[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017084107A1 - 气流量计算方法以及发热蒸发装置及电子烟 - Google Patents

气流量计算方法以及发热蒸发装置及电子烟 Download PDF

Info

Publication number
WO2017084107A1
WO2017084107A1 PCT/CN2015/095235 CN2015095235W WO2017084107A1 WO 2017084107 A1 WO2017084107 A1 WO 2017084107A1 CN 2015095235 W CN2015095235 W CN 2015095235W WO 2017084107 A1 WO2017084107 A1 WO 2017084107A1
Authority
WO
WIPO (PCT)
Prior art keywords
airflow
clock signal
evaporation device
information
heat
Prior art date
Application number
PCT/CN2015/095235
Other languages
English (en)
French (fr)
Inventor
徐漢明
Original Assignee
卓智微電子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卓智微電子有限公司 filed Critical 卓智微電子有限公司
Priority to PCT/CN2015/095235 priority Critical patent/WO2017084107A1/zh
Publication of WO2017084107A1 publication Critical patent/WO2017084107A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors

Definitions

  • the invention belongs to the field of a heat-generating evaporation device, and particularly relates to a gas flow calculation method for a heat-generating evaporation device and a heat-generating evaporation device and an electronic cigarette having a gas flow calculation function.
  • the heat evaporation device has continuously entered people's lives, such as electronic cigarettes, heating type cold circulation systems, steam hair irons for hair salons, and the like.
  • people's lives such as electronic cigarettes, heating type cold circulation systems, steam hair irons for hair salons, and the like.
  • the process of using these superheated evaporation devices one wants to know the flow of air flowing out to judge the performance and use of the device.
  • e-cigarettes are battery-driven products that evaporate liquids that primarily contain nicotine, propylene glycol, glycerol, water, and flavorings.
  • nicotine is delivered to the upper and lower respiratory tracts and does not involve any burning. It has been well recognized that smoking is the main cause of many diseases, and tobacco hazard reduction strategies and products have emerged, with the main purpose of reducing harmful substances to humans. In order to effectively control the flow of harmful substances in the electronic cigarette user, the electronic cigarette urgently needs to increase the air flow inquiry function.
  • the present invention provides a gas flow calculation method for a heat generation evaporation device, a heat generation evaporation device having a gas flow calculation function, and an electronic cigarette having a gas flow calculation function.
  • a gas flow calculation method for a heat generation evaporation device comprising the steps of:
  • the airflow sensing clock signal Determining whether the airflow sensing clock signal is a valid signal, if the airflow sensing clock signal is determined to be invalid, ending the current calculation, the heat generating evaporation device maintains/returns to a sleep state, and if the airflow sensing clock signal is determined to be valid, Driving the heat generating evaporation device according to the airflow sensing clock signal, And record the current airflow information.
  • the total volume of the gas flowing through the heat generating evaporation device during the period of the airflow sensing clock signal is calculated, and the total gas metering calculated by the current calculation is recorded.
  • the method further includes the following steps:
  • an airflow sensing reference signal of the heat generating evaporation device wherein the airflow sensing reference signal has a period of T O and a frequency of f O ;
  • the number of airflow induced oscillation clocks in which the heat generating evaporation device is in a sleep state is recorded as N O .
  • the determining whether the airflow information is valid information includes:
  • the number of airflow induced oscillating clocks N O in the sleep state of the heat generating evaporation device and the number of airflow induced oscillating clocks N C of each airflow sensing reference signal period T 0 are converted into data changes in the form of binary numbers according to the following formula D[6:0 ]:
  • the calculating the total volume of gas flowing through the heat generating evaporation device during the current airflow information period is specifically:
  • the A is the effective cross-sectional area of the heat-generating evaporation device, and the K v is a constant.
  • a heat generating evaporation device having a gas flow calculation function comprising:
  • An airflow sensing device for acquiring airflow information flowing through the heat generating evaporation device
  • An induction oscillator for generating an airflow sensing clock signal according to the airflow information
  • a micro control unit configured to determine whether the airflow sensing clock signal is a valid signal, if the airflow sensing clock signal is determined to be invalid, the current calculation is ended, and the heat generating evaporation device maintains/returns to a sleep state, if the airflow sensing clock
  • the electronic cigarette is driven according to the airflow sensing clock signal, and the total volume of gas flowing through the heat generating evaporation device during the current airflow sensing clock signal is calculated, and the current airflow information and the calculated overall gas metering are recorded.
