[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017090666A1 - Leanable vehicle - Google Patents

Leanable vehicle Download PDF

Info

Publication number
WO2017090666A1
WO2017090666A1 PCT/JP2016/084762 JP2016084762W WO2017090666A1 WO 2017090666 A1 WO2017090666 A1 WO 2017090666A1 JP 2016084762 W JP2016084762 W JP 2016084762W WO 2017090666 A1 WO2017090666 A1 WO 2017090666A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering wheel
torque
braking
wheel
vehicle
Prior art date
Application number
PCT/JP2016/084762
Other languages
French (fr)
Japanese (ja)
Inventor
将行 三木
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2017552686A priority Critical patent/JP6646683B2/en
Publication of WO2017090666A1 publication Critical patent/WO2017090666A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/10Cycles with handlebars, equipped with three or more main road wheels with means for inwardly inclining the vehicle body on bends

Definitions

  • the present invention relates to a lean vehicle having two steered wheels arranged side by side in the left-right direction and capable of tilting in the left-right direction.
  • Patent Document 1 Conventionally, in a four-wheel lean vehicle, a technique for adjusting the amount of leaning in the left-right direction of the vehicle body is disclosed in Patent Document 1 below.
  • the lean vehicle includes a pair of left and right rear arms and a pair of left and right hydraulic actuators. The angle of the pair of rear arms is adjusted with a hydraulic actuator. Thereby, the amount of inclination of the vehicle body in the left-right direction is adjusted.
  • An object of the present invention is to realize a lean vehicle having a function of adjusting the horizontal inclination of the vehicle body by a method different from that of Patent Document 1.
  • the inventor conducted behavior analysis during travel on a lean vehicle having a pair of steered wheels arranged side by side in the left-right direction. In particular, we studied how the vehicle behaves depending on how braking force is applied to the right and left steering wheels, which are a pair of steering wheels.
  • the direction of travel can be changed to the left or right by tilting the body frame to the left or right while driving. That is, when the lean vehicle turns, the body frame tilts in the direction in which the lean vehicle turns.
  • the inventor studied the behavior of a lean vehicle when the distribution of braking force between the right steering wheel and the left steering wheel was variously changed while traveling on a slope. As a result, it was found that when the braking force is equally distributed to the right steering wheel and the left steering wheel in a state where the body frame is inclined, a roll moment is generated in the body frame in a direction to raise the body frame to the outside of the turn.
  • the inventor examined the relationship between the distribution of braking force and the inclination state of the body frame in more detail, and found the following. First, if the braking force of the steering wheel, ie, the outer wheel, located on the outside of the turn is greater than the braking force of the steering wheel, ie, the inner wheel, located on the inside of the turn, the vehicle body frame is further inclined to the inside of the turn. It was found that a roll moment in the direction occurred. That is, it has been found that the rising to the outside of the body frame is suppressed.
  • the tilt state of the vehicle body frame can be adjusted by adjusting the difference in braking force between the left steering wheel and the right steering wheel that are running on the slope.
  • the braking force has the same meaning as the braking torque.
  • the inventor obtained the following knowledge in view of the fact that the braking force is opposite in direction to the driving force. That is, by adjusting the difference in driving force between the left steering wheel and the right steering wheel, it is possible to adjust the roll moment that tilts the vehicle body frame in the left-right direction when the lean vehicle is traveling.
  • the driving force has the same meaning as the driving torque.
  • the inventor adjusts the difference in braking torque or drive torque between the left and right steering wheels even when the rear wheels are a pair of left and right steering wheels, as in the case where the front wheels are a pair of left and right steering wheels.
  • the inventors have come up with the idea that the moment for tilting the body frame in the left-right direction can be adjusted while the vehicle is running.
  • the lean vehicle in the embodiment of the present invention is arranged side by side in the left-right direction of the lean vehicle, and the left steering wheel and the right steering wheel to be steered, and the left steering wheel that controls the rotation torque around the axle of the left steering wheel
  • the body frame supports the left steering wheel, the right steering wheel, the left steering wheel braking / driving device, and the right steering wheel braking / driving device.
  • the body frame tilts to the left in the left-right direction of the lean vehicle when the lean vehicle turns to the left, and tilts to the right in the left-right direction of the lean vehicle when the lean vehicle turns to the right.
  • the left / right tilt moment control device includes a left / right tilt state detection unit and a left / right steering wheel torque difference adjustment unit.
  • the left / right tilt state detection unit is mounted on the body frame and detects a tilt state of the body frame in the left / right direction of the lean vehicle.
  • the left and right steered wheel torque difference adjustment unit is based on the tilt state detected by the left and right tilt state detection unit, and at least during a period during which the left steered wheel and the right steered wheel are gripping the road surface.
  • the difference between the torque of the left steering wheel controlled by the left steering wheel braking / driving device and the torque of the right steering wheel controlled by the right steering wheel braking / driving device is adjusted.
  • the left / right tilt moment control device controls a moment for tilting the vehicle body frame during travel of the lean vehicle in the left / right direction of the lean vehicle by adjusting a difference between the torque of the left steered wheel and the torque of the right steered wheel.
  • (Configuration 1) In the lean vehicle having the configuration 1, the moment for tilting the vehicle body frame in the left-right direction is controlled by adjusting the difference between the torque of the left steering wheel and the torque of the right steering wheel. Therefore, it is possible to adjust the inclination of the body frame in the left-right direction.
  • the left and right steered wheel torque difference adjustment unit is controlled by the left steered wheel braking and driving device when the vehicle body frame is tilted to the left in the left and right direction of the lean vehicle.
  • the left steered wheel when the torque of the steered wheel and the torque of the right steered wheel controlled by the right steered wheel braking / driving device are tilted to the right in the left-right direction of the lean vehicle.
  • the torque of the left steered wheel and the right steering wheel are different so that the magnitude relationship between the torque of the left steered wheel controlled by the braking / driving device and the torque of the right steered wheel controlled by the right steering wheel braking / driving device is different.
  • the difference in torque between the wheels can be adjusted (Configuration 2).
  • the state in which the body frame is tilted to the left in the left-right direction of the lean vehicle is a state in which the vertical line of the body frame is tilted to the left in the left-right direction of the vehicle with respect to the vertical line.
  • the state in which the body frame is tilted to the right in the left-right direction of the lean vehicle is a state in which the vertical line of the body frame is tilted to the right in the left-right direction of the vehicle with respect to the vertical line. If the vehicle body frame is tilted to the left when the lean vehicle is turning, the left steering wheel is the inner wheel and the right steering wheel is the outer wheel. If the vehicle body frame is tilted to the right when the lean vehicle is turning, the left steering wheel is the outer wheel and the right steering wheel is the inner wheel.
  • Rotational torque around the axle of the left and right steering wheels includes braking torque and drive torque.
  • the driving torque is a force that rotates the left steering wheel or the right steering wheel so that the lean vehicle moves forward.
  • the braking torque is a force that brakes the rotation of the left steering wheel or the right steering wheel in the direction in which the lean vehicle moves forward.
  • the direction of the driving torque and the direction of the braking torque are opposite.
  • the left and right steering wheel torque difference adjustment unit includes: When the vehicle body frame is tilted to the left in the left-right direction of the lean vehicle, the braking torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device.
  • the braking torque of the right steering wheel is greater than the braking torque of the right steering wheel, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is Adjusting the difference between the torque of the left steering wheel and the torque of the right steering wheel so as to be smaller than the driving torque,
  • the braking torque of the left steering wheel controlled by the left steering wheel braking drive is controlled by the right steering wheel braking / driving device.
  • Driving the right steering wheel which is smaller than the braking torque of the right steering wheel, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device
  • the torque difference between the left steered wheel and the right steered wheel can be adjusted to be greater than the torque (Configuration 3).
  • the braking torque of the left steering wheel and the right steering wheel that becomes the inner wheel during turning is greater than the braking torque that becomes the outer wheel.
  • the driving torque of the outer ring becomes larger than the driving torque of the inner ring. Due to this torque difference, a roll moment is generated in a direction in which the vehicle body frame is raised when the lean vehicle turns. Therefore, it is possible to adjust the inclination of the body frame in the left-right direction.
  • the magnitude of the braking torque of the left steering wheel is greater than the magnitude of the braking torque of the right steering wheel, that is, the absolute value.
  • the driving torque of the left steering wheel is larger or smaller than the driving torque of the right steering wheel is that the magnitude of the driving torque of the left steering wheel, that is, the absolute value is larger or smaller than the magnitude of the driving torque of the right steering wheel, that is, the absolute value.
  • the left and right steering wheel torque difference adjustment unit includes: When the vehicle body frame is tilted to the left in the left-right direction of the lean vehicle, the braking torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device.
  • the driving torque of the left steering wheel is smaller than the braking torque of the right steering wheel, or the driving torque of the left steering wheel is controlled by the right steering wheel braking / driving device.
  • Adjust the difference between the torque of the left steering wheel and the torque of the right steering wheel so as to increase When the vehicle body frame is tilted to the right in the left-right direction of the lean vehicle, the braking torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device.
  • the braking torque of the right steering wheel is greater than the braking torque of the right steering wheel, or the driving torque of the left steering wheel by the left steering wheel braking / driving device is greater than the driving torque of the right steering wheel controlled by the right steering wheel braking / driving device.
  • the difference between the torque of the left steered wheel and the torque of the right steered wheel can be adjusted so as to decrease (Configuration 4).
  • the braking torque of the left steering wheel and the right steering wheel that becomes the outer wheel during turning is greater than the braking torque that becomes the inner wheel.
  • the driving torque of the inner ring becomes larger than the driving torque of the outer ring. Due to this torque difference, when the lean vehicle turns, a roll moment is generated in a direction in which the body frame is further tilted. Therefore, it is possible to adjust the inclination of the body frame in the left-right direction.
  • the left and right steering wheel torque difference adjustment unit is configured to control the vehicle body frame according to an inclination angle of the lean vehicle in the left-right direction detected by the left-right inclination state detection unit.
  • the difference between the torque of the left steering wheel controlled by the left steering wheel braking / driving device and the torque of the right steering wheel controlled by the right steering wheel braking / driving device can be adjusted (Configuration 5).
  • the inclination of the body frame in the left-right direction can be adjusted according to the inclination angle.
  • the magnitude of the torque of the left steering wheel and the magnitude of the torque of the right steering wheel can be set in accordance with the inclination angle of the vehicle body frame.
  • the left and right steered wheel torque difference adjustment unit is responsive to the lean angular velocity of the vehicle body frame in the left and right direction of the lean vehicle detected by the left and right lean state detection unit.
  • the difference between the torque of the left steering wheel controlled by the left steering wheel braking / driving device and the torque of the right steering wheel controlled by the right steering wheel braking / driving device can be adjusted (Configuration 6).
  • the configuration 6 makes it possible to adjust the inclination of the body frame in the left-right direction according to the inclination angular velocity.
  • the magnitude of the torque of the left steering wheel and the magnitude of the torque of the right steering wheel can be set in accordance with the inclination angular velocity of the vehicle body frame.
  • the left and right steered wheel torque difference adjustment unit is configured to determine a tilt angular velocity at which the lean of the vehicle body frame changes toward the left in the left-right direction of the lean vehicle.
  • the magnitude relationship between the torque of the left steering wheel controlled by the left steering wheel braking / driving device when detected and the torque of the right steering wheel controlled by the right steering wheel braking / driving device, and the left / right tilt state detection unit The left steering wheel torque controlled by the left steering wheel braking and driving device when the lean angular velocity at which the lean of the body frame is about to change toward the right in the left-right direction of the lean vehicle is detected and the right
  • the difference between the torque of the left steering wheel and the torque of the right steering wheel can be adjusted so that the magnitude relationship of the torque of the right steering wheel controlled by the steering wheel braking / driving device is different.
  • the direction of the roll moment due to the difference between the torque of the left steered wheel and the torque of the right steered wheel when the body frame is tilted toward the left, and when the body frame is tilted toward the right The direction of the roll moment due to the difference between the torque of the left steering wheel and the torque of the right steering wheel is reversed. Therefore, the direction of the roll moment with respect to the direction to incline can be made the same even if it is going to incline toward either the left or the right.
  • the left and right steered wheel torque difference adjustment unit includes: The left steering controlled by the left steering wheel braking / driving device when the left / right tilt state detection unit detects a tilt angular velocity at which the lean of the vehicle body frame changes toward the left in the left / right direction of the lean vehicle.
  • the braking torque of the wheel is smaller than the braking torque of the right steering wheel controlled by the right steering wheel braking / driving device, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is Adjusting the torque difference between the left steering wheel and the right steering wheel so as to be larger than the driving torque of the right steering wheel controlled by the right steering wheel braking and driving device;
  • the braking torque of the wheel becomes larger than the braking torque of the right steering wheel controlled by the right steering wheel braking / driving device, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is
  • the difference between the torque of the left steering wheel and the torque of the right steering wheel can be adjusted to be smaller than the driving torque of the right steering wheel controlled by the right steering wheel braking / driving device (Configuration 8). According to the above-described configuration 8, it is possible to generate a roll moment that causes the body frame to tilt in the direction in which the vehicle body frame tends to tilt due to the torque difference between the left steering wheel and the right steering wheel.
  • the left and right steered wheel torque difference adjustment unit is configured when an inclination angle of the lean vehicle in the left-right direction of the vertical direction line of the body frame with respect to the vertical direction is smaller than a first threshold value.
  • the torque of the left steering wheel is different from the torque of the left steering wheel controlled by the left steering wheel braking / driving device and the torque of the right steering wheel controlled by the right steering wheel braking / driving device.
  • the difference in torque of the right steering wheel can be adjusted (Configuration 9).
  • Configuration 9 when the horizontal inclination of the vehicle body frame is smaller than the first threshold value, it is possible to generate a roll moment due to the difference between the torque of the left steering wheel and the torque of the right steering wheel.
  • the left and right steered wheel torque difference adjusting unit is controlled by the left steered wheel braking / driving device when the lean angle of the lean vehicle in the left and right direction of the vertical direction line of the body frame with respect to the vertical direction is larger than a second threshold value.
  • the difference between the torque of the left steering wheel and the torque of the right steering wheel is adjusted so that the torque of the left steering wheel and the torque of the right steering wheel controlled by the right steering wheel braking / driving device are different.
  • the left and right steered wheel torque difference adjustment unit when the vehicle body frame is tilted to the left in the left-right direction of the lean vehicle, the braking torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device.
  • the braking torque of the right steering wheel is greater than the braking torque of the right steering wheel, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is Adjusting the difference between the torque of the left steering wheel and the torque of the right steering wheel so as to be smaller than the driving torque,
  • the braking torque of the left steering wheel controlled by the left steering wheel braking drive is controlled by the right steering wheel braking / driving device.
  • Driving the right steering wheel which is smaller than the braking torque of the right steering wheel, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device
  • the torque difference between the left steered wheel and the right steered wheel can be adjusted to be greater than the torque (Configuration 11).
  • the configuration 11 when the inclination of the body frame in the left-right direction is smaller than the first threshold value, it is possible to generate the roll moment in the direction in which the body frame is raised.
  • the left and right steered wheel torque difference adjustment unit is The left steering controlled by the left steering wheel braking / driving device when the left / right tilt state detection unit detects a tilt angular velocity at which the lean of the vehicle body frame changes toward the left in the left / right direction of the lean vehicle.
  • the braking torque of the wheel is smaller than the braking torque of the right steering wheel controlled by the right steering wheel braking / driving device, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is Adjusting the torque difference between the left steering wheel and the right steering wheel so as to be larger than the driving torque of the right steering wheel controlled by the right steering wheel braking and driving device;
  • the braking torque of the wheel becomes larger than the braking torque of the right steering wheel controlled by the right steering wheel braking / driving device, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is
  • the difference between the torque of the left steering wheel and the torque of the right steering wheel can be adjusted to be smaller than the driving torque of the right steering wheel controlled by the right steering wheel braking / driving device (Configuration 12).
  • the lean vehicle of any of the above configurations 1 to 12 may further include an operation element that can be operated by the rider and an operation state detection unit that detects an operation state of the operation element.
  • the left and right steering wheel torque difference adjustment unit is configured to generate the left steering wheel braking / driving device generated by the left steering wheel braking / driving device based on the tilt state detected by the tilt state detection unit and the operation state detected by the operation state detection unit.
  • the difference between the torque of the steering wheel and the torque of the right steering wheel generated by the right steering wheel braking / driving device can be adjusted (Configuration 13). With the configuration 13, the roll moment of the vehicle body frame can be generated according to the rider's operation.
  • the left and right steered wheel torque difference adjustment unit includes a torque of the left steered wheel controlled by the left steered wheel braking / driving device and a right steered wheel controlled by the right steered wheel braking / driving device.
  • the total amount of torque may be determined according to the amount of operation of the operating element by the rider.
  • the total amount of the left steering torque and the right steering wheel torque with respect to the operation amount of the operating element when the vehicle body frame is tilted in the left-right direction of the lean vehicle is calculated as follows:
  • the total amount of the left steering torque and the right steering wheel torque with respect to the operation amount of the operation element when the vehicle is not tilted in the left-right direction can be made equal (Configuration 14).
  • the link mechanism includes an arm that is rotatably supported with respect to the vehicle body frame and supports the right wheel and the left wheel.
  • a link mechanism that changes the relative position of the right wheel and the left wheel in the vertical direction with respect to the vehicle body frame to incline the vehicle body frame in the horizontal direction of the lean vehicle.
  • the left-right inclination state detection unit can detect the inclination state of the body frame in the left-right direction of the lean vehicle by detecting the rotation of the arm with respect to the body frame (Configuration 15).
  • FIG. 3 is a schematic plan view when the vehicle of FIG. 2 is viewed from above. It is a typical top view of the vehicle front part of the state which steered the vehicle. It is a typical front view of the vehicle front part of the state which inclined the vehicle.
  • FIG. 2 is a schematic front view of the front portion of the vehicle in a state where the vehicle is steered and tilted.
  • Fig. 2 schematically illustrates acceleration generated at the center of gravity of a vehicle.
  • 1 schematically illustrates an angular velocity generated in a vehicle. It is a typical side view of the left shock absorber seen from the right side of the vehicle of FIG.
  • It is a block diagram which shows typically the composition of the brake system with which vehicles are provided.
  • It is a block diagram which shows typically the structure of a torque control part.
  • 4 is a schematic drawing for explaining the behavior of a vehicle when a braking torque larger than that of the outer ring is generated for the inner ring. 4 is a schematic drawing for explaining the behavior of a vehicle when a braking torque greater than that of the inner ring is generated for the outer ring.
  • the “saddle-type vehicle” is an example of the “lean vehicle”.
  • the following “body” has the same meaning as the above “body frame”.
  • the following “tilt detector” is an example of the “left / right tilt state detector”.
  • the following “torque control unit” is an example of the “left and right steering wheel torque difference adjustment unit”.
  • a saddle-ride type vehicle includes a left steering wheel, a right steering wheel, and non-steering wheels positioned in the front-rear direction of the vehicle body with respect to the left steering wheel and the right steering wheel.
  • the saddle-ride type vehicle includes an inclination detection unit that detects an inclination state of the vehicle body, a left braking / driving torque that the left steering wheel transmits to the road surface according to the inclination state of the vehicle body, and the right steering wheel on the road surface.
  • a torque control unit for controlling distribution of the transmitted right braking drive torque (first configuration).
  • size of the braking torque or drive torque which each of a left steering wheel and a right steering wheel transmits to a road surface is adjusted according to the inclination state of a vehicle body, according to the driving
  • the vehicle body posture can be adjusted.
  • the saddle riding type vehicle is configured to be operable by a rider, a left braking unit that brakes rotation of the left steering wheel, a right braking unit that brakes rotation of the right steering wheel, and the like.
  • a braking operator may be provided.
  • the torque control unit A total braking torque calculating unit that calculates a total value of a left braking torque that is a braking torque of the left braking unit and a right braking torque that is a braking torque of the right braking unit according to an operation amount of the braking operator; , Each braking torque calculation unit that calculates the left braking torque and the right braking torque, respectively, by allocating the total value based on a reference determined according to the inclination state of the vehicle body detected by the inclination detection unit; , The left braking torque calculated by each braking torque calculation unit is controlled to be generated for the left braking unit, and the right braking torque calculated by each braking torque calculation unit is applied to the right braking unit. And a braking control section that performs control to be generated (second configuration).
  • the braking torque corresponding to the rider's operation amount is distributed to the left and right steering wheels.
  • the saddle riding type vehicle includes a left pipe that is in communication with the left brake unit and filled with brake fluid, and a right pipe that is in communication with the right brake unit and is filled with brake fluid.
  • the left brake portion can brake the rotation of the left steered wheel according to the hydraulic pressure of the brake fluid filled in the left pipe.
  • the right braking unit can brake the rotation of the right steering wheel according to the hydraulic pressure of the brake fluid filled in the right pipe.
  • the brake control unit can independently control the hydraulic pressure of the brake fluid filled in the left pipe and the hydraulic pressure of the brake fluid filled in the right pipe (third configuration).
  • the torque control unit may determine which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel, based on the tilt state of the vehicle body detected by the tilt detection unit. You may provide the inner-outer ring specific
  • Each of the braking torque calculators transmits to the road surface the braking torque transmitted to the road surface by the steering wheel identified as the inner wheel by the inner / outer wheel identification unit, and the steering wheel identified by the inner / outer wheel identification unit as the outer wheel to the road surface.
  • the left braking torque and the right braking torque can be calculated so as to be larger than the braking torque (fourth configuration).
  • the torque control unit may determine which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel, based on the tilt state of the vehicle body detected by the tilt detection unit. You may provide the inner-outer ring specific
  • Each of the braking torque calculation units transmits the braking torque transmitted to the road surface by the steering wheel identified as the outer wheel by the inner / outer wheel identification unit, and the steering wheel identified by the inner / outer wheel identification unit transmits the braking wheel to the road surface.
  • the left braking torque and the right braking torque can be calculated so as to be larger than the braking torque (fifth configuration).
  • the torque control unit may determine which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel, based on the tilt state of the vehicle body detected by the tilt detection unit.
  • An inner / outer wheel specifying unit for specifying whether or not there is a storage unit storing priority performance information regarding which of the vehicle body posture maintaining property during driving and the vehicle body posture variability during driving is prioritized. You may prepare. When each of the braking torque calculation units reads the priority performance information indicating that the vehicle body posture maintenance is prioritized from the storage unit, the steering wheel on the side identified as the inner wheel by the inner / outer wheel identification unit is the road surface.
  • the left braking torque and the right braking torque can be calculated such that the braking torque transmitted to the vehicle is greater than the braking torque transmitted to the road surface by the steering wheel identified as the outer wheel by the inner / outer wheel identifying unit. .
  • the steering wheel on the side specified as the outer wheel by the inner / outer wheel specifying unit The left braking torque and the right braking torque are respectively calculated so that the braking torque transmitted to the road surface is larger than the braking torque transmitted to the road surface by the steering wheel identified as the inner wheel by the inner / outer wheel identifying unit.
  • Sixth configuration posture adjustment according to the performance required for the vehicle can be performed.
  • the tilt detection unit may include a roll angle sensor that detects a roll angle of the vehicle body.
  • Each of the braking torque calculation units can calculate the left braking torque and the right braking torque by allocating the total value based on a reference determined according to the roll angle of the vehicle body (first 7 configuration). According to the seventh configuration, it is possible to adjust the posture according to the roll angle of the vehicle body.
  • the tilt detection unit may include a roll angular velocity sensor that detects a roll angular velocity of the vehicle body.
  • Each of the braking torque calculation units can calculate the left braking torque and the right braking torque by allocating the total value based on a criterion determined according to a roll angular velocity of the vehicle body (first 8 configuration). According to the eighth configuration, it is possible to adjust the posture according to the roll angular velocity of the vehicle body.
  • the torque control unit determines which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel based on the tilt state of the vehicle body detected by the tilt detection unit.
  • An inner / outer wheel specifying unit for specifying, and a storage unit storing priority performance information regarding which of the vehicle body posture maintaining property during driving and the vehicle body posture variability during driving is prioritized.
  • each of the braking torque calculation units moves from the roll angular velocity sensor in a direction in which the vehicle body tilts when the priority performance information indicating that the posture maintenance property of the vehicle body is prioritized is read from the storage unit.
  • the braking torque transmitted to the road surface by the steering wheel specified as the outer wheel by the inner / outer wheel specifying unit is transmitted to the road surface by the steering wheel specified by the inner / outer wheel specifying unit as the inner wheel.
  • the left braking torque and the right braking torque can be calculated so as to be larger than the torque.
  • each of the braking torque calculation units moves in a direction in which the vehicle body rises from the roll angular velocity sensor when the priority performance information indicating that the posture maintaining property of the vehicle body is prioritized is read from the storage unit.
  • the braking torque transmitted to the road surface by the steered wheel identified as the inner wheel by the inner / outer wheel identifying unit is greater than the braking torque transmitted to the road surface by the steered wheel identified by the inner / outer wheel identifying unit as the outer wheel.
  • the left braking torque and the right braking torque can be calculated so as to increase (9th configuration).
  • the ninth configuration it is possible to generate a roll moment in a direction that maintains the posture of the vehicle body.
  • the torque control unit is configured to determine which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel based on the tilt state of the vehicle body detected by the tilt detection unit.
  • An inner / outer wheel specifying unit for specifying whether or not there is a storage unit storing priority performance information regarding which of the vehicle body posture maintaining property during driving and the vehicle body posture variability during driving is prioritized. You may prepare. In this case, each of the braking torque calculation units moves in a direction in which the vehicle body is more inclined than the roll angular velocity sensor when the priority performance information indicating that the posture variability of the vehicle body is given priority is read from the storage unit.
  • the braking torque transmitted to the road surface by the steering wheel specified as the inner ring by the inner / outer wheel specifying unit is transmitted to the road surface by the steering wheel specified as the outer wheel by the inner / outer wheel specifying unit.
  • the left braking torque and the right braking torque can be calculated so as to be larger than the braking torque.
  • each of the braking torque calculation units moves in a direction in which the vehicle body rises from the roll angular velocity sensor when the priority performance information indicating that the posture variability of the vehicle body is prioritized is read from the storage unit.
  • the braking torque transmitted to the road surface by the steered wheel identified as the outer wheel by the inner / outer wheel identifying unit is greater than the braking torque transmitted to the road surface by the steered wheel identified as the inner wheel by the inner / outer wheel identifying unit.
  • the left braking torque and the right braking torque can be calculated so as to increase (tenth configuration).
  • the roll moment can be easily generated.
  • the torque control unit may determine which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel, based on the tilt state of the vehicle body detected by the tilt detection unit. You may provide the inner-outer ring specific
  • the tilt detection unit may include a roll angle sensor that detects a roll angle of the vehicle body and a roll angular velocity sensor that detects a roll angular velocity of the vehicle body. In this case, each braking torque calculation unit distributes the total value based on both a reference determined according to the roll angle of the vehicle body and a reference determined according to the roll angular velocity of the vehicle body, The left braking torque and the right braking torque can be calculated (eleventh configuration).
  • the saddle riding type vehicle is configured to be operable by a rider, a left driving unit that drives rotation of the left steering wheel, a right driving unit that drives rotation of the right steering wheel, and a rider.
  • a drive operator may be provided.
  • the torque control unit A total drive torque calculation unit that calculates a total value of a left drive torque that is a drive torque of the left drive unit and a right drive torque that is a drive torque of the right drive unit according to an operation amount of the drive operator; , Each driving torque calculation unit for calculating the left driving torque and the right driving torque, respectively, by allocating the total value based on a reference determined according to the inclination state of the vehicle body detected by the inclination detection unit; , The left driving torque calculated by each driving torque calculation unit is controlled to be generated for the left driving unit, and the right driving torque calculated by each driving torque calculation unit is applied to the right driving unit. And a drive control unit that performs control to be generated (a twelfth configuration).
  • drive torque corresponding to the rider's operation amount can be distributed to the left and right steered wheels.
  • the torque control unit determines which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel based on the tilt state of the vehicle body detected by the tilt detection unit. You may provide the inner / outer ring specific
  • Each of the driving torque calculation units transmits the driving torque transmitted to the road surface by the steering wheel identified as the inner wheel by the inner / outer wheel identification unit, and the steering wheel identified by the inner / outer wheel identification unit as the outer wheel transmits to the road surface.
  • the left driving torque and the right driving torque may be calculated so as to be larger than the driving torque (a thirteenth configuration).
  • the thirteenth configuration it is possible to generate a roll moment in a direction in which the vehicle body further tilts during traveling in the tilted state.
  • the torque control unit determines which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel based on the tilt state of the vehicle body detected by the tilt detection unit. You may provide the inner / outer ring specific
  • Each of the driving torque calculation units transmits the driving torque transmitted to the road surface by the steering wheel specified as the outer wheel by the inner / outer wheel specifying unit, and the steering wheel specified by the inner / outer wheel specifying unit transmits the driving torque to the road surface.
  • the left driving torque and the right driving torque can be calculated so as to be larger than the driving torque (fourteenth configuration).
  • the fourteenth configuration it is possible to generate a roll moment in a direction in which the vehicle body is raised when traveling in an inclined state.
  • the torque control unit determines which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel based on the tilt state of the vehicle body detected by the tilt detection unit.
  • An inner / outer wheel specifying unit for specifying, and a storage unit storing priority performance information regarding which of the vehicle body posture maintaining property during driving and the vehicle body posture variability during driving is prioritized. Good.
  • each of the driving torque calculation units reads the priority performance information that prioritizes the posture maintenance of the vehicle body from the storage unit
  • the steering on the side identified as the outer wheel by the inner / outer wheel identification unit The left driving torque and the right driving torque are respectively calculated so that the driving torque transmitted to the road surface by the wheels is greater than the driving torque transmitted to the road surface by the steering wheel identified as the inner wheel by the inner / outer wheel identifying unit. be able to.
  • each of the driving torque calculation units reads the priority performance information indicating that priority is given to the posture variability of the vehicle body from the storage unit
  • the steering wheel on the side specified as the inner wheel by the inner / outer wheel specifying unit Calculating the left driving torque and the right driving torque so that the driving torque transmitted to the road surface is greater than the driving torque transmitted to the road surface by the steering wheel identified as the outer wheel by the inner / outer wheel identifying unit.
  • the tilt detection unit may include a roll angle sensor that detects a roll angle of the vehicle body.
  • Each of the driving torque calculation units can calculate the left driving torque and the right driving torque by allocating the total value based on a reference determined according to a roll angle of the vehicle body (first 16 configuration). According to the sixteenth configuration, the posture can be adjusted according to the roll angle of the vehicle body.
  • the tilt detection unit may include a roll angular velocity sensor that detects a roll angular velocity of the vehicle body.
  • Each of the driving torque calculation units can calculate the left driving torque and the right driving torque by allocating the total value based on a reference determined according to a roll angle of the vehicle body (first 17 configuration). According to the seventeenth configuration, posture control according to the roll angular velocity of the vehicle body is possible.
  • the torque control unit determines which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel based on the tilt state of the vehicle body detected by the tilt detection unit.
  • An inner / outer wheel specifying unit for specifying, and a storage unit storing priority performance information regarding which of the vehicle body posture maintaining property during driving and the vehicle body posture variability during driving is prioritized.
  • each of the drive torque calculation units moves in a direction in which the vehicle body is inclined more than the roll angular velocity sensor when the priority performance information indicating that the posture maintenance property of the vehicle body is prioritized is read from the storage unit.
  • the driving torque transmitted to the road surface by the steering wheel specified as the outer wheel by the inner / outer wheel specifying unit is transmitted to the road surface by the steering wheel specified as the inner wheel by the inner / outer wheel specifying unit.
  • the left driving torque and the right driving torque can be calculated so as to be larger than the driving torque.
  • each of the drive torque calculation units moves in a direction in which the vehicle body rises from the roll angular velocity sensor when the priority performance information indicating that the posture maintenance property of the vehicle body is prioritized is read from the storage unit.
  • the driving torque transmitted to the road surface by the steering wheel specified as the inner wheel by the inner / outer wheel specifying unit is based on the driving torque transmitted from the steering wheel specified by the inner / outer wheel specifying unit to the road surface as the outer wheel.
  • the left braking torque and the right braking torque can be calculated so as to increase (18th configuration).
  • the torque control unit may determine which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel, based on the tilt state of the vehicle body detected by the tilt detection unit.
  • An inner / outer wheel specifying unit for specifying whether or not there is a storage unit storing priority performance information regarding which of the vehicle body posture maintaining property during driving and the vehicle body posture variability during driving is prioritized. You may prepare. In this case, each of the driving torque calculation units moves in a direction in which the vehicle body is more inclined than the roll angular velocity sensor when the priority performance information indicating that the posture variability of the vehicle body is prioritized is read from the storage unit.
  • the driving torque transmitted to the road surface by the steering wheel specified as the inner ring by the inner / outer wheel specifying unit is transmitted to the road surface by the steering wheel specified as the outer wheel by the inner / outer wheel specifying unit.
  • the left driving torque and the right driving torque can be calculated so as to be larger than the driving torque.
  • each of the drive torque calculation units moves in a direction in which the vehicle body rises from the roll angular velocity sensor when the priority performance information indicating that the posture variability of the vehicle body is prioritized is read from the storage unit.
  • the driving torque transmitted to the road surface by the steering wheel identified as the outer wheel by the inner / outer wheel identifying unit is determined from the braking torque transmitted to the road surface by the steering wheel identified as the inner wheel by the inner / outer wheel identifying unit.
  • the left driving torque and the right driving torque can be calculated so as to increase (19th configuration).
  • the torque control unit determines which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel based on the tilt state of the vehicle body detected by the tilt detection unit. You may provide the inner / outer ring specific
  • the tilt detection unit may include a roll angle sensor that detects a roll angle of the vehicle body and a roll angular velocity sensor that detects a roll angular velocity of the vehicle body.
  • each driving torque calculation unit distributes the total value based on both a reference determined according to the roll angle of the vehicle body and a reference determined according to the roll angular velocity of the vehicle body, The left driving torque and the right driving torque can be calculated (twentieth configuration).
  • vehicle means a lean vehicle.
  • the “yaw angle” represents the rotation angle of the vehicle body frame around the vertical axis of the vehicle.
  • “Yaw angular velocity” represents the rate of change of the “yaw angle”.
  • the “roll angle” represents the rotation angle of the vehicle body frame about the longitudinal axis of the vehicle. The roll angle is the same as the inclination angle of the vehicle body frame in the left-right direction of the lean vehicle.
  • Roll angular velocity represents the rate of change of the “roll angle”.
  • the “pitch angle” represents the rotation angle of the body frame around the left-right axis of the vehicle.
  • Pitch angular velocity represents the rate of change of the “pitch angle”.
  • the “vertical direction of the vehicle” represents the vertical direction viewed from the rider driving the vehicle.
  • the “left-right direction of the vehicle” represents the left-right direction as viewed from the rider driving the vehicle body.
  • the “front-rear direction of the vehicle” represents the front-rear direction viewed from the rider driving the vehicle body.
  • the arrow F indicates the front direction of the vehicle.
  • Arrow B indicates the backward direction of the vehicle.
  • An arrow U indicates the upward direction of the vehicle.
  • An arrow D indicates the downward direction of the vehicle.
  • An arrow R indicates the right direction of the vehicle.
  • An arrow L indicates the left direction of the vehicle.
  • an arrow FF indicates the front direction of the body frame.
  • An arrow FB indicates the rear direction of the vehicle body frame.
  • An arrow FU indicates the upward direction of the vehicle body frame.
  • An arrow FD indicates the downward direction of the vehicle body frame.
  • An arrow FR indicates the right direction of the body frame.
  • An arrow FL indicates the left direction of the body frame.
  • the saddle-ride type vehicle targeted by this embodiment travels while the vehicle body is turning when traveling while tilting the vehicle body frame in the left-right direction of the vehicle with respect to the vertical direction of the road surface.
  • the left-right direction of the vehicle does not match the left-right direction of the body frame
  • the up-down direction of the vehicle does not match the up-down direction of the body frame.
  • the longitudinal direction of the vehicle coincides with the longitudinal direction of the body frame.
  • FIG. 1 is a left side view of the entire vehicle 1 as viewed from the left.
  • the vehicle 1 shown in FIG. 1 assumes that the front wheels are steering wheels and the rear wheels are non-steering wheels.
  • the vehicle 1 includes a left wheel 3a and a right wheel 3b, which are a pair of left and right front wheels 3, a rear wheel 5, a steering mechanism 7, a link mechanism 9, a power unit 11, a seat 13, a body frame 15, and the like.
  • the left wheel 3a and the right wheel 3b are steering wheels.
  • FIG. 1 for the sake of illustration, only the left wheel 3a is displayed, and the right wheel 3b is not displayed.
  • the part hidden in the vehicle body among the vehicle body frames 15 is illustrated by broken lines.
  • the body frame 15 includes a head pipe 21, a down frame 22, an under frame 23, and a rear frame 24.
  • the vehicle body frame 15 supports the power unit 11, the seat 13, and the like.
  • the power unit 11 includes a drive source such as an engine or an electric motor, a transmission device, and the like.
  • a rear wheel 5 is supported on the power unit 11.
  • the driving force of the driving source is transmitted to the rear wheel 5 through the transmission device.
  • the power unit 11 is supported by the body frame 15 so as to be swingable, and the rear wheel 5 is configured to be displaceable in the vertical direction of the body frame 15.
  • the head pipe 21 is disposed at the front of the vehicle 1 and rotatably supports a steering shaft 31 (see FIG. 2 described later) of the steering mechanism 7.
  • the head pipe 21 is disposed so that the upper part of the head pipe 21 is located behind the lower part of the head pipe 21 when the body frame 15 is viewed from the left-right direction of the vehicle 1.
  • the rotation axis of the head pipe 21 is inclined with respect to the vertical direction of the body frame 15 and extends above and behind the body frame 15.
  • a steering mechanism 7 and a link mechanism 9 are arranged around the head pipe 21.
  • the head pipe 21 supports the link mechanism 9. More specifically, the head pipe 21 supports at least a part of the link mechanism 9 in a rotatable manner.
  • the down frame 22 is connected to the head pipe 21.
  • the down frame 22 is disposed behind the head pipe 21 and extends along the vertical direction of the vehicle 1.
  • An under frame 23 is connected to the lower portion of the down frame 22.
  • the under frame 23 extends rearward from the lower part of the down frame 22.
  • a rear frame 24 extends rearward and upward behind the underframe 23.
  • the rear frame 24 supports the seat 13, the power unit 11, the tail lamp, and the like.
  • the body frame 15 is covered with a body cover 17.
  • the vehicle body cover 17 includes a front cover 26, a pair of left and right front fenders 27 (27 a and 27 b), a leg shield 28, a center cover 29, and a rear fender 30.
  • the vehicle body cover 17 covers at least a part of vehicle body components mounted on the vehicle such as the pair of left and right front wheels 3, the vehicle body frame 15, and the link mechanism 9.
  • the front cover 26 is located in front of the seat 13 and covers at least a part of the steering mechanism 7 and the link mechanism 9 from the front.
  • the leg shield 28 covers the down frame 22 from behind.
  • the down frame 22 is arranged behind the pair of left and right front wheels 3 and ahead of the seat 13.
  • the center cover 29 is disposed so as to cover at least a part of the periphery of the rear frame 24.
  • At least a part of the front fender 27 is disposed below the front cover 26 and above the front wheel 3. At least a part of the rear fender 30 is disposed above the rear wheel 5.
  • At least a part of the front wheels 3 (3a, 3b) is disposed below the head pipe 21 and below the front cover 26. Further, at least a part of the rear wheel 5 is disposed below the center cover 29 or the seat 13 and below the rear fender 30.
  • a front wheel speed sensor 41 is provided on the front wheel 3.
  • a rear wheel speed sensor 42 is provided on the rear wheel 5. Based on the detection results obtained by these sensors (41, 42), the vehicle speed of the vehicle 1 is estimated by calculation.
  • the vehicle 1 includes an inclination detection unit 50 that detects the inclination state of the vehicle 1 at an arbitrary position.
  • the inclination detection unit 50 detects the inclination state of the vehicle 1 based on the vehicle speed and other values.
  • the inclination detection unit 50 includes a sensor group and an arithmetic device. Details will be described later.
  • the vehicle 1 includes a torque control unit 100.
  • the torque control unit 100 controls the braking torque transmitted to the road surface by the front wheels 3 (3a, 3b) corresponding to the steered wheels.
  • the torque control unit 100 is composed of an electronic control unit or the like, and is provided, for example, at the lower portion of the seat 13.
  • FIG. 2 is a front view when the front portion of the vehicle 1 is viewed from the front under the body frame 15 in an upright state.
  • FIG. 3 is an enlarged view of a part of FIG.
  • FIG. 4 is a schematic plan view when the vehicle 1 of FIG. 2 is viewed from above.
  • the vehicle body cover 17 is not shown in FIGS. 2 and 4.
  • the steering mechanism 7 has a steering force transmission mechanism 71 and a shock absorber 73 (73a, 73b).
  • the steering force transmission mechanism 71 includes a steering shaft 31, a handle bar 32, a tie rod 33, and brackets 34 (34a, 34b). A part of the steering shaft 31 is rotatably supported by the head pipe 21. The steering shaft 31 rotates in conjunction with the operation of the handle bar 32. The rotation axis of the steering shaft 31 extends rearward and upward of the body frame 15.
  • the handle bar 32 is connected to the upper part of the steering shaft 31.
  • the handle bar 32 and the steering shaft 31 constitute a steering member.
  • the steering force of the rider is input to the steering member.
  • the tie rod 33 is connected to the lower part of the steering shaft 31.
  • a left bracket 34 a is connected to the left part of the tie rod 33.
  • a right bracket 34 b is connected to the right part of the tie rod 33.
  • the rotation of the steering shaft 31 is transmitted to the left bracket 34a and the right bracket 34b via the tie rod 33.
  • the steering member transmits the steering force for the rider to operate the handlebar 32 to the bracket 34 (34a, 34b).
  • the left shock absorber 73a is attached to the left bracket 34a.
  • the left shock absorber 73a rotates in conjunction with the left bracket 34a.
  • the right shock absorber 73b is attached to the right bracket 34b.
  • the right shock absorber 73b rotates in conjunction with the right bracket 34b.
  • the shock absorber 73 (73a, 73b) is a so-called telescopic shock absorber.
  • the left shock absorber 73a attenuates the vibration caused by the load received by the left wheel 3a to be supported from the road surface.
  • the right shock absorber 73b attenuates vibration caused by a load received from the road surface by the right wheel 3b to be supported.
  • the rider inputs the steering force by rotating the handlebar 32.
  • the steering force transmission mechanism 71 transmits the rotation of the handle bar 32 to the left wheel 3a and the right wheel 3b.
  • the steering force is transmitted to the left shock absorber 73a and the right shock absorber 73b by the steering force transmission mechanism 71.
  • the left shock absorber 73a and the right shock absorber 73b rotate, the left wheel 3a and the right wheel 3b also rotate. Thereby, the left wheel 3a and the right wheel 3b are steered.
  • the steering force input to the handlebar 32 is transmitted to the right wheel 3b and the left wheel 3a, which are the steering wheels, via the steering force transmission mechanism 71.
  • the left wheel 3a is supported by the left shock absorber 73a.
  • the left wheel 3 a is disposed on the left side of the down frame 22.
  • a left front fender 27a is disposed above the left wheel 3a.
  • the right wheel 3b is supported by the right shock absorber 73b.
  • the right wheel 3 b is disposed on the right side of the down frame 22.
  • a right front fender 27b is disposed above the right wheel 3b.
  • the vehicle 1 has a link mechanism 9 of a parallel four-bar link (also referred to as “parallelogram link”) system.
  • the link mechanism 9 is disposed below the handle bar 32 when viewed from the front of the vehicle 1 with the body frame 15 in an upright state, and is supported by the head pipe 21.
  • the link mechanism 9 includes a cross member 35.
  • the cross member 35 includes an upper cross member 35a, a left cross member 35b, a right cross member 35c, and a lower cross member 35d.
  • the upper cross member 35a and the lower cross member 35d are examples of arms that are provided between the vehicle body frame 15, the right wheel 3b, and the left wheel 3a, and are rotatably supported with respect to the vehicle body frame 15.
  • the arm rotates with respect to the vehicle body frame 15, the relative position in the vertical direction of the right wheel 3b and the left wheel 3a with respect to the vehicle body frame 15 changes. Accordingly, the body frame 15 is inclined with respect to the vertical direction.
  • the upper cross member 35a is disposed in front of the head pipe 21 and extends in the vehicle width direction. An intermediate portion of the upper cross member 35a is supported on the head pipe 21 by a support portion 36a.
  • the support portion 36 a is a boss portion provided on the head pipe 21.
  • the upper cross member 35a is rotatable about the middle upper axis extending in the front-rear direction of the vehicle body frame 15 with respect to the head pipe 21.
  • the left end of the upper cross member 35a is supported by the left cross member 35b by the support portion 36b.
  • the support portion 36b is a boss portion provided on the left cross member 35b.
  • the right end of the upper cross member 35a is supported by the right cross member 35c by the support portion 36c.
  • the support portion 36c is a boss portion provided on the right cross member 35c.
  • the upper cross member 35a is rotatable around the upper left axis extending in the front-rear direction of the body frame 15 with respect to the left cross member 35b. Further, the upper cross member 35a is rotatable around the upper right axis extending in the front-rear direction of the body frame 15 with respect to the right cross member 35c.
  • the middle upper axis, the upper left axis, and the upper right axis are substantially parallel to each other.
  • the middle upper axis, the upper left axis, and the upper right axis extend forward in the front-rear direction of the body frame 15 and upward in the up-down direction of the body frame 15.
  • the intermediate part of the lower cross member 35d is supported by the head pipe 21 by the support part 36d.
  • the support portion 36 d is a boss portion formed on the head pipe 21.
  • the lower cross member 35d is rotatable about an intermediate lower axis extending in the front-rear direction of the body frame 15 with respect to the head pipe 21.
  • the lower cross member 35d is disposed below the upper cross member 35a in the vertical direction of the body frame 15 when the vehicle with the body frame 15 standing upright is viewed from the front.
  • the lower cross member 35d is disposed substantially parallel to the upper cross member 35a.
  • the lower cross member 35d has substantially the same length in the vehicle width direction as the upper cross member 35a.
  • the left end of the lower cross member 35d is supported by the left cross member 35b by the support portion 36e.
  • the support portion 36e is a boss portion provided on the left cross member 35b.
  • the right end of the lower cross member 35d is supported by the right cross member 35c by the support portion 36f.
  • the support portion 36f is a boss portion provided on the right cross member 35c.
  • the lower cross member 35d is rotatable around the lower left axis extending in the front-rear direction of the body frame 15 with respect to the left cross member 35b. Similarly, the lower cross member 35d can rotate about the lower right axis extending in the front-rear direction of the body frame 15 with respect to the right cross member 35c.
  • the middle lower axis, the lower left axis, and the lower right axis are substantially parallel to each other.
  • the middle lower axis, the lower left axis, and the lower right axis extend forward and upward of the body frame 15.
