[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017084254A1 - 具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉 - Google Patents

具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉 Download PDF

Info

Publication number
WO2017084254A1
WO2017084254A1 PCT/CN2016/081929 CN2016081929W WO2017084254A1 WO 2017084254 A1 WO2017084254 A1 WO 2017084254A1 CN 2016081929 W CN2016081929 W CN 2016081929W WO 2017084254 A1 WO2017084254 A1 WO 2017084254A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
heat exchange
heat exchanger
high temperature
exchange cylinder
Prior art date
Application number
PCT/CN2016/081929
Other languages
English (en)
French (fr)
Inventor
刘效洲
张孝春
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Priority to US15/746,333 priority Critical patent/US10724797B2/en
Publication of WO2017084254A1 publication Critical patent/WO2017084254A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details specially adapted for crucible or pot furnaces
    • F27B14/14Arrangements of heating devices
    • F27B14/143Heating of the crucible by convection of combustion gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0084Obtaining aluminium melting and handling molten aluminium
    • F27D17/004
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details specially adapted for crucible or pot furnaces
    • F27B14/14Arrangements of heating devices
    • F27B2014/146Recuperation of lost heat, e.g. regenerators
    • F27D2017/007

Definitions

  • the present invention relates to a kiln apparatus, and more particularly to an aluminum melting furnace.
  • the temperature of the flue gas at the flue gas outlet usually reaches about 1000-1100 degrees Celsius. If these high-temperature flue gases are directly discharged into the environment, not only will energy waste be caused, but also a certain degree of damage to the environment. Therefore, the art has been continuously exploring techniques for reducing the temperature of the boiler flue gas, such as re-introducing the flue gas of the boiler into the boiler for re-combustion, or setting a heat exchanger in the flue gas discharge process to utilize the waste heat of the flue gas. The measures achieve the maximum utilization of flue gas energy while reducing the temperature of the flue gas, saving energy and reducing emissions pollution.
  • stainless steel or carbon steel heat exchangers are often used.
  • stainless steel has high cost and limited application range, and carbon steel cannot withstand higher temperatures than stainless steel. Therefore, heat exchangers made of carbon steel often need to be switched between multiple heat exchangers or regenerators. The system structure is complicated, the cost is high, and the maintenance and repair is difficult.
  • An air preheater for an aluminum melting furnace disclosed in Chinese Patent Application Laid-Open No. 103123241A includes a silicon carbide material and an air preheater heat exchange steel tube, and the silicon carbide material is lined with the inner wall of the air preheater heat exchange steel tube.
  • the air preheater for the aluminum melting furnace is lined with the inner wall of the heat exchanger steel pipe of the air preheater by using the silicon carbide material, which increases the manufacturing cost.
  • FIG. 203550557U Another example is a fast-switching regenerative combustion system for an aluminum melting furnace disclosed in Chinese Patent Publication No. 203550557U, comprising: a furnace body, first and second fuel nozzles, first and second vent pipes, first and second storage a heat exchanger, first and second intake pipes, wherein the first heat storage device is The second heat storage device can alternately operate between the warm-up working state and the heat-storing working state.
  • the first heat storage device and/or the second heat storage device includes a first-stage heat storage region, a second-stage heat storage region, and a precipitation region disposed between the first-stage heat storage region and the second-stage heat storage region .
  • the aluminum alloy furnace quickly switches the regenerative combustion system in order to avoid high temperature damage to the heat storage device, and two heat storage devices are alternately operated, which increases the construction cost of the system.
  • the above disclosed technologies all use heat exchangers for heat exchange between high temperature flue gas and air, and use flue gas waste heat to preheat the air.
  • the above techniques have disadvantages or disadvantages, for example: (1), a pair of burners And a pair of regenerators respectively corresponding to the pair of burners are disposed on both sides of the furnace body, and when the temperature of the burner and the regenerator at one side is too high, the burner and the regenerator are switched to the other side.
  • the equipment needs to be stopped, so that the combustion is discontinuous and the power loss is large; (2) the heat exchange between the high-temperature flue gas and the air, the heat exchange efficiency is not high, and the heat exchange cannot be achieved.
  • the structure and working mode of the above heat exchanger can not meet the requirements of effectively reducing the temperature of the flue gas, so it is easy to cause the heat exchanger Temperature overheating, especially heat exchangers made of carbon steel, can not withstand such high smoke temperature for a long time, there are safety hazards; (3), the emission of flue gas contains high levels of nitrogen oxides, which is dangerous to the environment. .
  • the object of the present invention is to provide a continuous low-oxygen high-temperature combustion aluminum melting furnace capable of significantly improving heat exchange efficiency and effectively avoiding heat exchanger damage.
  • calibrated heat resistant temperature means that the material can be operated for a long time without damage at this temperature.
  • the rated heat resistance temperature of carbon steel is about 350 degrees Celsius, and the maximum allowable temperature of carbon steel is generally 450 degrees Celsius. When it exceeds 450 degrees Celsius, carbon steel will produce graphitization, which will reduce the strength of steel and cause carbon steel to meet the requirements. Therefore, although carbon steel is inexpensive and has excellent process properties such as weldability and cold formability, a general aluminum furnace high temperature heat exchanger cannot be made of carbon steel.
  • the calibration temperature of stainless steel is about 525 degrees Celsius.
  • Some special stainless steels may have higher heat resistance temperature.
  • the heat resistance temperature of 301 or 304 stainless steel is about 870 degrees Celsius, but the price of stainless steel is higher and the process performance is poor.
  • it can be used in high temperature heat exchangers of aluminum melting furnaces, At high temperatures of about 1000 degrees Celsius, the service life is also shortened.
  • the invention adopts a specially constructed porous nozzle heat exchanger, and even if the heat exchanger is made of general carbon steel, it can ensure long-term work without damage.
  • a continuous low-oxygen high-temperature combustion aluminum melting furnace having a porous nozzle heat exchanger comprising: a furnace body comprising a molten aluminum pool disposed inside, being disposed inside and located in the molten aluminum a combustion chamber above the pool, and a first high temperature flue gas outlet disposed at an end wall of the furnace body and communicating with the combustion chamber; at least one combustion nozzle, at least one combustion nozzle disposed at the other end wall of the furnace body for fuel and combustion
  • the gas is injected into the combustion chamber to generate heat release to melt the aluminum in the molten aluminum pool into aluminum liquid; the flue gas line, the flue gas line connects the first high temperature flue gas outlet of the furnace body to the chimney; and the high temperature heat exchanger, high temperature
  • the heat exchanger is disposed in the flue gas pipeline to preheat the air by utilizing the residual heat of the flue gas.
  • the high temperature heat exchanger is a porous nozzle heat exchanger
  • the porous nozzle heat exchanger comprises a flue gas passage and at least one heat exchange cylinder disposed in the flue gas passage
  • the at least one heat exchange cylinder comprises an annular end wall And a central end forming an intake hole, a tail end forming an open end, and a porous nozzle extending from the first end to the rear end in the at least one heat exchange cylinder around the air inlet hole, wherein the cold air enters through the air inlet hole
  • the porous nozzle heat exchanger the preheated high temperature air flows out of the porous nozzle heat exchanger via the tail end
  • the porous nozzle includes a closed end adjacent to the tail end and a tube body extending between the inlet hole and the closed end, a plurality of air injection holes are disposed on the peripheral wall of the pipe body such that: the cold air entering the at least one heat exchange cylinder through the air inlet holes is sprayed through several air injection holes to the inner wall of the
  • the porous nozzle heat exchanger comprises a first heat exchange cylinder, a second heat exchange cylinder and a third heat exchange cylinder which are sequentially disposed in the flue gas passage along the flow direction of the flue gas, and the porous nozzle heat exchange
  • the device further includes a first connecting passage and a second connecting passage disposed outside the flue gas passage, and the first connecting passage connects the first heat exchange cylinder and the third heat exchange cylinder to the tail end in the air flow direction, and the second connecting passage And connecting the third heat exchange cylinder to the second heat exchange cylinder in the air flow direction, wherein the cold air enters the first heat exchange cylinder through the air inlet hole of the first heat exchange cylinder and sequentially flows through the first Connecting channel, third heat exchange cylinder, first The second connecting passage and the second heat exchange cylinder, the preheated high temperature air flows out through the tail end of the second heat exchange cylinder.
  • the porous nozzle heat exchanger further includes an inlet chamber disposed outside the flue gas passage and communicating with the first end of the first heat exchange cylinder, and a second heat exchange cylinder disposed outside the flue gas passage
  • the outlet chamber communicating with the tail end forms a low-temperature air inlet of the porous nozzle heat exchanger on the chamber wall of the inlet chamber, and forms a high-temperature air outlet of the porous nozzle heat exchanger on the chamber wall of the outlet chamber, and the porous nozzle is exchanged
  • the end of the flue gas passage of the heat exchanger adjacent to the first heat exchange cylinder forms a high temperature flue gas inlet
