WO2017098686A1 - Battery pack, electricity storage device and deterioration detecting method - Google Patents
Battery pack, electricity storage device and deterioration detecting method Download PDFInfo
- Publication number
- WO2017098686A1 WO2017098686A1 PCT/JP2016/004784 JP2016004784W WO2017098686A1 WO 2017098686 A1 WO2017098686 A1 WO 2017098686A1 JP 2016004784 W JP2016004784 W JP 2016004784W WO 2017098686 A1 WO2017098686 A1 WO 2017098686A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacity
- deterioration
- maintenance rate
- battery
- power storage
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This technology relates to, for example, a battery pack using a lithium ion secondary battery, a power storage device, and a secondary battery deterioration detection method.
- Secondary batteries such as lithium ion batteries and nickel metal hydride batteries are widely used in mobile terminals such as mobile phones as power sources.
- renewable energy such as solar power generation and wind power generation has attracted attention
- secondary batteries have been attracting attention and spreading as applications for storing the energy.
- hybrid cars and electric cars equipped with secondary batteries are becoming popular. In this way, the secondary battery plays a role as a key device indispensable for power supply applications.
- ⁇ Secondary batteries deteriorate even when not in use, and the degree of deterioration varies depending on the usage conditions. Therefore, deterioration estimation (SOH (State Of Health)) is indispensable in order to estimate SOC (State Of Charge: battery charging rate) with high accuracy.
- SOH State Of Health
- grasping the deterioration state of the secondary battery is important for ensuring safety such as life judgment.
- typical capacity degradation includes battery capacity degradation and output voltage degradation.
- the battery capacity means a full charge capacity.
- the capacity maintenance rate is expressed by a numerical value obtained by dividing the current full charge capacity by the initial full charge capacity as a deterioration index. When calculating the capacity maintenance rate, the discharge capacity from the fully charged position to the voltage lower limit is often used instead of the fully charged capacity.
- a sudden deterioration phenomenon of battery capacity at the end of the life is known as an unexpected behavior that does not follow the route rule.
- rapid deterioration of battery capacity has been confirmed due to charging / discharging at a low temperature and charging / discharging at a high rate (high input, high output). Since it deteriorates at a rapid rate compared with the deterioration prediction formula, it is necessary to accurately capture such unexpected behavior in order to ensure the safety of the system using the secondary battery.
- rapid deterioration deterioration at a rapid speed
- the present technology has been made in view of such conventional problems, and includes a battery pack, a power storage device, and a deterioration in which sudden deterioration that is unexpected behavior is simply and accurately estimated from a history of battery capacity.
- An object is to provide a detection method.
- the present technology provides a capacity change amount calculation unit that calculates the change amount of the full charge capacity or the capacity maintenance rate by inputting the full charge capacity or the capacity maintenance rate of the secondary battery and the elapsed time.
- a battery pack comprising: a rapid deterioration determination unit that determines deterioration based on a threshold determination based on a change amount calculated by a capacity change amount calculation unit.
- the present technology is a power storage device that includes the above-described battery pack and supplies power to an electronic device connected to the battery pack.
- This technology calculates the amount of change in the full charge capacity or capacity maintenance rate from the full charge capacity or capacity maintenance rate of the secondary battery and the elapsed time, This is a method for detecting deterioration of a secondary battery, in which deterioration is detected based on a threshold value determination based on a calculated change amount.
- the noise deterioration is strong, and the rapid deterioration is simply detected. can do.
- the effects described here are not necessarily limited, and may be any of the effects described in the present technology.
- FIG. 1 is an explanatory diagram of sudden capacity deterioration.
- the horizontal axis represents time (unit: year), and the vertical axis represents capacity retention rate.
- the capacity maintenance rate is the ratio of the current capacity to the initial capacity. For example, at the end of the lifetime, the battery capacity may rapidly deteriorate against the deterioration prediction formula (indicated by a broken line). Since it deteriorates at a rapid rate compared with the deterioration prediction formula, it is necessary to accurately capture such rapid deterioration in order to ensure the safety of the system using the secondary battery.
- Battery capacity can be obtained by measuring the discharge capacity up to the end-of-discharge voltage in accordance with the specified conditions (current value, temperature, etc.) starting from full charge.
- the specified conditions current value, temperature, etc.
- the battery capacity is estimated by calculation.
- the battery capacity can be estimated from the correlation between the estimated open circuit voltage (OCV) and charge / discharge capacity (Q). Due to estimation by calculation, there is an error compared with measurement. For this reason, a method that is highly resistant to errors is required when estimating rapid deterioration.
- the battery capacity and time of the secondary battery are input, the amount of change in the battery capacity is calculated by linear regression analysis, and the rapid deterioration is determined based on the threshold value determination using the calculated amount of change.
- the horizontal axis represents elapsed time, for example, the unit of year
- the vertical axis represents the capacity maintenance rate.
- the plot in FIG. 2 is an estimated value of the capacity maintenance rate. That is, an estimated value of the capacity maintenance ratio is obtained by dividing the full charge capacity obtained by calculation by the initial capacity.
- the full charge capacity can be obtained by calculation using voltage, current, and temperature data of the secondary battery.
- a linear regression analysis is performed on the history of the capacity maintenance rate in a predetermined section, and the amount of change in the capacity maintenance rate (or battery capacity) is calculated from the slope of the straight line obtained as a result of the linear regression analysis.
- This amount of change is compared with a threshold value, and when the amount of change is larger than the threshold value, it is determined that rapid deterioration has occurred. Conversely, if the change amount is smaller than the threshold value, it is determined that no rapid deterioration has occurred. In the example of FIG. 2, it is determined that rapid deterioration has not occurred when the amount of change is a straight line A1 that is smaller than the threshold, and sudden deterioration has occurred when the amount of change is a straight line A2 that is larger than the threshold. It is determined.
- a threshold for rapid deterioration is determined in advance. This threshold value may be changed according to use conditions and changes with time, such as current, temperature, and elapsed time. Furthermore, a threshold value may be set according to the type of secondary battery.
- FIG. 3A is a graph of an example of a change curve of the capacity retention rate when there is no noise.
- FIG. 3B is a graph showing a result of obtaining the amount of change in the capacity maintenance rate by the difference calculation method.
- As a method for calculating the amount of change it can be simply calculated by the difference between battery capacity history points. Assuming that the capacity maintenance rate at a certain time T (k) is R (k), the capacity maintenance rate per unit time (for example, year) from the capacity maintenance rate R (k-1) at the previous history time T (k-1). The change amount ⁇ R (k) can be calculated from the following equation.
- This calculation method is a difference calculation method.
- ⁇ R (k) (R (k) ⁇ R (k ⁇ 1)) / (T (k) ⁇ T (k ⁇ 1))
- FIG. 3C is a graph showing the result of determining the amount of change in the capacity maintenance rate according to the present technology.
- the amount of change becomes a large value after the elapsed time (for example, 4 years) at which rapid deterioration occurs. Therefore, rapid degradation can be detected by either method.
- FIG. 4A is a graph of an example of a change curve of the capacity maintenance ratio when there is noise. For example, Gaussian noise with an amplitude of ⁇ 5% is added to the capacity retention rate data of FIG. 3A.
- FIG. 4B is a graph showing the result of obtaining the amount of change in the capacity maintenance rate by the difference calculation method.
- FIG. 4C is a graph showing a result of obtaining the amount of change in the capacity retention rate according to the present technology.
- the graph of the amount of change obtained by the difference calculation method (FIG. 4B) is significantly affected by the influence of noise, and the accuracy of calculating the amount of change in the capacity maintenance rate is significantly deteriorated.
- the amount of change obtained by the present technology (FIG. 4C) the amount of change becomes a large value after the elapsed time (for example, 4 years) at which rapid deterioration occurs. Therefore, compared with the reference technique, it is possible to determine rapid deterioration using the change amount as an index without being affected by noise. It can be seen that the linear regression analysis method is highly resistant to battery capacity errors.
- a capacity maintenance rate change amount ⁇ R (k) per unit time (for example, year) is calculated from a linear regression analysis with respect to a battery capacity history point.
- the linear regression analysis will be described.
- the linear regression model is given by
- y is a dependent variable
- xk is an independent variable
- ⁇ is an error.
- the slope a and intercept b of the straight line can be calculated from the measured values by linear regression analysis.
- the slope of the straight line by the linear regression analysis that is, the capacity maintenance rate change amount ⁇ R (k) can be calculated.
- the capacity maintenance rate change amount by the linear regression analysis is strong in noise resistance, and rapid deterioration can be determined.
- This calculation method is called a linear regression analysis method. To perform linear regression analysis, at least three points of data are required. The required number of data points can be arbitrarily determined (for example, 5 points).
- FIG. 5 shows an example of the rapid deterioration detection apparatus.
- the battery capacity calculator 2 receives the information on the current, voltage, and temperature from the secondary battery 1 having a configuration in which a single battery cell or a plurality of battery cells are connected in series and / or in parallel, and the battery capacity calculator 2 calculates the battery capacity (full charge capacity). calculate.
- the secondary battery 1 constitutes a battery pack.
- the capacity maintenance rate is calculated by the maintenance rate calculator 3.
- the initial battery capacity of the secondary battery 1 is stored in the initial capacity memory 4.
- the maintenance ratio calculator 3 calculates the ratio between the initial capacity and the current battery capacity (capacity maintenance ratio).
- the capacity maintenance ratio obtained by the maintenance ratio calculator 3 is stored in the maintenance ratio storage 5.
- the capacity maintenance rate is stored in the maintenance rate storage device 5 in association with the elapsed time.
- the linear regression analyzer 6 obtains the amount of change in the capacity maintenance ratio by the above-described linear regression analysis method using, for example, five samples of the capacity maintenance ratio data stored in the maintenance ratio storage 5.
- the amount of change obtained by the linear regression analyzer 6 is supplied to the rapid deterioration determiner 7 and compared with a threshold value. When the amount of change is equal to or greater than the threshold value, it is determined that the deterioration is rapid.
- the determination result of the rapid deterioration determiner 7 is supplied to the rapid deterioration notifier 8 to notify the user whether or not the rapid deterioration has occurred.
- the rapid deterioration notification device 8 performs visual notification, acoustic notification, and the like.
- FIG. 6 is a specific example of the rapid deterioration notifier 8 that visually notifies the display device 8a.
- Example of rapid deterioration detection method The function of the rapid deterioration detection device shown in FIG. 5 can be recorded as a program on a recording medium. Therefore, the function of the rapid deterioration detection device can be realized by reading this recording medium with a computer and executing it with an MPU (Micro Processing Unit), DSP (Digital Signal Processor) or the like.
- An example of the rapid deterioration detection method described below with reference to FIG. 7 can be realized as a program executed by the information processing apparatus.
- Step ST1 Record the capacity maintenance rate in the maintenance rate memory.
- the capacity maintenance rate is obtained by a maintenance rate calculator as in the above-described rapid deterioration detection device.
- Step ST2 It is determined whether or not the capacity maintenance rate is equal to or greater than the necessary number of points (necessary samples).
- Step ST3 If the determination result in step ST2 is negative, it is determined that “abrupt deterioration occurrence cannot be detected” and the process ends.
- Step ST4 If the determination result in step ST2 is affirmative, linear regression analysis is executed.
- Step ST5 It is determined whether or not the amount of change in the capacity maintenance rate obtained by the linear regression analysis method satisfies the threshold condition.
- Step ST6 When the threshold condition is satisfied, that is, when the amount of change is equal to or greater than the threshold, it is determined that “abrupt deterioration has occurred”. Then, the process ends.
- Step ST7 When the threshold condition is not satisfied, that is, when the amount of change is smaller than the threshold, it is determined that “no rapid deterioration occurs”. Then, the process ends.
- the threshold value is set to 80%, and only the estimated battery capacity that is below the threshold value is determined as a target for rapid deterioration. As a result, it is possible to prevent erroneous determination of the initial stage of deterioration as rapid deterioration.
- the detection accuracy of the rapid deterioration is improved by determining the threshold value of the difference absolute value D between the calculated value based on the deterioration prediction formula and the calculated value based on the battery capacity estimation method for the capacity maintenance rate.
- the threshold value is set to 10%, and only when the absolute value of the capacity maintenance rate difference is equal to or larger than the threshold value, the determination target of rapid deterioration is made.
- FIG. 9 shows another example of the rapid deterioration detection device.
- the capacity maintenance rate is calculated by the maintenance rate calculator, and the obtained capacity maintenance rate is stored in the maintenance rate storage unit 15.
- the capacity maintenance rate is stored in the maintenance rate storage unit 15 in association with the elapsed time.
- the linear regression analyzer 18 determines the amount of change in the capacity maintenance rate by the above-described linear regression analysis method using, for example, five samples of the capacity maintenance rate data stored in the maintenance rate storage unit 15. The amount of change obtained by the linear regression analyzer 18 is supplied to the rapid deterioration determiner 19 and compared with a threshold value.
- the capacity maintenance rate is supplied to the maintenance rate threshold determination unit 16.
- the threshold value is 80%, for example.
- a determination result as to whether or not the capacity maintenance rate is equal to or higher than the threshold value is supplied to the rapid deterioration determination unit 19. This determination result corresponds to the condition (2).
- the same numerical value as the capacity maintenance rate stored in the maintenance rate memory 15 and the capacity maintenance rate predicted by the deterioration prediction formula are supplied to the maintenance rate difference determiner 17 together with information over time.
- the maintenance rate difference determiner 17 determines a threshold value for the difference absolute value D between the capacity maintenance rate based on the deterioration prediction formula and the calculated value of the battery capacity.
- the determination result as to whether or not the absolute difference value D is equal to or greater than the threshold value is supplied to the rapid deterioration determiner 19. This determination result corresponds to the condition (3).
- the rapid deterioration determiner 19 determines whether or not the amount of change obtained by the linear regression analyzer 18 is equal to or greater than a threshold value. This determination result corresponds to the condition (1). When the change amount is equal to or greater than the threshold, the maintenance rate is equal to or greater than the threshold, and the difference absolute value D is equal to or greater than the threshold, it is determined that rapid deterioration has occurred. The determination result of the rapid deterioration determiner 19 is supplied to the rapid deterioration notifier 20 to notify the user whether or not the rapid deterioration has occurred.
- the rapid deterioration notification device 20 performs visual notification, acoustic notification, and the like.
- the function of the rapid deterioration detection apparatus shown in FIG. 9 can be recorded as a program on a recording medium, and the function of the rapid deterioration detection apparatus is realized by reading the recording medium with a computer and executing it with an MPU, DSP, or the like. Can do.
- Another example of the rapid deterioration detection method described below with reference to FIG. 10 can be realized as a program executed by the information processing apparatus.
- Step ST11 Record the capacity maintenance rate in the maintenance rate memory.
- the capacity maintenance rate is obtained by a maintenance rate calculator as in the above-described rapid deterioration detection device.
- Step ST12 It is determined whether or not the capacity maintenance rate is equal to or greater than the necessary number (necessary samples).
- Step ST13 If the determination result in step ST2 is negative, it is determined that “abrupt deterioration occurrence cannot be detected” and the process ends.
- Step ST14 When the determination result of step ST2 is affirmative, linear regression analysis is executed.
- Step ST15 It is determined whether or not the amount of change in the capacity maintenance rate obtained by the linear regression analysis method satisfies the threshold condition.
- Step ST16 When the threshold condition is not satisfied, that is, when the amount of change is smaller than the threshold, it is determined that “no rapid deterioration occurs”. Then, the process ends.
- Step ST17 If the threshold condition is satisfied in step ST15, that is, if the change amount is greater than or equal to the threshold, it is determined whether or not the capacity maintenance rate satisfies the threshold condition. When the threshold condition is not satisfied, that is, when the capacity maintenance rate is larger than the threshold (initial state), it is determined that “no rapid deterioration occurs” (step ST16). Then, the process ends.
- Step ST18 When the threshold condition is satisfied in step ST17, that is, when the capacity maintenance rate is smaller than the threshold, whether or not the absolute value D of the difference between the capacity maintenance rate and the predicted value based on the deterioration prediction formula satisfies the threshold condition. Is determined.
- Step ST16 When the threshold condition is not satisfied, that is, when the difference absolute value D is smaller than the threshold, it is determined that “no rapid deterioration occurs” (step ST16). Then, the process ends.
- Step ST19 If the threshold condition is satisfied in step ST18, that is, if the difference absolute value D between the capacity maintenance rate and the predicted value based on the deterioration prediction formula is larger than the threshold, it is determined that “abrupt deterioration has occurred”. Then, the process ends.
- the present technology described above has high noise resistance, and since it is mainly a calculation based on linear regression analysis, it is possible to detect sudden deterioration in a simple manner. In the present technology, it is possible to detect a danger at an early stage before reaching the lifetime by detecting a sudden deterioration that is an unexpected behavior. Therefore, it becomes possible to improve the safety of the system using the storage battery. At an early stage before reaching the end of its service life, measures to ensure safety (system shutdown, battery replacement, etc.) can be made.
- FIG. 11 is an explanatory diagram of a deteriorated OCV curve.
- the OCV curve of a battery can be expressed by the difference between the OCV curves of a single positive electrode and a single negative electrode (generally measured using Li metal as a counter electrode).
- An OCV curve of the battery can be generated by taking a difference by expanding and contracting each of the unipolar OCV curves acquired in advance.
- the battery capacity can be estimated from the discharge capacity (CAPnow) until the OCV curve of the battery reaches the cutoff voltage.
- the discharge capacity and OCV estimated value recorded in the memory or the like can be plotted with the discharge capacity Q as the horizontal axis and the voltage as the vertical axis.
- An optimal fitting condition is obtained by fitting the OCV curve of the generated battery while expanding / contracting / shifting the unipolar OCV curve acquired in advance with respect to the OCV value locus.
- FIG. 13 shows a flowchart of OCV curve calculation.
- a method for generating an OCV curve of a battery by expanding and contracting and shifting a unipolar OCV curve will be described.
- the amount of expansion / contraction / shift with respect to the unipolar OCV curve is used as a parameter, and a range of values for changing the parameter is set.
- the expansion / contraction magnification it is changed at intervals of 0.05 from 0.5 to 1.0.
- fitting to the OCV value trajectory is performed while changing a parameter for generating an OCV curve (a parameter of OCV curve configuration information), and an OCV curve as an optimum condition is calculated.
- the process of generating the other OCV curve from the configuration information of one OCV curve will be described in more detail with reference to the flowchart of FIG. Note that the method of calculating the OCV curve is not limited to the method described here.
- a method for generating an OCV curve of a battery by expanding and contracting and shifting a single pole OCV curve will be described.
- Step ST21 First, the expansion / contraction magnification (Xp, Xn) and the shift amount (Yp, Yn) with respect to the unipolar OCV curve are used as parameters, and a range of values for changing the parameters is set. For example, in the case of expansion / contraction magnification (Xp, Xn), it is changed from 0.5 to 1.0 at 0.05 intervals.
- Step ST22 The parameter of the OCV curve configuration information is set within the set range.
- Step ST23 Generate positive and negative OCV curves corresponding to the set parameters.
- Step ST24 An OCV curve of the battery is generated from the difference between the positive and negative OCV curves.
- Step ST25 Calculate the root mean square (referred to as RMS) of the OCV value trajectory and the OCV curve.
- Step ST26 The calculated RMS calculated value is compared with the minimum value (RMS minimum value) among the previously calculated RMS calculated values. If the RMS calculation value is equal to or greater than the RMS minimum value, the process returns to step ST12 (setting of parameters (Xp, Yp, Xn, Yn) of OCV curve configuration information).
- Step ST27 If the determination result in step ST26 is affirmative, that is, if (RMS calculation value ⁇ RMS minimum value), the RMS minimum value and OCV curve configuration information (Xp, Yp, Xn, Yn) are updated and recorded.
- Step ST28 It is determined whether or not the entire parameter range is covered. If it is determined that they are not covered, the process returns to step ST22, and the processes of steps ST22 to ST27 described above are performed.
- Step ST29 Generate OCV curves for the positive electrode and the negative electrode with the OCV curve configuration information that minimizes RMS.
- Step ST30 An OCV curve of the battery is generated from the difference between the positive and negative OCV curves. The OCV curve that is the optimum condition is calculated by the above processing.
- the shape of the OCV curve is manipulated to generate the OCV curve of the positive electrode.
- the negative electrode OCV curve can be expressed by the following equation.
- FIG. 14 shows an example of calculating the OCV plot by linear interpolation. Assuming that the expansion / contraction magnification is 0.9 and the shift amount is 100 [mAh], the points of 510 [mAh] and 520 [mAh] move to the points of 359 [mAh] and 368 [mAh], respectively. When it is determined that the Q interval is 10 [mAh], an OCV value corresponding to 360 [mAh] is generated by a method such as linear interpolation.
- the battery OCV curve is generated from the difference between the positive and negative OCV curves.
- the OCV values of the positive electrode and the negative electrode at a certain discharge capacity Q (k) are OCVp (k) and OCVn (k), respectively.
- the OCV (k) that is the OCV value of the battery at the discharge capacity Q (k) can be expressed as the following equation.
- RMS root mean square
- a point on the OCV value locus is defined as OCVe (k).
- N is the number of plot points constituting the OCV curve.
- the parameter (magnification, shift) that minimizes the RMS value is recorded.
- Optimized OCV curve can be calculated by obtaining the parameter that minimizes the RMS value.
- FIG. 15 is a block diagram illustrating a circuit configuration example when the present technology is applied to a battery pack.
- the battery pack includes a switch unit 304 including an assembled battery 301, an exterior, a charge control switch 302a, and a discharge control switch 303a, a current detection resistor 307, a temperature detection element 308, and a control unit 310.
- the battery pack also includes a positive electrode terminal 321 and a negative electrode lead 322.
- the positive electrode terminal 321 and the negative electrode lead 322 are connected to the positive electrode terminal and the negative electrode terminal of the charger, respectively, and charging is performed.
- the positive electrode terminal 321 and the negative electrode lead 322 are connected to the positive electrode terminal and the negative electrode terminal of the electronic device, respectively, and discharging is performed.
- the assembled battery 301 is formed by connecting a plurality of secondary batteries 301a in series and / or in parallel.
- the secondary battery 301a is a secondary battery of the present technology.
- 2P3S 2 parallel 3 series
- n parallel m series n and m are integers. Any connection method may be used.
- the switch unit 304 includes a charge control switch 302a and a diode 302b, and a discharge control switch 303a and a diode 303b, and is controlled by the control unit 310.
- the diode 302b has a reverse polarity with respect to the charging current flowing from the positive electrode terminal 321 in the direction of the assembled battery 301 and the forward polarity with respect to the discharging current flowing from the negative electrode lead 322 in the direction of the assembled battery 301.
- the diode 303b has a forward polarity with respect to the charging current and a reverse polarity with respect to the discharging current.
- the switch unit 304 is provided on the + side, but may be provided on the-side.
- the charge control switch 302a is turned off when the battery voltage becomes the overcharge detection voltage, and is controlled by the charge / discharge control unit so that the charge current does not flow in the current path of the assembled battery 301. After the charging control switch 302a is turned off, only discharging is possible via the diode 302b. Further, it is turned off when a large current flows during charging, and is controlled by the control unit 310 so that the charging current flowing in the current path of the assembled battery 301 is cut off.
- the discharge control switch 303 a is turned off when the battery voltage becomes the overdischarge detection voltage, and is controlled by the control unit 310 so that the discharge current does not flow in the current path of the assembled battery 301. After the discharge control switch 303a is turned off, only charging is possible via the diode 303b. Further, it is turned off when a large current flows during discharging, and is controlled by the control unit 310 so as to cut off the discharging current flowing in the current path of the assembled battery 301.
- the temperature detection element 308 is, for example, a thermistor, is provided in the vicinity of the assembled battery 301, measures the temperature of the assembled battery 301, and supplies the measured temperature to the control unit 310.
- the voltage detection unit 311 measures the voltage of the assembled battery 301 and each secondary battery 301a constituting the assembled battery 301, A / D converts this measurement voltage, and supplies the voltage to the control unit 310.
- the current measurement unit 313 measures the current using the current detection resistor 307 and supplies this measurement current to the control unit 310.
- the switch control unit 314 controls the charge control switch 302a and the discharge control switch 303a of the switch unit 304 based on the voltage and current input from the voltage detection unit 311 and the current measurement unit 313.
- the switch control unit 314 sends a control signal to the switch unit 304 when any voltage of the secondary battery 301a falls below the overcharge detection voltage or overdischarge detection voltage, or when a large current flows suddenly. By sending, overcharge, overdischarge, and overcurrent charge / discharge are prevented.
- the overcharge detection voltage is determined to be 4.20 V ⁇ 0.05 V, for example, and the overdischarge detection voltage is determined to be 2.4 V ⁇ 0.1 V, for example. .
- the charge / discharge switch for example, a semiconductor switch such as a MOSFET can be used.
- the parasitic diode of the MOSFET functions as the diodes 302b and 303b.
- the switch control unit 314 supplies control signals DO and CO to the gates of the charge control switch 302a and the discharge control switch 303a, respectively.
- the charge control switch 302a and the discharge control switch 303a are P-channel type, they are turned on by a gate potential that is lower than the source potential by a predetermined value or more. That is, in normal charging and discharging operations, the control signals CO and DO are set to a low level, and the charging control switch 302a and the discharging control switch 303a are turned on.
- control signals CO and DO are set to the high level, and the charge control switch 302a and the discharge control switch 303a are turned off.
- the memory 317 includes a RAM and a ROM, and includes, for example, an EPROM (Erasable Programmable Read Only Memory) that is a nonvolatile memory.