  • the airflow sensing device acquires initial airflow information flowing through the thermal evaporation device when the electronic cigarette is in a sleep state, and the induction oscillator generates an airflow sensing reference signal according to the initial airflow information, and the cycle of the airflow sensing reference signal For T O , the frequency is f O , and the micro control unit calculates the number N of airflow induced oscillation clocks according to the following formula:
  • the number of airflow induced oscillation clocks in which the heat generating evaporation device is in a sleep state is recorded as N O .
  • the airflow sensing device is a capacitive airflow sensing device, and the capacitance of the airflow sensing device changes capacitance according to a flow velocity of the air flowing through the thermal evaporation device, and the induction oscillator charges a capacitance of the airflow sensor, the airflow sensing clock
  • T the period of the signal
  • f the frequency of the airflow sensing clock
  • C is the airflow sensor capacitor
  • I is the induction oscillator capacitor charging airflow sensor current
  • V O is the capacitor voltage threshold the airflow sensor, when the voltage rises to the capacitor voltage threshold value V O, the airflow sensor Discharge.
  • the micro control unit calculates a formula according to the number of airflow induced oscillation clocks N, calculates the number of airflow induced oscillation clocks N C of each airflow sensing clock signal period T, and sets the number of airflow induced oscillation clocks when the heat generating evaporation device is in a sleep state.
  • N O and the number of airflow induced oscillating clocks N C of each airflow sensing reference signal period T 0 are converted into binary digital data changes D[6:0] according to the following formula:
  • the micro control unit calculates a total volume V of gas flowing through the electronic cigarette during the calculation of the airflow information period according to the following formula, and records the total volume amount V
  • the A is the effective cross-sectional area of the heat-generating evaporation device, and the Kv is a constant.
  • the heat generating evaporation device further includes a display unit for displaying an operating state of the heat generating evaporation device and a total volume of gas flowing through the electronic cigarette during a period in which the airflow sensing clock signal calculated/stored by the micro control unit periodically flows.
  • An electronic cigarette with a gas flow calculation function comprising:
  • An airflow sensing device for acquiring airflow information flowing through the electronic cigarette
  • An induction oscillator for generating an airflow sensing clock signal according to the airflow information
  • a micro control unit configured to determine whether the airflow sensing clock signal is a valid signal, and if the airflow sensing clock signal is determined to be invalid, ending the current calculation, the electronic cigarette is maintained/returned to a sleep state, and if the airflow sensing clock signal If it is determined to be valid, the electronic cigarette operation is driven according to the airflow sensing clock signal, and the total volume of gas flowing through the electronic cigarette during the current airflow sensing clock signal is calculated, and the current airflow information and the calculated overall gas metering are recorded.
  • the heat generating evaporation device having the gas flow calculating function of the present invention is capable of calculating and recording the total volume of gas per evaporation, the user can be allowed to query the airflow information and acquire other data by the airflow information.
  • the gas flow calculation method for the electronic cigarette of the present invention and the electronic cigarette having the air flow calculation function can calculate and record the total volume of the gas that the smoker inhales each time from the electronic cigarette, according to the proportion of the harmful substances in the overall measurement of the gas, Allow smokers to query information such as:
  • This information is usually recorded as:
  • This information primarily helps smokers estimate the management of hazardous substances in the human body. Further, the smoker can adjust the harmful substances to the human body accordingly.
  • Fig. 1 is a flow chart showing a gas flow calculating method for a heat generating evaporation device of the present invention.
  • FIG. 2 is a schematic structural view of a heat-generating evaporation device having a gas flow calculation function according to an embodiment of the present invention.
  • the heat-generating evaporation device is an electronic cigarette.
  • Fig. 3 shows an embodiment of the front end processing device 120 of the heat generating evaporation device of the present invention having a gas flow calculation function.
  • the gas flow calculating method for a heat generating evaporation device of the present invention includes the steps of:
  • a heat-generating evaporation device according to an embodiment of the present invention is shown, which is an electronic cigarette 100.
  • the electronic cigarette 110 employs a gas flow calculation method for an electronic cigarette disclosed at the same time as the present invention.
  • the electronic cigarette 100 of the present embodiment includes an airflow sensing device 110, a front end processing device 120, and a micro processing unit 130.
  • the airflow information is obtained by induction by the airflow sensing device 110 disposed at the front end of the electronic cigarette 100.
  • the airflow sensing clock signal is generated by the front end processing device 120.