  • At least a part of the link mechanism 9 can rotate around an intermediate axis extending in the front-rear direction of the vehicle 1. Further, at least a part of the link mechanism 9 is rotatable around an intermediate axis (rotation axis) extending forward and upward of the body frame 15. The intermediate axis (rotation axis) is inclined with respect to the horizontal and extends forward and upward with respect to the horizontal.
  • the left cross member 35b is disposed on the left side of the head pipe 21.
  • the left cross member 35b is provided above the left wheel 3a and the left shock absorber 73a.
  • the left shock absorber 73a is arranged to be rotatable about the left central axis Y1 with respect to the left cross member 35b.
  • the left central axis Y1 is provided substantially parallel to the rotation axis of the head pipe 21.
  • the right cross member 35 c is disposed on the right side of the head pipe 21.
  • the right cross member 35c is provided above the right wheel 3b and the right shock absorber 73b.
  • the right shock absorber 73b is disposed to be rotatable about the right center axis Y2 with respect to the right cross member 35c.
  • the right center axis Y2 is provided substantially parallel to the rotation axis of the head pipe 21.
  • the cross member 35 (35a, 35b, 35c, 35d) is the upper cross member 3
  • the left cross member 35b and the right cross member 35c are supported so as to maintain a substantially parallel posture with each other and the left cross member 35b and the right cross member 35c.
  • FIG. 4 shows a state in which the body frame 15 is upright and the pair of left and right front wheels 3 are not steered.
  • FIG. 5 is a plan view of the front portion of the vehicle in a state where the vehicle 1 is steered.
  • FIG. 5 corresponds to a view of the vehicle 1 as viewed from above the body frame 15 when the pair of left and right front wheels 3 are steered with the body frame 15 standing upright.
  • the steering mechanism 7 When the handle bar 32 is turned from the state shown in FIG. 4, the steering mechanism 7 operates and the steering operation is performed.
  • the tie rod 33 moves to the left rear.
  • the bracket 34 (34a, 34b) rotates in the direction of the arrow T1.
  • the left wheel 3a rotates around the left central axis Y1 (see FIGS. 2 and 3).
  • the right wheel 3b rotates around the right center axis Y2 (see FIGS. 2 and 3).
  • FIG. 6 is a view for explaining the tilting operation of the vehicle 1 and is a front view of the front portion of the vehicle 1 in a state where the vehicle 1 is tilted.
  • FIG. 6 corresponds to a view of the vehicle 1 with the body frame 15 tilted to the left of the vehicle 1 as viewed from the front of the vehicle 1.
  • the link mechanism 9 shows a substantially rectangular shape when the vehicle 1 with the body frame 15 in an upright state is viewed from the front, and when the vehicle 1 with the body frame 15 inclined to the left of the vehicle 1 is viewed from the front, Shows a nearly parallelogram shape.
  • the deformation of the link mechanism 9 and the inclination of the body frame 15 in the left-right direction are linked.
  • the operation of the link mechanism 9 means that the cross member 35 (35a, 35b, 35c, 35d) for performing the tilting operation in the link mechanism 9 rotates relative to each support point as an axis, and the shape of the link mechanism 9 changes. It means that.
  • the cross member 35 (35a, 35b, 35c, 35d) arranged in a substantially rectangular shape when viewed from the front is deformed into a substantially parallelogram shape when the vehicle 1 is inclined. ing. In conjunction with the inclination of the body frame 15, the left wheel 3 a and the right wheel 3 b are also inclined in the left-right direction of the vehicle 1.
  • the head pipe 21 tilts to the left with respect to the vertical direction.
  • the head pipe 21 body frame 15
  • the upper cross member 35a rotates with respect to the head pipe 21 around the support portion 36a.
  • the lower cross member 35d rotates with respect to the head pipe 21 around the support portion 36d.
  • the upper cross member 35a moves to the left from the lower cross member 35d.
  • the left cross member 35b and the right cross member 35c are inclined with respect to the vertical direction while maintaining a state substantially parallel to the head pipe 21. At this time, the left cross member 35b rotates with respect to the upper cross member 35a and the lower cross member 35d.
  • the right cross member 35c also rotates with respect to the upper cross member 35a and the lower cross member 35d. That is, when the vehicle 1 is tilted, the left wheel 3a supported by the left cross member 35b and the right wheel 3b supported by the right cross member 35c are also tilted with the tilt of the left cross member 35b and the right cross member 35c. To do.
  • the left wheel 3 a and the right wheel 3 b are inclined with respect to the vertical direction while maintaining a state substantially parallel to the head pipe 21.
  • the link mechanism 9 links the inclination of the body frame 15 with the inclination of the right wheel 3b and the left wheel 3a. That is, the link mechanism 9 causes the right wheel 3b and the left wheel 3a to be inclined as the body frame 15 is inclined.
  • the tie rod 33 maintains a substantially parallel posture with respect to the upper cross member 35a and the lower cross member 35d even when the vehicle 1 is inclined.
  • the link mechanism 9 that tilts the left wheel 3a and the right wheel 3b by performing the tilting operation is disposed above the left wheel 3a and the right wheel 3b. That is, the rotation shaft of each cross member 35 (35a, 35b, 35c, 35d) constituting the link mechanism 9 is disposed above the left wheel 3a and the right wheel 3b.
  • FIG. 7 is a front view of the front portion of the vehicle 1 in a state where the vehicle 1 is steered and tilted.
  • FIG. 7 shows a state in which the vehicle is steered to the left and tilted to the left.
  • FIG. 7 is a view of the vehicle 1 as viewed from the front of the vehicle 1 when the pair of left and right front wheels 3 (3 a, 3 b) are steered with the body frame 15 tilted to the left of the vehicle 1. 7, the direction of the front wheels 3 (3a, 3b) is changed by the steering operation, and the front wheels 3 (3a, 3b) are tilted together with the vehicle body frame 15 by the tilting operation.
  • each cross member 35 (35a, 35b, 35c, 35d) of the link mechanism 9 is deformed into a parallelogram, and the tie rod 33 moves rearward in the steering direction (leftward in FIG. 7).
  • FIG. 8 is a functional block diagram illustrating a configuration of the inclination detection unit 50.
  • the inclination detection unit 50 includes a vehicle speed detection unit 51, a gyro sensor 53, and a roll angle detection unit 54.
  • the vehicle speed detection unit 51 and the roll angle detection unit 54 are realized by, for example, an arithmetic processing device.
  • the inclination detection part 50 is a structure which can detect the inclination state of the vehicle 1, it will not be restricted to the aspect shown in FIG.
  • the yaw rate of the vehicle 1 changes.
  • the roll rate of the vehicle 1 changes.
  • the gyro sensor 53 detects the angular velocity in the biaxial direction of the yaw and roll of the vehicle 1. That is, the gyro sensor 53 detects the yaw rate and roll rate of the vehicle 1.
  • the rear wheel speed sensor 42 detects the rotational speed of the rear wheel 5.
  • the front wheel speed sensor 41 can be provided on at least one of the pair of front wheels 3 (3a, 3b).
  • the vehicle speed detection unit 51 detects the vehicle speed of the vehicle 1 based on the detection values input from the front wheel vehicle speed sensor 41 and the rear wheel vehicle speed sensor 42.
  • the roll angle detector 54 receives the roll rate of the vehicle 1 from the gyro sensor 53.
  • the roll angle detector 54 detects the roll angle of the vehicle body frame 15 based on the input value. This roll angle is an example of information indicating the tilt state detected by the left-right tilt state detection unit. An example of a method for detecting the roll angle of the body frame 15 will be described with reference to FIGS. 9A and 9B.
  • FIG. 9A illustrates the acceleration generated at the center of gravity 10 of the vehicle 1.
  • FIG. 9B illustrates the angular velocity generated in the vehicle 1.
  • the method for detecting the roll angle of the vehicle body frame 15 described with reference to FIGS. 9A and 9B is a method for detecting the roll angle in an ideal state in a lean with state.
  • the ideal state is a state in which the pitching of the vehicle 1 and the tire thickness can be ignored, and the vehicle is turning at a speed V.
  • the lean with state is a state where the vehicle body fixed axis (Y1 axis) and the upper body of the rider are in a straight line.
  • the relationship between the roll angle ⁇ of the body frame 15 during the turning of the vehicle 1, the body speed V, the Euler yaw angle ⁇ differential, and the gravitational acceleration g is expressed by the following equation.
  • (D ⁇ / dt) is a yaw rate (yaw angular velocity) that is a time derivative of the yaw angle.
  • FIG. 10 is a side view of the left shock absorber 73a viewed from the right side of the vehicle 1 of FIG. In addition, since it is the same also about a right shock absorber, description is omitted.
  • the left shock absorber 73a includes a left rear telescopic element 80a, a left front telescopic element 81a, a left cross member support portion 82a, and a left bracket 34a.
  • the left rear telescopic element 80a has, for example, an elastic structure (not shown) such as a spring and a shock absorbing member (not shown) such as oil provided therein, so that the left rear telescopic element 80a expands and contracts in the direction of the left central axis Y1.
  • the left rear telescopic element 80a has a damper function of absorbing vibrations and impacts caused by a load that the left wheel 3a receives from the road surface.
  • the left front telescopic element 81a is arranged on the same side as the left rear telescopic element 80a in the rotational axis direction of the left wheel shaft 83a with respect to the left wheel 3a.
  • the left rear telescopic element 80a and the left front telescopic element 81a are arranged side by side in the vehicle front-rear direction in the upright state of the vehicle 1 on the right side of the left wheel 3a.
  • the left front telescopic element 81a is disposed in front of the left rear telescopic element 80a.
  • the left front telescopic element 81a has an expansion / contraction structure that expands and contracts in the direction of the left central axis Y1, as with the left rear telescopic element 80a.
  • the expansion / contraction direction of the left rear telescopic element 80a and the expansion / contraction direction of the left front telescopic element 81a are parallel to each other when viewed from the rotational axis direction of the left wheel 3a.
  • the upper part of the left rear telescopic element 80a and the upper part of the left front telescopic element 81a are connected by the left bracket 34a.
  • the lower end of the left front telescopic element 81a is connected and fixed near the lower end of the left rear telescopic element 80a.
  • the left wheel 3a is supported on the left bracket 34a by two telescopic elements, a left rear telescopic element 80a and a left front telescopic element 81a, which are arranged in parallel in the front-rear direction of the vehicle 1.
  • the outer element 84a located on the lower side of the left shock absorber 73a does not rotate relative to the inner element 85a located on the upper side of the left shock absorber 73a around an axis parallel to the telescopic direction of the telescopic element.
  • the left bracket 34a is positioned below the front cover 26 when the vehicle 1 with the body frame 15 in an upright state is viewed from above.
  • the left wheel 3a includes a left front brake 91a that generates the braking force of the left wheel 3a.
  • the left front brake 91a includes a left brake disc 92a and a left caliper 93a.
  • the left brake disc 92a is formed in an annular shape centering on the left wheel shaft 83a.
  • the left brake disc 92a is fixed to the left wheel 3a.
  • the left caliper 93a is fixed to the lower part of the left rear telescopic element 80a of the left shock absorber 73a.
  • the left caliper 93 is connected to one end of the left front brake pipe 94a and receives hydraulic pressure via the left front brake pipe 94a.
  • the left caliper 93a moves the brake pad by the received hydraulic pressure.
  • the brake pad contacts the right side surface and the left side surface of the left brake disk 92a.
  • the left caliper 93a clamps the rotation of the left brake disc 92a by holding the left brake disc 92a between the
  • FIG. 11 is a block diagram showing a configuration of a brake system 120 provided in the vehicle 1.
  • the brake system 120 includes a left front brake 91a and a right front brake 91b. As described above with reference to FIG. 10, the left front brake 91a is provided on the left wheel 3a and generates the braking force of the left wheel 3a.
  • the right front brake 91b is provided on the right wheel 3b and generates the braking force of the right wheel 3b.
  • the left front brake 91a corresponds to the “left braking portion”
  • the right front brake 91b corresponds to the “right braking portion”.
  • the brake system 120 includes a brake actuator 123.
  • the brake system 120 includes an input member 121 and an input member 131 that can be operated by a rider who drives the vehicle 1.
  • the input members 121 and 131 have a lever shape as an example.
  • the input members 121 and 131 correspond to “braking operators”.
  • the brake system 120 includes a torque control unit 100.
  • the torque control unit 100 includes a hydraulic pressure control unit 102 and an electronic control unit 101.
  • the electronic control unit 101 controls the operation of the hydraulic pressure control unit 102.
  • the hydraulic control unit 102 distributes the hydraulic pressure generated by the rider's operation to the input members 121 and 131 to the left front brake 91a and the right front brake 91b.
  • the electronic control unit 101 determines the distribution of the hydraulic pressures of the left front brake 91a and the right front brake 91b based on the operation amounts of the input members 121 and 131 and the inclination state of the vehicle body frame 15. Thereby, the braking torque of the left wheel 3a and the braking torque of the right wheel 3b are determined.
  • the electronic control unit 101 controls the hydraulic pressure control unit 102 to apply hydraulic pressure to the left front brake 91a, the right front brake 91b, and the rear brake 91c with the determined distribution.
  • the hydraulic pressure control unit 102 corresponds to a “braking control unit”.
  • the hydraulic pressure control unit 102 can include a valve that controls the flow of hydraulic pressure based on the operation of the input members 121 and 131 and a pump that increases the hydraulic pressure to be transmitted.
  • the hydraulic pressure control unit 102 can control the hydraulic pressure, that is, the braking torque of each of the left front brake 91a, the right front brake 91b, and the rear brake 91c by operating the valve and the pump in accordance with a control signal from the electronic control unit 101. That is, the hydraulic pressure control unit 102 has a configuration in which the hydraulic pressures of the left front brake 91a, the right front brake 91b, and the rear brake 91c are independently controlled according to the control of the electronic control unit 101.
  • the hydraulic pressure control unit 102 can include a holding valve, a pump, a pressure reducing valve, and the like.
  • the holding valve controls the flow rate of the brake fluid in each of the input members 121 and 131, the right front brake 91b, and the left front brake 91a.
  • the pump increases the hydraulic pressure of the right front brake 91b and the left front brake 91a.
  • the pressure reducing valve reduces the hydraulic pressure of the right front brake 91b and the left front brake 91a.
  • the torque control unit 100 controls the hydraulic pressure distribution of the right front brake 91b and the left front brake 91a by controlling the operation of the holding valve, the pump, the pressure reducing valve, and other members.
  • the control method of the hydraulic pressure control unit 102 is not particularly limited. Any other method such as a device that electrically controls the fluid pressure, a device that combines a fluid pressure pipe and a mechanical valve, or the like can be adopted as the control method of the fluid pressure control unit 102.
  • a portion that brakes the left wheel 3 a and the right wheel 3 b based on the brake operation input by the input member 121 is referred to as a brake operation device 123.
  • a portion that brakes the rear wheel 5 based on the brake operation input by the input member 131 is referred to as a brake operation device 133.
  • the brake operating device 123 includes a front master cylinder 125.
  • the front master cylinder 125 is activated to generate hydraulic pressure.
  • the generated hydraulic pressure is transmitted to the torque control unit 100 via the front brake pipe 127.
  • the electronic control unit 101 provided in the torque control unit 100 controls the hydraulic pressure control unit 102 to generate a hydraulic pressure corresponding to the transmitted hydraulic pressure, the rotational speed of each wheel, the inclination state of the vehicle 1, and the like. To do.
  • the front brake pipe 127 is connected to the hydraulic pressure control unit 102.
  • the hydraulic pressure control unit 102 can include a front master cylinder pressure sensor (not shown) that detects the hydraulic pressure of the front master cylinder 125.
  • the torque control unit 100 can detect the operation amount of the input member 121 based on the hydraulic pressure detected by the front master cylinder pressure sensor.
  • a hydraulic pressure based on the hydraulic pressure of the front master cylinder 125 is generated in the hydraulic pressure control unit 102.
  • the hydraulic pressure generated by the hydraulic pressure control unit 102 is transmitted to the left caliper 93a via the left front brake pipe 94a.
  • the left front brake 91a operates.
  • the hydraulic pressure generated by the hydraulic pressure control unit 102 is transmitted to the right caliper 93b through the right front brake pipe 94b.
  • the right front brake 91b operates.
  • the left front brake pipe 94a corresponds to the “left pipe”
  • the right front brake pipe 94b corresponds to the “right pipe”.
  • the brake operating device 123 operates the right front brake 91b and the left front brake 91a by operating the input member 121.
  • the torque control unit 100 controls the distribution of the hydraulic pressures of the right front brake 91b and the left front brake 91a according to the operation amount of the input member 121, the left-right inclination state of the body frame, and the like. That is, the torque control unit 100 controls the distribution of the braking force of the right front brake 91b and the left front brake 91a. As a result, the difference between the braking torque of the left wheel 3a and the braking torque of the right wheel 3b is adjusted.
  • the hydraulic pressure control unit 102 adjusts independently the hydraulic pressure of the brake fluid filled in the left front brake pipe 94a and the hydraulic pressure of the brake fluid filled in the right front brake pipe 94b under the control of the electronic control unit 101. It is configured to be possible.
  • the brake system 120 may include a WC pressure sensor that detects the hydraulic pressure (hydraulic pressure of the wheel cylinder: WC pressure) of the calipers 93a, 93b, and 93c of the left front brake 91a, the right front brake 91b, and the rear brake 91c.
  • the electronic control unit 101 can acquire the hydraulic pressure of each brake detected by the WC pressure sensor, that is, the WC pressure, and use it for the control process.
  • the brake system 120 includes a rear brake 91c that generates the braking force of the rear wheels 5.
  • the brake system 120 includes an input member 131 that is different from the input member 121.
  • the brake system 120 includes a brake actuator 133.
  • the brake operating device 133 includes a rear master cylinder 135.
  • the rear master cylinder 135 is activated to generate hydraulic pressure.
  • the generated hydraulic pressure is transmitted to the torque control unit 100 via the rear brake pipe 137.
  • the rear brake pipe 137 is connected to the hydraulic pressure control unit 102.
  • the hydraulic pressure control unit 102 can include a rear master cylinder pressure sensor (not shown) that detects the hydraulic pressure of the rear master cylinder 135.
  • the torque control unit 100 can detect the operation amount of the input member 131 based on the hydraulic pressure detected by the rear master cylinder pressure sensor.
  • the brake operating device 133 operates the left front brake 91a, the right front brake 91b, and the rear brake 91c by operating the input member 131. That is, the hydraulic pressure generated by the hydraulic pressure control unit 102 is transmitted to the left caliper 93a via the left front brake pipe 94a. As a result, the left front brake 91a operates. Similarly, the hydraulic pressure generated by the hydraulic pressure control unit 102 is transmitted to the right caliper 93b through the right front brake pipe 94b. As a result, the right front brake 91b operates. Similarly, the hydraulic pressure generated by the hydraulic pressure control unit 102 is transmitted to the rear caliper 93c via the rear brake pipe 94b. As a result, the rear brake 91c operates.
  • FIG. 12 is a block diagram illustrating a configuration of the torque control unit 100.
  • the torque control unit 100 includes the electronic control unit 101 and the hydraulic pressure control unit 102.
  • the electronic control unit 101 is given information related to the tilt state of the vehicle 1 from the tilt detection unit 50. Also, the electronic control unit 101 is given information regarding the operation amount by which the rider operated the input member 121. This information may be based on the hydraulic pressure generated through the front master cylinder 125 and the rear master cylinder 135.
  • the electronic control unit 101 includes an inner and outer wheel specifying unit 151, a total braking torque calculating unit 153, and each braking torque calculating unit 155.
  • the inner / outer wheel specifying unit 151 specifies which of the left wheel 3a and the right wheel 3b is the inner wheel and which is the outer wheel based on the information regarding the tilt state of the vehicle body frame 15 given from the tilt detection unit 50.
  • the inclination angle (roll angle) of the vertical line of the body frame 14 from the axis orthogonal to the horizontal plane can be set to the inclination state of the vehicle 1.
  • the total braking torque calculation unit 153 Based on the amount of operation of the input member 121 by the rider, the total braking torque calculation unit 153 generates a braking torque (left braking torque) to be generated for the left wheel 3a and a braking torque to be generated for the right wheel 3b ( Right braking torque) (hereinafter referred to as “total braking torque”).
  • the manipulated variable and the total braking torque may be positively correlated at least within a certain range.
  • Each braking torque calculation unit 155 should generate the total braking torque calculated by the total braking torque calculation unit 153, the braking torque to be generated for the left wheel 3a (left braking torque), and the right wheel 3b.
  • a braking torque (right braking torque) is calculated.
  • Each braking torque calculation unit 155 calculates the left braking torque and the right braking torque based on the inclination state given from the inclination detection unit 50 and the result specified by the inner / outer wheel specifying unit 151.
  • the result specified by the inner / outer wheel specifying unit 151 is information indicating whether the left wheel 3a and the right wheel 3b are inner wheels or outer wheels, respectively.
  • the distribution ratio of the left and right braking torques may be determined in advance according to the total braking torque value and the inclination state (roll angle) of the body frame 15.
  • Each braking torque calculation unit 155 uses the data indicating the predetermined distribution ratio to calculate the left and right corresponding to the total braking torque calculated by the total braking torque calculation unit 153 and the inclination state given from the inclination detection unit 50.
  • the distribution ratio of the braking torque can be determined.
  • the hydraulic pressure control unit 102 adjusts the brake hydraulic pressure filled in the left front brake pipe 94a so that the left braking torque calculated by each braking torque calculation unit 155 is generated in the left wheel 3a. Further, the hydraulic pressure control unit 102 adjusts the brake hydraulic pressure filled in the right front brake pipe 94b so that the right braking torque calculated by each braking torque calculation unit 155 is generated in the right wheel 3b.
  • Each braking torque calculation unit 155 can perform calculations based on various criteria. Hereinafter, each embodiment will be described.
  • each braking torque calculation unit 155 is configured such that the braking torque transmitted to the road surface by the front wheel specified as the inner ring by the inner / outer wheel specifying unit 151 is specified as the outer wheel by the inner / outer wheel specifying unit 151.
  • the braking torque to be generated for each front wheel 3 (3a, 3b) is calculated so that the front wheel of the vehicle is larger than the braking torque transmitted to the road surface.
  • FIG. 13A is a diagram for explaining the behavior of the vehicle 1 when a larger braking torque is generated for the inner ring than for the outer ring.
  • FIG. 13A is a diagram assuming a case where the braking torque Fx is generated for the right wheel 3b while the vehicle 1 is traveling while drawing a right curve along the locus 60a. In this state, the right wheel 3b corresponds to the inner wheel, and the left wheel 3a corresponds to the outer wheel. That is, FIG. 13A simulates a case where a larger braking torque is generated for the inner ring than for the outer ring.
  • each braking torque calculation unit 155 is configured such that the braking torque transmitted to the road surface by the front wheel specified as the outer ring by the inner / outer wheel specifying unit 151 is specified as the inner ring by the inner / outer wheel specifying unit 151.
  • the braking torque to be generated for each front wheel 3 (3a, 3b) is calculated so that the front wheel of the vehicle is larger than the braking torque transmitted to the road surface.
  • FIG. 13B is a schematic diagram for explaining the behavior of the vehicle 1 when a larger braking torque is generated with respect to the outer wheel than the inner wheel.
  • FIG. 13B is a diagram assuming a case where the braking torque Fx is generated for the left wheel 3a while the vehicle 1 is traveling while drawing a right curve along the locus 60a. In this state, the right wheel 3b corresponds to the inner wheel, and the left wheel 3a corresponds to the outer wheel. That is, FIG. 13B simulates the case where a larger braking torque is generated for the outer ring than for the inner ring.
  • the outward yaw moment is a yaw moment in the direction opposite to the turning direction.
  • This outward yaw moment 62 is opposite to the inward yaw moment 61 shown in FIG. 13A.
  • This outward yaw moment 62 reduces the force to raise the vehicle body frame 15. That is, a roll moment is generated in a direction in which the body frame 15 is tilted inward of the turn.
  • the outward yaw moment 62 is generated in the vehicle body frame 15, the vehicle body frame 15 may be inclined inward of the turn.
  • the vehicle 1 travels along the locus 60b after generating the braking torque Fx for the left wheel 3a by the outward yaw moment 62.
  • FIG. 14 is a block diagram illustrating a configuration of the torque control unit 100 according to the third embodiment.
  • the torque control unit 100 further includes a storage unit 157 in addition to the configuration of the above embodiment.
  • the storage unit 157 stores priority performance information regarding which of the vehicle body posture maintaining property during driving and the vehicle body posture variability during driving is prioritized. This information may be configured to be appropriately rewritable.
  • each braking torque calculation unit 155 adjusts which braking torque of the inner ring or the outer ring is increased according to the content of the priority performance information.
  • each braking torque calculation unit 155 performs the same processing as in the first embodiment. That is, each braking torque calculation unit 155 transmits the braking torque transmitted to the road surface by the front wheel identified as the inner ring by the inner / outer wheel identification unit 151, and the front wheel identified by the inner / outer wheel identification unit 151 as the outer wheel to the road surface.
  • the braking torque to be generated for each front wheel 3 (3a, 3b) is calculated so as to be larger than the braking torque.
  • each braking torque calculation unit 155 performs the same processing as in the second embodiment. That is, each braking torque calculation unit 155 transmits the braking torque transmitted to the road surface by the front wheel identified as the outer wheel by the inner / outer wheel identification unit 151, and the front wheel identified by the inner / outer wheel identification unit 151 as the inner wheel to the road surface.
  • the braking torque to be generated for each front wheel 3 (3a, 3b) is calculated so as to be larger than the braking torque.
  • each braking torque calculation unit 155 is provided with, for example, information on the roll angular velocity of the vehicle 1 from the inclination detection unit 50, so that the vehicle 1 is moving in a more inclined direction or in a rising direction. Whether it is moving or not can be detected.
  • each braking torque calculation unit 155 moves from the value of the roll angular velocity of the vehicle 1 in a direction in which the vehicle body is more inclined. If it is detected, the same processing as in the first embodiment is performed. That is, each braking torque calculation unit 155 transmits the braking torque transmitted to the road surface by the front wheel identified as the inner ring by the inner / outer wheel identification unit 151, and the front wheel identified by the inner / outer wheel identification unit 151 as the outer wheel to the road surface.
  • the braking torque to be generated for each front wheel 3 (3a, 3b) is calculated so as to be larger than the braking torque.
  • each braking torque calculation unit 155 detects that the vehicle 1 is moving in the direction of rising from the value of the roll angular velocity of the vehicle 1. The same processing as in the second embodiment is performed. That is, each braking torque calculation unit 155 transmits the braking torque transmitted to the road surface by the front wheel identified as the outer wheel by the inner / outer wheel identification unit 151, and the front wheel identified by the inner / outer wheel identification unit 151 as the inner wheel to the road surface.
  • the braking torque to be generated for each front wheel 3 (3a, 3b) is calculated so as to be larger than the braking torque.
  • each braking torque calculation unit 155 indicates that the vehicle body is moving in a direction in which the vehicle body is tilted from the value of the roll angular velocity of the vehicle 1.
  • each braking torque calculation unit 155 transmits the braking torque transmitted to the road surface by the front wheel identified as the outer wheel by the inner / outer wheel identification unit 151, and the front wheel identified by the inner / outer wheel identification unit 151 as the inner wheel to the road surface.
  • the braking torque to be generated for each front wheel 3 (3a, 3b) is calculated so as to be larger than the braking torque.
  • each braking torque calculation unit 155 detects that the vehicle 1 is moving in the direction of rising from the value of the roll angular velocity of the vehicle 1. The same processing as in the embodiment is performed. That is, each braking torque calculation unit 155 transmits the braking torque transmitted to the road surface by the front wheel identified as the inner ring by the inner / outer wheel identification unit 151, and the front wheel identified by the inner / outer wheel identification unit 151 as the outer wheel to the road surface.
  • the braking torque to be generated for each front wheel 3 (3a, 3b) is calculated so as to be larger than the braking torque.
  • Each braking torque calculation unit 155 may distribute the total braking torque based on a reference determined in accordance with the roll angle information of the vehicle 1 given from the inclination detection unit 50. In addition, each braking torque calculation unit 155 may distribute the total braking torque based on a reference determined according to information on the roll angular velocity of the vehicle 1 given from the inclination detection unit 50. Further, each braking torque calculation unit 155 may distribute the total braking torque based on a criterion determined according to both the roll angle information and the roll angular velocity information of the vehicle 1 given from the inclination detection unit 50. I do not care.
  • the torque control unit 100 individually controls the braking torque of the left wheel 3a and the right wheel 3b.
  • the torque control unit 100 may individually control the drive torque of the left wheel 3a and the right wheel 3b.
  • this control can be realized by mounting the wheel-in motor on both the left wheel 3a and the right wheel 3b.
  • FIG. 13A shows an example in which the braking torque of the inner ring is made larger than the braking torque of the outer ring.
  • a driving force opposite to the braking force Fx can be applied to the outer ring. Even when the driving force is applied in this way, the vehicle 1 exhibits the same behavior as the behavior illustrated in FIG. 13A.
  • FIG. 13B shows an example in which the braking torque of the outer ring is larger than the braking torque of the inner ring.
  • a driving force opposite to the braking force Fx can be applied to the inner ring. Even when the driving force is applied in this way, the vehicle 1 exhibits the same behavior as the behavior illustrated in FIG. 13B.
  • the “total braking torque calculation unit 153” appearing in FIGS. 12 and 14 is replaced with the “total driving torque calculation unit 153”. "Is replaced with” each driving torque calculation unit 155 ".
  • the “hydraulic pressure control unit 102” is replaced with a “drive control unit”.
  • the left front brake 91a and the right front brake 91b of the vehicle 1 are replaced with a left driving unit that rotates the left wheel and a right driving unit that rotates the right wheel, respectively.
  • Each of the right drive unit and the left drive unit may include a wheel-in motor that applies a rotational force to the wheels.
  • the drive control unit controls the driving of the wheel-in motor of the left wheel 3a and the wheel-in motor of the right wheel 3b.
  • each braking torque calculation unit 155 is configured to determine the driving force of the left wheel 3a and the driving force of the right wheel 3b according to the inclination state of the vehicle body frame 15.
  • the electronic control unit 101 is configured to control the right driving unit and the left driving unit so as to generate the driving force of the left wheel 3a and the driving force of the right wheel 3b determined by each braking torque calculation unit 155.
  • each driving torque calculation unit 155 may adjust which driving torque of the inner ring or the outer ring is increased according to the content of the priority performance information. Specifically, when the priority performance information indicates that priority is given to maintaining the posture of the vehicle body, the driving torque transmitted to the road surface by the front wheel identified as the outer wheel is the front wheel identified as the inner wheel. The driving torque to be generated for each front wheel 3 (3a, 3b) is calculated so as to be larger than the driving torque transmitted to the road surface. On the other hand, if the priority performance information is the content that priority is given to the posture variability of the vehicle body, the driving torque transmitted to the road surface by the front wheel identified as the inner wheel is on the road surface. The drive torque to be generated for each front wheel 3 (3a, 3b) is calculated so as to be larger than the transmitted drive torque.
  • each drive torque calculation unit 155 moves from the value of the roll angular velocity of the vehicle 1 in the direction in which the vehicle body tilts.
  • the driving torque to be generated for each front wheel 3 (3a, 3b) is calculated so that the driving torque of the inner ring is larger than the driving torque of the outer ring.
  • each driving torque calculation unit 155 detects that the vehicle 1 is moving in the direction of rising from the value of the roll angular velocity of the vehicle 1, The driving torque to be generated for each of the front wheels 3 (3a, 3b) is calculated so that the driving torque becomes larger than the driving torque of the inner wheel.
  • each driving torque calculation unit 155 indicates that the vehicle body is moving in the direction in which the vehicle body is inclined from the value of the roll angular velocity of the vehicle 1.
  • the driving torque to be generated for each front wheel 3 (3a, 3b) is calculated so that the driving torque of the outer wheel becomes larger than the driving torque of the inner wheel.
  • each driving torque calculation unit 155 detects that the vehicle 1 is moving in the direction of rising from the value of the roll angular velocity of the vehicle 1, The driving torque to be generated for each front wheel 3 (3a, 3b) is calculated so that the driving torque of the front wheel 3 becomes larger than the driving torque of the outer wheel.
  • each drive torque calculation unit 155 may distribute the total drive torque based on a reference determined according to the roll angle information of the vehicle 1 given from the inclination detection unit 50. Further, each drive torque calculation unit 155 may distribute the total drive torque based on a reference determined according to the roll angular velocity information of the vehicle 1 given from the inclination detection unit 50. In addition, each drive torque calculation unit 155 may distribute the total drive torque based on a reference determined according to both the roll angle information and the roll angular velocity information of the vehicle 1 given from the inclination detection unit 50. I do not care.
  • the torque control unit 100 may individually control both the braking torque and the driving torque of the left wheel 3a and the right wheel 3b.
  • the left wheel 3a and the right wheel 3b are steering wheels.
  • the left rear wheel and the right rear wheel arranged in the left-right direction can be steered wheels to be steered.
  • the torque control unit 100 may be configured to individually control the braking torque or the drive torque of these two rear wheels.
  • the front wheels and the rear wheels may be steered wheels.
  • the rear wheel is not limited to one wheel, and may be two wheels arranged in the left-right direction.
  • the center in the left-right direction of the rear wheel 5 may not necessarily coincide with the center in the left-right direction of the left wheel 3a and the right wheel 3b.
  • the vehicle 1 may include a vehicle body cover that covers the vehicle body frame 15. Further, the power source of the vehicle 1 may be an engine or an electric motor.
  • the input member (121, 131) is a lever that can be operated by the rider's hand.
  • the input member (121, 131) may be a pedal that is operated by the driver's foot. It may be a push-in button or a rotary grip.
  • the input members (121, 131) are configured to be operable between an initial state where the rider is not touching and a maximum operation state where the rider's operation amount is maximum.
  • the operating element as the input member may be an operating element capable of operating both the braking and driving of the wheels in addition to the operating element capable of operating the braking or driving of the wheels.
  • the brake operator is, for example, a brake lever, a brake pedal, or the like.
  • the drive operator is, for example, an accelerator lever or an accelerator pedal.
  • the operation amount of the input member (121, 131) may be the position from the initial state of the input member (121, 131). In this case, the operation amount can be detected by providing a sensor for detecting the position of the input member (121, 131).
  • the operation amount of the input member (121, 131) may be the amount of change in pressure from the initial state of the input member. In this case, the operation amount can be detected by providing a sensor for detecting the hydraulic pressure generated by the master cylinder (125, 135).
  • the operation amount can be detected by providing a sensor for detecting the pressure directly acting on the input member (121, 131).
  • the operation amount of the input member is a physical amount that changes according to the operation of the driver. The operation amount does not necessarily need to be detected by a sensor, and may be a mechanism that operates mechanically in conjunction with the operation amount.
  • the vehicle 1 employs a disc brake that uses brake fluid pressure.
  • the type of brake is not limited to this, and various types such as a drum brake, an electromagnetic brake, and a wet multi-plate brake may be adopted.
  • the brake actuator (123, 133) was set as the structure which controls a brake hydraulic pressure electronically, you may control a hydraulic pressure with a mechanical mechanism.
  • the configuration of the inclination detector 50 is not limited to the above example.
  • the inclination detection unit 50 may be configured to estimate the roll angle using at least one of 6-axis acceleration and 6-axis speed detected in the vehicle.
  • the inclination detection unit 50 may be configured to measure a physical quantity related to the roll angle of the body frame.
  • the inclination detection unit 50 may include a sensor that detects the relative rotation between the vehicle body frame and the link mechanism, such as a potentiometer.
  • the inclination detection unit 50 may include a proximity sensor (distance sensor). In this case, the distance between the vehicle body frame and the road surface can be measured by the proximity sensor, and the roll angle can be estimated using the distance.
  • the structure of the link mechanism 9 is not limited to the parallelogram link.
  • the link mechanism 9 may be configured to include a shock tower as an arm that rotates with respect to the vehicle body frame.
  • the link mechanism 9 may be configured to include a double wishbone suspension structure.
  • the link mechanism 9 may be configured to include a left arm and a right arm that are arranged side by side in the left-right direction and are rotatably attached to the vehicle body frame.
  • the left arm supports the left steering wheel so as to be movable in the vertical direction with respect to the vehicle body frame
  • the right arm supports the left steering wheel so as to be movable in the vertical direction with respect to the vehicle body frame.
  • the link mechanism 9 may include an actuator that applies a force for rotating the arm to the body frame.
  • the inclination of the body frame in the left-right direction can be controlled by the actuator.
  • the control of the roll moment of the vehicle body frame by the torque control unit 100 and the control of the roll moment by the actuator of the link mechanism are combined.
  • the body frame is a member that receives stress applied to the lean vehicle during traveling.
  • a monocoque stressed skin structure
  • a semi-monocoque or a structure in which a vehicle part also serves as a member that receives stress is also included in the example of the body frame.
  • parts such as an engine and an air cleaner may be a part of the body frame.
  • the inventor considered the operation of the vehicle in the above embodiment in more detail as follows.
  • centrifugal force acts on the body frame.
  • a side slip occurs with respect to the steered wheel, but when the steered wheel itself bends, a force acts to return to the opposite direction.
  • This force is a component of the frictional force acting on the grounding point of the steered wheel, and acts in a direction perpendicular to the traveling direction of the vehicle. This force is called “cornering force” and results from the side slip angle with respect to the tire (wheel).
  • FIG. 15A shows an example of centrifugal force Fc and gravity Fg when the body frame is inclined.
  • the case where the rotation of the steering wheel is braked while traveling with the vehicle body tilted with respect to the road surface that is, the case where the rider applies the brake is considered.
  • the steering wheel When the steering wheel is viewed in the traveling direction, the steering wheel has a shape with a smaller inner diameter on the inner side of the slope than the center. For this reason, as shown in FIG. 15A, when the vehicle is tilted, the ground contact point B of the steered wheel is not a center position but a position shifted inward from the center when viewed from the front of the vehicle body. In this position, the steering wheel receives a braking force from the road surface.
  • a rotational force (yaw moment Yr) in the yaw direction is generated inward, that is, in the same direction as the turning direction with respect to the steered wheels (see FIG. 15B).
  • the centrifugal force Fc increases as a reaction force against the rotational force in the yaw direction.
  • a force for raising the vehicle body is generated.
  • the force for raising the vehicle body is a rotational force (roll moment) in the roll direction.
  • braking force is generated only for the steering wheel located on the inner side of the turn, that is, the inner wheel
  • no braking force is generated for the steering wheel located on the outer side of the turn, that is, the outer wheel.
  • the inner ring receives a force resulting from the braking force from the road surface. Therefore, a rotational force (yaw moment Yr) in the yaw direction is generated inward with respect to the inner ring. Further, a braking force is generated for the inner wheel in a direction opposite to the traveling direction of the vehicle, while no braking force is generated for the outer wheel. Due to the difference in braking force between the inner ring and the outer ring, an inward yaw moment is additionally generated with respect to the body frame.
  • the outer ring receives a force resulting from the braking force from the road surface. An inward yaw moment is generated with respect to the outer ring. Further, while the braking force is generated in the direction opposite to the traveling direction for the outer ring, no braking force is generated for the inner ring. Due to the difference in braking force between the inner ring and the outer ring, an outward yaw moment is generated with respect to the body frame.
  • the inward yaw moment is reduced.
  • the yaw rate decreases. Therefore, the centrifugal force is reduced. That is, the roll moment for raising the vehicle body is weakened.
  • the present inventor controls the posture of the vehicle body in a saddle-ride type vehicle having two left and right steering wheels by providing a difference in the braking force generated for the left and right steering wheels during traveling. I found out that I could do it. Based on this knowledge, the inventor has conceived the configuration of the above-described embodiment.
  • the braking torque of the left steering wheel and the right steering wheel are determined based on the left-right inclination state of the body frame during at least a part of the period in which the right steering wheel and the left steering wheel are gripping the road surface.
  • the difference in braking torque between the steered wheels is adjusted.
  • the braking torque may be replaced with driving torque. This makes it possible to adjust the inclination of the body frame in the left-right direction.
  • the lean vehicle is arranged side by side in the left-right direction of the lean vehicle, and a left steering wheel and a right steering wheel to be steered, a left steering wheel braking / driving device that controls torque of rotation around the axle of the left steering wheel, A right steering wheel braking / driving device that controls a torque of rotation of the right steering wheel around an axle, a vehicle body frame, and a right / left tilt moment control device;
  • the body frame supports the left steering wheel, the right steering wheel, the left steering wheel braking / driving device, and the right steering wheel braking / driving device.
  • the body frame tilts to the left in the left-right direction of the lean vehicle when the lean vehicle turns to the left, and tilts to the right in the left-right direction of the lean vehicle when the lean vehicle turns to the right.
  • the left / right tilt moment control device includes a left / right tilt state detection unit and a left / right steering wheel torque difference adjustment unit.
  • the left / right tilt state detection unit is mounted on the body frame and detects a tilt state of the body frame in the left / right direction of the lean vehicle.
  • the left and right steered wheel torque difference adjustment unit is based on the tilt state detected by the left and right tilt state detection unit, and at least during a period during which the left steered wheel and the right steered wheel are gripping the road surface.
  • the difference between the torque generated by the left steering wheel braking / driving device and the torque generated by the right steering wheel braking / driving device is adjusted.
  • the left / right tilt moment control device controls a moment for tilting the vehicle body frame while the lean vehicle is traveling in the left / right direction of the lean vehicle by adjusting the torque difference adjusted by the left / right steering wheel torque difference adjustment.
  • the moment for tilting the vehicle body frame in the left-right direction of the lean vehicle is a roll moment.
  • the information detected as the tilt state by the left-right tilt state detection unit can include, for example, a roll angle, a roll angular velocity, or a value indicating whether the body frame is tilted to the right or left.
  • the left steering wheel braking / driving device controls the torque transmitted from the left steering wheel to the road surface by controlling the torque of rotation of the left steering wheel around the axle.
  • the right steering wheel braking / driving device controls the torque transmitted to the road surface by the right steering wheel by controlling the torque of rotation of the right steering wheel around the axle.
  • the state where the left steering wheel and the right steering wheel grip the road surface is a state where the left steering wheel and the right steering wheel are not slipping. It can be said that the left steering wheel and the right steering wheel are in a gripped state when the anti-lock braking system (ABS) or the traction control is not required to operate.
  • ABS anti-lock braking system
  • a state where the slip ratio is not within the range of the slip ratio where the ABS or the traction control operates can be set as the grip state.
  • the roll moment control of the vehicle body frame by adjusting the torque difference between the left and right steered wheels according to the tilt state by the left and right tilt moment control device is running while the left and right steered wheels are gripping the road surface. This may be performed over at least a part of the period and during a period in which the left steered wheel and the right steered wheel are not gripping the road surface.
  • the state of not gripping is, for example, a state where ABS or traction control is operating. That is, the roll moment control by adjusting the torque difference of the left / right tilt moment control device may be performed only in the grip state, or in both the grip state and the slip state. In a slip state, a difference in braking or driving torque between the left steering wheel and the right steering wheel may occur.
  • the roll moment control by adjusting the torque difference of the left / right tilt moment control device may be combined with ABS.
  • you may comprise a left-right inclination moment control apparatus using the brake control system used for ABS.
  • roll moment control by adjusting the torque difference may be performed.
  • the slip state the fluctuation of the braking torque of the left steering wheel and the right steering wheel due to ABS is more likely to have a greater influence on the roll moment of the vehicle body frame than the adjustment of the torque difference.
  • the slip ratio is so low that the ABS does not operate, the roll moment control by adjusting the torque difference of the left / right tilt moment control device tends to affect the tilt of the body frame.
  • the lean vehicle may not include a means for detecting the slip state or the grip state.
  • the left / right inclination moment control device does not necessarily have to monitor the slip ratio of the left steering wheel and the right steering wheel. Further, the left / right tilt moment control device may not determine whether or not the grip state is set. Lean vehicles are gripped in the grip state for most of the traveling period, and rarely slip. Therefore, even if the slip rate is not particularly monitored, the left / right tilt moment control device can adjust the left / right steering wheel torque difference according to the tilt state during the entire grip travel period or a part of the grip travel period. The moment control of the direction inclination can be performed.
  • the left / right tilt moment control device may adjust the torque difference according to the grip state of the left steering wheel and the right steering wheel, for example, the slip ratio. For example, when the difference between the slip ratios of the left steering wheel and the right steering wheel is within a predetermined range, the torque difference can be adjusted.
  • the left / right tilt moment control device may monitor the slip ratio of the left steering wheel and the right steering wheel and adjust the torque difference only when the left steering wheel and the right steering wheel are in the grip state. Thereby, moment control can be performed more efficiently.
  • the lean vehicle can include a left slip ratio calculation unit that calculates the slip ratio of the left steering wheel and a right slip ratio calculation unit that calculates the slip ratio of the right steering wheel.
  • the left / right tilting moment control device is configured so that the left steered wheel and the right steered wheel have a torque difference between the left steered wheel and the right steered wheel according to the tilt state at least during a period when the left steered wheel and the right steered wheel are traveling on the same ⁇ value road surface.
  • Roll moment control of the body frame can be performed by adjustment.
  • the roll moment is efficiently controlled by adjusting the torque difference between the left steering wheel and the right steering wheel using the left / right tilt moment control device.
  • the ⁇ value represents the friction coefficient of the road surface. Note that the left / right tilt moment control device does not necessarily have a function of monitoring the ⁇ value.
  • the torque control unit 100 is an example of a left and right steering wheel torque difference adjustment unit.
  • the tilt detection unit 50 is an example of a left / right tilt state detection unit.
  • the torque control unit 100 and the tilt detection unit 50 described above can constitute a left / right tilt moment control device. An example of the operation of the left / right tilt moment control device including the torque control unit 100 and the tilt detection unit 50 will be described.
  • FIG. 16 is a flowchart showing an operation example of the right / left tilt moment control device.
  • the inclination detection unit 50 detects the inclination state of the vehicle body frame 15 in the left-right direction of the vehicle 1 (S1).
  • the torque control unit 100 determines whether to control the torque of rotation of the left wheel (left steering wheel) 3a and the right wheel (right steering wheel) 3b (S2).
  • the torque control unit 100 can make the above determination based on, for example, an operation on the input member 121 by the rider. Instead of the rider's operation or in addition to the rider's operation, the above determination may be made based on other vehicle conditions.
  • the torque control unit 100 can make the above determination based on the tilt state detected in S1, the steering torque, the vehicle speed of the vehicle 1, and other information indicating the vehicle state.
  • the left / right tilt moment control device is not limited to a mode that adjusts the torque difference between the left steering wheel and the right steering wheel when the rider operates. Regardless of the rider's operation, the torque difference between the left steering wheel and the right steering wheel may be adjusted. It is also possible to control whether or not the torque difference between the left steered wheel and the right steered wheel is adjusted according to a vehicle state other than the tilted state. For example, the left / right tilt moment device can adjust the torque difference between the left steered wheel and the right steered wheel in at least part of a period in which the vehicle speed is greater than the threshold value.
  • the torque control unit 100 determines the torque of the left wheel 3a and the torque of the right wheel 3b according to the tilt state detected in S1 (S3).
  • the torque control unit 100 can determine the braking torque of the left wheel 3a and the right wheel 3b, the driving torque of the left wheel 3a and the right wheel 3b, or both. Thereby, the difference between the torque of the left wheel 3a and the torque of the right wheel 3b is determined. That is, the torque difference adjusted according to the tilt state is determined.
  • the torque control unit 100 uses, for example, prerecorded data indicating the torque of the left wheel 3a and the right wheel 3b corresponding to a plurality of tilt states, and the left wheel 3a corresponding to the detected tilt state. And the torque of the right wheel 3b can be determined. For example, it is possible to determine the torque of the left wheel 3a and the right wheel 3b according to the detected inclination state using map data indicating the correspondence relationship between the inclination state and the torque of the left steering wheel and the right steering wheel. . Moreover, the torque control part 100 may calculate the torque of the left wheel 3a and the right wheel 3b according to the detected inclination state according to a predetermined program.
  • the torque control unit 100 obtains the total amount, that is, the total value of the torque of the left wheel 3a and the torque of the right wheel 3b, and distributes the torque, that is, the ratio of the torque of the left wheel 3a and the right wheel 3b according to the inclination state May be determined.
  • the torque control unit 100 calculates the torque of the left wheel 3a and the torque of the right wheel 3b corresponding to the tilt state detected in S1, without obtaining the total amount of torque of the left wheel 3a and right wheel 3b. May be.
  • the torque control unit 100 may determine the torque of the left wheel 3a and the torque of the right wheel 3b using information indicating other vehicle states in addition to the tilt state detected in S1.
  • the torque of the left wheel 3a and the torque of the right wheel 3b are determined using information indicating the vehicle state such as the vehicle speed or acceleration of the vehicle 1, the steering torque, the steering angle, the brake operation amount, or the access operation amount. Can do.
  • the torque control unit 100 causes the left steering wheel braking / driving device to generate the torque of the left wheel 3a determined in S3, and causes the right steering wheel braking / driving device to generate the torque of the right wheel 3b determined in S3.
  • the left steering wheel braking / driving device is a left steering wheel brake that applies braking force to the left steering wheel
  • the right steering wheel braking / driving device applies braking force to the right steering wheel.
  • Right steering wheel brake is a left steering wheel brake that applies braking force to the left steering wheel, and the right steering wheel braking / driving device applies braking force to the right steering wheel.
  • the left steering wheel braking / driving device is a left steering wheel driving device that applies a rotational force around the axle to the left steering wheel
  • the right steering wheel braking / driving device is around the axle on the right steering wheel.
  • This is a right steering wheel drive device that applies a rotational force of.
  • the right steering wheel driving device and the right steering wheel driving device may include a motor or an engine as a power source.
  • the left steering wheel braking / driving device applies both braking torque and driving torque to the left steering wheel
  • the right steering wheel braking / driving device applies both braking torque and driving torque to the right steering wheel.
  • the left steering wheel braking / driving device includes a left steering wheel brake and a left steering wheel driving device
  • the right steering wheel braking / driving device includes a right steering wheel brake and a right steering wheel driving device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automatic Cycles, And Cycles In General (AREA)
  • Regulating Braking Force (AREA)