- EPROM Erasable Programmable Read Only Memory
- the numerical value calculated by the control unit 310, the internal resistance value of the battery in the initial state of each secondary battery 301a measured in the manufacturing process, and the like are stored in advance, and can be appropriately rewritten. . Further, by storing the full charge capacity of the secondary battery 301a, for example, the remaining capacity can be calculated together with the control unit 310.
- the temperature detection unit 318 measures the temperature using the temperature detection element 308, performs charge / discharge control at the time of abnormal heat generation, and performs correction in the calculation of the remaining capacity.
- the function of the rapid deterioration detection device described above is included in the control unit 310.
- the function of the rapid deterioration notifier is provided inside the battery pack or outside the battery pack.
- the rapid deterioration detection device detects the deterioration of the assembled battery 301.
- FIG. 16 illustrates an example of a configuration of a power storage system.
- the power storage system 81 includes a power storage module 82 and a controller 83. Electric power is transmitted and communicated between the power storage module 82 and the controller 83. Although only one power storage module is illustrated in FIG. 16, a plurality of power storage modules may be connected and each power storage module may be connected to the controller.
- the controller 83 is connected to a charging device (charging power source) 84 or a load 85 via a power cable and a communication bus.
- a charging device charging power source
- the controller 83 is connected to the charging device 84.
- the charging device 84 includes a direct current (DC) -DC converter or the like, and includes at least a charging voltage and charging current control unit 84a.
- the charging voltage and charging current control unit 84a sets the charging voltage and charging current to predetermined values in accordance with the control of the controller 83 (main micro control unit 40).
- the controller 83 When discharging the power storage module 82, the controller 83 is connected to the load 85.
- the power of the power storage module 82 is supplied to the load 85 via the controller 83.
- the load 85 connected to the controller 83 is a motor-type inverter circuit in an electric vehicle, a household power system, or the like.
- the load 85 has at least a discharge current control unit 85a.
- the discharge current control unit 85a sets the discharge current to a predetermined value in accordance with the control of the main micro control unit 40 of the controller 83.
- the load 85 appropriately controls the magnitude of the discharge current (load current) flowing through the power storage module 82 by changing the load resistance.
- the outer case is desirably made of a material having high conductivity and emissivity.
- a material having high conductivity and emissivity By using a material having high conductivity and emissivity, excellent heat dissipation in the outer case can be obtained. By obtaining excellent heat dissipation, temperature rise in the outer case can be suppressed. Further, the opening of the outer case can be minimized or eliminated, and high dustproof and drip-proof properties can be realized.
- a material such as aluminum, an aluminum alloy, copper, or a copper alloy is used.
- the power storage module 82 includes, for example, a positive electrode terminal 21, a negative electrode terminal 22, a power storage block BL as a power storage unit, a FET (Field (Effect Transistor), a voltage multiplexer 23, an ADC (Analog Digital Converter) 24, a temperature measurement unit 25, and a temperature multiplexer. 26, a monitoring unit 27, a temperature measurement unit 28, a current detection resistor 29, a current detection amplifier 30, an ADC 31, a sub-micro control unit 35, and a storage unit 36.
- a configuration different from the illustrated configuration may be added to the power storage module 82.
- a regulator that generates a voltage for operating each unit of the power storage module 82 from the voltage of the power storage block BL may be added.
- the power storage block BL is formed by connecting one or more submodules SMO.
- the power storage block BL is configured by connecting 16 submodules SMO1, submodule SMO2, submodule SMO3, submodule SMO4... And submodule SMO16 in series.
- submodule SMO when it is not necessary to distinguish each submodule, it is appropriately called a submodule SMO.
- a submodule SMO is formed by connecting a plurality of storage batteries (cells).
- the submodule SMO has a configuration including, for example, an assembled battery in which eight cells are connected in parallel.
- the capacity of the submodule SMO is, for example, about 24 Ah
- the voltage is, for example, about 3.0 V, which is substantially the same as the cell voltage.
- the storage block BL is formed by connecting a plurality of submodules SMO.
- the power storage block BL has, for example, a configuration in which 16 submodules SMO are connected in series. In this case, the capacity is about 24 Ah, and the voltage is about 48 V (3.0 V ⁇ 16).
- the number of cells constituting the submodule SMO and the mode of cell connection can be changed as appropriate. Furthermore, the number of submodules SMO constituting the power storage block BL and the connection mode of the submodules SMO can be changed as appropriate. Note that discharging and charging may be performed in units of power storage blocks BL, and discharging and charging may be performed in units of submodules or cells.
- the positive side of the submodule SMO1 is connected to the positive terminal 21 of the power storage module 82.
- the negative side of the submodule SMO 16 is connected to the negative terminal 22 of the power storage module 82.
- the positive terminal 21 is connected to the positive terminal of the controller 83.
- the negative terminal 22 is connected to the negative terminal of the controller 83.
- 16 FETs are provided between the terminals of the submodule SMO.
- the FET is for performing, for example, passive cell balance control.
- the FETs other than the FET2 are turned on, and the submodules SMO other than the submodule SMO2 are discharged to a predetermined voltage value.
- the FET is turned off after discharging.
- the voltage of each submodule SMO is, for example, a predetermined value (for example, 3.0 V, and the submodule SMO is balanced.
- the cell balance control method is not limited to the passive method, but the so-called active method or Other known methods can be applied.
- the voltage between the terminals of the submodule SMO is detected by a voltage detector (not shown).
- the voltage between the terminals of the submodule SMO is detected regardless of whether it is charging or discharging, for example.
- the voltage of each submodule SMO is detected by the voltage detection unit with a period of, for example, 250 ms (milliseconds).
- the voltage (analog voltage data) of each submodule SMO detected by the voltage detection unit is supplied to a voltage multiplexer (MUX (Multiplexer)) 23.
- MUX Multiplexer
- the voltage multiplexer 23 switches channels with a predetermined cycle, for example, and selects one analog voltage data from the 16 analog voltage data.
- One analog voltage data selected by the voltage multiplexer 23 is supplied to the ADC 24. Then, the voltage multiplexer 23 switches the channel and supplies the next analog voltage data to the ADC 24. That is, 16 analog voltage data are supplied from the voltage multiplexer 23 to the ADC 24 in a predetermined cycle.
- the channel switching in the voltage multiplexer 23 is performed according to control by the sub-micro control unit 35 of the power storage module 82 or the main micro-control unit 40 of the controller 83.
- the temperature measuring unit 25 detects the temperature of each submodule SMO.
- the temperature measuring unit 25 is composed of an element that detects a temperature, such as a thermistor.
- the temperature of the submodule SMO is detected with a predetermined cycle, for example, whether charging or discharging. Since the temperature of the submodule SMO and the temperature of the cells constituting the submodule SMO are not significantly different, in one embodiment, the temperature of the submodule SMO is measured.
- the individual temperatures of the eight cells may be measured, and the average value of the temperatures of the eight cells may be used as the temperature of the submodule SMO.
- Analog temperature data indicating the temperature of each submodule SMO detected by the temperature measuring unit 25 is supplied to the temperature multiplexer (MUX) 26.
- MUX temperature multiplexer
- the temperature multiplexer 26 switches channels with a predetermined cycle, for example, and selects one analog temperature data from the 16 analog temperature data.
- One analog temperature data selected by the temperature multiplexer 26 is supplied to the ADC 24. Then, the temperature multiplexer 26 switches the channel and supplies the next analog temperature data to the ADC 24. That is, 16 analog temperature data are supplied from the temperature multiplexer 26 to the ADC 24 in a predetermined cycle.
- the channel switching in the temperature multiplexer 26 is performed according to control by the sub micro control unit 35 of the power storage module 82 or the main micro control unit 40 of the controller 83.
- the ADC 24 converts the analog voltage data supplied from the voltage multiplexer 23 into digital voltage data.
- the ADC 24 converts the analog voltage data into, for example, 14 to 18 bit digital voltage data.
- various methods such as a successive approximation method and a ⁇ (delta sigma) method can be applied.
- the ADC 24 includes, for example, an input terminal, an output terminal, a control signal input terminal to which a control signal is input, and a clock pulse input terminal to which a clock pulse is input (the illustration of these terminals is omitted). ) Analog voltage data is input to the input terminal. The converted digital voltage data is output from the output terminal.
- a control signal (control command) supplied from the controller 83 is input to the control signal input terminal.
- the control signal is an acquisition instruction signal for instructing acquisition of analog voltage data supplied from the voltage multiplexer 23, for example.
- the acquisition instruction signal is input, the analog voltage data is acquired by the ADC 24, and the acquired analog voltage data is converted into digital voltage data. Then, digital voltage data is output via the output terminal in accordance with the synchronizing clock pulse input to the clock pulse input terminal.
- the output digital voltage data is supplied to the monitoring unit 27.
- an acquisition instruction signal for instructing acquisition of analog temperature data supplied from the temperature multiplexer 26 is input to the control signal input terminal.
- the ADC 24 acquires analog temperature data.
- the acquired analog temperature data is converted into digital temperature data by the ADC 24.
- the analog temperature data is converted into, for example, 14-18 bit digital temperature data.
- the converted digital temperature data is output via the output terminal, and the output digital temperature data is supplied to the monitoring unit 27.
- the functional block of the ADC 24 may have a function of a comparator that compares a voltage or temperature with a predetermined value.
- 16 digital voltage data and 16 digital temperature data are time-division multiplexed and transmitted from the ADC 24 to the monitoring unit 27.
- An identifier for identifying the submodule SMO may be described in the header of the transmission data to indicate which submodule SMO voltage or temperature.
- the digital voltage data of each submodule SMO obtained with a predetermined period and converted into digital data by the ADC 24 corresponds to the voltage information.
- Analog voltage data may be used as voltage information, and digital voltage data subjected to correction processing or the like may be used as voltage information.
- the temperature measuring unit 28 measures the temperature of the entire power storage module 82. The temperature in the outer case of the power storage module 82 is measured by the temperature measurement unit 28. Analog temperature data measured by the temperature measurement unit 28 is supplied to the temperature multiplexer 26, and is supplied from the temperature multiplexer 26 to the ADC 24. Then, the analog temperature data is converted into digital temperature data by the ADC 24. Digital temperature data is supplied from the ADC 24 to the monitoring unit 27.
- the power storage module 82 has a current detection unit that detects the value of the current (load current) flowing through the current path of the power storage module 82.
- the current detection unit detects a current value flowing through the 16 submodules SMO.
- the current detection unit includes, for example, a current detection resistor 29 connected between the negative electrode side of the submodule SMO16 and the negative electrode terminal 22, and a current detection amplifier 30 connected to both ends of the current detection resistor 29.
- Analog current data is detected by the current detection resistor 29. For example, the analog current data is detected with a predetermined cycle regardless of whether it is being charged or discharged.
- Detected analog current data is supplied to the current detection amplifier 30.
- the analog current data is amplified by the current detection amplifier 30.
- the gain of the current detection amplifier 30 is set to about 50 to 100 times, for example.
- the amplified analog current data is supplied to the ADC 31.
- the ADC 31 converts the analog current data supplied from the current detection amplifier 30 into digital current data.
- the ADC 31 converts the analog current data into, for example, 14-18 bit digital current data.
- Various conversion methods such as a successive approximation method and a ⁇ (delta sigma) method can be applied to the conversion method in the ADC 31.
- the ADC 31 includes, for example, an input terminal, an output terminal, a control signal input terminal to which a control signal is input, and a clock pulse input terminal to which a clock pulse is input (illustration of these terminals is omitted). .
- Analog current data is input to the input terminal.
- Digital current data is output from the output terminal.
- a control signal (control command) supplied from the controller 83 is input to the control signal input terminal of the ADC 31.
- the control signal is, for example, an acquisition instruction signal that instructs acquisition of analog current data supplied from the current detection amplifier 30.
- the acquisition instruction signal is input, the analog current data is acquired by the ADC 31, and the acquired analog current data is converted into digital current data.
- digital current data is output from the output terminal in accordance with the synchronizing clock pulse input to the clock pulse input terminal.
- the output digital current data is supplied to the monitoring unit 27.
- This digital current data is an example of current information.
- the ADC 24 and the ADC 31 may be configured as the same ADC.
- the monitoring unit 27 monitors the digital voltage data and digital temperature data supplied from the ADC 24, and monitors whether there is an abnormality in the submodule SMO. For example, if the voltage indicated by the digital voltage data is in the vicinity of a voltage that is a standard for overcharge or a voltage that is a standard for overdischarge, there is an abnormality that indicates that there is an abnormality or that an abnormality may occur Generate a notification signal. Further, the monitoring unit 27 similarly generates an abnormality notification signal when the temperature of the submodule SMO or the temperature of the entire power storage module 82 is larger than the threshold value.
- the monitoring unit 27 monitors digital current data supplied from the ADC 31. When the current value indicated by the digital current data is larger than the threshold value, the monitoring unit 27 generates an abnormality notification signal. The abnormality notification signal generated by the monitoring unit 27 is transmitted to the sub-micro control unit 35 by the communication function of the monitoring unit 27.
- the monitoring unit 27 monitors the presence / absence of the abnormality described above, and transmits the digital voltage data for each of the 16 submodules SMO supplied from the ADC 24 and the digital current data supplied from the ADC 31 to the sub-micro control unit 35.
- Digital voltage data and digital current data for each sub-module SMO may be directly supplied to the sub-micro control unit 35 without going through the monitoring unit 27.
- the transmitted digital voltage data and digital current data for each sub-module SMO are input to the sub-micro control unit 35.
- digital temperature data supplied from the ADC 24 is supplied from the monitoring unit 27 to the sub-micro control unit 35.
- the sub-micro control unit 35 is configured by a CPU (Central Processing Unit) having a communication function and controls each part of the power storage module 82. For example, when an abnormality notification signal is supplied from the monitoring unit 27, the sub micro control unit 35 notifies the main micro control unit 40 of the controller 83 of the abnormality using the communication function. In response to this notification, the main micro control unit 40 appropriately executes processing such as stopping charging or discharging. Note that the sub and main notations in the sub-micro control unit and the main micro-control unit are for convenience of explanation, and have no special meaning.
- bidirectional communication conforming to serial communication standards such as I2C, SMBus (System Management Bus), SPI (Serial Peripheral Interface), CAN, etc. Done. Communication may be wired or wireless.
- the digital voltage data is input from the monitoring unit 27 to the sub-micro control unit 35.
- digital voltage data for each submodule SMO when the power storage module 82 is discharged is input to the sub-micro control unit 35.
- the magnitude of the load current (digital current data) when a load is connected to the power storage module 82 is input from the monitoring unit 27 to the sub-micro control unit 35.
- Digital temperature data indicating the temperature for each sub module SMO and the temperature in the power storage module 82 is input to the sub micro control unit 35.
- the sub-micro control unit 35 transmits the input digital voltage data for each sub-module SMO, digital temperature data indicating the temperature for each sub-module SMO, digital current data, and the like to the main micro-control unit 40.
- the storage unit 36 includes a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
- the storage unit 36 stores a program executed by the sub-micro control unit 35.
- the storage unit 36 is further used as a work area when the sub-micro control unit 35 executes processing.
- history information regarding the power storage module 82 is stored.
- the history information includes, for example, charge conditions such as a charge rate, a charge time, and the number of times of charge, a discharge rate, a discharge time, a discharge condition of the number of times of discharge, temperature information, and the like. These pieces of information may be recorded in units of the power storage block BL, the submodule SMO, and the storage battery.
- the sub-micro control unit 35 may perform processing referring to history information.
- the controller 83 manages charging and discharging for one or a plurality of power storage modules 82. Specifically, starting and stopping of charging of the power storage module 82, starting and stopping of discharging of the power storage module 82, setting of a charging rate and a discharging rate, and the like are performed.
- the controller 83 is configured to have an exterior case in the same manner as the power storage module 82.
- a rapid deterioration detection function according to the present technology is incorporated.
- the sub-micro control unit 35 may have a rapid deterioration detection function.
- the controller 83 includes a main micro control unit 40, a positive terminal 41, a negative terminal 42, a positive terminal 43, a negative terminal 44, a charge control unit 45, a discharge control unit 46, a switch SW1, and a switch SW2.
- the switch SW1 is connected to the terminal 50a or the terminal 50b.
- the switch SW2 is connected to the terminal 51a or the terminal 51b.
- the positive terminal 41 is connected to the positive terminal 21 of the power storage module 82.
- the negative terminal 42 is connected to the negative terminal 22 of the power storage module 82.
- the positive terminal 43 and the negative terminal 44 are connected to a charging device 84 or a load 85 connected to the controller 83.
- the main micro control unit 40 is constituted by, for example, a CPU having a communication function, and controls each part of the controller 83.
- the main micro control unit 40 controls charging and discharging according to an abnormality notification signal transmitted from the sub micro control unit 35 of the power storage module 82. For example, when the possibility of overcharging is notified by the abnormality notification signal, the main micro control unit 40 turns off at least the switching element of the charging control unit 45 and stops charging. For example, when the risk of overdischarge is notified by the abnormality notification signal, the main micro control unit 40 turns off at least the switching element of the discharge control unit 46 and stops the discharge.
- the main micro control unit 40 turns off the switching elements of the charge control unit 45 and the discharge control unit 46, and uses the power storage module 82.
- Cancel For example, when the power storage module 82 is used as a power source for backup, the use of the power storage module 82 is stopped at an appropriate timing without immediately stopping the use of the power storage module 82.
- the main micro control unit 40 manages the charging and discharging of the power storage module 82 and refers to history information such as the voltage, temperature, and cycle number of the sub module SMO transmitted from the sub micro control unit 35, which will be described later. Control to perform the discharge method.
- the sub-micro control unit 35 may have a part of the functions of the main micro-control unit 40 described below.
- the main micro control unit 40 can communicate with the CPU and the like included in the charging device 84 and the load 85.
- the main micro control unit 40 sets a charging voltage and a charging rate (a magnitude of charging current) for the power storage module 82, and transmits the set charging voltage and charging rate to the charging device 84.
- the charging voltage and charging current control unit 84a appropriately sets the charging voltage and charging current according to the charging voltage and charging rate transmitted from the main micro control unit 40.
- the main micro control unit 40 sets the discharge rate (the magnitude of the discharge current) of the electricity storage module 82 and transmits the set discharge rate to the load 85.
- the discharge current control unit 85a of the load 85 appropriately sets the load so that the discharge current according to the discharge rate transmitted from the main micro control unit 40 is obtained.
- the charge control unit 45 includes a charge control switch 45a and a diode 45b connected in parallel with the charge control switch 45a in the forward direction with respect to the discharge current.
- the discharge control unit 46 includes a discharge control switch 46a and a diode 46b connected in parallel to the charge control current in parallel with the discharge control switch 46a.
- an IGBT Insulated Gate Bipolar Transistor
- MOSFET Metal Metal Oxide Semiconductor Semiconductor Field Effect Transistor
- the storage unit 47 includes a ROM, a RAM, and the like. In the storage unit 47, for example, a program executed by the main micro control unit 40 is stored. The storage unit 47 is used as a work area when the main micro control unit 40 executes processing. The above history information may be stored in the storage unit 47.
- the switch SW1 is connected to the positive power supply line connected to the positive terminal 43.
- the switch SW1 is connected to the terminal 50a, and when the power storage module 82 is discharged, the switch SW1 is connected to the terminal 50b.
- the switch SW2 is connected to the negative power supply line connected to the negative terminal 44.
- the switch SW2 is connected to the terminal 51a, and when the power storage module 82 is discharged, the switch SW2 is connected to the terminal 51b. Switching of the switch SW1 and the switch SW2 is controlled by the main micro control unit 40.
- the present technology is applied to a residential power storage device will be described with reference to FIG.
- the power storage device 100 for the house 101 electric power is supplied from the centralized power system 102 such as the thermal power generation 102a, the nuclear power generation 102b, and the hydroelectric power generation 102c through the power network 109, the information network 112, the smart meter 107, the power hub 108, and the like. It is supplied to the power storage device 103.
- power is supplied to the power storage device 103 from an independent power source such as the home power generation device 104.
- the electric power supplied to the power storage device 103 is stored. Electric power used in the house 101 is fed using the power storage device 103.
- the same power storage device can be used not only for the house 101 but also for buildings.
- the power storage device 103 is obtained by connecting a plurality of power storage modules in parallel.
- the house 101 is provided with a home power generation device 104, a power consumption device 105, a power storage device 103, a control device 110 that controls each device, a smart meter 107, and a sensor 111 that acquires various types of information.
- Each device is connected by a power network 109 and an information network 112.
- a solar cell, a fuel cell, or the like is used, and the generated power is supplied to the power consumption device 105 and / or the power storage device 103.
- the power consuming device 105 is a refrigerator 105a, an air conditioner (air conditioner) 105b, a television receiver (television) 105c, a bath (bus) 105d, and the like.
- the electric power consumption device 105 includes an electric vehicle 106.
- the electric vehicle 106 is an electric vehicle 106a, a hybrid car 106b, and an electric motorcycle 106c.
- the power storage device 103 is composed of a secondary battery or a capacitor. For example, it is constituted by a lithium ion secondary battery. A plurality of power storage modules can be used as the power storage device 103.
- the lithium ion secondary battery may be a stationary type or used in the electric vehicle 106.
- the smart meter 107 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company.
- the power network 109 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
- the various sensors 111 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by the various sensors 111 is transmitted to the control device 110. Based on the information from the sensor 111, the weather condition, the human condition, etc. can be grasped, and the power consumption device 105 can be automatically controlled to minimize the energy consumption. Furthermore, the control device 110 can transmit information regarding the house 101 to an external power company or the like via the Internet.
- the power hub 108 performs processing such as branching of power lines and DC / AC conversion.
- the communication method of the information network 112 connected to the control device 110 includes a method using a communication interface such as UART (Universal Asynchronous Receiver-Transmitter), Bluetooth (registered trademark), ZigBee (registered trademark). And a sensor network based on a wireless communication standard such as Wi-Fi (registered trademark).
- the Bluetooth (registered trademark) system is applied to multimedia communication and can perform one-to-many connection communication.
- ZigBee uses the physical layer of IEEE (Institute of Electrical and Electronics Electronics) (802.15.4). IEEE 802.15.4 is the name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
- the control device 110 is connected to an external server 113.
- the server 113 may be managed by any one of the house 101, the power company, and the service provider.
- the information transmitted and received by the server 113 is, for example, information related to power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device (for example, a television receiver) in the home, or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, for example, a television receiver, a mobile phone, a PDA (Personal Digital Assistant) or the like.
- the control device 110 that controls each unit includes a CPU, a RAM, a ROM, and the like, and is stored in the power storage device 103 in this example.
- a function of the control device 110 for example, a function such as the monitoring unit 27 or a function such as the controller 83 can be applied.
- the control device 110 is connected to the power storage device 103, the home power generation device 104, the power consumption device 105, the various sensors 111, the server 113 and the information network 112, and adjusts, for example, the amount of commercial power used and the amount of power generation. have. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
- electric power is generated not only from the centralized power system 102 such as the thermal power generation 102a, the nuclear power generation 102b, and the hydroelectric power generation 102c but also from the home power generation device 104 (solar power generation, wind power generation) to the power storage device 103.
- the home power generation device 104 solar power generation, wind power generation
- the electric power obtained by solar power generation is stored in the power storage device 103, and midnight power with a low charge is stored in the power storage device 103 at night, and the power stored by the power storage device 103 is discharged during a high daytime charge. You can also use it.
- control device 110 is stored in the power storage device 103 .
- control device 110 may be stored in the smart meter 107 or may be configured independently.
- the power storage device 100 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
- a capacity change amount calculation unit for calculating a change amount of the full charge capacity or the capacity maintenance rate by inputting the full charge capacity or the capacity maintenance rate of the secondary battery and the elapsed time; and A battery pack comprising: a rapid deterioration determination unit that determines deterioration based on a threshold value determination based on a change amount calculated by the capacity change amount calculation unit.
- the change amount of the full charge capacity or the capacity maintenance rate calculated by the capacity change amount calculation unit is the battery pack according to (1), which is calculated by linear regression analysis.
- the battery pack according to (1) wherein the capacity maintenance rate of the secondary battery is determined based on a threshold value, and the case where the capacity maintenance rate is smaller than the threshold value is subject to deterioration determination.
- a difference between the predicted value based on the deterioration prediction formula and the full charge capacity or capacity maintenance rate of the secondary battery is determined based on a threshold value, and the case where the difference value is larger than the threshold value is subject to deterioration determination (1) or ( The battery pack according to 3).
- a power storage device that includes the battery pack according to (1) and supplies electric power to an electronic device connected to the battery pack.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
This battery pack is provided with: a capacity variation amount calculating unit which accepts as inputs a full charge capacity or a capacity retention ratio of a secondary battery, and an elapsed time, and calculates an amount of variation in the full charge capacity or the capacity retention ratio; and a rapid deterioration assessing unit which assesses deterioration on the basis of a threshold assessment of the amount of variation calculated by the capacity variation amount calculating unit.
Description
本技術は 例えばリチウムイオン二次電池を使用した電池パック、蓄電装置及び二次電池の劣化検出方法に関する。
This technology relates to, for example, a battery pack using a lithium ion secondary battery, a power storage device, and a secondary battery deterioration detection method.
リチウムイオン電池やニッケル水素電池などの二次電池は電源として、携帯電話に代表されるようなモバイル端末に広く普及している。近年、環境保護の高まりと共に、太陽光発電や風力発電のような再生可能エネルギーが注目され、そのエネルギーを蓄電する用途として、二次電池が注目され普及しつつある。自動車でも、二次電池を搭載したハイブリッド自動車や電気自動車が普及しつつある。このように、二次電池は電源用途に欠かせないキーデバイスとしての役割を担っている。
Secondary batteries such as lithium ion batteries and nickel metal hydride batteries are widely used in mobile terminals such as mobile phones as power sources. In recent years, with the increase in environmental protection, renewable energy such as solar power generation and wind power generation has attracted attention, and secondary batteries have been attracting attention and spreading as applications for storing the energy. As for automobiles, hybrid cars and electric cars equipped with secondary batteries are becoming popular. In this way, the secondary battery plays a role as a key device indispensable for power supply applications.