  • the end of the flue gas passage of the porous spout heat exchanger adjacent to the third heat exchange cylinder forms a low temperature flue gas outlet.
  • the dust removal heat exchange chamber includes a dusty flue gas inlet spaced apart from the top portion and The dust-free flue gas outlet is connected to the first high-temperature flue gas outlet of the furnace body, and the dust-removing flue gas outlet is connected to the high-temperature flue gas inlet of the porous spout heat exchanger.
  • the dust removal heat exchange chamber may be constructed of a high temperature resistant material such as ceramic or brick, or the dust removal space may be dug directly from the ground and a top cover may be added to form a dust removal heat exchange chamber.
  • a high pressure blower for delivering pressurized cold air to the porous nozzle heat exchanger is further included.
  • the cold air pressure delivered by the high pressure blower is set to be at least 2 times the standard atmospheric pressure, such as 3 times the standard atmospheric pressure, so that the cold air can be quickly and efficiently exchanged in the heat exchanger at high speed and high pressure, and is beneficial to the introduction in the mixer. Shoot.
  • the furnace body further comprises a second high temperature flue gas outlet disposed on the side wall and communicating with the combustion chamber
  • the continuous low oxygen high temperature combustion aluminum melting furnace having the porous nozzle heat exchanger further comprises a mixer, the mixer comprising a high temperature air inlet, a return flue gas inlet, and a mixed gas outlet, the return flue gas inlet is in communication with the second high temperature flue gas outlet of the furnace body through a pipeline, and the high temperature air inlet is communicated with the high temperature air outlet of the porous spout heat exchanger through the pipeline, mixing The gas outlet is in communication with the at least one combustion nozzle through a line to deliver a mixture of high temperature air and high temperature flue gas to the at least one combustion nozzle as a combustion gas.
  • the mixer further comprises an ejector tube extending from the high temperature air inlet to the inside, and the mixer uses the negative pressure generated by the ejector tube to spray the high temperature air to introduce a part of the high temperature flue gas in the furnace body through the second high temperature flue gas outlet. Shoot into the mixer.
  • the volume ratio of the high-temperature flue gas flowing out through the first high-temperature flue gas outlet of the furnace body per unit time and the high-temperature flue gas flowing out through the second high-temperature flue gas outlet is set to 2 to 10:1, For example 4:1.
  • two combustion nozzles are spaced apart from the other end wall of the furnace body.
  • At least one of the heat exchange cylinders is made of carbon steel.
  • a plurality of air injection holes are arranged in a matrix form over the entire pipe wall.
  • the high temperature flue gas temperature in the furnace body is about 1000 to 1200 degrees Celsius, and the oxygen content is about 2% to 5% by volume.
  • the temperature of the flue gas entering the porous nozzle heat exchanger is about 800 to 1000 degrees Celsius, and the temperature of the flue gas discharged from the porous nozzle heat exchanger is about 120 to 180 degrees Celsius.
  • the temperature of the air entering the mixer from the porous nozzle heat exchanger is about 600 to 800 degrees Celsius.
  • the temperature of the mixture flowing out of the mixer is about 800 to 1000 degrees Celsius, and the oxygen content is about 10% to 13% by volume.
  • the arrangement direction of the at least one heat exchange cylinder in the flue gas passage of the perforated nozzle heat exchanger is perpendicular to the direction of flue gas flow in the flue gas passage.
  • heat exchange cylinders and connecting passages such as five heat exchange cylinders and four connecting passages, or six heat exchange cylinders and five connecting passages, may be selected according to actual needs to achieve desired heat exchange. effect.
  • the porous nozzle heat exchanger may include only one heat exchange cylinder disposed in the flue gas passage, and the intake hole at the head end of the heat exchange cylinder directly forms a low temperature air inlet, and the tail end of the heat exchange cylinder is directly A high temperature air outlet is formed.
  • the porous nozzle heat exchanger may include two or more heat exchange cylinders disposed in the flue gas passage.
  • the gas used in the present invention may be natural gas, gas or liquefied petroleum gas.
  • the beneficial effects of the invention are as follows: (1) the outside air enters the porous nozzle heat exchanger after being pressurized by the high pressure fan, and when the high pressure air enters the porous nozzle, the pores of the air orifice are small, so the high pressure air It will be quickly and efficiently ejected from the porous nozzle through the air nozzle, and will hit the inner wall of the heat exchange cylinder at high speed and high pressure.
  • the high speed and high pressure impact can ensure the low temperature air inside the heat exchange cylinder. Rapid and efficient heat exchange with the high temperature flue gas outside the heat exchange cylinder causes the flue gas temperature to rapidly decrease, for example, when the flue gas temperature entering the porous spout heat exchanger is about 900 degrees Celsius.
  • the components of the porous nozzle heat exchanger can always be kept within the working temperature range, especially for the porous nozzle heat exchanger made of carbon steel, which can meet the temperature requirements of carbon steel.
  • the service life can be obviously prolonged and the workload of maintenance and replacement can be reduced;
  • the above-mentioned fast and efficient heat exchange process can obviously improve the waste heat utilization effect of the high temperature flue gas of the aluminum melting furnace, complete the waste heat utilization of the high temperature flue gas in a short time, save energy and reduce environmental pollution;
  • due to The structure of the above-mentioned porous nozzle heat exchanger ensures that the system components are always within an acceptable temperature range, so that it is not necessary to switch between multiple heat exchange systems or heat storage systems, thereby ensuring the continuity of the combustion process and simplifying
  • the system structure reduces the difficulty of the corresponding component arrangement; (4) the flow direction of the
  • the above process reduces the oxygen content of the mixture, so that the furnace body can achieve low-oxygen combustion, and the combustion is generated.
  • Low nitrogen oxide content reducing environmental pollution
  • two combustion nozzles are arranged on the furnace body of the aluminum melting furnace, the melting speed is fast, saving energy;
  • the air first enters the flue gas passage
  • the first heat exchange cylinder of the front section exchanges heat, enters the heat exchange of the third heat exchange cylinder in the rear section of the flue gas passage, and finally enters the heat exchange of the second heat exchange cylinder in the middle section of the flue gas passage.
  • the heat exchange process between air and flue gas is more efficient and reasonable, and the temperature of the flue gas discharged to the atmosphere can be sufficiently reduced; (8) part of the high-temperature flue gas is sucked and mixed by the high-pressure air in the mixer. This can remove the furnace pressure to avoid aluminum melting furnace furnace pressure increased potential safety problems.
  • Figure 1 is a schematic view showing the construction of a continuous low-oxygen high-temperature combustion aluminum melting furnace having a porous nozzle heat exchanger according to the present invention.
  • Figure 2 is a schematic view showing the construction of a porous nozzle heat exchanger employed in the present invention.
  • Fig. 3 is a schematic view showing the construction of a mixer employed in the present invention.
  • a continuous low-oxygen high-temperature combustion aluminum melting furnace having a porous nozzle heat exchanger includes: a furnace body 100, a dust removal heat exchange chamber 200, and a porous nozzle exchange The heat exchanger 300, the high pressure blower 400, and the mixer 500.
  • the furnace body 100 includes a first combustion nozzle 120 and a second combustion nozzle 130.
  • the first combustion nozzle 120 and the second combustion nozzle 130 are spaced apart from one end wall 111 of the furnace body 100.
  • the other end wall 112 of the furnace body 100 is provided with a first high temperature flue gas outlet 140, and a side wall 113 of the furnace body 100 is provided with a second high temperature flue gas outlet 150.
  • the first combustion nozzle 120 and the second combustion nozzle 130 are used to inject fuel and combustion gas into the furnace of the furnace body 100 to generate heat release to melt the aluminum.
  • the first high temperature flue gas outlet 140 is connected to the dedusting heat exchange chamber 200 through a pipe for feeding about 70% by volume of flue gas generated after combustion to the dedusting heat exchange chamber 200.
  • the second high temperature flue gas outlet 150 is connected to the mixer 500 through a conduit for feeding about 30% by volume of flue gas produced after combustion to the mixer 500.
  • the oxygen content of the flue gas discharged from the furnace body 100 is about 3% by volume, and the flue gas temperature is about 1000 degrees Celsius.
  • the dust removal heat exchange chamber 200 is connected between the furnace body 100 and the porous nozzle heat exchanger 300, and the dust removal heat exchange chamber 200 is disposed underground.
  • the dust removal heat exchange chamber 200 includes a dust-containing flue gas inlet 210 and a dust removal flue gas outlet 220 disposed at the top.
  • the high-temperature flue gas from the first high-temperature flue gas outlet 140 of the furnace body 100 enters the interior of the dedusting heat exchange chamber 200 via the dust-containing flue gas inlet 210 of the dust removal heat exchange chamber 200, and the flue gas along the dust-removing heat exchange chamber 200 is substantially U-shaped.
  • the moving path flows to remove a large amount of soot, and the flue gas is cooled to a certain extent, the flue gas temperature is lowered to about 900 degrees Celsius, and is discharged through the dust removing flue gas outlet 220.
  • the porous nozzle heat exchanger 300 is connected downstream of the dust removal heat exchange chamber 200, and includes a high temperature flue gas inlet 310, a low temperature flue gas outlet 320, a low temperature air inlet 330, a high temperature air outlet 340, A flue gas passage 350 and an air passage 360.
  • the outside air exchanges heat with the high-temperature flue gas, so that the air is preheated, and the temperature of the flue gas is greatly reduced.