Abstract

This leanable vehicle is equipped with a vehicle chassis frame, a left steered wheel, a right steered wheel, and a left-right tilt moment control device. The left-right tilt moment control device includes: a left-right tilt state detection unit for detecting the state of tilt of the vehicle chassis frame; and a left-right-steered-wheel torque difference adjustment unit for adjusting the difference between the torque of the left steered wheel and the torque of the right steered wheel during at least part of a period of travel while tires are gripping, on the basis of the state of tilt. In addition, the left-right tilt moment control device controls the moment at which the vehicle chassis frame of the traveling leanable vehicle is tilted to the left and right, by adjusting the difference between the torque of the left steered wheel and the torque of the right steered wheel.

Description

リーン車両Lean vehicle
 本発明は、左右方向に並べて配置された2つの操舵輪を有し、左右方向に傾斜可能なリーン車両に関する。 The present invention relates to a lean vehicle having two steered wheels arranged side by side in the left-right direction and capable of tilting in the left-right direction.
 従来、四輪のリーン車両において、車体の左右方向の傾斜量を調整する技術が、下記特許文献1に開示されている。このリーン車両は、左右一対のリアアームと、左右一対の油圧アクチュエータを備える。油圧アクチュエータで一対のリアアームの角度を調整する。これにより、車体の左右方向の傾斜量が調整される。 Conventionally, in a four-wheel lean vehicle, a technique for adjusting the amount of leaning in the left-right direction of the vehicle body is disclosed in Patent Document 1 below. The lean vehicle includes a pair of left and right rear arms and a pair of left and right hydraulic actuators. The angle of the pair of rear arms is adjusted with a hydraulic actuator. Thereby, the amount of inclination of the vehicle body in the left-right direction is adjusted.
特許第5237783号公報Japanese Patent No. 5237783
 本発明は、上記特許文献1とは異なる方法により、車体の左右方向の傾斜を調整する機能を有するリーン車両を実現することを目的とする。 An object of the present invention is to realize a lean vehicle having a function of adjusting the horizontal inclination of the vehicle body by a method different from that of Patent Document 1.
 発明者は、左右方向に並べて配置された一対の操舵輪を有するリーン車両について、走行中の挙動解析を行った。特に、一対の操舵輪である右操舵輪及び左操舵輪に対する制動力の与え方により、車両がどのような挙動を示すかを研究した。 The inventor conducted behavior analysis during travel on a lean vehicle having a pair of steered wheels arranged side by side in the left-right direction. In particular, we studied how the vehicle behaves depending on how braking force is applied to the right and left steering wheels, which are a pair of steering wheels.
 リーン車両では、走行中に車体フレームを左右に傾斜することで、進行方向を左右に変えることができる。すなわち、リーン車両の旋回時には、リーン車両が旋回する方向に車体フレームが傾斜する。発明者は、傾斜走行中に、右操舵輪及び左操舵輪の制動力の配分を様々に変えた場合のリーン車両の挙動について研究した。その結果、車体フレームが傾斜した状態で、右操舵輪及び左操舵輪に制動力を等配分すると、車体フレームを旋回外側へ起き上がらせる方向のロールモーメントが車体フレームに発生することがわかった。また、右操舵輪と左操舵輪の制動力の差を極端に変える実験をすると、この特性が変わることを見出した。以下では、リーン車両の旋回時において、リーン車両の左と右のうち、旋回中心に近い方を旋回内側する。リーン車両の左と右のうち旋回中心と反対側を旋回外側とする。 In lean vehicles, the direction of travel can be changed to the left or right by tilting the body frame to the left or right while driving. That is, when the lean vehicle turns, the body frame tilts in the direction in which the lean vehicle turns. The inventor studied the behavior of a lean vehicle when the distribution of braking force between the right steering wheel and the left steering wheel was variously changed while traveling on a slope. As a result, it was found that when the braking force is equally distributed to the right steering wheel and the left steering wheel in a state where the body frame is inclined, a roll moment is generated in the body frame in a direction to raise the body frame to the outside of the turn. In addition, it was found that this characteristic changes when an experiment is performed in which the difference in braking force between the right steering wheel and the left steering wheel is extremely changed. In the following, when the lean vehicle is turning, the side closer to the turning center of the left and right sides of the lean vehicle is turned inside. Of the left and right sides of the lean vehicle, the opposite side to the turning center is the turning outside.
 発明者は、制動力の配分と車体フレームの傾斜状態との関係をさらに詳しく検討したところ、次のことがわかった。まず、傾斜走行時において、旋回の外側に位置する操舵輪すなわち外輪の制動力を、旋回の内側に位置する操舵輪すなわち内輪の制動力より大きくした場合、さらに、車体フレームを旋回内側へ傾斜させる方向のロールモーメントが発生することがわかった。すなわち、車体フレームの外側への起き上がりが抑制されることがわかった。一方、傾斜走行時において、内輪の制動力を、外輪の制動力より大きくした場合、車体フレームを旋回外側への起き上がらせる方向のロールモーメントが発生することがわかった。すなわち、車体フレームの旋回外側への起き上がりがより大きくなることがわかった。これにより、発明者は、傾斜走行中の左操舵輪と右操舵輪の制動力の差を調整することで、車体フレームの傾斜状態を調整できることを見出した。制動力は、制動トルクと同じ意味である。 The inventor examined the relationship between the distribution of braking force and the inclination state of the body frame in more detail, and found the following. First, if the braking force of the steering wheel, ie, the outer wheel, located on the outside of the turn is greater than the braking force of the steering wheel, ie, the inner wheel, located on the inside of the turn, the vehicle body frame is further inclined to the inside of the turn. It was found that a roll moment in the direction occurred. That is, it has been found that the rising to the outside of the body frame is suppressed. On the other hand, it was found that when the braking force of the inner wheel is made larger than the braking force of the outer wheel during the inclined running, a roll moment is generated in a direction that causes the body frame to rise to the outside of the turn. That is, it has been found that the rising of the vehicle body frame to the outside of the turn is greater. As a result, the inventor has found that the tilt state of the vehicle body frame can be adjusted by adjusting the difference in braking force between the left steering wheel and the right steering wheel that are running on the slope. The braking force has the same meaning as the braking torque.
 さらに、発明者は、制動力は、駆動力と向きが反対であることを鑑みて、次の知見を得た。すなわち、左操舵輪及び右操舵輪の駆動力の差を調整することによって、リーン車両の走行時に車体フレームを左右方向に傾斜させるロールモーメントを調整できる。駆動力は、駆動トルクと同じ意味である。 Furthermore, the inventor obtained the following knowledge in view of the fact that the braking force is opposite in direction to the driving force. That is, by adjusting the difference in driving force between the left steering wheel and the right steering wheel, it is possible to adjust the roll moment that tilts the vehicle body frame in the left-right direction when the lean vehicle is traveling. The driving force has the same meaning as the driving torque.
 また、発明者は、後輪が左右一対の操舵輪である場合も、前輪が左右一対の操舵輪である場合と同様に、左右の操舵輪の制動トルク又は駆動トルクの差を調整することよって、車両走行中に車体フレームを左右方向に傾斜させるモーメントを調整できることに想到した。 Further, the inventor adjusts the difference in braking torque or drive torque between the left and right steering wheels even when the rear wheels are a pair of left and right steering wheels, as in the case where the front wheels are a pair of left and right steering wheels. The inventors have come up with the idea that the moment for tilting the body frame in the left-right direction can be adjusted while the vehicle is running.
 上記の知見に基づき、発明者は、下記構成のリーン車両に想到した。 本発明の実施形態におけるリーン車両は、前記リーン車両の左右方向に並んで配置され、操舵される左操舵輪及び右操舵輪と、前記左操舵輪の車軸周りの回転のトルクを制御する左操舵輪制駆動装置と、前記右操舵輪の車軸周りの回転のトルクを制御する右操舵輪制駆動装置と、車体フレームと、左右傾斜モーメント制御装置とを備える。前記車体フレームは、前記左操舵輪、前記右操舵輪、前記左操舵輪制駆動装置及び前記右操舵輪制駆動装置を支持する。前記車体フレームは、前記リーン車両が左に旋回するときに前記リーン車両の左右方向において左に傾斜し、前記リーン車両が右に旋回するときに前記リーン車両の左右方向において右に傾斜する。前記左右傾斜モーメント制御装置は、左右傾斜状態検出部と、左右操舵輪トルク差調整部とを含む。前記左右傾斜状態検出部は、前記車体フレームに搭載され、前記リーン車両の左右方向における前記車体フレームの傾斜状態を検出する。前記左右操舵輪トルク差調整部は、前記左右傾斜状態検出部が検出した傾斜状態に基づいて、前記左操舵輪及び前記右操舵輪が路面をグリップした状態で走行中の期間の少なくとも一部において、前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと、前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクの差を調整する。前記左右傾斜モーメント制御装置は、前記左操舵輪のトルクと前記右操舵輪のトルクの差の整によって、前記リーン車両の走行中の前記車体フレームを前記リーン車両の左右方向に傾斜させるモーメントを制御する(構成1)。上記構成1のリーン車両において、左操舵輪のトルクと右操舵輪のトルクの差を調整することで、車体フレームを左右方向に傾斜させるモーメントが制御される。そのため、車体フレームの左右方向における傾斜を調整することが可能になる。 Based on the above findings, the inventor has come up with a lean vehicle having the following configuration. The lean vehicle in the embodiment of the present invention is arranged side by side in the left-right direction of the lean vehicle, and the left steering wheel and the right steering wheel to be steered, and the left steering wheel that controls the rotation torque around the axle of the left steering wheel A wheel drive device, a right steering wheel drive device that controls torque of rotation of the right steered wheel around the axle, a vehicle body frame, and a left / right tilt moment control device. The body frame supports the left steering wheel, the right steering wheel, the left steering wheel braking / driving device, and the right steering wheel braking / driving device. The body frame tilts to the left in the left-right direction of the lean vehicle when the lean vehicle turns to the left, and tilts to the right in the left-right direction of the lean vehicle when the lean vehicle turns to the right. The left / right tilt moment control device includes a left / right tilt state detection unit and a left / right steering wheel torque difference adjustment unit. The left / right tilt state detection unit is mounted on the body frame and detects a tilt state of the body frame in the left / right direction of the lean vehicle. The left and right steered wheel torque difference adjustment unit is based on the tilt state detected by the left and right tilt state detection unit, and at least during a period during which the left steered wheel and the right steered wheel are gripping the road surface. The difference between the torque of the left steering wheel controlled by the left steering wheel braking / driving device and the torque of the right steering wheel controlled by the right steering wheel braking / driving device is adjusted. The left / right tilt moment control device controls a moment for tilting the vehicle body frame during travel of the lean vehicle in the left / right direction of the lean vehicle by adjusting a difference between the torque of the left steered wheel and the torque of the right steered wheel. (Configuration 1) In the lean vehicle having the configuration 1, the moment for tilting the vehicle body frame in the left-right direction is controlled by adjusting the difference between the torque of the left steering wheel and the torque of the right steering wheel. Therefore, it is possible to adjust the inclination of the body frame in the left-right direction.
 上記構成1のリーン車両において、前記左右操舵輪トルク差調整部は、前記車体フレームが前記リーン車両の左右方向において左に傾斜している時の前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクの大小関係と、前記車体フレームが前記リーン車両の左右方向において右に傾斜している時の前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクの大小関係とが異なるように、前記左操舵輪のトルクと前記右操舵輪のトルクの差を調整することができる(構成2)。 In the lean vehicle configured as described above, the left and right steered wheel torque difference adjustment unit is controlled by the left steered wheel braking and driving device when the vehicle body frame is tilted to the left in the left and right direction of the lean vehicle. The left steered wheel when the torque of the steered wheel and the torque of the right steered wheel controlled by the right steered wheel braking / driving device are tilted to the right in the left-right direction of the lean vehicle. The torque of the left steered wheel and the right steering wheel are different so that the magnitude relationship between the torque of the left steered wheel controlled by the braking / driving device and the torque of the right steered wheel controlled by the right steering wheel braking / driving device is different. The difference in torque between the wheels can be adjusted (Configuration 2).
 上記構成2によれば、車体フレームが左に傾斜している時の左操舵輪のトルクと右操舵輪のトルクの差によるロールモーメントの向きと、右に傾斜している時の左操舵輪のトルクと右操舵輪のトルクの差によるロールモーメントの向きが反対になる。そのため、左傾斜時及び右傾斜時のいずれにおいても、車体フレームを起き上がらせるモーメント又は、車体フレームをさらに傾斜させるモーメントのいずれかを発生させることができる。 According to Configuration 2, the direction of the roll moment due to the difference between the torque of the left steering wheel and the torque of the right steering wheel when the body frame is tilted to the left, and the direction of the left steering wheel when the body frame is tilted to the right The direction of the roll moment due to the difference between the torque and the torque of the right steering wheel is reversed. Therefore, it is possible to generate either a moment that raises the vehicle body frame or a moment that further tilts the vehicle body frame when the vehicle is tilted left or right.
 なお、車体フレームがリーン車両の左右方向において左に傾斜している状態は、車体フレームの上下方向線が、鉛直線に対して車両の左右方向の左方に傾いている状態である。車体フレームがリーン車両の左右方向において右に傾斜している状態は、車体フレームの上下方向線が、鉛直線に対して車両の左右方向の右方に傾いている状態である。リーン車両の旋回時において、車体フレームが左に傾斜している場合は、左操舵輪が内輪、右操舵輪が外輪になる。リーン車両の旋回時において、車体フレームが右に傾斜している場合は、左操舵輪が外輪、右操舵輪が内輪になる。 The state in which the body frame is tilted to the left in the left-right direction of the lean vehicle is a state in which the vertical line of the body frame is tilted to the left in the left-right direction of the vehicle with respect to the vertical line. The state in which the body frame is tilted to the right in the left-right direction of the lean vehicle is a state in which the vertical line of the body frame is tilted to the right in the left-right direction of the vehicle with respect to the vertical line. If the vehicle body frame is tilted to the left when the lean vehicle is turning, the left steering wheel is the inner wheel and the right steering wheel is the outer wheel. If the vehicle body frame is tilted to the right when the lean vehicle is turning, the left steering wheel is the outer wheel and the right steering wheel is the inner wheel.
 左操舵輪及び右操舵輪の車軸周りの回転のトルクは、制動トルク及び駆動トルクを含む。駆動トルクは、リーン車両が前進するように左操舵輪又は右操舵輪を回転させる力である。制動トルクは、リーン車両が前進する方向の左操舵輪又は右操舵輪の回転を制動する力である。駆動トルクの向きと制動トルクの向きは反対になる。 Rotational torque around the axle of the left and right steering wheels includes braking torque and drive torque. The driving torque is a force that rotates the left steering wheel or the right steering wheel so that the lean vehicle moves forward. The braking torque is a force that brakes the rotation of the left steering wheel or the right steering wheel in the direction in which the lean vehicle moves forward. The direction of the driving torque and the direction of the braking torque are opposite.
 上記構成2のリーン車両において、前記左右操舵輪トルク差調整部は、
 前記車体フレームが前記リーン車両の左右方向において左に傾斜している時に、前記左操舵輪制駆動装置により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより大きくなるか、又は、前記左操舵輪制駆動装置により制御される前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより小さくなるように前記左操舵輪のトルクと前記右操舵輪のトルクの差を調整し、
 前記車体フレームが前記リーン車両の左右方向において右に傾斜している時に、前記左操舵輪制駆動により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより小さくなるか、又は、前記左操舵輪制駆動装置により制御される前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより大きくなるように前記左操舵輪のトルクと前記右操舵輪のトルク差を調整することができる(構成3)。
In the lean vehicle having the above-described configuration 2, the left and right steering wheel torque difference adjustment unit includes:
When the vehicle body frame is tilted to the left in the left-right direction of the lean vehicle, the braking torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device. The braking torque of the right steering wheel is greater than the braking torque of the right steering wheel, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is Adjusting the difference between the torque of the left steering wheel and the torque of the right steering wheel so as to be smaller than the driving torque,
When the vehicle body frame is tilted to the right in the left-right direction of the lean vehicle, the braking torque of the left steering wheel controlled by the left steering wheel braking drive is controlled by the right steering wheel braking / driving device. Driving the right steering wheel, which is smaller than the braking torque of the right steering wheel, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device The torque difference between the left steered wheel and the right steered wheel can be adjusted to be greater than the torque (Configuration 3).
 上記構成3によれば、左操舵輪と右操舵輪のうち旋回時の内輪となる方の制動トルクが、外輪となる方の制動トルクより大きくなる。又は、外輪の駆動トルクが内輪の駆動トルクより大きくなる。このトルク差により、リーン車両の旋回時に、車体フレームを起き上がらせる方向のロールモーメントが生じる。そのため、車体フレームの左右方向における傾斜を調整することが可能になる。 According to the above configuration 3, the braking torque of the left steering wheel and the right steering wheel that becomes the inner wheel during turning is greater than the braking torque that becomes the outer wheel. Alternatively, the driving torque of the outer ring becomes larger than the driving torque of the inner ring. Due to this torque difference, a roll moment is generated in a direction in which the vehicle body frame is raised when the lean vehicle turns. Therefore, it is possible to adjust the inclination of the body frame in the left-right direction.
 ここで、左操舵輪の制動トルクが右操舵輪の制動トルクより大きく又は小さくなることは、左操舵輪の制動トルクの大きさすなわち絶対値が右操舵輪の制動トルクの大きさすなわち絶対値より大きく又は小さくなることとする。左操舵輪の駆動トルクが右操舵輪の駆動トルクより大きく又は小さくなることは、左操舵輪の駆動トルクの大きさすなわち絶対値が右操舵輪の駆動トルクの大きさすなわち絶対値より大きく又は小さくなることとする。 Here, when the braking torque of the left steering wheel is larger or smaller than the braking torque of the right steering wheel, the magnitude of the braking torque of the left steering wheel, that is, the absolute value, is greater than the magnitude of the braking torque of the right steering wheel, that is, the absolute value. Increase or decrease. That the driving torque of the left steering wheel is larger or smaller than the driving torque of the right steering wheel is that the magnitude of the driving torque of the left steering wheel, that is, the absolute value is larger or smaller than the magnitude of the driving torque of the right steering wheel, that is, the absolute value. Suppose that
 上記構成2のリーン車両において、前記左右操舵輪トルク差調整部は、
 前記車体フレームが前記リーン車両の左右方向において左に傾斜している時に、前記左操舵輪制駆動装置により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより小さくなるか、又は、前記左操舵輪制駆動装置により前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより大きくなるように前記左操舵輪のトルクと前記右操舵輪のトルクの差を調整し、
 前記車体フレームが前記リーン車両の左右方向において右に傾斜している時に、前記左操舵輪制駆動装置により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより大きくなるか、又は、前記左操舵輪制駆動装置により前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより小さくなるように前記左操舵輪のトルクと前記右操舵輪のトルクの差を調整することができる(構成4)。
In the lean vehicle having the above-described configuration 2, the left and right steering wheel torque difference adjustment unit includes:
When the vehicle body frame is tilted to the left in the left-right direction of the lean vehicle, the braking torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device. The driving torque of the left steering wheel is smaller than the braking torque of the right steering wheel, or the driving torque of the left steering wheel is controlled by the right steering wheel braking / driving device. Adjust the difference between the torque of the left steering wheel and the torque of the right steering wheel so as to increase,
When the vehicle body frame is tilted to the right in the left-right direction of the lean vehicle, the braking torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device. The braking torque of the right steering wheel is greater than the braking torque of the right steering wheel, or the driving torque of the left steering wheel by the left steering wheel braking / driving device is greater than the driving torque of the right steering wheel controlled by the right steering wheel braking / driving device. The difference between the torque of the left steered wheel and the torque of the right steered wheel can be adjusted so as to decrease (Configuration 4).
 上記構成3によれば、左操舵輪と右操舵輪のうち旋回時の外輪となる方の制動トルクが、内輪となる方の制動トルクより大きくなる。又は、内輪の駆動トルクが外輪の駆動トルクより大きくなる。このトルク差により、リーン車両の旋回時に、車体フレームをさらに傾斜させる方向のロールモーメントが生じる。そのため、車体フレームの左右方向における傾斜を調整することが可能になる。 According to the above configuration 3, the braking torque of the left steering wheel and the right steering wheel that becomes the outer wheel during turning is greater than the braking torque that becomes the inner wheel. Or, the driving torque of the inner ring becomes larger than the driving torque of the outer ring. Due to this torque difference, when the lean vehicle turns, a roll moment is generated in a direction in which the body frame is further tilted. Therefore, it is possible to adjust the inclination of the body frame in the left-right direction.
 上記構成1~4のいずれかのリーン車両において、前記左右操舵輪トルク差調整部は、前記左右傾斜状態検出部が検出した前記リーン車両の左右方向における前記車体フレームの傾斜角に応じて、前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクの差を調整することができる(構成5)。上記構成5により、車体フレームの左右方向における傾斜を、傾斜角に応じて調整することが可能になる。例えば、左操舵輪のトルクの大きさと、右操舵輪のトルクの大きさを、車体フレームの傾斜角に応じた大きさとすることができる。 In the lean vehicle according to any one of the above configurations 1 to 4, the left and right steering wheel torque difference adjustment unit is configured to control the vehicle body frame according to an inclination angle of the lean vehicle in the left-right direction detected by the left-right inclination state detection unit. The difference between the torque of the left steering wheel controlled by the left steering wheel braking / driving device and the torque of the right steering wheel controlled by the right steering wheel braking / driving device can be adjusted (Configuration 5). With the configuration 5, the inclination of the body frame in the left-right direction can be adjusted according to the inclination angle. For example, the magnitude of the torque of the left steering wheel and the magnitude of the torque of the right steering wheel can be set in accordance with the inclination angle of the vehicle body frame.
 上記構成1~5のいずれかのリーン車両でおいて、前記左右操舵輪トルク差調整部は、前記左右傾斜状態検出部が検出した前記リーン車両の左右方向における前記車体フレームの傾斜角速度に応じて、前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと、前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクの差を調整することができる(構成6)。 In the lean vehicle having any one of the configurations 1 to 5, the left and right steered wheel torque difference adjustment unit is responsive to the lean angular velocity of the vehicle body frame in the left and right direction of the lean vehicle detected by the left and right lean state detection unit. The difference between the torque of the left steering wheel controlled by the left steering wheel braking / driving device and the torque of the right steering wheel controlled by the right steering wheel braking / driving device can be adjusted (Configuration 6).
 上記構成6により、車体フレームの左右方向における傾斜を、傾斜角速度に応じて調整することが可能になる。例えば、左操舵輪のトルクの大きさと、右操舵輪のトルクの大きさを、車体フレームの傾斜角速度に応じた大きさとすることができる。 The configuration 6 makes it possible to adjust the inclination of the body frame in the left-right direction according to the inclination angular velocity. For example, the magnitude of the torque of the left steering wheel and the magnitude of the torque of the right steering wheel can be set in accordance with the inclination angular velocity of the vehicle body frame.
 上記構成6のリーン車両において、前記左右操舵輪トルク差調整部は、前記左右傾斜状態検出部が前記リーン車両の左右方向の左方に向かって前記車体フレームの傾斜が変化しようとする傾斜角速度を検出した時の前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクの大小関係と、前記左右傾斜状態検出部が前記リーン車両の左右方向の右方に向かって前記車体フレームの傾斜が変化しようとする傾斜角速度を検出した時の前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクの大小関係とが異なるように、前記左操舵輪のトルクと前記右操舵輪のトルクの差を調整することができる(構成7)。 In the lean vehicle configured as described above, the left and right steered wheel torque difference adjustment unit is configured to determine a tilt angular velocity at which the lean of the vehicle body frame changes toward the left in the left-right direction of the lean vehicle. The magnitude relationship between the torque of the left steering wheel controlled by the left steering wheel braking / driving device when detected and the torque of the right steering wheel controlled by the right steering wheel braking / driving device, and the left / right tilt state detection unit The left steering wheel torque controlled by the left steering wheel braking and driving device when the lean angular velocity at which the lean of the body frame is about to change toward the right in the left-right direction of the lean vehicle is detected and the right The difference between the torque of the left steering wheel and the torque of the right steering wheel can be adjusted so that the magnitude relationship of the torque of the right steering wheel controlled by the steering wheel braking / driving device is different. (Configuration 7).
 上記構成7によれば、車体フレームが左に向かって傾斜しようとしている時の左操舵輪のトルクと右操舵輪のトルクの差によるロールモーメントの向きと、右に向かって傾斜しようとしている時の左操舵輪のトルクと右操舵輪のトルクの差によるロールモーメントの向きが反対になる。そのため、左及び右のいずれに向かって傾斜しようとしている時も、傾斜しようとする方向に対するロールモーメントの向きを同じにすることができる。 According to the configuration 7, the direction of the roll moment due to the difference between the torque of the left steered wheel and the torque of the right steered wheel when the body frame is tilted toward the left, and when the body frame is tilted toward the right The direction of the roll moment due to the difference between the torque of the left steering wheel and the torque of the right steering wheel is reversed. Therefore, the direction of the roll moment with respect to the direction to incline can be made the same even if it is going to incline toward either the left or the right.
 上記構成7のリーン車両において、前記左右操舵輪トルク差調整部は、
 前記左右傾斜状態検出部が前記リーン車両の左右方向の左方に向かって前記車体フレームの傾斜が変化しようとする傾斜角速度を検出した時に、前記左操舵輪制駆動装置により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより小さくなるか、又は、前記左操舵輪制駆動装置により制御される前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより大きくなるように前記左操舵輪のトルクと前記右操舵輪のトルク差を調整し、
 前記左右傾斜状態検出部が前記リーン車両の左右方向の右方に向かって前記車体フレームの傾斜が変化しようとする傾斜角速度を検出した時に、前記左操舵輪制駆動装置により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより大きくなるか、又は、前記左操舵輪制駆動装置により制御される前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより小さくなるように前記左操舵輪のトルクと前記右操舵輪のトルク差を調整することができる(構成8)。上記構成8によれば、左操舵輪と右操舵輪のトルク差により、車体フレームが傾斜しようとしている方向に傾斜させるロールモーメントを発生させることができる。
In the lean vehicle configured as described above, the left and right steered wheel torque difference adjustment unit includes:
The left steering controlled by the left steering wheel braking / driving device when the left / right tilt state detection unit detects a tilt angular velocity at which the lean of the vehicle body frame changes toward the left in the left / right direction of the lean vehicle. The braking torque of the wheel is smaller than the braking torque of the right steering wheel controlled by the right steering wheel braking / driving device, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is Adjusting the torque difference between the left steering wheel and the right steering wheel so as to be larger than the driving torque of the right steering wheel controlled by the right steering wheel braking and driving device;
The left steering controlled by the left steering wheel braking / driving device when the left / right tilt state detection unit detects a tilt angular velocity at which the lean of the vehicle body frame changes toward the right in the left / right direction of the lean vehicle. The braking torque of the wheel becomes larger than the braking torque of the right steering wheel controlled by the right steering wheel braking / driving device, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is The difference between the torque of the left steering wheel and the torque of the right steering wheel can be adjusted to be smaller than the driving torque of the right steering wheel controlled by the right steering wheel braking / driving device (Configuration 8). According to the above-described configuration 8, it is possible to generate a roll moment that causes the body frame to tilt in the direction in which the vehicle body frame tends to tilt due to the torque difference between the left steering wheel and the right steering wheel.
 上記構成1~8のいずれかのリーン車両において、鉛直方向に対する前記車体フレームの上下方向線の前記リーン車両の左右方向における傾斜角度が第1閾値より小さい場合に、前記左右操舵輪トルク差調整部は、前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと、前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクが異なるように、前記左操舵輪のトルクと前記右操舵輪のトルクの差を調整することができる(構成9)。上記構成9により、車体フレームの左右方向の傾斜が第1閾値より小さい場合に、左操舵輪のトルクと右操舵輪のトルクの差によるロールモーメントを発生させることができる。 In the lean vehicle of any one of the above configurations 1 to 8, the left and right steered wheel torque difference adjustment unit is configured when an inclination angle of the lean vehicle in the left-right direction of the vertical direction line of the body frame with respect to the vertical direction is smaller than a first threshold value. The torque of the left steering wheel is different from the torque of the left steering wheel controlled by the left steering wheel braking / driving device and the torque of the right steering wheel controlled by the right steering wheel braking / driving device. The difference in torque of the right steering wheel can be adjusted (Configuration 9). According to the above-described configuration 9, when the horizontal inclination of the vehicle body frame is smaller than the first threshold value, it is possible to generate a roll moment due to the difference between the torque of the left steering wheel and the torque of the right steering wheel.
 上記構成1~9のいずれかのリーン車両において、
 鉛直方向に対する前記車体フレームの上下方向線の前記リーン車両の左右方向における傾斜角度が、第2閾値より大きい場合に、前記左右操舵輪トルク差調整部は、前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと、前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクが異なるように、前記左操舵輪のトルクと前記右操舵輪のトルクの差を調整する。
In the lean vehicle of any of the above configurations 1 to 9,
The left and right steered wheel torque difference adjusting unit is controlled by the left steered wheel braking / driving device when the lean angle of the lean vehicle in the left and right direction of the vertical direction line of the body frame with respect to the vertical direction is larger than a second threshold value. The difference between the torque of the left steering wheel and the torque of the right steering wheel is adjusted so that the torque of the left steering wheel and the torque of the right steering wheel controlled by the right steering wheel braking / driving device are different.
 上記構成9のリーン車両において、鉛直方向に対する前記車体フレームの上下方向線の前記リーン車両の左右方向における傾斜角度が、第1閾値より小さい場合に、前記左右操舵輪トルク差調整部は、
 前記車体フレームが前記リーン車両の左右方向において左に傾斜している時に、前記左操舵輪制駆動装置により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより大きくなるか、又は、前記左操舵輪制駆動装置により制御される前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより小さくなるように前記左操舵輪のトルクと前記右操舵輪のトルクの差を調整し、
 前記車体フレームが前記リーン車両の左右方向において右に傾斜している時に、前記左操舵輪制駆動により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより小さくなるか、又は、前記左操舵輪制駆動装置により制御される前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより大きくなるように前記左操舵輪のトルクと前記右操舵輪のトルク差を調整することができる(構成11)。上記構成11によれば、車体フレームの左右方向の傾斜が第1閾値より小さい場合に、車体フレームを起き上がらせる方向のロールモーメントを発生させることができる。
In the lean vehicle having the above-described configuration 9, when the inclination angle of the vertical direction line of the body frame with respect to the vertical direction in the left-right direction of the lean vehicle is smaller than a first threshold value, the left and right steered wheel torque difference adjustment unit is
When the vehicle body frame is tilted to the left in the left-right direction of the lean vehicle, the braking torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device. The braking torque of the right steering wheel is greater than the braking torque of the right steering wheel, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is Adjusting the difference between the torque of the left steering wheel and the torque of the right steering wheel so as to be smaller than the driving torque,
When the vehicle body frame is tilted to the right in the left-right direction of the lean vehicle, the braking torque of the left steering wheel controlled by the left steering wheel braking drive is controlled by the right steering wheel braking / driving device. Driving the right steering wheel, which is smaller than the braking torque of the right steering wheel, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device The torque difference between the left steered wheel and the right steered wheel can be adjusted to be greater than the torque (Configuration 11). According to the configuration 11, when the inclination of the body frame in the left-right direction is smaller than the first threshold value, it is possible to generate the roll moment in the direction in which the body frame is raised.
 上記構成11のリーン車両において、前記車体フレームの上下方向線の鉛直方向に対する前記リーン車両の左右方向における傾斜角度が、第1閾値より大きい場合に、前記左右操舵輪トルク差調整部は、
 前記左右傾斜状態検出部が前記リーン車両の左右方向の左方に向かって前記車体フレームの傾斜が変化しようとする傾斜角速度を検出した時に、前記左操舵輪制駆動装置により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより小さくなるか、又は、前記左操舵輪制駆動装置により制御される前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより大きくなるように前記左操舵輪のトルクと前記右操舵輪のトルク差を調整し、
 前記左右傾斜状態検出部が前記リーン車両の左右方向の右方に向かって前記車体フレームの傾斜が変化しようとする傾斜角速度を検出した時に、前記左操舵輪制駆動装置により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより大きくなるか、又は、前記左操舵輪制駆動装置により制御される前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより小さくなるように前記左操舵輪のトルクと前記右操舵輪のトルク差を調整することができる(構成12)。上記構成12によれば、車体フレームの左右方向の傾斜が第1閾値より小さい場合に、車体フレームを起き上がらせる方向のロールモーメントを発生させることができる。車体フレームの左右方向の傾斜が第1閾値より大きい場合に、車体フレームが傾斜しようとする方向にロールモーメントを発生させることができる。
In the lean vehicle having the above-described configuration 11, when the lean angle in the left-right direction of the lean vehicle with respect to the vertical direction of the vertical direction line of the body frame is larger than a first threshold, the left and right steered wheel torque difference adjustment unit is
The left steering controlled by the left steering wheel braking / driving device when the left / right tilt state detection unit detects a tilt angular velocity at which the lean of the vehicle body frame changes toward the left in the left / right direction of the lean vehicle. The braking torque of the wheel is smaller than the braking torque of the right steering wheel controlled by the right steering wheel braking / driving device, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is Adjusting the torque difference between the left steering wheel and the right steering wheel so as to be larger than the driving torque of the right steering wheel controlled by the right steering wheel braking and driving device;
The left steering controlled by the left steering wheel braking / driving device when the left / right tilt state detection unit detects a tilt angular velocity at which the lean of the vehicle body frame changes toward the right in the left / right direction of the lean vehicle. The braking torque of the wheel becomes larger than the braking torque of the right steering wheel controlled by the right steering wheel braking / driving device, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is The difference between the torque of the left steering wheel and the torque of the right steering wheel can be adjusted to be smaller than the driving torque of the right steering wheel controlled by the right steering wheel braking / driving device (Configuration 12). According to the above configuration 12, when the inclination of the body frame in the left-right direction is smaller than the first threshold value, it is possible to generate a roll moment in a direction in which the body frame is raised. When the lateral inclination of the body frame is larger than the first threshold, the roll moment can be generated in the direction in which the body frame tends to tilt.
 上記構成1~12のいずれかのリーン車両は、ライダーが操作可能な操作子と、前記操作子の操作状態を検出する操作状態検出部をさらに備えてもよい。この場合、前記左右操舵輪トルク差調整部は、前記傾斜状態検出部が検出した傾斜状態及び前記操作状態検出部が検出した操作状態に基づいて、前記左操舵輪制駆動装置が発生する前記左操舵輪のトルクと、前記右操舵輪制駆動装置が発生する前記右操舵輪のトルクの差を調整することができる(構成13)。上記構成13により、ライダーの操作に応じて、車体フレームのロールモーメントを発生させることができる。 The lean vehicle of any of the above configurations 1 to 12 may further include an operation element that can be operated by the rider and an operation state detection unit that detects an operation state of the operation element. In this case, the left and right steering wheel torque difference adjustment unit is configured to generate the left steering wheel braking / driving device generated by the left steering wheel braking / driving device based on the tilt state detected by the tilt state detection unit and the operation state detected by the operation state detection unit. The difference between the torque of the steering wheel and the torque of the right steering wheel generated by the right steering wheel braking / driving device can be adjusted (Configuration 13). With the configuration 13, the roll moment of the vehicle body frame can be generated according to the rider's operation.
 構成13のリーン車両において、前記左右操舵輪トルク差調整部は、前記左操舵輪制駆動装置により制御する前記左操舵輪のトルクと、前記右操舵輪制駆動装置により制御する前記右操舵輪のトルクの総量を、ライダーによる前記操作子の操作量に応じて決定してもよい。この場合、前記車体フレームが前記リーン車両の左右方向に傾斜している時の前記操作子の前記操作量に対する前記左操舵のトルクと前記右操舵輪のトルクの総量は、前記車体フレームが前記リーン車両の左右方向に傾斜していない時の前記操作子の前記操作量に対する前記左操舵のトルクと前記右操舵輪のトルクの総量と等しくすることができる(構成14)。 In the lean vehicle of configuration 13, the left and right steered wheel torque difference adjustment unit includes a torque of the left steered wheel controlled by the left steered wheel braking / driving device and a right steered wheel controlled by the right steered wheel braking / driving device. The total amount of torque may be determined according to the amount of operation of the operating element by the rider. In this case, the total amount of the left steering torque and the right steering wheel torque with respect to the operation amount of the operating element when the vehicle body frame is tilted in the left-right direction of the lean vehicle is calculated as follows: The total amount of the left steering torque and the right steering wheel torque with respect to the operation amount of the operation element when the vehicle is not tilted in the left-right direction can be made equal (Configuration 14).
 上記構成1~14のいずれかのリーン車両において、前記車体フレームに対して回転可能に支持され、前記右車輪および前記左車輪を支持するアームを含むリンク機構であって、前記アームを前記車体フレームに対して回転させることにより、前記右車輪および前記左車輪の前記車体フレームに対する上下方向の相対位置を変更して前記車体フレームを前記リーン車両の左右方向に傾斜させるリンク機構をさらに備えてもよい。この場合、前記左右傾斜状態検出部は、前記アームの前記車体フレームに対する回転を検出することで、前記リーン車両の左右方向における前記車体フレームの傾斜状態を検出することができる(構成15)。 The lean vehicle according to any one of the above configurations 1 to 14, wherein the link mechanism includes an arm that is rotatably supported with respect to the vehicle body frame and supports the right wheel and the left wheel. A link mechanism that changes the relative position of the right wheel and the left wheel in the vertical direction with respect to the vehicle body frame to incline the vehicle body frame in the horizontal direction of the lean vehicle. . In this case, the left-right inclination state detection unit can detect the inclination state of the body frame in the left-right direction of the lean vehicle by detecting the rotation of the arm with respect to the body frame (Configuration 15).
 上記構成によれば、走行中に、車体フレームの傾斜状態を調整できるリーン車両を提供することができる。 According to the above configuration, it is possible to provide a lean vehicle that can adjust the inclination state of the body frame during traveling.
車体フレームの左右方向の左方から鞍乗り型車両を見たときの模式的な側面図である。It is a typical side view when a saddle-ride type vehicle is viewed from the left in the left-right direction of the body frame. 車体フレームが直立状態にある状態下で、鞍乗り型車両の前部を正面から見たときの模式的な正面図である。It is a typical front view when the front part of a saddle-ride type vehicle is seen from the front under a state where the body frame is in an upright state. 図2の一部分を拡大した図面である。It is drawing which expanded a part of FIG. 図2の車両を上方から見たときの模式的な平面図である。FIG. 3 is a schematic plan view when the vehicle of FIG. 2 is viewed from above. 車両を転舵させた状態の車両前部の模式的な平面図である。It is a typical top view of the vehicle front part of the state which steered the vehicle. 車両を傾斜させた状態の車両前部の模式的な正面図である。It is a typical front view of the vehicle front part of the state which inclined the vehicle. 車両を転舵させ、且つ傾斜させた状態の、車両前部の模式的な正面図である。FIG. 2 is a schematic front view of the front portion of the vehicle in a state where the vehicle is steered and tilted. 傾斜検出部の構成を模式的に示す機能ブロック図である。It is a functional block diagram which shows typically the structure of an inclination detection part. 車両の重心に発生する加速度を概略的に図示したものである。Fig. 2 schematically illustrates acceleration generated at the center of gravity of a vehicle. 車両に発生する角速度を概略的に図示したものである。1 schematically illustrates an angular velocity generated in a vehicle. 図1の車両の右側方から見た左緩衝器の模式的な側面図である。It is a typical side view of the left shock absorber seen from the right side of the vehicle of FIG. 車両が備えるブレーキシステムの構成を模式的に示すブロック図である。It is a block diagram which shows typically the composition of the brake system with which vehicles are provided. トルク制御部の構成を模式的に示すブロック図である。It is a block diagram which shows typically the structure of a torque control part. 外輪よりも内輪に対して大きな制動トルクを発生させた場合における車両の挙動を説明するための模式的な図面である。4 is a schematic drawing for explaining the behavior of a vehicle when a braking torque larger than that of the outer ring is generated for the inner ring. 内輪よりも外輪に対して大きな制動トルクを発生させた場合における車両の挙動を説明するための模式的な図面である。4 is a schematic drawing for explaining the behavior of a vehicle when a braking torque greater than that of the inner ring is generated for the outer ring. 第三実施形態のトルク制御部の構成を模式的に示すブロック図である。It is a block diagram which shows typically the structure of the torque control part of 3rd embodiment. 車体フレームが傾斜している際の遠心力Fc及び重力Fgの例を示す図である。It is a figure which shows the example of centrifugal force Fc and gravity Fg when a vehicle body frame inclines. 車体フレームが傾斜している際の遠心力Fc、重力Fg及びヨーモーメントの例を示す図である。It is a figure which shows the example of the centrifugal force Fc, the gravity Fg, and the yaw moment when a vehicle body frame inclines. 左右傾斜モーメント制御装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the left-right inclination moment control apparatus.
 下記において、「鞍乗型車両」は、上記「リーン車両」の一例である。下記の「車体」は、上記の「車体フレーム」と同じ意味である。下記の「傾斜検出部」は、上記の「左右傾斜状態検出部」の一例である。下記の「トルク制御部」は、上記の「左右操舵輪トルク差調整部」の一例である。 In the following, the “saddle-type vehicle” is an example of the “lean vehicle”. The following “body” has the same meaning as the above “body frame”. The following “tilt detector” is an example of the “left / right tilt state detector”. The following “torque control unit” is an example of the “left and right steering wheel torque difference adjustment unit”.
 本発明の実施形態に係る鞍乗り型車両は、左操舵輪、右操舵輪、並びに、前記左操舵輪及び前記右操舵輪に対して車体の前後方向に位置する非操舵輪とを有する。前記鞍乗り型車両は、前記車体の傾斜状態を検出する傾斜検出部と、前記車体の傾斜状態に応じて、前記左操舵輪が路面に伝える左制駆動トルクと、前記右操舵輪が路面に伝える右制駆動トルクとの配分を制御するトルク制御部とを備える(第1の構成)。 A saddle-ride type vehicle according to an embodiment of the present invention includes a left steering wheel, a right steering wheel, and non-steering wheels positioned in the front-rear direction of the vehicle body with respect to the left steering wheel and the right steering wheel. The saddle-ride type vehicle includes an inclination detection unit that detects an inclination state of the vehicle body, a left braking / driving torque that the left steering wheel transmits to the road surface according to the inclination state of the vehicle body, and the right steering wheel on the road surface. A torque control unit for controlling distribution of the transmitted right braking drive torque (first configuration).
 上記の第1の構成によれば、車体の傾斜状態に応じて、左操舵輪と右操舵輪のそれぞれが路面に伝える制動トルク又は駆動トルクの大きさが調整されるため、運転状態に応じた車体の姿勢調整が可能となる。 According to said 1st structure, since the magnitude | size of the braking torque or drive torque which each of a left steering wheel and a right steering wheel transmits to a road surface is adjusted according to the inclination state of a vehicle body, according to the driving | running state The vehicle body posture can be adjusted.
 上記第1の構成において、前記鞍乗り型車両は、前記左操舵輪の回転を制動する左制動部と、前記右操舵輪の回転を制動する右制動部と、ライダーによって操作可能に構成された制動操作子とを備えてもよい。 In the first configuration, the saddle riding type vehicle is configured to be operable by a rider, a left braking unit that brakes rotation of the left steering wheel, a right braking unit that brakes rotation of the right steering wheel, and the like. A braking operator may be provided.
 この場合、前記トルク制御部は、
  前記制動操作子の操作量に応じて、前記左制動部の制動トルクである左制動トルクと、前記右制動部の制動トルクである右制動トルクとの合計値を算出する合計制動トルク算出部と、
  前記傾斜検出部が検出した前記車体の傾斜状態に応じて決定される基準に基づいて前記合計値を配分することで、前記左制動トルク及び前記右制動トルクをそれぞれ算出する各制動トルク算出部と、
  前記各制動トルク算出部によって算出された前記左制動トルクを前記左制動部に対して発生させる制御を行うと共に、前記各制動トルク算出部によって算出された前記右制動トルクを前記右制動部に対して発生させる制御を行う制動制御部とを備えることができる(第2の構成)。
In this case, the torque control unit
A total braking torque calculating unit that calculates a total value of a left braking torque that is a braking torque of the left braking unit and a right braking torque that is a braking torque of the right braking unit according to an operation amount of the braking operator; ,
Each braking torque calculation unit that calculates the left braking torque and the right braking torque, respectively, by allocating the total value based on a reference determined according to the inclination state of the vehicle body detected by the inclination detection unit; ,
The left braking torque calculated by each braking torque calculation unit is controlled to be generated for the left braking unit, and the right braking torque calculated by each braking torque calculation unit is applied to the right braking unit. And a braking control section that performs control to be generated (second configuration).
 上記第2の構成によれば、ライダーの操作量に応じた制動トルクが左右の操舵輪に対して配分される。 According to the second configuration, the braking torque corresponding to the rider's operation amount is distributed to the left and right steering wheels.
 上記第2の構成において、前記鞍乗り型車両は、前記左制動部に連絡され、ブレーキ液が充填された左配管と、前記右制動部に連絡され、ブレーキ液が充填された右配管とを備えてもよい。この場合、前記左制動部は、前記左配管内に充填されたブレーキ液の液圧の大きさに応じて前記左操舵輪の回転を制動することができる。前記右制動部は、前記右配管内に充填されたブレーキ液の液圧の大きさに応じて前記右操舵輪の回転を制動することができる。前記制動制御部は、前記左配管内に充填されたブレーキ液の液圧、及び前記右配管内に充填されたブレーキ液の液圧を独立して制御することができる(第3の構成)。 In the second configuration, the saddle riding type vehicle includes a left pipe that is in communication with the left brake unit and filled with brake fluid, and a right pipe that is in communication with the right brake unit and is filled with brake fluid. You may prepare. In this case, the left brake portion can brake the rotation of the left steered wheel according to the hydraulic pressure of the brake fluid filled in the left pipe. The right braking unit can brake the rotation of the right steering wheel according to the hydraulic pressure of the brake fluid filled in the right pipe. The brake control unit can independently control the hydraulic pressure of the brake fluid filled in the left pipe and the hydraulic pressure of the brake fluid filled in the right pipe (third configuration).
 上記第2又は第3の構成において、前記トルク制御部は、前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部を備えてもよい。前記各制動トルク算出部は、前記内外輪特定部によって内輪と特定された側の操舵輪が路面に伝える制動トルクが、前記内外輪特定部によって外輪と特定された側の操舵輪が路面に伝える制動トルクよりも大きくなるように、前記左制動トルク及び前記右制動トルクをそれぞれ算出することができる(第4の構成)。 In the second or third configuration, the torque control unit may determine which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel, based on the tilt state of the vehicle body detected by the tilt detection unit. You may provide the inner-outer ring specific | specification part which pinpoints whether there exists. Each of the braking torque calculators transmits to the road surface the braking torque transmitted to the road surface by the steering wheel identified as the inner wheel by the inner / outer wheel identification unit, and the steering wheel identified by the inner / outer wheel identification unit as the outer wheel to the road surface. The left braking torque and the right braking torque can be calculated so as to be larger than the braking torque (fourth configuration).
 第4の構成によれば、傾斜状態での走行時において車体を起き上がらせるロールモーメントを発生させることができる。 According to the fourth configuration, it is possible to generate a roll moment that raises the vehicle body when traveling in an inclined state.
 上記第2又は第3の構成において、前記トルク制御部は、前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部を備えてもよい。前記各制動トルク算出部は、前記内外輪特定部によって外輪と特定された側の操舵輪が路面に伝える制動トルクが、前記内外輪特定部によって内輪と特定された側の操舵輪が路面に伝える制動トルクよりも大きくなるように、前記左制動トルク及び前記右制動トルクをそれぞれ算出することができる(第5の構成)。 In the second or third configuration, the torque control unit may determine which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel, based on the tilt state of the vehicle body detected by the tilt detection unit. You may provide the inner-outer ring specific | specification part which pinpoints whether there exists. Each of the braking torque calculation units transmits the braking torque transmitted to the road surface by the steering wheel identified as the outer wheel by the inner / outer wheel identification unit, and the steering wheel identified by the inner / outer wheel identification unit transmits the braking wheel to the road surface. The left braking torque and the right braking torque can be calculated so as to be larger than the braking torque (fifth configuration).
 第5の構成によれば、傾斜状態での走行時において車体をより傾斜させるロールモーメントを発生させることができる。 According to the fifth configuration, it is possible to generate a roll moment that further tilts the vehicle body when traveling in an inclined state.
