蓄電システムに適用される充放電方法の概要について説明する。本技術の第1の実施の形態に係る充放電方法では、通常電圧充放電サイクルを行っている状態で、充電電圧設定値変更条件を満たした場合に、通常電圧充放電の充電設定電圧値を、低充電電圧値に変更して所定回数の低電圧充放電サイクルを行い、その後、再び、充電設定電圧値を、通常充電電圧値に変更して通常電圧充放電サイクルに戻す。これにより、ユーザーに電圧変更による一時的な容量減を認識させないで、容量劣化を抑制できる。
図2はリチウムイオン二次電池の容量維持率の変化を示すグラフである。このグラフは、横軸:サイクル数(≒日数)、左縦軸:容量維持率、右縦軸:劣化率の座標に、以下に説明するリチウムイオン二次電池についての測定結果をプロットしたものである。なお、サイクル数=日数とみなしている。
正極活物質としてLiFePO4を用い、負極活物質として黒鉛を用いてコイン型二次電池を作製した。
2016サイズ(直径20mm、高さ1.6mmのサイズ)のコイン型電池(以下「コインセル」という)を以下のようにして作製した。
正極活物質としてのLiFePO4を91質量部と、導電剤としての黒鉛6質量部と、結着剤としてのポリフッ化ビニリデン(PVdF)4質量部とを均質に混合し、N-メチル-2-ピロリドン(NMP)に分散させて、正極合剤スラリーを得た。得られた正極合剤スラリーを、アルミニウム箔の両面に均一に塗布し、乾燥して、正極活物質層を形成した。
負極活物質としての黒鉛90質量部と、結着剤としてのPVdF10質量部とを均質に混合し、NMPに分散させて、負極合剤スラリーを得た。次いで、得られた負極合剤スラリーを、帯状銅箔の両面に均一に塗布し、乾燥して、負極活物質層を形成した。
線a1~線a6は、作製したコインセルに対して下記の条件で充放電を行い、サイクル数に対する容量維持率を測定した。
通常充放電サイクル1
線a2:温度条件 45℃
通常充放電サイクル1
線a3:温度条件 60℃
通常充放電サイクル1
線a4:温度条件 23℃
通常充放電サイクル1+充電変更1
線a5:温度条件 45℃
通常充放電サイクル1+充電変更1
線a6:温度条件 60℃
:通常充放電サイクル1+充電変更1
「通常充放電サイクル1」
充電および放電を連続して行う。
充電終止電圧:3.6V、放電終止電圧:2.0Vの定電流定電圧充電、定電流放電を行う。
「通常充放電サイクル1+充電変更1」
充電および放電を連続して行う。
充電終止電圧:3.6V、放電終止電圧:2.0Vの定電流定電圧充電、定電流放電を行う。
充放電100回毎に充電電圧を0.1V低減した充放電を2サイクル行う。すなわち、充放電100回毎に充電終止電圧:3.5V、放電終止電圧:2.0Vの定電流定電圧充電、定電流放電を行う。
正極活物質としてLiFePO4を用い、負極活物質として黒鉛を用いて、上記と同様にしてコインセルを作製した。
線b1~b7は、作製したコインセルに対して下記の条件で充放電を行った場合の測定結果である。
通常充放電サイクル1
線b2:温度条件 35℃
通常充放電サイクル1
線b3:温度条件 45℃
通常充放電サイクル1
線b4:温度条件 23℃
通常充放電サイクル1+フロート充電1
線b5:温度条件 40℃
通常充放電サイクル1+フロート充電1
線b6:温度条件 23℃
:通常充放電サイクル1+フロート充電1+充電変更1
線b7:温度条件 40℃
:通常充放電サイクル1+フロート充電1+充電変更1
「通常充放電サイクル1+フロート充電1」
満充電時にフロート充電を12時間行う。
充電終止電圧:3.6V、放電終止電圧:2.0Vの定電流定電圧充電、定電流放電を行う。
「通常充放電サイクル1+フロート充電1+充電変更1」
満充電時にフロート充電を12時間行う。
充電終止電圧:3.6V、放電終止電圧:2.0Vの定電流定電圧充電、定電流放電を行う。
充放電100回毎に充電電圧を0.1V低減した充放電を2サイクル行う。すなわち、充放電100回毎に充電終止電圧:3.5V、放電終止電圧:2.0Vの定電流定電圧充電、定電流放電を行う。
図4は、二次電池の容量維持率の変化を示すグラフである。このグラフは、横軸:√日数、左縦軸:容量維持率、右縦軸:劣化率の座標に、以下に説明するリチウムイオン二次電池についての測定結果に基づき、ルート則により推定した結果(容量維持率および劣化率の変化)をプロットしたものである。
正極活物質としてLiFePO4を用い、負極活物質として黒鉛を用いて、上記と同様にしてコインセルを作製した。
正極活物質としてLiFePO4に代えてLiMn2O4を用いたこと以外は、上記と同様にしてコインセルを作製した。
線c1~c9は、作製したコインセルに対して下記の条件で充放電を行った場合の測定結果である。
線c1:温度条件 23℃
通常充放電サイクル1
正極活物質:LiFePO4
線c2:温度条件 45℃
通常充放電サイクル1
正極活物質:LiFePO4
線c3:温度条件 60℃
通常充放電サイクル1
正極活物質:LiFePO4
線c4:温度条件 23℃
通常充放電サイクル1+フロート充電1
正極活物質:LiFePO4
線c5:温度条件 40℃
通常充放電サイクル1+フロート充電1
正極活物質:LiFePO4
線c6:温度条件 23℃
通常充放電サイクル2
正極活物質:LiMn2O4
線c7:温度条件 45℃
通常充放電サイクル2
正極活物質:LiMn2O4
線c8:温度条件 23℃
通常充放電サイクル2+フロート充電2
正極活物質:LiMn2O4
線c9:温度条件 40℃
通常充放電サイクル2+フロート充電2
正極活物質:LiMn2O4
「通常充放電サイクル2」、「通常充放電サイクル2+フロート充電2」は、以下の通りである。
充電および放電を連続して行う。
充電終止電圧:4.2V、放電終止電圧:3.0Vの定電流定電圧充電、定電流放電を行う。
「通常充放電サイクル2+フロート充電2」
満充電時にフロート充電を12時間行う。
充電終止電圧:4.2V、放電終止電圧:3.0Vの定電流定電圧充電、定電流放電を行う。
「通常充放電サイクル2+フロート充電2+充電変更1」
満充電時にフロート充電を12時間行う。
充電終止電圧:4.2V、放電終止電圧:3.0Vの定電流定電圧充電、定電流放電を行う。