  • the front end processing device 120 includes an inductive oscillator (not shown).
  • the airflow sensing device 110 is a capacitive airflow sensing device, and the capacitance of the airflow sensing device 110 varies capacitance according to the flow velocity of the air flowing through the electronic cigarette.
  • the inductive oscillator of the front end processing device 120 charges the capacitance of the air flow sensor, the air current sensing clock signal has a period of T, a frequency of f and satisfies the following formula:
  • the method further includes the step S0: calculating the number of the airflow induced oscillation clocks in which the electronic cigarette is in the sleep state is NO.
  • the step S0 specifically includes:
  • the period TO of the airflow sensing reference signal is acquired when the electronic cigarette 100 does not start working, and is selectively/mandatoryly updated after the electronic cigarette 100 completes each heating operation.
  • step S3 it is determined whether the airflow information is valid information, including:
  • S33 Determine whether the data change D[6:0] is greater than an effective threshold, and if it is greater than the effective threshold, determine that the airflow information is valid information.
  • step S3 the total volume of the gas flowing through the electronic cigarette during the current airflow sensing clock signal is calculated as follows:
  • the A is the effective cross-sectional area of the electronic cigarette, and the Kv is a constant.
  • the airflow sensor in the electronic cigarette of the present invention also receives the inhaled airflow of the smoker, generates an inductive signal according to the inhalation demand of the smoker, and controls the electronic cigarette to evaporate more/less liquid/liquid.
  • micro-processing unit 130 in the electronic cigarette of the present invention can estimate the amount of harmful substances inhaled by the smoker by the e-cigarette evaporation power, the total volume of the gas or the inhalation time.
  • the micro-processing unit 130 of the evaporating gas device can estimate the dose inhaled by the user by the evaporation power, the total volume of the gas or the inhalation time.
  • the embodiment of the front-end processing device 120 of the present invention includes an on-power module 20, a data controller 30, and a data controller 30, respectively, for powering the data controller 30 and/or receiving data controllers.
  • the sensing module 50 and the oscillator 60 are connected to each other.
  • the sensing module 50 includes an airflow sensing module 52 and an inductive arithmetic unit 54 connected to each other, and the sensing arithmetic unit 54 is connected to the oscillator 60.
  • the sensing arithmetic unit 54 After the airflow sensing module 52 and the sensing arithmetic unit 54 acquire the airflow information flowing through the electronic cigarette 100, the sensing arithmetic unit 54 generates an airflow sensing clock signal according to the airflow information, and refers to the oscillator 60.
  • the clock signal calculates a data change D[6:0] and feeds back the data change D[6:0] to the data controller 30.
  • the data controller 30 determines whether the data change D[6:0] is greater than the effective threshold. If the data is greater than the effective threshold, the airflow information is determined to be valid information. If the airflow information is determined to be invalid, the current calculation is terminated.
  • the electronic cigarette remains/returns to the sleep state.
  • the data change D[6:0] is fed back to the micro processing unit 130, and the micro processing unit 130 changes D[6:0] according to the data.
  • the heating drive module 40 is driven to operate, and the total volume of gas flowing through the electronic cigarette during the current data change D[6:0] period is calculated, and the current airflow information and the calculated total volume of the gas are recorded.
  • the front-end processing device 120 of the embodiment further includes a connected reference voltage module 80 and a voltage stabilizing module 90.
  • the reference voltage module 80 is connected to the data controller 30 and the charger 70 to provide a reference for the voltage value of the electronic cigarette control circuit 100.
  • the voltage regulator module 90 includes a low dropout linear regulator 92 and a low voltage locker 94 that are connected to each other and are connected to the reference voltage module 80.
  • the low dropout linear regulator 92 supplies a regulated current to the external circuit under the control of the data controller 30.
  • the low voltage lock 94 is also coupled to the oscillator 60, the inductive arithmetic unit 54, and the airflow sensing module 52 to achieve low voltage detection and power down lock protection for the front end processing device 120.
  • the gas flow calculation method for the electronic cigarette of the present invention and the electronic cigarette 100 having the air flow calculation function can calculate and record the total volume of gas inhaled by the smoker each time from the electronic cigarette, according to the proportion of the harmful substance in the overall measurement of the gas, Smokers can be allowed to query information such as:
  • This information is usually recorded as:
  • the heat generating evaporation device referred to in the present invention can also It is a device for evaporating gas for medical use, a heating type cold circulation system, a steam perm for hair salons, and the like, which utilizes a device for evaporating gas by heating.