 上記第2又は第3の構成において、前記トルク制御部は、前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部と、運転時における前記車体の姿勢維持性と、運転時における前記車体の姿勢変動性とのいずれを優先するかに関する優先性能情報が格納された記憶部とを備えてもよい。前記各制動トルク算出部は、前記記憶部から前記車体の姿勢維持性を優先する旨の前記優先性能情報を読み出した場合に、前記内外輪特定部によって内輪と特定された側の操舵輪が路面に伝える制動トルクが、前記内外輪特定部によって外輪と特定された側の操舵輪が路面に伝える制動トルクよりも大きくなるように、前記左制動トルク及び前記右制動トルクをそれぞれ算出することができる。また、前記各制動トルク算出部は、前記記憶部から前記車体の姿勢変動性を優先する旨の前記優先性能情報を読み出した場合に、前記内外輪特定部によって外輪と特定された側の操舵輪が路面に伝える制動トルクが、前記内外輪特定部によって内輪と特定された側の操舵輪が路面に伝える制動トルクよりも大きくなるように、前記左制動トルク及び前記右制動トルクをそれぞれ算出することができる(第6の構成)。上記第6の構成によれば、車両に要求される性能に応じた姿勢調整が可能となる。 In the second or third configuration, the torque control unit may determine which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel, based on the tilt state of the vehicle body detected by the tilt detection unit. An inner / outer wheel specifying unit for specifying whether or not there is a storage unit storing priority performance information regarding which of the vehicle body posture maintaining property during driving and the vehicle body posture variability during driving is prioritized. You may prepare. When each of the braking torque calculation units reads the priority performance information indicating that the vehicle body posture maintenance is prioritized from the storage unit, the steering wheel on the side identified as the inner wheel by the inner / outer wheel identification unit is the road surface. The left braking torque and the right braking torque can be calculated such that the braking torque transmitted to the vehicle is greater than the braking torque transmitted to the road surface by the steering wheel identified as the outer wheel by the inner / outer wheel identifying unit. . In addition, when each of the braking torque calculation units reads the priority performance information indicating that priority is given to the posture variability of the vehicle body from the storage unit, the steering wheel on the side specified as the outer wheel by the inner / outer wheel specifying unit The left braking torque and the right braking torque are respectively calculated so that the braking torque transmitted to the road surface is larger than the braking torque transmitted to the road surface by the steering wheel identified as the inner wheel by the inner / outer wheel identifying unit. (Sixth configuration). According to the sixth configuration, posture adjustment according to the performance required for the vehicle can be performed.
 上記第2~第6のいずれかの構成において、前記傾斜検出部が、前記車体のロール角を検出するロール角センサを含んでもよい。前記各制動トルク算出部は、前記車体のロール角に応じて決定される基準に基づいて前記合計値を配分することで、前記左制動トルク及び前記右制動トルクをそれぞれ算出することができる(第7の構成)。上記第7の構成によれば、車体のロール角に応じた姿勢調整が可能となる。 In any one of the second to sixth configurations, the tilt detection unit may include a roll angle sensor that detects a roll angle of the vehicle body. Each of the braking torque calculation units can calculate the left braking torque and the right braking torque by allocating the total value based on a reference determined according to the roll angle of the vehicle body (first 7 configuration). According to the seventh configuration, it is possible to adjust the posture according to the roll angle of the vehicle body.
 上記第2~第6のいずれかの構成において、前記傾斜検出部が、前記車体のロール角速度を検出するロール角速度センサを含んでもよい。前記各制動トルク算出部は、前記車体のロール角速度に応じて決定される基準に基づいて前記合計値を配分することで、前記左制動トルク及び前記右制動トルクをそれぞれ算出することができる(第8の構成)。上記第8の構成によれば、車体のロール角速度に応じた姿勢調整が可能となる。 In any one of the second to sixth configurations, the tilt detection unit may include a roll angular velocity sensor that detects a roll angular velocity of the vehicle body. Each of the braking torque calculation units can calculate the left braking torque and the right braking torque by allocating the total value based on a criterion determined according to a roll angular velocity of the vehicle body (first 8 configuration). According to the eighth configuration, it is possible to adjust the posture according to the roll angular velocity of the vehicle body.
 上記第8の構成において、前記トルク制御部は、前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部と、運転時における前記車体の姿勢維持性と、運転時における前記車体の姿勢変動性とのいずれを優先するかに関する優先性能情報が格納された記憶部とを備えてもよい。この場合、前記各制動トルク算出部は、前記記憶部から前記車体の姿勢維持性を優先する旨の前記優先性能情報を読み出した場合において、前記ロール角速度センサより前記車体が傾斜する方向に移動していることを検知すると、前記内外輪特定部によって外輪と特定された側の操舵輪が路面に伝える制動トルクが、前記内外輪特定部によって内輪と特定された側の操舵輪が路面に伝える制動トルクよりも大きくなるように、前記左制動トルク及び前記右制動トルクをそれぞれ算出することができる。さらに、前記各制動トルク算出部は、前記記憶部から前記車体の姿勢維持性を優先する旨の前記優先性能情報を読み出した場合において、前記ロール角速度センサより前記車体が起き上がる方向に移動していることを検知すると、前記内外輪特定部によって内輪と特定された側の操舵輪が路面に伝える制動トルクが、前記内外輪特定部によって外輪と特定された側の操舵輪が路面に伝える制動トルクよりも大きくなるように、前記左制動トルク及び前記右制動トルクをそれぞれ算出することができる(第9の構成)。 In the eighth configuration, the torque control unit determines which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel based on the tilt state of the vehicle body detected by the tilt detection unit. An inner / outer wheel specifying unit for specifying, and a storage unit storing priority performance information regarding which of the vehicle body posture maintaining property during driving and the vehicle body posture variability during driving is prioritized. Good. In this case, each of the braking torque calculation units moves from the roll angular velocity sensor in a direction in which the vehicle body tilts when the priority performance information indicating that the posture maintenance property of the vehicle body is prioritized is read from the storage unit. Is detected, the braking torque transmitted to the road surface by the steering wheel specified as the outer wheel by the inner / outer wheel specifying unit is transmitted to the road surface by the steering wheel specified by the inner / outer wheel specifying unit as the inner wheel. The left braking torque and the right braking torque can be calculated so as to be larger than the torque. Further, each of the braking torque calculation units moves in a direction in which the vehicle body rises from the roll angular velocity sensor when the priority performance information indicating that the posture maintaining property of the vehicle body is prioritized is read from the storage unit. When this is detected, the braking torque transmitted to the road surface by the steered wheel identified as the inner wheel by the inner / outer wheel identifying unit is greater than the braking torque transmitted to the road surface by the steered wheel identified by the inner / outer wheel identifying unit as the outer wheel. The left braking torque and the right braking torque can be calculated so as to increase (9th configuration).
 上記第9の構成によれば、車体の姿勢を維持する方向にロールモーメントを発生させることが可能となる。 According to the ninth configuration, it is possible to generate a roll moment in a direction that maintains the posture of the vehicle body.
 上記第8又は第9の構成において、前記トルク制御部は、前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部と、運転時における前記車体の姿勢維持性と、運転時における前記車体の姿勢変動性とのいずれを優先するかに関する優先性能情報が格納された記憶部とを備えてもよい。この場合、前記各制動トルク算出部は、前記記憶部から前記車体の姿勢変動性を優先する旨の前記優先性能情報を読み出した場合において、前記ロール角速度センサより前記車体がより傾斜する方向に移動していることを検知すると、前記内外輪特定部によって内輪と特定された側の操舵輪が路面に伝える制動トルクが、前記内外輪特定部によって外輪と特定された側の操舵輪が路面に伝える制動トルクよりも大きくなるように、前記左制動トルク及び前記右制動トルクをそれぞれ算出することができる。さらに、前記各制動トルク算出部は、前記記憶部から前記車体の姿勢変動性を優先する旨の前記優先性能情報を読み出した場合において、前記ロール角速度センサより前記車体が起き上がる方向に移動していることを検知すると、前記内外輪特定部によって外輪と特定された側の操舵輪が路面に伝える制動トルクが、前記内外輪特定部によって内輪と特定された側の操舵輪が路面に伝える制動トルクよりも大きくなるように、前記左制動トルク及び前記右制動トルクをそれぞれ算出することができる(第10の構成)。 In the eighth or ninth configuration, the torque control unit is configured to determine which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel based on the tilt state of the vehicle body detected by the tilt detection unit. An inner / outer wheel specifying unit for specifying whether or not there is a storage unit storing priority performance information regarding which of the vehicle body posture maintaining property during driving and the vehicle body posture variability during driving is prioritized. You may prepare. In this case, each of the braking torque calculation units moves in a direction in which the vehicle body is more inclined than the roll angular velocity sensor when the priority performance information indicating that the posture variability of the vehicle body is given priority is read from the storage unit. When the steering wheel is detected, the braking torque transmitted to the road surface by the steering wheel specified as the inner ring by the inner / outer wheel specifying unit is transmitted to the road surface by the steering wheel specified as the outer wheel by the inner / outer wheel specifying unit. The left braking torque and the right braking torque can be calculated so as to be larger than the braking torque. Further, each of the braking torque calculation units moves in a direction in which the vehicle body rises from the roll angular velocity sensor when the priority performance information indicating that the posture variability of the vehicle body is prioritized is read from the storage unit. If this is detected, the braking torque transmitted to the road surface by the steered wheel identified as the outer wheel by the inner / outer wheel identifying unit is greater than the braking torque transmitted to the road surface by the steered wheel identified as the inner wheel by the inner / outer wheel identifying unit. The left braking torque and the right braking torque can be calculated so as to increase (tenth configuration).
 上記第10の構成によれば、ロールモーメントを発生しやすくできる。 According to the tenth configuration, the roll moment can be easily generated.
 上記第2又は第3の構成において、前記トルク制御部は、前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部を備えてもよい。前記傾斜検出部が、前記車体のロール角を検出するロール角センサ、及び前記車体のロール角速度を検出するロール角速度センサを含んでもよい。この場合、前記各制動トルク算出部は、前記車体のロール角に応じて決定される基準及び前記車体のロール角速度に応じて決定される基準の双方に基づいて前記合計値を配分することで、前記左制動トルク及び前記右制動トルクをそれぞれ算出することができる(第11の構成)。 In the second or third configuration, the torque control unit may determine which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel, based on the tilt state of the vehicle body detected by the tilt detection unit. You may provide the inner-outer ring specific | specification part which pinpoints whether there exists. The tilt detection unit may include a roll angle sensor that detects a roll angle of the vehicle body and a roll angular velocity sensor that detects a roll angular velocity of the vehicle body. In this case, each braking torque calculation unit distributes the total value based on both a reference determined according to the roll angle of the vehicle body and a reference determined according to the roll angular velocity of the vehicle body, The left braking torque and the right braking torque can be calculated (eleventh configuration).
 上記第11の構成によれば、車体の姿勢を保持し易くすることが可能となる。 According to the eleventh configuration, it is possible to easily maintain the posture of the vehicle body.
 上記第1の構成において、前記鞍乗り型車両は、前記左操舵輪の回転を駆動する左駆動部と、前記右操舵輪の回転を駆動する右駆動部と、ライダーによって操作可能に構成された駆動操作子とを備えてもよい。 In the first configuration, the saddle riding type vehicle is configured to be operable by a rider, a left driving unit that drives rotation of the left steering wheel, a right driving unit that drives rotation of the right steering wheel, and a rider. A drive operator may be provided.
 この場合、前記トルク制御部は、
  前記駆動操作子の操作量に応じて、前記左駆動部の駆動トルクである左駆動トルクと、前記右駆動部の駆動トルクである右駆動トルクとの合計値を算出する合計駆動トルク算出部と、
  前記傾斜検出部が検出した前記車体の傾斜状態に応じて決定される基準に基づいて前記合計値を配分することで、前記左駆動トルク及び前記右駆動トルクをそれぞれ算出する各駆動トルク算出部と、
  前記各駆動トルク算出部によって算出された前記左駆動トルクを前記左駆動部に対して発生させる制御を行うと共に、前記各駆動トルク算出部によって算出された前記右駆動トルクを前記右駆動部に対して発生させる制御を行う駆動制御部とを備えることができる(第12の構成)。
In this case, the torque control unit
A total drive torque calculation unit that calculates a total value of a left drive torque that is a drive torque of the left drive unit and a right drive torque that is a drive torque of the right drive unit according to an operation amount of the drive operator; ,
Each driving torque calculation unit for calculating the left driving torque and the right driving torque, respectively, by allocating the total value based on a reference determined according to the inclination state of the vehicle body detected by the inclination detection unit; ,
The left driving torque calculated by each driving torque calculation unit is controlled to be generated for the left driving unit, and the right driving torque calculated by each driving torque calculation unit is applied to the right driving unit. And a drive control unit that performs control to be generated (a twelfth configuration).
 上記第12の構成によれば、ライダーの操作量に応じた駆動トルクが左右の操舵輪に対して配分できる。 According to the twelfth configuration, drive torque corresponding to the rider's operation amount can be distributed to the left and right steered wheels.
 上記第12の構成において、前記トルク制御部は、前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部を備えてもよい。前記各駆動トルク算出部は、前記内外輪特定部によって内輪と特定された側の操舵輪が路面に伝える駆動トルクが、前記内外輪特定部によって外輪と特定された側の操舵輪が路面に伝える駆動トルクよりも大きくなるように、前記左駆動トルク及び前記右駆動トルクをそれぞれ算出してもよい(第13の構成)。 In the twelfth configuration, the torque control unit determines which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel based on the tilt state of the vehicle body detected by the tilt detection unit. You may provide the inner / outer ring specific | specification part to identify. Each of the driving torque calculation units transmits the driving torque transmitted to the road surface by the steering wheel identified as the inner wheel by the inner / outer wheel identification unit, and the steering wheel identified by the inner / outer wheel identification unit as the outer wheel transmits to the road surface. The left driving torque and the right driving torque may be calculated so as to be larger than the driving torque (a thirteenth configuration).
 第13の構成によれば、傾斜状態での走行時において車体がより傾斜する方向のロールモーメントを発生させることができる。 According to the thirteenth configuration, it is possible to generate a roll moment in a direction in which the vehicle body further tilts during traveling in the tilted state.
 上記第12の構成において、前記トルク制御部は、前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部を備えてもよい。前記各駆動トルク算出部は、前記内外輪特定部によって外輪と特定された側の操舵輪が路面に伝える駆動トルクが、前記内外輪特定部によって内輪と特定された側の操舵輪が路面に伝える駆動トルクよりも大きくなるように、前記左駆動トルク及び前記右駆動トルクをそれぞれ算出することができる(第14の構成)。 In the twelfth configuration, the torque control unit determines which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel based on the tilt state of the vehicle body detected by the tilt detection unit. You may provide the inner / outer ring specific | specification part to identify. Each of the driving torque calculation units transmits the driving torque transmitted to the road surface by the steering wheel specified as the outer wheel by the inner / outer wheel specifying unit, and the steering wheel specified by the inner / outer wheel specifying unit transmits the driving torque to the road surface. The left driving torque and the right driving torque can be calculated so as to be larger than the driving torque (fourteenth configuration).
 第14の構成によれば、傾斜状態での走行時において車体を起き上がらせる方向のロールモーメントを発生させることができる。 According to the fourteenth configuration, it is possible to generate a roll moment in a direction in which the vehicle body is raised when traveling in an inclined state.
 上記第12の構成において、前記トルク制御部は、前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部と、運転時における前記車体の姿勢維持性と、運転時における前記車体の姿勢変動性とのいずれを優先するかに関する優先性能情報が格納された記憶部とを備えてもよい。この場合、前記各駆動トルク算出部は、前記記憶部から前記車体の姿勢維持性を優先する旨の前記優先性能情報を読み出した場合に、前記内外輪特定部によって外輪と特定された側の操舵輪が路面に伝える駆動トルクが、前記内外輪特定部によって内輪と特定された側の操舵輪が路面に伝える駆動トルクよりも大きくなるように、前記左駆動トルク及び前記右駆動トルクをそれぞれ算出することができる。さらに、前記各駆動トルク算出部は、前記記憶部から前記車体の姿勢変動性を優先する旨の前記優先性能情報を読み出した場合に、前記内外輪特定部によって内輪と特定された側の操舵輪が路面に伝える駆動トルクが、前記内外輪特定部によって外輪と特定された側の操舵輪が路面に伝える駆動トルクよりも大きくなるように、前記左駆動トルク及び前記右駆動トルクをそれぞれ算出することができる(第15の構成)。上記第15の構成によれば、車両に要求される性能に応じた姿勢調整が可能となる。 In the twelfth configuration, the torque control unit determines which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel based on the tilt state of the vehicle body detected by the tilt detection unit. An inner / outer wheel specifying unit for specifying, and a storage unit storing priority performance information regarding which of the vehicle body posture maintaining property during driving and the vehicle body posture variability during driving is prioritized. Good. In this case, when each of the driving torque calculation units reads the priority performance information that prioritizes the posture maintenance of the vehicle body from the storage unit, the steering on the side identified as the outer wheel by the inner / outer wheel identification unit The left driving torque and the right driving torque are respectively calculated so that the driving torque transmitted to the road surface by the wheels is greater than the driving torque transmitted to the road surface by the steering wheel identified as the inner wheel by the inner / outer wheel identifying unit. be able to. Further, when each of the driving torque calculation units reads the priority performance information indicating that priority is given to the posture variability of the vehicle body from the storage unit, the steering wheel on the side specified as the inner wheel by the inner / outer wheel specifying unit Calculating the left driving torque and the right driving torque so that the driving torque transmitted to the road surface is greater than the driving torque transmitted to the road surface by the steering wheel identified as the outer wheel by the inner / outer wheel identifying unit. (Fifteenth configuration). According to the fifteenth configuration, posture adjustment according to the performance required for the vehicle can be performed.
 上記第12~第15のいずれかの構成において、前記傾斜検出部が、前記車体のロール角を検出するロール角センサを含んでもよい。前記各駆動トルク算出部は、前記車体のロール角に応じて決定される基準に基づいて前記合計値を配分することで、前記左駆動トルク及び前記右駆動トルクをそれぞれ算出することができる(第16の構成)。上記第16の構成によれば、車体のロール角に応じた姿勢調整が可能となる。 In any one of the twelfth to fifteenth configurations, the tilt detection unit may include a roll angle sensor that detects a roll angle of the vehicle body. Each of the driving torque calculation units can calculate the left driving torque and the right driving torque by allocating the total value based on a reference determined according to a roll angle of the vehicle body (first 16 configuration). According to the sixteenth configuration, the posture can be adjusted according to the roll angle of the vehicle body.
 上記第12~第15のいずれかの構成において、前記傾斜検出部が、前記車体のロール角速度を検出するロール角速度センサを含んでもよい。前記各駆動トルク算出部は、前記車体のロール角に応じて決定される基準に基づいて前記合計値を配分することで、前記左駆動トルク及び前記右駆動トルクをそれぞれ算出することができる(第17の構成)。上記第17の構成によれば、車体のロール角速度に応じた姿勢制御が可能となる。 In any one of the twelfth to fifteenth configurations, the tilt detection unit may include a roll angular velocity sensor that detects a roll angular velocity of the vehicle body. Each of the driving torque calculation units can calculate the left driving torque and the right driving torque by allocating the total value based on a reference determined according to a roll angle of the vehicle body (first 17 configuration). According to the seventeenth configuration, posture control according to the roll angular velocity of the vehicle body is possible.
 上記第17の構成において、前記トルク制御部は、前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部と、運転時における前記車体の姿勢維持性と、運転時における前記車体の姿勢変動性とのいずれを優先するかに関する優先性能情報が格納された記憶部とを備えてもよい。この場合、前記各駆動トルク算出部は、前記記憶部から前記車体の姿勢維持性を優先する旨の前記優先性能情報を読み出した場合において、前記ロール角速度センサより前記車体がより傾斜する方向に移動していることを検知すると、前記内外輪特定部によって外輪と特定された側の操舵輪が路面に伝える駆動トルクが、前記内外輪特定部によって内輪と特定された側の操舵輪が路面に伝える駆動トルクよりも大きくなるように、前記左駆動トルク及び前記右駆動トルクをそれぞれ算出することができる。さらに、前記各駆動トルク算出部は、前記記憶部から前記車体の姿勢維持性を優先する旨の前記優先性能情報を読み出した場合において、前記ロール角速度センサより前記車体が起き上がる方向に移動していることを検知すると、前記内外輪特定部によって内輪と特定された側の操舵輪が路面に伝える駆動トルクが、前記内外輪特定部によって外輪と特定された側の操舵輪が路面に伝える駆動トルクよりも大きくなるように、前記左制動トルク及び前記右制動トルクをそれぞれ算出することができる(第18の構成)。 In the seventeenth configuration, the torque control unit determines which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel based on the tilt state of the vehicle body detected by the tilt detection unit. An inner / outer wheel specifying unit for specifying, and a storage unit storing priority performance information regarding which of the vehicle body posture maintaining property during driving and the vehicle body posture variability during driving is prioritized. Good. In this case, each of the drive torque calculation units moves in a direction in which the vehicle body is inclined more than the roll angular velocity sensor when the priority performance information indicating that the posture maintenance property of the vehicle body is prioritized is read from the storage unit. When it is detected, the driving torque transmitted to the road surface by the steering wheel specified as the outer wheel by the inner / outer wheel specifying unit is transmitted to the road surface by the steering wheel specified as the inner wheel by the inner / outer wheel specifying unit. The left driving torque and the right driving torque can be calculated so as to be larger than the driving torque. Furthermore, each of the drive torque calculation units moves in a direction in which the vehicle body rises from the roll angular velocity sensor when the priority performance information indicating that the posture maintenance property of the vehicle body is prioritized is read from the storage unit. If this is detected, the driving torque transmitted to the road surface by the steering wheel specified as the inner wheel by the inner / outer wheel specifying unit is based on the driving torque transmitted from the steering wheel specified by the inner / outer wheel specifying unit to the road surface as the outer wheel. The left braking torque and the right braking torque can be calculated so as to increase (18th configuration).
 上記第17又は第18の構成において、前記トルク制御部は、前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部と、運転時における前記車体の姿勢維持性と、運転時における前記車体の姿勢変動性とのいずれを優先するかに関する優先性能情報が格納された記憶部とを備えてもよい。この場合、前記各駆動トルク算出部は、前記記憶部から前記車体の姿勢変動性を優先する旨の前記優先性能情報を読み出した場合において、前記ロール角速度センサより前記車体がより傾斜する方向に移動していることを検知すると、前記内外輪特定部によって内輪と特定された側の操舵輪が路面に伝える駆動トルクが、前記内外輪特定部によって外輪と特定された側の操舵輪が路面に伝える駆動トルクよりも大きくなるように、前記左駆動トルク及び前記右駆動トルクをそれぞれ算出することができる。さらに、前記各駆動トルク算出部は、前記記憶部から前記車体の姿勢変動性を優先する旨の前記優先性能情報を読み出した場合において、前記ロール角速度センサより前記車体が起き上がる方向に移動していることを検知すると、前記内外輪特定
部によって外輪と特定された側の操舵輪が路面に伝える駆動トルクが、前記内外輪特定部によって内輪と特定された側の操舵輪が路面に伝える制動トルクよりも大きくなるように、前記左駆動トルク及び前記右駆動トルクをそれぞれ算出することができる(第19の構成)。
In the seventeenth or eighteenth configuration, the torque control unit may determine which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel, based on the tilt state of the vehicle body detected by the tilt detection unit. An inner / outer wheel specifying unit for specifying whether or not there is a storage unit storing priority performance information regarding which of the vehicle body posture maintaining property during driving and the vehicle body posture variability during driving is prioritized. You may prepare. In this case, each of the driving torque calculation units moves in a direction in which the vehicle body is more inclined than the roll angular velocity sensor when the priority performance information indicating that the posture variability of the vehicle body is prioritized is read from the storage unit. When it is detected, the driving torque transmitted to the road surface by the steering wheel specified as the inner ring by the inner / outer wheel specifying unit is transmitted to the road surface by the steering wheel specified as the outer wheel by the inner / outer wheel specifying unit. The left driving torque and the right driving torque can be calculated so as to be larger than the driving torque. Further, each of the drive torque calculation units moves in a direction in which the vehicle body rises from the roll angular velocity sensor when the priority performance information indicating that the posture variability of the vehicle body is prioritized is read from the storage unit. If this is detected, the driving torque transmitted to the road surface by the steering wheel identified as the outer wheel by the inner / outer wheel identifying unit is determined from the braking torque transmitted to the road surface by the steering wheel identified as the inner wheel by the inner / outer wheel identifying unit. The left driving torque and the right driving torque can be calculated so as to increase (19th configuration).
 上記第12の構成において、前記トルク制御部は、前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部を備えてもよい。前記傾斜検出部は、前記車体のロール角を検出するロール角センサ、及び前記車体のロール角速度を検出するロール角速度センサを含んでもよい。この場合、前記各駆動トルク算出部は、前記車体のロール角に応じて決定される基準及び前記車体のロール角速度に応じて決定される基準の双方に基づいて前記合計値を配分することで、前記左駆動トルク及び前記右駆動トルクをそれぞれ算出することができる(第20の構成)。 In the twelfth configuration, the torque control unit determines which of the left steering wheel and the right steering wheel is an inner wheel and which is an outer wheel based on the tilt state of the vehicle body detected by the tilt detection unit. You may provide the inner / outer ring specific | specification part to identify. The tilt detection unit may include a roll angle sensor that detects a roll angle of the vehicle body and a roll angular velocity sensor that detects a roll angular velocity of the vehicle body. In this case, each driving torque calculation unit distributes the total value based on both a reference determined according to the roll angle of the vehicle body and a reference determined according to the roll angular velocity of the vehicle body, The left driving torque and the right driving torque can be calculated (twentieth configuration).
 上記構成によれば、車体の姿勢を保持し易くすることが可能となる。 According to the above configuration, it is possible to easily maintain the posture of the vehicle body.
 以下、本発明の実施形態につき、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 以下の説明において、「車両」はリーン車両を意味するものとする。本明細書において、「ヨー角」は、車両の上下方向の軸周りの車体フレームの回転角を表す。「ヨー角速度」とは、上記「ヨー角」の変化率を表す。本明細書において、「ロール角」とは、車両の前後方向の軸周りの車体フレームの回転角を表す。ロール角は、リーン車両の左右方向における車体フレームの傾斜角と同じである。「ロール角速度」とは、上記「ロール角」の変化率を表す。本明細書において、「ピッチ角」とは、車両の左右方向の軸周りの車体フレームの回転角を表す。「ピッチ角速度」とは、上記「ピッチ角」の変化率を表す。ここで、「車両の上下方向」とは、車両を運転するライダーから見た上下方向を表す。「車両の左右方向」とは、車体を運転するライダーから見た左右方向を表す。「車両の前後方向」とは、車体を運転するライダーから見た前後方向を表す。 In the following description, “vehicle” means a lean vehicle. In the present specification, the “yaw angle” represents the rotation angle of the vehicle body frame around the vertical axis of the vehicle. “Yaw angular velocity” represents the rate of change of the “yaw angle”. In the present specification, the “roll angle” represents the rotation angle of the vehicle body frame about the longitudinal axis of the vehicle. The roll angle is the same as the inclination angle of the vehicle body frame in the left-right direction of the lean vehicle. “Roll angular velocity” represents the rate of change of the “roll angle”. In the present specification, the “pitch angle” represents the rotation angle of the body frame around the left-right axis of the vehicle. “Pitch angular velocity” represents the rate of change of the “pitch angle”. Here, the “vertical direction of the vehicle” represents the vertical direction viewed from the rider driving the vehicle. The “left-right direction of the vehicle” represents the left-right direction as viewed from the rider driving the vehicle body. The “front-rear direction of the vehicle” represents the front-rear direction viewed from the rider driving the vehicle body.
 図面において、矢印Fは、車両の前方向を示している。矢印Bは、車両の後方向を示している。矢印Uは、車両の上方向を示している。矢印Dは、車両の下方向を示している。矢印Rは、車両の右方向を示している。矢印Lは、車両の左方向を示している。 In the drawings, the arrow F indicates the front direction of the vehicle. Arrow B indicates the backward direction of the vehicle. An arrow U indicates the upward direction of the vehicle. An arrow D indicates the downward direction of the vehicle. An arrow R indicates the right direction of the vehicle. An arrow L indicates the left direction of the vehicle.
 車両は、車体フレームを鉛直方向に対して車両の左右方向に傾斜させて旋回する。そこで車両を基準とした方向に加え、車体フレームを基準とした方向が定められる。添付の図面において、矢印FFは、車体フレームの前方向を示している。矢印FBは、車体フレームの後方向を示している。矢印FUは、車体フレームの上方向を示している。矢印FDは、車体フレームの下方向を示している。矢印FRは、車体フレームの右方向を示している。矢印FLは、車体フレームの左方向を示している。 The vehicle turns with the body frame tilted in the left-right direction of the vehicle with respect to the vertical direction. Therefore, in addition to the direction based on the vehicle, the direction based on the body frame is determined. In the accompanying drawings, an arrow FF indicates the front direction of the body frame. An arrow FB indicates the rear direction of the vehicle body frame. An arrow FU indicates the upward direction of the vehicle body frame. An arrow FD indicates the downward direction of the vehicle body frame. An arrow FR indicates the right direction of the body frame. An arrow FL indicates the left direction of the body frame.
 車両は、車体フレームの上下方向を路面の鉛直方向に一致させながら走行するとき、車体が直立状態で走行する。このとき、車両の方向と車体フレームの方向は一致している。 When the vehicle travels with the vertical direction of the body frame aligned with the vertical direction of the road surface, the vehicle body travels in an upright state. At this time, the direction of the vehicle coincides with the direction of the body frame.
 本実施形態が対象としている鞍乗り型車両は、路面の鉛直方向に対して車体フレームを車両の左右方向に傾斜させながら走行するとき、車体が旋回しながら走行する。このとき、車両の左右方向と車体フレームの左右方向は一致せず、車両の上下方向と車体フレームの上下方向も一致しない。しかし、車両の前後方向と車体フレームの前後方向は一致する。 The saddle-ride type vehicle targeted by this embodiment travels while the vehicle body is turning when traveling while tilting the vehicle body frame in the left-right direction of the vehicle with respect to the vertical direction of the road surface. At this time, the left-right direction of the vehicle does not match the left-right direction of the body frame, and the up-down direction of the vehicle does not match the up-down direction of the body frame. However, the longitudinal direction of the vehicle coincides with the longitudinal direction of the body frame.
 〈車体構造〉
 図1は、車両1の全体を左方から見た左側面図である。図1に示される車両1は、前輪が操舵輪であり、後輪が非操舵輪である場合を想定したものである。
<Body structure>
FIG. 1 is a left side view of the entire vehicle 1 as viewed from the left. The vehicle 1 shown in FIG. 1 assumes that the front wheels are steering wheels and the rear wheels are non-steering wheels.
 図1に示されるように、車両1は、左右一対の前輪3である左車輪3a及び右車輪3b、後輪5、操舵機構7、リンク機構9、パワーユニット11、シート13、車体フレーム15等を備えている。左車輪3a及び右車輪3bは操舵輪である。なお、図1には、図示の都合上、左車輪3aのみが表示されており、右車輪3bは表示されていない。また、図1では、車体フレーム15のうち、車体に隠れている箇所については破線で図示している。 As shown in FIG. 1, the vehicle 1 includes a left wheel 3a and a right wheel 3b, which are a pair of left and right front wheels 3, a rear wheel 5, a steering mechanism 7, a link mechanism 9, a power unit 11, a seat 13, a body frame 15, and the like. I have. The left wheel 3a and the right wheel 3b are steering wheels. In FIG. 1, for the sake of illustration, only the left wheel 3a is displayed, and the right wheel 3b is not displayed. Moreover, in FIG. 1, the part hidden in the vehicle body among the vehicle body frames 15 is illustrated by broken lines.
 車体フレーム15は、ヘッドパイプ21、ダウンフレーム22、アンダーフレーム23、及びリアフレーム24を有する。車体フレーム15は、パワーユニット11やシート13等を支持している。 The body frame 15 includes a head pipe 21, a down frame 22, an under frame 23, and a rear frame 24. The vehicle body frame 15 supports the power unit 11, the seat 13, and the like.
 パワーユニット11は、エンジン又は電動モータ等の駆動源と、トランスミッション装置等を有する。パワーユニット11には後輪5が支持されている。駆動源の駆動力は、トランスミッション装置を介して後輪5に伝達される。パワーユニット11は、車体フレーム15に揺動可能に支持されており、後輪5が車体フレーム15の上下方向に変位可能な構成である。 The power unit 11 includes a drive source such as an engine or an electric motor, a transmission device, and the like. A rear wheel 5 is supported on the power unit 11. The driving force of the driving source is transmitted to the rear wheel 5 through the transmission device. The power unit 11 is supported by the body frame 15 so as to be swingable, and the rear wheel 5 is configured to be displaceable in the vertical direction of the body frame 15.
 ヘッドパイプ21は、車両1の前部に配置されており、操舵機構7のステアリングシャフト31(後述する図2参照)を回転可能に支持している。ヘッドパイプ21は、車体フレーム15を車両1の左右方向から見たときに、当該ヘッドパイプ21の上部が当該ヘッドパイプ21の下部よりも後方に位置するように配置されている。ヘッドパイプ21の回転軸は、車体フレーム15の上下方向に対して傾斜しており、車体フレーム15の上方且つ後方に延びている。 The head pipe 21 is disposed at the front of the vehicle 1 and rotatably supports a steering shaft 31 (see FIG. 2 described later) of the steering mechanism 7. The head pipe 21 is disposed so that the upper part of the head pipe 21 is located behind the lower part of the head pipe 21 when the body frame 15 is viewed from the left-right direction of the vehicle 1. The rotation axis of the head pipe 21 is inclined with respect to the vertical direction of the body frame 15 and extends above and behind the body frame 15.
 ヘッドパイプ21の周囲には、操舵機構7及びリンク機構9が配置されている。ヘッドパイプ21は、リンク機構9を支持しており、より詳細には、リンク機構9の少なくとも一部を回転可能に支持している。 A steering mechanism 7 and a link mechanism 9 are arranged around the head pipe 21. The head pipe 21 supports the link mechanism 9. More specifically, the head pipe 21 supports at least a part of the link mechanism 9 in a rotatable manner.
 ダウンフレーム22は、ヘッドパイプ21に接続されている。ダウンフレーム22は、ヘッドパイプ21よりも後方に配置されており、車両1の上下方向に沿って延びている。このダウンフレーム22の下部には、アンダーフレーム23が接続されている。 The down frame 22 is connected to the head pipe 21. The down frame 22 is disposed behind the head pipe 21 and extends along the vertical direction of the vehicle 1. An under frame 23 is connected to the lower portion of the down frame 22.
 アンダーフレーム23は、ダウンフレーム22の下部から後方へ向けて延びている。このアンダーフレーム23の後方には、リアフレーム24が後方且つ上方へ向けて延びている。このリアフレーム24は、シート13、パワーユニット11、及びテールランプ等を支持している。 The under frame 23 extends rearward from the lower part of the down frame 22. A rear frame 24 extends rearward and upward behind the underframe 23. The rear frame 24 supports the seat 13, the power unit 11, the tail lamp, and the like.
 車体フレーム15は、車体カバー17によって覆われている。車体カバー17は、フロントカバー26、左右一対のフロントフェンダー27(27a,27b)、レッグシールド28、センターカバー29、及びリアフェンダー30を有する。車体カバー17は、左右一対の前輪3、車体フレーム15、及びリンク機構9等、車両に搭載される車体部品の少なくとも一部を覆う。 The body frame 15 is covered with a body cover 17. The vehicle body cover 17 includes a front cover 26, a pair of left and right front fenders 27 (27 a and 27 b), a leg shield 28, a center cover 29, and a rear fender 30. The vehicle body cover 17 covers at least a part of vehicle body components mounted on the vehicle such as the pair of left and right front wheels 3, the vehicle body frame 15, and the link mechanism 9.
 フロントカバー26は、シート13よりも前方に位置し、操舵機構7及びリンク機構9の少なくとも一部を前方から覆う。レッグシールド28は、ダウンフレーム22を後方から覆う。ダウンフレーム22は、左右一対の前輪3よりは後方で、且つシート13よりは前方に配置されている。センターカバー29は、リアフレーム24の周囲の少なくとも一部を覆うように配置されている。 The front cover 26 is located in front of the seat 13 and covers at least a part of the steering mechanism 7 and the link mechanism 9 from the front. The leg shield 28 covers the down frame 22 from behind. The down frame 22 is arranged behind the pair of left and right front wheels 3 and ahead of the seat 13. The center cover 29 is disposed so as to cover at least a part of the periphery of the rear frame 24.
 フロントフェンダー27の少なくとも一部は、フロントカバー26の下方、且つ、前輪3の上方に配置されている。リアフェンダー30の少なくとも一部は、後輪5の上方に配置されている。 At least a part of the front fender 27 is disposed below the front cover 26 and above the front wheel 3. At least a part of the rear fender 30 is disposed above the rear wheel 5.
 車両1を直立させた状態において、前輪3(3a,3b)の少なくとも一部は、ヘッドパイプ21の下方、且つフロントカバー26の下方に配置されている。また、後輪5の少なくとも一部は、センターカバー29又はシート13の下方、且つリアフェンダー30の下方に配置されている。 In a state where the vehicle 1 is upright, at least a part of the front wheels 3 (3a, 3b) is disposed below the head pipe 21 and below the front cover 26. Further, at least a part of the rear wheel 5 is disposed below the center cover 29 or the seat 13 and below the rear fender 30.
 前輪3には前輪車速センサ41が設けられる。後輪5には後輪車速センサ42が設けられている。これらのセンサ(41,42)で得られた検出結果に基づいて、車両1の車速が演算によって推定される。車両1は、任意の位置に、車両1の傾斜状態を検出する傾斜検出部50を備える。傾斜検出部50は、車速、及びその他の値に基づいて車両1の傾斜状態を検出する。傾斜検出部50は、センサ群及び演算装置で構成されている。詳細は後述される。 A front wheel speed sensor 41 is provided on the front wheel 3. A rear wheel speed sensor 42 is provided on the rear wheel 5. Based on the detection results obtained by these sensors (41, 42), the vehicle speed of the vehicle 1 is estimated by calculation. The vehicle 1 includes an inclination detection unit 50 that detects the inclination state of the vehicle 1 at an arbitrary position. The inclination detection unit 50 detects the inclination state of the vehicle 1 based on the vehicle speed and other values. The inclination detection unit 50 includes a sensor group and an arithmetic device. Details will be described later.
 更に、車両1は、トルク制御部100を備える。トルク制御部100は、操舵輪に対応した前輪3(3a,3b)が路面に伝える制動トルクを制御する。このトルク制御部100は、電子制御ユニット等で構成され、例えばシート13の下部に設けられている。 Furthermore, the vehicle 1 includes a torque control unit 100. The torque control unit 100 controls the braking torque transmitted to the road surface by the front wheels 3 (3a, 3b) corresponding to the steered wheels. The torque control unit 100 is composed of an electronic control unit or the like, and is provided, for example, at the lower portion of the seat 13.
 〈操舵機構〉
 図2は、車体フレーム15が直立状態の下で、車両1の前部を正面から見たときの正面図である。図3は、図2の一部分を拡大した図面である。図4は、図2の車両1を上方から見たときの模式的な平面図である。図面の都合上、図2及び図4では、車体カバー17の図示を省略している。
<Steering mechanism>
FIG. 2 is a front view when the front portion of the vehicle 1 is viewed from the front under the body frame 15 in an upright state. FIG. 3 is an enlarged view of a part of FIG. FIG. 4 is a schematic plan view when the vehicle 1 of FIG. 2 is viewed from above. For convenience of drawing, the vehicle body cover 17 is not shown in FIGS. 2 and 4.
 図2及び図4に示されるように、操舵機構7は、操舵力伝達機構71、及び緩衝器73(73a,73b)を有する。 2 and 4, the steering mechanism 7 has a steering force transmission mechanism 71 and a shock absorber 73 (73a, 73b).
 操舵力伝達機構71は、ステアリングシャフト31、ハンドルバー32、タイロッド33及び、ブラケット34(34a,34b)を有する。ステアリングシャフト31は、その一部がヘッドパイプ21に回転可能に支持される。ステアリングシャフト31は、ハンドルバー32の操作に連動して回転する。ステアリングシャフト31の回転軸線は、車体フレーム15の後方且つ上方に延びている。 The steering force transmission mechanism 71 includes a steering shaft 31, a handle bar 32, a tie rod 33, and brackets 34 (34a, 34b). A part of the steering shaft 31 is rotatably supported by the head pipe 21. The steering shaft 31 rotates in conjunction with the operation of the handle bar 32. The rotation axis of the steering shaft 31 extends rearward and upward of the body frame 15.
 ハンドルバー32は、ステアリングシャフト31の上部に連結される。ハンドルバー32とステアリングシャフト31は、操舵部材を構成する。操舵部材にライダーの操舵力が入力される。 The handle bar 32 is connected to the upper part of the steering shaft 31. The handle bar 32 and the steering shaft 31 constitute a steering member. The steering force of the rider is input to the steering member.
 ステアリングシャフト31の下部に、タイロッド33が接続される。タイロッド33の左部には左ブラケット34aが接続される。タイロッド33の右部には右ブラケット34bが接続される。ステアリングシャフト31の回転は、タイロッド33を介して、左ブラケット34a及び右ブラケット34bに伝達される。このように、操舵部材は、ライダーがハンドルバー32を操作する操舵力を、ブラケット34(34a,34b)に伝達する。 The tie rod 33 is connected to the lower part of the steering shaft 31. A left bracket 34 a is connected to the left part of the tie rod 33. A right bracket 34 b is connected to the right part of the tie rod 33. The rotation of the steering shaft 31 is transmitted to the left bracket 34a and the right bracket 34b via the tie rod 33. Thus, the steering member transmits the steering force for the rider to operate the handlebar 32 to the bracket 34 (34a, 34b).
 左緩衝器73aは、左ブラケット34aに取り付けられる。左緩衝器73aは、左ブラケット34aと連動して回転する。右緩衝器73bは、右ブラケット34bに取り付けられる。右緩衝器73bは、右ブラケット34bと連動して回転する。緩衝器73(73a,73b)は、いわゆるテレスコピック式の緩衝器である。左緩衝器73aは、支持する左車輪3aが路面から受ける荷重による振動を減衰させる。右緩衝器73bは、支持する右車輪3bが路面から受ける荷重による振動を減衰させる。 The left shock absorber 73a is attached to the left bracket 34a. The left shock absorber 73a rotates in conjunction with the left bracket 34a. The right shock absorber 73b is attached to the right bracket 34b. The right shock absorber 73b rotates in conjunction with the right bracket 34b. The shock absorber 73 (73a, 73b) is a so-called telescopic shock absorber. The left shock absorber 73a attenuates the vibration caused by the load received by the left wheel 3a to be supported from the road surface. The right shock absorber 73b attenuates vibration caused by a load received from the road surface by the right wheel 3b to be supported.
 ライダーがハンドルバー32を回転させることで、操舵力を入力する。操舵力伝達機構71は、ハンドルバー32の回転を、左車輪3a及び右車輪3bに伝達する。操舵力は、操舵力伝達機構71によって、左緩衝器73a及び右緩衝器73bに伝達される。左緩衝器73a及び右緩衝器73bの回転に伴って左車輪3a及び右車輪3bも回転する。これにより、左車輪3a及び右車輪3bが操舵される。このように、ハンドルバー32に入力された操舵力は、操舵力伝達機構71を介して、操舵輪である右車輪3b及び左車輪3aに伝達される。 The rider inputs the steering force by rotating the handlebar 32. The steering force transmission mechanism 71 transmits the rotation of the handle bar 32 to the left wheel 3a and the right wheel 3b. The steering force is transmitted to the left shock absorber 73a and the right shock absorber 73b by the steering force transmission mechanism 71. As the left shock absorber 73a and the right shock absorber 73b rotate, the left wheel 3a and the right wheel 3b also rotate. Thereby, the left wheel 3a and the right wheel 3b are steered. Thus, the steering force input to the handlebar 32 is transmitted to the right wheel 3b and the left wheel 3a, which are the steering wheels, via the steering force transmission mechanism 71.
 左車輪3aは、左緩衝器73aに支持される。左車輪3aは、ダウンフレーム22の左方に配置される。左車輪3aの上方には、左フロントフェンダー27aが配置されている。右車輪3bは、右緩衝器73bに支持される。右車輪3bは、ダウンフレーム22の右方に配置される。右車輪3bの上方には、右フロントフェンダー27bが配置されている。 The left wheel 3a is supported by the left shock absorber 73a. The left wheel 3 a is disposed on the left side of the down frame 22. A left front fender 27a is disposed above the left wheel 3a. The right wheel 3b is supported by the right shock absorber 73b. The right wheel 3 b is disposed on the right side of the down frame 22. A right front fender 27b is disposed above the right wheel 3b.
 〈リンク機構〉
 車両1は、平行四節リンク(「パラレログラムリンク」とも呼ぶ。)方式のリンク機構9を有している。
<Link mechanism>
The vehicle 1 has a link mechanism 9 of a parallel four-bar link (also referred to as “parallelogram link”) system.
 リンク機構9は、車体フレーム15が直立状態の下での車両1を前方から見て、ハンドルバー32よりも下方に配置されており、ヘッドパイプ21に支持されている。リンク機構9は、クロス部材35を備えている。 The link mechanism 9 is disposed below the handle bar 32 when viewed from the front of the vehicle 1 with the body frame 15 in an upright state, and is supported by the head pipe 21. The link mechanism 9 includes a cross member 35.
 図3に示すように、クロス部材35は、上クロス部材35a、左クロス部材35b、右クロス部材35c及び下クロス部材35dを含む。上クロス部材35a及び下クロス部材35dは、車体フレーム15と右車輪3bおよび左車輪3aとの間に設けられ、車体フレーム15に対して回転可能に支持されるアームの一例である。アームが車体フレーム15に対して回転すると、右車輪3bおよび左車輪3aの車体フレーム15に対する上下方向の相対位置が変更する。これに伴い、車体フレーム15が鉛直方向に対して傾斜する。 As shown in FIG. 3, the cross member 35 includes an upper cross member 35a, a left cross member 35b, a right cross member 35c, and a lower cross member 35d. The upper cross member 35a and the lower cross member 35d are examples of arms that are provided between the vehicle body frame 15, the right wheel 3b, and the left wheel 3a, and are rotatably supported with respect to the vehicle body frame 15. When the arm rotates with respect to the vehicle body frame 15, the relative position in the vertical direction of the right wheel 3b and the left wheel 3a with respect to the vehicle body frame 15 changes. Accordingly, the body frame 15 is inclined with respect to the vertical direction.
 上クロス部材35aは、ヘッドパイプ21の前方に配置されて車幅方向に延びている。上クロス部材35aの中間部は、支持部36aによってヘッドパイプ21に支持されている。支持部36aは、ヘッドパイプ21に設けられたボス部である。上クロス部材35aは、ヘッドパイプ21に対して、車体フレーム15の前後方向に延びる中間上軸線回りに回転可能である。 The upper cross member 35a is disposed in front of the head pipe 21 and extends in the vehicle width direction. An intermediate portion of the upper cross member 35a is supported on the head pipe 21 by a support portion 36a. The support portion 36 a is a boss portion provided on the head pipe 21. The upper cross member 35a is rotatable about the middle upper axis extending in the front-rear direction of the vehicle body frame 15 with respect to the head pipe 21.
 上クロス部材35aの左端は、支持部36bによって左クロス部材35bに支持されている。支持部36bは、左クロス部材35bに設けられたボス部である。また、上クロス部材35aの右端は、支持部36cによって右クロス部材35cに支持されている。支持部36cは、右クロス部材35cに設けられたボス部である。 The left end of the upper cross member 35a is supported by the left cross member 35b by the support portion 36b. The support portion 36b is a boss portion provided on the left cross member 35b. The right end of the upper cross member 35a is supported by the right cross member 35c by the support portion 36c. The support portion 36c is a boss portion provided on the right cross member 35c.
 上クロス部材35aは、左クロス部材35bに対して、車体フレーム15の前後方向に延びる左上軸線回りに回転可能である。また、上クロス部材35aは、右クロス部材35cに対して、車体フレーム15の前後方向に延びる右上軸線回りに回転可能である。中間上軸線、左上軸線、及び右上軸線は、互いにほぼ平行である。中間上軸線、左上軸線、及び右上軸線は、車体フレーム15の前後方向の前方かつ車体フレーム15の上下方向の上方に延びている。 The upper cross member 35a is rotatable around the upper left axis extending in the front-rear direction of the body frame 15 with respect to the left cross member 35b. Further, the upper cross member 35a is rotatable around the upper right axis extending in the front-rear direction of the body frame 15 with respect to the right cross member 35c. The middle upper axis, the upper left axis, and the upper right axis are substantially parallel to each other. The middle upper axis, the upper left axis, and the upper right axis extend forward in the front-rear direction of the body frame 15 and upward in the up-down direction of the body frame 15.
 下クロス部材35dの中間部は、支持部36dによってヘッドパイプ21に支持されている。支持部36dは、ヘッドパイプ21に形成されたボス部である。下クロス部材35dは、ヘッドパイプ21に対して、車体フレーム15の前後方向に延びる中間下軸線回りに回転可能である。車体フレーム15が直立状態の車両を前方から見て、車体フレーム15の上下方向において、下クロス部材35dは、上クロス部材35aよりも下方に配置されている。下クロス部材35dは、上クロス部材35aとほぼ平行に配置されている。下クロス部材35dは、上クロス部材35aとほぼ同じ車幅方向の長さを有する。 The intermediate part of the lower cross member 35d is supported by the head pipe 21 by the support part 36d. The support portion 36 d is a boss portion formed on the head pipe 21. The lower cross member 35d is rotatable about an intermediate lower axis extending in the front-rear direction of the body frame 15 with respect to the head pipe 21. The lower cross member 35d is disposed below the upper cross member 35a in the vertical direction of the body frame 15 when the vehicle with the body frame 15 standing upright is viewed from the front. The lower cross member 35d is disposed substantially parallel to the upper cross member 35a. The lower cross member 35d has substantially the same length in the vehicle width direction as the upper cross member 35a.
 下クロス部材35dの左端は、支持部36eによって左クロス部材35bに支持されている。支持部36eは、左クロス部材35bに設けられたボス部である。また、下クロス部材35dの右端は、支持部36fによって右クロス部材35cに支持されている。支持部36fは、右クロス部材35cに設けられたボス部である。下クロス部材35dは、左クロス部材35bに対して、車体フレーム15の前後方向に延びる左下軸線回りに回転可能である。同様に、下クロス部材35dは、右クロス部材35cに対して、車体フレーム15の前後方向に延びる右下軸線回りに回転可能である。中間下軸線、左下軸線、及び右下軸線は、互いにほぼ平行である。中間下軸線、左下軸線、及び右下軸線は、車体フレーム15の前方且つ上方に延びている。 The left end of the lower cross member 35d is supported by the left cross member 35b by the support portion 36e. The support portion 36e is a boss portion provided on the left cross member 35b. The right end of the lower cross member 35d is supported by the right cross member 35c by the support portion 36f. The support portion 36f is a boss portion provided on the right cross member 35c. The lower cross member 35d is rotatable around the lower left axis extending in the front-rear direction of the body frame 15 with respect to the left cross member 35b. Similarly, the lower cross member 35d can rotate about the lower right axis extending in the front-rear direction of the body frame 15 with respect to the right cross member 35c. The middle lower axis, the lower left axis, and the lower right axis are substantially parallel to each other. The middle lower axis, the lower left axis, and the lower right axis extend forward and upward of the body frame 15.
 リンク機構9の少なくとも一部は、車両1の前後方向に延びる中間軸線回りに回転可能である。また、リンク機構9の少なくとも一部は、車体フレーム15の前方且つ上方に延びる中間軸線(回転軸線)回りに回転可能である。中間軸線(回転軸線)は、水平に対して傾斜し、水平に対して前方且つ上方に延びている。 At least a part of the link mechanism 9 can rotate around an intermediate axis extending in the front-rear direction of the vehicle 1. Further, at least a part of the link mechanism 9 is rotatable around an intermediate axis (rotation axis) extending forward and upward of the body frame 15. The intermediate axis (rotation axis) is inclined with respect to the horizontal and extends forward and upward with respect to the horizontal.
 左クロス部材35bは、ヘッドパイプ21の左方に配置されている。左クロス部材35bは、左車輪3a及び左緩衝器73aよりも上方に設けられている。左緩衝器73aは、左クロス部材35bに対して左中心軸Y1を中心に回転可能に配置されている。左中心軸Y1は、ヘッドパイプ21の回転軸線とほぼ平行に設けられている。 The left cross member 35b is disposed on the left side of the head pipe 21. The left cross member 35b is provided above the left wheel 3a and the left shock absorber 73a. The left shock absorber 73a is arranged to be rotatable about the left central axis Y1 with respect to the left cross member 35b. The left central axis Y1 is provided substantially parallel to the rotation axis of the head pipe 21.
 右クロス部材35cは、ヘッドパイプ21の右方に配置されている。右クロス部材35cは、右車輪3b及び右緩衝器73bよりも上方に設けられている。右緩衝器73bは、右クロス部材35cに対して右中心軸Y2を中心に回転可能に配置されている。右中心軸Y2は、ヘッドパイプ21の回転軸線とほぼ平行に設けられている。 The right cross member 35 c is disposed on the right side of the head pipe 21. The right cross member 35c is provided above the right wheel 3b and the right shock absorber 73b. The right shock absorber 73b is disposed to be rotatable about the right center axis Y2 with respect to the right cross member 35c. The right center axis Y2 is provided substantially parallel to the rotation axis of the head pipe 21.
 このように、クロス部材35(35a,35b,35c,35d)は、上クロス部材3
5aと下クロス部材35dとが相互にほぼ平行な姿勢を保ち、左クロス部材35bと右クロス部材35cとが相互にほぼ平行な姿勢を保つように支持されている。
Thus, the cross member 35 (35a, 35b, 35c, 35d) is the upper cross member 3
The left cross member 35b and the right cross member 35c are supported so as to maintain a substantially parallel posture with each other and the left cross member 35b and the right cross member 35c.
 〈操舵動作〉
 図4は、車体フレーム15が直立状態で左右一対の前輪3が転舵していない状態を示している。図5は、車両1を転舵させた状態の車両前部の平面図である。図5は、車体フレーム15が直立状態で左右一対の前輪3を転舵させた時の車両1を、車体フレーム15の上方から見た図に対応する。
<Steering operation>