充放電100回毎に充電電圧を0.1V低減した充放電を2サイクル行う。すなわち、充放電100回毎に充電終止電圧:4.1V、放電終止電圧:3.0Vの定電流定電圧充電、定電流放電を行う。
上述の蓄電システムの動作の一例について、図5を参照して説明する。ステップS12では、蓄電システム81においてコントローラ83(EMU:Energy Management Unit)が、コントローラ83の起動およびコントローラ83の上位のコントローラであるシステムコントローラ(EMS:Energy Management System、図示省略)の起動をチェックする。
本技術の第2の実施の形態に係る劣化予測について説明する。なお、本技術の第1の実施の形態に係る蓄電システムに対して、上述の本技術に係る充放電方法と共に本技術に係る劣化予測を適用してもよい。また、本技術の第1の実施の形態に係る蓄電システムに対して劣化予測を単独で適用してもよい。この場合、劣化予測の動作はコントローラ83および蓄電モジュール82の少なくとも一方で行ってもよい。また、蓄電池、蓄電池を用いた電池パック、蓄電池を内蔵した電子機器等にも本技術に係る劣化予測を適用してもよい。以下では、本技術の第2の実施の形態に係る劣化予測を蓄電池に適用した例について説明する。
本技術の第2の実施の形態に係る劣化予測の概要について図6を参照して説明する。図6は、時間経過と、劣化率との関係を示す。電池組立時に電池電極と電解液とが外装体に封入・封止される。次に、該電池の定格容量の50%以上の最初の充電(初回充電と称する)がなされる。未使用状態の容量を初期容量Capa(0)、初回充電のX日後の容量をCapa(x)とし、初回充電のt日後の劣化率Rを下記のように表す。
なお、容量維持率=100-容量劣化率である。
図8を参照して劣化予測の一例について説明する。図8には、劣化マスターカーブ1a、1b、1c、1dと劣化マスターカーブ2a、2b、2c、2dと劣化マスターカーブ3a、3bが示されている。劣化マスターカーブ1a~1dは、温度T=A℃の場合の劣化マスターカーブであり、SOCがa%、b%、c%、d%(a%<b%<c%<d%)と対応している。
容量維持率=100-容量劣化率である。
(応用例1)
本技術を住宅用の電力貯蔵装置に適用した例について、図11を参照して説明する。例えば住宅101用の電力貯蔵装置100においては、火力発電102a、原子力発電102b、水力発電102c等の集中型電力系統102から電力網109、情報網112、スマートメータ107、パワーハブ108等を介し、電力が蓄電装置103に供給される。これと共に、家庭内発電装置104等の独立電源から電力が蓄電装置103に供給される。蓄電装置103に供給された電力が蓄電される。蓄電装置103を使用して、住宅101で使用する電力が給電される。住宅101に限らずビルに関しても同様の電力貯蔵装置を使用できる。蓄電装置103は、複数の蓄電モジュールを並列接続したものである。
本技術を車両用の電力貯蔵装置に応用した例について、図12を参照して説明する。図12に、本技術が適用されるシリーズハイブリッドシステムを採用するハイブリッド車両の構成の一例を概略的に示す。シリーズハイブリッドシステムはエンジンで動かす発電機で発電された電力、あるいはそれを電池に一旦貯めておいた電力を用いて、電力駆動力変換装置で走行する車である。
本技術は、上述した本技術の実施の形態に限定されるものでは無く、本技術の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
[1]
1または2以上の蓄電池を含む蓄電部と、
前記蓄電部の履歴情報を記憶する記憶部と、
前記記憶部から前記履歴情報を取得し、前記蓄電部の充電設定電圧値が通常充電電圧値に設定されている場合において、前記履歴情報が電圧変更条件を満たす場合には、前記蓄電部の充電設定電圧値を、前記通常充電電圧値より低い低充電電圧値に変更し、該低充電電圧値で前記蓄電部が充放電を行った後、前記蓄電部の充電設定電圧値を前記通常充電電圧値に戻す制御を行う制御部と
を備え、
前記電圧変更条件は、前記通常充電電圧値で行った前記蓄電部の充放電サイクル数が所定サイクル数を超えたこと、通常使用温度範囲外で前記蓄電部を使用した温度外累積時間が閾値を超えたこと、内部抵抗が所定値を超えたこと、満充電容量が初期容量から所定値減少したこと、および、寿命予測により予測した経過累積時間を超えたこと
の少なくとも一つである蓄電システム。
[2]
前記制御部は、前記蓄電部が前記低充電電圧値での充放電を1サイクル~5サイクル行った後、前記低充電電圧値から前記通常充電電圧値への変更を行う[1]に記載の蓄電システム。
[3]
前記所定サイクル数は、500サイクル~1000サイクルである[1]~[2]の何れか一に記載の蓄電システム。
[4]
前記低充電電圧値は、前記通常電圧値から0.1V~0.2V低い値である[1]~[3]の何れか一に記載の蓄電システム。
[5]
前記電圧変更条件として、前記温度外累積時間が閾値を超えたことを満たす場合において、
前記制御部は、前記通常充電電圧値への変更を前記蓄電部が通常使用温度範囲内に置かれた後に行う[1]~[4]の何れか一に記載の蓄電システム。
[6]
前記蓄電部の充電量を表示する表示部を備え、
前記低充電電圧値で行う充放電において、充電完了時に前記表示部に満充電を示す表示を行う[1]~[5]の何れか一に記載の蓄電システム。
[7]
前記蓄電部が2以上の前記蓄電池を含む場合において、
前記制御を蓄電池単位で行う[1]~[6]の何れか一に記載の蓄電システム。
[8]
前記蓄電部が2以上の前記蓄電池からなる組電池を複数含む場合において
前記制御を組電池単位で行う[1]~[6]の何れか一に記載の蓄電システム。
[9]
算出用温度T、算出用電池状態Sの条件およびフロート充電の条件を設定する条件設定部を備え、
前記制御部は、初充電後X日経過した時点における劣化率Rを有する前記蓄電部に関して、初充電後(X+Y)日後の劣化予測値を、劣化マスターデータより算出することを行い、
前記記憶部は、複数の前記劣化マスターデータを記憶し、
前記制御部は、前記条件設定部によって設定される条件を用いて前記劣化マスターデータを特定し、