二次電池は未使用状態でさえ劣化が進行し、その劣化程度は使用条件によって変わる。そのため、SOC(State Of Charge:電池の充電率)推定を高精度に行うためには劣化推定(SOH(State Of Health ))が不可欠となる。また二次電池の劣化状態を把握することは寿命判断など安全性を確保する上で重要である。二次電池を使用する立場で観た場合、代表的な劣化として電池容量劣化と出力電圧劣化が挙げられる。ここで、電池容量とは、満充電容量を意味している。容量維持率は劣化指標として、現在の満充電容量を初期の満充電容量で割った数値で表現される。容量維持率を算出する際には、満充電容量の替わりに、満充電位置から電圧下限に到達するまでの放電容量を使用することも多い。
¡Secondary batteries deteriorate even when not in use, and the degree of deterioration varies depending on the usage conditions. Therefore, deterioration estimation (SOH (State Of Health)) is indispensable in order to estimate SOC (State Of Charge: battery charging rate) with high accuracy. In addition, grasping the deterioration state of the secondary battery is important for ensuring safety such as life judgment. From the standpoint of using a secondary battery, typical capacity degradation includes battery capacity degradation and output voltage degradation. Here, the battery capacity means a full charge capacity. The capacity maintenance rate is expressed by a numerical value obtained by dividing the current full charge capacity by the initial full charge capacity as a deterioration index. When calculating the capacity maintenance rate, the discharge capacity from the fully charged position to the voltage lower limit is often used instead of the fully charged capacity.
二次電池の容量劣化は、経時間の平方根におおよそ直線比例することが経験的に知られている。一般的には、二次電池の劣化予測にこうした経験的なルート則法を適用することが多い。ルート則法に則り劣化試験結果と合わせて劣化予測式を立て、二次電池の寿命を論じることが多い。しかしながら、多くの場合は劣化予測式に則ったとしても、ルート則に則らない想定外の挙動が起きた場合には対応できない。
It is empirically known that the capacity deterioration of the secondary battery is approximately linearly proportional to the square root over time. In general, such an empirical route law is often applied to predict deterioration of a secondary battery. In many cases, the life expectancy of secondary batteries is discussed by formulating deterioration prediction formulas along with the results of deterioration tests in accordance with the root law. However, in many cases, even if it follows the deterioration prediction formula, it cannot cope with unexpected behavior that does not follow the root rule.
ルート則に則らない想定外の挙動として例えば、寿命末期における電池容量の急激な劣化現象が知られている。他に、低温での充放電、ハイレート(高入力、高出力)の充放電、などで電池容量の急激な劣化が確認されている。劣化予測式と比較し急激な速度で劣化するため、二次電池を使用したシステムの安全性を確保するためには、こうした想定外挙動を正確に捕捉することが必要となる。急激な速度での劣化を便宜上、急劣化と呼ぶことにする。
For example, a sudden deterioration phenomenon of battery capacity at the end of the life is known as an unexpected behavior that does not follow the route rule. In addition, rapid deterioration of battery capacity has been confirmed due to charging / discharging at a low temperature and charging / discharging at a high rate (high input, high output). Since it deteriorates at a rapid rate compared with the deterioration prediction formula, it is necessary to accurately capture such unexpected behavior in order to ensure the safety of the system using the secondary battery. For the sake of convenience, deterioration at a rapid speed will be referred to as rapid deterioration.
二次電池製造時の検査で異常個体を検出するため、初期の性能測定量と現在の性能測定量との差(性能劣化量)を求め、性能劣化量が異常判定閾値より大きい場合に、急劣化が発生していると診断し、異常と診断する方法が提案されている(特許文献1参照)。特許文献1に記載のものは、蓄電池の製造時期や製造ライン等で性能にばらつきがある場合でも、異常診断を精度良く行えると記載されている。
In order to detect an abnormal individual in the inspection at the time of secondary battery manufacture, the difference between the initial performance measurement amount and the current performance measurement amount (performance deterioration amount) is obtained. A method of diagnosing that deterioration has occurred and diagnosing an abnormality has been proposed (see Patent Document 1). The thing of patent document 1 is described that abnormality diagnosis can be performed with high accuracy even when the performance varies depending on the production time, production line, etc. of the storage battery.
特許文献1に記載のものでは、性能劣化量を精度良く求めることが必要となる。製造ラインでは精度良く電池容量を測定できるかもしれないが、電気自動車のような車載電池や太陽光発電のようなシステムと連携した蓄電池では、電池容量を正確に測定あるいは算出することは難しい。そのため、この方法を車載電池や蓄電システムに対してそのまま適用し急劣化を検出しようとしても、誤検出が多く発生する危惧がある。
In the case of the one described in Patent Document 1, it is necessary to accurately determine the amount of performance deterioration. Although it may be possible to accurately measure the battery capacity on the production line, it is difficult to accurately measure or calculate the battery capacity with an in-vehicle battery such as an electric vehicle or a storage battery linked with a system such as photovoltaic power generation. For this reason, even if this method is applied to an in-vehicle battery or a power storage system as it is to detect rapid deterioration, there is a risk that many false detections occur.
また、図18に示すように、実際の劣化履歴曲線(破線)は電流や環境温度など使用条件によって変化するため、実使用条件で劣化予測式(実線)の精度を高く保持することは困難である。そのため、劣化予測式の精度が高くなければ、劣化予測式と測定値との差分を閾値判定することは、誤判定のおそれがある。
Further, as shown in FIG. 18, since the actual deterioration history curve (broken line) changes depending on the use conditions such as current and environmental temperature, it is difficult to maintain high accuracy of the deterioration prediction formula (solid line) under the actual use conditions. is there. For this reason, if the accuracy of the deterioration prediction formula is not high, determining the threshold value of the difference between the deterioration prediction formula and the measured value may cause an erroneous determination.
本技術は、このような従来の問題点を鑑みてなされたものであって、電池容量の履歴から想定外挙動である急劣化を簡潔に精度良く推定するようにした電池パック、蓄電装置及び劣化検出方法を提供することを目的とする。
The present technology has been made in view of such conventional problems, and includes a battery pack, a power storage device, and a deterioration in which sudden deterioration that is unexpected behavior is simply and accurately estimated from a history of battery capacity. An object is to provide a detection method.
上述した課題を解決するために、本技術は、二次電池の満充電容量又は容量維持率、並びに経時間を入力とし、満充電容量又は容量維持率の変化量を算出する容量変化量算出部と、
容量変化量算出部により算出された変化量を閾値判定に基づいて劣化を判定する急劣化判定部と
を備える電池パックである。
本技術は、上述した電池パックを有し、電池パックに接続される電子機器に電力を供給する蓄電装置である。
本技術は、二次電池の満充電容量又は容量維持率、並びに経時間から満充電容量又は容量維持率の変化量を算出し、
算出された変化量を閾値判定に基づいて劣化を検出する
二次電池の劣化検出方法である。 In order to solve the above-described problem, the present technology provides a capacity change amount calculation unit that calculates the change amount of the full charge capacity or the capacity maintenance rate by inputting the full charge capacity or the capacity maintenance rate of the secondary battery and the elapsed time. When,
A battery pack comprising: a rapid deterioration determination unit that determines deterioration based on a threshold determination based on a change amount calculated by a capacity change amount calculation unit.
The present technology is a power storage device that includes the above-described battery pack and supplies power to an electronic device connected to the battery pack.
This technology calculates the amount of change in the full charge capacity or capacity maintenance rate from the full charge capacity or capacity maintenance rate of the secondary battery and the elapsed time,
This is a method for detecting deterioration of a secondary battery, in which deterioration is detected based on a threshold value determination based on a calculated change amount.
容量変化量算出部により算出された変化量を閾値判定に基づいて劣化を判定する急劣化判定部と
を備える電池パックである。
本技術は、上述した電池パックを有し、電池パックに接続される電子機器に電力を供給する蓄電装置である。
本技術は、二次電池の満充電容量又は容量維持率、並びに経時間から満充電容量又は容量維持率の変化量を算出し、
算出された変化量を閾値判定に基づいて劣化を検出する
二次電池の劣化検出方法である。 In order to solve the above-described problem, the present technology provides a capacity change amount calculation unit that calculates the change amount of the full charge capacity or the capacity maintenance rate by inputting the full charge capacity or the capacity maintenance rate of the secondary battery and the elapsed time. When,
A battery pack comprising: a rapid deterioration determination unit that determines deterioration based on a threshold determination based on a change amount calculated by a capacity change amount calculation unit.
The present technology is a power storage device that includes the above-described battery pack and supplies power to an electronic device connected to the battery pack.
This technology calculates the amount of change in the full charge capacity or capacity maintenance rate from the full charge capacity or capacity maintenance rate of the secondary battery and the elapsed time,
This is a method for detecting deterioration of a secondary battery, in which deterioration is detected based on a threshold value determination based on a calculated change amount.
少なくとも一つの実施形態によれば、線形回帰解析器によって算出された満充電容量又は容量維持率変化量を閾値判定することによって急劣化を検出するので、ノイズ耐性が強く、簡潔に急劣化を検出することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本技術中に記載されたいずれかの効果であっても良い。
According to at least one embodiment, since the rapid deterioration is detected by determining the threshold value of the full charge capacity or the capacity maintenance ratio change amount calculated by the linear regression analyzer, the noise deterioration is strong, and the rapid deterioration is simply detected. can do. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present technology.
<1.本技術の実施の形態>
以下、本技術の実施の形態について説明する。なお、以下に説明する実施の形態は、本技術の好適な具体例であり、技術的に好ましい種々の限定が付されているが、本技術の範囲は、以下の説明において、特に本技術を限定する旨の記載がない限り、これらの実施の形態に限定されないものとする。 <1. Embodiment of the present technology>
Hereinafter, embodiments of the present technology will be described. The embodiments described below are preferred specific examples of the present technology, and various technically preferable limitations are given. However, the scope of the present technology is not limited to the present technology in the following description. Unless otherwise specified, the present invention is not limited to these embodiments.
以下、本技術の実施の形態について説明する。なお、以下に説明する実施の形態は、本技術の好適な具体例であり、技術的に好ましい種々の限定が付されているが、本技術の範囲は、以下の説明において、特に本技術を限定する旨の記載がない限り、これらの実施の形態に限定されないものとする。 <1. Embodiment of the present technology>
Hereinafter, embodiments of the present technology will be described. The embodiments described below are preferred specific examples of the present technology, and various technically preferable limitations are given. However, the scope of the present technology is not limited to the present technology in the following description. Unless otherwise specified, the present invention is not limited to these embodiments.
「本技術による急劣化検出方法」
本技術は、電池容量(満充電容量)の履歴を基に劣化予測から外れ想定外挙動となる急劣化を簡潔に精度良く推定することを特徴とする。図1に容量急劣化の説明図を示す。横軸を経時間(単位は例えば年)、縦軸を容量維持率とした。容量維持率は初期容量に対する現在の容量の比率とする。例えば寿命末期などでは電池容量が劣化予測式(破線で示す)に反し急激に劣化する場合がある。劣化予測式と比較し急激な速度で劣化するため、二次電池を使用したシステムの安全性を確保するためには、こうした急劣化を正確に捕捉することが必要とされる。 "Method for detecting rapid deterioration using this technology"
The present technology is characterized by simply and accurately estimating sudden deterioration that deviates from the deterioration prediction and becomes unexpected behavior based on a history of battery capacity (full charge capacity). FIG. 1 is an explanatory diagram of sudden capacity deterioration. The horizontal axis represents time (unit: year), and the vertical axis represents capacity retention rate. The capacity maintenance rate is the ratio of the current capacity to the initial capacity. For example, at the end of the lifetime, the battery capacity may rapidly deteriorate against the deterioration prediction formula (indicated by a broken line). Since it deteriorates at a rapid rate compared with the deterioration prediction formula, it is necessary to accurately capture such rapid deterioration in order to ensure the safety of the system using the secondary battery.
本技術は、電池容量(満充電容量)の履歴を基に劣化予測から外れ想定外挙動となる急劣化を簡潔に精度良く推定することを特徴とする。図1に容量急劣化の説明図を示す。横軸を経時間(単位は例えば年)、縦軸を容量維持率とした。容量維持率は初期容量に対する現在の容量の比率とする。例えば寿命末期などでは電池容量が劣化予測式(破線で示す)に反し急激に劣化する場合がある。劣化予測式と比較し急激な速度で劣化するため、二次電池を使用したシステムの安全性を確保するためには、こうした急劣化を正確に捕捉することが必要とされる。 "Method for detecting rapid deterioration using this technology"
The present technology is characterized by simply and accurately estimating sudden deterioration that deviates from the deterioration prediction and becomes unexpected behavior based on a history of battery capacity (full charge capacity). FIG. 1 is an explanatory diagram of sudden capacity deterioration. The horizontal axis represents time (unit: year), and the vertical axis represents capacity retention rate. The capacity maintenance rate is the ratio of the current capacity to the initial capacity. For example, at the end of the lifetime, the battery capacity may rapidly deteriorate against the deterioration prediction formula (indicated by a broken line). Since it deteriorates at a rapid rate compared with the deterioration prediction formula, it is necessary to accurately capture such rapid deterioration in order to ensure the safety of the system using the secondary battery.
電池容量は満充電時を起点に、規定された条件(電流値、温度、など)に従い放電終止電圧までの放電容量を測定することで得ることができる。しかしながら、市場に出回った実際のシステムでは、実験時や製造時のような正確な測定を行う環境を想定できないことが実情である。正確な測定環境を備えていたとしても電池容量測定のためシステムを切り離すなど特殊な対応が必要となり、システムのメンテナンス時など測定頻度は限られた機会に留まる。太陽光発電のようなシステムと連携した蓄電池では、日照条件等の要因で負荷変動があり電流値を固定することは難しい。また、電池容量を測定する際に重要となる満充電状態にする機会が、極端に少ない場合がある。
Battery capacity can be obtained by measuring the discharge capacity up to the end-of-discharge voltage in accordance with the specified conditions (current value, temperature, etc.) starting from full charge. However, in actual systems on the market, it is actually impossible to assume an environment in which accurate measurement is performed, such as at the time of experiment or manufacturing. Even if an accurate measurement environment is provided, special measures such as disconnecting the system are required for measuring battery capacity, and the frequency of measurement is limited, such as during system maintenance. In a storage battery linked with a system such as photovoltaic power generation, it is difficult to fix the current value due to load fluctuation due to factors such as sunlight conditions. In addition, there may be extremely few opportunities for full charge, which is important when measuring battery capacity.
したがって、こうした場合、電池容量を計算によって推定することが行われる。電池容量の計算方法としては、種々あるが、例えば、推定した開放電圧(OCV)と充放電容量(Q)における相関関係から、電池容量を推定することができる。計算による推定のため、測定と比較し誤差を伴う。そのため、急劣化を推定する際には誤差に耐性が強い手法が必要となる。
Therefore, in such a case, the battery capacity is estimated by calculation. There are various battery capacity calculation methods. For example, the battery capacity can be estimated from the correlation between the estimated open circuit voltage (OCV) and charge / discharge capacity (Q). Due to estimation by calculation, there is an error compared with measurement. For this reason, a method that is highly resistant to errors is required when estimating rapid deterioration.
本技術では、二次電池の電池容量及び経時間を入力とし、線形回帰解析によって電池容量の変化量を算出し、算出された変化量を閾値判定に基づいて急劣化を判定するものである。
In this technology, the battery capacity and time of the secondary battery are input, the amount of change in the battery capacity is calculated by linear regression analysis, and the rapid deterioration is determined based on the threshold value determination using the calculated amount of change.
さらに、図2を参照して本技術について説明する。図2において、横軸が経時間、例えば年の単位であり、縦軸が容量維持率である。図2中のプロットが容量維持率の推定値である。すなわち、計算によって求められた満充電容量を、初期容量で除したものが容量維持率の推定値である。満充電容量は、二次電池の電圧、電流、温度のデータを使用して計算によって求めることができる。
Further, the present technology will be described with reference to FIG. In FIG. 2, the horizontal axis represents elapsed time, for example, the unit of year, and the vertical axis represents the capacity maintenance rate. The plot in FIG. 2 is an estimated value of the capacity maintenance rate. That is, an estimated value of the capacity maintenance ratio is obtained by dividing the full charge capacity obtained by calculation by the initial capacity. The full charge capacity can be obtained by calculation using voltage, current, and temperature data of the secondary battery.
予め規定された区間の容量維持率の履歴に対して線形回帰解析を行い、線形回帰解析の結果得られた直線の傾きから容量維持率(又は電池容量)の変化量を算出する。この変化量を閾値と比較し、変化量が閾値より大きい場合は急劣化が発生していると判定する。逆に、変化量が閾値より小さい場合は急劣化が発生していないと判定する。図2の例では、変化量が閾値より小さい直線A1の場合には、急劣化が発生していないと判定され、変化量が閾値より大きい直線A2の場合には、急劣化が発生していると判定される。
A linear regression analysis is performed on the history of the capacity maintenance rate in a predetermined section, and the amount of change in the capacity maintenance rate (or battery capacity) is calculated from the slope of the straight line obtained as a result of the linear regression analysis. This amount of change is compared with a threshold value, and when the amount of change is larger than the threshold value, it is determined that rapid deterioration has occurred. Conversely, if the change amount is smaller than the threshold value, it is determined that no rapid deterioration has occurred. In the example of FIG. 2, it is determined that rapid deterioration has not occurred when the amount of change is a straight line A1 that is smaller than the threshold, and sudden deterioration has occurred when the amount of change is a straight line A2 that is larger than the threshold. It is determined.
急劣化は、寿命末期、低温での充放電、ハイレート(高入力、高出力)の充放電、などで確認されている。これら事象における電池容量の履歴を基に、予め急劣化の閾値を決める。この閾値は、電流、温度、経時間など、使用条件や経時変化に応じて変えても良い。さらに、二次電池の種類に応じて閾値を設定してもよい。
Sudden deterioration has been confirmed at the end of life, charging / discharging at low temperature, charging / discharging at high rate (high input, high output), etc. Based on the history of battery capacity in these events, a threshold for rapid deterioration is determined in advance. This threshold value may be changed according to use conditions and changes with time, such as current, temperature, and elapsed time. Furthermore, a threshold value may be set according to the type of secondary battery.
図3及び図4を参照して、本技術のノイズ耐性について説明する。図3Aは、ノイズが無い場合の容量維持率の変化曲線の一例のグラフである。図3Bは、差分算出法によって容量維持率の変化量を求めた結果のグラフである。変化量の算出方法として簡易的には、電池容量履歴点間の差分で算出できる。ある時刻T(k)の容量維持率をR(k)とすると、前履歴時刻T(k-1)の容量維持率R(k-1)から、単位時間(例えば年)当たりの容量維持率変化量ΔR(k)が次の式から算出できる。この算出法が差分算出法である。
The noise immunity of the present technology will be described with reference to FIGS. FIG. 3A is a graph of an example of a change curve of the capacity retention rate when there is no noise. FIG. 3B is a graph showing a result of obtaining the amount of change in the capacity maintenance rate by the difference calculation method. As a method for calculating the amount of change, it can be simply calculated by the difference between battery capacity history points. Assuming that the capacity maintenance rate at a certain time T (k) is R (k), the capacity maintenance rate per unit time (for example, year) from the capacity maintenance rate R (k-1) at the previous history time T (k-1). The change amount ΔR (k) can be calculated from the following equation. This calculation method is a difference calculation method.
ΔR(k)=(R(k)-R(k-1))/(T(k)-T(k-1))
ΔR (k) = (R (k) −R (k−1)) / (T (k) −T (k−1))
図3Cは、本技術による容量維持率の変化量を求めた結果のグラフである。差分算出法及び本技術の何れにおいても、急劣化が生じる経時間(例えば4年)の後に変化量が大きな値となっている。したがって、どちらの方法でも急劣化を検出できる。
FIG. 3C is a graph showing the result of determining the amount of change in the capacity maintenance rate according to the present technology. In both of the difference calculation method and the present technology, the amount of change becomes a large value after the elapsed time (for example, 4 years) at which rapid deterioration occurs. Therefore, rapid degradation can be detected by either method.
図4Aは、ノイズがある場合の容量維持率の変化曲線の一例のグラフである。例えば図3Aの容量維持率のデータに対して振幅±5%のガウシアンノイズが付加されている。図4Bは、差分算出法による容量維持率の変化量を求めた結果のグラフである。図4Cは、本技術による容量維持率の変化量を求めた結果のグラフである。
FIG. 4A is a graph of an example of a change curve of the capacity maintenance ratio when there is noise. For example, Gaussian noise with an amplitude of ± 5% is added to the capacity retention rate data of FIG. 3A. FIG. 4B is a graph showing the result of obtaining the amount of change in the capacity maintenance rate by the difference calculation method. FIG. 4C is a graph showing a result of obtaining the amount of change in the capacity retention rate according to the present technology.
差分算出法によって求めた変化量のグラフ(図4B)は、ノイズの影響を受けて容量維持率変化量の算出精度は著しく悪くなる。一方、本技術により求めた変化量のグラフ(図4C)は、急劣化が生じる経時間(例えば4年)の後に変化量が大きな値となっている。したがって、参考技術と比較すると、ノイズの影響を受けないで変化量を指標として急劣化を判定することができる。線形回帰解析法は電池容量の誤差に対して耐性が強いことが分かる。
The graph of the amount of change obtained by the difference calculation method (FIG. 4B) is significantly affected by the influence of noise, and the accuracy of calculating the amount of change in the capacity maintenance rate is significantly deteriorated. On the other hand, in the graph of the amount of change obtained by the present technology (FIG. 4C), the amount of change becomes a large value after the elapsed time (for example, 4 years) at which rapid deterioration occurs. Therefore, compared with the reference technique, it is possible to determine rapid deterioration using the change amount as an index without being affected by noise. It can be seen that the linear regression analysis method is highly resistant to battery capacity errors.
本技術においては、電池容量履歴点に対する線形回帰解析から、単位時刻(例えば年)当たりの容量維持率変化量ΔR(k)を算出するようにしている。線形回帰解析について説明する。
線形回帰モデルは、次式で与えられる。
In the present technology, a capacity maintenance rate change amount ΔR (k) per unit time (for example, year) is calculated from a linear regression analysis with respect to a battery capacity history point. The linear regression analysis will be described.
The linear regression model is given by
線形回帰モデルは、次式で与えられる。
The linear regression model is given by
ここで、yは、従属変数、xkは独立変数、εは誤差である。kが3以上の場合は線形重回帰モデルと呼ばれる。最小二乗法による線形回帰解析は、残差(推定値と測定値の差)の二乗和が最小になるように各係数を求める方法である。具体的には、残差二乗和を各係数で偏微分した式を“=0”とした連立方程式を立てて解く。
Where y is a dependent variable, xk is an independent variable, and ε is an error. When k is 3 or more, it is called a linear multiple regression model. The linear regression analysis by the least square method is a method for obtaining each coefficient so that the sum of squares of a residual (difference between an estimated value and a measured value) is minimized. Specifically, a simultaneous equation with “= 0” as an equation obtained by partial differentiation of the residual sum of squares by each coefficient is established and solved.
このように、測定値から線形回帰解析で直線の傾きaと切片bを算出できる。Y軸を容量維持率、X軸を経時間として、数式10に電池容量履歴値を与えることで、線形回帰解析による直線の傾き、すなわち容量維持率変化量ΔR(k)を算出できる。図4に示すように、線形回帰解析による容量維持率変化量はノイズ耐性に強く、急劣化を判定できる。この算出法を線形回帰解析法と呼ぶことにする。線形回帰解析を実行するには最低限3点のデータは必要となる。必要なデータ点数は任意に定めることができる(例えば5点)。
Thus, the slope a and intercept b of the straight line can be calculated from the measured values by linear regression analysis. By giving the battery capacity history value to Equation 10 with the Y axis as the capacity maintenance rate and the X axis as the time, the slope of the straight line by the linear regression analysis, that is, the capacity maintenance rate change amount ΔR (k) can be calculated. As shown in FIG. 4, the capacity maintenance rate change amount by the linear regression analysis is strong in noise resistance, and rapid deterioration can be determined. This calculation method is called a linear regression analysis method. To perform linear regression analysis, at least three points of data are required. The required number of data points can be arbitrarily determined (for example, 5 points).
「急劣化検出装置の一例」
図5は、急劣化検出装置の一例を示す。単一の電池セル又は複数の電池セルの直列及び/又は並列接続の構成の二次電池1からの電流、電圧、温度の情報を受け取って電池容量計算器2が電池容量(満充電容量)を計算する。二次電池1は、電池パックを構成するものである。容量維持率が維持率計算器3によって計算される。二次電池1の初期の電池容量が初期容量記憶器4に記憶されている。維持率計算器3によって初期容量と現在の電池容量の比率(容量維持率)が計算される。 "Example of sudden deterioration detector"
FIG. 5 shows an example of the rapid deterioration detection apparatus. Thebattery capacity calculator 2 receives the information on the current, voltage, and temperature from the secondary battery 1 having a configuration in which a single battery cell or a plurality of battery cells are connected in series and / or in parallel, and the battery capacity calculator 2 calculates the battery capacity (full charge capacity). calculate. The secondary battery 1 constitutes a battery pack. The capacity maintenance rate is calculated by the maintenance rate calculator 3. The initial battery capacity of the secondary battery 1 is stored in the initial capacity memory 4. The maintenance ratio calculator 3 calculates the ratio between the initial capacity and the current battery capacity (capacity maintenance ratio).