FIG. 4 shows a state in which the body frame 15 is upright and the pair of left and right front wheels 3 are not steered. FIG. 5 is a plan view of the front portion of the vehicle in a state where the vehicle 1 is steered. FIG. 5 corresponds to a view of the vehicle 1 as viewed from above the body frame 15 when the pair of left and right front wheels 3 are steered with the body frame 15 standing upright.
 図4に示す状態から、ハンドルバー32が回されると、操舵機構7が動作し、操舵動作が行われる。例えば、図5に示すように、ステアリングシャフト31が図5の矢印T1の方向に回転すると、タイロッド33が左後方に移動する。タイロッド33の左後方への移動に伴って、ブラケット34(34a,34b)が矢印T1の方向に回転する。これに伴って、左車輪3aが左中心軸Y1(図2、図3参照)を中心として回転する。また、右車輪3bが右中心軸Y2(図2、図3参照)を中心として回転する。 When the handle bar 32 is turned from the state shown in FIG. 4, the steering mechanism 7 operates and the steering operation is performed. For example, as shown in FIG. 5, when the steering shaft 31 rotates in the direction of the arrow T1 in FIG. 5, the tie rod 33 moves to the left rear. As the tie rod 33 moves to the left rear, the bracket 34 (34a, 34b) rotates in the direction of the arrow T1. Along with this, the left wheel 3a rotates around the left central axis Y1 (see FIGS. 2 and 3). Further, the right wheel 3b rotates around the right center axis Y2 (see FIGS. 2 and 3).
 〈傾斜動作〉
 図6は、車両1の傾斜動作を説明するための図であり、車両1を傾斜させた状態の車両1の前部の正面図である。図6は、車体フレーム15が車両1の左方向に傾斜した状態の車両1を、車両1の前方から見た図に対応する。
<Inclined motion>
FIG. 6 is a view for explaining the tilting operation of the vehicle 1 and is a front view of the front portion of the vehicle 1 in a state where the vehicle 1 is tilted. FIG. 6 corresponds to a view of the vehicle 1 with the body frame 15 tilted to the left of the vehicle 1 as viewed from the front of the vehicle 1.
 リンク機構9は、車体フレーム15が直立状態にある車両1を前方から見ると、ほぼ長方形状を示し、車体フレーム15が車両1の左方向に傾斜した状態にある車両1を前方から見ると、ほぼ平行四辺形状を示す。リンク機構9の変形と車体フレーム15の左右方向への傾斜は連動する。リンク機構9の作動とは、リンク機構9における傾斜動作を行うためのクロス部材35(35a,35b,35c,35d)がそれぞれの支持点を軸として相対回転し、リンク機構9の形状が変化することを意味している。 The link mechanism 9 shows a substantially rectangular shape when the vehicle 1 with the body frame 15 in an upright state is viewed from the front, and when the vehicle 1 with the body frame 15 inclined to the left of the vehicle 1 is viewed from the front, Shows a nearly parallelogram shape. The deformation of the link mechanism 9 and the inclination of the body frame 15 in the left-right direction are linked. The operation of the link mechanism 9 means that the cross member 35 (35a, 35b, 35c, 35d) for performing the tilting operation in the link mechanism 9 rotates relative to each support point as an axis, and the shape of the link mechanism 9 changes. It means that.
 例えば、車両1が直立状態にある場合において、正面視でほぼ長方形状に配置されたクロス部材35(35a,35b,35c,35d)が、車両1が傾斜した状態においてほぼ平行四辺形状に変形している。車体フレーム15の傾斜に連動して、左車輪3a及び右車輪3bも車両1の左右方向に傾斜する。 For example, when the vehicle 1 is in an upright state, the cross member 35 (35a, 35b, 35c, 35d) arranged in a substantially rectangular shape when viewed from the front is deformed into a substantially parallelogram shape when the vehicle 1 is inclined. ing. In conjunction with the inclination of the body frame 15, the left wheel 3 a and the right wheel 3 b are also inclined in the left-right direction of the vehicle 1.
 例えば、ライダーが車両1を左方に傾斜させると、ヘッドパイプ21が垂直方向に対して左方に傾斜する。ヘッドパイプ21(車体フレーム15)が傾斜すると、上クロス部材35aは支持部36aを中心としてヘッドパイプ21に対して回転する。さらに、下クロス部材35dは支持部36dを中心としてヘッドパイプ21に対して回転する。すると、上クロス部材35aが下クロス部材35dよりも左方に移動する。左クロス部材35b及び右クロス部材35cは、ヘッドパイプ21とほぼ平行な状態を保ったまま、垂直方向に対して傾斜する。このとき、左クロス部材35bは、上クロス部材35a及び下クロス部材35dに対して回転する。右クロス部材35cも、上クロス部材35a及び下クロス部材35dに対して回転する。つまり、車両1を傾斜させると、左クロス部材35b及び右クロス部材35cの傾斜に伴って、左クロス部材35bに支持された左車輪3a、及び右クロス部材35cに支持された右車輪3bも傾斜する。左車輪3a、及び右車輪3bは、それぞれヘッドパイプ21とほぼ平行な状態を保ったまま、垂直方向に対して傾斜する。 For example, when the rider tilts the vehicle 1 to the left, the head pipe 21 tilts to the left with respect to the vertical direction. When the head pipe 21 (body frame 15) is inclined, the upper cross member 35a rotates with respect to the head pipe 21 around the support portion 36a. Further, the lower cross member 35d rotates with respect to the head pipe 21 around the support portion 36d. Then, the upper cross member 35a moves to the left from the lower cross member 35d. The left cross member 35b and the right cross member 35c are inclined with respect to the vertical direction while maintaining a state substantially parallel to the head pipe 21. At this time, the left cross member 35b rotates with respect to the upper cross member 35a and the lower cross member 35d. The right cross member 35c also rotates with respect to the upper cross member 35a and the lower cross member 35d. That is, when the vehicle 1 is tilted, the left wheel 3a supported by the left cross member 35b and the right wheel 3b supported by the right cross member 35c are also tilted with the tilt of the left cross member 35b and the right cross member 35c. To do. The left wheel 3 a and the right wheel 3 b are inclined with respect to the vertical direction while maintaining a state substantially parallel to the head pipe 21.
 このように、右車輪3b及び左車輪3aと、車体フレーム15とは、リンク機構9を介して接続されている。リンク機構9は、車体フレーム15の傾斜と右車輪3b及び左車輪3aの傾斜を連動させる。すなわち、リンク機構9により、車体フレーム15の傾斜に伴って右車輪3b及び左車輪3aが傾斜する。 Thus, the right wheel 3b and the left wheel 3a and the vehicle body frame 15 are connected via the link mechanism 9. The link mechanism 9 links the inclination of the body frame 15 with the inclination of the right wheel 3b and the left wheel 3a. That is, the link mechanism 9 causes the right wheel 3b and the left wheel 3a to be inclined as the body frame 15 is inclined.
 また、タイロッド33は、車両1が傾斜しても上クロス部材35a及び下クロス部材35dに対してほぼ平行な姿勢を保つ。 Also, the tie rod 33 maintains a substantially parallel posture with respect to the upper cross member 35a and the lower cross member 35d even when the vehicle 1 is inclined.
 このように、傾斜動作を行うことで左車輪3a及び右車輪3bをそれぞれ傾けるリンク機構9は、左車輪3a及び右車輪3bの上方に配置されている。つまり、リンク機構9を構成する各クロス部材35(35a,35b,35c,35d)の回転軸は、左車輪3a及び右車輪3bよりも上方に配置されている。 Thus, the link mechanism 9 that tilts the left wheel 3a and the right wheel 3b by performing the tilting operation is disposed above the left wheel 3a and the right wheel 3b. That is, the rotation shaft of each cross member 35 (35a, 35b, 35c, 35d) constituting the link mechanism 9 is disposed above the left wheel 3a and the right wheel 3b.
 〈操舵動作+傾斜動作〉
 図7は、車両1を転舵させ、且つ傾斜させた状態の車両1の前部の正面図である。図7では、左側方に操舵し、左方に傾斜した状態を示している。図7は、車体フレーム15が車両1の左方に傾斜した状態で左右一対の前輪3(3a,3b)を転舵させた時の車両1を、車両1の前方から見た図である。図7に示す動作時には、操舵動作により前輪3(3a,3b)の向きが変更され、傾斜動作により前輪3(3a,3b)が車体フレーム15とともに傾斜している。この状態では、リンク機構9の各クロス部材35(35a,35b,35c,35d)が平行四辺形状に変形し、タイロッド33が操舵方向(図7では左方)且つ後方に移動する。
<Steering motion + tilt motion>
FIG. 7 is a front view of the front portion of the vehicle 1 in a state where the vehicle 1 is steered and tilted. FIG. 7 shows a state in which the vehicle is steered to the left and tilted to the left. FIG. 7 is a view of the vehicle 1 as viewed from the front of the vehicle 1 when the pair of left and right front wheels 3 (3 a, 3 b) are steered with the body frame 15 tilted to the left of the vehicle 1. 7, the direction of the front wheels 3 (3a, 3b) is changed by the steering operation, and the front wheels 3 (3a, 3b) are tilted together with the vehicle body frame 15 by the tilting operation. In this state, each cross member 35 (35a, 35b, 35c, 35d) of the link mechanism 9 is deformed into a parallelogram, and the tie rod 33 moves rearward in the steering direction (leftward in FIG. 7).
 〈傾斜検出〉
 図8は、傾斜検出部50の構成を示す機能ブロック図である。本実施形態において、傾斜検出部50は、車速検出部51、ジャイロセンサ53、及びロール角検出部54を備える。車速検出部51、ロール角検出部54は、例えば演算処理装置によって実現される。なお、傾斜検出部50は、車両1の傾斜状態を検出することができる構成であれば、図8に示す態様には限られない。
<Inclination detection>
FIG. 8 is a functional block diagram illustrating a configuration of the inclination detection unit 50. In the present embodiment, the inclination detection unit 50 includes a vehicle speed detection unit 51, a gyro sensor 53, and a roll angle detection unit 54. The vehicle speed detection unit 51 and the roll angle detection unit 54 are realized by, for example, an arithmetic processing device. In addition, if the inclination detection part 50 is a structure which can detect the inclination state of the vehicle 1, it will not be restricted to the aspect shown in FIG.
 カーブを曲がる際に、例えば図5に示すようにライダーが車両1のハンドルバー32を操舵すると、車両1のヨーレートが変化する。また、例えば図6に示すようにライダーが車両1をカーブの中心方向に傾けると、車両1のロールレートが変化する。ジャイロセンサ53は、車両1のヨー及びロールの2軸方向の角速度を検出する。すなわち、ジャイロセンサ53は、車両1のヨーレート及びロールレートを検出する。 When turning a curve, for example, as shown in FIG. 5, when the rider steers the handlebar 32 of the vehicle 1, the yaw rate of the vehicle 1 changes. For example, as shown in FIG. 6, when the rider tilts the vehicle 1 toward the center of the curve, the roll rate of the vehicle 1 changes. The gyro sensor 53 detects the angular velocity in the biaxial direction of the yaw and roll of the vehicle 1. That is, the gyro sensor 53 detects the yaw rate and roll rate of the vehicle 1.
 後輪車速センサ42は後輪5の回転速度を検出する。なお、前輪車速センサ41は、一対の前輪3(3a,3b)のうち少なくともいずれか一方に備えることができる。 The rear wheel speed sensor 42 detects the rotational speed of the rear wheel 5. The front wheel speed sensor 41 can be provided on at least one of the pair of front wheels 3 (3a, 3b).
 車速検出部51は、前輪車速センサ41及び後輪車速センサ42から入力される検出値を基に、車両1の車速を検出する。ロール角検出部54は、ジャイロセンサ53から車両1のロールレートが入力される。ロール角検出部54は、入力値を基に車体フレーム15のロール角を検出する。このロール角は、左右傾斜状態検出部で検出される傾斜状態を示す情報の一例である。車体フレーム15のロール角の検出方法の一例を、図9A及び図9Bを参照して説明する。 The vehicle speed detection unit 51 detects the vehicle speed of the vehicle 1 based on the detection values input from the front wheel vehicle speed sensor 41 and the rear wheel vehicle speed sensor 42. The roll angle detector 54 receives the roll rate of the vehicle 1 from the gyro sensor 53. The roll angle detector 54 detects the roll angle of the vehicle body frame 15 based on the input value. This roll angle is an example of information indicating the tilt state detected by the left-right tilt state detection unit. An example of a method for detecting the roll angle of the body frame 15 will be described with reference to FIGS. 9A and 9B.
 図9Aは、車両1の重心10に発生する加速度を図示したものである。図9Bは、車両1に発生する角速度を図示したものである。図9A及び図9Bにおいて、便宜的に車体固定軸(Y1軸)が車両1の重心10を通るものとする。ここで、図9A及び図9Bを用いて説明される車体フレーム15のロール角の検出方法は、リーンウィズの状態で、理想状態におけるロール角の検出方法である。上記理想状態は、車両1のピッチング及びタイヤの厚みが無視でき、速度Vで旋回中の状態である。なお、リーンウィズの状態とは、車体固定軸(Y1軸)とライダーの上半身とが一直線上にある状態のことである。 FIG. 9A illustrates the acceleration generated at the center of gravity 10 of the vehicle 1. FIG. 9B illustrates the angular velocity generated in the vehicle 1. 9A and 9B, it is assumed that the vehicle body fixing shaft (Y1 axis) passes through the center of gravity 10 of the vehicle 1 for convenience. Here, the method for detecting the roll angle of the vehicle body frame 15 described with reference to FIGS. 9A and 9B is a method for detecting the roll angle in an ideal state in a lean with state. The ideal state is a state in which the pitching of the vehicle 1 and the tire thickness can be ignored, and the vehicle is turning at a speed V. The lean with state is a state where the vehicle body fixed axis (Y1 axis) and the upper body of the rider are in a straight line.
 図9Aを参照して、車両1の旋回中における車体フレーム15のロール角θと、車体速度Vとオイラーのヨー角Ψの微分と重力加速度gとの関係は以下の式により表わされる。(dΨ/dt)はヨー角の時間微分であるヨーレート(ヨー角速度)である。 Referring to FIG. 9A, the relationship between the roll angle θ of the body frame 15 during the turning of the vehicle 1, the body speed V, the Euler yaw angle ψ differential, and the gravitational acceleration g is expressed by the following equation. (DΨ / dt) is a yaw rate (yaw angular velocity) that is a time derivative of the yaw angle.
 θ=arctan(V・(dΨ/dt)/g)  …(1)
 図9Bを参照して、車両1の旋回中における車体フレーム15のロール角θと、車体フレーム15に固定されたジャイロセンサ53で検出されたヨーレートωと、オイラーのヨー角Ψの微分との関係は以下の式により表される。また、図9Bにおいて、ωは車体に固定された上下方向の軸周りに発生する角速度で矢印の長さはその大きさを表す。(dΨ/dt)は鉛直方向軸周りに発生する角速度である。
θ = arctan (V · (dΨ / dt) / g) (1)
Referring to FIG. 9B, the relationship between roll angle θ of body frame 15 during turning of vehicle 1, yaw rate ω detected by gyro sensor 53 fixed to body frame 15, and differential of Euler yaw angle Ψ. Is represented by the following equation. In FIG. 9B, ω is an angular velocity generated around an axis in the vertical direction fixed to the vehicle body, and the length of the arrow represents the size. (DΨ / dt) is an angular velocity generated around the vertical axis.
 θ=arccos(ω/(dΨ/dt))  …(2)
 (1)式及び(2)式より、下式の関係式が導出される。
θ = arccos (ω z / (dΨ / dt)) (2)
From the expressions (1) and (2), the following relational expression is derived.
 θ=arcsin(V・ω/g)  …(3)
 〈制動動作〉
 図10は、図1の車両1の右側方から見た左緩衝器73aの側面図である。なお、右緩衝器についても同様であるため、説明は割愛する。
θ = arcsin (V · ω / g) (3)
<Brake operation>
FIG. 10 is a side view of the left shock absorber 73a viewed from the right side of the vehicle 1 of FIG. In addition, since it is the same also about a right shock absorber, description is omitted.
 図10に示すように、左緩衝器73aは、左後テレスコピック要素80a、左前テレスコピック要素81a、左クロス部材支持部82a、及び左ブラケット34aを含む。左後テレスコピック要素80aは、例えば、内部にスプリング等の弾性部材(図示略)及びオイル等の緩衝部材(図示略)が設けられることで、左中心軸Y1方向に伸縮する伸縮構造を有する。また、左後テレスコピック要素80aは、左車輪3aが路面から受ける荷重による振動や衝撃を吸収するダンパー機能を有する。 As shown in FIG. 10, the left shock absorber 73a includes a left rear telescopic element 80a, a left front telescopic element 81a, a left cross member support portion 82a, and a left bracket 34a. The left rear telescopic element 80a has, for example, an elastic structure (not shown) such as a spring and a shock absorbing member (not shown) such as oil provided therein, so that the left rear telescopic element 80a expands and contracts in the direction of the left central axis Y1. Further, the left rear telescopic element 80a has a damper function of absorbing vibrations and impacts caused by a load that the left wheel 3a receives from the road surface.
 左前テレスコピック要素81aは、左車輪3aに対して左車輪軸83aの回転軸線方向で左後テレスコピック要素80aと同じ側に配置される。左後テレスコピック要素80aと左前テレスコピック要素81aとは、左車輪3aの右方で車両1の直立状態で車両の前後方向に並んで配置される。左前テレスコピック要素81aは、左後テレスコピック要素80aの前方に配置されている。左前テレスコピック要素81aは、左後テレスコピック要素80aと同様に、左中心軸Y1方向に伸縮する伸縮構造を有する。なお、左後テレスコピック要素80aの伸縮方向と左前テレスコピック要素81aの伸縮方向とは、左車輪3aの回転軸線方向から見て平行である。 The left front telescopic element 81a is arranged on the same side as the left rear telescopic element 80a in the rotational axis direction of the left wheel shaft 83a with respect to the left wheel 3a. The left rear telescopic element 80a and the left front telescopic element 81a are arranged side by side in the vehicle front-rear direction in the upright state of the vehicle 1 on the right side of the left wheel 3a. The left front telescopic element 81a is disposed in front of the left rear telescopic element 80a. The left front telescopic element 81a has an expansion / contraction structure that expands and contracts in the direction of the left central axis Y1, as with the left rear telescopic element 80a. The expansion / contraction direction of the left rear telescopic element 80a and the expansion / contraction direction of the left front telescopic element 81a are parallel to each other when viewed from the rotational axis direction of the left wheel 3a.
 左後テレスコピック要素80aの上部及び左前テレスコピック要素81aの上部は、左ブラケット34aによって連結されている。左前テレスコピック要素81aの下端部は、左後テレスコピック要素80aの下端部近傍に連結固定されている。左車輪3aは、車両1の前後方向に並列に配置された左後テレスコピック要素80a及び左前テレスコピック要素81aの2本のテレスコピック要素によって左ブラケット34aに支持されている。そのため、左緩衝器73aの下側部に位置するアウター要素84aは、左緩衝器73aの上側部に位置するインナー要素85aに対して、テレスコピック要素の伸縮方向に平行な軸線回りに相対回転しない。 The upper part of the left rear telescopic element 80a and the upper part of the left front telescopic element 81a are connected by the left bracket 34a. The lower end of the left front telescopic element 81a is connected and fixed near the lower end of the left rear telescopic element 80a. The left wheel 3a is supported on the left bracket 34a by two telescopic elements, a left rear telescopic element 80a and a left front telescopic element 81a, which are arranged in parallel in the front-rear direction of the vehicle 1. Therefore, the outer element 84a located on the lower side of the left shock absorber 73a does not rotate relative to the inner element 85a located on the upper side of the left shock absorber 73a around an axis parallel to the telescopic direction of the telescopic element.
 左ブラケット34aは、車体フレーム15が直立状態にある車両1を上方から見て、フロントカバー26の下方に位置する。 The left bracket 34a is positioned below the front cover 26 when the vehicle 1 with the body frame 15 in an upright state is viewed from above.
 左車輪3aは、左車輪3aの制動力を発生させる左前ブレーキ91aを備えている。左前ブレーキ91aは、左ブレーキディスク92a及び左キャリパ93aを有する。左ブレーキディスク92aは、左車輪軸83aを中心とした環状に形成されている。左ブレーキディスク92aは、左車輪3aに固定されている。左キャリパ93aは、左緩衝器73aの左後テレスコピック要素80aの下部に固定されている。また、左キャリパ93は、左前ブレーキ管94aの一端部が接続されており、左前ブレーキ管94aを介して液圧を受ける。左キャリパ93aは、受けた液圧によりブレーキパッドを移動させる。ブレーキパッドは、左ブレーキディスク92aの右側面及び左側面に接触する。左キャリパ93aは、左ブレーキディスク92aをブレーキパッドで挟持して、左ブレーキディスク92aの回転を制動する。 The left wheel 3a includes a left front brake 91a that generates the braking force of the left wheel 3a. The left front brake 91a includes a left brake disc 92a and a left caliper 93a. The left brake disc 92a is formed in an annular shape centering on the left wheel shaft 83a. The left brake disc 92a is fixed to the left wheel 3a. The left caliper 93a is fixed to the lower part of the left rear telescopic element 80a of the left shock absorber 73a. The left caliper 93 is connected to one end of the left front brake pipe 94a and receives hydraulic pressure via the left front brake pipe 94a. The left caliper 93a moves the brake pad by the received hydraulic pressure. The brake pad contacts the right side surface and the left side surface of the left brake disk 92a. The left caliper 93a clamps the rotation of the left brake disc 92a by holding the left brake disc 92a between the brake pads.
 図11は、車両1が備えるブレーキシステム120の構成を示すブロック図である。ブレーキシステム120は、左前ブレーキ91aと、右前ブレーキ91bとを含む。図10を参照して上述したように、左前ブレーキ91aは、左車輪3aに設けられ、左車輪3aの制動力を発生させる。右前ブレーキ91bは、右車輪3bに設けられ、右車輪3bの制動力を発生させる。左前ブレーキ91aが「左制動部」に対応し、右前ブレーキ91bが「右制動部」に対応する。ブレーキシステム120は、ブレーキ作動装置123を含む。 FIG. 11 is a block diagram showing a configuration of a brake system 120 provided in the vehicle 1. The brake system 120 includes a left front brake 91a and a right front brake 91b. As described above with reference to FIG. 10, the left front brake 91a is provided on the left wheel 3a and generates the braking force of the left wheel 3a. The right front brake 91b is provided on the right wheel 3b and generates the braking force of the right wheel 3b. The left front brake 91a corresponds to the “left braking portion”, and the right front brake 91b corresponds to the “right braking portion”. The brake system 120 includes a brake actuator 123.
 ブレーキシステム120は、車両1を運転するライダーによって操作可能に構成された入力部材121及び入力部材131を含む。入力部材121、131は、一例としてレバー形状である。入力部材121、131が「制動操作子」に対応する。 The brake system 120 includes an input member 121 and an input member 131 that can be operated by a rider who drives the vehicle 1. The input members 121 and 131 have a lever shape as an example. The input members 121 and 131 correspond to “braking operators”.
 ブレーキシステム120は、トルク制御部100を含む。トルク制御部100は、液圧制御ユニット102と、電子制御ユニット101を含む。電子制御ユニット101は、液圧制御ユニット102の動作を制御する。液圧制御ユニット102は、入力部材121、131に対するライダーの操作により発生した液圧を、左前ブレーキ91a及び右前ブレーキ91bに分配する。電子制御ユニット101は、入力部材121、131の操作量及び車体フレーム15の傾斜状態に基づいて、左前ブレーキ91a及び右前ブレーキ91bの液圧の配分を決定する。これにより、左車輪3aの制動トルクと右車輪3bの制動トルクが決定される。電子制御ユニット101は、決定した配分で、左前ブレーキ91a、右前ブレーキ91b及び後ブレーキ91cに液圧を付与するよう液圧制御ユニット102を制御する。液圧制御ユニット102が「制動制御部」に対応する。 The brake system 120 includes a torque control unit 100. The torque control unit 100 includes a hydraulic pressure control unit 102 and an electronic control unit 101. The electronic control unit 101 controls the operation of the hydraulic pressure control unit 102. The hydraulic control unit 102 distributes the hydraulic pressure generated by the rider's operation to the input members 121 and 131 to the left front brake 91a and the right front brake 91b. The electronic control unit 101 determines the distribution of the hydraulic pressures of the left front brake 91a and the right front brake 91b based on the operation amounts of the input members 121 and 131 and the inclination state of the vehicle body frame 15. Thereby, the braking torque of the left wheel 3a and the braking torque of the right wheel 3b are determined. The electronic control unit 101 controls the hydraulic pressure control unit 102 to apply hydraulic pressure to the left front brake 91a, the right front brake 91b, and the rear brake 91c with the determined distribution. The hydraulic pressure control unit 102 corresponds to a “braking control unit”.
 液圧制御ユニット102は、入力部材121、131の操作に基づく液圧の流れを制御する弁及び伝達する液圧を増圧するポンプを備えることができる。液圧制御ユニット102は、電子制御ユニット101からの制御信号に従って弁とポンプを動作させることで、左前ブレーキ91a、右前ブレーキ91b及び後ブレーキ91cそれぞれの液圧すなわち制動トルクを制御することができる。すなわち、液圧制御ユニット102は、電子制御ユニット101の制御にしたがって、左前ブレーキ91a、右前ブレーキ91b及び後ブレーキ91cそれぞれの液圧を独立して制御する構成を有している。 The hydraulic pressure control unit 102 can include a valve that controls the flow of hydraulic pressure based on the operation of the input members 121 and 131 and a pump that increases the hydraulic pressure to be transmitted. The hydraulic pressure control unit 102 can control the hydraulic pressure, that is, the braking torque of each of the left front brake 91a, the right front brake 91b, and the rear brake 91c by operating the valve and the pump in accordance with a control signal from the electronic control unit 101. That is, the hydraulic pressure control unit 102 has a configuration in which the hydraulic pressures of the left front brake 91a, the right front brake 91b, and the rear brake 91c are independently controlled according to the control of the electronic control unit 101.
 例えば、液圧制御ユニット102は、保持弁、ポンプ、減圧弁等を含む構成とすることができる。保持弁は、入力部材121、131、右前ブレーキ91b及び左前ブレーキ91aのそれぞれにおけるブレーキ液の流量を制御する。ポンプは、右前ブレーキ91b、及び左前ブレーキ91aの液圧を増圧させる。減圧弁は、右前ブレーキ91b、及び左前ブレーキ91aの液圧を減圧させる。トルク制御部100は、保持弁、ポンプ、減圧弁その他の部材の動作を制御することで、右前ブレーキ91b、及び左前ブレーキ91aの液圧の配分を制御する。液圧制御ユニット102の制御方式は特に限定されない。液圧を電気的にコントロールするもの、液圧配管と機械バルブを組み合わせたもの等、その他の任意の方式を、液圧制御ユニット102の制御方式として採用することができる。 For example, the hydraulic pressure control unit 102 can include a holding valve, a pump, a pressure reducing valve, and the like. The holding valve controls the flow rate of the brake fluid in each of the input members 121 and 131, the right front brake 91b, and the left front brake 91a. The pump increases the hydraulic pressure of the right front brake 91b and the left front brake 91a. The pressure reducing valve reduces the hydraulic pressure of the right front brake 91b and the left front brake 91a. The torque control unit 100 controls the hydraulic pressure distribution of the right front brake 91b and the left front brake 91a by controlling the operation of the holding valve, the pump, the pressure reducing valve, and other members. The control method of the hydraulic pressure control unit 102 is not particularly limited. Any other method such as a device that electrically controls the fluid pressure, a device that combines a fluid pressure pipe and a mechanical valve, or the like can be adopted as the control method of the fluid pressure control unit 102.
 以下では、入力部材121で入力されたブレーキ操作に基づいて、左車輪3a及び右車輪3bを制動する部分を、ブレーキ作動装置123とする。入力部材131で入力されたブレーキ操作に基づいて、後輪5を制動する部分をブレーキ作動装置133とする。 Hereinafter, a portion that brakes the left wheel 3 a and the right wheel 3 b based on the brake operation input by the input member 121 is referred to as a brake operation device 123. A portion that brakes the rear wheel 5 based on the brake operation input by the input member 131 is referred to as a brake operation device 133.
 ブレーキ作動装置123は、前マスターシリンダー125を含む。入力部材121がライダーによって操作されると、前マスターシリンダー125が作動して液圧を発生する。発生した液圧は、前ブレーキ管127を介してトルク制御部100に伝えられる。トルク制御部100に備えられた電子制御ユニット101は、伝えられた液圧、各車輪の回転速度、及び車両1の傾斜状態等に応じた液圧を発生するために液圧制御ユニット102を制御する。 The brake operating device 123 includes a front master cylinder 125. When the input member 121 is operated by the rider, the front master cylinder 125 is activated to generate hydraulic pressure. The generated hydraulic pressure is transmitted to the torque control unit 100 via the front brake pipe 127. The electronic control unit 101 provided in the torque control unit 100 controls the hydraulic pressure control unit 102 to generate a hydraulic pressure corresponding to the transmitted hydraulic pressure, the rotational speed of each wheel, the inclination state of the vehicle 1, and the like. To do.
 前ブレーキ管127は、液圧制御ユニット102に接続される。液圧制御ユニット102は、前マスターシリンダー125の液圧を検出する前マスターシリンダー圧センサ(図示せず)を備えることができる。トルク制御部100は、前マスターシリンダー圧センサで検出される液圧に基づいて、入力部材121の操作量を検出することができる。 The front brake pipe 127 is connected to the hydraulic pressure control unit 102. The hydraulic pressure control unit 102 can include a front master cylinder pressure sensor (not shown) that detects the hydraulic pressure of the front master cylinder 125. The torque control unit 100 can detect the operation amount of the input member 121 based on the hydraulic pressure detected by the front master cylinder pressure sensor.
 入力部材121が操作されると、前マスターシリンダー125の液圧に基づく液圧が液圧制御ユニット102にて発生する。液圧制御ユニット102で発生した液圧は、左前ブレーキ管94aを介して左キャリパ93aに伝えられる。これにより、左前ブレーキ91aは作動する。同様に、液圧制御ユニット102で発生した液圧は、右前ブレーキ管94bを介して右キャリパ93bに伝えられる。これにより、右前ブレーキ91bは作動する。左前ブレーキ管94aが「左配管」に対応し、右前ブレーキ管94bが「右配管」に対応する。 When the input member 121 is operated, a hydraulic pressure based on the hydraulic pressure of the front master cylinder 125 is generated in the hydraulic pressure control unit 102. The hydraulic pressure generated by the hydraulic pressure control unit 102 is transmitted to the left caliper 93a via the left front brake pipe 94a. As a result, the left front brake 91a operates. Similarly, the hydraulic pressure generated by the hydraulic pressure control unit 102 is transmitted to the right caliper 93b through the right front brake pipe 94b. As a result, the right front brake 91b operates. The left front brake pipe 94a corresponds to the “left pipe”, and the right front brake pipe 94b corresponds to the “right pipe”.
 ブレーキ作動装置123は、入力部材121の操作により、右前ブレーキ91b、及び左前ブレーキ91aを作動させる。トルク制御部100は、入力部材121の操作量及び車体フレームの左右方向の傾斜状態等に応じて、右前ブレーキ91b、及び左前ブレーキ91aの液圧の配分を制御する。すなわち、トルク制御部100は、右前ブレーキ91b、及び左前ブレーキ91aの制動力の配分を制御する。これにより、左車輪3aの制動トルクと、右車輪3bの制動トルクとの差が調整される。 The brake operating device 123 operates the right front brake 91b and the left front brake 91a by operating the input member 121. The torque control unit 100 controls the distribution of the hydraulic pressures of the right front brake 91b and the left front brake 91a according to the operation amount of the input member 121, the left-right inclination state of the body frame, and the like. That is, the torque control unit 100 controls the distribution of the braking force of the right front brake 91b and the left front brake 91a. As a result, the difference between the braking torque of the left wheel 3a and the braking torque of the right wheel 3b is adjusted.
 液圧制御ユニット102は、電子制御ユニット101による制御によって、左前ブレーキ管94aに充填されたブレーキ液の液圧と、右前ブレーキ管94bに充填されたブレーキ液の液圧とが、独立して調整可能に構成されている。 The hydraulic pressure control unit 102 adjusts independently the hydraulic pressure of the brake fluid filled in the left front brake pipe 94a and the hydraulic pressure of the brake fluid filled in the right front brake pipe 94b under the control of the electronic control unit 101. It is configured to be possible.
 また、ブレーキシステム120は、左前ブレーキ91a、右前ブレーキ91b及び後ブレーキ91cのキャリパ93a、93b、93cそれぞれの液圧(ホイールシリンダーの液圧:WC圧)を検出するWC圧センサを備えてもよい。電子制御ユニット101は、WC圧センサで検出された各ブレーキの液圧すなわちWC圧を取得し、制御処理に用いることができる。 Further, the brake system 120 may include a WC pressure sensor that detects the hydraulic pressure (hydraulic pressure of the wheel cylinder: WC pressure) of the calipers 93a, 93b, and 93c of the left front brake 91a, the right front brake 91b, and the rear brake 91c. . The electronic control unit 101 can acquire the hydraulic pressure of each brake detected by the WC pressure sensor, that is, the WC pressure, and use it for the control process.
 本実施形態の車両1において、ブレーキシステム120は、後輪5の制動力を発生させる後ブレーキ91cを備える。ブレーキシステム120は、入力部材121とは別の入力部材131を備える。ブレーキシステム120は、ブレーキ作動装置133を含む。 In the vehicle 1 of the present embodiment, the brake system 120 includes a rear brake 91c that generates the braking force of the rear wheels 5. The brake system 120 includes an input member 131 that is different from the input member 121. The brake system 120 includes a brake actuator 133.
 ブレーキ作動装置133は、後マスターシリンダー135を含む。入力部材131がライダーによって操作されると、後マスターシリンダー135が作動して液圧を発生する。発生した液圧は、後ブレーキ管137を介してトルク制御部100に伝えられる。 The brake operating device 133 includes a rear master cylinder 135. When the input member 131 is operated by the rider, the rear master cylinder 135 is activated to generate hydraulic pressure. The generated hydraulic pressure is transmitted to the torque control unit 100 via the rear brake pipe 137.
 後ブレーキ管137は、液圧制御ユニット102に接続される。液圧制御ユニット102は、後マスターシリンダー135の液圧を検出する後マスターシリンダー圧センサ(図示せず)を備えることができる。トルク制御部100は、後マスターシリンダー圧センサで検出される液圧に基づいて、入力部材131の操作量を検出することができる。 The rear brake pipe 137 is connected to the hydraulic pressure control unit 102. The hydraulic pressure control unit 102 can include a rear master cylinder pressure sensor (not shown) that detects the hydraulic pressure of the rear master cylinder 135. The torque control unit 100 can detect the operation amount of the input member 131 based on the hydraulic pressure detected by the rear master cylinder pressure sensor.
 ブレーキ作動装置133は、入力部材131の操作により、左前ブレーキ91a、右前ブレーキ91b、及び後ブレーキ91cを作動させる。すなわち、液圧制御ユニット102で発生した液圧は、左前ブレーキ管94aを介して左キャリパ93aに伝えられる。これにより、左前ブレーキ91aは作動する。同様に、液圧制御ユニット102で発生した液圧は、右前ブレーキ管94bを介して右キャリパ93bに伝えられる。これにより、右前ブレーキ91bは作動する。同様に、液圧制御ユニット102で発生した液圧は、後ブレーキ管94bを介して後キャリパ93cに伝えられる。これにより、後ブレーキ91cは作動する。 The brake operating device 133 operates the left front brake 91a, the right front brake 91b, and the rear brake 91c by operating the input member 131. That is, the hydraulic pressure generated by the hydraulic pressure control unit 102 is transmitted to the left caliper 93a via the left front brake pipe 94a. As a result, the left front brake 91a operates. Similarly, the hydraulic pressure generated by the hydraulic pressure control unit 102 is transmitted to the right caliper 93b through the right front brake pipe 94b. As a result, the right front brake 91b operates. Similarly, the hydraulic pressure generated by the hydraulic pressure control unit 102 is transmitted to the rear caliper 93c via the rear brake pipe 94b. As a result, the rear brake 91c operates.
 なお、入力部材131が操作された場合には、後ブレーキ91cのみを作動させるものとしても構わない。他方、入力部材121が操作された場合に、左前ブレーキ91a及び右前ブレーキ91bに加えて、後ブレーキ91cをも作動させるものとしても構わない。 It should be noted that when the input member 131 is operated, only the rear brake 91c may be operated. On the other hand, when the input member 121 is operated, the rear brake 91c may be operated in addition to the left front brake 91a and the right front brake 91b.
 〈トルク制御部〉
 図12は、トルク制御部100の構成を示すブロック図である。上述したように、トルク制御部100は、電子制御ユニット101と液圧制御ユニット102とを備える。
<Torque control unit>
FIG. 12 is a block diagram illustrating a configuration of the torque control unit 100. As described above, the torque control unit 100 includes the electronic control unit 101 and the hydraulic pressure control unit 102.
 電子制御ユニット101は、傾斜検出部50から車両1の傾斜状態に関する情報が与えられる。また、電子制御ユニット101は、ライダーが入力部材121を操作した操作量に関する情報が与えられる。この情報は、前マスターシリンダー125や後マスターシリンダー135を通じて生じた液圧に基づくものとして構わない。 The electronic control unit 101 is given information related to the tilt state of the vehicle 1 from the tilt detection unit 50. Also, the electronic control unit 101 is given information regarding the operation amount by which the rider operated the input member 121. This information may be based on the hydraulic pressure generated through the front master cylinder 125 and the rear master cylinder 135.
 図12に示す例では、電子制御ユニット101は、内外輪特定部151と、合計制動トルク算出部153と、各制動トルク算出部155とを備える。 In the example shown in FIG. 12, the electronic control unit 101 includes an inner and outer wheel specifying unit 151, a total braking torque calculating unit 153, and each braking torque calculating unit 155.
 内外輪特定部151は、傾斜検出部50から与えられた車体フレーム15の傾斜状態に関する情報に基づき、左車輪3aと右車輪3bのうち、どちらが内輪でどちらが外輪であるかを特定する。一例として、水平面に直交する軸からの車体フレーム14の上下方向線の傾斜角(ロール角)を車両1の傾斜状態とすることができる。この場合、例えば、このロール角の正負によって、左車輪3aと右車輪3bのどちらが内輪でどちらが外輪であるかを特定することができる。 The inner / outer wheel specifying unit 151 specifies which of the left wheel 3a and the right wheel 3b is the inner wheel and which is the outer wheel based on the information regarding the tilt state of the vehicle body frame 15 given from the tilt detection unit 50. As an example, the inclination angle (roll angle) of the vertical line of the body frame 14 from the axis orthogonal to the horizontal plane can be set to the inclination state of the vehicle 1. In this case, for example, it is possible to identify which of the left wheel 3a and the right wheel 3b is the inner ring and which is the outer ring by the sign of the roll angle.
 合計制動トルク算出部153は、ライダーによる入力部材121の操作量に基づいて、左車輪3aに対して発生させるべき制動トルク(左制動トルク)と、右車輪3bに対して発生させるべき制動トルク(右制動トルク)との合計値(以下、「合計制動トルク」と呼ぶ。)を算出する。操作量と合計制動トルクとは、少なくともある範囲内においては正に相関しているものとして構わない。 Based on the amount of operation of the input member 121 by the rider, the total braking torque calculation unit 153 generates a braking torque (left braking torque) to be generated for the left wheel 3a and a braking torque to be generated for the right wheel 3b ( Right braking torque) (hereinafter referred to as “total braking torque”). The manipulated variable and the total braking torque may be positively correlated at least within a certain range.
 各制動トルク算出部155は、合計制動トルク算出部153で算出された合計制動トルクと、左車輪3aに対して発生させるべき制動トルク(左制動トルク)と、右車輪3bに対して発生させるべき制動トルク(右制動トルク)とを算出する。各制動トルク算出部155は、傾斜検出部50から与えられた傾斜状態、及び内外輪特定部151で特定された結果に基づいて、左制動トルク及び右制動トルクを算出する。内外輪特定部151で特定された結果は、左車輪3a及び右車輪3bが、それぞれ内輪及び外輪のいずれであるかを示す情報である。例えば、合計制動トルクの値、及び車体フレーム15の傾斜状態(ロール角)に応じて、左右の制動トルクの配分比率が予め定められているものとしても構わない。各制動トルク算出部155は、上記予め定められた配分比率を示すデータを用いて、合計制動トルク算出部153で算出された合計制動トルクと傾斜検出部50から与えられた傾斜状態に対応する左右の制動トルクの配分比率を決定することができる。 Each braking torque calculation unit 155 should generate the total braking torque calculated by the total braking torque calculation unit 153, the braking torque to be generated for the left wheel 3a (left braking torque), and the right wheel 3b. A braking torque (right braking torque) is calculated. Each braking torque calculation unit 155 calculates the left braking torque and the right braking torque based on the inclination state given from the inclination detection unit 50 and the result specified by the inner / outer wheel specifying unit 151. The result specified by the inner / outer wheel specifying unit 151 is information indicating whether the left wheel 3a and the right wheel 3b are inner wheels or outer wheels, respectively. For example, the distribution ratio of the left and right braking torques may be determined in advance according to the total braking torque value and the inclination state (roll angle) of the body frame 15. Each braking torque calculation unit 155 uses the data indicating the predetermined distribution ratio to calculate the left and right corresponding to the total braking torque calculated by the total braking torque calculation unit 153 and the inclination state given from the inclination detection unit 50. The distribution ratio of the braking torque can be determined.
 そして、液圧制御ユニット102は、各制動トルク算出部155が算出した左制動トルクが左車輪3aに生じるように、左前ブレーキ管94aに充填されるブレーキ液圧を調整する。また、液圧制御ユニット102は、各制動トルク算出部155が算出した右制動トルクが右車輪3bに生じるように、右前ブレーキ管94bに充填されるブレーキ液圧を調整する。 Then, the hydraulic pressure control unit 102 adjusts the brake hydraulic pressure filled in the left front brake pipe 94a so that the left braking torque calculated by each braking torque calculation unit 155 is generated in the left wheel 3a. Further, the hydraulic pressure control unit 102 adjusts the brake hydraulic pressure filled in the right front brake pipe 94b so that the right braking torque calculated by each braking torque calculation unit 155 is generated in the right wheel 3b.
 各制動トルク算出部155は、種々の基準に基づいて演算をすることが可能である。以下、実施形態毎に説明する。 Each braking torque calculation unit 155 can perform calculations based on various criteria. Hereinafter, each embodiment will be described.
 (第一実施形態)
 第一実施形態の態様では、各制動トルク算出部155は、内外輪特定部151によって内輪と特定された側の前輪が路面に伝える制動トルクが、内外輪特定部151によって外輪と特定された側の前輪が路面に伝える制動トルクよりも大きくなるように、各前輪3(3a,3b)に対して発生させるべき制動トルクを算出する。
(First embodiment)
In the aspect of the first embodiment, each braking torque calculation unit 155 is configured such that the braking torque transmitted to the road surface by the front wheel specified as the inner ring by the inner / outer wheel specifying unit 151 is specified as the outer wheel by the inner / outer wheel specifying unit 151. The braking torque to be generated for each front wheel 3 (3a, 3b) is calculated so that the front wheel of the vehicle is larger than the braking torque transmitted to the road surface.
 図13Aは、外輪よりも内輪に対して大きな制動トルクを発生させた場合における車両1の挙動を説明するための図である。図13Aでは、車両1が軌跡60aに沿って右カーブを描きながら走行中において、右車輪3bに対して制動トルクFxを発生させた場合を想定した図面である。この状態では、右車輪3bが内輪に対応し、左車輪3aが外輪に対応する。すなわち、図13Aは、外輪よりも内輪に対して大きな制動トルクを発生させた場合を模擬したものである。 FIG. 13A is a diagram for explaining the behavior of the vehicle 1 when a larger braking torque is generated for the inner ring than for the outer ring. FIG. 13A is a diagram assuming a case where the braking torque Fx is generated for the right wheel 3b while the vehicle 1 is traveling while drawing a right curve along the locus 60a. In this state, the right wheel 3b corresponds to the inner wheel, and the left wheel 3a corresponds to the outer wheel. That is, FIG. 13A simulates a case where a larger braking torque is generated for the inner ring than for the outer ring.
 車両1が右カーブを描きながら進行中、ライダーは車両1の車体を右側に傾斜させる。この状態で外輪である左車輪3aよりも内輪である右車輪3bに対して大きな制動トルクを発生させる。この場合、右車輪3bに対しては進行方向とは反対の向きに制動力が発生する一方、左車輪3aに対してはこの力が発生しない。この内輪と外輪の制動力の差に起因して、車体フレーム15に対して内向きのヨーモーメント61が発生する。このヨーモーメントにより外向きの遠心力が増す。そのため、車両1を起き上がらせるロール方向の回転力が上昇する。この結果、車両1は、右車輪3bに対して制動トルクFxを発生させた後は、軌跡60bに沿って走行する。 * While the vehicle 1 is moving in a right curve, the rider tilts the vehicle body of the vehicle 1 to the right. In this state, a larger braking torque is generated for the right wheel 3b, which is the inner wheel, than for the left wheel 3a, which is the outer wheel. In this case, while the braking force is generated in the direction opposite to the traveling direction for the right wheel 3b, this force is not generated for the left wheel 3a. An inward yaw moment 61 is generated with respect to the vehicle body frame 15 due to the difference in braking force between the inner ring and the outer ring. This yaw moment increases the outward centrifugal force. Therefore, the rotational force in the roll direction that raises the vehicle 1 is increased. As a result, the vehicle 1 travels along the locus 60b after generating the braking torque Fx for the right wheel 3b.
 (第二実施形態)
 第二実施形態の態様では、各制動トルク算出部155は、内外輪特定部151によって外輪と特定された側の前輪が路面に伝える制動トルクが、内外輪特定部151によって内輪と特定された側の前輪が路面に伝える制動トルクよりも大きくなるように、各前輪3(3a,3b)に対して発生させるべき制動トルクを算出する。
(Second embodiment)
In the aspect of the second embodiment, each braking torque calculation unit 155 is configured such that the braking torque transmitted to the road surface by the front wheel specified as the outer ring by the inner / outer wheel specifying unit 151 is specified as the inner ring by the inner / outer wheel specifying unit 151. The braking torque to be generated for each front wheel 3 (3a, 3b) is calculated so that the front wheel of the vehicle is larger than the braking torque transmitted to the road surface.
 図13Bは、内輪よりも外輪に対して大きな制動トルクを発生させた場合における車両1の挙動を説明するための式的な図面である。図13Bでは、車両1が軌跡60aに沿って右カーブを描きながら走行中において、左車輪3aに対して制動トルクFxを発生させた場合を想定した図面である。この状態では、右車輪3bが内輪に対応し、左車輪3aが外輪に対応する。すなわち、図13Bは、内輪よりも外輪に対して大きな制動トルクを発生させた場合を模擬したものである。 FIG. 13B is a schematic diagram for explaining the behavior of the vehicle 1 when a larger braking torque is generated with respect to the outer wheel than the inner wheel. FIG. 13B is a diagram assuming a case where the braking torque Fx is generated for the left wheel 3a while the vehicle 1 is traveling while drawing a right curve along the locus 60a. In this state, the right wheel 3b corresponds to the inner wheel, and the left wheel 3a corresponds to the outer wheel. That is, FIG. 13B simulates the case where a larger braking torque is generated for the outer ring than for the inner ring.
 車両1が右カーブを描きながら進行中、ライダーは車両1の車体を右側に傾斜させる。この状態で内輪である右車輪3bよりも外輪である左車輪3aに対して大きな制動トルクを発生させる。この場合、左車輪3aに対しては進行方向とは反対の向きに制動力が発生する一方、右車輪3bに対してはこの力が発生しない。この内輪と外輪の制動力の差に起因して、左車輪3aに対して外向きのヨーモーメント62が発生する。そのため、内向きのヨーモーメントが減少する。内向きのヨーモーメントとは旋回方向と同じ向きのヨーモーメントである。外向きのヨーモーメントは、旋回方向とは反対の向きのヨーモーメントである。この外向きのヨーモーメント62は、図13Aに示す内向きのヨーモーメント61とは逆向きである。この外向きのヨーモーメント62は、車体フレーム15を起き上がらせる力を低下させる。すなわち、車体フレーム15を旋回内側に傾かせる方向のロールモーメントが発生する。車体フレーム15に外向きのヨーモーメント62が発生することにより、車体フレーム15が旋回内側に傾斜する場合もある。外向きのヨーモーメント62により、車両1は、左車輪3aに対して制動トルクFxを発生させた後は、軌跡60bに沿って走行する。 * While the vehicle 1 is moving in a right curve, the rider tilts the vehicle body of the vehicle 1 to the right. In this state, a larger braking torque is generated for the left wheel 3a that is the outer wheel than the right wheel 3b that is the inner wheel. In this case, a braking force is generated for the left wheel 3a in the direction opposite to the traveling direction, but this force is not generated for the right wheel 3b. Due to the difference in braking force between the inner wheel and the outer wheel, an outward yaw moment 62 is generated with respect to the left wheel 3a. Therefore, the inward yaw moment is reduced. The inward yaw moment is a yaw moment in the same direction as the turning direction. The outward yaw moment is a yaw moment in the direction opposite to the turning direction. This outward yaw moment 62 is opposite to the inward yaw moment 61 shown in FIG. 13A. This outward yaw moment 62 reduces the force to raise the vehicle body frame 15. That is, a roll moment is generated in a direction in which the body frame 15 is tilted inward of the turn. When the outward yaw moment 62 is generated in the vehicle body frame 15, the vehicle body frame 15 may be inclined inward of the turn. The vehicle 1 travels along the locus 60b after generating the braking torque Fx for the left wheel 3a by the outward yaw moment 62.
 (第三実施形態)
 図14は、第三実施形態のトルク制御部100の構成を示すブロック図である。トルク制御部100は、上記の実施形態の構成に加えて、更に記憶部157を備えている。記憶部157は、運転時における車体の姿勢維持性と、運転時における車体の姿勢変動性とのいずれを優先するかに関する優先性能情報が記憶されている。なお、この情報は、適宜書き換え可能に構成されていても構わない。
(Third embodiment)
FIG. 14 is a block diagram illustrating a configuration of the torque control unit 100 according to the third embodiment. The torque control unit 100 further includes a storage unit 157 in addition to the configuration of the above embodiment. The storage unit 157 stores priority performance information regarding which of the vehicle body posture maintaining property during driving and the vehicle body posture variability during driving is prioritized. This information may be configured to be appropriately rewritable.
 この実施形態では、各制動トルク算出部155は、優先性能情報の内容によって、内輪と外輪のどちらの制動トルクを大きくするかを調整する。 In this embodiment, each braking torque calculation unit 155 adjusts which braking torque of the inner ring or the outer ring is increased according to the content of the priority performance information.
 具体的には、優先性能情報が車体の姿勢維持性を優先する旨の内容である場合、各制動トルク算出部155は第一実施形態と同様の処理を行う。すなわち、各制動トルク算出部155は、内外輪特定部151によって内輪と特定された側の前輪が路面に伝える制動トルクが、内外輪特定部151によって外輪と特定された側の前輪が路面に伝える制動トルクよりも大きくなるように、各前輪3(3a,3b)に対して発生させるべき制動トルクを算出する。 Specifically, when the priority performance information is a content that gives priority to the posture maintenance of the vehicle body, each braking torque calculation unit 155 performs the same processing as in the first embodiment. That is, each braking torque calculation unit 155 transmits the braking torque transmitted to the road surface by the front wheel identified as the inner ring by the inner / outer wheel identification unit 151, and the front wheel identified by the inner / outer wheel identification unit 151 as the outer wheel to the road surface. The braking torque to be generated for each front wheel 3 (3a, 3b) is calculated so as to be larger than the braking torque.
 また、優先性能情報が車体の姿勢変動性を優先する旨の内容である場合、各制動トルク算出部155は第二実施形態と同様の処理を行う。すなわち、各制動トルク算出部155は、内外輪特定部151によって外輪と特定された側の前輪が路面に伝える制動トルクが、内外輪特定部151によって内輪と特定された側の前輪が路面に伝える制動トルクよりも大きくなるように、各前輪3(3a,3b)に対して発生させるべき制動トルクを算出する。 Further, when the priority performance information is a content that gives priority to the posture variability of the vehicle body, each braking torque calculation unit 155 performs the same processing as in the second embodiment. That is, each braking torque calculation unit 155 transmits the braking torque transmitted to the road surface by the front wheel identified as the outer wheel by the inner / outer wheel identification unit 151, and the front wheel identified by the inner / outer wheel identification unit 151 as the inner wheel to the road surface. The braking torque to be generated for each front wheel 3 (3a, 3b) is calculated so as to be larger than the braking torque.
 (第四実施形態)
 図14に示す構成において、各制動トルク算出部155は、例えば傾斜検出部50から車両1のロール角速度に関する情報が与えられることで、車両1がより傾斜する方向に移動しているか、起き上がる方向に移動しているかを検出することができる。
(Fourth embodiment)
In the configuration shown in FIG. 14, each braking torque calculation unit 155 is provided with, for example, information on the roll angular velocity of the vehicle 1 from the inclination detection unit 50, so that the vehicle 1 is moving in a more inclined direction or in a rising direction. Whether it is moving or not can be detected.
 具体的には、優先性能情報が車体の姿勢維持性を優先する旨の内容である場合、各制動トルク算出部155は、車両1のロール角速度の値から、車体がより傾斜する方向に移動していることを検知すると、第一実施形態と同様の処理を行う。すなわち、各制動トルク算出部155は、内外輪特定部151によって内輪と特定された側の前輪が路面に伝える制動トルクが、内外輪特定部151によって外輪と特定された側の前輪が路面に伝える制動トルクよりも大きくなるように、各前輪3(3a,3b)に対して発生させるべき制動トルクを算出する。 Specifically, when the priority performance information is a content that prioritizes the posture maintenance of the vehicle body, each braking torque calculation unit 155 moves from the value of the roll angular velocity of the vehicle 1 in a direction in which the vehicle body is more inclined. If it is detected, the same processing as in the first embodiment is performed. That is, each braking torque calculation unit 155 transmits the braking torque transmitted to the road surface by the front wheel identified as the inner ring by the inner / outer wheel identification unit 151, and the front wheel identified by the inner / outer wheel identification unit 151 as the outer wheel to the road surface. The braking torque to be generated for each front wheel 3 (3a, 3b) is calculated so as to be larger than the braking torque.
 また、優先性能情報が車体の姿勢維持性を優先する旨の内容である場合、各制動トルク算出部155は、車両1のロール角速度の値から起き上がる方向に移動していることを検知すると、第二実施形態と同様の処理を行う。すなわち、各制動トルク算出部155は、内外輪特定部151によって外輪と特定された側の前輪が路面に伝える制動トルクが、内外輪特定部151によって内輪と特定された側の前輪が路面に伝える制動トルクよりも大きくなるように、各前輪3(3a,3b)に対して発生させるべき制動トルクを算出する。 Further, when the priority performance information is a content that gives priority to the posture maintenance of the vehicle body, each braking torque calculation unit 155 detects that the vehicle 1 is moving in the direction of rising from the value of the roll angular velocity of the vehicle 1. The same processing as in the second embodiment is performed. That is, each braking torque calculation unit 155 transmits the braking torque transmitted to the road surface by the front wheel identified as the outer wheel by the inner / outer wheel identification unit 151, and the front wheel identified by the inner / outer wheel identification unit 151 as the inner wheel to the road surface. The braking torque to be generated for each front wheel 3 (3a, 3b) is calculated so as to be larger than the braking torque.
 また、優先性能情報が車体の姿勢変動性を優先する旨の内容である場合、各制動トルク算出部155は、車両1のロール角速度の値から、車体が傾斜する方向に移動していることを検知すると、第二実施形態と同様の処理を行う。すなわち、各制動トルク算出部155は、内外輪特定部151によって外輪と特定された側の前輪が路面に伝える制動トルクが、内外輪特定部151によって内輪と特定された側の前輪が路面に伝える制動トルクよりも大きくなるように、各前輪3(3a,3b)に対して発生させるべき制動トルクを算出する。 Further, when the priority performance information is a content indicating that the posture variability of the vehicle body is prioritized, each braking torque calculation unit 155 indicates that the vehicle body is moving in a direction in which the vehicle body is tilted from the value of the roll angular velocity of the vehicle 1. When detected, the same processing as in the second embodiment is performed. That is, each braking torque calculation unit 155 transmits the braking torque transmitted to the road surface by the front wheel identified as the outer wheel by the inner / outer wheel identification unit 151, and the front wheel identified by the inner / outer wheel identification unit 151 as the inner wheel to the road surface. The braking torque to be generated for each front wheel 3 (3a, 3b) is calculated so as to be larger than the braking torque.
 また、優先性能情報が車体の姿勢変動性を優先する旨の内容である場合、各制動トルク算出部155は、車両1のロール角速度の値から起き上がる方向に移動していることを検知すると、第一実施形態と同様の処理を行う。すなわち、各制動トルク算出部155は、内外輪特定部151によって内輪と特定された側の前輪が路面に伝える制動トルクが、内外輪特定部151によって外輪と特定された側の前輪が路面に伝える制動トルクよりも大きくなるように、各前輪3(3a,3b)に対して発生させるべき制動トルクを算出する。 Further, when the priority performance information is a content indicating that the posture variability of the vehicle body is prioritized, each braking torque calculation unit 155 detects that the vehicle 1 is moving in the direction of rising from the value of the roll angular velocity of the vehicle 1. The same processing as in the embodiment is performed. That is, each braking torque calculation unit 155 transmits the braking torque transmitted to the road surface by the front wheel identified as the inner ring by the inner / outer wheel identification unit 151, and the front wheel identified by the inner / outer wheel identification unit 151 as the outer wheel to the road surface. The braking torque to be generated for each front wheel 3 (3a, 3b) is calculated so as to be larger than the braking torque.
 (第五実施形態)
 各制動トルク算出部155は、傾斜検出部50から与えられる車両1のロール角の情報に応じて決定される基準に基づいて合計制動トルクを配分するものとしても構わない。また、各制動トルク算出部155は、傾斜検出部50から与えられる車両1のロール角速度の情報に応じて決定される基準に基づいて合計制動トルクを配分するものとしても構わない。また、各制動トルク算出部155は、傾斜検出部50から与えられる車両1のロール角の情報とロール角速度の情報の双方に応じて決定される基準に基づいて合計制動トルクを配分するものとしても構わない。
(Fifth embodiment)
Each braking torque calculation unit 155 may distribute the total braking torque based on a reference determined in accordance with the roll angle information of the vehicle 1 given from the inclination detection unit 50. In addition, each braking torque calculation unit 155 may distribute the total braking torque based on a reference determined according to information on the roll angular velocity of the vehicle 1 given from the inclination detection unit 50. Further, each braking torque calculation unit 155 may distribute the total braking torque based on a criterion determined according to both the roll angle information and the roll angular velocity information of the vehicle 1 given from the inclination detection unit 50. I do not care.
 [別実施形態]
 以下、別実施形態について説明する。
[Another embodiment]
Hereinafter, another embodiment will be described.
 〈1〉 上述した実施形態では、トルク制御部100が、左車輪3a及び右車輪3bの制動トルクを個別に制御する。この制御の代わりに、又は、この制御に加えて、トルク制御部100が、左車輪3a及び右車輪3bの駆動トルクを個別に制御するものとしてもよい。例えば、車両1が、左車輪3a及び右車輪3bの双方にホイールインモータを搭載することで、この制御を実現できる。 <1> In the embodiment described above, the torque control unit 100 individually controls the braking torque of the left wheel 3a and the right wheel 3b. Instead of or in addition to this control, the torque control unit 100 may individually control the drive torque of the left wheel 3a and the right wheel 3b. For example, this control can be realized by mounting the wheel-in motor on both the left wheel 3a and the right wheel 3b.
 図13Aは、内輪の制動トルクを外輪の制動トルクよりも大きくした場合の例である。図13Aにおいて、内輪の制動力Fxの代わりに、制動力Fxと逆向きの駆動力を外輪に加えることができる。このように駆動力を加えた場合も、車両1は、図13Aに示した挙動を同様の挙動を示す。図13Bは、外輪の制動トルクを内輪の制動トルクよりも大きくした場合の例である。図13Bにおいて、外輪の制動力Fxの代わりに、制動力Fxと逆向きの駆動力を内輪に加えることができる。このように駆動力を加えた場合も、車両1は、図13Bに示した挙動を同様の挙動を示す。 FIG. 13A shows an example in which the braking torque of the inner ring is made larger than the braking torque of the outer ring. In FIG. 13A, instead of the braking force Fx of the inner ring, a driving force opposite to the braking force Fx can be applied to the outer ring. Even when the driving force is applied in this way, the vehicle 1 exhibits the same behavior as the behavior illustrated in FIG. 13A. FIG. 13B shows an example in which the braking torque of the outer ring is larger than the braking torque of the inner ring. In FIG. 13B, instead of the braking force Fx of the outer ring, a driving force opposite to the braking force Fx can be applied to the inner ring. Even when the driving force is applied in this way, the vehicle 1 exhibits the same behavior as the behavior illustrated in FIG. 13B.
 制動トルクの代わりに駆動トルクを制御する場合、上記図12及び図14で登場した「合計制動トルク算出部153」は、「合計駆動トルク算出部153」に読み替えられ、「各制動トルク算出部155」は、「各駆動トルク算出部155」に読み替えられる。「液圧制御ユニット102」は、「駆動制御ユニット」に置き換えられる。 When controlling the driving torque instead of the braking torque, the “total braking torque calculation unit 153” appearing in FIGS. 12 and 14 is replaced with the “total driving torque calculation unit 153”. "Is replaced with" each driving torque calculation unit 155 ". The “hydraulic pressure control unit 102” is replaced with a “drive control unit”.
 また、制動トルクの代わりに駆動トルクを制御する場合、上記車両1の左前ブレーキ91a、右前ブレーキ91bは、それぞれ、左車輪を回転させる左駆動部、右車輪を回転させる右駆動部に置き換えられる。右駆動部及び左駆動部は、それぞれ、車輪に回転力を付与するホイールインモータを含む構成とすることができる。駆動制御ユニットは、左車輪3aのホイールインモータ、及び右車輪3bのホイールインモータの駆動を制御する。また、各制動トルク算出部155は、車体フレーム15の傾斜状態に応じて、左車輪3aの駆動力、及び右車輪3bの駆動力を決定する構成となる。電子制御ユニット101は、各制動トルク算出部155で決定した左車輪3aの駆動力及び右車輪3bの駆動力を発生させるよう、右駆動部、左駆動部を制御する構成となる。 Further, when controlling the driving torque instead of the braking torque, the left front brake 91a and the right front brake 91b of the vehicle 1 are replaced with a left driving unit that rotates the left wheel and a right driving unit that rotates the right wheel, respectively. Each of the right drive unit and the left drive unit may include a wheel-in motor that applies a rotational force to the wheels. The drive control unit controls the driving of the wheel-in motor of the left wheel 3a and the wheel-in motor of the right wheel 3b. Further, each braking torque calculation unit 155 is configured to determine the driving force of the left wheel 3a and the driving force of the right wheel 3b according to the inclination state of the vehicle body frame 15. The electronic control unit 101 is configured to control the right driving unit and the left driving unit so as to generate the driving force of the left wheel 3a and the driving force of the right wheel 3b determined by each braking torque calculation unit 155.
 外輪よりも内輪に対して大きな駆動トルクを発生させた場合には、車両1が傾斜する方向に力が働く。逆に、内輪よりも外輪に対して大きな駆動トルクを発生させた場合には、車両1を起き上がらせる力が働く。 When a larger driving torque is generated for the inner ring than for the outer ring, a force acts in the direction in which the vehicle 1 tilts. On the other hand, when a larger driving torque is generated for the outer ring than for the inner ring, a force for raising the vehicle 1 works.
 また、各駆動トルク算出部155が、優先性能情報の内容によって、内輪と外輪のどちらの駆動トルクを大きくするかを調整するものとしても構わない。具体的には、優先性能情報が車体の姿勢維持性を優先する旨の内容である場合には、外輪と特定された側の前輪が路面に伝える駆動トルクが、内輪と特定された側の前輪が路面に伝える駆動トルクよりも大きくなるように、各前輪3(3a,3b)に対して発生させるべき駆動トルクを算出する。一方、優先性能情報が車体の姿勢変動性を優先する旨の内容である場合には、内輪と特定された側の前輪が路面に伝える駆動トルクが、外輪と特定された側の前輪が路面に伝える駆動トルクよりも大きくなるように、各前輪3(3a,3b)に対して発生させるべき駆動トルクを算出する。 Further, each driving torque calculation unit 155 may adjust which driving torque of the inner ring or the outer ring is increased according to the content of the priority performance information. Specifically, when the priority performance information indicates that priority is given to maintaining the posture of the vehicle body, the driving torque transmitted to the road surface by the front wheel identified as the outer wheel is the front wheel identified as the inner wheel. The driving torque to be generated for each front wheel 3 (3a, 3b) is calculated so as to be larger than the driving torque transmitted to the road surface. On the other hand, if the priority performance information is the content that priority is given to the posture variability of the vehicle body, the driving torque transmitted to the road surface by the front wheel identified as the inner wheel is on the road surface. The drive torque to be generated for each front wheel 3 (3a, 3b) is calculated so as to be larger than the transmitted drive torque.
 具体的には、優先性能情報が車体の姿勢維持性を優先する旨の内容である場合、各駆動トルク算出部155は、車両1のロール角速度の値から、車体が傾斜する方向に移動していることを検知すると、内輪の駆動トルクが外輪の駆動トルクよりも大きくなるように、各前輪3(3a,3b)に対して発生させるべき駆動トルクを算出する。また、優先性能情報が車体の姿勢維持性を優先する旨の内容である場合、各駆動トルク算出部155は、車両1のロール角速度の値から起き上がる方向に移動していることを検知すると、外輪の駆動トルクが内輪の駆動トルクよりも大きくなるように、各前輪3(3a,3b)に対して発生させるべき駆動トルクを算出する。 Specifically, when the priority performance information is a content that gives priority to the posture maintenance of the vehicle body, each drive torque calculation unit 155 moves from the value of the roll angular velocity of the vehicle 1 in the direction in which the vehicle body tilts. When this is detected, the driving torque to be generated for each front wheel 3 (3a, 3b) is calculated so that the driving torque of the inner ring is larger than the driving torque of the outer ring. Further, when the priority performance information is the content that priority is given to the posture maintenance of the vehicle body, each driving torque calculation unit 155 detects that the vehicle 1 is moving in the direction of rising from the value of the roll angular velocity of the vehicle 1, The driving torque to be generated for each of the front wheels 3 (3a, 3b) is calculated so that the driving torque becomes larger than the driving torque of the inner wheel.
 また、優先性能情報が車体の姿勢変動性を優先する旨の内容である場合、各駆動トルク算出部155は、車両1のロール角速度の値から、車体が傾斜する方向に移動していることを検知すると、外輪の駆動トルクが内輪の駆動トルクよりも大きくなるように、各前輪3(3a,3b)に対して発生させるべき駆動トルクを算出する。また、優先性能情報が車体の姿勢変動性を優先する旨の内容である場合、各駆動トルク算出部155は、車両1のロール角速度の値から起き上がる方向に移動していることを検知すると、内輪の駆動トルクが外輪の駆動トルクよりも大きくなるように、各前輪3(3a,3b)に対して発生させるべき駆動トルクを算出する。 Further, when the priority performance information is a content indicating that the posture variability of the vehicle body is prioritized, each driving torque calculation unit 155 indicates that the vehicle body is moving in the direction in which the vehicle body is inclined from the value of the roll angular velocity of the vehicle 1. When detected, the driving torque to be generated for each front wheel 3 (3a, 3b) is calculated so that the driving torque of the outer wheel becomes larger than the driving torque of the inner wheel. Further, when the priority performance information is a content to give priority to the posture variability of the vehicle body, each driving torque calculation unit 155 detects that the vehicle 1 is moving in the direction of rising from the value of the roll angular velocity of the vehicle 1, The driving torque to be generated for each front wheel 3 (3a, 3b) is calculated so that the driving torque of the front wheel 3 becomes larger than the driving torque of the outer wheel.
 また、各駆動トルク算出部155は、傾斜検出部50から与えられる車両1のロール角の情報に応じて決定される基準に基づいて合計駆動トルクを配分するものとしても構わない。また、各駆動トルク算出部155は、傾斜検出部50から与えられる車両1のロール角速度の情報に応じて決定される基準に基づいて合計駆動トルクを配分するものとしても構わない。また、各駆動トルク算出部155は、傾斜検出部50から与えられる車両1のロール角の情報とロール角速度の情報の双方に応じて決定される基準に基づいて合計駆動トルクを配分するものとしても構わない。 Further, each drive torque calculation unit 155 may distribute the total drive torque based on a reference determined according to the roll angle information of the vehicle 1 given from the inclination detection unit 50. Further, each drive torque calculation unit 155 may distribute the total drive torque based on a reference determined according to the roll angular velocity information of the vehicle 1 given from the inclination detection unit 50. In addition, each drive torque calculation unit 155 may distribute the total drive torque based on a reference determined according to both the roll angle information and the roll angular velocity information of the vehicle 1 given from the inclination detection unit 50. I do not care.
 なお、この実施形態において、トルク制御部100が、左車輪3a及び右車輪3bの制動トルクと駆動トルクの双方を個別に制御するものとしても構わない。 In this embodiment, the torque control unit 100 may individually control both the braking torque and the driving torque of the left wheel 3a and the right wheel 3b.
 〈2〉 上記実施形態の車両1では、左車輪3a及び右車輪3bが操舵輪である。これに対して、左右方向に配置された左後輪及び右後輪が、操舵される操舵輪とすることもできる。操舵輪が後輪である場合において、トルク制御部100が、これら2つの後輪の制動トルク又は駆動トルクを個別に制御する構成としても構わない。また、前輪及び後輪が操舵輪である構成とすることもできる。また、後輪は、1つの車輪に限らず、左右方向に配置された2つの車輪であってもよい。 <2> In the vehicle 1 of the above embodiment, the left wheel 3a and the right wheel 3b are steering wheels. On the other hand, the left rear wheel and the right rear wheel arranged in the left-right direction can be steered wheels to be steered. When the steered wheel is a rear wheel, the torque control unit 100 may be configured to individually control the braking torque or the drive torque of these two rear wheels. Further, the front wheels and the rear wheels may be steered wheels. The rear wheel is not limited to one wheel, and may be two wheels arranged in the left-right direction.
 〈3〉 車両1において、後輪5の左右方向の中央は、左車輪3aと右車輪3bの左右方向の中央と必ずしも一致していなくても構わない。車両1は、車体フレーム15を覆う車体カバーを備えていても構わない。また、車両1の動力源は、エンジンであっても電動モータであっても構わない。 <3> In the vehicle 1, the center in the left-right direction of the rear wheel 5 may not necessarily coincide with the center in the left-right direction of the left wheel 3a and the right wheel 3b. The vehicle 1 may include a vehicle body cover that covers the vehicle body frame 15. Further, the power source of the vehicle 1 may be an engine or an electric motor.
 〈4〉 上記実施形態では、入力部材(121,131)は、ライダーが手で操作可能なレバーであるものとしたが、運転者が足で操作するペダルであっても構わないし、ライダーが操作する押し込み式のボタンや、回転式のグリップであっても構わない。入力部材(121,131)は、ライダーが触れていない状態である初期状態とライダーの操作量が最大である最大操作状態との間で操作可能な構成である。入力部材としての操作子は、車輪の制動又は駆動を操作可能な操作子の他、車輪の制動及び駆動の双方を操作可能な操作子であってもよい。制動操作子は、例えば、ブレーキレバー、ブレーキペダル等である。駆動操作子は、例えば、アクセルレバー、アクセルペダル等である。 <4> In the above embodiment, the input member (121, 131) is a lever that can be operated by the rider's hand. However, the input member (121, 131) may be a pedal that is operated by the driver's foot. It may be a push-in button or a rotary grip. The input members (121, 131) are configured to be operable between an initial state where the rider is not touching and a maximum operation state where the rider's operation amount is maximum. The operating element as the input member may be an operating element capable of operating both the braking and driving of the wheels in addition to the operating element capable of operating the braking or driving of the wheels. The brake operator is, for example, a brake lever, a brake pedal, or the like. The drive operator is, for example, an accelerator lever or an accelerator pedal.
 入力部材(121,131)の操作量は、入力部材(121,131)の初期状態からの位置であっても構わない。この場合、入力部材(121,131)の位置を検出するセンサを設けることで、その操作量を検出できる。入力部材(121,131)の操作量とは、入力部材の初期状態からの圧力の変化量であっても良い。この場合、マスターシリンダー(125,135)が発生する液圧を検出するセンサを設けることで、その操作量を検出できる。また、入力部材(121,131)に直接作用する圧力を検出するセンサを設けることで、その操作量を検出できる。入力部材の操作量は、運転者の操作に応じて変化する物理量である。なお、操作量は必ずしもセンサで検出する必要はなく、機械的に操作量に連動して作動する機構であっても良い。 The operation amount of the input member (121, 131) may be the position from the initial state of the input member (121, 131). In this case, the operation amount can be detected by providing a sensor for detecting the position of the input member (121, 131). The operation amount of the input member (121, 131) may be the amount of change in pressure from the initial state of the input member. In this case, the operation amount can be detected by providing a sensor for detecting the hydraulic pressure generated by the master cylinder (125, 135). Moreover, the operation amount can be detected by providing a sensor for detecting the pressure directly acting on the input member (121, 131). The operation amount of the input member is a physical amount that changes according to the operation of the driver. The operation amount does not necessarily need to be detected by a sensor, and may be a mechanism that operates mechanically in conjunction with the operation amount.
 〈5〉 上記実施形態において、車両1は、ブレーキ液圧を利用したディスクブレーキを採用している。しかしながら、本発明では、ブレーキの種類はこれに限らず、ドラムブレーキ、電磁ブレーキ、湿式多板ブレーキなど種々の種類を採用しても構わない。また、上記実施形態では、ブレーキ作動装置(123,133)は、ブレーキ液圧を電子制御する構成としたが、液圧を機械的な機構で制御しても構わない。 <5> In the above embodiment, the vehicle 1 employs a disc brake that uses brake fluid pressure. However, in the present invention, the type of brake is not limited to this, and various types such as a drum brake, an electromagnetic brake, and a wet multi-plate brake may be adopted. Moreover, in the said embodiment, although the brake actuator (123, 133) was set as the structure which controls a brake hydraulic pressure electronically, you may control a hydraulic pressure with a mechanical mechanism.
 傾斜検出部50の構成は、上記例に限られない。傾斜検出部50は、車両において検出される6軸加速度及び6軸の速度のうち少なくとも1つを用いて、ロール角を推定する構成であってもよい。傾斜検出部50は、車体フレームのロール角に関する物理量を測定する構成であってもよい。傾斜検出部50は、例えば、ポテンショメータ等のように、車体フレームとリンク機構の相対回転を検出するセンサを含んでもよい。又は、傾斜検出部50は、近接センサ(距離センサ)を含んでもよい。この場合、近接センサによって、車体フレームと路面との距離を測定し、距離を用いてロール角を推定することができる。 The configuration of the inclination detector 50 is not limited to the above example. The inclination detection unit 50 may be configured to estimate the roll angle using at least one of 6-axis acceleration and 6-axis speed detected in the vehicle. The inclination detection unit 50 may be configured to measure a physical quantity related to the roll angle of the body frame. The inclination detection unit 50 may include a sensor that detects the relative rotation between the vehicle body frame and the link mechanism, such as a potentiometer. Alternatively, the inclination detection unit 50 may include a proximity sensor (distance sensor). In this case, the distance between the vehicle body frame and the road surface can be measured by the proximity sensor, and the roll angle can be estimated using the distance.
 リンク機構9の構成は、パラレログラムリンクに限られない。リンク機構9は、例えば、車体フレームに対して回転するアームとして、ショックタワーを備える構成であってもよい。また、リンク機構9は、ダブルウィッシュボーン型懸架構造を含む構成であってもよい。また、リンク機構9は、左右方向に並べて配置され、車体フレームに回転可能に取り付けられた左アーム及び右アームを備える構成であってもよい。この場合、左アームは、左操舵輪を車体フレームに対して上下方向に移動可能に支持し、右アームは、左操舵輪を車体フレームに対して上下方向に移動可能に支持する。 The structure of the link mechanism 9 is not limited to the parallelogram link. For example, the link mechanism 9 may be configured to include a shock tower as an arm that rotates with respect to the vehicle body frame. Further, the link mechanism 9 may be configured to include a double wishbone suspension structure. Further, the link mechanism 9 may be configured to include a left arm and a right arm that are arranged side by side in the left-right direction and are rotatably attached to the vehicle body frame. In this case, the left arm supports the left steering wheel so as to be movable in the vertical direction with respect to the vehicle body frame, and the right arm supports the left steering wheel so as to be movable in the vertical direction with respect to the vehicle body frame.
 また、リンク機構9は、車体フレームに対してアームを回転させる力を付与するアクチュエータを備えてもよい。これにより、車体フレームの左右方向の傾斜を、アクチュエータにより制御することができる。この場合、トルク制御部100による車体フレームのロールモーメントの制御と、リンク機構のアクチュエータによるロールモーメントの制御が組み合わされる。 Further, the link mechanism 9 may include an actuator that applies a force for rotating the arm to the body frame. Thereby, the inclination of the body frame in the left-right direction can be controlled by the actuator. In this case, the control of the roll moment of the vehicle body frame by the torque control unit 100 and the control of the roll moment by the actuator of the link mechanism are combined.
 車体フレームは、走行中にリーン車両にかかる応力を受ける部材である。例えば、モノコック(応力外皮構造)、セミモノコック、又は、車両部品が応力を受ける部材を兼ねている構造のものも、車体フレームの例に含まれる。例えば、エンジン、エアクリーナ等の部品が車体フレームの一部となる場合があってもよい。 The body frame is a member that receives stress applied to the lean vehicle during traveling. For example, a monocoque (stressed skin structure), a semi-monocoque, or a structure in which a vehicle part also serves as a member that receives stress is also included in the example of the body frame. For example, parts such as an engine and an air cleaner may be a part of the body frame.
 発明者は、上記の実施形態における車両の動作について、さらに詳しく以下のように考察した。車体フレームを傾斜しながら走行すると、車体フレームに対して遠心力が働く。このとき、操舵輪に対して横滑りが発生するが、操舵輪自体がたわむことで逆の方向に戻そうとする力が働く。この力は、操舵輪の接地点に作用している摩擦力の分力であり、車両の進行方向に対して直角の方向に作用する。この力は、「コーナリングフォース」と呼ばれ、タイヤ(車輪)に対する横滑り角から生じる。 The inventor considered the operation of the vehicle in the above embodiment in more detail as follows. When traveling while tilting the body frame, centrifugal force acts on the body frame. At this time, a side slip occurs with respect to the steered wheel, but when the steered wheel itself bends, a force acts to return to the opposite direction. This force is a component of the frictional force acting on the grounding point of the steered wheel, and acts in a direction perpendicular to the traveling direction of the vehicle. This force is called “cornering force” and results from the side slip angle with respect to the tire (wheel).
 また、車体フレームが傾斜していることで、操舵輪がこの傾斜方向に進もうとする結果、車体フレームのロール角(すなわち路面の鉛直線に対する傾き角(キャンバ角とも称される))にほぼ比例した大きさの力が、車両の進行方向に対して直角の方向に作用する。この力は、一般的に「キャンバースラスト」と呼ばれ、キャンバ角から生じる。これらの、コーナリングフォース及びキャンバースラストの合力が「横力」として、遠心力とは反対の向きに作用する。図15Aに、車体フレームが傾斜している際の遠心力Fc及び重力Fgの例を示す。 In addition, as the vehicle body frame is inclined, the steered wheel tends to advance in this inclination direction. As a result, the roll angle of the vehicle body frame (ie, the inclination angle with respect to the vertical line of the road surface (also referred to as camber angle)) is almost equal. A proportionally large force acts in a direction perpendicular to the direction of travel of the vehicle. This force is commonly referred to as “camber thrust” and results from the camber angle. The resultant force of the cornering force and the camber thrust acts as a “lateral force” and acts in the opposite direction to the centrifugal force. FIG. 15A shows an example of centrifugal force Fc and gravity Fg when the body frame is inclined.
 ここで、車体を路面に対して傾斜させた状態で走行しながら、操舵輪の回転を制動させた場合、すなわち、ライダーがブレーキを掛けた場合について検討する。進行方向に操舵輪を見たときに、操舵輪は中央よりも傾斜の内側において内径が小さい形状を有している。このため、図15Aに示すように、傾斜走行時には、操舵輪の接地点Bは、車体の前方から見たときに中央の位置ではなく、中央から内側にずれた位置となっている。この位置において、操舵輪は路面から制動力を受ける。そのため、操舵輪に対して内向きすなわち旋回方向と同じ向きにヨー方向の回転力(ヨーモーメントYr)が発生する(図15Bの参照)。このヨー方向の回転力に対する反力として、遠心力Fcが増す。この結果、車体を起き上がらせる力が発生する。この車体を起き上がらせる力は、ロール方向の回転力(ロールモーメント)である。 Here, the case where the rotation of the steering wheel is braked while traveling with the vehicle body tilted with respect to the road surface, that is, the case where the rider applies the brake is considered. When the steering wheel is viewed in the traveling direction, the steering wheel has a shape with a smaller inner diameter on the inner side of the slope than the center. For this reason, as shown in FIG. 15A, when the vehicle is tilted, the ground contact point B of the steered wheel is not a center position but a position shifted inward from the center when viewed from the front of the vehicle body. In this position, the steering wheel receives a braking force from the road surface. Therefore, a rotational force (yaw moment Yr) in the yaw direction is generated inward, that is, in the same direction as the turning direction with respect to the steered wheels (see FIG. 15B). The centrifugal force Fc increases as a reaction force against the rotational force in the yaw direction. As a result, a force for raising the vehicle body is generated. The force for raising the vehicle body is a rotational force (roll moment) in the roll direction.
 傾斜走行時において、旋回内側に位置する操舵輪すなわち内輪に対してのみ制動力を発生させ、旋回外側に位置する操舵輪すなわち外輪に対しては制動力を発生させない場合について検討する。まず、内輪は路面から制動力に起因する力を受ける。そのため、内輪に対して内向きにヨー方向の回転力(ヨーモーメントYr)が発生する。更に、内輪に対しては車両の進行方向とは反対の向きに制動力が発生する一方、外輪に対しては制動力が発生しない。この内輪と外輪の制動力の差に起因して、車体フレームに対して内向きのヨーモーメントが追加的に発生する。つまり、内輪に対応する操舵輪にのみ制動力を発生させた場合、内向きのヨーモーメントが増大する。内向きのヨーモーメントの増大により、ヨーレート(ヨー回転速度)が大きくなる。そのため、遠心力が増加する。これにより、車体フレームを起き上がらせるロールモーメントが高められる。 Considering the case where braking force is generated only for the steering wheel located on the inner side of the turn, that is, the inner wheel, and no braking force is generated for the steering wheel located on the outer side of the turn, that is, the outer wheel. First, the inner ring receives a force resulting from the braking force from the road surface. Therefore, a rotational force (yaw moment Yr) in the yaw direction is generated inward with respect to the inner ring. Further, a braking force is generated for the inner wheel in a direction opposite to the traveling direction of the vehicle, while no braking force is generated for the outer wheel. Due to the difference in braking force between the inner ring and the outer ring, an inward yaw moment is additionally generated with respect to the body frame. That is, when a braking force is generated only on the steering wheel corresponding to the inner wheel, the inward yaw moment increases. As the inward yaw moment increases, the yaw rate (yaw rotation speed) increases. Therefore, the centrifugal force increases. Thereby, the roll moment which raises a vehicle body frame is raised.
 次に、傾斜走行時において、旋回外側に位置する操舵輪すなわち外輪に対してのみ制動力を発生させ、旋回内側に位置する操舵輪すなわち内輪に対しては制動力を発生させない場合について検討する。まず、外輪は路面から制動力に起因する力を受ける。外輪に対して内向きのヨーモーメントが発生する。さらに、外輪に対しては進行方向とは反対の向きに制動力が発生する一方、内輪に対しては制動力が発生しない。この内輪と外輪の制動力の差に起因して、車体フレームに対して外向きのヨーモーメントが発生する。つまり、外輪に対応する操舵輪にのみ制動力を発生させた場合、内向きのヨーモーメントが減少する。内向きのヨーモーメントの減少により、ヨーレート(ヨー回転速度)が小さくなる。そのため、遠心力が減少する。すなわち、車体を起き上がらせるロールモーメントが弱くなる。内輪と外輪の制動力の差によっては、車体フレームを更に内側に傾斜させる方向のロールモーメントが現れる場合もある。 Next, a case will be examined in which the braking force is generated only on the steering wheel located on the outer side of the turn, that is, the outer wheel, while the braking force is not generated on the steering wheel located on the inner side of the turn, that is, the inner wheel. First, the outer ring receives a force resulting from the braking force from the road surface. An inward yaw moment is generated with respect to the outer ring. Further, while the braking force is generated in the direction opposite to the traveling direction for the outer ring, no braking force is generated for the inner ring. Due to the difference in braking force between the inner ring and the outer ring, an outward yaw moment is generated with respect to the body frame. That is, when the braking force is generated only on the steering wheel corresponding to the outer wheel, the inward yaw moment is reduced. As the inward yaw moment decreases, the yaw rate (yaw rotation speed) decreases. Therefore, the centrifugal force is reduced. That is, the roll moment for raising the vehicle body is weakened. Depending on the difference in braking force between the inner ring and the outer ring, there may be a roll moment that causes the body frame to tilt further inward.
 上記の検討により、本発明者は、左右二つの操舵輪を有する鞍乗り型車両において、走行時に、左右の操舵輪に対して発生させる制動力に差を設けることで、車体の姿勢を制御することができることを突き止めた。この知見に基づいて、発明者は、上記の実施形態の構成に想到した。上記実施形態では、右操舵輪及び左操舵輪が路面をグリップした状態で走行中の期間の少なくとも一部において、車体フレームの左右方向の傾斜状態に基づいて、左操舵輪の制動トルクと、右操舵輪の制動トルクの差が調整される。この制動トルクの差の調整により、走行中の車両における車体フレームのロールモーメントが制御される。ここで、制動トルクを駆動トルクに置き換えてもよい。これにより、車体フレームの左右方向の傾斜の調整が可能になる。 Based on the above examination, the present inventor controls the posture of the vehicle body in a saddle-ride type vehicle having two left and right steering wheels by providing a difference in the braking force generated for the left and right steering wheels during traveling. I found out that I could do it. Based on this knowledge, the inventor has conceived the configuration of the above-described embodiment. In the above-described embodiment, the braking torque of the left steering wheel and the right steering wheel are determined based on the left-right inclination state of the body frame during at least a part of the period in which the right steering wheel and the left steering wheel are gripping the road surface. The difference in braking torque between the steered wheels is adjusted. By adjusting the difference in braking torque, the roll moment of the body frame in the traveling vehicle is controlled. Here, the braking torque may be replaced with driving torque. This makes it possible to adjust the inclination of the body frame in the left-right direction.
 この観点から、上記の実施形態のリーン車両の構成を表現すると、以下のようになる。リーン車両は、前記リーン車両の左右方向に並んで配置され、操舵される左操舵輪及び右操舵輪と、前記左操舵輪の車軸周りの回転のトルクを制御する左操舵輪制駆動装置と、前記右操舵輪の車軸周りの回転のトルクを制御する右操舵輪制駆動装置と、車体フレームと、左右傾斜モーメント制御装置とを備える。前記車体フレームは、前記左操舵輪、前記右操舵輪、前記左操舵輪制駆動装置及び前記右操舵輪制駆動装置を支持する。前記車体フレームは、前記リーン車両が左に旋回するときに前記リーン車両の左右方向において左に傾斜し、前記リーン車両が右に旋回するときに前記リーン車両の左右方向において右に傾斜する。前記左右傾斜モーメント制御装置は、左右傾斜状態検出部と、左右操舵輪トルク差調整部とを含む。前記左右傾斜状態検出部は、前記車体フレームに搭載され、前記リーン車両の左右方向における前記車体フレームの傾斜状態を検出する。前記左右操舵輪トルク差調整部は、前記左右傾斜状態検出部が検出した傾斜状態に基づいて、前記左操舵輪及び前記右操舵輪が路面をグリップした状態で走行中の期間の少なくとも一部において、前記左操舵輪制駆動装置が発生するトルクと、前記右操舵輪制駆動装置が発生するトルクの差を調整する。前記左右傾斜モーメント制御装置は、前記左右操舵輪トルク差調整によって調整される前記トルクの差の調整によって、前記リーン車両の走行中の前記車体フレームを前記リーン車両の左右方向に傾斜させるモーメントを制御する(構成1)。 From this point of view, the configuration of the lean vehicle of the above embodiment is expressed as follows. The lean vehicle is arranged side by side in the left-right direction of the lean vehicle, and a left steering wheel and a right steering wheel to be steered, a left steering wheel braking / driving device that controls torque of rotation around the axle of the left steering wheel, A right steering wheel braking / driving device that controls a torque of rotation of the right steering wheel around an axle, a vehicle body frame, and a right / left tilt moment control device; The body frame supports the left steering wheel, the right steering wheel, the left steering wheel braking / driving device, and the right steering wheel braking / driving device. The body frame tilts to the left in the left-right direction of the lean vehicle when the lean vehicle turns to the left, and tilts to the right in the left-right direction of the lean vehicle when the lean vehicle turns to the right. The left / right tilt moment control device includes a left / right tilt state detection unit and a left / right steering wheel torque difference adjustment unit. The left / right tilt state detection unit is mounted on the body frame and detects a tilt state of the body frame in the left / right direction of the lean vehicle. The left and right steered wheel torque difference adjustment unit is based on the tilt state detected by the left and right tilt state detection unit, and at least during a period during which the left steered wheel and the right steered wheel are gripping the road surface. The difference between the torque generated by the left steering wheel braking / driving device and the torque generated by the right steering wheel braking / driving device is adjusted. The left / right tilt moment control device controls a moment for tilting the vehicle body frame while the lean vehicle is traveling in the left / right direction of the lean vehicle by adjusting the torque difference adjusted by the left / right steering wheel torque difference adjustment. (Configuration 1)
 上記構成1において、車体フレームをリーン車両の左右方向に傾斜させるモーメントは、すなわち、ロールモーメントである。左右傾斜状態検出部で傾斜状態として検出される情報は、例えば、ロール角、ロール角速度、又は、車体フレームが右又は左のいずれに傾斜しているかを示す値を含むことができる。 In the configuration 1, the moment for tilting the vehicle body frame in the left-right direction of the lean vehicle is a roll moment. The information detected as the tilt state by the left-right tilt state detection unit can include, for example, a roll angle, a roll angular velocity, or a value indicating whether the body frame is tilted to the right or left.
 左操舵輪制駆動装置は、左操舵輪の車軸周りの回転のトルクを制御することで、左操舵輪が路面に伝えるトルクを制御する。右操舵輪制駆動装置は、右操舵輪の車軸周りの回転のトルクを制御することで、右操舵輪が路面に伝えるトルクを制御する。 The left steering wheel braking / driving device controls the torque transmitted from the left steering wheel to the road surface by controlling the torque of rotation of the left steering wheel around the axle. The right steering wheel braking / driving device controls the torque transmitted to the road surface by the right steering wheel by controlling the torque of rotation of the right steering wheel around the axle.
 左操舵輪及び右操舵輪が路面をグリップした状態とは、左操舵輪及び右操舵輪がスリップしていない状態である。左操舵輪及び右操舵輪のスリップ率が、アンチロック・ブレーキ・システム(ABS)又はトラクションコントロールを作動する必要のない程度の時は、グリップした状態と言える。例えば、スリップ率が、ABS又はトラクションコントロールが作動するスリップ率の範囲内にない状態を、グリップ状態とすることができる。 The state where the left steering wheel and the right steering wheel grip the road surface is a state where the left steering wheel and the right steering wheel are not slipping. It can be said that the left steering wheel and the right steering wheel are in a gripped state when the anti-lock braking system (ABS) or the traction control is not required to operate. For example, a state where the slip ratio is not within the range of the slip ratio where the ABS or the traction control operates can be set as the grip state.
 左右傾斜モーメント制御装置による、傾斜状態に応じた左操舵輪及び右操舵輪のトルク差調整による車体フレームのロールモーメント制御は、左操舵輪及び右操舵輪が路面をグリップしている状態で走行中の期間の少なくとも一部と、左操舵輪及び右操舵輪が路面をグリップしていない状態で走行中の期間の双方に渡って行われてもよい。グリップしていない状態は、例えば、ABS又はトラクションコントロールが作動している状態である。すなわち、左右傾斜モーメント制御装置のトルク差調整によるロールモーメント制御は、グリップ状態の時のみ、或いは、グリップ状態の時及びスリップ状態の時の双方で行われてもよい。スリップ状態の時に、左操舵輪及び右操舵輪の制動又は駆動のトルクの差が発生していてもよい。 The roll moment control of the vehicle body frame by adjusting the torque difference between the left and right steered wheels according to the tilt state by the left and right tilt moment control device is running while the left and right steered wheels are gripping the road surface. This may be performed over at least a part of the period and during a period in which the left steered wheel and the right steered wheel are not gripping the road surface. The state of not gripping is, for example, a state where ABS or traction control is operating. That is, the roll moment control by adjusting the torque difference of the left / right tilt moment control device may be performed only in the grip state, or in both the grip state and the slip state. In a slip state, a difference in braking or driving torque between the left steering wheel and the right steering wheel may occur.
 左右傾斜モーメント制御装置のトルク差調整によるロールモーメント制御は、ABSと組み合わせもよい。例えば、ABSに用いられるブレーキ制御システムを用いて、左右傾斜モーメント制御装置を構成してもよい。また、ABSの作動時すなわちスリップ状態の時に、トルク差調整によるロールモーメント制御を行ってもよい。この場合、スリップ状態の時は、トルク差の調整よりもABSによる左操舵輪及び右操舵輪の制動トルクの変動の方が、車体フレームのロールモーメントに多大な影響を与える可能性が高い。一方、ABSが作動しない程度にスリップ率が低い時は、左右傾斜モーメント制御装置のトルク差調整によるロールモーメント制御が、車体フレームの傾斜に影響を与えやすくなる。 The roll moment control by adjusting the torque difference of the left / right tilt moment control device may be combined with ABS. For example, you may comprise a left-right inclination moment control apparatus using the brake control system used for ABS. Further, when the ABS is operated, that is, in the slip state, roll moment control by adjusting the torque difference may be performed. In this case, in the slip state, the fluctuation of the braking torque of the left steering wheel and the right steering wheel due to ABS is more likely to have a greater influence on the roll moment of the vehicle body frame than the adjustment of the torque difference. On the other hand, when the slip ratio is so low that the ABS does not operate, the roll moment control by adjusting the torque difference of the left / right tilt moment control device tends to affect the tilt of the body frame.
 なお、リーン車両は、スリップ状態又はグリップ状態を検出する手段を備えていなくてもよい。左右傾斜モーメント制御装置は、必ずしも、左操舵輪と右操舵輪のスリップ率を監視しなくてもよい。また、左右傾斜モーメント制御装置は、グリップ状態か否かを判断しなくてもよい。リーン車両は、走行している期間の大半はグリップ状態でグリップ走行しており、スリップ状態となることは稀である。そのため、特にスリップ率を監視しなくても、グリップ走行の全期間、或いは、グリップ走行の一部の期間で、左右傾斜モーメント制御装置は、傾斜状態に応じた左右操舵輪のトルク差調整による左右方向傾斜のモーメント制御を行うことができる。 Note that the lean vehicle may not include a means for detecting the slip state or the grip state. The left / right inclination moment control device does not necessarily have to monitor the slip ratio of the left steering wheel and the right steering wheel. Further, the left / right tilt moment control device may not determine whether or not the grip state is set. Lean vehicles are gripped in the grip state for most of the traveling period, and rarely slip. Therefore, even if the slip rate is not particularly monitored, the left / right tilt moment control device can adjust the left / right steering wheel torque difference according to the tilt state during the entire grip travel period or a part of the grip travel period. The moment control of the direction inclination can be performed.
 その一方で、左右傾斜モーメント制御装置は、左操舵輪及び右操舵輪のグリップ状態、例えば、スリップ率に応じて、上記トルク差を調整してもよい。例えば、左操舵輪及び右操舵輪のスリップ率の差が所定範囲内の場合に、上記トルク差を調整することができる。例えば、左右傾斜モーメント制御装置は、左操舵輪と右操舵輪のスリップ率を監視して、左操舵輪と右操舵輪がグリップ状態の時のみトルク差を調整する動作をしてもよい。これにより、より効率よくモーメント制御をすることができる。この場合、リーン車両は、左操舵輪のスリップ率を算出する左スリップ率算出部と、右操舵輪のスリップ率を算出する右スリップ率算出部とを備えることができる。 On the other hand, the left / right tilt moment control device may adjust the torque difference according to the grip state of the left steering wheel and the right steering wheel, for example, the slip ratio. For example, when the difference between the slip ratios of the left steering wheel and the right steering wheel is within a predetermined range, the torque difference can be adjusted. For example, the left / right tilt moment control device may monitor the slip ratio of the left steering wheel and the right steering wheel and adjust the torque difference only when the left steering wheel and the right steering wheel are in the grip state. Thereby, moment control can be performed more efficiently. In this case, the lean vehicle can include a left slip ratio calculation unit that calculates the slip ratio of the left steering wheel and a right slip ratio calculation unit that calculates the slip ratio of the right steering wheel.
 左右傾斜モーメント制御装置は、左操舵輪と右操舵輪が、同じμ値の路面を走行している期間の少なくとも一部において、上記の傾斜状態に応じた左操舵輪及び右操舵輪のトルク差調整による車体フレームのロールモーメント制御を行うことができる。左操舵輪と右操舵輪が、同じμ値の路面を走行している時に、左右傾斜モーメント制御装置により左操舵輪及び右操舵輪のトルク差を調整することで、効率よくロールモーメントを制御することできる。μ値は、路面の摩擦係数を表す。なお、左右傾斜モーメント制御装置は、必ずしもμ値を監視する機能を備えていなくてもよい。 The left / right tilting moment control device is configured so that the left steered wheel and the right steered wheel have a torque difference between the left steered wheel and the right steered wheel according to the tilt state at least during a period when the left steered wheel and the right steered wheel are traveling on the same μ value road surface. Roll moment control of the body frame can be performed by adjustment. When the left steering wheel and the right steering wheel are traveling on the same μ-value road surface, the roll moment is efficiently controlled by adjusting the torque difference between the left steering wheel and the right steering wheel using the left / right tilt moment control device. I can. The μ value represents the friction coefficient of the road surface. Note that the left / right tilt moment control device does not necessarily have a function of monitoring the μ value.
 上記実施形態において、トルク制御部100は、左右操舵輪トルク差調整部の例である。傾斜検出部50は、左右傾斜状態検出部の例である。上記のトルク制御部100及び傾斜検出部50により、左右傾斜モーメント制御装置を構成することができる。トルク制御部100及び傾斜検出部50で構成された左右傾斜モーメント制御装置の動作例を説明する。 In the above embodiment, the torque control unit 100 is an example of a left and right steering wheel torque difference adjustment unit. The tilt detection unit 50 is an example of a left / right tilt state detection unit. The torque control unit 100 and the tilt detection unit 50 described above can constitute a left / right tilt moment control device. An example of the operation of the left / right tilt moment control device including the torque control unit 100 and the tilt detection unit 50 will be described.
 図16は、左右傾斜モーメント制御装置の動作例を示すフローチャートである。図16に示す例では、傾斜検出部50が、車両1の左右方向における車体フレーム15の傾斜状態を検出する(S1)。トルク制御部100は、左車輪(左操舵輪)3a及び右車輪(右操舵輪)3bの回転のトルクを制御するか否かを判断する(S2)。トルク制御部100は、例えば、ライダーによる入力部材121に対する操作に基づいて、上記判断をすることができる。ライダーの操作に代えて、又はライダーの操作に加えて、他の車両状態に基づいて、上記判断をしてもよい。例えば、トルク制御部100は、S1で検出された傾斜状態、操舵トルク、車両1の車速、その他車両状態を示す情報に基づいて、上記の判断することができる。 FIG. 16 is a flowchart showing an operation example of the right / left tilt moment control device. In the example illustrated in FIG. 16, the inclination detection unit 50 detects the inclination state of the vehicle body frame 15 in the left-right direction of the vehicle 1 (S1). The torque control unit 100 determines whether to control the torque of rotation of the left wheel (left steering wheel) 3a and the right wheel (right steering wheel) 3b (S2). The torque control unit 100 can make the above determination based on, for example, an operation on the input member 121 by the rider. Instead of the rider's operation or in addition to the rider's operation, the above determination may be made based on other vehicle conditions. For example, the torque control unit 100 can make the above determination based on the tilt state detected in S1, the steering torque, the vehicle speed of the vehicle 1, and other information indicating the vehicle state.
 すなわち、左右傾斜モーメント制御装置は、ライダーの操作があったときに左操舵輪及び右操舵輪のトルク差を調整する形態に限られない。ライダーの操作によらず、左操舵輪及び右操舵輪のトルク差を調整してもよい。また、傾斜状態以外の他の車両状態に応じて、左操舵輪及び右操舵輪のトルク差を調整するか否かを制御することもできる。例えば、左右傾斜モーメント装置は、車速が閾値より大きい期間の少なくとも一部において、左操舵輪及び右操舵輪のトルク差を調整することができる。 That is, the left / right tilt moment control device is not limited to a mode that adjusts the torque difference between the left steering wheel and the right steering wheel when the rider operates. Regardless of the rider's operation, the torque difference between the left steering wheel and the right steering wheel may be adjusted. It is also possible to control whether or not the torque difference between the left steered wheel and the right steered wheel is adjusted according to a vehicle state other than the tilted state. For example, the left / right tilt moment device can adjust the torque difference between the left steered wheel and the right steered wheel in at least part of a period in which the vehicle speed is greater than the threshold value.
 S2でYESと判断した場合、トルク制御部100は、S1で検出された傾斜状態に応じて、左車輪3aのトルク及び右車輪3bのトルクを決定する(S3)。トルク制御部100は、左車輪3a及び右車輪3bの制動トルク、左車輪3a及び右車輪3bの駆動トルク、或いはその両方を決定することができる。これにより、左車輪3aのトルク及び右車輪3bのトルクの差が決定される。すなわち、傾斜状態に応じて調整されたトルクの差が決定される。 When it is determined YES in S2, the torque control unit 100 determines the torque of the left wheel 3a and the torque of the right wheel 3b according to the tilt state detected in S1 (S3). The torque control unit 100 can determine the braking torque of the left wheel 3a and the right wheel 3b, the driving torque of the left wheel 3a and the right wheel 3b, or both. Thereby, the difference between the torque of the left wheel 3a and the torque of the right wheel 3b is determined. That is, the torque difference adjusted according to the tilt state is determined.
 S3において、トルク制御部100は、例えば、予め記録された、複数の傾斜状態に対応する左車輪3a及び右車輪3bのトルクを示すデータを用いて、検出された傾斜状態に応じた左車輪3a及び右車輪3bのトルクを決定することができる。例えば、傾斜状態と左操舵輪トルク及び右操舵輪のトルクとの対応関係を示すマップデータを用いて、検出された傾斜状態に応じた左車輪3a及び右車輪3bのトルクを決定することができる。また、トルク制御部100は、所定のプログラムに従って、検出された傾斜状態に応じた左車輪3a及び右車輪3bのトルクを計算してもよい。 In S3, the torque control unit 100 uses, for example, prerecorded data indicating the torque of the left wheel 3a and the right wheel 3b corresponding to a plurality of tilt states, and the left wheel 3a corresponding to the detected tilt state. And the torque of the right wheel 3b can be determined. For example, it is possible to determine the torque of the left wheel 3a and the right wheel 3b according to the detected inclination state using map data indicating the correspondence relationship between the inclination state and the torque of the left steering wheel and the right steering wheel. . Moreover, the torque control part 100 may calculate the torque of the left wheel 3a and the right wheel 3b according to the detected inclination state according to a predetermined program.
 トルク制御部100は、上記実施形態のように、左車輪3aのトルク及び右車輪3bのトルクの総量すなわち合計値を求め、左車輪3a及び右車輪3bのトルクの配分すなわち比率を傾斜状態に応じて決定してもよい
。或いは、トルク制御部100は、左車輪3aのトルク及び右車輪3bのトルクの総量を求めずに、S1で検出された傾斜状態に対応する左車輪3aのトルク及び右車輪3bのトルクを算出してもよい。
As in the above embodiment, the torque control unit 100 obtains the total amount, that is, the total value of the torque of the left wheel 3a and the torque of the right wheel 3b, and distributes the torque, that is, the ratio of the torque of the left wheel 3a and the right wheel 3b according to the inclination state May be determined. Alternatively, the torque control unit 100 calculates the torque of the left wheel 3a and the torque of the right wheel 3b corresponding to the tilt state detected in S1, without obtaining the total amount of torque of the left wheel 3a and right wheel 3b. May be.
 なお、S3において、トルク制御部100は、S1で検出された傾斜状態以外に、他の車両状態を示す情報を用いて、左車輪3aのトルク及び右車輪3bのトルクを決定してもよい。例えば、車両1の車速又は加速度、操舵トルク、舵角、ブレーキ操作量、若しくは、アクセス操作量等の車両状態を示す情報を用いて、左車輪3aのトルク及び右車輪3bのトルクを決定することができる。 In S3, the torque control unit 100 may determine the torque of the left wheel 3a and the torque of the right wheel 3b using information indicating other vehicle states in addition to the tilt state detected in S1. For example, the torque of the left wheel 3a and the torque of the right wheel 3b are determined using information indicating the vehicle state such as the vehicle speed or acceleration of the vehicle 1, the steering torque, the steering angle, the brake operation amount, or the access operation amount. Can do.
 トルク制御部100は、S3で決定した左車輪3aのトルクを左操舵輪制駆動装置に発生させ、及びS3で決定した右車輪3bのトルクを右操舵輪制駆動装置に発生させる。制動トルクを付与する構成の場合、左操舵輪制駆動装置は、左操舵輪に制動力を付与する左操舵輪ブレーキであり、右操舵輪制駆動装置は、右操舵輪に制動力を付与する右操舵輪ブレーキとなる。駆動トルクを付与する構成の場合、左操舵輪制駆動装置は、左操舵輪に車軸周りの回転力を付与する左操舵輪駆動装置となり、右操舵輪制駆動装置は、右操舵輪に車軸周りの回転力を付与する右操舵輪駆動装置となる。右操舵輪駆動装置及び右操舵輪駆動装置は、例えば、動力源として、モータ又はエンジンを含む構成とすることができる。 The torque control unit 100 causes the left steering wheel braking / driving device to generate the torque of the left wheel 3a determined in S3, and causes the right steering wheel braking / driving device to generate the torque of the right wheel 3b determined in S3. In the case of a configuration in which braking torque is applied, the left steering wheel braking / driving device is a left steering wheel brake that applies braking force to the left steering wheel, and the right steering wheel braking / driving device applies braking force to the right steering wheel. Right steering wheel brake. In the case of a configuration in which driving torque is applied, the left steering wheel braking / driving device is a left steering wheel driving device that applies a rotational force around the axle to the left steering wheel, and the right steering wheel braking / driving device is around the axle on the right steering wheel. This is a right steering wheel drive device that applies a rotational force of. For example, the right steering wheel driving device and the right steering wheel driving device may include a motor or an engine as a power source.
 なお、左操舵輪制駆動装置は、左操舵輪に制動トルク及び駆動トルクの双方を付与し、右操舵輪制駆動装置は、右操舵輪に制動トルク及び駆動トルクの双方を付与する構成であってもよい。この場合、例えば、左操舵輪制駆動装置は、左操舵輪ブレーキと左操舵輪駆動装置を含み、右操舵輪制駆動装置は、右操舵輪ブレーキと右操舵輪駆動装置を含む構成とすることができる。 The left steering wheel braking / driving device applies both braking torque and driving torque to the left steering wheel, and the right steering wheel braking / driving device applies both braking torque and driving torque to the right steering wheel. May be. In this case, for example, the left steering wheel braking / driving device includes a left steering wheel brake and a left steering wheel driving device, and the right steering wheel braking / driving device includes a right steering wheel brake and a right steering wheel driving device. Can do.
    1   :   車両
    3   :   前輪
    3a  :   左車輪
    3b  :   右車輪
    5   :   後輪
    7   :   操舵機構
    9   :   リンク機構
   10   :   重心
   11   :   パワーユニット
   13   :   シート
   15   :   車体フレーム
   17   :   車体カバー
   21   :   ヘッドパイプ
   22   :   ダウンフレーム
   23   :   アンダーフレーム
   24   :   リアフレーム
   26   :   フロントカバー
   27   :   フロントフェンダー
   27a  :   左フロントフェンダー
   27b  :   右フロントフェンダー
   28   :   レッグシールド
   29   :   センターカバー
   30   :   リアフェンダー
   31   :   ステアリングシャフト
   32   :   ハンドルバー
   33   :   タイロッド
   34   :   ブラケット
   34a  :   左ブラケット
   34b  :   右ブラケット
   35   :   クロス部材
   35a  :   上クロス部材
   35b  :   左クロス部材
   35c  :   右クロス部材
   35d  :   下クロス部材
   36a,36b,36c,36d,36e,36f  :  支持部
   41   :   前輪車速センサ
   42   :   後輪車速センサ
   50   :   傾斜検出部
   51   :   車速検出部
   53   :   ジャイロセンサ
   54   :   ロール角検出部
   71   :   操舵力伝達機構
   73   :   緩衝器
   73a  :   左緩衝器
   73b  :   右緩衝器
   80a  :   左後テレスコピック要素
   81a  :   左前テレスコピック要素
   82a  :   左クロス部材支持部
   83a  :   左車輪軸
   84a  :   左緩衝器のアウター要素
   85a  :   左緩衝器のインナー要素
   91a  :   左前ブレーキ
   91b  :   右前ブレーキ
   91c  :   後ブレーキ
   92a  :   左ブレーキディスク
   93a  :   左前キャリパ
   93b  :   右前キャリパ
   93c  :   後キャリパ
   94a  :   左前ブレーキ管
   94b  :   右前ブレーキ管
   94c  :   後ブレーキ管
  100   :   トルク制御部
  101   :   電子制御ユニット
  102   :   液圧制御ユニット
  120   :   ブレーキシステム
  121   :   入力部材
  123   :   ブレーキ作動装置
  125   :   前マスターシリンダー
  127   :   前ブレーキ管
  131   :   入力部材
  133   :   ブレーキ作動装置
  135   :   後マスターシリンダー
  137   :   後ブレーキ管
  151   :   内外輪特定部
  153   :   合計制動トルク算出部(合計駆動トルク算出部)
  155   :   各制動トルク算出部(各駆動トルク算出部)
  157   :   記憶部 
1: Vehicle 3: Front wheel 3a: Left wheel 3b: Right wheel 5: Rear wheel 7: Steering mechanism 9: Link mechanism 10: Center of gravity 11: Power unit 13: Seat 15: Body frame 17: Body cover 21: Head pipe 22: Down Frame 23: Under frame 24: Rear frame 26: Front cover 27: Front fender 27a: Left front fender 27b: Right front fender 28: Leg shield 29: Center cover 30: Rear fender 31: Steering shaft 32: Handlebar 33: Tie rod 34: Bracket 34a: Left bracket 34b: Right Racket 35: Cross member 35a: Upper cross member 35b: Left cross member 35c: Right cross member 35d: Lower cross member 36a, 36b, 36c, 36d, 36e, 36f: Support part 41: Front wheel vehicle speed sensor 42: Rear wheel vehicle speed sensor 50: Inclination detection unit 51: Vehicle speed detection unit 53: Gyro sensor 54: Roll angle detection unit 71: Steering force transmission mechanism 73: Shock absorber 73a: Left shock absorber 73b: Right shock absorber 80a: Left rear telescopic element 81a: Left front telescopic Element 82a: Left cross member support portion 83a: Left wheel shaft 84a: Outer element of left shock absorber 85a: Inner element of left shock absorber 91a: Left front brake 91b: Right front blur Key 91c: Rear brake 92a: Left brake disc 93a: Left front caliper 93b: Right front caliper 93c: Rear caliper 94a: Left front brake pipe 94b: Right front brake pipe 94c: Rear brake pipe 100: Torque control unit 101: Electronic control unit 102: Hydraulic pressure control unit 120: Brake system 121: Input member 123: Brake actuator 125: Front master cylinder 127: Front brake pipe 131: Input member 133: Brake actuator 135: Rear master cylinder 137: Rear brake pipe 151: Inner and outer rings Specific unit 153: Total braking torque calculation unit (total driving torque calculation unit)
155: Each braking torque calculation unit (each driving torque calculation unit)
157: Storage unit