  • the dust removal flue gas outlet 220 of the dust removal heat exchange chamber 200 is connected to the high temperature flue gas inlet 310 of the porous spout heat exchanger 300 through a pipe to send high temperature flue gas of about 900 degrees Celsius to the high temperature flue gas inlet 310, and the heat exchanged smoke.
  • the gas is discharged to the chimney via the low temperature flue gas outlet 320 of the multi-hole nozzle heat exchanger 300, at which time the flue gas temperature drops to approximately 150 Celsius.
  • the high pressure blower 400 is connected to the porous nozzle heat exchanger 300 through a pipe, pressurizes the outside air, and sends the pressurized air to the porous nozzle heat exchanger 300, and the air passes through the porous nozzle heat exchanger 300.
  • the heat is passed through the mixing of the mixer 500 and finally delivered to the first combustion nozzle 120 and the second combustion nozzle 130 for combustion.
  • the high pressure blower 400 is connected to the low temperature air inlet 330 of the porous nozzle heat exchanger 300 via a conduit, and the high pressure air from the high pressure blower 400 enters the porous nozzle heat exchanger 300 from the low temperature air inlet 330 into the low temperature air inlet 330.
  • the previous air temperature was approximately 20 degrees Celsius, and after passing through the porous nozzle heat exchanger 300, the air temperature rose to approximately 700 degrees Celsius and the oxygen content was approximately 21% by volume.
  • the porous nozzle heat exchanger 300 is preferably made of carbon steel or stainless steel.
  • the flue gas passage 350 has a circular cross section. In other embodiments, the cross section of the flue gas passage 350 may be square, rectangular, or the like. One end of the flue gas passage 350 forms a high temperature flue gas inlet 310, and the other end forms a low temperature flue gas outlet 320, and the high temperature flue gas flows in the flue gas passage 350.
  • the air passage 360 includes a first heat exchange cylinder 361, a second heat exchange cylinder 363, and a third heat exchange cylinder that are sequentially disposed in the flue gas passage 350 along the flow direction of the flue gas. 365.
  • a first connecting passage 362 for connecting the first heat exchange cylinder 361 and the third heat exchange cylinder 365 in the air flow direction is further included, and further includes a third heat exchange cylinder 365 and The second heat exchange cylinder 363 is connected to the second connecting passage 364 at the end of the air flow direction.
  • an intake chamber 367 that communicates with the leading end of the first heat exchange cylinder 361 and an outlet chamber 368 that communicates with the trailing end of the second heat exchange cylinder 363 are further included.
  • the low temperature air inlet 330 of the porous nozzle heat exchanger 300 is disposed on the chamber wall of the inlet chamber 367, and the high temperature air outlet 340 of the porous nozzle heat exchanger 300 is disposed on the chamber wall of the outlet chamber 368.
  • the first heat exchange cylinder 361, the third heat exchange cylinder 365, and the second heat exchange cylinder 363 of the air passage 360 are similar in structure, and each has a straight cylindrical shape and extends into the tube of the flue gas passage 350.
  • the first connecting passage 362 and the second connecting passage 364 of the air passage 360 are disposed outside the pipe wall of the flue gas passage 350.
  • the first heat exchange cylinder 361 is connected to the third heat exchange cylinder 365 via the bent first connecting passage 362.
  • the third heat exchange cylinder 353 is connected to the second heat exchange cylinder 363 via the second connection passage 364.
  • the first heat exchange cylinder 361, the second heat exchange cylinder 363, and the third heat exchange cylinder 365 each include a porous nozzle 366.
  • the configuration of each heat exchange cylinder will be exemplified below by the first heat exchange cylinder 361.
  • the first heat exchange cylinder 361 includes a leading end adjacent to the inlet plenum 367 and a trailing end adjacent the first connecting passage 362, wherein the trailing end forms an open end and is in direct communication with the first connecting passage 362. Wherein, the first end forms an annular end wall and the center forms an air inlet hole 3661.
  • the porous nozzle 366 extends from the leading end to the trailing end in the first heat exchange cylinder 361 around the intake hole 3661.
  • the porous nozzle 366 includes a closed end 3662 adjacent the first connecting passage 362 and a tubular body 3663 extending between the inlet aperture 3661 and the closed end 3662.
  • a plurality of air injection holes 36631 are disposed on the pipe body 3663 such that the high pressure cold air from the low temperature air inlet 330 enters the pipe body 3663 from the air inlet chamber 367 through the air inlet hole 3661, and then passes through the plurality of air injection holes 36631 toward the first heat exchange.
  • the inner wall of the cylinder 361 is sprayed at a high speed to rapidly exchange heat with the high-temperature flue gas flowing through the outer wall of the first heat exchange cylinder 361, the air is quickly preheated, and the first heat exchange cylinder 361 is cooled in time, which solves the first
  • the problem that the heat exchange cylinder 361 is burned for a long time may be burned by high temperature flue gas. Therefore, the first heat exchange cylinder 361 of the present invention can be made of carbon steel having lower heat resistance than stainless steel and having a lower price.
  • the high pressure air rapidly passes through the air injection hole 36631 from the porous nozzle.
  • the 366 is ejected outwardly and hits the inner wall of the first heat exchange cylinder 361 at a high speed and a high pressure.
  • the high speed and high pressure impact can ensure the low temperature air inside the first heat exchange cylinder 361 and the first heat exchange cylinder.
  • rapid and effective heat exchange occurs, which significantly improves the heat exchange effect of the high temperature flue gas waste heat utilization of the aluminum melting furnace.
  • the above heat exchange process can quickly reduce the temperature of the high temperature flue gas to a temperature range that the carbon steel can withstand, thereby making the porous nozzle heat exchanger made of carbon steel.
  • 300 is implementable; and for the porous nozzle heat exchanger 300 made of stainless steel, the temperature of the high-temperature flue gas can also be significantly and quickly reduced, thereby significantly extending the life of the stainless steel component.
  • the structure and working process of the porous nozzle 366 are described by taking the first heat exchange cylinder 361 as an example.
  • the second heat exchange cylinder 363 and the third heat exchange cylinder 365 have The same structure as the first heat exchange cylinder 361, their configuration The principle of creation and working will not be repeated here.
  • the above parts are interconnected to form a bent air passage 360, that is, the first connecting passage 362 is connected between the first heat exchange cylinder 361 and the third heat exchange cylinder 365, and the second connecting passage 364 is connected to the third.
  • the heat exchange cylinder 365 is interposed between the second heat exchange cylinder 363. After entering the porous nozzle heat exchanger 300 from the low temperature air inlet 330, the air passes through the inlet chamber 367, the first heat exchange cylinder 361, the first connecting passage 362, the third heat exchange cylinder 365, and the second connecting passage. 364, the second heat exchange cylinder 363, the outlet chamber 368, and finally enter the interior of the mixer 500 via the high temperature air outlet 340.
  • the direction of the smoke flowing in the flue gas passage 350 of the perforated nozzle heat exchanger 300 is perpendicular to the direction of the air flowing in the plurality of heat exchange cylinders of the air passage 360, so that the flue gas and the air Can achieve efficient and rapid heat transfer.
  • the mixer 500 includes a high temperature air inlet 510, a return flue gas inlet 520, a mixed gas outlet 530, and an impeller 540.
  • the second high temperature flue gas outlet 150 of the furnace body 100 is connected to the return flue gas inlet 520 of the mixer 500 to provide a portion of the high temperature flue gas to the mixer 500, and the high temperature air outlet 340 of the perforated nozzle heat exchanger 300 passes.
  • the high temperature air inlet 510 of the pipe and mixer 500 is connected by piping to feed the high temperature air that has completed heat exchange to the mixer 500.
  • the high temperature flue gas and the high temperature air are thoroughly mixed by the impeller 540 in the mixer 500 to form a mixed gas having an oxygen content of about 12% by volume and a temperature of about 900 degrees Celsius.
  • the mixed gas outlet 530 of the mixer 500 is connected to the first combustion nozzle 120 and the second combustion nozzle 130 of the furnace body 100 through a pipe, thereby conveying the mixed gas to the first combustion nozzle 120 and the second combustion nozzle 130 to generate heat release.
  • the mixer 500 further includes an ejector tube 550 extending inwardly from the high temperature air inlet 510, and high temperature and high pressure air from the porous lance heat exchanger 300 is injected into the mixer 500 through the ejector tube 550, resulting in the interior of the mixer 500.
  • a negative pressure is formed adjacent to the side of the high temperature air inlet 510, so that a part of the high temperature flue gas inhalation mixer 500 in the furnace body 100 is mixed into a combustion-supporting mixture, and the combustion-supporting mixture is further returned to the first combustion nozzle 120 and the second combustion nozzle 130.
  • the gas from the gas pipeline (not shown) together achieves low oxygen combustion.
  • a waste heat boiler is disposed downstream of the porous nozzle heat exchanger in the flow direction of the flue gas to further utilize the residual heat of the flue gas to heat the hot water, or the first heat exchange cylinder, the second heat exchange cylinder, and the third heat exchange cylinder
  • the bodies can be made of different materials, for example, the first heat exchange cylinder is made of heat-resistant stainless steel, and the second heat exchange cylinder and the third heat exchange cylinder are made of inexpensive carbon steel. Further, parameters such as temperature, pressure, and the like throughout the system may be appropriately selected within the scope of the present disclosure depending on the specific use conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Air Supply (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