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

一种用于发热蒸发装置的气流量计算方法,具有气流量计算功能的发热蒸发装置以及具有气流量计算功能的电子烟(100)。发热蒸发装置计算并记录每次蒸发的气体总体积量,可以允许使用者查询气流信息并通过气流信息获取、进一步地计算其他数据。电子烟(100)能够计算并记录吸烟者每次从电子烟(100)吸入的气体总体积量,根据气体总体计量中有害物质比例,可以允许吸烟者查询信息并对人体的有害物质管理。

Description

气流量计算方法以及发热蒸发装置及电子烟 技术领域
本发明属于发热蒸发装置领域,尤其涉及一种用于发热蒸发装置的气流量计算方法以及具有气流量计算功能的发热蒸发装置及电子烟。
背景技术
近年来,发热蒸发装置不断地进入人们的生活,比如电子烟、发热式冷循环系统、发廊用的蒸汽烫发器等等。在使用这些发热蒸发装置过程中,人们想要了解其流出的气流,以判断装置的性能以及使用情况。
比如电子烟,电子烟是蒸发主要含尼古丁、丙二醇、丙三醇、水和调味料的液体的电池驱动产品。通过使用电子烟,尼古丁被输送到上、下呼吸道,并且不涉及任何燃烧。人们已经深刻认识到吸烟是许多疾病的主要诱因,出现了烟草危害减少策略和产品,主要目的是为了减少对人的有害物质。为了有效控制电子烟使用者的有害物质气流量,电子烟急需增加气流量查询功能。
发明内容
本发明提供一种用于发热蒸发装置的气流量计算方法,具有气流量计算功能的发热蒸发装置以及具有气流量计算功能的电子烟。
一种用于发热蒸发装置的气流量计算方法,所述气流量计算方法包括步骤:
获取流过发热蒸发装置的气流信息;
根据气流信息生成气流感应时钟信号;
判断所述气流感应时钟信号是否为有效信号,若所述气流感应时钟信号判断为无效,则结束本次计算,发热蒸发装置保持/返回睡眠状态,若所述气流感应时钟信号判断为有效,则根据所述气流感应时钟信号驱动发热蒸发装置工作, 并且记录本次气流信息。
进一步地,根据气流信息,计算气流感应时钟信号周期流过发热蒸发装置的气体总体积量,及记录本次计算得到的气体总体计量。
进一步地,在步骤判断所述气流感应时钟信号是否为有效信号前,还包括步骤:
获取发热蒸发装置的气流感应参考信号,所述气流感应参考信号的周期为TO,频率为fO
根据以下公式计算气流感应震荡时钟数N:
Figure PCTCN2015095235-appb-000001
将发热蒸发装置处于睡眠状态下的气流感应震荡时钟数记为NO
进一步地,所述气流感应时钟信号的周期为T,频率为f,所述判断所述气流信息是否为有效信息,包括:
根据气流感应震荡时钟数N计算公式,计算每一个气流感应时钟信号周期T的气流感应震荡时钟数NC
将发热蒸发装置处于睡眠状态下的气流感应震荡时钟数NO以及每一个气流感应参考信号周期T0的气流感应震荡时钟数NC根据以下公式换算为二进制数字形式的数据变化D[6:0]:
Figure PCTCN2015095235-appb-000002
判断所述数据变化D[6:0]是否大于有效阈值,若大于有效阈值,则判断所述气流信息为有效信息。
进一步地,所述计算本次气流信息周期流过发热蒸发装置的气体总体积量具体为:
根据以下公式计算气体总体积量V
Figure PCTCN2015095235-appb-000003
所述A是发热蒸发装置的有效截面面积,所述Kv是常数。
一种具有气流量计算功能的发热蒸发装置,包括:
气流感应装置,用于获取流过发热蒸发装置的气流信息;
感应振荡器,用于根据气流信息生成气流感应时钟信号;
微控制单元,用于判断所述气流感应时钟信号是否为有效信号,若所述气流感应时钟信号判断为无效,则结束本次计算,发热蒸发装置保持/返回睡眠状态,若所述气流感应时钟信号判断为有效,则根据所述气流感应时钟信号驱动电子烟工作,计算本次气流感应时钟信号周期流过发热蒸发装置的气体总体积量,并且记录本次气流信息及计算得到的气体总体计量。
进一步地,所述气流感应装置获取电子烟处于睡眠状态时流过发热蒸发装置的初始气流信息,所述感应振荡器根据所述初始气流信息生成气流感应参考信号,所述气流感应参考信号的周期为TO,频率为fO,所述微控制单元根据以下公式计算气流感应震荡时钟数N:
Figure PCTCN2015095235-appb-000004
将发热蒸发装置处于睡眠状态下的气流感应震荡时钟数记为NO
进一步地,所述气流感应装置为电容性气流感应装置,气流感应装置的电容根据流过发热蒸发装置的气流流速变化电容,所述感应振荡器为气流感应器的电容充电,所述气流感应时钟信号的周期为T,频率为f且满足以下公式:
Figure PCTCN2015095235-appb-000005
C为气流感应器的电容,I为感应振荡器为气流感应器的电容充电的电流,VO是气流感应器的电容电压阈值,当电压上升到电容电压阈值VO后,所述气流感应器放电。
进一步地,所述微控制单元根据气流感应震荡时钟数N计算公式,计算每一个气流感应时钟信号周期T的气流感应震荡时钟数NC,将发热蒸发装置处于睡眠状态下的气流感应震荡时钟数NO以及每一个气流感应参考信号周期T0的气流感应震荡时钟数NC根据以下公式换算为二进制数字形式的数据变化D[6:0]:
Figure PCTCN2015095235-appb-000006
判断所述数据变化D[6:0]是否大于有效阈值,若大于有效阈值,则判断所述气流信息为有效信息。
进一步地,所述微控制单元根据以下公式计算计算气流信息周期流过电子烟的气体总体积量V,并且记录所述总体积量V
Figure PCTCN2015095235-appb-000007
所述A是发热蒸发装置的有效截面面积,所述Kv是常数。
进一步地,所述发热蒸发装置还包括显示单元,所述显示单元用于显示发热蒸发装置的工作状态,以及微控制单元计算/存储的气流感应时钟信号周期流过电子烟的气体总体积量。
一种具有气流量计算功能的电子烟,包括:
气流感应装置,用于获取流过电子烟的气流信息;
感应振荡器,用于根据气流信息生成气流感应时钟信号;
微控制单元,用于判断所述气流感应时钟信号是否为有效信号,若所述气流感应时钟信号判断为无效,则结束本次计算,电子烟保持/返回睡眠状态,若所述气流感应时钟信号判断为有效,则根据所述气流感应时钟信号驱动电子烟工作,计算本次气流感应时钟信号周期流过电子烟的气体总体积量,并且记录本次气流信息及计算得到的气体总体计量。
由于本发明的具有气流量计算功能的发热蒸发装置能够计算并记录每次蒸发的气体总体积量,可以允许使用者查询气流信息并通过气流信息获取、进一步地计算其他数据。
由于本发明的用于电子烟的气流量计算方法以及具有气流量计算功能的电子烟能够计算并记录吸烟者每次从电子烟吸入的气体总体积量,根据气体总体计量中有害物质比例,可以允许吸烟者查询信息如:
1、每天/星期/月/年抽吸入多少次?
2、每天/星期/月/年吸入蒸汽多长时间?
3、每一个吸入的持续时间多长,在多大的加热功率下?
这些信息通常记录为:
1、每天/星期/月/年的吸入次数。
2、每天/星期/月/年的吸入时间。
3、每次吸入的持续时间及加热功率。
这些信息主要帮助吸烟者估计对人体的有害物质管理。进一步地,吸烟者可以据此调节对人体的有害物质。
附图说明
图1示出了本发明的用于发热蒸发装置的气流量计算方法的流程示意图。
图2示出了本发明一个实施例的具有气流量计算功能的发热蒸发装置的结构示意图,在本实施例中,所述发热蒸发装置为电子烟。
图3示出了本发明的具有气流量计算功能的发热蒸发装置的前端处理装置120的一个实施例。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
如图1所示,本发明的用于发热蒸发装置的气流量计算方法,所述气流量计算方法包括步骤:
S1:获取流过发热蒸发装置的气流信息;
具体地,同时参阅图2,示出了本发明一个实施例的发热蒸发装置,所述发热蒸发装置为电子烟100。电子烟110采用了本发明同时揭露的用于电子烟的气流量计算方法。本实施例的电子烟100包括气流感应装置110,前端处理装置120以及微处理单元130。所述气流信息通过设置于电子烟100前端的气流感应装置110感应获得。
S2:根据气流信息生成气流感应时钟信号;
具体地,所述气流感应时钟信号由前端处理装置120生成。在本实施例中,所述前端处理装置120包含感应振荡器(图未示)。所述气流感应装置110为电容性气流感应装置,气流感应装置110的电容根据流过电子烟的气流流速变化电容。所述前端处理装置120的感应振荡器为气流感应器的电容充电,所述气流感应时钟信号的周期为T,频率为f且满足以下公式:
Figure PCTCN2015095235-appb-000008
S3:判断所述气流感应时钟信号是否为有效信号,若所述气流感应时钟信号判断为无效,则结束本次计算,电子烟保持/返回睡眠状态,若所述气流感应时钟信号判断为有效,则根据所述气流感应时钟信驱动电子烟工作,计算本次气流感应时钟信号周期流过电子烟的气体总体积量,并且记录本次气流信息及计算得到的气体总体计量。