前記特定される劣化マスターデータにおいて、前記劣化率Rを与える経過日数Xcorrを導出し、初充電後(Xcorr+Y)日後の前記劣化予測値を前記特定される劣化マスターデータから求める[1]~[8]の何れか一に記載の蓄電システム。
[10]
前記Y日間の推定における前記条件がn個の条件Z1、Z2・・・・・Znより構成され(1≦n)、
条件Zn-2によって特定される第1の劣化マスターデータから条件Znによって特定される第2の劣化マスターデータへの推移において、前記第1の劣化マスターデータにおける最終劣化率が前記第2の劣化マスターデータにおける開始劣化率となるように、遷移させる[9]に記載の蓄電システム。
[11]
前記蓄電池は、正極活物質としてオリビン型構造のリチウム遷移金属リン酸化合物および層状岩塩型構造のリチウム遷移金属複合酸化物の少なくとも一つを用いたリチウムイオン二次電池である[1]~[10]の何れか一に記載の蓄電システム。
[12]
前記蓄電部から電力網および/または発電装置に電力を供給し、前記電力網および/または前記発電装置から前記蓄電部に電力が供給される[1]~[11]の何れか一に記載の蓄電システム。
[13]
1または2以上の蓄電池を含む蓄電部の履歴情報を取得し、前記蓄電部の充電設定電圧値が通常充電電圧値に設定されている場合において、前記履歴情報が電圧変更条件を満たす場合には、前記蓄電部の充電設定電圧値を、前記通常充電電圧値より低い低充電電圧値に変更し、該低充電電圧値で前記蓄電部が充放電を行った後、前記蓄電部の充電設定電圧値を前記通常充電電圧値に戻す制御を行う制御部を備え、
前記電圧変更条件は、前記通常充電電圧値で行った前記蓄電部の充放電サイクル数が所定サイクル数を超えたこと、通常使用温度範囲外で前記蓄電部を使用した温度外累積時間が閾値を超えたこと、内部抵抗が所定値を超えたこと、満充電容量が初期容量から所定値減少したこと、および、寿命予測により予測した経過累積時間を超えたこと
の少なくとも一つであるコントローラ。
[14]
1または2以上の蓄電池を含む蓄電部の履歴情報を取得し、前記蓄電部の充電設定電圧値が通常充電電圧値に設定されている場合において、前記履歴情報が電圧変更条件を満たす場合には、前記蓄電部の充電設定電圧値を、前記通常充電電圧値より低い低充電電圧値に変更し、該低充電電圧値で前記蓄電部が充放電を行った後、前記蓄電部の充電設定電圧値を前記通常充電電圧値に戻すことを含み、
前記電圧変更条件は、前記通常充電電圧値で行った前記蓄電部の充放電サイクル数が所定サイクル数を超えたこと、通常使用温度範囲外で前記蓄電部を使用した温度外累積時間が閾値を超えたこと、内部抵抗が所定値を超えたこと、満充電容量が初期容量から所定値減少したこと、および、寿命予測により予測した経過累積時間を超えたこと
の少なくとも一つである蓄電池の充放電方法。
36・・・記憶部
40・・・メインマイクロコントロールユニット
81・・・蓄電システム
82・・・蓄電モジュール
83・・・コントローラ
84・・・充電装置
85・・・負荷
SMO・・・サブモジュール
Claims (14)
- 1または2以上の蓄電池を含む蓄電部と、
前記蓄電部の履歴情報を記憶する記憶部と、
前記記憶部から前記履歴情報を取得し、前記蓄電部の充電設定電圧値が通常充電電圧値に設定されている場合において、前記履歴情報が電圧変更条件を満たす場合には、前記蓄電部の充電設定電圧値を、前記通常充電電圧値より低い低充電電圧値に変更し、該低充電電圧値で前記蓄電部が充放電を行った後、前記蓄電部の充電設定電圧値を前記通常充電電圧値に戻す制御を行う制御部と
を備え、
前記電圧変更条件は、前記通常充電電圧値で行った前記蓄電部の充放電サイクル数が所定サイクル数を超えたこと、通常使用温度範囲外で前記蓄電部を使用した温度外累積時間が閾値を超えたこと、内部抵抗が所定値を超えたこと、満充電容量が初期容量から所定値減少したこと、および、寿命予測により予測した経過累積時間を超えたこと
の少なくとも一つである蓄電システム。 - 前記制御部は、前記蓄電部が前記低充電電圧値での充放電を1サイクル~5サイクル行った後、前記低充電電圧値から前記通常充電電圧値への変更を行う請求項1に記載の蓄電システム。
- 前記所定サイクル数は、500サイクル~1000サイクルである請求項1に記載の蓄電システム。
- 前記低充電電圧値は、前記通常電圧値から0.1V~0.2V低い値である請求項1に記載の蓄電システム。
- 前記電圧変更条件として、前記温度外累積時間が閾値を超えたことを満たす場合において、
前記制御部は、前記通常充電電圧値への変更を前記蓄電部が通常使用温度範囲内に置かれた後に行う請求項1に記載の蓄電システム。 - 前記蓄電部の充電量を表示する表示部を備え、
前記低充電電圧値で行う充放電において、充電完了時に前記表示部に満充電を示す表示を行う請求項1に記載の蓄電システム。 - 前記蓄電部が2以上の前記蓄電池を含む場合において、
前記制御を蓄電池単位で行う請求項1に記載の蓄電システム。 - 前記蓄電部が2以上の前記蓄電池からなる組電池を複数含む場合において
前記制御を組電池単位で行う請求項1に記載の蓄電システム。 - 算出用温度T、算出用電池状態Sの条件およびフロート充電の条件を設定する条件設定部を備え、
前記制御部は、初充電後X日経過した時点における劣化率Rを有する前記蓄電部に関して、初充電後(X+Y)日後の劣化予測値を、劣化マスターデータより算出することを行い、
前記記憶部は、複数の前記劣化マスターデータを記憶し、
前記制御部は、前記条件設定部によって設定される条件を用いて前記劣化マスターデータを特定し、
前記特定される劣化マスターデータにおいて、前記劣化率Rを与える経過日数Xcorrを導出し、初充電後(Xcorr+Y)日後の前記劣化予測値を前記特定される劣化マスターデータから求める請求項1に記載の蓄電システム。 - 前記Y日間の推定における前記条件がn個の条件Z1、Z2・・・・・Znより構成され(1≦n)、
条件Zn-1によって特定される第1の劣化マスターデータから条件Znによって特定される第2の劣化マスターデータへの推移において、前記第1の劣化マスターデータにおける最終劣化率が前記第2の劣化マスターデータにおける開始劣化率となるように、遷移させる請求項9に記載の蓄電システム。 - 前記蓄電池は、正極活物質としてオリビン型構造のリチウム遷移金属リン酸化合物および層状岩塩型構造のリチウム遷移金属複合酸化物の少なくとも一つを用いたリチウムイオン二次電池である請求項1に記載の蓄電システム。