Claims (15)

  1. リーン車両であって、
     前記リーン車両の左右方向に並んで配置され、操舵される左操舵輪及び右操舵輪と、
     前記左操舵輪の車軸周りの回転のトルクを制御する左操舵輪制駆動装置と、
     前記右操舵輪の車軸周りの回転のトルクを制御する右操舵輪制駆動装置と、
     前記左操舵輪、前記右操舵輪、前記左操舵輪制駆動装置及び前記右操舵輪制駆動装置を支持し、前記リーン車両が左に旋回するときに前記リーン車両の左右方向において左に傾斜し、前記リーン車両が右に旋回するときに前記リーン車両の左右方向において右に傾斜する車体フレームと、
     前記車体フレームに搭載され、前記リーン車両の左右方向における前記車体フレームの傾斜状態を検出する左右傾斜状態検出部と、前記左右傾斜状態検出部が検出した傾斜状態に基づいて、前記左操舵輪及び前記右操舵輪が路面をグリップした状態で走行中の期間の少なくとも一部において、前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと、前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクの差を調整する左右操舵輪トルク差調整部とを含み、前記左操舵輪のトルクと前記右操舵輪のトルクの差の調整によって、前記リーン車両の走行中の前記車体フレームを前記リーン車両の左右方向に傾斜させるモーメントを制御する左右傾斜モーメント制御装置と、
    を備えるリーン車両。
    A lean vehicle,
    A left steering wheel and a right steering wheel that are arranged side by side in the left-right direction of the lean vehicle and are steered;
    A left steering wheel braking / driving device for controlling torque of rotation around the axle of the left steering wheel;
    A right steering wheel braking / driving device for controlling torque of rotation of the right steering wheel around the axle;
    The left steering wheel, the right steering wheel, the left steering wheel braking / driving device, and the right steering wheel braking / driving device are supported, and when the lean vehicle turns to the left, the lean vehicle tilts to the left in the left-right direction of the lean vehicle. A vehicle body frame that tilts to the right in the left-right direction of the lean vehicle when the lean vehicle turns to the right;
    A left and right tilt state detection unit that is mounted on the body frame and detects a tilt state of the body frame in the left and right direction of the lean vehicle, and based on the tilt state detected by the left and right tilt state detection unit, The left steering wheel torque controlled by the left steering wheel braking / driving device and the right steering wheel braking / driving device are controlled by the right steering wheel braking / driving device during at least a part of the period when the right steering wheel is gripping the road surface. A right and left steering wheel torque difference adjustment unit that adjusts a difference in torque between the right steering wheel and adjusting the difference between the torque of the left steering wheel and the torque of the right steering wheel. A left / right tilt moment control device for controlling a moment for tilting the body frame in the left / right direction of the lean vehicle;
    Lean vehicle equipped with.
  2.  請求項1に記載のリーン車両であって、
     前記左右操舵輪トルク差調整部は、前記車体フレームが前記リーン車両の左右方向において左に傾斜している時の前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクの大小関係と、前記車体フレームが前記リーン車両の左右方向において右に傾斜している時の前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクの大小関係とが異なるように、前記左操舵輪のトルクと前記右操舵輪のトルクの差を調整する、リーン車両。
    The lean vehicle according to claim 1,
    The left and right steered wheel torque difference adjustment unit is configured to control the torque of the left steered wheel and the right steering controlled by the left steered wheel braking / driving device when the vehicle body frame is tilted to the left in the left and right direction of the lean vehicle. The magnitude relationship of the torque of the right steered wheel controlled by the wheel drive device and the left steered wheel drive device controlled by the left steered wheel drive device when the body frame is tilted to the right in the left-right direction of the lean vehicle. The difference between the torque of the left steering wheel and the torque of the right steering wheel is adjusted so that the magnitude relationship between the torque of the left steering wheel and the torque of the right steering wheel controlled by the right steering wheel braking / driving device is different. Lean vehicle.
  3.  請求項2に記載のリーン車両であって、
     前記左右操舵輪トルク差調整部は、
     前記車体フレームが前記リーン車両の左右方向において左に傾斜している時に、前記左操舵輪制駆動装置により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより大きくなるか、又は、前記左操舵輪制駆動装置により制御される前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより小さくなるように前記左操舵輪のトルクと前記右操舵輪のトルクの差を調整し、
     前記車体フレームが前記リーン車両の左右方向において右に傾斜している時に、前記左操舵輪制駆動により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより小さくなるか、又は、前記左操舵輪制駆動装置により制御される前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより大きくなるように前記左操舵輪のトルクと前記右操舵輪のトルク差を調整する、リーン車両。
    The lean vehicle according to claim 2,
    The left and right steering wheel torque difference adjustment unit is
    When the vehicle body frame is tilted to the left in the left-right direction of the lean vehicle, the braking torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device. The braking torque of the right steering wheel is greater than the braking torque of the right steering wheel, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is Adjusting the difference between the torque of the left steering wheel and the torque of the right steering wheel so as to be smaller than the driving torque,
    When the vehicle body frame is tilted to the right in the left-right direction of the lean vehicle, the braking torque of the left steering wheel controlled by the left steering wheel braking drive is controlled by the right steering wheel braking / driving device. Driving the right steering wheel, which is smaller than the braking torque of the right steering wheel, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device A lean vehicle that adjusts a torque difference between the left steered wheel and the right steered wheel so as to be larger than the torque.
  4.  請求項2に記載のリーン車両であって、
     前記左右操舵輪トルク差調整部は、
     前記車体フレームが前記リーン車両の左右方向において左に傾斜している時に、前記左操舵輪制駆動装置により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより小さくなるか、又は、前記左操舵輪制駆動装置により前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより大きくなるように前記左操舵輪のトルクと前記右操舵輪のトルクの差を調整し、
     前記車体フレームが前記リーン車両の左右方向において右に傾斜している時に、前記左操舵輪制駆動装置により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより大きくなるか、又は、前記左操舵輪制駆動装置により前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより小さくなるように前記左操舵輪のトルクと前記右操舵輪のトルクの差を調整する、リーン車両。
    The lean vehicle according to claim 2,
    The left and right steering wheel torque difference adjustment unit is
    When the vehicle body frame is tilted to the left in the left-right direction of the lean vehicle, the braking torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device. The driving torque of the left steering wheel is smaller than the braking torque of the right steering wheel, or the driving torque of the left steering wheel is controlled by the right steering wheel braking / driving device. Adjust the difference between the torque of the left steering wheel and the torque of the right steering wheel so as to increase,
    When the vehicle body frame is tilted to the right in the left-right direction of the lean vehicle, the braking torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device. The braking torque of the right steering wheel is greater than the braking torque of the right steering wheel, or the driving torque of the left steering wheel by the left steering wheel braking / driving device is greater than the driving torque of the right steering wheel controlled by the right steering wheel braking / driving device. A lean vehicle that adjusts the difference between the torque of the left steered wheel and the torque of the right steered wheel so as to be reduced.
  5.  請求項1~4のいずれか1項に記載のリーン車両であって、
     前記左右操舵輪トルク差調整部は、前記左右傾斜状態検出部が検出した前記リーン車両の左右方向における前記車体フレームの傾斜角に応じて、前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクの差を調整する、リーン車両。
    The lean vehicle according to any one of claims 1 to 4,
    The left and right steering wheel torque difference adjustment unit is controlled by the left steering wheel braking / driving device according to an inclination angle of the vehicle body frame in the left and right direction of the lean vehicle detected by the left and right inclination state detection unit. A lean vehicle for adjusting a difference between a wheel torque and a torque of the right steering wheel controlled by the right steering wheel braking / driving device.
  6.  請求項1~5のいずれか1項に記載のリーン車両であって、
     前記左右操舵輪トルク差調整部は、前記左右傾斜状態検出部が検出した前記リーン車両の左右方向における前記車体フレームの傾斜角速度に応じて、前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと、前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクの差を調整する、リーン車両。
    A lean vehicle according to any one of claims 1 to 5,
    The left and right steering wheel torque difference adjustment unit is controlled by the left steering wheel braking / driving device in accordance with an inclination angular velocity of the vehicle body frame in a left and right direction of the lean vehicle detected by the left and right inclination state detection unit. A lean vehicle that adjusts a difference between a wheel torque and a torque of the right steering wheel controlled by the right steering wheel braking / driving device.
  7.  請求項6に記載のリーン車両であって、
     前記左右操舵輪トルク差調整部は、
     前記左右傾斜状態検出部が前記リーン車両の左右方向の左方に向かって前記車体フレームの傾斜が変化しようとする傾斜角速度を検出した時の前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクの大小関係と、前記左右傾斜状態検出部が前記リーン車両の左右方向の右方に向かって前記車体フレームの傾斜が変化しようとする傾斜角速度を検出した時の前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクの大小関係とが異なるように、前記左操舵輪のトルクと前記右操舵輪のトルクの差を調整する、リーン車両。
    The lean vehicle according to claim 6,
    The left and right steering wheel torque difference adjustment unit is
    The left steering controlled by the left steering wheel braking / driving device when the left / right inclination state detection unit detects an inclination angular velocity at which the inclination of the vehicle body frame changes toward the left in the left / right direction of the lean vehicle. The magnitude relationship between the torque of the wheel and the torque of the right steering wheel controlled by the right steering wheel braking / driving device, and the leaning of the body frame toward the right in the left-right direction of the lean vehicle is detected by the left-right tilt state detection unit. The magnitude relationship between the torque of the left steering wheel controlled by the left steering wheel braking / driving device and the torque of the right steering wheel controlled by the right steering wheel braking / driving device when a tilt angular velocity at which the inclination is about to change is detected The lean vehicle adjusts the difference between the torque of the left steered wheel and the torque of the right steered wheel so as to differ from each other.
  8.  請求項7に記載のリーン車両であって、
     前記左右操舵輪トルク差調整部は、
     前記左右傾斜状態検出部が前記リーン車両の左右方向の左方に向かって前記車体フレームの傾斜が変化しようとする傾斜角速度を検出した時に、前記左操舵輪制駆動装置により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより小さくなるか、又は、前記左操舵輪制駆動装置により制御される前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより大きくなるように前記左操舵輪のトルクと前記右操舵輪のトルク差を調整し、
     前記左右傾斜状態検出部が前記リーン車両の左右方向の右方に向かって前記車体フレームの傾斜が変化しようとする傾斜角速度を検出した時に、前記左操舵輪制駆動装置により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより大きくなるか、又は、前記左操舵輪制駆動装置により制御される前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより小さくなるように前記左操舵輪のトルクと前記右操舵輪のトルク差を調整する、リーン車両。
    The lean vehicle according to claim 7,
    The left and right steering wheel torque difference adjustment unit is
    The left steering controlled by the left steering wheel braking / driving device when the left / right tilt state detection unit detects a tilt angular velocity at which the lean of the vehicle body frame changes toward the left in the left / right direction of the lean vehicle. The braking torque of the wheel is smaller than the braking torque of the right steering wheel controlled by the right steering wheel braking / driving device, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is Adjusting the torque difference between the left steering wheel and the right steering wheel so as to be larger than the driving torque of the right steering wheel controlled by the right steering wheel braking and driving device;
    The left steering controlled by the left steering wheel braking / driving device when the left / right tilt state detection unit detects a tilt angular velocity at which the lean of the vehicle body frame changes toward the right in the left / right direction of the lean vehicle. The braking torque of the wheel becomes larger than the braking torque of the right steering wheel controlled by the right steering wheel braking / driving device, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is A lean vehicle that adjusts the difference between the torque of the left steering wheel and the torque of the right steering wheel to be smaller than the driving torque of the right steering wheel controlled by the right steering wheel braking / driving device.
  9.  請求項1~8のいずれか1項に記載のリーン車両において、
     鉛直方向に対する前記車体フレームの上下方向線の前記リーン車両の左右方向における傾斜角度が第1閾値より小さい場合に、前記左右操舵輪トルク差調整部は、前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと、前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクが異なるように、前記左操舵輪のトルクと前記右操舵輪のトルクの差を調整する、リーン車両。
    The lean vehicle according to any one of claims 1 to 8,
    The left and right steered wheel torque difference adjustment unit is controlled by the left steered wheel braking / driving device when the lean angle of the lean vehicle in the left / right direction of the lean vehicle with respect to the vertical direction is smaller than a first threshold value. The lean is adjusted to adjust the difference between the torque of the left steering wheel and the torque of the right steering wheel so that the torque of the left steering wheel and the torque of the right steering wheel controlled by the right steering wheel braking / driving device are different. vehicle.
  10.  請求項1~9のいずれか1項に記載のリーン車両において、
     鉛直方向に対する前記車体フレームの上下方向線の前記リーン車両の左右方向における傾斜角度が、第2閾値より大きい場合に、前記左右操舵輪トルク差調整部は、前記左操舵輪制駆動装置により制御される前記左操舵輪のトルクと、前記右操舵輪制駆動装置により制御される前記右操舵輪のトルクが異なるように、前記左操舵輪のトルクと前記右操舵輪のトルクの差を調整する、リーン車両。
    The lean vehicle according to any one of claims 1 to 9,
    The left and right steered wheel torque difference adjusting unit is controlled by the left steered wheel braking / driving device when the lean angle of the lean vehicle in the left and right direction of the vertical direction line of the body frame with respect to the vertical direction is larger than a second threshold value. Adjusting the difference between the torque of the left steering wheel and the torque of the right steering wheel so that the torque of the left steering wheel and the torque of the right steering wheel controlled by the right steering wheel braking / driving device are different. Lean vehicle.
  11.  請求項9に記載のリーン車両であって、
     鉛直方向に対する前記車体フレームの上下方向線の前記リーン車両の左右方向における傾斜角度が、第1閾値より小さい場合に、前記左右操舵輪トルク差調整部は、
     前記車体フレームが前記リーン車両の左右方向において左に傾斜している時に、前記左操舵輪制駆動装置により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより大きくなるか、又は、前記左操舵輪制駆動装置により制御される前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより小さくなるように前記左操舵輪のトルクと前記右操舵輪のトルクの差を調整し、
     前記車体フレームが前記リーン車両の左右方向において右に傾斜している時に、前記左操舵輪制駆動により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより小さくなるか、又は、前記左操舵輪制駆動装置により制御される前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより大きくなるように前記左操舵輪のトルクと前記右操舵輪のトルク差を調整する、リーン車両。
    A lean vehicle according to claim 9, wherein
    When the inclination angle of the lean vehicle in the left-right direction of the vertical direction line of the body frame with respect to the vertical direction is smaller than a first threshold value, the left-right steering wheel torque difference adjustment unit is
    When the vehicle body frame is tilted to the left in the left-right direction of the lean vehicle, the braking torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device. The braking torque of the right steering wheel is greater than the braking torque of the right steering wheel, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is Adjusting the difference between the torque of the left steering wheel and the torque of the right steering wheel so as to be smaller than the driving torque,
    When the vehicle body frame is tilted to the right in the left-right direction of the lean vehicle, the braking torque of the left steering wheel controlled by the left steering wheel braking drive is controlled by the right steering wheel braking / driving device. Driving the right steering wheel, which is smaller than the braking torque of the right steering wheel, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is controlled by the right steering wheel braking / driving device A lean vehicle that adjusts a torque difference between the left steered wheel and the right steered wheel so as to be larger than the torque.
  12.  請求項11に記載のリーン車両であって、
     前記車体フレームの上下方向線の鉛直方向に対する前記リーン車両の左右方向における傾斜角度が、第1閾値より大きい場合に、前記左右操舵輪トルク差調整部は、
     前記左右傾斜状態検出部が前記リーン車両の左右方向の左方に向かって前記車体フレームの傾斜が変化しようとする傾斜角速度を検出した時に、前記左操舵輪制駆動装置により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより小さくなるか、又は、前記左操舵輪制駆動装置により制御される前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより大きくなるように前記左操舵輪のトルクと前記右操舵輪のトルク差を調整し、
     前記左右傾斜状態検出部が前記リーン車両の左右方向の右方に向かって前記車体フレームの傾斜が変化しようとする傾斜角速度を検出した時に、前記左操舵輪制駆動装置により制御される前記左操舵輪の制動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の制動トルクより大きくなるか、又は、前記左操舵輪制駆動装置により制御される前記左操舵輪の駆動トルクが、前記右操舵輪制駆動装置により制御される前記右操舵輪の駆動トルクより小さくなるように前記左操舵輪のトルクと前記右操舵輪のトルク差を調整する、リーン車両。
    A lean vehicle according to claim 11, wherein
    When the lean angle in the left and right direction of the lean vehicle with respect to the vertical direction of the vertical line of the body frame is larger than a first threshold, the left and right steered wheel torque difference adjustment unit is
    The left steering controlled by the left steering wheel braking / driving device when the left / right tilt state detection unit detects a tilt angular velocity at which the lean of the vehicle body frame changes toward the left in the left / right direction of the lean vehicle. The braking torque of the wheel is smaller than the braking torque of the right steering wheel controlled by the right steering wheel braking / driving device, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is Adjusting the torque difference between the left steering wheel and the right steering wheel so as to be larger than the driving torque of the right steering wheel controlled by the right steering wheel braking and driving device;
    The left steering controlled by the left steering wheel braking / driving device when the left / right tilt state detection unit detects a tilt angular velocity at which the lean of the vehicle body frame changes toward the right in the left / right direction of the lean vehicle. The braking torque of the wheel becomes larger than the braking torque of the right steering wheel controlled by the right steering wheel braking / driving device, or the driving torque of the left steering wheel controlled by the left steering wheel braking / driving device is A lean vehicle that adjusts the difference between the torque of the left steering wheel and the torque of the right steering wheel to be smaller than the driving torque of the right steering wheel controlled by the right steering wheel braking / driving device.
  13.  請求項1~12のいずれか1項に記載のリーン車両であって、
     ライダーが操作可能な操作子と、
     前記操作子の操作状態を検出する操作状態検出部をさらに備え、
     前記左右操舵輪トルク差調整部は、前記傾斜状態検出部が検出した傾斜状態及び前記操作状態検出部が検出した操作状態に基づいて、前記左操舵輪制駆動装置が発生する前記左操舵輪のトルクと、前記右操舵輪制駆動装置が発生する前記右操舵輪のトルクの差を調整する、リーン車両。
    A lean vehicle according to any one of claims 1 to 12,
    An operator that can be operated by the rider;
    An operation state detection unit for detecting an operation state of the operation element;
    The left and right steering wheel torque difference adjustment unit is configured to control the left steering wheel generated by the left steering wheel braking / driving device based on the tilt state detected by the tilt state detection unit and the operation state detected by the operation state detection unit. A lean vehicle for adjusting a difference between torque and torque of the right steering wheel generated by the right steering wheel braking / driving device.
  14.  請求項13に記載のリーン車両であって、
     前記左右操舵輪トルク差調整部は、前記左操舵輪制駆動装置により制御する前記左操舵輪のトルクと、前記右操舵輪制駆動装置により制御する前記右操舵輪のトルクの総量を、ライダーによる前記操作子の操作量に応じて決定し、
     前記車体フレームが前記リーン車両の左右方向に傾斜している時の前記操作子の前記操作量に対する前記左操舵のトルクと前記右操舵輪のトルクの総量は、前記車体フレームが前記リーン車両の左右方向に傾斜していない時の前記操作子の前記操作量に対する前記左操舵のトルクと前記右操舵輪のトルクの総量と等しい、リーン車両。
    A lean vehicle according to claim 13,
    The left and right steered wheel torque difference adjustment unit determines a total amount of torque of the left steered wheel controlled by the left steered wheel brake drive device and a right steered wheel torque controlled by the right steered wheel brake drive device by a rider. Determined according to the operation amount of the operation element,
    The total amount of the left steering torque and the right steering wheel torque with respect to the operation amount of the operating element when the vehicle body frame is tilted in the left-right direction of the lean vehicle is determined by: A lean vehicle, which is equal to a total amount of the left steering torque and the right steering wheel torque with respect to the operation amount of the operation element when not tilting in the direction.
  15.  請求項1~14のいずれか1項に記載のリーン車両であって、
     前記車体フレームに対して回転可能に支持され、前記右車輪および前記左車輪を支持するアームを含むリンク機構であって、前記アームを前記車体フレームに対して回転させることにより、前記右車輪および前記左車輪の前記車体フレームに対する上下方向の相対位置を変更して前記車体フレームを前記リーン車両の左右方向に傾斜させるリンク機構をさらに備え、
     前記左右傾斜状態検出部は、前記アームの前記車体フレームに対する回転を検出することで、前記リーン車両の左右方向における前記車体フレームの傾斜状態を検出する、リーン車両。 
    The lean vehicle according to any one of claims 1 to 14,
    A link mechanism that is rotatably supported with respect to the vehicle body frame and includes an arm that supports the right wheel and the left wheel, and by rotating the arm with respect to the vehicle body frame, A link mechanism that changes the relative position of the left wheel with respect to the vehicle body frame in the vertical direction to incline the vehicle body frame in the horizontal direction of the lean vehicle;
    The lean vehicle is a lean vehicle that detects the lean state of the vehicle body frame in the left-right direction of the lean vehicle by detecting rotation of the arm with respect to the vehicle body frame.
PCT/JP2016/084762 2015-11-24 2016-11-24 Leanable vehicle WO2017090666A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017552686A JP6646683B2 (en) 2015-11-24 2016-11-24 Lean vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-228473 2015-11-24
JP2015228473 2015-11-24