具体地,在所述步骤S3之前,也即是在步骤S1或者步骤S2或者步骤S3之前,还包括步骤S0:计算电子烟处于睡眠状态下的气流感应震荡时钟数记为NO。所述步骤S0具体包含:
S01:获取电子烟的气流感应参考信号,所述气流感应参考信号的周期为TO,频率为fO;
S02:根据以下公式计算气流感应震荡时钟数N:
Figure PCTCN2015095235-appb-000009
S03:将电子烟处于睡眠状态下的气流感应震荡时钟数记为NO。
可以理解地,所述气流感应参考信号的周期TO在电子烟100没有开始工作时获取,并且会在电子烟100完成每一次加热工作后选择性/强制性地更新。
步骤S3中判断所述气流信息是否为有效信息,包括:
S31:根据下列气流感应震荡时钟数N计算公式,计算每一个气流感应时钟信号周期T的气流感应震荡时钟数NC
S32:将电子烟处于睡眠状态下的气流感应震荡时钟数NO以及每一个气流感应参考信号周期T0的气流感应震荡时钟数NC根据以下公式换算为二进制数字形式的数据变化D[6:0]:
Figure PCTCN2015095235-appb-000010
S33:判断所述数据变化D[6:0]是否大于有效阈值,若大于有效阈值,则判断所述气流信息为有效信息。
所述步骤S3中计算本次气流感应时钟信号周期流过电子烟的气体总体积量具体为:
根据以下公式计算气体总体积量V
Figure PCTCN2015095235-appb-000011
所述A是电子烟的有效截面面积,所述Kv是常数。
更进一步地,本发明电子烟中的气流感应器还会接受吸烟者的吸入气流,根据吸烟者的吸入需求生成感应信号,进而控制电子烟蒸发更多/更少的液体/烟液。
更进一步地,本发明电子烟中的微处理单元130能以电子烟蒸发功率,气体总体积量或吸入时间估计吸烟者吸入的有害物质数量。
更进一步地,在医疗用途发热蒸发气体的装置,蒸发气体装置的微处理单元130能以蒸发功率,气体总体积量或吸入时间估计使用者吸入的剂量。
如图3所示,本发明前端处理装置120的实施例内含开启上电模块20、数据控制器30,以及分别与数据控制器30连接,为数据控制器30供电或/及受数据控制器30控制的加热驱动模块40、感应模块50、振荡器60及充电器70。所述感应模块50与所述振荡器60相互连接。具体地,所述感应模块50包括相互连接的气流感应模块52与感应算数单元54,并且感应算术单元54连接所述振荡器60。气流感应模块52与感应算数单元54获取流过电子烟100的气流信息后,感应算数单元54根据气流信息生成气流感应时钟信号,并且參照振荡器60 的时钟信号计算数据变化D[6:0],并将所述数据变化D[6:0]反馈至数据控制器30。数据控制器30判断所述数据变化D[6:0]是否大于有效阈值,若大于有效阈值,则判断所述气流信息为有效信息,若所述气流信息判断为无效,则结束本次计算,电子烟保持/返回睡眠状态,若所述气流信息判断为有效,则将数据变化D[6:0]反馈至微处理单元130,微处理单元130将根据所述数据变化D[6:0]驱动加热驱动模块40工作,并且计算本次数据变化D[6:0]周期内流过电子烟的气体总体积量,及记录本次气流信息及计算得到的气体总体积量。
本实施例的前端处理装置120还内含相连的参考电压模组80以及稳压模组90。参考电压模组80连接所述数据控制器30及充电器70,为电子烟控制电路100提供电压值高低参考。稳压模组90包括相互连接且均与参考电压模组80连接的低压差线性稳压器92以及低压锁定器94。低压差线性稳压器92在数据控制器30的控制下供应稳压电流给外部电路。低压锁定器94还与振荡器60、感应算数单元54及气流感应模块52连接,实现对前端处理装置120的低电压检测及断电锁定保护。
由于本发明的用于电子烟的气流量计算方法以及具有气流量计算功能的电子烟100能够计算并记录吸烟者每次从电子烟吸入的气体总体积量,根据气体总体计量中有害物质比例,可以允许吸烟者查询信息如:
1、每天/星期/月/年抽吸入多少次?
2、每天/星期/月/年吸入蒸汽多长时间?
3、每一个吸入的持续时间多长,在多大的加热功率下?
这些信息通常记录为:
1、每天/星期/月/年的吸入次数。
2、每天/星期/月/年的吸入时间。
3、每次吸入的持续时间及加热功率。
这些信息主要帮助吸烟者估计对人体的有害物质管理。进一步地,吸烟者可以据此调节对人体的有害物质。可以理解地,本发明所指的发热蒸发装置还可以 是医疗用途发热蒸发气体的装置、发热式冷循环系统、发廊用的蒸汽烫发器等等利用发热蒸发气体的装置。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (12)

  1. 一种用于发热蒸发装置的气流量计算方法,其特征在于,所述气流量计算方法包括步骤:
    获取流过发热蒸发装置的气流信息;
    根据气流信息生成气流感应时钟信号;
    判断所述气流感应时钟信号是否为有效信号,若所述气流感应时钟信号判断为无效,则结束本次计算,发热蒸发装置保持/返回睡眠状态,若所述气流感应时钟信号判断为有效,则根据所述气流感应时钟信号驱动发热蒸发装置工作,并且记录本次气流信息。
  2. 如权利要求1所述的气流量计算方法,其特征在于,根据气流信息,计算气流感应时钟信号周期流过发热蒸发装置的气体总体积量,及记录本次计算得到的气体总体计量。
  3. 如权利要求1所述的气流量计算方法,其特征在于,在步骤判断所述气流感应时钟信号是否为有效信号前,还包括步骤:
    获取发热蒸发装置的气流感应参考信号,所述气流感应参考信号的周期为TO,频率为fO
    根据以下公式计算气流感应震荡时钟数N:
    Figure PCTCN2015095235-appb-100001
    将发热蒸发装置处于睡眠状态下的气流感应震荡时钟数记为NO
  4. 如权利要求3所述的气流量计算方法,其特征在于,所述气流感应时钟信号的周期为T,频率为f,所述判断所述气流信息是否为有效信息,包括:
    根据气流感应震荡时钟数N计算公式,计算每一个气流感应时钟信号周期T的气流感应震荡时钟数NC
    将发热蒸发装置处于睡眠状态下的气流感应震荡时钟数NO以及每一个气流感应参考信号周期T0的气流感应震荡时钟数NC根据以下公式换算为二进制数字 形式的数据变化D[6:0]:
    Figure PCTCN2015095235-appb-100002
    判断所述数据变化D[6:0]是否大于有效阈值,若大于有效阈值,则判断所述气流信息为有效信息。
  5. 如权利要求4所述的气流量计算方法,其特征在于,所述计算本次气流信息周期流过发热蒸发装置的气体总体积量具体为:
    根据以下公式计算气体总体积量V
    Figure PCTCN2015095235-appb-100003
    所述A是发热蒸发装置的有效截面面积,所述Kv是常数。
  6. 一种具有气流量计算功能的发热蒸发装置,其特征在于,包括:
    气流感应装置,用于获取流过发热蒸发装置的气流信息;
    感应振荡器,用于根据气流信息生成气流感应时钟信号;
    微控制单元,用于判断所述气流感应时钟信号是否为有效信号,若所述气流感应时钟信号判断为无效,则结束本次计算,发热蒸发装置保持/返回睡眠状态,若所述气流感应时钟信号判断为有效,则根据所述气流感应时钟信号驱动电子烟工作,计算本次气流感应时钟信号周期流过发热蒸发装置的气体总体积量,并且记录本次气流信息及计算得到的气体总体计量。
  7. 如权利要求6所述的具有气流量计算功能的发热蒸发装置,其特征在于,所述气流感应装置获取电子烟处于睡眠状态时流过发热蒸发装置的初始气流信息,所述感应振荡器根据所述初始气流信息生成气流感应参考信号,所述气流感应参考信号的周期为TO,频率为fO,所述微控制单元根据以下公式计算气流感应震荡时钟数N:
    Figure PCTCN2015095235-appb-100004
    将发热蒸发装置处于睡眠状态下的气流感应震荡时钟数记为NO
  8. 如权利要求7所述的具有气流量计算功能的发热蒸发装置,其特征在于, 所述气流感应装置为电容性气流感应装置,气流感应装置的电容根据流过发热蒸发装置的气流流速变化电容,所述感应振荡器为气流感应器的电容充电,所述气流感应时钟信号的周期为T,频率为f且满足以下公式:
    Figure PCTCN2015095235-appb-100005
    C为气流感应器的电容,I为感应振荡器为气流感应器的电容充电的电流,VO是气流感应器的电容电压阈值,当电压上升到电容电压阈值VO后,所述气流感应器放电。
  9. 如权利要求8所述的具有气流量计算功能的发热蒸发装置,其特征在于,所述微控制单元根据气流感应震荡时钟数N计算公式,计算每一个气流感应时钟信号周期T的气流感应震荡时钟数NC,将发热蒸发装置处于睡眠状态下的气流感应震荡时钟数NO以及每一个气流感应参考信号周期T0的气流感应震荡时钟数NC根据以下公式换算为二进制数字形式的数据变化D[6:0]:
    Figure PCTCN2015095235-appb-100006
    判断所述数据变化D[6:0]是否大于有效阈值,若大于有效阈值,则判断所述气流信息为有效信息。
  10. 如权利要求9所述的具有气流量计算功能的发热蒸发装置,其特征在于,所述微控制单元根据以下公式计算计算气流信息周期流过电子烟的气体总体积量V,并且记录所述总体积量V
    Figure PCTCN2015095235-appb-100007
    所述A是发热蒸发装置的有效截面面积,所述Kv是常数。
  11. 如权利要求6-10任意一项所述的具有气流量计算功能的发热蒸发装置,其特征在于,所述发热蒸发装置还包括显示单元,所述显示单元用于显示发热蒸发装置的工作状态,以及微控制单元计算/存储的气流感应时钟信号周期流过电子烟的气体总体积量。
  12. 一种具有气流量计算功能的电子烟,其特征在于,包括:
    气流感应装置,用于获取流过电子烟的气流信息;
    感应振荡器,用于根据气流信息生成气流感应时钟信号;
    微控制单元,用于判断所述气流感应时钟信号是否为有效信号,若所述气流感应时钟信号判断为无效,则结束本次计算,电子烟保持/返回睡眠状态,若所述气流感应时钟信号判断为有效,则根据所述气流感应时钟信号驱动电子烟工作,计算本次气流感应时钟信号周期流过电子烟的气体总体积量,并且记录本次气流信息及计算得到的气体总体计量。
PCT/CN2015/095235 2015-11-21 2015-11-21 气流量计算方法以及发热蒸发装置及电子烟 WO2017084107A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/095235 WO2017084107A1 (zh) 2015-11-21 2015-11-21 气流量计算方法以及发热蒸发装置及电子烟