- 前記蓄電部から電力網および/または発電装置に電力を供給し、前記電力網および/または前記発電装置から前記蓄電部に電力が供給される請求項1に記載の蓄電システム。
- 1または2以上の蓄電池を含む蓄電部の履歴情報を取得し、前記蓄電部の充電設定電圧値が通常充電電圧値に設定されている場合において、前記履歴情報が電圧変更条件を満たす場合には、前記蓄電部の充電設定電圧値を、前記通常充電電圧値より低い低充電電圧値に変更し、該低充電電圧値で前記蓄電部が充放電を行った後、前記蓄電部の充電設定電圧値を前記通常充電電圧値に戻す制御を行う制御部を備え、
前記電圧変更条件は、前記通常充電電圧値で行った前記蓄電部の充放電サイクル数が所定サイクル数を超えたこと、通常使用温度範囲外で前記蓄電部を使用した温度外累積時間が閾値を超えたこと、 内部抵抗が所定値を超えたこと、満充電容量が初期容量から所定値減少したこと、および、寿命予測により予測した経過累積時間を超えたこと
の少なくとも一つであるコントローラ。 - 1または2以上の蓄電池を含む蓄電部の履歴情報を取得し、前記蓄電部の充電設定電圧値が通常充電電圧値に設定されている場合において、前記履歴情報が電圧変更条件を満たす場合には、前記蓄電部の充電設定電圧値を、前記通常充電電圧値より低い低充電電圧値に変更し、該低充電電圧値で前記蓄電部が充放電を行った後、前記蓄電部の充電設定電圧値を前記通常充電電圧値に戻すことを含み、
前記電圧変更条件は、前記通常充電電圧値で行った前記蓄電部の充放電サイクル数が所定サイクル数を超えたこと、通常使用温度範囲外で前記蓄電部を使用した温度外累積時間が閾値を超えたこと、内部抵抗が所定値を超えたこと、満充電容量が初期容量から所定値減少したこと、および、寿命予測により予測した経過累積時間を超えたこと
の少なくとも一つである蓄電池の充放電方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017526154A JP6555347B2 (ja) | 2015-06-30 | 2016-05-10 | 蓄電システム、コントローラおよび蓄電池の充放電方法 |
CA2982426A CA2982426A1 (en) | 2015-06-30 | 2016-05-10 | Electrical storage system, controller, and storage battery charging and discharging method |
EP16817406.8A EP3319203B1 (en) | 2015-06-30 | 2016-05-10 | Power storage system, controller, and storage battery charging and discharging method |
AU2016285501A AU2016285501B2 (en) | 2015-06-30 | 2016-05-10 | Power storage system, controller, and storage battery charging and discharging method |
CN201680023495.7A CN107636870B (zh) | 2015-06-30 | 2016-05-10 | 蓄电系统、控制器和蓄电池充放电方法 |
US15/565,821 US10283820B2 (en) | 2015-06-30 | 2016-05-10 | Electrical storage system, controller, and storage battery charging and discharging method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015131412 | 2015-06-30 | ||
JP2015-131412 | 2015-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017002292A1 true WO2017002292A1 (ja) | 2017-01-05 |
Family
ID=57608440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/002298 WO2017002292A1 (ja) | 2015-06-30 | 2016-05-10 | 蓄電システム、コントローラおよび蓄電池の充放電方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10283820B2 (ja) |
EP (1) | EP3319203B1 (ja) |
JP (1) | JP6555347B2 (ja) |
CN (1) | CN107636870B (ja) |
AU (1) | AU2016285501B2 (ja) |
CA (1) | CA2982426A1 (ja) |
WO (1) | WO2017002292A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019031380A1 (ja) * | 2017-08-08 | 2019-02-14 | 株式会社村田製作所 | 電極、電池、電池パック、車両、蓄電システム、電動工具及び電子機器 |
CN109671997A (zh) * | 2017-10-13 | 2019-04-23 | 神讯电脑(昆山)有限公司 | 电子装置与充电方法 |
WO2019181729A1 (ja) * | 2018-03-20 | 2019-09-26 | 株式会社Gsユアサ | 劣化推定装置、コンピュータプログラム及び劣化推定方法 |
WO2019181728A1 (ja) * | 2018-03-20 | 2019-09-26 | 株式会社Gsユアサ | 劣化推定装置、コンピュータプログラム及び劣化推定方法 |