一种具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉,包括:炉体(100)、燃烧喷嘴(120,130)、烟气管路及多孔喷管换热器(300)。多孔喷管换热器(300)包括烟气通道(350)及设于烟气通道(350)中的热交换筒体(361,363,365),热交换筒体(361,363,365)包括形成环形端壁且中央形成进气孔的首端、形成敞口端的尾端、以及围绕进气孔在至少一个热交换筒体(361,363,365)内从首端向尾端延伸的多孔喷管(366)。多孔喷管(366)包括邻近尾端的封闭端以及在进气孔与封闭端之间延伸的管体,管体的周壁上设置若干空气喷孔(3661)使得:经由进气孔进入至少一个热交换筒体(361,363,365)内的冷空气通过若干空气喷孔(3661)喷射至至少一个热交换筒体(361,363,365)的内壁以便与流经至少一个热交换筒体(361,363,365)的外壁的高温烟气快速换热而使至少一个热交换筒体的温度保持低于其制造材料的标定耐热温度。

Description

具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉 技术领域
本发明涉及一种窑炉设备,特别涉及一种熔铝炉。
背景技术
面对日益严峻的环境问题和能源危机,全世界都在大力提倡节能减排,尤其是对于耗能和污染都较严重的工业窑炉相关产业,如何进行节能减排改造,已经成为本领域技术人员在设计该类设备时必须要考虑的因素。
以熔铝炉为例,其烟气出口处的烟气温度通常会达到1000-1100摄氏度左右。如果将这些高温烟气直接排放到环境中,不但会造成能源浪费还会对环境造成一定程度的破坏。因此,本领域一直在不断探索降低锅炉烟气温度的技术,例如将锅炉的排放烟气重新引入锅炉再次燃烧,或者在烟气排放过程中设置换热器,对烟气余热加以利用,上述种种措施在降低烟气温度的同时实现了对烟气能量的最大化利用,节省了能源,并降低了排放污染。在现有的高温烟气余热利用技术中,常常采用不锈钢材质或碳钢材质的换热器,然而不锈钢的成本高,应用范围有限,而碳钢相对于不锈钢而言,无法承受较高的温度,因此采用碳钢材质的换热器往往需要在多个换热器或蓄热室之间切换,系统结构复杂,成本高且维护检修难度大。
如中国专利申请公开第103123241A号揭示的一种熔铝炉用空气预热器,包括碳化硅材料、空气预热器换热钢管,碳化硅材料内衬于空气预热器换热钢管内壁。该熔铝炉用空气预热器为了避免高温烧坏,其采用碳化硅材料内衬于空气预热器换热钢管内壁,这使得制造成本升高。
又如中国专利公开第203550557U号揭示的一种熔铝炉快速切换蓄热式燃烧系统,包括:炉体、第一及第二燃料喷嘴、第一及第二通气管、第一及第二储热器、第一及第二进气管,其中,第一储热器与 第二储热器能够交替在预热工作状态与蓄热工作状态之间切换运行。并且,第一储热器和/或第二储热器包括第一级蓄热区、第二级蓄热区以及设置在第一级蓄热区与第二级蓄热区之间的沉淀区。该熔铝炉快速切换蓄热式燃烧系统为了避免高温损坏储热器,采用了两个储热器交替运行,这使该系统的构造成本升高。
可见,以上所公开的技术均采用换热器进行高温烟气和空气的热交换,利用烟气余热来预热空气,然而上述技术存在缺点或不足,例如:(1)、将一对燃烧器以及与一对燃烧器分别对应的一对蓄热室设置在炉体的两侧,当一侧的燃烧器和蓄热室温度过高时,切换为另一侧的燃烧器和蓄热室,然而在切换过程中需要设备停止运行,使得燃烧不连续,功率损耗大;(2)、上述高温烟气与空气之间的换热方式,热交换效率不高,均无法达到较佳的热交换效果,特别对于熔铝炉而言,由于其排放的烟气温度高达1000-1100摄氏度,上述换热器的结构和工作方式均无法满足有效降低烟气温度的要求,因此易造成换热器的温度过热,特别是采用碳钢制造的换热器,更无法长时间承受如此高的烟气温度,存在安全隐患;(3)、排放的烟气中氮氧化合物含量高,对环境存在危害。
因此,提供一种能够充分利用烟气余热、实现高温烟气与空气之间有效热交换的熔铝炉余热利用系统成为业内急需解决的问题。
发明内容
本发明的目的是提供一种能够显著提高换热效率、有效避免换热器过热损坏的连续式低氧高温燃烧熔铝炉。
本文中的术语“标定耐热温度”是指材料在该温度下可以保证长时间工作而不损坏。
一般碳钢的标定耐热温度约为350摄氏度,碳钢最高允许使用温度上限一般为450摄氏度,超过450摄氏度碳钢会产生石墨化现象,使钢的强度降低导致碳素钢不能满足使用要求。因此,尽管碳钢价格低廉且工艺性能(如焊接性和冷成形性)优良,但一般的熔铝炉高温换热器不能采用碳钢材料制造。
一般不锈钢的标定耐热温度约为525摄氏度。有些特殊的不锈钢耐热温度可能更高,如301或304不锈钢的耐热温度约为870摄氏度左右,但不锈钢材料价格较高且工艺性能较差,虽然可用于熔铝炉高温换热器,但在约1000摄氏度的高温工况下,也会缩短使用寿命。
本发明采用特殊构造的多孔喷管换热器,即使换热器采用一般碳钢制造,也能保证长时间工作不损坏。
根据本发明的方案,提供一种具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉,包括:炉体,炉体包括设于内部的熔铝池、设于内部且位于熔铝池上方的燃烧室、以及设于炉体的一端壁且与燃烧室连通的第一高温烟气出口;至少一个燃烧喷嘴,至少一个燃烧喷嘴设于炉体的另一端壁用于将燃料和助燃气体喷射至燃烧室内燃烧放热以将熔铝池内的铝熔化成铝液;烟气管路,烟气管路将炉体的第一高温烟气出口连接至烟囱;以及高温换热器,高温换热器设于烟气管路中以利用烟气余热预热空气。其中,高温换热器为多孔喷管换热器,多孔喷管换热器包括烟气通道以及设于烟气通道中的至少一个热交换筒体,至少一个热交换筒体包括形成环形端壁且中央形成进气孔的首端、形成敞口端的尾端、以及围绕进气孔在至少一个热交换筒体内从首端向尾端延伸的多孔喷管,其中,冷空气经由进气孔进入多孔喷管换热器,预热后的高温空气经由尾端流出多孔喷管换热器,并且,多孔喷管包括邻近尾端的封闭端以及在进气孔与封闭端之间延伸的管体,管体的周壁上设置若干空气喷孔使得:经由进气孔进入至少一个热交换筒体内的冷空气通过若干空气喷孔喷射至至少一个热交换筒体的内壁以便与流经至少一个热交换筒体的外壁的高温烟气快速换热而使至少一个热交换筒体的温度保持低于其制造材料的标定耐热温度。
优选地,多孔喷管换热器包括沿着烟气流动方向依次设于烟气通道中的第一热交换筒体、第二热交换筒体及第三热交换筒体,多孔喷管换热器还包括设于烟气通道外部的第一连接通道及第二连接通道,第一连接通道将第一热交换筒体与第三热交换筒体在空气流动方向上尾首相连,第二连接通道将第三热交换筒体与第二热交换筒体在空气流动方向上尾首相连,其中,冷空气经由第一热交换筒体的进气孔进入第一热交换筒体并依次流经第一连接通道、第三热交换筒体、第 二连接通道、以及第二热交换筒体,预热后的高温空气经由第二热交换筒体的尾端流出。
可选择地,多孔喷管换热器进一步包括设于烟气通道外部的与第一热交换筒体的首端连通的进气室以及设于烟气通道外部的与第二热交换筒体的尾端连通的出气室,于进气室的室壁上形成多孔喷管换热器的低温空气入口,于出气室的室壁上形成多孔喷管换热器的高温空气出口,多孔喷管换热器的烟气通道的邻近第一热交换筒体的一端形成高温烟气入口,多孔喷管换热器的烟气通道的邻近第三热交换筒体的一端形成低温烟气出口。