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/095235 WO2017084107A1 (zh) 2015-11-21 2015-11-21 气流量计算方法以及发热蒸发装置及电子烟

Publications (1)

Publication Number Publication Date
WO2017084107A1 true WO2017084107A1 (zh) 2017-05-26

Family

ID=58717229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095235 WO2017084107A1 (zh) 2015-11-21 2015-11-21 气流量计算方法以及发热蒸发装置及电子烟

Country Status (1)

Country Link
WO (1) WO2017084107A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
US10045568B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10045567B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10058130B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US10104915B2 (en) 2013-12-23 2018-10-23 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10111470B2 (en) 2013-12-23 2018-10-30 Juul Labs, Inc. Vaporizer apparatus
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
US10512282B2 (en) 2014-12-05 2019-12-24 Juul Labs, Inc. Calibrated dose control
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
US10865001B2 (en) 2016-02-11 2020-12-15 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080216A1 (en) * 2003-03-14 2004-09-23 Best Partners Worldwide Limited A flameless electronic atomizing cigarette
CN102227175A (zh) * 2009-09-18 2011-10-26 微创高科有限公司 电子烟
CN202362286U (zh) * 2011-11-14 2012-08-01 河南汉威电子股份有限公司 快速气流气体浓度检测装置
CN103653261A (zh) * 2013-12-13 2014-03-26 上海烟草集团有限责任公司 一种智能电子烟

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080216A1 (en) * 2003-03-14 2004-09-23 Best Partners Worldwide Limited A flameless electronic atomizing cigarette
CN102227175A (zh) * 2009-09-18 2011-10-26 微创高科有限公司 电子烟
CN202362286U (zh) * 2011-11-14 2012-08-01 河南汉威电子股份有限公司 快速气流气体浓度检测装置
CN103653261A (zh) * 2013-12-13 2014-03-26 上海烟草集团有限责任公司 一种智能电子烟

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU, RUIZHANG ET AL.: "A New Type Gas Flowmeter-Oscillating Gas Flowmeter and Characteristic thereof", HYDRAULICS PNEUMATICS & SEALS, 2 July 1991 (1991-07-02), pages 29 - 32 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
US10638792B2 (en) 2013-03-15 2020-05-05 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US10104915B2 (en) 2013-12-23 2018-10-23 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10058129B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
US10045567B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10070669B2 (en) 2013-12-23 2018-09-11 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US10264823B2 (en) 2013-12-23 2019-04-23 Juul Labs, Inc. Vaporization device systems and methods
US10111470B2 (en) 2013-12-23 2018-10-30 Juul Labs, Inc. Vaporizer apparatus
US10117466B2 (en) 2013-12-23 2018-11-06 Juul Labs, Inc. Vaporization device systems and methods
US10117465B2 (en) 2013-12-23 2018-11-06 Juul Labs, Inc. Vaporization device systems and methods
US10912331B2 (en) 2013-12-23 2021-02-09 Juul Labs, Inc. Vaporization device systems and methods
US10159282B2 (en) 2013-12-23 2018-12-25 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10201190B2 (en) 2013-12-23 2019-02-12 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10701975B2 (en) 2013-12-23 2020-07-07 Juul Labs, Inc. Vaporization device systems and methods
US10058124B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
US11752283B2 (en) 2013-12-23 2023-09-12 Juul Labs, Inc. Vaporization device systems and methods
US10058130B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10667560B2 (en) 2013-12-23 2020-06-02 Juul Labs, Inc. Vaporizer apparatus
US10045568B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10512282B2 (en) 2014-12-05 2019-12-24 Juul Labs, Inc. Calibrated dose control
US11565057B2 (en) 2014-12-05 2023-01-31 Juul Labs, Inc. Calibrated dose control
US10865001B2 (en) 2016-02-11 2020-12-15 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD913583S1 (en) 2016-06-16 2021-03-16 Pax Labs, Inc. Vaporizer device
USD929036S1 (en) 2016-06-16 2021-08-24 Pax Labs, Inc. Vaporizer cartridge and device assembly
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge

Similar Documents

Publication Publication Date Title
WO2017084107A1 (zh) 气流量计算方法以及发热蒸发装置及电子烟
JP7250750B2 (ja) 吸入挙動に基づくユーザー認識を備えた吸入装置
RU2758447C1 (ru) Устройство генерирования аэрозоля
RU2757186C1 (ru) Электроуправляемая система, генерирующая аэрозоль
JP2021509259A (ja) エアロゾル生成装置及びそれを制御する方法
JP2014504886A (ja) 可変出力制御電子タバコ
CN110121371B (zh) 电操作的气溶胶生成系统
CN110139686B (zh) 电操作的气溶胶生成系统
US11986018B2 (en) Electrically operated aerosol generation system
JP2023533290A (ja) エアロゾル供給システム
WO2021002392A1 (ja) 吸引装置の電源ユニットを動作させる方法、吸引装置の電源ユニット、及びコンピュータ可読媒体
US20200187564A1 (en) Inhalation device for use with nicotine products with controlled shutoff
US20230309628A1 (en) Inhalation device with cylindrical rotatable dial for input of a target amount of inhaled substance
US20240122265A1 (en) Electronic Cigarette and Method for Controlling an Electronic Cigarette
TWI773697B (zh) 霧氣產生裝置及使該霧氣產生裝置動作之方法及電腦程式產品
JP7534537B2 (ja) エアロゾル生成装置及びその動作方法
US20240016230A1 (en) Aerosol provision system
EA043286B1 (ru) Электрически управляемая система генерации аэрозоля
CN115336816A (zh) 一种基于app的气溶胶生成装置控制方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908603

Country of ref document: EP

Kind code of ref document: A1