CN111509316A (zh) * | 2020-04-29 | 2020-08-07 | 集美大学 | 一种基于循环寿命的船用锂电池组能量管理方法 |
WO2020196596A1 (ja) * | 2019-03-28 | 2020-10-01 | 株式会社Gsユアサ | 開発支援装置、開発支援方法、及びコンピュータプログラム |
JPWO2019116145A1 (ja) * | 2017-12-11 | 2021-01-21 | 株式会社半導体エネルギー研究所 | 充電制御装置、及び二次電池を有する電子機器 |
US11374424B2 (en) | 2019-02-01 | 2022-06-28 | Sk Innovation Co., Ltd. | Battery management system |
WO2023176592A1 (ja) * | 2022-03-18 | 2023-09-21 | 大阪瓦斯株式会社 | 劣化状態予測方法、劣化状態予測装置、および劣化状態予測プログラム |
JP7480541B2 (ja) | 2019-03-28 | 2024-05-10 | 株式会社Gsユアサ | 開発支援装置、及び開発支援方法 |
JP7576439B2 (ja) | 2020-12-01 | 2024-10-31 | 株式会社 ディー・エヌ・エー | 情報処理装置及び情報処理方法 |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11152602B2 (en) * | 2017-01-12 | 2021-10-19 | StoreDot Ltd. | Using formation parameters to extend the cycling lifetime of lithium ion batteries |
US11088402B2 (en) | 2017-01-12 | 2021-08-10 | StoreDot Ltd. | Extending cycling lifetime of fast-charging lithium ion batteries |
US10122042B2 (en) * | 2017-01-12 | 2018-11-06 | StoreDot Ltd. | Increasing cycling lifetime of fast-charging lithium ion batteries |
US10833521B2 (en) | 2017-01-12 | 2020-11-10 | StoreDot Ltd. | Formation method for preparing a fast-charging lithium ion cell |
CN108429312B (zh) * | 2018-03-28 | 2021-03-09 | 北京小米移动软件有限公司 | 充电控制方法及装置 |
JP6729622B2 (ja) * | 2018-03-28 | 2020-07-22 | 横河電機株式会社 | 電子機器、電池寿命判定方法、及び電池寿命判定プログラム |
CN108422952B (zh) * | 2018-03-30 | 2020-06-26 | 潍柴动力股份有限公司 | 一种混合动力汽车低压供电系统及其控制方法 |
WO2019230130A1 (ja) * | 2018-05-31 | 2019-12-05 | 本田技研工業株式会社 | 充電制御装置、輸送機器、及びプログラム |
US11013070B2 (en) | 2018-07-23 | 2021-05-18 | General Electric Company | System and method for controlling multiple IGBT temperatures in a power converter of an electrical power system |
US10897143B2 (en) | 2018-08-22 | 2021-01-19 | Texas Instruments Incorporated | Passive cell-balancing with dynamic charge control |
CN111130154B (zh) * | 2018-10-30 | 2024-06-07 | 中兴通讯股份有限公司 | 终端的充放电控制方法、装置、存储介质及电子装置 |
JP7067490B2 (ja) * | 2019-01-07 | 2022-05-16 | トヨタ自動車株式会社 | 車両用電池制御装置 |
US11641177B2 (en) | 2019-02-08 | 2023-05-02 | 8Me Nova, Llc | Coordinated control of renewable electric generation resource and charge storage device |
US11228195B2 (en) | 2019-04-21 | 2022-01-18 | StoreDot Ltd. | Lithium ion devices, operated with set operative capacity |
JP6651063B1 (ja) * | 2019-06-12 | 2020-02-19 | 三菱電機株式会社 | 充放電制御装置および充放電制御方法 |
US20210028632A1 (en) * | 2019-07-25 | 2021-01-28 | Samsung Sdi Co., Ltd. | Battery system |
CN112542861B (zh) * | 2019-09-23 | 2023-05-30 | 北京小米移动软件有限公司 | 一种电池充电方法、装置及介质 |
CN112825451B (zh) * | 2019-11-18 | 2022-04-19 | 南京南瑞继保电气有限公司 | 能量均衡调节换流链及控制方法、多段式换流链、换流器 |
CN113030742B (zh) * | 2019-12-24 | 2023-02-07 | 比亚迪股份有限公司 | 电池容量的估算方法、装置及设备 |