可选择地,进一步包括设于烟气管路中且在烟气流动方向上位于多孔喷管换热器上游的除尘换热室,除尘换热室包括间隔设于顶部的含尘烟气入口和除尘烟气出口,含尘烟气入口与炉体的第一高温烟气出口连通,除尘烟气出口与多孔喷管换热器的高温烟气入口连通。
可选择地,除尘换热室可以采用耐高温材料(比如陶瓷或砖)建造,或者直接从地面向下挖出除尘空间并加装顶盖形成除尘换热室。
优选地,进一步包括用于向多孔喷管换热器内输送加压的冷空气的高压风机。比如,高压风机输送的冷空气压力设定为约至少2倍标准大气压,比如3倍标准大气压,使得在换热器中冷空气能够高速高压喷射实现快速换热,并且有利于混合器中的引射。
可选择地,炉体进一步包括设于侧壁且与燃烧室连通的第二高温烟气出口,具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉进一步包括混合器,混合器包括高温空气入口、回流烟气入口以及混合气出口,回流烟气入口通过管线与炉体的第二高温烟气出口连通,高温空气入口通过管线与多孔喷管换热器的高温空气出口连通,混合气出口通过管线与至少一个燃烧喷嘴连通以将高温空气与高温烟气的混合气输送至至少一个燃烧喷嘴作为助燃气体。
优选地,混合器还包括自高温空气入口向内部延伸的引射管,混合器利用引射管喷射高温空气形成的负压作用以将炉体内的部分高温烟气经由第二高温烟气出口引射至混合器内。
其中,单位时间内经由炉体的第一高温烟气出口流出的高温烟气与经由第二高温烟气出口流出的高温烟气的体积比设定为2~10:1, 比如4:1。
可选择地,炉体的另一端壁上间隔设置二个燃烧喷嘴。
可选择地,至少一个热交换筒体采用碳钢制造。
优选地,若将多孔喷管的管壁展平,则若干空气喷孔呈矩阵状设于整个管壁。
其中,炉体内的高温烟气温度约为1000~1200摄氏度,氧含量以体积百分比计约为2%~5%。进入多孔喷管换热器的烟气温度约为800~1000摄氏度,从多孔喷管换热器排出的烟气温度约为120~180摄氏度。从多孔喷管换热器进入混合器的空气温度约为600~800摄氏度。从混合器流出的混合气温度约为800~1000摄氏度,氧含量以体积百分比计约为10%~13%。
可选择地,至少一个热交换筒体在多孔喷管换热器的烟气通道中的布置方向与烟气通道中的烟气流动方向垂直。
另外,根据实际需要可以选择适当数量的热交换筒体以及连接通道,例如五个热交换筒体与四个连接通道,或者六个热交换筒体与五个连接通道,以达到期望的热交换效果。
可选择地,多孔喷管换热器可以只包括设于烟气通道中的一个热交换筒体,热交换筒体的首端的进气孔直接形成低温空气入口,热交换筒体的尾端直接形成高温空气出口。
可选择地,多孔喷管换热器可以包括设于烟气通道中的二个或二个以上的热交换筒体。
可选择地,本发明中采用的燃气可以为天然气、煤气或液化石油气。
本发明的有益效果是:(1)、由于外界空气经过高压风机的加压后才进入多孔喷管换热器,且当高压空气进入多孔喷管后,空气喷孔的孔隙小,因此高压空气会快速且以高压通过空气喷孔从多孔喷管向外喷出,并以高速和高压撞击到热交换筒体的筒体内壁,该高速和高压的撞击可以保证热交换筒体内部的低温空气与热交换筒体外部的高温烟气之间发生迅速有效的热交换,使得烟气温度迅速降低,例如在进入多孔喷管换热器的烟气温度为大约900摄氏度的情况下,在此 高温条件下仍然能够保证多孔喷管换热器的组件始终处于可以承受的工作温度范围内,特别是对于采用碳钢制造的多孔喷管换热器而言,可以满足碳钢材质的温度要求,延长多孔喷管换热器的寿命,降低了成本且保证了运行安全,而对于采用不锈钢材质制造的多孔喷管换热器而言,可以明显延长使用寿命,减少检修更换工作量;(2)、上述快速高效的换热过程可以明显改善熔铝炉高温烟气的余热利用效果,在短时间内完成高温烟气的余热利用,节约了能源,降低了对环境的污染;(3)、由于上述多孔喷管换热器的结构能够保证系统元件始终处于可承受的温度范围内,因此不需要在多套热交换系统或者蓄热系统之间切换,保证了燃烧过程的连续性,且简化了系统结构并降低了相应的部件布置难度;(4)、在多孔喷管换热器中进行热交换的烟气的流动方向与空气的流动方向互相垂直,利用烟气对空气通道的管壁的撞击过程,最大限度地提高了烟气和空气的热交换效果;(5)、将炉体排出的一部分烟气重新送入混合器,从而在混合器中与经过多孔喷管换热器预热后的空气充分混合,再次参与燃烧,上述过程降低了混合气的氧含量,使得炉体内能够实现低氧燃烧,燃烧后生成的氮氧化物含量低,降低了对环境的污染;(6)、在熔铝炉的炉体上间隔设置两个燃烧喷嘴,熔化速度快,节省能源;(7)、空气先进入处于烟气通道前段的第一热交换筒体换热,再进入处于烟气通道后段的第三热交换筒体换热,最后进入处于烟气通道中段的第二热交换筒体换热,这种布置方式,使得空气与烟气的换热过程更加高效合理,可充分降低排放至大气的烟气温度;(8)、部分高温烟气通过混合器中高压空气的引射作用负压吸入混合器,这能够清除炉压,从而避免熔铝炉内炉压增高带来的安全隐患。
附图说明
图1示出了本发明的具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉的构造示意图。
图2示出了本发明采用的多孔喷管换热器的构造示意图。
图3示出了本发明采用的混合器的构造示意图。
具体实施方式
请参照图1及图2,根据本发明的一种实施方式,具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉包括:炉体100、除尘换热室200、多孔喷管换热器300、高压风机400以及混合器500。
炉体100包括第一燃烧喷嘴120及第二燃烧喷嘴130,第一燃烧喷嘴120及第二燃烧喷嘴130间隔设置在炉体100的一端壁111上。炉体100的另一端壁112上设置有第一高温烟气出口140,炉体100的一侧壁113上设有第二高温烟气出口150。工作时,第一燃烧喷嘴120以及第二燃烧喷嘴130用于将燃料以及助燃气喷射至炉体100的炉膛内燃烧放热以熔化铝。
第一高温烟气出口140通过管道与除尘换热室200相连接用于将燃烧后产生的约70%(体积)烟气送入除尘换热室200。第二高温烟气出口150与混合器500通过管道相连接用于将燃烧后产生的约30%(体积)烟气送入混合器500。炉体100排出的烟气中氧含量以体积百分比计约为3%,烟气温度约为1000摄氏度。
除尘换热室200连接在炉体100与多孔喷管换热器300之间,除尘换热室200设于地下。除尘换热室200包括设置在顶部的含尘烟气入口210和除尘烟气出口220。来自炉体100的第一高温烟气出口140的高温烟气经由除尘换热室200的含尘烟气入口210进入除尘换热室200内部,在除尘换热室200中烟气沿大致U形的运动路径流动以除掉大量的烟尘,并且烟气获得一定程度的降温,烟气温度约降至900摄氏度,并经由除尘烟气出口220排出。
如图1和图2所示,多孔喷管换热器300连接在除尘换热室200的下游,其包括高温烟气入口310、低温烟气出口320、低温空气入口330、高温空气出口340、烟气通道350以及空气通道360。在多孔喷管换热器300内外界空气与高温烟气实现热交换,使得空气预热,烟气温度大幅降低。除尘换热室200的除尘烟气出口220通过管道与多孔喷管换热器300的高温烟气入口310相连接将大约900摄氏度的高温烟气送入高温烟气入口310,经过热交换的烟气经由多孔喷管换热器300的低温烟气出口320排放至烟囱,此时烟气温度降为大约150 摄氏度。