図5は、急劣化検出装置の一例を示す。単一の電池セル又は複数の電池セルの直列及び/又は並列接続の構成の二次電池1からの電流、電圧、温度の情報を受け取って電池容量計算器2が電池容量(満充電容量)を計算する。二次電池1は、電池パックを構成するものである。容量維持率が維持率計算器3によって計算される。二次電池1の初期の電池容量が初期容量記憶器4に記憶されている。維持率計算器3によって初期容量と現在の電池容量の比率(容量維持率)が計算される。 "Example of sudden deterioration detector"
FIG. 5 shows an example of the rapid deterioration detection apparatus. The
維持率計算器3によって求められた容量維持率が維持率記憶器5に記憶される。この場合、容量維持率が経時間と関連付けて維持率記憶器5に記憶される。線形回帰解析器6が維持率記憶器5に記憶されている容量維持率のデータの例えば5つのサンプルを使用して上述した線形回帰解析法によって容量維持率の変化量を求める。
The capacity maintenance ratio obtained by the maintenance ratio calculator 3 is stored in the maintenance ratio storage 5. In this case, the capacity maintenance rate is stored in the maintenance rate storage device 5 in association with the elapsed time. The linear regression analyzer 6 obtains the amount of change in the capacity maintenance ratio by the above-described linear regression analysis method using, for example, five samples of the capacity maintenance ratio data stored in the maintenance ratio storage 5.
線形回帰解析器6によって求められた変化量が急劣化判定器7に供給され、閾値と比較され、変化量が閾値以上の場合に急劣化と判定する。急劣化判定器7の判定結果が急劣化通知器8に供給され、ユーザに対して急劣化が生じているか否かを通知する。急劣化通知器8は、視覚的な通知、音響的な通知等を行うものである。図6は、表示装置8aによって視覚的な通知を行う急劣化通知器8の具体例である。
The amount of change obtained by the linear regression analyzer 6 is supplied to the rapid deterioration determiner 7 and compared with a threshold value. When the amount of change is equal to or greater than the threshold value, it is determined that the deterioration is rapid. The determination result of the rapid deterioration determiner 7 is supplied to the rapid deterioration notifier 8 to notify the user whether or not the rapid deterioration has occurred. The rapid deterioration notification device 8 performs visual notification, acoustic notification, and the like. FIG. 6 is a specific example of the rapid deterioration notifier 8 that visually notifies the display device 8a.
「急劣化検出法の一例」
図5に示す急劣化検出装置の機能は、記録媒体にプログラムとして記録することができる。したがって、この記録媒体をコンピュータで読み取ってMPU(Micro Processing Unit)、DSP (Digital Signal Processor)等で実行することにより急劣化検出装置の機能を実現することができる。以下に図7を参照して説明する急劣化検出法の一例は、情報処理装置が実行するプログラムとして実現することができる。 "Example of rapid deterioration detection method"
The function of the rapid deterioration detection device shown in FIG. 5 can be recorded as a program on a recording medium. Therefore, the function of the rapid deterioration detection device can be realized by reading this recording medium with a computer and executing it with an MPU (Micro Processing Unit), DSP (Digital Signal Processor) or the like. An example of the rapid deterioration detection method described below with reference to FIG. 7 can be realized as a program executed by the information processing apparatus.
図5に示す急劣化検出装置の機能は、記録媒体にプログラムとして記録することができる。したがって、この記録媒体をコンピュータで読み取ってMPU(Micro Processing Unit)、DSP (Digital Signal Processor)等で実行することにより急劣化検出装置の機能を実現することができる。以下に図7を参照して説明する急劣化検出法の一例は、情報処理装置が実行するプログラムとして実現することができる。 "Example of rapid deterioration detection method"
The function of the rapid deterioration detection device shown in FIG. 5 can be recorded as a program on a recording medium. Therefore, the function of the rapid deterioration detection device can be realized by reading this recording medium with a computer and executing it with an MPU (Micro Processing Unit), DSP (Digital Signal Processor) or the like. An example of the rapid deterioration detection method described below with reference to FIG. 7 can be realized as a program executed by the information processing apparatus.
ステップST1:容量維持率を維持率記憶器に記録する。容量維持率は、上述した急劣化検出装置と同様に、維持率計算器によって求められる。
ステップST2:容量維持率が必要点数(必要サンプル)以上存在するかが判定される。
ステップST3:ステップST2の判定結果が否定の場合には、「急劣化発生検出不可」とされて処理終了する。 Step ST1: Record the capacity maintenance rate in the maintenance rate memory. The capacity maintenance rate is obtained by a maintenance rate calculator as in the above-described rapid deterioration detection device.
Step ST2: It is determined whether or not the capacity maintenance rate is equal to or greater than the necessary number of points (necessary samples).
Step ST3: If the determination result in step ST2 is negative, it is determined that “abrupt deterioration occurrence cannot be detected” and the process ends.
ステップST2:容量維持率が必要点数(必要サンプル)以上存在するかが判定される。
ステップST3:ステップST2の判定結果が否定の場合には、「急劣化発生検出不可」とされて処理終了する。 Step ST1: Record the capacity maintenance rate in the maintenance rate memory. The capacity maintenance rate is obtained by a maintenance rate calculator as in the above-described rapid deterioration detection device.
Step ST2: It is determined whether or not the capacity maintenance rate is equal to or greater than the necessary number of points (necessary samples).
Step ST3: If the determination result in step ST2 is negative, it is determined that “abrupt deterioration occurrence cannot be detected” and the process ends.
ステップST4:ステップST2の判定結果が肯定の場合には、線形回帰解析が実行される。
ステップST5:線形回帰解析法により求められた容量維持率の変化量が閾値条件を満たすかどうかが判定される。
ステップST6:閾値条件を満たす場合、すなわち、変化量が閾値以上の場合には、「急劣化発生有り」と判定される。そして、処理が終了する。
ステップST7:閾値条件を満たさない場合、すなわち、変化量が閾値より小の場合には、「急劣化発生無し」と判定される。そして、処理が終了する。 Step ST4: If the determination result in step ST2 is affirmative, linear regression analysis is executed.
Step ST5: It is determined whether or not the amount of change in the capacity maintenance rate obtained by the linear regression analysis method satisfies the threshold condition.
Step ST6: When the threshold condition is satisfied, that is, when the amount of change is equal to or greater than the threshold, it is determined that “abrupt deterioration has occurred”. Then, the process ends.
Step ST7: When the threshold condition is not satisfied, that is, when the amount of change is smaller than the threshold, it is determined that “no rapid deterioration occurs”. Then, the process ends.
ステップST5:線形回帰解析法により求められた容量維持率の変化量が閾値条件を満たすかどうかが判定される。
ステップST6:閾値条件を満たす場合、すなわち、変化量が閾値以上の場合には、「急劣化発生有り」と判定される。そして、処理が終了する。
ステップST7:閾値条件を満たさない場合、すなわち、変化量が閾値より小の場合には、「急劣化発生無し」と判定される。そして、処理が終了する。 Step ST4: If the determination result in step ST2 is affirmative, linear regression analysis is executed.
Step ST5: It is determined whether or not the amount of change in the capacity maintenance rate obtained by the linear regression analysis method satisfies the threshold condition.
Step ST6: When the threshold condition is satisfied, that is, when the amount of change is equal to or greater than the threshold, it is determined that “abrupt deterioration has occurred”. Then, the process ends.
Step ST7: When the threshold condition is not satisfied, that is, when the amount of change is smaller than the threshold, it is determined that “no rapid deterioration occurs”. Then, the process ends.
「急劣化検出装置の他の例」
次に、急劣化検出装置の他の例について説明する。図8に示すように、急劣化の変曲点以降の容量維持率変化量は大きくなるので、上述したように、変化量と予め定めた閾値との比較から急劣化を判定できる。しかしながら、劣化初期においても、ルート則法で経験的に知られているように劣化速度は速い。そのため、劣化初期を急劣化と誤判定するおそれがある。急劣化は寿命末期など多くは劣化が進行したときに起こる事象であるため、容量維持率に閾値を設け閾値判定することで、急劣化の検出精度が改善される。例えば、閾値を80%とし、閾値を下回っている電池推定容量のみを急劣化の判定対象とする。これにより劣化初期を急劣化と誤判定することを防止することができる。 "Other examples of rapid deterioration detection equipment"
Next, another example of the rapid deterioration detection device will be described. As shown in FIG. 8, since the capacity retention rate change amount after the inflection point of the rapid deterioration becomes large, as described above, the rapid deterioration can be determined from the comparison between the change amount and a predetermined threshold value. However, even at the initial stage of deterioration, the deterioration rate is fast as is empirically known from the root law. Therefore, there is a risk that the initial stage of deterioration is erroneously determined as rapid deterioration. Since sudden deterioration is an event that occurs when deterioration progresses, such as at the end of the life, detection accuracy of rapid deterioration is improved by setting a threshold value for the capacity maintenance rate and determining the threshold value. For example, the threshold value is set to 80%, and only the estimated battery capacity that is below the threshold value is determined as a target for rapid deterioration. As a result, it is possible to prevent erroneous determination of the initial stage of deterioration as rapid deterioration.
次に、急劣化検出装置の他の例について説明する。図8に示すように、急劣化の変曲点以降の容量維持率変化量は大きくなるので、上述したように、変化量と予め定めた閾値との比較から急劣化を判定できる。しかしながら、劣化初期においても、ルート則法で経験的に知られているように劣化速度は速い。そのため、劣化初期を急劣化と誤判定するおそれがある。急劣化は寿命末期など多くは劣化が進行したときに起こる事象であるため、容量維持率に閾値を設け閾値判定することで、急劣化の検出精度が改善される。例えば、閾値を80%とし、閾値を下回っている電池推定容量のみを急劣化の判定対象とする。これにより劣化初期を急劣化と誤判定することを防止することができる。 "Other examples of rapid deterioration detection equipment"
Next, another example of the rapid deterioration detection device will be described. As shown in FIG. 8, since the capacity retention rate change amount after the inflection point of the rapid deterioration becomes large, as described above, the rapid deterioration can be determined from the comparison between the change amount and a predetermined threshold value. However, even at the initial stage of deterioration, the deterioration rate is fast as is empirically known from the root law. Therefore, there is a risk that the initial stage of deterioration is erroneously determined as rapid deterioration. Since sudden deterioration is an event that occurs when deterioration progresses, such as at the end of the life, detection accuracy of rapid deterioration is improved by setting a threshold value for the capacity maintenance rate and determining the threshold value. For example, the threshold value is set to 80%, and only the estimated battery capacity that is below the threshold value is determined as a target for rapid deterioration. As a result, it is possible to prevent erroneous determination of the initial stage of deterioration as rapid deterioration.
急劣化は想定外の挙動であるため、劣化予測式では捕捉することができない。そのため、容量維持率について、劣化予測式による計算値と電池容量の推定法による計算値の差分絶対値Dを閾値判定することで、急劣化の検出精度が改善される。例えば、閾値を10%とし、容量維持率の差分絶対値が閾値以上の場合のみ急劣化の判定対象とする。
Since sudden deterioration is an unexpected behavior, it cannot be captured by the deterioration prediction formula. Therefore, the detection accuracy of the rapid deterioration is improved by determining the threshold value of the difference absolute value D between the calculated value based on the deterioration prediction formula and the calculated value based on the battery capacity estimation method for the capacity maintenance rate. For example, the threshold value is set to 10%, and only when the absolute value of the capacity maintenance rate difference is equal to or larger than the threshold value, the determination target of rapid deterioration is made.
したがって,判定(検出)の精度を高くするために、急劣化判定の条件として、(1)容量維持率変化量、(2)容量維持率、(3)差分絶対値Dの3つを使用する。これらを全て満たす場合に急劣化と判定する。但し、(1)かつ(2)、又は(1)かつ(3)、を満たす場合に急劣化と判定しても良い。
Therefore, in order to increase the accuracy of determination (detection), three conditions of (1) capacity maintenance rate change amount, (2) capacity maintenance rate, and (3) absolute difference value D are used as conditions for rapid deterioration determination. . When all of these are satisfied, it is determined that the deterioration is rapid. However, when (1) and (2) or (1) and (3) are satisfied, it may be determined that the deterioration is rapid.
他の例は、条件の(1)(2)及び(3)を満たす場合に急劣化と判定するものである。図9は、急劣化検出装置の他の例を示す。上述した一例と同様に、容量維持率が維持率計算器によって計算され、求められた容量維持率が維持率記憶器15に記憶される。この場合、容量維持率が経時間と関連付けて維持率記憶器15に記憶される。線形回帰解析器18が維持率記憶器15に記憶されている容量維持率のデータの例えば5つのサンプルを使用して上述した線形回帰解析法によって容量維持率の変化量を求める。線形回帰解析器18によって求められた変化量が急劣化判定器19に供給され、閾値と比較される。
Another example is a case in which rapid deterioration is determined when the conditions (1), (2), and (3) are satisfied. FIG. 9 shows another example of the rapid deterioration detection device. Similarly to the above-described example, the capacity maintenance rate is calculated by the maintenance rate calculator, and the obtained capacity maintenance rate is stored in the maintenance rate storage unit 15. In this case, the capacity maintenance rate is stored in the maintenance rate storage unit 15 in association with the elapsed time. The linear regression analyzer 18 determines the amount of change in the capacity maintenance rate by the above-described linear regression analysis method using, for example, five samples of the capacity maintenance rate data stored in the maintenance rate storage unit 15. The amount of change obtained by the linear regression analyzer 18 is supplied to the rapid deterioration determiner 19 and compared with a threshold value.
容量維持率が維持率閾値判定器16に供給される。閾値は、例えば80%とされる。容量維持率が閾値以上か否かの判定結果が急劣化判定器19に供給される。この判定結果は、条件(2)に対応する。
The capacity maintenance rate is supplied to the maintenance rate threshold determination unit 16. The threshold value is 80%, for example. A determination result as to whether or not the capacity maintenance rate is equal to or higher than the threshold value is supplied to the rapid deterioration determination unit 19. This determination result corresponds to the condition (2).
維持率記憶器15に記憶される容量維持率と同じ数値と、劣化予測式により予測される容量維持率が経時間の情報と共に、維持率差分判定器17に供給される。維持率差分判定器17は、劣化予測式による容量維持率と電池容量の計算値の差分絶対値Dを閾値判定する。差分絶対値Dが閾値以上か否かの判定結果が急劣化判定器19に供給される。この判定結果は、条件(3)に対応する。
The same numerical value as the capacity maintenance rate stored in the maintenance rate memory 15 and the capacity maintenance rate predicted by the deterioration prediction formula are supplied to the maintenance rate difference determiner 17 together with information over time. The maintenance rate difference determiner 17 determines a threshold value for the difference absolute value D between the capacity maintenance rate based on the deterioration prediction formula and the calculated value of the battery capacity. The determination result as to whether or not the absolute difference value D is equal to or greater than the threshold value is supplied to the rapid deterioration determiner 19. This determination result corresponds to the condition (3).
急劣化判定器19においては、線形回帰解析器18によって求められた変化量が閾値以上か否かを判定する。この判定結果は、条件(1)に対応する。変化量が閾値以上であり、維持率が閾値以上であり、差分絶対値Dが閾値以上である場合に、急劣化が発生していると判定する。急劣化判定器19の判定結果が急劣化通知器20に供給され、ユーザに対して急劣化が生じているか否かを通知する。急劣化通知器20は、視覚的な通知、音響的な通知等を行うものである。
The rapid deterioration determiner 19 determines whether or not the amount of change obtained by the linear regression analyzer 18 is equal to or greater than a threshold value. This determination result corresponds to the condition (1). When the change amount is equal to or greater than the threshold, the maintenance rate is equal to or greater than the threshold, and the difference absolute value D is equal to or greater than the threshold, it is determined that rapid deterioration has occurred. The determination result of the rapid deterioration determiner 19 is supplied to the rapid deterioration notifier 20 to notify the user whether or not the rapid deterioration has occurred. The rapid deterioration notification device 20 performs visual notification, acoustic notification, and the like.
「急劣化検出法の他の例」
図9に示す急劣化検出装置の機能は、記録媒体にプログラムとして記録することができ、この記録媒体をコンピュータで読み取ってMPU、DSP等で実行することにより急劣化検出装置の機能を実現することができる。以下に図10を参照して説明する急劣化検出法の他の例は、情報処理装置が実行するプログラムとして実現することができる。 "Other examples of rapid deterioration detection method"
The function of the rapid deterioration detection apparatus shown in FIG. 9 can be recorded as a program on a recording medium, and the function of the rapid deterioration detection apparatus is realized by reading the recording medium with a computer and executing it with an MPU, DSP, or the like. Can do. Another example of the rapid deterioration detection method described below with reference to FIG. 10 can be realized as a program executed by the information processing apparatus.
図9に示す急劣化検出装置の機能は、記録媒体にプログラムとして記録することができ、この記録媒体をコンピュータで読み取ってMPU、DSP等で実行することにより急劣化検出装置の機能を実現することができる。以下に図10を参照して説明する急劣化検出法の他の例は、情報処理装置が実行するプログラムとして実現することができる。 "Other examples of rapid deterioration detection method"
The function of the rapid deterioration detection apparatus shown in FIG. 9 can be recorded as a program on a recording medium, and the function of the rapid deterioration detection apparatus is realized by reading the recording medium with a computer and executing it with an MPU, DSP, or the like. Can do. Another example of the rapid deterioration detection method described below with reference to FIG. 10 can be realized as a program executed by the information processing apparatus.
ステップST11:容量維持率を維持率記憶器に記録する。容量維持率は、上述した急劣化検出装置と同様に、維持率計算器によって求められる。
ステップST12:容量維持率が必要点数(必要サンプル)以上存在するかが判定される。
ステップST13:ステップST2の判定結果が否定の場合には、「急劣化発生検出不可」とされて処理終了する。 Step ST11: Record the capacity maintenance rate in the maintenance rate memory. The capacity maintenance rate is obtained by a maintenance rate calculator as in the above-described rapid deterioration detection device.
Step ST12: It is determined whether or not the capacity maintenance rate is equal to or greater than the necessary number (necessary samples).
Step ST13: If the determination result in step ST2 is negative, it is determined that “abrupt deterioration occurrence cannot be detected” and the process ends.
ステップST12:容量維持率が必要点数(必要サンプル)以上存在するかが判定される。
ステップST13:ステップST2の判定結果が否定の場合には、「急劣化発生検出不可」とされて処理終了する。 Step ST11: Record the capacity maintenance rate in the maintenance rate memory. The capacity maintenance rate is obtained by a maintenance rate calculator as in the above-described rapid deterioration detection device.
Step ST12: It is determined whether or not the capacity maintenance rate is equal to or greater than the necessary number (necessary samples).
Step ST13: If the determination result in step ST2 is negative, it is determined that “abrupt deterioration occurrence cannot be detected” and the process ends.
ステップST14:ステップST2の判定結果が肯定の場合には、線形回帰解析が実行される。
ステップST15:線形回帰解析法により求められた容量維持率の変化量が閾値条件を満たすかどうかが判定される。
ステップST16:閾値条件を満たさない場合、すなわち、変化量が閾値より小の場合には、「急劣化発生無し」と判定される。そして、処理が終了する。 Step ST14: When the determination result of step ST2 is affirmative, linear regression analysis is executed.
Step ST15: It is determined whether or not the amount of change in the capacity maintenance rate obtained by the linear regression analysis method satisfies the threshold condition.
Step ST16: When the threshold condition is not satisfied, that is, when the amount of change is smaller than the threshold, it is determined that “no rapid deterioration occurs”. Then, the process ends.
ステップST15:線形回帰解析法により求められた容量維持率の変化量が閾値条件を満たすかどうかが判定される。
ステップST16:閾値条件を満たさない場合、すなわち、変化量が閾値より小の場合には、「急劣化発生無し」と判定される。そして、処理が終了する。 Step ST14: When the determination result of step ST2 is affirmative, linear regression analysis is executed.
Step ST15: It is determined whether or not the amount of change in the capacity maintenance rate obtained by the linear regression analysis method satisfies the threshold condition.
Step ST16: When the threshold condition is not satisfied, that is, when the amount of change is smaller than the threshold, it is determined that “no rapid deterioration occurs”. Then, the process ends.
ステップST17:ステップST15において閾値条件を満たす場合、すなわち、変化量が閾値以上の場合には、容量維持率が閾値条件を満たすかどうかが判定される。閾値条件を満たさない場合、すなわち、容量維持率が閾値より大の場合(初期状態)には、「急劣化発生無し」と判定される(ステップST16)。そして、処理が終了する。
ステップST18:ステップST17において閾値条件を満たす場合、すなわち、容量維持率が閾値より小の場合の場合には、容量維持率と劣化予測式による予測値の差分絶対値Dが閾値条件を満たすかどうかが判定される。閾値条件を満たさない場合、すなわち、差分絶対値Dが閾値より小の場合には、「急劣化発生無し」と判定される(ステップST16)。そして、処理が終了する。
ステップST19:ステップST18において閾値条件を満たす場合、すなわち、容量維持率と劣化予測式による予測値の差分絶対値Dが閾値より大の場合には、「急劣化発生有り」と判定される。そして、処理が終了する。 Step ST17: If the threshold condition is satisfied in step ST15, that is, if the change amount is greater than or equal to the threshold, it is determined whether or not the capacity maintenance rate satisfies the threshold condition. When the threshold condition is not satisfied, that is, when the capacity maintenance rate is larger than the threshold (initial state), it is determined that “no rapid deterioration occurs” (step ST16). Then, the process ends.
Step ST18: When the threshold condition is satisfied in step ST17, that is, when the capacity maintenance rate is smaller than the threshold, whether or not the absolute value D of the difference between the capacity maintenance rate and the predicted value based on the deterioration prediction formula satisfies the threshold condition. Is determined. When the threshold condition is not satisfied, that is, when the difference absolute value D is smaller than the threshold, it is determined that “no rapid deterioration occurs” (step ST16). Then, the process ends.
Step ST19: If the threshold condition is satisfied in step ST18, that is, if the difference absolute value D between the capacity maintenance rate and the predicted value based on the deterioration prediction formula is larger than the threshold, it is determined that “abrupt deterioration has occurred”. Then, the process ends.
ステップST18:ステップST17において閾値条件を満たす場合、すなわち、容量維持率が閾値より小の場合の場合には、容量維持率と劣化予測式による予測値の差分絶対値Dが閾値条件を満たすかどうかが判定される。閾値条件を満たさない場合、すなわち、差分絶対値Dが閾値より小の場合には、「急劣化発生無し」と判定される(ステップST16)。そして、処理が終了する。
ステップST19:ステップST18において閾値条件を満たす場合、すなわち、容量維持率と劣化予測式による予測値の差分絶対値Dが閾値より大の場合には、「急劣化発生有り」と判定される。そして、処理が終了する。 Step ST17: If the threshold condition is satisfied in step ST15, that is, if the change amount is greater than or equal to the threshold, it is determined whether or not the capacity maintenance rate satisfies the threshold condition. When the threshold condition is not satisfied, that is, when the capacity maintenance rate is larger than the threshold (initial state), it is determined that “no rapid deterioration occurs” (step ST16). Then, the process ends.
Step ST18: When the threshold condition is satisfied in step ST17, that is, when the capacity maintenance rate is smaller than the threshold, whether or not the absolute value D of the difference between the capacity maintenance rate and the predicted value based on the deterioration prediction formula satisfies the threshold condition. Is determined. When the threshold condition is not satisfied, that is, when the difference absolute value D is smaller than the threshold, it is determined that “no rapid deterioration occurs” (step ST16). Then, the process ends.
Step ST19: If the threshold condition is satisfied in step ST18, that is, if the difference absolute value D between the capacity maintenance rate and the predicted value based on the deterioration prediction formula is larger than the threshold, it is determined that “abrupt deterioration has occurred”. Then, the process ends.
上述した他の例では、3つの条件(1)(2)(3)が満たされる場合に「急劣化発生有り」と判定されるので、判定の精度を高くすることができる。
In the other examples described above, it is determined that “abrupt deterioration has occurred” when the three conditions (1), (2), and (3) are satisfied, so that the determination accuracy can be increased.
上述した本技術はノイズ耐性が強く、主には線形回帰解析による計算であるため簡潔に急劣化を検出することができる。本技術では、想定外挙動である急劣化を検出することで、寿命到達前の早い段階で、危険を察知できる。そのため、蓄電池を使用したシステムの安全性を高めることが可能となる。寿命到達前の早い段階で、安全性を確保する対策(システムの停止、電池の交換、など)が可能となる。
The present technology described above has high noise resistance, and since it is mainly a calculation based on linear regression analysis, it is possible to detect sudden deterioration in a simple manner. In the present technology, it is possible to detect a danger at an early stage before reaching the lifetime by detecting a sudden deterioration that is an unexpected behavior. Therefore, it becomes possible to improve the safety of the system using the storage battery. At an early stage before reaching the end of its service life, measures to ensure safety (system shutdown, battery replacement, etc.) can be made.
上述した本技術における満充電容量の計算方法の一例について以下に説明する。図11に劣化したOCVカーブの説明図を示す。OCVカーブは劣化すると収縮・シフトした形状となる。電池のOCVカーブは、正極単体と負極単体それぞれのOCVカーブ(一般にLi金属を対極に使用し測定)の差分で表現できることが知られている。予め取得した単極のOCVカーブについて、それぞれ伸縮・シフトし差分を取ることで電池のOCVカーブを生成できる。電池のOCVカーブがカットオフ電圧に到達するまでの放電容量(CAPnow)から、電池容量を推定できる。
An example of a method for calculating the full charge capacity in the above-described technology will be described below. FIG. 11 is an explanatory diagram of a deteriorated OCV curve. When the OCV curve deteriorates, it becomes a contracted / shifted shape. It is known that the OCV curve of a battery can be expressed by the difference between the OCV curves of a single positive electrode and a single negative electrode (generally measured using Li metal as a counter electrode). An OCV curve of the battery can be generated by taking a difference by expanding and contracting each of the unipolar OCV curves acquired in advance. The battery capacity can be estimated from the discharge capacity (CAPnow) until the OCV curve of the battery reaches the cutoff voltage.
図12に示すように、メモリ等に記録した放電容量とOCV推定値は、放電容量Qを横軸とし、電圧を縦軸としてプロットできる。このOCV値軌跡に対して、予め取得した単極のOCVカーブを伸縮・シフトしながら、生成した電池のOCVカーブをフィッティングすることで、最適なフィッティング条件を求める。
As shown in FIG. 12, the discharge capacity and OCV estimated value recorded in the memory or the like can be plotted with the discharge capacity Q as the horizontal axis and the voltage as the vertical axis. An optimal fitting condition is obtained by fitting the OCV curve of the generated battery while expanding / contracting / shifting the unipolar OCV curve acquired in advance with respect to the OCV value locus.
図13にOCVカーブ算出のフローチャートを示す。ここでは実施例として、単極OCVカーブを伸縮・シフトし電池のOCVカーブを生成する方法について説明する。まず、単極OCVカーブに対する伸縮・シフトの量をパラメータとし、そのパラメータを変更する値の範囲を設定する。例えば、伸縮の倍率であれば、0.5から1.0まで0.05間隔で変化させる。こうしたパラメータ範囲の下、OCVカーブを生成するためのパラメータ(OCVカーブ構成情報のパラメータ)を変えながら、OCV値軌跡に対してフィッティングを行い、最適条件となるOCVカーブを算出する。
FIG. 13 shows a flowchart of OCV curve calculation. Here, as an example, a method for generating an OCV curve of a battery by expanding and contracting and shifting a unipolar OCV curve will be described. First, the amount of expansion / contraction / shift with respect to the unipolar OCV curve is used as a parameter, and a range of values for changing the parameter is set. For example, in the case of the expansion / contraction magnification, it is changed at intervals of 0.05 from 0.5 to 1.0. Under such a parameter range, fitting to the OCV value trajectory is performed while changing a parameter for generating an OCV curve (a parameter of OCV curve configuration information), and an OCV curve as an optimum condition is calculated.
図13のフローチャートを参照して一方のOCVカーブの構成情報から他方のOCVカーブを生成する処理をより詳細に説明する。なお、OCVカーブ算出の方法は、ここに挙げたものに限定されない。ここでは一例として、単極OCVカーブを伸縮・シフトし電池のOCVカーブを生成する方法について説明する。
The process of generating the other OCV curve from the configuration information of one OCV curve will be described in more detail with reference to the flowchart of FIG. Note that the method of calculating the OCV curve is not limited to the method described here. Here, as an example, a method for generating an OCV curve of a battery by expanding and contracting and shifting a single pole OCV curve will be described.
ステップST21:まず、単極OCVカーブに対する伸縮の倍率(Xp,Xn)・シフトの量(Yp,Yn)をパラメータとし、そのパラメータを変更する値の範囲を設定する。例えば、伸縮の倍率(Xp,Xn)であれば、0.5から1.0まで0.05間隔で変化させる。
ステップST22:設定された範囲内で、OCVカーブの構成情報のパラメータが設定される。
ステップST23:設定されたパラメータに対応する正極および負極のOCVカーブを生成する。
ステップST24:正極および負極のOCVカーブの差分から電池のOCVカーブを生成する。 Step ST21: First, the expansion / contraction magnification (Xp, Xn) and the shift amount (Yp, Yn) with respect to the unipolar OCV curve are used as parameters, and a range of values for changing the parameters is set. For example, in the case of expansion / contraction magnification (Xp, Xn), it is changed from 0.5 to 1.0 at 0.05 intervals.
Step ST22: The parameter of the OCV curve configuration information is set within the set range.
Step ST23: Generate positive and negative OCV curves corresponding to the set parameters.
Step ST24: An OCV curve of the battery is generated from the difference between the positive and negative OCV curves.
ステップST22:設定された範囲内で、OCVカーブの構成情報のパラメータが設定される。
ステップST23:設定されたパラメータに対応する正極および負極のOCVカーブを生成する。
ステップST24:正極および負極のOCVカーブの差分から電池のOCVカーブを生成する。 Step ST21: First, the expansion / contraction magnification (Xp, Xn) and the shift amount (Yp, Yn) with respect to the unipolar OCV curve are used as parameters, and a range of values for changing the parameters is set. For example, in the case of expansion / contraction magnification (Xp, Xn), it is changed from 0.5 to 1.0 at 0.05 intervals.
Step ST22: The parameter of the OCV curve configuration information is set within the set range.
Step ST23: Generate positive and negative OCV curves corresponding to the set parameters.
Step ST24: An OCV curve of the battery is generated from the difference between the positive and negative OCV curves.
ステップST25:OCV値軌跡とOCVカーブの二乗平均平方根(RMSと称する)を算出する。
ステップST26:算出されたRMS計算値を以前に算出されたRMS計算値の中の最小値(RMS最小値)と比較する。RMS計算値がRMS最小値以上の場合には、処理がステップST12(OCVカーブ構成情報のパラメータ(Xp,Yp,Xn、Yn)の設定)に戻る。
ステップST27:ステップST26の判定結果が肯定の場合、すなわち、(RMS計算値<RMS最小値)の場合、RMS最小値とOCVカーブ構成情報(Xp,Yp,Xn、Yn)更新して記録する。
ステップST28:パラメータ範囲を全て網羅したかどうかが判定される。網羅していないと判定されると、処理がステップST22に戻り、上述したステップST22~ステップST27の処理がなされる。
ステップST29:RMS最小となるOCVカーブ構成情報で正極及び負極のOCVカーブを生成する。
ステップST30:正極及び負極のOCVカーブの差分から電池のOCVカーブを生成する。
以上の処理によって、最適条件となるOCVカーブが算出される。 Step ST25: Calculate the root mean square (referred to as RMS) of the OCV value trajectory and the OCV curve.
Step ST26: The calculated RMS calculated value is compared with the minimum value (RMS minimum value) among the previously calculated RMS calculated values. If the RMS calculation value is equal to or greater than the RMS minimum value, the process returns to step ST12 (setting of parameters (Xp, Yp, Xn, Yn) of OCV curve configuration information).
Step ST27: If the determination result in step ST26 is affirmative, that is, if (RMS calculation value <RMS minimum value), the RMS minimum value and OCV curve configuration information (Xp, Yp, Xn, Yn) are updated and recorded.
Step ST28: It is determined whether or not the entire parameter range is covered. If it is determined that they are not covered, the process returns to step ST22, and the processes of steps ST22 to ST27 described above are performed.
Step ST29: Generate OCV curves for the positive electrode and the negative electrode with the OCV curve configuration information that minimizes RMS.
Step ST30: An OCV curve of the battery is generated from the difference between the positive and negative OCV curves.
The OCV curve that is the optimum condition is calculated by the above processing.
ステップST26:算出されたRMS計算値を以前に算出されたRMS計算値の中の最小値(RMS最小値)と比較する。RMS計算値がRMS最小値以上の場合には、処理がステップST12(OCVカーブ構成情報のパラメータ(Xp,Yp,Xn、Yn)の設定)に戻る。
ステップST27:ステップST26の判定結果が肯定の場合、すなわち、(RMS計算値<RMS最小値)の場合、RMS最小値とOCVカーブ構成情報(Xp,Yp,Xn、Yn)更新して記録する。
ステップST28:パラメータ範囲を全て網羅したかどうかが判定される。網羅していないと判定されると、処理がステップST22に戻り、上述したステップST22~ステップST27の処理がなされる。
ステップST29:RMS最小となるOCVカーブ構成情報で正極及び負極のOCVカーブを生成する。
ステップST30:正極及び負極のOCVカーブの差分から電池のOCVカーブを生成する。
以上の処理によって、最適条件となるOCVカーブが算出される。 Step ST25: Calculate the root mean square (referred to as RMS) of the OCV value trajectory and the OCV curve.
Step ST26: The calculated RMS calculated value is compared with the minimum value (RMS minimum value) among the previously calculated RMS calculated values. If the RMS calculation value is equal to or greater than the RMS minimum value, the process returns to step ST12 (setting of parameters (Xp, Yp, Xn, Yn) of OCV curve configuration information).
Step ST27: If the determination result in step ST26 is affirmative, that is, if (RMS calculation value <RMS minimum value), the RMS minimum value and OCV curve configuration information (Xp, Yp, Xn, Yn) are updated and recorded.
Step ST28: It is determined whether or not the entire parameter range is covered. If it is determined that they are not covered, the process returns to step ST22, and the processes of steps ST22 to ST27 described above are performed.
Step ST29: Generate OCV curves for the positive electrode and the negative electrode with the OCV curve configuration information that minimizes RMS.
Step ST30: An OCV curve of the battery is generated from the difference between the positive and negative OCV curves.
The OCV curve that is the optimum condition is calculated by the above processing.
正極及び負極のOCVカーブを生成する。正極のOCVカーブの生成例について説明する。予め取得した正極のOCVカーブについて、ある点の放電容量をQp0(k)とする。伸縮の倍率をXp、シフト量(放電容量の減る方向)をYpとすると、この点の放電容量Qp(k)は次式のように表現できる。
Generate OCV curves for positive and negative electrodes. An example of generating an OCV curve of the positive electrode will be described. For the positive OCV curve acquired in advance, the discharge capacity at a certain point is defined as Qp0 (k). Assuming that the expansion / contraction magnification is Xp and the shift amount (the direction in which the discharge capacity decreases) is Yp, the discharge capacity Qp (k) at this point can be expressed by the following equation.
このように放電容量の点位置を変えることで、OCVカーブの形状を操作し、正極のOCVカーブを生成する。負極のOCVカーブについても同様に次式のように表現できる。
こ の By changing the point position of the discharge capacity in this way, the shape of the OCV curve is manipulated to generate the OCV curve of the positive electrode. Similarly, the negative electrode OCV curve can be expressed by the following equation.
電池のOCVカーブを算出するため、正極と負極のOCVカーブの差分を算出する前に、正極と負極のQ位置を合わせておく必要がある。図14に線形補間によるOCVプロットの算出例を示す。伸縮の倍率を0.9、シフト量を100〔mAh〕とすると、510〔mAh〕及び520〔mAh〕の点は、それぞれ359〔mAh〕及び368〔mAh〕の点に移動する。Q間隔を10〔mAh〕とする取り決めにした場合、360〔mAh〕に相当する点のOCV値を線形補間等の方法で生成しておく。
In order to calculate the OCV curve of the battery, it is necessary to align the Q positions of the positive electrode and the negative electrode before calculating the difference between the positive and negative OCV curves. FIG. 14 shows an example of calculating the OCV plot by linear interpolation. Assuming that the expansion / contraction magnification is 0.9 and the shift amount is 100 [mAh], the points of 510 [mAh] and 520 [mAh] move to the points of 359 [mAh] and 368 [mAh], respectively. When it is determined that the Q interval is 10 [mAh], an OCV value corresponding to 360 [mAh] is generated by a method such as linear interpolation.
正極と負極のOCVカーブの差分から電池のOCVカーブを生成する。ある点の放電容量Q(k)における正極及び負極のOCV値をそれぞれOCVp(k)及びOCVn(k)とする。放電容量Q(k)における電池のOCV値であるOCV(k)は次式のように表現できる。
The battery OCV curve is generated from the difference between the positive and negative OCV curves. The OCV values of the positive electrode and the negative electrode at a certain discharge capacity Q (k) are OCVp (k) and OCVn (k), respectively. The OCV (k) that is the OCV value of the battery at the discharge capacity Q (k) can be expressed as the following equation.
フィッティングのため、OCV値軌跡と生成したOCVカーブの二乗平均平方根(RMS)を算出する。RMSは次式のように表現できる。OCV値軌跡のある点をOCVe(k)とする。NはOCVカーブを構成するプロット点の数である。このRMS値が最小となるパラメータ(倍率、シフト)を記録する。
For calculation, the root mean square (RMS) of the OCV value trajectory and the generated OCV curve is calculated. RMS can be expressed as: A point on the OCV value locus is defined as OCVe (k). N is the number of plot points constituting the OCV curve. The parameter (magnification, shift) that minimizes the RMS value is recorded.
RMS値が最小となるパラメータを求めることで、最適なOCVカーブを算出できる。
Optimized OCV curve can be calculated by obtaining the parameter that minimizes the RMS value.
<2.応用例>
「電池パック」
図15は、本技術を電池パックに適用した場合の回路構成例を示すブロック図である。電池パックは、組電池301、外装、充電制御スイッチ302aと、放電制御スイッチ303a、を備えるスイッチ部304、電流検出抵抗307、温度検出素子308、制御部310を備えている。 <2. Application example>
"Battery pack"
FIG. 15 is a block diagram illustrating a circuit configuration example when the present technology is applied to a battery pack. The battery pack includes aswitch unit 304 including an assembled battery 301, an exterior, a charge control switch 302a, and a discharge control switch 303a, a current detection resistor 307, a temperature detection element 308, and a control unit 310.
「電池パック」
図15は、本技術を電池パックに適用した場合の回路構成例を示すブロック図である。電池パックは、組電池301、外装、充電制御スイッチ302aと、放電制御スイッチ303a、を備えるスイッチ部304、電流検出抵抗307、温度検出素子308、制御部310を備えている。 <2. Application example>
"Battery pack"
FIG. 15 is a block diagram illustrating a circuit configuration example when the present technology is applied to a battery pack. The battery pack includes a
また、電池パックは、正極端子321及び負極リード322を備え、充電時には正極端子321及び負極リード322がそれぞれ充電器の正極端子、負極端子に接続され、充電が行われる。また、電子機器使用時には、正極端子321及び負極リード322がそれぞれ電子機器の正極端子、負極端子に接続され、放電が行われる。
The battery pack also includes a positive electrode terminal 321 and a negative electrode lead 322. During charging, the positive electrode terminal 321 and the negative electrode lead 322 are connected to the positive electrode terminal and the negative electrode terminal of the charger, respectively, and charging is performed. Further, when the electronic device is used, the positive electrode terminal 321 and the negative electrode lead 322 are connected to the positive electrode terminal and the negative electrode terminal of the electronic device, respectively, and discharging is performed.
組電池301は、複数の二次電池301aを直列及び/又は並列に接続してなる。この二次電池301aは本技術の二次電池である。なお、図15では、6つの二次電池301aが、2並列3直列(2P3S)に接続された場合が例として示されているが、その他、n並列m直列(n,mは整数)のように、どのような接続方法でもよい。
The assembled battery 301 is formed by connecting a plurality of secondary batteries 301a in series and / or in parallel. The secondary battery 301a is a secondary battery of the present technology. In addition, in FIG. 15, the case where the six secondary batteries 301a are connected in 2 parallel 3 series (2P3S) is shown as an example, but it is like n parallel m series (n and m are integers). Any connection method may be used.
スイッチ部304は、充電制御スイッチ302a及びダイオード302b、ならびに放電制御スイッチ303a及びダイオード303bを備え、制御部310によって制御される。ダイオード302bは、正極端子321から組電池301の方向に流れる充電電流に対して逆方向で、負極リード322から組電池301の方向に流れる放電電流に対して順方向の極性を有する。ダイオード303bは、充電電流に対して順方向で、放電電流に対して逆方向の極性を有する。尚、例では+側にスイッチ部304を設けているが、-側に設けても良い。
The switch unit 304 includes a charge control switch 302a and a diode 302b, and a discharge control switch 303a and a diode 303b, and is controlled by the control unit 310. The diode 302b has a reverse polarity with respect to the charging current flowing from the positive electrode terminal 321 in the direction of the assembled battery 301 and the forward polarity with respect to the discharging current flowing from the negative electrode lead 322 in the direction of the assembled battery 301. The diode 303b has a forward polarity with respect to the charging current and a reverse polarity with respect to the discharging current. In the example, the switch unit 304 is provided on the + side, but may be provided on the-side.
充電制御スイッチ302aは、電池電圧が過充電検出電圧となった場合にOFFされて、組電池301の電流経路に充電電流が流れないように充放電制御部によって制御される。充電制御スイッチ302aのOFF後は、ダイオード302bを介することによって放電のみが可能となる。また、充電時に大電流が流れた場合にOFFされて、組電池301の電流経路に流れる充電電流を遮断するように、制御部310によって制御される。
The charge control switch 302a is turned off when the battery voltage becomes the overcharge detection voltage, and is controlled by the charge / discharge control unit so that the charge current does not flow in the current path of the assembled battery 301. After the charging control switch 302a is turned off, only discharging is possible via the diode 302b. Further, it is turned off when a large current flows during charging, and is controlled by the control unit 310 so that the charging current flowing in the current path of the assembled battery 301 is cut off.
放電制御スイッチ303aは、電池電圧が過放電検出電圧となった場合にOFFされて、組電池301の電流経路に放電電流が流れないように制御部310によって制御される。放電制御スイッチ303aのOFF後は、ダイオード303bを介することによって充電のみが可能となる。また、放電時に大電流が流れた場合にOFFされて、組電池301の電流経路に流れる放電電流を遮断するように、制御部310によって制御される。
The discharge control switch 303 a is turned off when the battery voltage becomes the overdischarge detection voltage, and is controlled by the control unit 310 so that the discharge current does not flow in the current path of the assembled battery 301. After the discharge control switch 303a is turned off, only charging is possible via the diode 303b. Further, it is turned off when a large current flows during discharging, and is controlled by the control unit 310 so as to cut off the discharging current flowing in the current path of the assembled battery 301.
温度検出素子308は例えばサーミスタであり、組電池301の近傍に設けられ、組電池301の温度を測定して測定温度を制御部310に供給する。電圧検出部311は、組電池301及びそれを構成する各二次電池301aの電圧を測定し、この測定電圧をA/D変換して、制御部310に供給する。電流測定部313は、電流検出抵抗307を用いて電流を測定し、この測定電流を制御部310に供給する。
The temperature detection element 308 is, for example, a thermistor, is provided in the vicinity of the assembled battery 301, measures the temperature of the assembled battery 301, and supplies the measured temperature to the control unit 310. The voltage detection unit 311 measures the voltage of the assembled battery 301 and each secondary battery 301a constituting the assembled battery 301, A / D converts this measurement voltage, and supplies the voltage to the control unit 310. The current measurement unit 313 measures the current using the current detection resistor 307 and supplies this measurement current to the control unit 310.
スイッチ制御部314は、電圧検出部311及び電流測定部313から入力された電圧及び電流を基に、スイッチ部304の充電制御スイッチ302a及び放電制御スイッチ303aを制御する。スイッチ制御部314は、二次電池301aのいずれかの電圧が過充電検出電圧もしくは過放電検出電圧以下になったとき、また、大電流が急激に流れたときに、スイッチ部304に制御信号を送ることにより、過充電及び過放電、過電流充放電を防止する。
The switch control unit 314 controls the charge control switch 302a and the discharge control switch 303a of the switch unit 304 based on the voltage and current input from the voltage detection unit 311 and the current measurement unit 313. The switch control unit 314 sends a control signal to the switch unit 304 when any voltage of the secondary battery 301a falls below the overcharge detection voltage or overdischarge detection voltage, or when a large current flows suddenly. By sending, overcharge, overdischarge, and overcurrent charge / discharge are prevented.
ここで、例えば、二次電池がリチウムイオン二次電池の場合、過充電検出電圧が例えば4.20V±0.05Vと定められ、過放電検出電圧が例えば2.4V±0.1Vと定められる。
Here, for example, when the secondary battery is a lithium ion secondary battery, the overcharge detection voltage is determined to be 4.20 V ± 0.05 V, for example, and the overdischarge detection voltage is determined to be 2.4 V ± 0.1 V, for example. .
充放電スイッチは、例えばMOSFETなどの半導体スイッチを使用できる。この場合MOSFETの寄生ダイオードがダイオード302b及び303bとして機能する。充放電スイッチとして、Pチャンネル型FETを使用した場合は、スイッチ制御部314は、充電制御スイッチ302a及び放電制御スイッチ303aのそれぞれのゲートに対して、制御信号DO及びCOをそれぞれ供給する。充電制御スイッチ302a及び放電制御スイッチ303aはPチャンネル型である場合、ソース電位より所定値以上低いゲート電位によってONする。すなわち、通常の充電及び放電動作では、制御信号CO及びDOをローレベルとし、充電制御スイッチ302a及び放電制御スイッチ303aをON状態とする。
As the charge / discharge switch, for example, a semiconductor switch such as a MOSFET can be used. In this case, the parasitic diode of the MOSFET functions as the diodes 302b and 303b. When a P-channel FET is used as the charge / discharge switch, the switch control unit 314 supplies control signals DO and CO to the gates of the charge control switch 302a and the discharge control switch 303a, respectively. When the charge control switch 302a and the discharge control switch 303a are P-channel type, they are turned on by a gate potential that is lower than the source potential by a predetermined value or more. That is, in normal charging and discharging operations, the control signals CO and DO are set to a low level, and the charging control switch 302a and the discharging control switch 303a are turned on.
そして、例えば過充電もしくは過放電の際には、制御信号CO及びDOをハイレベルとし、充電制御スイッチ302a及び放電制御スイッチ303aをOFF状態とする。
For example, in the case of overcharge or overdischarge, the control signals CO and DO are set to the high level, and the charge control switch 302a and the discharge control switch 303a are turned off.
メモリ317は、RAMやROMからなり、例えば不揮発性メモリであるEPROM(Erasable Programmable Read Only Memory)などからなる。メモリ317では、制御部310で演算された数値や、製造工程の段階で測定された各二次電池301aの初期状態における電池の内部抵抗値などが予め記憶され、また適宜、書き換えも可能である。また、二次電池301aの満充電容量を記憶させておくことで、制御部310とともに例えば残容量を算出することができる。
The memory 317 includes a RAM and a ROM, and includes, for example, an EPROM (Erasable Programmable Read Only Memory) that is a nonvolatile memory. In the memory 317, the numerical value calculated by the control unit 310, the internal resistance value of the battery in the initial state of each secondary battery 301a measured in the manufacturing process, and the like are stored in advance, and can be appropriately rewritten. . Further, by storing the full charge capacity of the secondary battery 301a, for example, the remaining capacity can be calculated together with the control unit 310.
温度検出部318では、温度検出素子308を用いて温度を測定し、異常発熱時に充放電制御を行ったり、残容量の算出における補正を行う。
The temperature detection unit 318 measures the temperature using the temperature detection element 308, performs charge / discharge control at the time of abnormal heat generation, and performs correction in the calculation of the remaining capacity.
上述した急劣化検出装置の機能は、制御部310に含まれる。急劣化通知器の機能は、電池パック内部又は電池パック外部に設けられる。急劣化検出装置は、組電池301の劣化を検出するようになされる。
The function of the rapid deterioration detection device described above is included in the control unit 310. The function of the rapid deterioration notifier is provided inside the battery pack or outside the battery pack. The rapid deterioration detection device detects the deterioration of the assembled battery 301.
「蓄電システム」
本技術の第1の実施の形態に係る蓄電システムについて説明する。図16は蓄電システムの構成の一例を示す。この蓄電システム81は、蓄電モジュール82と、コントローラ83とを含む構成を有する。蓄電モジュール82とコントローラ83との間で電力の伝送及び通信がなされる。図16では一つの蓄電モジュールのみを図示しているが、複数の蓄電モジュールを接続して、各蓄電モジュールをコントローラに接続してもよい。 "Power storage system"
A power storage system according to the first embodiment of the present technology will be described. FIG. 16 illustrates an example of a configuration of a power storage system. Thepower storage system 81 includes a power storage module 82 and a controller 83. Electric power is transmitted and communicated between the power storage module 82 and the controller 83. Although only one power storage module is illustrated in FIG. 16, a plurality of power storage modules may be connected and each power storage module may be connected to the controller.
本技術の第1の実施の形態に係る蓄電システムについて説明する。図16は蓄電システムの構成の一例を示す。この蓄電システム81は、蓄電モジュール82と、コントローラ83とを含む構成を有する。蓄電モジュール82とコントローラ83との間で電力の伝送及び通信がなされる。図16では一つの蓄電モジュールのみを図示しているが、複数の蓄電モジュールを接続して、各蓄電モジュールをコントローラに接続してもよい。 "Power storage system"
A power storage system according to the first embodiment of the present technology will be described. FIG. 16 illustrates an example of a configuration of a power storage system. The
コントローラ83は、電力ケーブル及び通信用のバスを介して、充電装置(充電電源)84又は負荷85に対して接続される。蓄電モジュール82を充電する際には、コントローラ83は充電装置84に接続される。充電装置84は、DC(Direct Current)-DCコンバータ等を有し、少なくとも、充電電圧及び充電電流制御部84aを有する。充電電圧及び充電電流制御部84aは、例えば、コントローラ83(メインマイクロコントロールユニット40)の制御に応じて充電電圧及び充電電流を所定の値に設定する。
The controller 83 is connected to a charging device (charging power source) 84 or a load 85 via a power cable and a communication bus. When charging the power storage module 82, the controller 83 is connected to the charging device 84. The charging device 84 includes a direct current (DC) -DC converter or the like, and includes at least a charging voltage and charging current control unit 84a. For example, the charging voltage and charging current control unit 84a sets the charging voltage and charging current to predetermined values in accordance with the control of the controller 83 (main micro control unit 40).
蓄電モジュール82を放電する際には、コントローラ83は負荷85に接続される。コントローラ83を介して、負荷85に対して蓄電モジュール82の電力が供給される。コントローラ83に接続される負荷85は、電気自動車におけるモータ系のインバータ回路や、家庭用の電力システム等である。
When discharging the power storage module 82, the controller 83 is connected to the load 85. The power of the power storage module 82 is supplied to the load 85 via the controller 83. The load 85 connected to the controller 83 is a motor-type inverter circuit in an electric vehicle, a household power system, or the like.
負荷85は、少なくとも、放電電流制御部85aを有する。放電電流制御部85aは、例えば、コントローラ83のメインマイクロコントロールユニット40の制御に応じて放電電流を所定の値に設定する。例えば、負荷85は、負荷抵抗を可変することにより蓄電モジュール82を流れる放電電流(負荷電流)の大きさを適切に制御する。
The load 85 has at least a discharge current control unit 85a. For example, the discharge current control unit 85a sets the discharge current to a predetermined value in accordance with the control of the main micro control unit 40 of the controller 83. For example, the load 85 appropriately controls the magnitude of the discharge current (load current) flowing through the power storage module 82 by changing the load resistance.
蓄電モジュール82の構成の一例について説明する。蓄電モジュール82を構成する各部は、例えば、所定の形状の外装ケースに収納される。外装ケースは、高い伝導率及び輻射率を有する材料を用いることが望ましい。高い伝導率及び輻射率を有する材料を用いることにより、外装ケースにおける優れた放熱性を得ることができる。優れた放熱性を得ることで、外装ケース内の温度上昇を抑制できる。さらに、外装ケースの開口部を最小限又は、廃止することができ、高い防塵防滴性を実現できる。外装ケースは、例えば、アルミニウム又はアルミニウム合金、銅、銅合金等の材料が使用される。
An example of the configuration of the power storage module 82 will be described. Each part which comprises the electrical storage module 82 is accommodated in the exterior case of a predetermined shape, for example. The outer case is desirably made of a material having high conductivity and emissivity. By using a material having high conductivity and emissivity, excellent heat dissipation in the outer case can be obtained. By obtaining excellent heat dissipation, temperature rise in the outer case can be suppressed. Further, the opening of the outer case can be minimized or eliminated, and high dustproof and drip-proof properties can be realized. For the exterior case, for example, a material such as aluminum, an aluminum alloy, copper, or a copper alloy is used.
蓄電モジュール82は、例えば、正極端子21、負極端子22、蓄電部である蓄電ブロックBL、FET(Field Effect Transistor)、電圧マルチプレクサ23、ADC(Analog to Digital Converter)24、温度測定部25、温度マルチプレクサ26、監視部27、温度測定部28、電流検出抵抗29、電流検出アンプ30、ADC31、サブマイクロコントロールユニット35及び記憶部36を含む構成とされる。蓄電モジュール82に対して、例示した構成と異なる構成が追加されてもよい。例えば、蓄電ブロックBLの電圧から蓄電モジュール82の各部を動作させるための電圧を生成するレギュレータが追加されてもよい。
The power storage module 82 includes, for example, a positive electrode terminal 21, a negative electrode terminal 22, a power storage block BL as a power storage unit, a FET (Field (Effect Transistor), a voltage multiplexer 23, an ADC (Analog Digital Converter) 24, a temperature measurement unit 25, and a temperature multiplexer. 26, a monitoring unit 27, a temperature measurement unit 28, a current detection resistor 29, a current detection amplifier 30, an ADC 31, a sub-micro control unit 35, and a storage unit 36. A configuration different from the illustrated configuration may be added to the power storage module 82. For example, a regulator that generates a voltage for operating each unit of the power storage module 82 from the voltage of the power storage block BL may be added.
蓄電ブロックBLは、サブモジュールSMOが1又は複数、接続されてなる。一例として、16個のサブモジュールSMO1、サブモジュールSMO2、サブモジュールSMO3、サブモジュールSMO4・・・及びサブモジュールSMO16が直列に接続されることにより蓄電ブロックBLが構成される。なお、個々のサブモジュールを区別する必要がない場合は、サブモジュールSMOと適宜、称する。
The power storage block BL is formed by connecting one or more submodules SMO. As an example, the power storage block BL is configured by connecting 16 submodules SMO1, submodule SMO2, submodule SMO3, submodule SMO4... And submodule SMO16 in series. In addition, when it is not necessary to distinguish each submodule, it is appropriately called a submodule SMO.
複数の蓄電池(セル)が接続されることにより、サブモジュールSMOが形成される。サブモジュールSMOは、例えば、8個のセルが並列に接続された組電池を含む構成を有する。例えば、セルとして後述のリチウムイオン二次電池を用いた場合、このサブモジュールSMOの容量は、例えば、24Ah程度となり、電圧は、例えば、セルの電圧と略同じ3.0V程度となる。
A submodule SMO is formed by connecting a plurality of storage batteries (cells). The submodule SMO has a configuration including, for example, an assembled battery in which eight cells are connected in parallel. For example, when a later-described lithium ion secondary battery is used as the cell, the capacity of the submodule SMO is, for example, about 24 Ah, and the voltage is, for example, about 3.0 V, which is substantially the same as the cell voltage.
複数のサブモジュールSMOが接続されることにより、蓄電ブロックBLが形成される。蓄電ブロックBLは、例えば、16個のサブモジュールSMOが直列に接続された構成を有する。この場合の容量は、24Ah程度となり、電圧は、48V(3.0V×16)程度となる。なお、サブモジュールSMOを構成するセルの個数及びセルの接続の態様は、適宜、変更することができる。さらに、蓄電ブロックBLを構成するサブモジュールSMOの個数及びサブモジュールSMOの接続の態様は、適宜、変更することができる。なお、蓄電ブロックBL単位で放電及び充電が行われてもよく、サブモジュール単位やセル単位で放電及び充電が行われてもよい。
The storage block BL is formed by connecting a plurality of submodules SMO. The power storage block BL has, for example, a configuration in which 16 submodules SMO are connected in series. In this case, the capacity is about 24 Ah, and the voltage is about 48 V (3.0 V × 16). The number of cells constituting the submodule SMO and the mode of cell connection can be changed as appropriate. Furthermore, the number of submodules SMO constituting the power storage block BL and the connection mode of the submodules SMO can be changed as appropriate. Note that discharging and charging may be performed in units of power storage blocks BL, and discharging and charging may be performed in units of submodules or cells.
サブモジュールSMO1の正極側が蓄電モジュール82の正極端子21に接続される。サブモジュールSMO16の負極側が蓄電モジュール82の負極端子22に接続される。正極端子21は、コントローラ83の正極端子に接続される。負極端子22は、コントローラ83の負極端子に接続される。
The positive side of the submodule SMO1 is connected to the positive terminal 21 of the power storage module 82. The negative side of the submodule SMO 16 is connected to the negative terminal 22 of the power storage module 82. The positive terminal 21 is connected to the positive terminal of the controller 83. The negative terminal 22 is connected to the negative terminal of the controller 83.
16個のサブモジュールSMOの構成に対応して、16個のFET(FET1、FET2、FET3、FET4・・・FET16)がサブモジュールSMOの端子間に設けられる。FETは、例えば、パッシブ方式のセルバランス制御を行うためものである。
Corresponding to the configuration of 16 submodules SMO, 16 FETs (FET1, FET2, FET3, FET4... FET16) are provided between the terminals of the submodule SMO. The FET is for performing, for example, passive cell balance control.
FETにより行われるセルバランス制御の概要について説明する。例えば、サブモジュールSMO2の劣化が他のサブモジュールSMOより進行し、サブモジュールSMO2の内部インピーダンスが増加したとする。この状態で蓄電モジュール82に対する充電を行うと、内部インピーダンスの増加により、サブモジュールSMO2が正常な電圧まで充電されない。このため、サブモジュールSMO間の電圧のバランスにばらつきが生じる。
An outline of cell balance control performed by the FET will be described. For example, it is assumed that the deterioration of the submodule SMO2 progresses more than other submodules SMO, and the internal impedance of the submodule SMO2 increases. If the power storage module 82 is charged in this state, the submodule SMO2 is not charged to a normal voltage due to an increase in internal impedance. For this reason, variations occur in the voltage balance between the submodules SMO.
サブモジュールSMO間の電圧のバランスのばらつきを解消するために、FET2以外のFETをオンし、サブモジュールSMO2以外のサブモジュールSMOを所定の電圧値まで放電させる。放電後にFETをオフする。放電後は、各サブモジュールSMOの電圧は、例えば、所定値(例えば、3.0VとなりサブモジュールSMO間のバランスがとれる。なお、セルバランス制御の方式はパッシブ方式に限らず、いわゆるアクティブ方式や他の公知の方式を適用できる。
In order to eliminate the voltage balance variation between the submodules SMO, the FETs other than the FET2 are turned on, and the submodules SMO other than the submodule SMO2 are discharged to a predetermined voltage value. The FET is turned off after discharging. After the discharge, the voltage of each submodule SMO is, for example, a predetermined value (for example, 3.0 V, and the submodule SMO is balanced. Note that the cell balance control method is not limited to the passive method, but the so-called active method or Other known methods can be applied.
サブモジュールSMOの端子間の電圧が電圧検出部(図示は省略している)により検出される。サブモジュールSMOの端子間の電圧は例えば、充電中及び放電中を問わず、検出される。蓄電モジュール82の放電時に、例えば250ms(ミリ秒)の周期でもって、各サブモジュールSMOの電圧が電圧検出部により検出される。
The voltage between the terminals of the submodule SMO is detected by a voltage detector (not shown). The voltage between the terminals of the submodule SMO is detected regardless of whether it is charging or discharging, for example. When the power storage module 82 is discharged, the voltage of each submodule SMO is detected by the voltage detection unit with a period of, for example, 250 ms (milliseconds).
電圧検出部によって検出された各サブモジュールSMOの電圧(アナログの電圧データ)が電圧マルチプレクサ(MUX(Multiplexer))23に供給される。この例では、16のサブモジュールSMOにより蓄電ブロックが構成されることから、16のアナログ電圧データが電圧マルチプレクサ23に供給されることになる。
The voltage (analog voltage data) of each submodule SMO detected by the voltage detection unit is supplied to a voltage multiplexer (MUX (Multiplexer)) 23. In this example, since the storage block is configured by 16 submodules SMO, 16 analog voltage data is supplied to the voltage multiplexer 23.
電圧マルチプレクサ23は、例えば、所定の周期でもってチャネルを切り換え、16のアナログ電圧データ中から一のアナログ電圧データを選択する。電圧マルチプレクサ23によって選択された一のアナログ電圧データが、ADC24に供給される。そして、電圧マルチプレクサ23は、チャネルを切り換え、次のアナログ電圧データをADC24に供給する。すなわち、所定の周期でもって、16のアナログ電圧データが電圧マルチプレクサ23からADC24に供給される。
The voltage multiplexer 23 switches channels with a predetermined cycle, for example, and selects one analog voltage data from the 16 analog voltage data. One analog voltage data selected by the voltage multiplexer 23 is supplied to the ADC 24. Then, the voltage multiplexer 23 switches the channel and supplies the next analog voltage data to the ADC 24. That is, 16 analog voltage data are supplied from the voltage multiplexer 23 to the ADC 24 in a predetermined cycle.
なお、電圧マルチプレクサ23におけるチャネルの切り換えは、蓄電モジュール82のサブマイクロコントロールユニット35又はコントローラ83のメインマイクロコントロールユニット40による制御に応じて行われる。
The channel switching in the voltage multiplexer 23 is performed according to control by the sub-micro control unit 35 of the power storage module 82 or the main micro-control unit 40 of the controller 83.
温度測定部25は、各サブモジュールSMOの温度を検出する。温度測定部25は、サーミスタ等の温度を検出する素子からなる。サブモジュールSMOの温度は、例えば、充電中及び放電中を問わず、所定の周期でもって検出される。サブモジュールSMOの温度と、当該サブモジュールSMOを構成するセルの温度は大きく相違しないため、一実施形態では、サブモジュールSMOの温度を測定するようにしている。8本のセルの個々の温度を測定してもよく、8本のセルの温度の平均値をサブモジュールSMOの温度としてもよい。
The temperature measuring unit 25 detects the temperature of each submodule SMO. The temperature measuring unit 25 is composed of an element that detects a temperature, such as a thermistor. The temperature of the submodule SMO is detected with a predetermined cycle, for example, whether charging or discharging. Since the temperature of the submodule SMO and the temperature of the cells constituting the submodule SMO are not significantly different, in one embodiment, the temperature of the submodule SMO is measured. The individual temperatures of the eight cells may be measured, and the average value of the temperatures of the eight cells may be used as the temperature of the submodule SMO.
温度測定部25によって検出された各サブモジュールSMOの温度を示すアナログ温度データが、温度マルチプレクサ(MUX)26に供給される。この例では、16個のサブモジュールSMOにより蓄電ブロックBLが構成されることから、16のアナログ温度データが温度マルチプレクサ26に供給されることになる。
Analog temperature data indicating the temperature of each submodule SMO detected by the temperature measuring unit 25 is supplied to the temperature multiplexer (MUX) 26. In this example, since the power storage block BL is configured by 16 submodules SMO, 16 analog temperature data are supplied to the temperature multiplexer 26.
温度マルチプレクサ26は、例えば、所定の周期でもってチャネルを切り替え、16のアナログ温度データから一のアナログ温度データを選択する。温度マルチプレクサ26によって選択された一のアナログ温度データが、ADC24に供給される。そして、温度マルチプレクサ26は、チャネルを切り換え、次のアナログ温度データをADC24に供給する。すなわち、所定の周期でもって、16のアナログ温度データが温度マルチプレクサ26からADC24に供給される。
The temperature multiplexer 26 switches channels with a predetermined cycle, for example, and selects one analog temperature data from the 16 analog temperature data. One analog temperature data selected by the temperature multiplexer 26 is supplied to the ADC 24. Then, the temperature multiplexer 26 switches the channel and supplies the next analog temperature data to the ADC 24. That is, 16 analog temperature data are supplied from the temperature multiplexer 26 to the ADC 24 in a predetermined cycle.
なお、温度マルチプレクサ26におけるチャネルの切り換えは、蓄電モジュール82のサブマイクロコントロールユニット35又はコントローラ83のメインマイクロコントロールユニット40による制御に応じて行われる。
Note that the channel switching in the temperature multiplexer 26 is performed according to control by the sub micro control unit 35 of the power storage module 82 or the main micro control unit 40 of the controller 83.
ADC24は、電圧マルチプレクサ23から供給されるアナログ電圧データをデジタル電圧データに変換する。ADC24は、アナログ電圧データを、例えば、14~18ビットのデジタル電圧データに変換する。ADC24における変換方式には、逐次比較方式やΔΣ(デルタシグマ)方式等、種々の方式を適用できる。
The ADC 24 converts the analog voltage data supplied from the voltage multiplexer 23 into digital voltage data. The ADC 24 converts the analog voltage data into, for example, 14 to 18 bit digital voltage data. As the conversion method in the ADC 24, various methods such as a successive approximation method and a ΔΣ (delta sigma) method can be applied.
ADC24は、例えば、入力端子と、出力端子と、制御信号が入力される制御信号入力端子と、クロックパルスが入力されるクロックパルス入力端子とを備える(なお、これらの端子の図示は省略している)。入力端子には、アナログ電圧データが入力される。出力端子からは、変換後のデジタル電圧データが出力される。
The ADC 24 includes, for example, an input terminal, an output terminal, a control signal input terminal to which a control signal is input, and a clock pulse input terminal to which a clock pulse is input (the illustration of these terminals is omitted). ) Analog voltage data is input to the input terminal. The converted digital voltage data is output from the output terminal.
制御信号入力端子には、例えば、コントローラ83から供給される制御信号(制御コマンド)が入力される。制御信号は、例えば、電圧マルチプレクサ23から供給されるアナログ電圧データの取得を指示する取得指示信号である。取得指示信号が入力されると、ADC24によってアナログ電圧データが取得され、取得されたアナログ電圧データがデジタル電圧データに変換される。そして、クロックパルス入力端子に入力される同期用のクロックパルスに応じて、デジタル電圧データが出力端子を介して出力される。出力されたデジタル電圧データが監視部27に供給される。
For example, a control signal (control command) supplied from the controller 83 is input to the control signal input terminal. The control signal is an acquisition instruction signal for instructing acquisition of analog voltage data supplied from the voltage multiplexer 23, for example. When the acquisition instruction signal is input, the analog voltage data is acquired by the ADC 24, and the acquired analog voltage data is converted into digital voltage data. Then, digital voltage data is output via the output terminal in accordance with the synchronizing clock pulse input to the clock pulse input terminal. The output digital voltage data is supplied to the monitoring unit 27.
さらに、制御信号入力端子には、温度マルチプレクサ26から供給されるアナログ温度データの取得を指示する取得指示信号が入力される。取得指示信号に応じて、ADC24はアナログ温度データを取得する。取得されたアナログ温度データが、ADC24によってデジタル温度データに変換される。アナログ温度データが、例えば14~18ビットのデジタル温度データに変換される。変換されたデジタル温度データが出力端子を介して出力され、出力されたデジタル温度データが監視部27に供給される。なお、電圧データ及び温度データのそれぞれを処理するADCが別個に設けられる構成としてもよい。ADC24の機能ブロックが、電圧や温度を所定値と比較するコンパレータの機能を有するようにしてもよい。
Furthermore, an acquisition instruction signal for instructing acquisition of analog temperature data supplied from the temperature multiplexer 26 is input to the control signal input terminal. In response to the acquisition instruction signal, the ADC 24 acquires analog temperature data. The acquired analog temperature data is converted into digital temperature data by the ADC 24. The analog temperature data is converted into, for example, 14-18 bit digital temperature data. The converted digital temperature data is output via the output terminal, and the output digital temperature data is supplied to the monitoring unit 27. In addition, it is good also as a structure by which ADC which processes each of voltage data and temperature data is provided separately. The functional block of the ADC 24 may have a function of a comparator that compares a voltage or temperature with a predetermined value.
ADC24から監視部27に対して、例えば、16のデジタル電圧データや16のデジタル温度データが時分割多重されて送信される。送信データのヘッダにサブモジュールSMOを識別する識別子を記述し、どのサブモジュールSMOの電圧や温度であるかを示すようにしてもよい。なお、この例では、所定の周期でもって得られ、ADC24によりデジタルデータへと変換された各サブモジュールSMOのデジタル電圧データが、電圧情報に対応する。アナログ電圧データが電圧情報とされてもよく、補正処理等がなされたデジタル電圧データが電圧情報とされてもよい。
For example, 16 digital voltage data and 16 digital temperature data are time-division multiplexed and transmitted from the ADC 24 to the monitoring unit 27. An identifier for identifying the submodule SMO may be described in the header of the transmission data to indicate which submodule SMO voltage or temperature. In this example, the digital voltage data of each submodule SMO obtained with a predetermined period and converted into digital data by the ADC 24 corresponds to the voltage information. Analog voltage data may be used as voltage information, and digital voltage data subjected to correction processing or the like may be used as voltage information.
温度測定部28は、蓄電モジュール82全体の温度を測定する。温度測定部28により蓄電モジュール82の外装ケース内の温度が測定される。温度測定部28により測定されたアナログ温度データが温度マルチプレクサ26に供給され、温度マルチプレクサ26からADC24に供給される。そして、アナログ温度データがADC24によりデジタル温度データに変換される。デジタル温度データがADC24から監視部27に供給される。
The temperature measuring unit 28 measures the temperature of the entire power storage module 82. The temperature in the outer case of the power storage module 82 is measured by the temperature measurement unit 28. Analog temperature data measured by the temperature measurement unit 28 is supplied to the temperature multiplexer 26, and is supplied from the temperature multiplexer 26 to the ADC 24. Then, the analog temperature data is converted into digital temperature data by the ADC 24. Digital temperature data is supplied from the ADC 24 to the monitoring unit 27.
蓄電モジュール82は、蓄電モジュール82の電流経路に流れる電流(負荷電流)の値を検出する電流検出部を有する。電流検出部は、16個のサブモジュールSMOに流れる電流値を検出する。電流検出部は、例えば、サブモジュールSMO16の負極側と負極端子22との間に接続される電流検出抵抗29と、電流検出抵抗29の両端に接続される電流検出アンプ30とから構成される。電流検出抵抗29によって、アナログ電流データが検出される。アナログ電流データは、例えば、充電中及び放電中を問わず、所定の周期でもって検出される。
The power storage module 82 has a current detection unit that detects the value of the current (load current) flowing through the current path of the power storage module 82. The current detection unit detects a current value flowing through the 16 submodules SMO. The current detection unit includes, for example, a current detection resistor 29 connected between the negative electrode side of the submodule SMO16 and the negative electrode terminal 22, and a current detection amplifier 30 connected to both ends of the current detection resistor 29. Analog current data is detected by the current detection resistor 29. For example, the analog current data is detected with a predetermined cycle regardless of whether it is being charged or discharged.
検出されたアナログ電流データが電流検出アンプ30に供給される。アナログ電流データが電流検出アンプ30により増幅される。電流検出アンプ30のゲインは、例えば、50~100倍程度に設定される。増幅されたアナログ電流データがADC31に供給される。
Detected analog current data is supplied to the current detection amplifier 30. The analog current data is amplified by the current detection amplifier 30. The gain of the current detection amplifier 30 is set to about 50 to 100 times, for example. The amplified analog current data is supplied to the ADC 31.
ADC31は、電流検出アンプ30から供給されるアナログ電流データをデジタル電流データに変換する。ADC31によって、アナログ電流データが、例えば14~18ビットのデジタル電流データに変換される。ADC31における変換方式には、逐次比較方式やΔΣ(デルタシグマ)方式等、種々の方式を適用できる。
The ADC 31 converts the analog current data supplied from the current detection amplifier 30 into digital current data. The ADC 31 converts the analog current data into, for example, 14-18 bit digital current data. Various conversion methods such as a successive approximation method and a ΔΣ (delta sigma) method can be applied to the conversion method in the ADC 31.
ADC31は、例えば、入力端子と、出力端子と、制御信号が入力される制御信号入力端子と、クロックパルスが入力されるクロックパルス入力端子とを備える(これらの端子の図示は省略している)。入力端子には、アナログ電流データが入力される。出力端子からは、デジタル電流データが出力される。
The ADC 31 includes, for example, an input terminal, an output terminal, a control signal input terminal to which a control signal is input, and a clock pulse input terminal to which a clock pulse is input (illustration of these terminals is omitted). . Analog current data is input to the input terminal. Digital current data is output from the output terminal.
ADC31の制御信号入力端子には、例えば、コントローラ83から供給される制御信号(制御コマンド)が入力される。制御信号は、例えば、電流検出アンプ30から供給されるアナログ電流データの取得を指示する取得指示信号である。取得指示信号が入力されると、ADC31によってアナログ電流データが取得され、取得されたアナログ電流データがデジタル電流データに変換される。そして、クロックパルス入力端子に入力される同期用のクロックパルスに応じて、デジタル電流データが出力端子から出力される。出力されたデジタル電流データが監視部27に供給される。このデジタル電流データが電流情報の一例とされる。なお、ADC24及びADC31が同一のADCとして構成されてもよい。
For example, a control signal (control command) supplied from the controller 83 is input to the control signal input terminal of the ADC 31. The control signal is, for example, an acquisition instruction signal that instructs acquisition of analog current data supplied from the current detection amplifier 30. When the acquisition instruction signal is input, the analog current data is acquired by the ADC 31, and the acquired analog current data is converted into digital current data. Then, digital current data is output from the output terminal in accordance with the synchronizing clock pulse input to the clock pulse input terminal. The output digital current data is supplied to the monitoring unit 27. This digital current data is an example of current information. Note that the ADC 24 and the ADC 31 may be configured as the same ADC.
監視部27は、ADC24から供給されるデジタル電圧データ及びデジタル温度データを監視し、サブモジュールSMOの異常の有無を監視する。例えば、デジタル電圧データにより示される電圧が過充電の目安となる電圧付近、もしくは、過放電の目安となる電圧付近である場合には、異常がある、又は異常が生じるおそれがあることを示す異常通知信号を生成する。さらに、監視部27は、サブモジュールSMOの温度もしくは蓄電モジュール82全体の温度が閾値より大きい場合も同様に、異常通知信号を生成する。
The monitoring unit 27 monitors the digital voltage data and digital temperature data supplied from the ADC 24, and monitors whether there is an abnormality in the submodule SMO. For example, if the voltage indicated by the digital voltage data is in the vicinity of a voltage that is a standard for overcharge or a voltage that is a standard for overdischarge, there is an abnormality that indicates that there is an abnormality or that an abnormality may occur Generate a notification signal. Further, the monitoring unit 27 similarly generates an abnormality notification signal when the temperature of the submodule SMO or the temperature of the entire power storage module 82 is larger than the threshold value.
さらに、監視部27は、ADC31から供給されるデジタル電流データを監視する。デジタル電流データにより示される電流値が閾値より大きい場合に、監視部27は、異常通知信号を生成する。監視部27により生成された異常通知信号は、監視部27が有する通信機能によりサブマイクロコントロールユニット35に対して送信される。
Further, the monitoring unit 27 monitors digital current data supplied from the ADC 31. When the current value indicated by the digital current data is larger than the threshold value, the monitoring unit 27 generates an abnormality notification signal. The abnormality notification signal generated by the monitoring unit 27 is transmitted to the sub-micro control unit 35 by the communication function of the monitoring unit 27.
監視部27は、上述した異常の有無を監視するとともに、ADC24から供給される16のサブモジュールSMO毎のデジタル電圧データ及びADC31から供給されるデジタル電流データを、サブマイクロコントロールユニット35に送信する。サブモジュールSMO毎のデジタル電圧データ及びデジタル電流データが監視部27を介さずにサブマイクロコントロールユニット35に直接、供給されてもよい。送信されるサブモジュールSMO毎のデジタル電圧データ及びデジタル電流データがサブマイクロコントロールユニット35に入力される。さらに、ADC24から供給されるデジタル温度データが、監視部27からサブマイクロコントロールユニット35に供給される。
The monitoring unit 27 monitors the presence / absence of the abnormality described above, and transmits the digital voltage data for each of the 16 submodules SMO supplied from the ADC 24 and the digital current data supplied from the ADC 31 to the sub-micro control unit 35. Digital voltage data and digital current data for each sub-module SMO may be directly supplied to the sub-micro control unit 35 without going through the monitoring unit 27. The transmitted digital voltage data and digital current data for each sub-module SMO are input to the sub-micro control unit 35. Further, digital temperature data supplied from the ADC 24 is supplied from the monitoring unit 27 to the sub-micro control unit 35.
サブマイクロコントロールユニット35は、通信機能を有するCPU(Central Processing Unit)等により構成され、蓄電モジュール82の各部を制御する。サブマイクロコントロールユニット35は、例えば、監視部27から異常通知信号が供給されると、通信機能を使用してコントローラ83のメインマイクロコントロールユニット40に異常を通知する。この通知に応じて、メインマイクロコントロールユニット40は充電又は放電を停止する等の処理を適宜、実行する。なお、サブマイクロコントロールユニット及びメインマイクロコントロールユニットにおけるサブ、メインとの表記は説明の便宜上のためのものであり、特別の意味を有するものではない。
The sub-micro control unit 35 is configured by a CPU (Central Processing Unit) having a communication function and controls each part of the power storage module 82. For example, when an abnormality notification signal is supplied from the monitoring unit 27, the sub micro control unit 35 notifies the main micro control unit 40 of the controller 83 of the abnormality using the communication function. In response to this notification, the main micro control unit 40 appropriately executes processing such as stopping charging or discharging. Note that the sub and main notations in the sub-micro control unit and the main micro-control unit are for convenience of explanation, and have no special meaning.
サブマイクロコントロールユニット35とメインマイクロコントロールユニット40との間で、シリアル通信の規格であるI2CやSMBus(System Management Bus)、SPI(Serial Peripheral Interface)、CAN等の規格に準じた双方向の通信が行われる。通信は、有線でもよく無線でもよい。
Between the sub-micro control unit 35 and the main micro-control unit 40, bidirectional communication conforming to serial communication standards such as I2C, SMBus (System Management Bus), SPI (Serial Peripheral Interface), CAN, etc. Done. Communication may be wired or wireless.
監視部27からサブマイクロコントロールユニット35に対して、デジタル電圧データが入力される。例えば、蓄電モジュール82の放電時におけるサブモジュールSMO毎のデジタル電圧データがサブマイクロコントロールユニット35に入力される。
The digital voltage data is input from the monitoring unit 27 to the sub-micro control unit 35. For example, digital voltage data for each submodule SMO when the power storage module 82 is discharged is input to the sub-micro control unit 35.
さらに、蓄電モジュール82に負荷が接続されたときの負荷電流の大きさ(デジタル電流データ)が監視部27からサブマイクロコントロールユニット35に入力される。サブモジュールSMO毎の温度や蓄電モジュール82内の温度を示すデジタル温度データがサブマイクロコントロールユニット35に入力される。
Furthermore, the magnitude of the load current (digital current data) when a load is connected to the power storage module 82 is input from the monitoring unit 27 to the sub-micro control unit 35. Digital temperature data indicating the temperature for each sub module SMO and the temperature in the power storage module 82 is input to the sub micro control unit 35.
サブマイクロコントロールユニット35は、入力されるサブモジュールSMO毎のデジタル電圧データやサブモジュールSMO毎の温度を示すデジタル温度データ、デジタル電流データ等をメインマイクロコントロールユニット40に対して送信する。
The sub-micro control unit 35 transmits the input digital voltage data for each sub-module SMO, digital temperature data indicating the temperature for each sub-module SMO, digital current data, and the like to the main micro-control unit 40.
記憶部36は、ROM(Read Only Memory)やRAM(Random Access Memory)等からなる。記憶部36には、例えば、サブマイクロコントロールユニット35によって実行されるプログラムが格納される。記憶部36は、さらに、サブマイクロコントロールユニット35が処理を実行する際のワークエリアとして使用される。
The storage unit 36 includes a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. For example, the storage unit 36 stores a program executed by the sub-micro control unit 35. The storage unit 36 is further used as a work area when the sub-micro control unit 35 executes processing.
記憶部36には、蓄電モジュール82に関する履歴情報が記憶される。履歴情報は、例えば、充電レートや充電時間、充電回数等の充電条件、放電レートや放電時間、放電回数の放電条件、温度の情報等を含む。これらの情報は蓄電ブロックBL、サブモジュールSMO及び蓄電池のそれぞれの単位で記録するようにしてもよい。サブマイクロコントロールユニット35が、履歴情報を参照した処理を行うようにしてもよい。
In the storage unit 36, history information regarding the power storage module 82 is stored. The history information includes, for example, charge conditions such as a charge rate, a charge time, and the number of times of charge, a discharge rate, a discharge time, a discharge condition of the number of times of discharge, temperature information, and the like. These pieces of information may be recorded in units of the power storage block BL, the submodule SMO, and the storage battery. The sub-micro control unit 35 may perform processing referring to history information.
(コントローラの構成)
コントローラ83の構成の一例について説明する。コントローラ83は、1又は複数の蓄電モジュール82に対して、充電や放電の管理を行うものである。具体的には、蓄電モジュール82の充電の開始及び停止、蓄電モジュール82の放電の開始及び停止、充電レート及び放電レートの設定等を行う。コントローラ83は、例えば、蓄電モジュール82と同様に外装ケースを有する構成とされる。さらに、コントローラ83の機能として、本技術による急劣化検出機能が組み込まれる。なお、サブマイクロコントロールユニット35が急劣化検出機能を持つようにしてもよい。 (Configuration of controller)
An example of the configuration of thecontroller 83 will be described. The controller 83 manages charging and discharging for one or a plurality of power storage modules 82. Specifically, starting and stopping of charging of the power storage module 82, starting and stopping of discharging of the power storage module 82, setting of a charging rate and a discharging rate, and the like are performed. For example, the controller 83 is configured to have an exterior case in the same manner as the power storage module 82. Furthermore, as a function of the controller 83, a rapid deterioration detection function according to the present technology is incorporated. The sub-micro control unit 35 may have a rapid deterioration detection function.
コントローラ83の構成の一例について説明する。コントローラ83は、1又は複数の蓄電モジュール82に対して、充電や放電の管理を行うものである。具体的には、蓄電モジュール82の充電の開始及び停止、蓄電モジュール82の放電の開始及び停止、充電レート及び放電レートの設定等を行う。コントローラ83は、例えば、蓄電モジュール82と同様に外装ケースを有する構成とされる。さらに、コントローラ83の機能として、本技術による急劣化検出機能が組み込まれる。なお、サブマイクロコントロールユニット35が急劣化検出機能を持つようにしてもよい。 (Configuration of controller)
An example of the configuration of the
コントローラ83は、メインマイクロコントロールユニット40、正極端子41、負極端子42、正極端子43、負極端子44、充電制御部45、放電制御部46、スイッチSW1及びスイッチSW2を含む構成を有する。スイッチSW1は、端子50a又は端子50bに接続される。スイッチSW2は、端子51a又は端子51bに接続される。
The controller 83 includes a main micro control unit 40, a positive terminal 41, a negative terminal 42, a positive terminal 43, a negative terminal 44, a charge control unit 45, a discharge control unit 46, a switch SW1, and a switch SW2. The switch SW1 is connected to the terminal 50a or the terminal 50b. The switch SW2 is connected to the terminal 51a or the terminal 51b.
正極端子41は、蓄電モジュール82の正極端子21に接続される。負極端子42は、蓄電モジュール82の負極端子22に接続される。正極端子43及び負極端子44は、コントローラ83に接続される充電装置84又は負荷85に接続される。
The positive terminal 41 is connected to the positive terminal 21 of the power storage module 82. The negative terminal 42 is connected to the negative terminal 22 of the power storage module 82. The positive terminal 43 and the negative terminal 44 are connected to a charging device 84 or a load 85 connected to the controller 83.
メインマイクロコントロールユニット40は、例えば、通信機能を有するCPUにより構成され、コントローラ83の各部を制御する。メインマイクロコントロールユニット40は、蓄電モジュール82のサブマイクロコントロールユニット35から送信される異常通知信号に応じて、充電及び放電を制御する。異常通知信号により例えば、過充電のおそれが通知される場合には、メインマイクロコントロールユニット40は、少なくとも充電制御部45のスイッチング素子をオフし、充電を停止する。異常通知信号により例えば、過放電のおそれが通知される場合には、メインマイクロコントロールユニット40は、少なくとも放電制御部46のスイッチング素子をオフし、放電を停止する。
The main micro control unit 40 is constituted by, for example, a CPU having a communication function, and controls each part of the controller 83. The main micro control unit 40 controls charging and discharging according to an abnormality notification signal transmitted from the sub micro control unit 35 of the power storage module 82. For example, when the possibility of overcharging is notified by the abnormality notification signal, the main micro control unit 40 turns off at least the switching element of the charging control unit 45 and stops charging. For example, when the risk of overdischarge is notified by the abnormality notification signal, the main micro control unit 40 turns off at least the switching element of the discharge control unit 46 and stops the discharge.
アラーム信号により例えば、サブモジュールSMOの劣化が有る旨が通知される場合には、メインマイクロコントロールユニット40は、充電制御部45及び放電制御部46のスイッチング素子をオフし、蓄電モジュール82の使用を中止する。蓄電モジュール82が例えば、バックアップ用の電源として使用される場合には、直ぐに蓄電モジュール82の使用を中止せず、適切なタイミングで蓄電モジュール82の使用を中止する。
For example, when the alarm signal notifies that the sub-module SMO is deteriorated, the main micro control unit 40 turns off the switching elements of the charge control unit 45 and the discharge control unit 46, and uses the power storage module 82. Cancel. For example, when the power storage module 82 is used as a power source for backup, the use of the power storage module 82 is stopped at an appropriate timing without immediately stopping the use of the power storage module 82.
メインマイクロコントロールユニット40は、蓄電モジュール82の充電及び放電の管理を行うほか、サブマイクロコントロールユニット35から送信されるサブモジュールSMOの電圧や温度、サイクル数等の履歴情報を参照して後述の充放電方法を実行するように制御する。なお、以下に説明するメインマイクロコントロールユニット40の機能の一部をサブマイクロコントロールユニット35が有する構成としてもよい。
The main micro control unit 40 manages the charging and discharging of the power storage module 82 and refers to history information such as the voltage, temperature, and cycle number of the sub module SMO transmitted from the sub micro control unit 35, which will be described later. Control to perform the discharge method. The sub-micro control unit 35 may have a part of the functions of the main micro-control unit 40 described below.
メインマイクロコントロールユニット40は、充電装置84や負荷85が有するCPU等と通信を行うことができる。メインマイクロコントロールユニット40は、蓄電モジュール82に対する充電電圧及び充電レート(充電電流の大きさ)を設定し、設定した充電電圧及び充電レートを充電装置84に送信する。充電電圧及び充電電流制御部84aは、メインマイクロコントロールユニット40から送信される充電電圧及び充電レートにしたがって、充電電圧及び充電電流を適切に設定する。
The main micro control unit 40 can communicate with the CPU and the like included in the charging device 84 and the load 85. The main micro control unit 40 sets a charging voltage and a charging rate (a magnitude of charging current) for the power storage module 82, and transmits the set charging voltage and charging rate to the charging device 84. The charging voltage and charging current control unit 84a appropriately sets the charging voltage and charging current according to the charging voltage and charging rate transmitted from the main micro control unit 40.
メインマイクロコントロールユニット40は、蓄電モジュール82の放電の放電レート(放電電流の大きさ)を設定し、設定した放電レートを負荷85に送信する。負荷85の放電電流制御部85aは、メインマイクロコントロールユニット40から送信される放電レートに応じた放電電流となるように、負荷を適切に設定する。
The main micro control unit 40 sets the discharge rate (the magnitude of the discharge current) of the electricity storage module 82 and transmits the set discharge rate to the load 85. The discharge current control unit 85a of the load 85 appropriately sets the load so that the discharge current according to the discharge rate transmitted from the main micro control unit 40 is obtained.
充電制御部45は、充電制御スイッチ45aと、充電制御スイッチ45aと並列に放電電流に対して順方向に接続されるダイオード45bとからなる。放電制御部46は、放電制御スイッチ46aと、放電制御スイッチ46aと並列に充電電流に対して順方向に接続されるダイオード46bとからなる。充電制御スイッチ45a及び放電制御スイッチ46aとしては、例えば、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を使用することができる。なお、充電制御部45及び放電制御部46が、負の電源ラインに挿入されても良い。
The charge control unit 45 includes a charge control switch 45a and a diode 45b connected in parallel with the charge control switch 45a in the forward direction with respect to the discharge current. The discharge control unit 46 includes a discharge control switch 46a and a diode 46b connected in parallel to the charge control current in parallel with the discharge control switch 46a. As the charge control switch 45a and the discharge control switch 46a, for example, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Metal Oxide Semiconductor Semiconductor Field Effect Transistor) can be used. Note that the charge control unit 45 and the discharge control unit 46 may be inserted into the negative power supply line.
記憶部47は、ROMやRAM等からなる。記憶部47には、例えば、メインマイクロコントロールユニット40によって実行されるプログラムが格納される。記憶部47は、メインマイクロコントロールユニット40が処理を実行する際のワークエリアとして使用される。記憶部47に上述の履歴情報が記憶されるようにしてもよい。
The storage unit 47 includes a ROM, a RAM, and the like. In the storage unit 47, for example, a program executed by the main micro control unit 40 is stored. The storage unit 47 is used as a work area when the main micro control unit 40 executes processing. The above history information may be stored in the storage unit 47.
正極端子43に接続される正の電源ラインにスイッチSW1が接続される。蓄電モジュール82の充電の際は、スイッチSW1が端子50aに接続され、蓄電モジュール82の放電の際は、スイッチSW1が端子50bに接続される。
The switch SW1 is connected to the positive power supply line connected to the positive terminal 43. When the power storage module 82 is charged, the switch SW1 is connected to the terminal 50a, and when the power storage module 82 is discharged, the switch SW1 is connected to the terminal 50b.
負極端子44に接続される負の電源ラインにスイッチSW2が接続される。蓄電モジュール82の充電の際は、スイッチSW2が端子51aに接続され、蓄電モジュール82の放電の際は、スイッチSW2が端子51bに接続される。スイッチSW1及びスイッチSW2の切り換えは、メインマイクロコントロールユニット40により制御される。
The switch SW2 is connected to the negative power supply line connected to the negative terminal 44. When the power storage module 82 is charged, the switch SW2 is connected to the terminal 51a, and when the power storage module 82 is discharged, the switch SW2 is connected to the terminal 51b. Switching of the switch SW1 and the switch SW2 is controlled by the main micro control unit 40.
「住宅用の電力貯蔵装置」
本技術を住宅用の電力貯蔵装置に適用した例について、図17を参照して説明する。例えば住宅101用の電力貯蔵装置100においては、火力発電102a、原子力発電102b、水力発電102c等の集中型電力系統102から電力網109、情報網112、スマートメータ107、パワーハブ108等を介し、電力が蓄電装置103に供給される。これと共に、家庭内発電装置104等の独立電源から電力が蓄電装置103に供給される。蓄電装置103に供給された電力が蓄電される。蓄電装置103を使用して、住宅101で使用する電力が給電される。住宅101に限らずビルに関しても同様の電力貯蔵装置を使用できる。蓄電装置103は、複数の蓄電モジュールを並列接続したものである。 "Residential power storage device"
An example in which the present technology is applied to a residential power storage device will be described with reference to FIG. For example, in thepower storage device 100 for the house 101, electric power is supplied from the centralized power system 102 such as the thermal power generation 102a, the nuclear power generation 102b, and the hydroelectric power generation 102c through the power network 109, the information network 112, the smart meter 107, the power hub 108, and the like. It is supplied to the power storage device 103. At the same time, power is supplied to the power storage device 103 from an independent power source such as the home power generation device 104. The electric power supplied to the power storage device 103 is stored. Electric power used in the house 101 is fed using the power storage device 103. The same power storage device can be used not only for the house 101 but also for buildings. The power storage device 103 is obtained by connecting a plurality of power storage modules in parallel.
本技術を住宅用の電力貯蔵装置に適用した例について、図17を参照して説明する。例えば住宅101用の電力貯蔵装置100においては、火力発電102a、原子力発電102b、水力発電102c等の集中型電力系統102から電力網109、情報網112、スマートメータ107、パワーハブ108等を介し、電力が蓄電装置103に供給される。これと共に、家庭内発電装置104等の独立電源から電力が蓄電装置103に供給される。蓄電装置103に供給された電力が蓄電される。蓄電装置103を使用して、住宅101で使用する電力が給電される。住宅101に限らずビルに関しても同様の電力貯蔵装置を使用できる。蓄電装置103は、複数の蓄電モジュールを並列接続したものである。 "Residential power storage device"
An example in which the present technology is applied to a residential power storage device will be described with reference to FIG. For example, in the
住宅101には、家庭内発電装置104、電力消費装置105、蓄電装置103、各装置を制御する制御装置110、スマートメータ107、各種情報を取得するセンサ111が設けられている。各装置は、電力網109及び情報網112によって接続されている。家庭内発電装置104として、太陽電池、燃料電池等が利用され、発電した電力が電力消費装置105及び/又は蓄電装置103に供給される。電力消費装置105は、冷蔵庫105a、空調装置(エアコン)105b、テレビジョン受信機(テレビ)105c、風呂(バス)105d等である。さらに、電力消費装置105には、電動車両106が含まれる。電動車両106は、電気自動車106a、ハイブリッドカー106b、電気バイク106cである。
The house 101 is provided with a home power generation device 104, a power consumption device 105, a power storage device 103, a control device 110 that controls each device, a smart meter 107, and a sensor 111 that acquires various types of information. Each device is connected by a power network 109 and an information network 112. As the home power generation device 104, a solar cell, a fuel cell, or the like is used, and the generated power is supplied to the power consumption device 105 and / or the power storage device 103. The power consuming device 105 is a refrigerator 105a, an air conditioner (air conditioner) 105b, a television receiver (television) 105c, a bath (bus) 105d, and the like. Furthermore, the electric power consumption device 105 includes an electric vehicle 106. The electric vehicle 106 is an electric vehicle 106a, a hybrid car 106b, and an electric motorcycle 106c.
蓄電装置103は、二次電池、又はキャパシタから構成されている。例えば、リチウムイオン二次電池によって構成されている。蓄電装置103として、複数の蓄電モジュールを使用することができる。リチウムイオン二次電池は、定置型であっても、電動車両106で使用されるものでも良い。スマートメータ107は、商用電力の使用量を測定し、測定された使用量を、電力会社に送信する機能を備えている。電力網109は、直流給電、交流給電、非接触給電の何れか一つ又は複数を組み合わせても良い。
The power storage device 103 is composed of a secondary battery or a capacitor. For example, it is constituted by a lithium ion secondary battery. A plurality of power storage modules can be used as the power storage device 103. The lithium ion secondary battery may be a stationary type or used in the electric vehicle 106. The smart meter 107 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company. The power network 109 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
各種のセンサ111は、例えば人感センサ、照度センサ、物体検知センサ、消費電力センサ、振動センサ、接触センサ、温度センサ、赤外線センサ等である。各種センサ111により取得された情報は、制御装置110に送信される。センサ111からの情報によって、気象の状態、人の状態等が把握されて電力消費装置105を自動的に制御してエネルギー消費を最小とすることができる。さらに、制御装置110は、住宅101に関する情報を、インターネットを介して外部の電力会社等に送信することができる。
The various sensors 111 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by the various sensors 111 is transmitted to the control device 110. Based on the information from the sensor 111, the weather condition, the human condition, etc. can be grasped, and the power consumption device 105 can be automatically controlled to minimize the energy consumption. Furthermore, the control device 110 can transmit information regarding the house 101 to an external power company or the like via the Internet.
パワーハブ108によって、電力線の分岐、直流交流変換等の処理がなされる。制御装置110と接続される情報網112の通信方式としては、UART(Universal Asynchronous Receiver-Transmitter:非同期シリアル通信用送受信回路)等の通信インターフェースを使う方法、Bluetooth(登録商標)、ZigBee(登録商標)、Wi-Fi(登録商標)等の無線通信規格によるセンサネットワークを利用する方法がある。Bluetooth(登録商標)方式は、マルチメディア通信に適用され、一対多接続の通信を行うことができる。ZigBeeは、IEEE(Institute of Electrical and Electronics Engineers)802.15.4の物理層を使用するものである。IEEE802.15.4は、PAN(Personal Area Network)又はW(Wireless)PANと呼ばれる短距離無線ネットワーク規格の名称である。
The power hub 108 performs processing such as branching of power lines and DC / AC conversion. The communication method of the information network 112 connected to the control device 110 includes a method using a communication interface such as UART (Universal Asynchronous Receiver-Transmitter), Bluetooth (registered trademark), ZigBee (registered trademark). And a sensor network based on a wireless communication standard such as Wi-Fi (registered trademark). The Bluetooth (registered trademark) system is applied to multimedia communication and can perform one-to-many connection communication. ZigBee uses the physical layer of IEEE (Institute of Electrical and Electronics Electronics) (802.15.4). IEEE 802.15.4 is the name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
制御装置110は、外部のサーバ113と接続されている。このサーバ113は、住宅101、電力会社、サービスプロバイダーの何れかによって管理されていても良い。サーバ113が送受信する情報は、たとえば、消費電力情報、生活パターン情報、電力料金、天気情報、天災情報、電力取引に関する情報である。これらの情報は、家庭内の電力消費装置(たとえばテレビジョン受信機)から送受信しても良いが、家庭外の装置(たとえば、携帯電話機等)から送受信しても良い。これらの情報は、表示機能を持つ機器、たとえば、テレビジョン受信機、携帯電話機、PDA(Personal Digital Assistants)等に、表示されても良い。
The control device 110 is connected to an external server 113. The server 113 may be managed by any one of the house 101, the power company, and the service provider. The information transmitted and received by the server 113 is, for example, information related to power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device (for example, a television receiver) in the home, or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, for example, a television receiver, a mobile phone, a PDA (Personal Digital Assistant) or the like.
各部を制御する制御装置110は、CPU、RAM、ROM等で構成され、この例では、蓄電装置103に格納されている。制御装置110の機能として、例えば、監視部27等の機能やコントローラ83等の機能を適用できる。制御装置110は、蓄電装置103、家庭内発電装置104、電力消費装置105、各種センサ111、サーバ113と情報網112により接続され、例えば、商用電力の使用量と、発電量とを調整する機能を有している。なお、その他にも、電力市場で電力取引を行う機能等を備えていても良い。
The control device 110 that controls each unit includes a CPU, a RAM, a ROM, and the like, and is stored in the power storage device 103 in this example. As a function of the control device 110, for example, a function such as the monitoring unit 27 or a function such as the controller 83 can be applied. The control device 110 is connected to the power storage device 103, the home power generation device 104, the power consumption device 105, the various sensors 111, the server 113 and the information network 112, and adjusts, for example, the amount of commercial power used and the amount of power generation. have. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
以上のように、電力が火力発電102a、原子力発電102b、水力発電102c等の集中型電力系統102のみならず、家庭内発電装置104(太陽光発電、風力発電)の発電電力を蓄電装置103に蓄えることができる。したがって、家庭内発電装置104の発電電力が変動しても、外部に送出する電力量を一定にしたり、又は、必要なだけ放電するといった制御を行うことができる。例えば、太陽光発電で得られた電力を蓄電装置103に蓄えると共に、夜間は料金が安い深夜電力を蓄電装置103に蓄え、昼間の料金が高い時間帯に蓄電装置103によって蓄電した電力を放電して利用するといった使い方もできる。
As described above, electric power is generated not only from the centralized power system 102 such as the thermal power generation 102a, the nuclear power generation 102b, and the hydroelectric power generation 102c but also from the home power generation device 104 (solar power generation, wind power generation) to the power storage device 103. Can be stored. Therefore, even if the generated power of the home power generation device 104 fluctuates, it is possible to perform control such that the amount of power transmitted to the outside is constant or discharge is performed as necessary. For example, the electric power obtained by solar power generation is stored in the power storage device 103, and midnight power with a low charge is stored in the power storage device 103 at night, and the power stored by the power storage device 103 is discharged during a high daytime charge. You can also use it.
なお、この例では、制御装置110が蓄電装置103内に格納される例を説明したが、スマートメータ107内に格納されても良いし、単独で構成されていても良い。さらに、電力貯蔵装置100は、集合住宅における複数の家庭を対象として用いられてもよいし、複数の戸建て住宅を対象として用いられてもよい。
In this example, the example in which the control device 110 is stored in the power storage device 103 has been described. However, the control device 110 may be stored in the smart meter 107 or may be configured independently. Furthermore, the power storage device 100 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
<3.変形例>
以上、本技術の実施の形態について具体的に説明したが、上述の各実施の形態に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。
また、上述の実施の形態の構成、方法、工程、形状、材料及び数値などは、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。
たとえば、上述の実施の形態及び実施例において挙げた数値、構造、形状、材料、原料、製造プロセス等はあくまでも例に過ぎず、必要に応じてこれらと異なる数値、構造、形状、材料、原料、製造プロセス等を用いてもよい。
また、上述の実施の形態及び実施例の構成、方法、工程、形状、材料及び数値等は、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。 <3. Modification>
As mentioned above, although embodiment of this technique was described concretely, it is not limited to each above-mentioned embodiment, Various deformation | transformation based on the technical idea of this technique is possible.
The configurations, methods, steps, shapes, materials, numerical values, and the like of the above-described embodiments can be combined with each other without departing from the gist of the present technology.
For example, the numerical values, structures, shapes, materials, raw materials, manufacturing processes and the like given in the above-described embodiments and examples are merely examples, and different numerical values, structures, shapes, materials, raw materials, A manufacturing process or the like may be used.
The configurations, methods, processes, shapes, materials, numerical values, and the like of the above-described embodiments and examples can be combined with each other without departing from the gist of the present technology.
以上、本技術の実施の形態について具体的に説明したが、上述の各実施の形態に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。
また、上述の実施の形態の構成、方法、工程、形状、材料及び数値などは、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。
たとえば、上述の実施の形態及び実施例において挙げた数値、構造、形状、材料、原料、製造プロセス等はあくまでも例に過ぎず、必要に応じてこれらと異なる数値、構造、形状、材料、原料、製造プロセス等を用いてもよい。
また、上述の実施の形態及び実施例の構成、方法、工程、形状、材料及び数値等は、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。 <3. Modification>
As mentioned above, although embodiment of this technique was described concretely, it is not limited to each above-mentioned embodiment, Various deformation | transformation based on the technical idea of this technique is possible.
The configurations, methods, steps, shapes, materials, numerical values, and the like of the above-described embodiments can be combined with each other without departing from the gist of the present technology.
For example, the numerical values, structures, shapes, materials, raw materials, manufacturing processes and the like given in the above-described embodiments and examples are merely examples, and different numerical values, structures, shapes, materials, raw materials, A manufacturing process or the like may be used.
The configurations, methods, processes, shapes, materials, numerical values, and the like of the above-described embodiments and examples can be combined with each other without departing from the gist of the present technology.
なお、本技術は、以下のような構成も取ることができる。
(1)
二次電池の満充電容量又は容量維持率、並びに経時間を入力とし、満充電容量又は容量維持率の変化量を算出する容量変化量算出部と、
前記容量変化量算出部により算出された変化量を閾値判定に基づいて劣化を判定する急劣化判定部と
を備える電池パック。
(2)
前記容量変化量算出部により算出される満充電容量又は容量維持率の変化量は、線形回帰解析によって算出される(1)に記載の電池パック。
(3)
前記急劣化判定部により判定された急劣化を通知するようにした(1)又は(2)に記載の電池パック。
(4)
二次電池の容量維持率を閾値に基づいて判定し、前記容量維持率が閾値より小の場合を劣化判定の対象とする(1)に記載の電池パック。
(5)
劣化予測式による予測値と二次電池の満充電容量又は容量維持率の差分値を閾値に基づいて判定し、前記差分値が閾値より大の場合を劣化判定の対象とする(1)又は(3)に記載の電池パック。
(6)
(1)に記載の電池パックを有し、前記電池パックに接続される電子機器に電力を供給する蓄電装置。
(7)
二次電池の満充電容量又は容量維持率、並びに経時間から満充電容量又は容量維持率の変化量を算出し、
算出された変化量を閾値判定に基づいて劣化を検出する
二次電池の劣化検出方法。
(8)
前記満充電容量又は容量維持率の変化量は、線形回帰解析によって算出される(7)に記載の二次電池の劣化検出方法。 In addition, this technique can also take the following structures.
(1)
A capacity change amount calculation unit for calculating a change amount of the full charge capacity or the capacity maintenance rate by inputting the full charge capacity or the capacity maintenance rate of the secondary battery and the elapsed time; and
A battery pack comprising: a rapid deterioration determination unit that determines deterioration based on a threshold value determination based on a change amount calculated by the capacity change amount calculation unit.
(2)
The change amount of the full charge capacity or the capacity maintenance rate calculated by the capacity change amount calculation unit is the battery pack according to (1), which is calculated by linear regression analysis.
(3)
The battery pack according to (1) or (2), wherein the rapid deterioration determined by the rapid deterioration determination unit is notified.
(4)
The battery pack according to (1), wherein the capacity maintenance rate of the secondary battery is determined based on a threshold value, and the case where the capacity maintenance rate is smaller than the threshold value is subject to deterioration determination.
(5)
A difference between the predicted value based on the deterioration prediction formula and the full charge capacity or capacity maintenance rate of the secondary battery is determined based on a threshold value, and the case where the difference value is larger than the threshold value is subject to deterioration determination (1) or ( The battery pack according to 3).
(6)
A power storage device that includes the battery pack according to (1) and supplies electric power to an electronic device connected to the battery pack.
(7)
Calculate the amount of change in the full charge capacity or capacity maintenance rate from the full charge capacity or capacity maintenance rate of the secondary battery and the elapsed time,
A method for detecting deterioration of a secondary battery, wherein deterioration is detected based on a threshold value determination for a calculated change amount.
(8)
The amount of change in the full charge capacity or capacity maintenance rate is the secondary battery deterioration detection method according to (7), which is calculated by linear regression analysis.
(1)
二次電池の満充電容量又は容量維持率、並びに経時間を入力とし、満充電容量又は容量維持率の変化量を算出する容量変化量算出部と、
前記容量変化量算出部により算出された変化量を閾値判定に基づいて劣化を判定する急劣化判定部と
を備える電池パック。
(2)
前記容量変化量算出部により算出される満充電容量又は容量維持率の変化量は、線形回帰解析によって算出される(1)に記載の電池パック。
(3)
前記急劣化判定部により判定された急劣化を通知するようにした(1)又は(2)に記載の電池パック。
(4)
二次電池の容量維持率を閾値に基づいて判定し、前記容量維持率が閾値より小の場合を劣化判定の対象とする(1)に記載の電池パック。
(5)
劣化予測式による予測値と二次電池の満充電容量又は容量維持率の差分値を閾値に基づいて判定し、前記差分値が閾値より大の場合を劣化判定の対象とする(1)又は(3)に記載の電池パック。
(6)
(1)に記載の電池パックを有し、前記電池パックに接続される電子機器に電力を供給する蓄電装置。
(7)
二次電池の満充電容量又は容量維持率、並びに経時間から満充電容量又は容量維持率の変化量を算出し、
算出された変化量を閾値判定に基づいて劣化を検出する
二次電池の劣化検出方法。
(8)
前記満充電容量又は容量維持率の変化量は、線形回帰解析によって算出される(7)に記載の二次電池の劣化検出方法。 In addition, this technique can also take the following structures.
(1)
A capacity change amount calculation unit for calculating a change amount of the full charge capacity or the capacity maintenance rate by inputting the full charge capacity or the capacity maintenance rate of the secondary battery and the elapsed time; and
A battery pack comprising: a rapid deterioration determination unit that determines deterioration based on a threshold value determination based on a change amount calculated by the capacity change amount calculation unit.
(2)
The change amount of the full charge capacity or the capacity maintenance rate calculated by the capacity change amount calculation unit is the battery pack according to (1), which is calculated by linear regression analysis.
(3)
The battery pack according to (1) or (2), wherein the rapid deterioration determined by the rapid deterioration determination unit is notified.
(4)
The battery pack according to (1), wherein the capacity maintenance rate of the secondary battery is determined based on a threshold value, and the case where the capacity maintenance rate is smaller than the threshold value is subject to deterioration determination.
(5)
A difference between the predicted value based on the deterioration prediction formula and the full charge capacity or capacity maintenance rate of the secondary battery is determined based on a threshold value, and the case where the difference value is larger than the threshold value is subject to deterioration determination (1) or ( The battery pack according to 3).
(6)
A power storage device that includes the battery pack according to (1) and supplies electric power to an electronic device connected to the battery pack.
(7)
Calculate the amount of change in the full charge capacity or capacity maintenance rate from the full charge capacity or capacity maintenance rate of the secondary battery and the elapsed time,
A method for detecting deterioration of a secondary battery, wherein deterioration is detected based on a threshold value determination for a calculated change amount.
(8)
The amount of change in the full charge capacity or capacity maintenance rate is the secondary battery deterioration detection method according to (7), which is calculated by linear regression analysis.
1・・・二次電池
2・・・電池容量計算器
3・・・維持率計算器
5,15・・・維持率記憶器
6,18・・・線形回帰解析器
7,19・・・急劣化判定器
8,20・・・急劣化通知器
16・・・維持率閾値判定器
17・・・維持率差分判定器 DESCRIPTION OFSYMBOLS 1 ... Secondary battery 2 ... Battery capacity calculator 3 ... Maintenance rate calculator 5, 15 ... Maintenance rate memory | storage device 6, 18 ... Linear regression analyzer 7, 19 ... Sudden Degradation determiner 8, 20 ... Rapid deterioration notification device 16 ... Maintenance rate threshold value determiner 17 ... Maintenance rate difference determiner
2・・・電池容量計算器
3・・・維持率計算器
5,15・・・維持率記憶器
6,18・・・線形回帰解析器
7,19・・・急劣化判定器
8,20・・・急劣化通知器
16・・・維持率閾値判定器
17・・・維持率差分判定器 DESCRIPTION OF
Claims (8)
- 二次電池の満充電容量又は容量維持率、並びに経時間を入力とし、満充電容量又は容量維持率の変化量を算出する容量変化量算出部と、
前記容量変化量算出部により算出された変化量を閾値判定に基づいて劣化を判定する急劣化判定部と
を備える電池パック。 A capacity change amount calculation unit for calculating a change amount of the full charge capacity or the capacity maintenance rate by inputting the full charge capacity or the capacity maintenance rate of the secondary battery and the elapsed time; and
A battery pack comprising: a rapid deterioration determination unit that determines deterioration based on a threshold value determination based on a change amount calculated by the capacity change amount calculation unit. - 前記容量変化量算出部により算出される満充電容量又は容量維持率の変化量は、線形回帰解析によって算出される請求項1に記載の電池パック。 The battery pack according to claim 1, wherein the change amount of the full charge capacity or the capacity maintenance ratio calculated by the capacity change amount calculation unit is calculated by linear regression analysis.
- 前記急劣化判定部により判定された急劣化を通知するようにした請求項1に記載の電池パック。 The battery pack according to claim 1, wherein the rapid deterioration determined by the rapid deterioration determination unit is notified.
- 二次電池の容量維持率を閾値に基づいて判定し、前記容量維持率が閾値より小の場合を劣化判定の対象とする請求項1に記載の電池パック。 2. The battery pack according to claim 1, wherein the capacity maintenance rate of the secondary battery is determined based on a threshold value, and the case where the capacity maintenance rate is smaller than the threshold value is subject to deterioration determination.
- 劣化予測式による予測値と二次電池の満充電容量又は容量維持率の差分値を閾値に基づいて判定し、前記差分値が閾値より大の場合を劣化判定の対象とする請求項1に記載の電池パック。 The prediction value based on the deterioration prediction formula and the difference value between the full charge capacity or the capacity maintenance rate of the secondary battery are determined based on a threshold value, and the case where the difference value is larger than the threshold value is subject to deterioration determination. Battery pack.
- 請求項1に記載の電池パックを有し、前記電池パックに接続される電子機器に電力を供給する蓄電装置。 A power storage device that has the battery pack according to claim 1 and supplies electric power to an electronic device connected to the battery pack.
- 二次電池の満充電容量又は容量維持率、並びに経時間から満充電容量又は容量維持率の変化量を算出し、
算出された変化量を閾値判定に基づいて劣化を検出する
二次電池の劣化検出方法。 Calculate the amount of change in the full charge capacity or capacity maintenance rate from the full charge capacity or capacity maintenance rate of the secondary battery and the elapsed time,
A method for detecting deterioration of a secondary battery, wherein deterioration is detected based on a threshold value determination for a calculated change amount. - 前記満充電容量又は容量維持率の変化量は、線形回帰解析によって算出される請求項7に記載の二次電池の劣化検出方法。 The method for detecting deterioration of a secondary battery according to claim 7, wherein the amount of change in the full charge capacity or capacity maintenance rate is calculated by linear regression analysis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017554775A JP6531836B2 (en) | 2015-12-10 | 2016-11-01 | Battery pack, power storage device, and deterioration detection method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015241394 | 2015-12-10 | ||
JP2015-241394 | 2015-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017098686A1 true WO2017098686A1 (en) | 2017-06-15 |
Family
ID=59013873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/004784 WO2017098686A1 (en) | 2015-12-10 | 2016-11-01 | Battery pack, electricity storage device and deterioration detecting method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6531836B2 (en) |
WO (1) | WO2017098686A1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019017183A1 (en) * | 2017-07-19 | 2019-01-24 | 株式会社Gsユアサ | Estimation device, power storage device, estimation method, and computer program |
WO2019017411A1 (en) * | 2017-07-19 | 2019-01-24 | 株式会社Gsユアサ | Estimation device, power storage device, estimation method, and computer program |
JP2019020413A (en) * | 2017-07-19 | 2019-02-07 | 株式会社Gsユアサ | Estimation device, accumulation of electricity device, estimation method, and computer program |
JP2019020392A (en) * | 2017-07-19 | 2019-02-07 | 株式会社Gsユアサ | Estimation device, accumulation of electricity device, estimation method, and computer program |
JP2019033605A (en) * | 2017-08-09 | 2019-02-28 | 積水化学工業株式会社 | Storage battery deterioration diagnosis method of power control system and power control system |
JP2019203841A (en) * | 2018-05-25 | 2019-11-28 | 株式会社デンソー | Battery life estimation device |
JP2020520212A (en) * | 2017-11-24 | 2020-07-02 | エルジー・ケム・リミテッド | Wireless battery management system and method of protecting battery pack using the same |
KR20210027151A (en) * | 2019-08-30 | 2021-03-10 | 도요타 지도샤(주) | Display system and vehicle including the same, and method of showing state of secondary battery |
WO2021106264A1 (en) * | 2019-11-29 | 2021-06-03 | パナソニックIpマネジメント株式会社 | Battery information management device, battery information management method, and battery information management system |
JP2021126527A (en) * | 2017-11-22 | 2021-09-02 | 三菱電機株式会社 | Vacuum cleaner |
US20210325465A1 (en) * | 2018-06-27 | 2021-10-21 | Nec Corporation | Determination apparatus |
CN113839107A (en) * | 2021-09-22 | 2021-12-24 | 北京航空航天大学 | Early warning method for soft package lithium ion battery diving degradation mode |
WO2022024848A1 (en) | 2020-07-29 | 2022-02-03 | パナソニックIpマネジメント株式会社 | Battery management system, calculation system, battery degradation prediction method, and battery degradation prediction program |
US20220209312A1 (en) * | 2020-12-28 | 2022-06-30 | Medtronic, Inc. | Electrochemical cell fade modeling |
WO2022146626A1 (en) * | 2020-12-28 | 2022-07-07 | Medtronic, Inc. | System and method of determination of electrochemical cell fade |
WO2022145831A1 (en) * | 2020-12-29 | 2022-07-07 | 주식회사 엘지에너지솔루션 | Battery diagnosis device, battery diagnosis method, battery pack and electric vehicle |
KR20220163736A (en) * | 2021-06-03 | 2022-12-12 | 주식회사 네오윌 | Method for detecting abnomal cells and estimating SOH in Lithium-Ion battery pack |
WO2023026743A1 (en) | 2021-08-23 | 2023-03-02 | パナソニックIpマネジメント株式会社 | Deterioration determination system, deterioration determination method, and deterioration determination program |
US11680989B2 (en) | 2021-03-12 | 2023-06-20 | Kabushiki Kaisha Toshiba | Diagnosis method of battery, diagnosis device of battery, diagnosis system of battery, battery-mounted device, and non-transitory storage medium |
WO2024024379A1 (en) * | 2022-07-29 | 2024-02-01 | 株式会社Gsユアサ | Estimation device, estimation method, and computer program |
JP7544164B1 (en) | 2023-02-17 | 2024-09-03 | いすゞ自動車株式会社 | Deterioration monitoring device |
JP7568209B2 (en) | 2021-09-08 | 2024-10-16 | エルジー エナジー ソリューション リミテッド | Battery diagnostic device, battery management system, battery pack, electric vehicle, and battery diagnostic method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11174136A (en) * | 1997-12-09 | 1999-07-02 | Hioki Ee Corp | Method and device for judging deterioration of battery pack |
JP2007057434A (en) * | 2005-08-25 | 2007-03-08 | Fuji Heavy Ind Ltd | Degradation estimation system for electricity accumulation device |
JP2008308122A (en) * | 2007-06-18 | 2008-12-25 | Mazda Motor Corp | Control apparatus for vehicle battery |
WO2011162014A1 (en) * | 2010-06-24 | 2011-12-29 | トヨタ自動車株式会社 | Battery management system, battery management apparatus, method of reusing battery, and information communication terminal apparatus |
JP2016085804A (en) * | 2014-10-23 | 2016-05-19 | トヨタ自動車株式会社 | Power supply system and vehicle mounting the same |
-
2016
- 2016-11-01 JP JP2017554775A patent/JP6531836B2/en active Active
- 2016-11-01 WO PCT/JP2016/004784 patent/WO2017098686A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11174136A (en) * | 1997-12-09 | 1999-07-02 | Hioki Ee Corp | Method and device for judging deterioration of battery pack |
JP2007057434A (en) * | 2005-08-25 | 2007-03-08 | Fuji Heavy Ind Ltd | Degradation estimation system for electricity accumulation device |
JP2008308122A (en) * | 2007-06-18 | 2008-12-25 | Mazda Motor Corp | Control apparatus for vehicle battery |
WO2011162014A1 (en) * | 2010-06-24 | 2011-12-29 | トヨタ自動車株式会社 | Battery management system, battery management apparatus, method of reusing battery, and information communication terminal apparatus |
JP2016085804A (en) * | 2014-10-23 | 2016-05-19 | トヨタ自動車株式会社 | Power supply system and vehicle mounting the same |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019017183A1 (en) * | 2017-07-19 | 2019-01-24 | 株式会社Gsユアサ | Estimation device, power storage device, estimation method, and computer program |
WO2019017411A1 (en) * | 2017-07-19 | 2019-01-24 | 株式会社Gsユアサ | Estimation device, power storage device, estimation method, and computer program |
JP2019020413A (en) * | 2017-07-19 | 2019-02-07 | 株式会社Gsユアサ | Estimation device, accumulation of electricity device, estimation method, and computer program |
JP2019020392A (en) * | 2017-07-19 | 2019-02-07 | 株式会社Gsユアサ | Estimation device, accumulation of electricity device, estimation method, and computer program |
JP2019078771A (en) * | 2017-07-19 | 2019-05-23 | 株式会社Gsユアサ | Estimation device, accumulation of electricity device, estimation method, and computer program |
JP2019113558A (en) * | 2017-07-19 | 2019-07-11 | 株式会社Gsユアサ | Estimation device, accumulation of electricity device, estimation method, and computer program |
US11237214B2 (en) | 2017-07-19 | 2022-02-01 | Gs Yuasa International Ltd. | Estimation device, energy storage apparatus, estimation method, and computer program |
JP7111015B2 (en) | 2017-07-19 | 2022-08-02 | 株式会社Gsユアサ | Estimation device, power storage device, estimation method, and computer program |
JP7115345B2 (en) | 2017-07-19 | 2022-08-09 | 株式会社Gsユアサ | Estimation device, power storage device, estimation method, and computer program |
JP2019033605A (en) * | 2017-08-09 | 2019-02-28 | 積水化学工業株式会社 | Storage battery deterioration diagnosis method of power control system and power control system |
JP2021126527A (en) * | 2017-11-22 | 2021-09-02 | 三菱電機株式会社 | Vacuum cleaner |
JP2020520212A (en) * | 2017-11-24 | 2020-07-02 | エルジー・ケム・リミテッド | Wireless battery management system and method of protecting battery pack using the same |
US11165263B2 (en) | 2017-11-24 | 2021-11-02 | Lg Chem, Ltd. | Wireless battery management system and method for protecting battery pack using same |
JP7115035B2 (en) | 2018-05-25 | 2022-08-09 | 株式会社デンソー | Battery life estimator |
JP2019203841A (en) * | 2018-05-25 | 2019-11-28 | 株式会社デンソー | Battery life estimation device |
US11733304B2 (en) * | 2018-06-27 | 2023-08-22 | Nec Corporation | Determination apparatus |
US20210325465A1 (en) * | 2018-06-27 | 2021-10-21 | Nec Corporation | Determination apparatus |
US11679676B2 (en) | 2019-08-30 | 2023-06-20 | Toyota Jidosha Kabushiki Kaisha | Display system and vehicle including the same, and method of showing state of secondary battery |
KR102434900B1 (en) * | 2019-08-30 | 2022-08-23 | 도요타 지도샤(주) | Display system and vehicle including the same, and method of showing state of secondary battery |
KR20210027151A (en) * | 2019-08-30 | 2021-03-10 | 도요타 지도샤(주) | Display system and vehicle including the same, and method of showing state of secondary battery |
WO2021106264A1 (en) * | 2019-11-29 | 2021-06-03 | パナソニックIpマネジメント株式会社 | Battery information management device, battery information management method, and battery information management system |
JP2021086816A (en) * | 2019-11-29 | 2021-06-03 | パナソニックIpマネジメント株式会社 | Battery information management device, battery information management method, and battery information management system |
WO2022024848A1 (en) | 2020-07-29 | 2022-02-03 | パナソニックIpマネジメント株式会社 | Battery management system, calculation system, battery degradation prediction method, and battery degradation prediction program |
EP4191733A4 (en) * | 2020-07-29 | 2024-06-12 | Panasonic Intellectual Property Management Co., Ltd. | Battery management system, calculation system, battery degradation prediction method, and battery degradation prediction program |
US20220209312A1 (en) * | 2020-12-28 | 2022-06-30 | Medtronic, Inc. | Electrochemical cell fade modeling |
WO2022146626A1 (en) * | 2020-12-28 | 2022-07-07 | Medtronic, Inc. | System and method of determination of electrochemical cell fade |
WO2022145831A1 (en) * | 2020-12-29 | 2022-07-07 | 주식회사 엘지에너지솔루션 | Battery diagnosis device, battery diagnosis method, battery pack and electric vehicle |
EP4180826A4 (en) * | 2020-12-29 | 2024-03-13 | LG Energy Solution, Ltd. | Battery diagnosis device, battery diagnosis method, battery pack and electric vehicle |
US11680989B2 (en) | 2021-03-12 | 2023-06-20 | Kabushiki Kaisha Toshiba | Diagnosis method of battery, diagnosis device of battery, diagnosis system of battery, battery-mounted device, and non-transitory storage medium |
KR20220163736A (en) * | 2021-06-03 | 2022-12-12 | 주식회사 네오윌 | Method for detecting abnomal cells and estimating SOH in Lithium-Ion battery pack |
KR102633335B1 (en) * | 2021-06-03 | 2024-02-05 | 주식회사 네오윌 | Method for detecting abnomal cells and estimating SOH in Lithium-Ion battery pack |
WO2023026743A1 (en) | 2021-08-23 | 2023-03-02 | パナソニックIpマネジメント株式会社 | Deterioration determination system, deterioration determination method, and deterioration determination program |
JP7568209B2 (en) | 2021-09-08 | 2024-10-16 | エルジー エナジー ソリューション リミテッド | Battery diagnostic device, battery management system, battery pack, electric vehicle, and battery diagnostic method |
CN113839107A (en) * | 2021-09-22 | 2021-12-24 | 北京航空航天大学 | Early warning method for soft package lithium ion battery diving degradation mode |
WO2024024379A1 (en) * | 2022-07-29 | 2024-02-01 | 株式会社Gsユアサ | Estimation device, estimation method, and computer program |
JP7544164B1 (en) | 2023-02-17 | 2024-09-03 | いすゞ自動車株式会社 | Deterioration monitoring device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017098686A1 (en) | 2018-05-24 |
JP6531836B2 (en) | 2019-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017098686A1 (en) | Battery pack, electricity storage device and deterioration detecting method | |
CN106663944B (en) | Electrical storage system | |
JP5659967B2 (en) | Monitoring device | |
EP2980954B1 (en) | Power storage device, power storage system, and power storage device control method | |
JP5954144B2 (en) | Control device, control method, control system, and electric vehicle | |
JP4943296B2 (en) | Battery pack, secondary battery charging method, and charging device | |
EP2442399B1 (en) | Battery pack | |
JP6347212B2 (en) | Control device, power storage module, electric vehicle, power supply system, and control method | |
JP4123184B2 (en) | Secondary battery remaining capacity calculation method and battery pack | |
CN113811781B (en) | Battery diagnosis device and method | |
EP2916422A1 (en) | Power storage module state estimation apparatus, battery pack, and method for estimating the state of a power storage module | |
EP3730955B1 (en) | Battery management system, battery pack including same, and method for determining failure in current detecting circuit | |
JP2009264779A (en) | Battery state detection circuit, battery pack, and charging system | |
JP2011069782A (en) | Voltage monitoring circuit, and battery power supply device | |
US20220329086A1 (en) | System and method for managing battery | |
JPWO2013002202A1 (en) | Battery deterioration judgment device | |
JP2023538347A (en) | Battery diagnostic device, battery pack, electric vehicle and battery diagnostic method | |
CN114127570B (en) | Battery diagnosis system, power system, and battery diagnosis method | |
CN102565708A (en) | Battery capacity detection system | |
JP6264396B2 (en) | Monitoring device, power supply device, monitoring method, power storage system, electronic device, electric vehicle, and power system | |
JP6638585B2 (en) | Power supply | |
JP2022548918A (en) | Battery diagnostic device and method | |
JP2017122587A (en) | Storage battery degradation level measurement method and device using the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16872588 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017554775 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16872588 Country of ref document: EP Kind code of ref document: A1 |