JP7191873B2 (ja) * | 2020-01-17 | 2022-12-19 | 株式会社東芝 | 充放電制御装置、充放電システム、充放電制御方法及び充放電制御プログラム |
US12072390B2 (en) | 2020-02-18 | 2024-08-27 | Semiconductor Components Industries, Llc | Methods and apparatus for detecting battery cell imbalance |
CN113497466A (zh) * | 2020-03-20 | 2021-10-12 | 名硕电脑(苏州)有限公司 | 电池的充电装置以及充电电压的设定方法 |
US12062937B2 (en) * | 2020-09-15 | 2024-08-13 | Panasonic Intellectual Property Management Co., Ltd. | Method of controlling secondary battery and battery system |
CN113161633B (zh) * | 2021-03-17 | 2023-03-24 | 上海大学 | 一种识别和应对硅基高容量锂电池电极假死的方法 |
US11936230B2 (en) | 2021-09-08 | 2024-03-19 | Microsoft Technology Licensing, Llc | Voltage regulator for computing device |
US12061451B2 (en) | 2021-10-20 | 2024-08-13 | 8Me Nova, Llc | Target function prioritization of control modes for renewable electric generation resource and charge storage device |
JP2023136721A (ja) * | 2022-03-17 | 2023-09-29 | 株式会社東芝 | 充電制御方法、充電制御装置及び電池搭載機器 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001309568A (ja) * | 2000-04-26 | 2001-11-02 | Internatl Business Mach Corp <Ibm> | 充電システム、充電制御装置、充電制御方法及びコンピュータ |
JP2004222427A (ja) * | 2003-01-15 | 2004-08-05 | Matsushita Electric Ind Co Ltd | 充電制御装置、電池管理システム、電池パック、及びそれらによる二次電池の劣化判定方法 |
JP2005192383A (ja) * | 2003-12-05 | 2005-07-14 | Matsushita Electric Ind Co Ltd | 充電制御装置 |
JP2008228492A (ja) * | 2007-03-14 | 2008-09-25 | Sanyo Electric Co Ltd | リチウムイオン二次電池の充電方法 |
JP2008236991A (ja) * | 2007-03-23 | 2008-10-02 | Toshiba Corp | 電圧バランス回路、電池ユニットおよび電池ユニット制御方法 |
JP2008295171A (ja) * | 2007-05-23 | 2008-12-04 | Canon Inc | 充電装置及びその制御方法 |
JP2011109840A (ja) * | 2009-11-19 | 2011-06-02 | Lenovo Singapore Pte Ltd | 二次電池の寿命期間を保証する充電システム |
JP2012227986A (ja) * | 2011-04-15 | 2012-11-15 | Sony Corp | 電池パック、電力システムおよび電動車両 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5548201A (en) * | 1994-09-13 | 1996-08-20 | Norand Corporation | Battery charging method and apparatus with thermal mass equalization |
US5936317A (en) * | 1996-04-09 | 1999-08-10 | Harness System Technologies Research, Ltd. | Power supply device for vehicle |
JP4367374B2 (ja) * | 2005-05-16 | 2009-11-18 | パナソニック株式会社 | 蓄電装置 |
JP5390925B2 (ja) * | 2009-04-24 | 2014-01-15 | パナソニック株式会社 | 電池パック |
CN102214938B (zh) * | 2010-04-02 | 2014-07-30 | 联想(北京)有限公司 | 充电电池的充电控制方法及便携式电脑 |
WO2013035183A1 (ja) * | 2011-09-08 | 2013-03-14 | 日立ビークルエナジー株式会社 | 電池システム監視装置 |
JP2014081238A (ja) | 2012-10-15 | 2014-05-08 | Sony Corp | 電池劣化寿命推定方法、電池劣化寿命推定装置、電動車両および電力供給装置 |
TWI474531B (zh) * | 2012-10-22 | 2015-02-21 | Dynapack Internat Technology Corp | 電池充電方法 |
WO2014122832A1 (ja) * | 2013-02-06 | 2014-08-14 | 日本電気株式会社 | 蓄電装置及び劣化判定方法 |
JP2014190763A (ja) * | 2013-03-26 | 2014-10-06 | Toshiba Corp | 電池寿命推定方法及び電池寿命推定装置 |