高压风机400通过管道与多孔喷管换热器300相连接,将外界空气进行加压并将加压后的空气送入多孔喷管换热器300,空气经过多孔喷管换热器300的预热并经过混合器500的混合后最终输送至第一燃烧喷嘴120及第二燃烧喷嘴130助燃。具体地,高压风机400经由管道与多孔喷管换热器300的低温空气入口330相连接,来自高压风机400的高压空气从低温空气入口330进入多孔喷管换热器300,进入低温空气入口330之前的空气温度大约为20摄氏度,而经过多孔喷管换热器300后空气温度上升为约700摄氏度,氧含量以体积百分比计约为21%。
图2所示为多孔喷管换热器300的具体结构图。该多孔喷管换热器300优选采用碳钢制造,也可以采用不锈钢制造。作为本发明的一种可选择实施方式,烟气通道350截面为圆形,在其它实施方式中,烟气通道350的截面可为正方形、长方形等其它形状。烟气通道350的一端形成高温烟气入口310,另一端形成低温烟气出口320,高温烟气在烟气通道350中流动。
下面详细介绍空气通道360的结构。在本发明的一个实施方式中,空气通道360包括沿着烟气流动方向依次设置于烟气通道350内的第一热交换筒体361、第二热交换筒体363、第三热交换筒体365。此外,还包括用于将第一热交换筒体361与第三热交换筒体365在空气流动方向上尾首相连的第一连接通道362,并且还包括用于将第三热交换筒体365与第二热交换筒体363在空气流动方向上尾首相连的第二连接通道364。在该非限制性实施方式中,进一步包括与第一热交换筒体361的首端连通的进气室367、以及与第二热交换筒体363的尾端连通的出气室368。其中,多孔喷管换热器300的低温空气入口330设置于进气室367的室壁上,多孔喷管换热器300的高温空气出口340设置于出气室368的室壁上。
如图2所示,空气通道360的第一热交换筒体361、第三热交换筒体365和第二热交换筒体363结构相似,均为直筒形且伸入到烟气通道350的管壁内部,而空气通道360的第一连接通道362和第二连接通道364均设置于烟气通道350的管壁外侧。第一热交换筒体361经由弯折的第一连接通道362而实现与第三热交换筒体365的连接, 第三热交换筒体353经由第二连接通道364而实现与第二热交换筒体363的连接。第一热交换筒体361、第二热交换筒体363、第三热交换筒体365中均包括一个多孔喷管366。
下面以第一热交换筒体361举例说明各热交换筒体的构造。第一热交换筒体361包括邻近进气室367的首端和邻近第一连接通道362的尾端,其中,尾端形成敞口端并且与第一连接通道362直接连通。其中,首端形成环形端壁且中央形成进气孔3661。多孔喷管366围绕进气孔3661在第一热交换筒体361内从首端向尾端延伸。多孔喷管366包括邻近第一连接通道362的封闭端3662以及在进气孔3661与封闭端3662之间延伸的管体3663。
管体3663上设置多个空气喷孔36631,使得来自低温空气入口330的高压冷空气从进气室367通过进气孔3661进入管体3663后,经由多个空气喷孔36631向着第一热交换筒体361的内壁高速喷射,从而与流经第一热交换筒体361外壁的高温烟气快速换热,空气被快速预热,第一热交换筒体361被及时冷却,这解决了第一热交换筒体361长时间工作可能被高温烟气烧坏的问题。因此,本发明的第一热交换筒体361可以采用耐热性比不锈钢差而价格较低的碳钢制作。
由于外界空气经过高压风机400的加压后才进入多孔喷管换热器300,因此当高压空气经过进气孔3661进入多孔喷管366后,高压空气会快速通过空气喷孔36631从多孔喷管366向外喷出,以高速和高压撞击到第一热交换筒体361的筒体内壁,该高速和高压的撞击可以保证第一热交换筒体361内部的低温空气与第一热交换筒体361外部的高温烟气之间发生迅速有效的热交换,从而明显改善熔铝炉高温烟气余热利用的热交换效果。当采用碳钢制造多孔喷管换热器300时,上述热交换过程能够迅速将高温烟气的温度降低,达到碳钢可以承受的温度范围,从而使得采用碳钢制造的多孔喷管换热器300具有可实施性;而对于采用不锈钢制造的多孔喷管换热器300而言,同样可以明显快速高效降低高温烟气的温度,从而显著延长不锈钢部件的寿命。
上述仅仅以第一热交换筒体361为例说明了多孔喷管366的结构与工作过程,在该非限制性实施方式中,第二热交换筒体363和第三热交换筒体365均具有与第一热交换筒体361相同的结构,它们的构 造和工作原理本文将不再赘述。
上述各部分互相连接组成一个弯折的空气通道360,即第一连接通道362连接在第一热交换筒体361与第三热交换筒体365之间,而第二连接通道364连接在第三热交换筒体365与第二热交换筒体363之间。空气从低温空气入口330进入多孔喷管换热器300后,顺次经过进气室367、第一热交换筒体361、第一连接通道362、第三热交换筒体365、第二连接通道364、第二热交换筒体363、出气室368,最后经由高温空气出口340进入到混合器500内部。
如图2所示,多孔喷管换热器300的烟气通道350中流动的烟气方向与所述空气通道360的多个热交换筒体中流动的空气方向互相垂直,使得烟气与空气能实现高效快速换热。
请参照图3,混合器500包括高温空气入口510、回流烟气入口520、混合气出口530以及叶轮540。炉体100的第二高温烟气出口150与混合器500的回流烟气入口520通过管道连接从而将部分高温烟气送入混合器500,而多孔喷管换热器300的高温空气出口340通过管道与混合器500的高温空气入口510通过管道连接从而将完成热交换的高温空气送入混合器500。高温烟气和高温空气在混合器500内的叶轮540的作用下充分混合,形成混合气,该混合气中氧含量以体积百分比计约为12%,温度约为900摄氏度。混合器500的混合气出口530通过管道与炉体100的第一燃烧喷嘴120及第二燃烧喷嘴130连接,从而将混合气输送至第一燃烧喷嘴120和第二燃烧喷嘴130燃烧放热。
其中,混合器500还包括自高温空气入口510向内部延伸的引射管550,来自多孔喷管换热器300的高温高压空气通过引射管550向混合器500内喷射,导致混合器500内部邻近高温空气入口510一侧形成负压,从而将炉体100内的部分高温烟气吸入混合器500混合成助燃混合气,助燃混合气进而回流至第一燃烧喷嘴120和第二燃烧喷嘴130与来自燃气管道(图未示)的燃气一起实现低氧燃烧。
尽管在此已详细描述本发明的优选实施方式,但要理解的是本发明并不局限于这里详细描述和示出的具体结构,在不偏离本发明的实质和范围的情况下可由本领域的技术人员实现其它的变型和 变体。例如,在烟气流动方向上于多孔喷管换热器的下游设置余热锅炉以进一步利用烟气余热加热热水,或者第一热交换筒体、第二热交换筒体、第三热交换筒体可以分别采用不同的材料制造,比如第一热交换筒体采用耐热性好的不锈钢,第二热交换筒体和第三热交换筒体采用价格便宜的碳钢。此外,系统各处的温度、压力等参数可以根据具体使用条件在本发明所公开的范围内适当选取。

Claims (10)

  1. 一种具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉,包括:
    炉体,所述炉体包括设于内部的熔铝池、设于内部且位于所述熔铝池上方的燃烧室、以及设于所述炉体的一端壁且与所述燃烧室连通的第一高温烟气出口;
    至少一个燃烧喷嘴,所述至少一个燃烧喷嘴设于所述炉体的另一端壁用于将燃料和助燃气体喷射至所述燃烧室内燃烧放热以将所述熔铝池内的铝熔化成铝液;
    烟气管路,所述烟气管路将所述炉体的所述第一高温烟气出口连接至烟囱;以及
    高温换热器,所述高温换热器设于所述烟气管路中以利用烟气余热预热空气;
    其特征在于:
    所述高温换热器为多孔喷管换热器,所述多孔喷管换热器包括烟气通道以及设于所述烟气通道中的至少一个热交换筒体,所述至少一个热交换筒体包括形成环形端壁且中央形成进气孔的首端、形成敞口端的尾端、以及围绕所述进气孔在所述至少一个热交换筒体内从所述首端向所述尾端延伸的多孔喷管,其中,冷空气经由所述进气孔进入所述多孔喷管换热器,预热后的高温空气经由所述尾端流出所述多孔喷管换热器,并且,所述多孔喷管包括邻近所述尾端的封闭端以及在所述进气孔与所述封闭端之间延伸的管体,所述管体的周壁上设置若干空气喷孔使得:经由所述进气孔进入所述至少一个热交换筒体内的冷空气通过所述若干空气喷孔喷射至所述至少一个热交换筒体的内壁以便与流经所述至少一个热交换筒体的外壁的高温烟气快速换热而使所述至少一个热交换筒体的温度保持低于其制造材料的标定耐热温度。
  2. 如权利要求1所述的具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉,其特征在于,所述多孔喷管换热器包括沿着烟气流动方向依次设于所述烟气通道中的第一热交换筒体、第二热交换筒体及第三热交换筒体,所述多孔喷管换热器还包括设于所述烟气通道外部的第一连接通道及第二连接通道,所述第一连接通道将所述第一热交换筒体与所述第三热交换筒体在空气流动方向上尾首相连,所述第二连接通道将所述 第三热交换筒体与所述第二热交换筒体在空气流动方向上尾首相连,其中,冷空气经由所述第一热交换筒体的进气孔进入所述第一热交换筒体并依次流经所述第一连接通道、所述第三热交换筒体、所述第二连接通道、以及所述第二热交换筒体,预热后的高温空气经由所述第二热交换筒体的尾端流出。
  3. 如权利要求2所述的具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉,其特征在于,所述多孔喷管换热器进一步包括设于所述烟气通道外部的与所述第一热交换筒体的首端连通的进气室以及设于所述烟气通道外部的与所述第二热交换筒体的尾端连通的出气室,于所述进气室的室壁上形成所述多孔喷管换热器的低温空气入口,于所述出气室的室壁上形成所述多孔喷管换热器的高温空气出口,所述多孔喷管换热器的所述烟气通道的邻近所述第一热交换筒体的一端形成高温烟气入口,所述多孔喷管换热器的所述烟气通道的邻近所述第三热交换筒体的一端形成低温烟气出口。
  4. 如权利要求3所述的具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉,其特征在于,进一步包括设于所述烟气管路中且在烟气流动方向上位于所述多孔喷管换热器上游的除尘换热室,所述除尘换热室包括间隔设于顶部的含尘烟气入口和除尘烟气出口,所述含尘烟气入口与所述炉体的所述第一高温烟气出口连通,所述除尘烟气出口与所述多孔喷管换热器的所述高温烟气入口连通。
  5. 如权利要求1~4中任一项所述的具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉,其特征在于,进一步包括用于向所述多孔喷管换热器内输送加压的冷空气的高压风机。
  6. 如权利要求1~4中任一项所述的具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉,其特征在于,所述炉体进一步包括设于侧壁且与所述燃烧室连通的第二高温烟气出口,所述具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉进一步包括混合器,所述混合器包括高温空气入口、回流烟气入口以及混合气出口,所述回流烟气入口通过管线与所述炉体的所述第二高温烟气出口连通,所述高温空气入口通过管线与所述 多孔喷管换热器的高温空气出口连通,所述混合气出口通过管线与所述至少一个燃烧喷嘴连通以将高温空气与高温烟气的混合气输送至所述至少一个燃烧喷嘴作为助燃气体。
  7. 如权利要求6所述的具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉,其特征在于,所述混合器还包括自所述高温空气入口向内部延伸的引射管,所述混合器利用所述引射管喷射高温空气形成的负压作用以将所述炉体内的部分高温烟气经由所述第二高温烟气出口引射至所述混合器内。
  8. 如权利要求7所述的具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉,其特征在于,单位时间内经由所述炉体的所述第一高温烟气出口流出的高温烟气与经由所述第二高温烟气出口流出的高温烟气的体积比为2~10:1。
  9. 如权利要求1~4中任一项所述的具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉,其特征在于,所述炉体的所述另一端壁上间隔设置二个燃烧喷嘴。
  10. 如权利要求1~4中任一项所述的具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉,其特征在于,所述至少一个热交换筒体采用碳钢制造。
PCT/CN2016/081929 2015-11-19 2016-05-12 具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉 WO2017084254A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/746,333 US10724797B2 (en) 2015-11-19 2016-05-12 Continuous low oxygen and high temperature combustion aluminum melting furnace with porous injection pipe heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510807710.XA CN105423753A (zh) 2015-11-19 2015-11-19 具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉
CN201510807710.X 2015-11-19

Publications (1)

Publication Number Publication Date
WO2017084254A1 true WO2017084254A1 (zh) 2017-05-26

Family

ID=55502139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081929 WO2017084254A1 (zh) 2015-11-19 2016-05-12 具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉

Country Status (3)

Country Link
US (1) US10724797B2 (zh)
CN (1) CN105423753A (zh)
WO (1) WO2017084254A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107677136A (zh) * 2017-09-18 2018-02-09 广东工业大学 陶瓷窑余热综合回收利用系统
CN113663479A (zh) * 2021-08-12 2021-11-19 保德峰业环保科技有限公司 一种湿法脱硫后烟气水分及污染物回收处理装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105423753A (zh) * 2015-11-19 2016-03-23 广东工业大学 具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉
CN107490002A (zh) * 2017-07-24 2017-12-19 北京中能天诚节能环保技术有限公司 多功能节能燃烧系统
CN107824298B (zh) * 2017-10-19 2019-05-10 南通东港化工有限公司 一种固体化工产品粉碎溶解装置
CN109724406A (zh) * 2019-01-29 2019-05-07 四会市国耀铝业有限公司 一种铝熔炼炉分级贫氧燃烧装置
CN110343869B (zh) * 2019-08-09 2023-05-26 新乡市华瑞电源材料有限公司 连通式电解熔铅锅及其使用方法
CN113945096A (zh) * 2020-07-16 2022-01-18 中国科学院广州能源研究所 一种新型组合式烟气余热回收系统
CN113899220B (zh) * 2021-10-21 2023-05-19 榆林学院 镁渣余热利用系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257951A (ja) * 1993-03-05 1994-09-16 Toyota Motor Corp アルミ溶解保持炉
CN102252340A (zh) * 2011-05-31 2011-11-23 杭州美宝炉窑工程有限公司 换热管进出口同温差喷流与插入件组合式空气预热器
CN202074556U (zh) * 2011-05-31 2011-12-14 杭州美宝炉窑工程有限公司 换热管进出口同温差喷流与插入件组合式空气预热器
CN104315866A (zh) * 2014-09-29 2015-01-28 广东工业大学 高效蓄热式熔铝炉
CN105222585A (zh) * 2015-10-12 2016-01-06 广东工业大学 小型烟气助燃节能熔铝炉
CN105423753A (zh) * 2015-11-19 2016-03-23 广东工业大学 具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉
CN205279729U (zh) * 2015-11-19 2016-06-01 广东工业大学 具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2149260B1 (zh) * 1971-08-09 1974-03-29 Chausson Usines Sa
US4610390A (en) * 1985-01-31 1986-09-09 Kanto Yakin Kogyo Kabushiki Kaisha Brazing method of aluminum
US5021087A (en) * 1990-08-13 1991-06-04 Morton Douglas H Process and apparatus for treating molten aluminum to add hydrogen gas
US20090136884A1 (en) * 2006-09-18 2009-05-28 Jepson Stewart C Direct-Fired Furnace Utilizing An Inert Gas To Protect Products Being Thermally Treated In The Furnace
CN203011137U (zh) * 2012-12-12 2013-06-19 中国科学院广州能源研究所 一种铝合金熔炼炉系统
CN104236331A (zh) * 2013-06-06 2014-12-24 浙江德谦节能科技有限公司 列管式喷流翅片空气换热器
CN103398591B (zh) * 2013-08-18 2015-07-01 广东工业大学 熔铝炉余热利用系统
CN104501203A (zh) * 2014-12-19 2015-04-08 深圳市山水乐环保科技有限公司 缺氧富二氧化碳气体实现低氮燃烧的气体混合比例控制的设备及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257951A (ja) * 1993-03-05 1994-09-16 Toyota Motor Corp アルミ溶解保持炉
CN102252340A (zh) * 2011-05-31 2011-11-23 杭州美宝炉窑工程有限公司 换热管进出口同温差喷流与插入件组合式空气预热器
CN202074556U (zh) * 2011-05-31 2011-12-14 杭州美宝炉窑工程有限公司 换热管进出口同温差喷流与插入件组合式空气预热器
CN104315866A (zh) * 2014-09-29 2015-01-28 广东工业大学 高效蓄热式熔铝炉
CN105222585A (zh) * 2015-10-12 2016-01-06 广东工业大学 小型烟气助燃节能熔铝炉
CN105423753A (zh) * 2015-11-19 2016-03-23 广东工业大学 具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉
CN205279729U (zh) * 2015-11-19 2016-06-01 广东工业大学 具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107677136A (zh) * 2017-09-18 2018-02-09 广东工业大学 陶瓷窑余热综合回收利用系统
CN107677136B (zh) * 2017-09-18 2024-04-02 广东工业大学 陶瓷窑余热综合回收利用系统
CN113663479A (zh) * 2021-08-12 2021-11-19 保德峰业环保科技有限公司 一种湿法脱硫后烟气水分及污染物回收处理装置
CN113663479B (zh) * 2021-08-12 2023-11-24 保德峰业环保科技有限公司 一种湿法脱硫后烟气水分及污染物回收处理装置

Also Published As

Publication number Publication date
CN105423753A (zh) 2016-03-23
US10724797B2 (en) 2020-07-28
US20180224208A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2017084254A1 (zh) 具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉
CN202581320U (zh) 一种管式自身预热式燃气烧嘴
CN202012913U (zh) 一种新型烟气自回流贫氧燃烧器
CN101392957B (zh) 全烧高炉煤气高风温热风炉
CN103047654A (zh) 空气煤气双蓄热燃烧装置
CN107477573A (zh) 一种用于工业煤粉锅炉的在燃烧器中心喷氨的燃烧装置
CN103727653A (zh) 负压引射式全预混分段燃烧供热装置
CN102607026A (zh) 一种管式自身预热式燃气烧嘴
CN207716416U (zh) 空气/燃气双预热的连续式自身蓄热无焰燃烧器
CN103353113A (zh) 具有涡轮防回火预混喷嘴的加热炉
CN202501472U (zh) 一种扁平火焰低NOx燃气燃烧器
CN103615905B (zh) 连续蓄热式工业炉余热利用系统
CN101639219B (zh) 无焰燃烧蓄热式高速烧嘴
CN201652331U (zh) 高温工业炉蓄热式燃烧系统
CN103206708B (zh) 一种蓄热式烧嘴
CN107906516A (zh) 一种空气/燃气双预热的连续式自身蓄热无焰燃烧器
CN111006500B (zh) 一种生产石灰的工业竖窑
CN202166054U (zh) 多氧燃烧器
CN203215674U (zh) 带内置热风管的喷嘴正交喷射混合蓄热体中燃烧的燃烧器
CN212157155U (zh) 一种低排放蓄热式烧嘴
CN205279729U (zh) 具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉
CN201521961U (zh) 无焰燃烧蓄热式高速烧嘴
CN203963993U (zh) 连续蓄热式弥散火焰燃烧设备
CN209706054U (zh) 一种高热值燃料同心射流空气单蓄热烧嘴
CN201177270Y (zh) 预热式燃烧室

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15746333

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16865436

Country of ref document: EP

Kind code of ref document: A1