Publications (1)

Publication Number Publication Date
WO2017090666A1 true WO2017090666A1 (en) 2017-06-01

Family

ID=58764265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084762 WO2017090666A1 (en) 2015-11-24 2016-11-24 Leanable vehicle

Country Status (2)

Country Link
JP (1) JP6646683B2 (en)
WO (1) WO2017090666A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019073103A (en) * 2017-10-13 2019-05-16 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Lean angle estimation device and lean angle estimation method for three-wheel type motorcycle, and control system having lean angle estimation device
JP2019188955A (en) * 2018-04-23 2019-10-31 トヨタ自動車株式会社 Automatic tilting vehicle
JPWO2019003604A1 (en) * 2017-06-27 2020-03-26 本田技研工業株式会社 Rocking vehicle
JPWO2020202290A1 (en) * 2019-03-29 2020-10-08
EP3628578A4 (en) * 2017-05-19 2021-03-10 Equos Research Co., Ltd. Vehicle
JP2021054328A (en) * 2019-09-30 2021-04-08 本田技研工業株式会社 Steering assist device for saddle-riding type vehicle
WO2024048529A1 (en) * 2022-08-29 2024-03-07 ヤマハ発動機株式会社 Leaning vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052728A (en) * 2008-07-31 2010-03-11 Yamaha Motor Co Ltd Body tilting control system and saddle riding type vehicle equipped with the same
JP2013144471A (en) * 2012-01-13 2013-07-25 Equos Research Co Ltd Vehicle
WO2015064656A1 (en) * 2013-10-31 2015-05-07 ヤマハ発動機株式会社 Braking system and vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0029136D0 (en) * 2000-11-29 2001-01-10 Shotter Nicholas R Motorcycle-type vehicle
JP2010047151A (en) * 2008-08-22 2010-03-04 Hiroshi Takeda Three-wheeled motorcycle
JP6097694B2 (en) * 2011-10-06 2017-03-15 ヤマハ発動機株式会社 Electric vehicle
JP5757511B1 (en) * 2014-03-18 2015-07-29 サーチウェア株式会社 vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052728A (en) * 2008-07-31 2010-03-11 Yamaha Motor Co Ltd Body tilting control system and saddle riding type vehicle equipped with the same
JP2013144471A (en) * 2012-01-13 2013-07-25 Equos Research Co Ltd Vehicle
WO2015064656A1 (en) * 2013-10-31 2015-05-07 ヤマハ発動機株式会社 Braking system and vehicle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3628578A4 (en) * 2017-05-19 2021-03-10 Equos Research Co., Ltd. Vehicle
US11472474B2 (en) 2017-05-19 2022-10-18 Aisin Corporation Vehicle
JPWO2019003604A1 (en) * 2017-06-27 2020-03-26 本田技研工業株式会社 Rocking vehicle
US11198482B2 (en) 2017-06-27 2021-12-14 Honda Motor Co., Ltd. Oscillation-type vehicle
JP2019073103A (en) * 2017-10-13 2019-05-16 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Lean angle estimation device and lean angle estimation method for three-wheel type motorcycle, and control system having lean angle estimation device
JP7319759B2 (en) 2017-10-13 2023-08-02 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング LEAN ANGLE ESTIMATING DEVICE AND LEAN ANGLE ESTIMATING METHOD FOR THREE-WHEEL MOTORCYCLE, AND CONTROL SYSTEM INCLUDING THE LEAN ANGLE ESTIMATING DEVICE
JP7056349B2 (en) 2018-04-23 2022-04-19 トヨタ自動車株式会社 Automatic tilt vehicle
JP2019188955A (en) * 2018-04-23 2019-10-31 トヨタ自動車株式会社 Automatic tilting vehicle
JPWO2020202290A1 (en) * 2019-03-29 2020-10-08
JP7143510B2 (en) 2019-03-29 2022-09-28 本田技研工業株式会社 Driving support device for saddle type vehicle
WO2020202290A1 (en) * 2019-03-29 2020-10-08 本田技研工業株式会社 Driving assistance device for saddled vehicles
JP7014760B2 (en) 2019-09-30 2022-02-01 本田技研工業株式会社 Steering assist device for saddle-riding vehicles
JP2021054328A (en) * 2019-09-30 2021-04-08 本田技研工業株式会社 Steering assist device for saddle-riding type vehicle
WO2024048529A1 (en) * 2022-08-29 2024-03-07 ヤマハ発動機株式会社 Leaning vehicle

Also Published As

Publication number Publication date
JP6646683B2 (en) 2020-02-14
JPWO2017090666A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
JP6666995B2 (en) Lean attitude control device for lean vehicle with left and right inclined wheels and lean vehicle with left and right inclined wheels
WO2017090666A1 (en) Leanable vehicle
US7497525B2 (en) Roll-related reactive system
US9744952B2 (en) Brake system and vehicle
US11167750B2 (en) Leaning vehicle provided with a leaning posture control actuator and left and right inclining wheels
US20060180372A1 (en) Electronic stability system on a three-wheeled vehicle
JP7014760B2 (en) Steering assist device for saddle-riding vehicles
TW201809940A (en) A system and method to stabilize motorcycles
US9751507B2 (en) Brake system and vehicle
WO2018173302A1 (en) Control device and steering device
WO2017090669A1 (en) Leanable vehicle
JP4402379B2 (en) Method and apparatus for stabilizing two-wheeled vehicle
JP2007040782A (en) Detection system and method of force acting on wheel
JP2008503389A (en) Apparatus and method for stabilizing a vehicle
WO2018173304A1 (en) Suspension control device and suspension device
WO2018003894A1 (en) Leaning vehicle
JP5867131B2 (en) Steering wheel axle weight estimation device
WO2017130982A1 (en) Leaning vehicle
JP5870811B2 (en) Steering angle acquisition device
WO2023119423A1 (en) Tilting vehicle
WO2023119424A1 (en) Leaning vehicle
JP2024121226A (en) Brake Control Device
US20220250595A1 (en) Method and device for operating a brake system, computer program and computer program product, brake system
JP2024121227A (en) Brake Control Device
JP2004012218A (en) Program for simulating running of two-wheeled vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552686

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868609

Country of ref document: EP

Kind code of ref document: A1