CN104734214B (zh) * | 2013-12-18 | 2018-08-14 | 比亚迪股份有限公司 | 便携式设备及其的充放电控制方法 |
JP6467816B2 (ja) * | 2014-08-21 | 2019-02-13 | 株式会社村田製作所 | 蓄電システム |
-
2016
- 2016-05-10 US US15/565,821 patent/US10283820B2/en active Active
- 2016-05-10 WO PCT/JP2016/002298 patent/WO2017002292A1/ja active Application Filing
- 2016-05-10 JP JP2017526154A patent/JP6555347B2/ja active Active
- 2016-05-10 EP EP16817406.8A patent/EP3319203B1/en active Active
- 2016-05-10 AU AU2016285501A patent/AU2016285501B2/en active Active
- 2016-05-10 CN CN201680023495.7A patent/CN107636870B/zh active Active
- 2016-05-10 CA CA2982426A patent/CA2982426A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001309568A (ja) * | 2000-04-26 | 2001-11-02 | Internatl Business Mach Corp <Ibm> | 充電システム、充電制御装置、充電制御方法及びコンピュータ |
JP2004222427A (ja) * | 2003-01-15 | 2004-08-05 | Matsushita Electric Ind Co Ltd | 充電制御装置、電池管理システム、電池パック、及びそれらによる二次電池の劣化判定方法 |
JP2005192383A (ja) * | 2003-12-05 | 2005-07-14 | Matsushita Electric Ind Co Ltd | 充電制御装置 |
JP2008228492A (ja) * | 2007-03-14 | 2008-09-25 | Sanyo Electric Co Ltd | リチウムイオン二次電池の充電方法 |
JP2008236991A (ja) * | 2007-03-23 | 2008-10-02 | Toshiba Corp | 電圧バランス回路、電池ユニットおよび電池ユニット制御方法 |
JP2008295171A (ja) * | 2007-05-23 | 2008-12-04 | Canon Inc | 充電装置及びその制御方法 |
JP2011109840A (ja) * | 2009-11-19 | 2011-06-02 | Lenovo Singapore Pte Ltd | 二次電池の寿命期間を保証する充電システム |
JP2012227986A (ja) * | 2011-04-15 | 2012-11-15 | Sony Corp | 電池パック、電力システムおよび電動車両 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3319203A4 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019031380A1 (ja) * | 2017-08-08 | 2019-02-14 | 株式会社村田製作所 | 電極、電池、電池パック、車両、蓄電システム、電動工具及び電子機器 |
JPWO2019031380A1 (ja) * | 2017-08-08 | 2020-07-02 | 株式会社村田製作所 | 電極、電池、電池パック、車両、蓄電システム、電動工具及び電子機器 |
JP7006693B2 (ja) | 2017-08-08 | 2022-01-24 | 株式会社村田製作所 | 電極、電池、電池パック、車両、蓄電システム、電動工具及び電子機器 |
CN109671997A (zh) * | 2017-10-13 | 2019-04-23 | 神讯电脑(昆山)有限公司 | 电子装置与充电方法 |
JPWO2019116145A1 (ja) * | 2017-12-11 | 2021-01-21 | 株式会社半導体エネルギー研究所 | 充電制御装置、及び二次電池を有する電子機器 |
US11984562B2 (en) | 2017-12-11 | 2024-05-14 | Semiconductor Energy Laboratory Co., Ltd. | Charging-control device and electronic device with secondary battery |
US11563238B2 (en) | 2017-12-11 | 2023-01-24 | Semiconductor Energy Laboratory Co., Ltd. | Charging-control device and electronic device with secondary battery |
JP2022141752A (ja) * | 2017-12-11 | 2022-09-29 | 株式会社半導体エネルギー研究所 | 充電制御装置 |
JP7104065B2 (ja) | 2017-12-11 | 2022-07-20 | 株式会社半導体エネルギー研究所 | 充電制御装置 |
JP2019168453A (ja) * | 2018-03-20 | 2019-10-03 | 株式会社Gsユアサ | 劣化推定装置、コンピュータプログラム及び劣化推定方法 |
US11243262B2 (en) | 2018-03-20 | 2022-02-08 | Gs Yuasa International Ltd. | Degradation estimation apparatus, computer program, and degradation estimation method |
JP2019168452A (ja) * | 2018-03-20 | 2019-10-03 | 株式会社Gsユアサ | 劣化推定装置、コンピュータプログラム及び劣化推定方法 |
WO2019181728A1 (ja) * | 2018-03-20 | 2019-09-26 | 株式会社Gsユアサ | 劣化推定装置、コンピュータプログラム及び劣化推定方法 |
WO2019181729A1 (ja) * | 2018-03-20 | 2019-09-26 | 株式会社Gsユアサ | 劣化推定装置、コンピュータプログラム及び劣化推定方法 |
US11374424B2 (en) | 2019-02-01 | 2022-06-28 | Sk Innovation Co., Ltd. | Battery management system |
WO2020196596A1 (ja) * | 2019-03-28 | 2020-10-01 | 株式会社Gsユアサ | 開発支援装置、開発支援方法、及びコンピュータプログラム |
US20220188481A1 (en) * | 2019-03-28 | 2022-06-16 | Gs Yuasa International Ltd. | Development support device, development support method, and computer program |
JP7480541B2 (ja) | 2019-03-28 | 2024-05-10 | 株式会社Gsユアサ | 開発支援装置、及び開発支援方法 |
CN111509316B (zh) * | 2020-04-29 | 2021-11-02 | 集美大学 | 一种基于循环寿命的船用锂电池组能量管理方法 |
CN111509316A (zh) * | 2020-04-29 | 2020-08-07 | 集美大学 | 一种基于循环寿命的船用锂电池组能量管理方法 |
JP7576439B2 (ja) | 2020-12-01 | 2024-10-31 | 株式会社 ディー・エヌ・エー | 情報処理装置及び情報処理方法 |
WO2023176592A1 (ja) * | 2022-03-18 | 2023-09-21 | 大阪瓦斯株式会社 | 劣化状態予測方法、劣化状態予測装置、および劣化状態予測プログラム |
Also Published As
Publication number | Publication date |
---|---|
AU2016285501B2 (en) | 2019-03-14 |
CA2982426A1 (en) | 2017-01-05 |
CN107636870B (zh) | 2021-07-02 |
AU2016285501A1 (en) | 2017-10-05 |
CN107636870A (zh) | 2018-01-26 |
US10283820B2 (en) | 2019-05-07 |
EP3319203A4 (en) | 2019-01-30 |
EP3319203B1 (en) | 2022-11-09 |
JPWO2017002292A1 (ja) | 2018-04-19 |
JP6555347B2 (ja) | 2019-08-07 |
EP3319203A1 (en) | 2018-05-09 |
US20180115024A1 (en) | 2018-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6555347B2 (ja) | 蓄電システム、コントローラおよび蓄電池の充放電方法 | |
JP5954144B2 (ja) | 制御装置、制御方法、制御システムおよび電動車両 | |
JP6347212B2 (ja) | 制御装置、蓄電モジュール、電動車両、電源システムおよび制御方法 | |
CN107852019B (zh) | 充电方法、电池装置、充电装置、劣化诊断方法、电池组、电动车辆和蓄电装置 | |
US11142073B2 (en) | Analytical device, analysis method, manufacturing method, electric storage device, electric storage system, electronic device, electric vehicle and electric power system | |
JP6465174B2 (ja) | 蓄電装置および起動方法 | |
US9897660B2 (en) | Apparatus and method for estimating parameter of secondary battery | |
JP2014081238A (ja) | 電池劣化寿命推定方法、電池劣化寿命推定装置、電動車両および電力供給装置 | |
US9506989B2 (en) | Battery remaining amount detection unit, electric vehicle, and electric power supply unit | |
WO2014207994A1 (ja) | 蓄電システム、蓄電モジュールおよび制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16817406 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017526154 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016285501 Country of ref document: AU Date of ref document: 20160510 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2982426 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15565821 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |