WO2017081796A1 - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- WO2017081796A1 WO2017081796A1 PCT/JP2015/081882 JP2015081882W WO2017081796A1 WO 2017081796 A1 WO2017081796 A1 WO 2017081796A1 JP 2015081882 W JP2015081882 W JP 2015081882W WO 2017081796 A1 WO2017081796 A1 WO 2017081796A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- layer
- semiconductor device
- core layer
- optical waveguide
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
Definitions
- the present invention relates to a semiconductor device, for example, a technique effective when applied to a semiconductor device including an optical waveguide.
- Patent Document 1 describes a technique for reducing stress applied to a waveguide by a plurality of stress films having different thermal expansion coefficients.
- Non-Patent Document 1 describes a technique for improving luminous efficiency by applying local local stress to a germanium light-emitting layer by internal stress of a silicon nitride film.
- Non-Patent Document 2 describes a technique in which an indirect transition semiconductor is changed to a direct transition semiconductor by applying a tensile strain to the thin film layer by causing a stress film to warp the thin film layer.
- optical communication is used in broadband networks that support the Internet industry.
- a laser diode using a compound semiconductor such as a III-V group or a II-VI group is used for transmission / reception of light in this optical communication.
- LSI Large Scale Integration
- silicon and compounds that are different materials from each other are used. It is necessary to consider the connection with the semiconductor.
- Silicon Photonics This “silicon photonics” is a technique for making an optical element typified by an optical waveguide using a sophisticated silicon line widely spread worldwide.
- CMOS Complementary Metal Oxide Semiconductor
- silicon photonics the most challenging issue in “Silicon Photonics” is the light source. This is because silicon and germanium in a bulk state are indirect transition semiconductors and thus have extremely low luminous efficiency. That is, in “silicon photonics”, it is desired to improve the performance of indirect transition semiconductors made of silicon, germanium, etc., and particularly when an indirect transition semiconductor made of silicon, germanium, etc. is used as a light emitting element. It is important to improve luminous efficiency.
- An object of the present invention is to provide a technique capable of improving performance in a semiconductor device including an optical waveguide.
- a semiconductor device in one embodiment, includes an optical waveguide layer formed of a semiconductor layer having a first surface and a second surface opposite to the first surface, and a first strain applied to the first surface side of the optical waveguide layer.
- membrane which gives a tensile strain to the 2nd surface side of an optical waveguide layer are provided.
- a semiconductor device in one embodiment, includes an optical waveguide layer formed of a semiconductor layer having a first surface and a second surface opposite to the first surface, and a first surface provided on the first surface side of the optical waveguide layer.
- membrane provided in the 1st surface side of the optical waveguide layer so that the 1st film
- the first film includes a silicon oxide film or a first silicon nitride film
- the second film includes an aluminum nitride film or a second silicon nitride film.
- the bond density between nitrogen and hydrogen in the second silicon nitride film is larger than the bond density between nitrogen and hydrogen in the first silicon nitride film.
- a semiconductor device includes a thin-walled portion, an optical waveguide layer including a semiconductor layer formed in the thin-walled portion and having a first surface and a second surface opposite to the first surface, and an optical waveguide
- the first film formed on the first surface of the layer and the back surface provided on the second surface side of the optical waveguide layer among the surfaces of the thin portion, and larger in size than the first film A second film.
- the first film includes a silicon nitride film that is a silicon oxide film or a compressive stress film
- the second film includes a silicon nitride film that is a silicon oxide film or a compressive stress film.
- the performance of a semiconductor device including an optical waveguide can be improved.
- (A) is a figure which shows typically the band structure of germanium which is an indirect transition semiconductor
- (b) is a schematic diagram which shows the band structure at the time of giving an extension strain to the crystal
- (A) is a figure which shows typically the structural example which gives a local stress to the core layer which is an optical waveguide layer
- (b) is the figure which visualized the extension distortion added to a core layer.
- (A) is a figure which shows typically the structural example which gives global stress to the core layer which is an optical waveguide layer
- (b) is the figure which visualized the extension distortion added to a core layer.
- FIG. 2 is a diagram for explaining a basic idea in Embodiment 1.
- FIG. (A) is a figure which shows typically the structural example which gives both global stress and local stress to the core layer which is a light emitting layer
- (b) is the figure which visualized the extensional strain added to a core layer.
- FIG. 2 is a diagram illustrating a planar configuration of the semiconductor device according to the first embodiment
- FIG. 3B is a cross-sectional view taken along line AA in FIG.
- FIG. 7 is a cross-sectional view showing a manufacturing step of the semiconductor device in the first embodiment.
- FIG. FIG. 12 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 11;
- FIG. 13 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 12;
- FIG. 14 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 13;
- FIG. 15 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 14;
- FIG. 16 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 15;
- FIG. 17 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 16;
- FIG. 12 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 11;
- FIG. 13 is a cross-sectional view showing a manufacturing step of the semiconductor device following that
- FIG. 18 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 17;
- FIG. 19 is a cross-sectional view showing the manufacturing process of the semiconductor device, following FIG. 18;
- FIG. 20 is a cross-sectional view showing the manufacturing process of the semiconductor device, following FIG. 19;
- FIG. 6 is a cross-sectional view illustrating a configuration of a semiconductor device in a second embodiment.
- FIG. 11 is a cross-sectional view showing a manufacturing step of the semiconductor device in the second embodiment.
- FIG. 23 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 22;
- FIG. 24 is a cross-sectional view showing the manufacturing process of the semiconductor device, following FIG. 23;
- FIG. 23 is a cross-sectional view showing a manufacturing step of the semiconductor device following that of FIG. 22;
- FIG. 25 is a cross-sectional view showing the manufacturing process of the semiconductor device, following FIG. 24;
- (A) is a figure which shows the planar structure of the semiconductor device in Embodiment 3,
- (b) is sectional drawing cut
- the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
- FIG. 1 is a diagram showing a schematic band structure of a direct transition semiconductor.
- the horizontal axis indicates the wave number (k) corresponding to the momentum
- the vertical axis indicates energy (E).
- E energy
- the valence band and the conduction band constituting the band structure are shown, and the upper end of the valence band is shown as Ev, and the lower end of the conduction band is shown as Ec.
- the upper end (Ev) of the valence band and the lower end (Ec) of the conduction band have the same wave number.
- the direct transition semiconductor in the direct transition semiconductor, the upper end (Ev) of the valence band and the lower end (Ec) of the conduction band have the same wavenumber, so that the valence band from the lower end (Ec) of the conduction band. An electron transition to the upper end (Ev) occurs. For this reason, when a direct transition semiconductor is used as a light emitting element, the luminous efficiency is increased. That is, in the direct transition semiconductor, a light emitting element with high light emission efficiency can be manufactured due to the band structure.
- the direct transition semiconductor there are compound semiconductors represented by GaAs and GaN.
- FIG. 2 is a diagram showing a schematic band structure of an indirect transition semiconductor.
- the horizontal axis represents the wave number (k) corresponding to the momentum
- the vertical axis represents energy (E).
- E energy
- the valence band and the conduction band constituting the band structure are shown, the upper end of the valence band is shown as Ev, and the lower end of the conduction band is shown as Ec.
- the upper end (Ev) of the valence band and the lower end (Ec) of the conduction band have different wave numbers.
- indirect transition semiconductors require this phonon intervention, so that when the indirect transition semiconductor is used as a light emitting element, the light emission efficiency is lowered. That is, in the indirect transition semiconductor, the light emission efficiency is lowered due to the band structure.
- Such indirect transition semiconductors include Si (silicon) and Ge (germanium).
- silicon and germanium used in “silicon photonics” are indirect transition semiconductors, and light emitting elements with high luminous efficiency in “silicon photonics” It can be seen that ingenuity is required to realize Therefore, in the first embodiment, first, a light-emitting element having high light emission efficiency in “silicon photonics” is realized by using the knowledge described below.
- FIG. 3A is a diagram schematically showing a band structure of germanium which is an indirect transition semiconductor.
- the energy of the conduction band at the ⁇ point is higher than the energy of the conduction band at the L point. Therefore, it can be seen that germanium is an indirect transition semiconductor.
- germanium is subjected to an extension strain, the band gap is reduced, and as the band gap is reduced, the energy of the conduction band at the ⁇ point becomes lower than the energy of the conduction band at the L point.
- FIG. 3B is a schematic diagram showing a band structure in the case where a tensile strain is applied to a germanium crystal.
- FIG. 3B it can be seen that when the germanium crystal is stretched, the energy of the conduction band at the ⁇ point is lower than the energy of the conduction band at the L point.
- germanium which is an indirect transition semiconductor in a normal crystal state, functions as a direct transition semiconductor when it is given an extensional strain. Therefore, even if germanium, which is an indirect transition semiconductor, is used as a light-emitting element in “silicon photonics”, germanium can be made to function as a direct transition semiconductor if a structure that imparts tensile strain to germanium crystals can be realized.
- a light emitting element with high luminous efficiency can be realized.
- light emission in “silicon photonics” is based on the knowledge that an indirect transition semiconductor such as germanium or silicon can be made to function as a direct transition semiconductor by applying an extension strain. A highly efficient light-emitting element is realized.
- the energy of the conduction band at the ⁇ point is higher than the energy of the conduction band at the L point in a normal state where no tensile strain is applied, but the difference is slight, and it is easy to apply the tensile strain.
- the energy of the conduction band at the ⁇ point is lower than the energy of the conduction band at the L point. That is, germanium easily changes from an indirect transition semiconductor to a direct transition semiconductor by applying an extension strain. Therefore, in consideration of this point, the present specification pays particular attention to germanium.
- the technical idea in the first embodiment is not limited to germanium, and can be widely applied to, for example, other indirect transition semiconductors represented by silicon.
- the present inventor newly found that there is a matter to be solved as shown below when applying the above-described knowledge that the indirect transition semiconductor can function as a direct transition semiconductor when tensile strain is applied to the indirect transition semiconductor, Since the improvement of the matter to be solved has been examined, the following will describe the improvement.
- FIG. 4 is a diagram for explaining matters to be improved with respect to local stress.
- FIG. 4A is a diagram schematically illustrating a configuration example in which local stress is applied to the core layer, which is an optical waveguide layer
- FIG. 4B is a diagram visualizing tensile strain applied to the core layer. It is.
- a clad layer CLD made of silicon is formed on the insulating film IF, and a core layer CRL made of germanium is formed so as to be sandwiched between the clad layers CLD.
- the refractive index of germanium constituting the core layer CRL is larger than the refractive index of silicon constituting the cladding layer CLD, the light propagating through the core layer CRL is confined in the core layer CRL. In this way, the core layer CRL that is an optical waveguide layer is configured.
- a compressive stress film 10 is formed on the surface of the core layer CRL sandwiched between the clad layers CLD.
- the compressive stress film 10 is a film that tends to stretch as a result of applying compressive stress to the film itself. Therefore, a tensile strain is applied to the core layer CRL in contact with the compressive stress film 10.
- FIG. 4B it can be seen that an extension strain is applied to the surface side of the core layer CRL.
- the tensile strain applied by the compressive stress film 10 is maximum at the interface between the compressive stress film 10 and the core layer CRL, and decreases as the distance from the compressive stress film 10 increases. Therefore, the tensile strain in the core layer CRL is reduced.
- the distribution of is non-uniform.
- the effect of effective stretching strain by the compressive stress film 10 is limited to a region from the surface of the core layer CRL to a depth of several tens of nm. Accordingly, the tensile strain due to the compressive stress film 10 is effectively applied to a portion formed near the surface (depth of about several tens to 100 nm), for example, like a channel region of a MOSFET.
- the thickness of the core layer made of germanium targeted in the first embodiment is about several hundred nm, the local stress caused by the compressive stress film 10 gives tensile strain to the entire core layer CRL made of germanium. It becomes difficult.
- the local stress due to the compressive stress film 10 has a thickness of about several hundred nm. It is difficult to give an extension strain to the entire core layer CRL having a thickness.
- the core layer CRL serving as the optical waveguide layer needs to have a thickness of about (wavelength / refractive index) as the core layer CRL in order to confine propagating light in the core layer CRL. Furthermore, it is necessary to increase the thickness of the core layer CRL from the viewpoint of maintaining the physical properties and quality of germanium. This is because, when germanium is formed on silicon, germanium formed on silicon due to a mismatch in lattice constant between germanium and silicon, in principle, has a large defect density and dislocation density. This is because the core layer CRL (germanium layer) needs to be thickened in order to reduce the dislocation density.
- the electric field peak of the propagation light propagating through the core layer CRL of about (wavelength / refractive index) is located near the center of the core layer CRL. For this reason, the ratio that the material gain near the center of the core layer CRL contributes to the amplification of the propagation light becomes high. In other words, the influence of the material properties near the front surface and near the back surface of the core layer CRL on the light emission properties is small.
- the surface of the core layer CRL can be locally stretched, but the entire core layer CRL cannot be stretched.
- the contribution to the parameter called mode gain indicating the luminous efficiency is also small. Therefore, it is difficult to sufficiently improve the light emission efficiency with the local stress by the compressive stress film 10 shown in FIG.
- another technique for applying stress is global stress that deforms the entire structure (for example, the entire semiconductor substrate).
- the global stress there is a method of warping the entire semiconductor substrate (wafer).
- This global stress has an advantage that a strong and uniform stress can be applied to the entire semiconductor substrate compared to the local stress.
- the method of applying global stress there is a concern that the semiconductor substrate may be warped or the semiconductor substrate may be damaged due to excessive stress. Furthermore, as shown below, it is difficult to sufficiently improve the light emission efficiency even in the method of applying global stress.
- FIG. 5 is a diagram for explaining matters to be improved regarding global stress.
- FIG. 5A is a diagram schematically showing a configuration example in which global stress is applied to the core layer which is an optical waveguide layer
- FIG. 5B is a diagram visualizing the extension strain applied to the core layer. It is.
- a clad layer CLD made of silicon is formed on the insulating film IF, and a core layer CRL made of germanium is formed so as to be sandwiched between the clad layers CLD.
- the refractive index of germanium constituting the core layer CRL is larger than the refractive index of silicon constituting the cladding layer CLD, the light propagating through the core layer CRL is confined in the core layer CRL. In this way, the core layer CRL that is an optical waveguide layer is configured.
- an extension stress film 11 is formed so as to cover the surface of the core layer CRL from the surface of the cladding layer CLD.
- the extension stress film 11 is a film to be compressed as a result of extension stress being applied to the film itself. Therefore, compressive strain is applied to the core layer CRL in contact with the tensile stress film 11.
- FIG. 5B it can be seen that compressive strain is applied to the surface side of the core layer CRL.
- FIG. 6 is a diagram for explaining the basic idea in the first embodiment.
- a clad layer CLD and a core layer CRL are formed on the insulating film IF, and the core layer CRL is arranged so as to be sandwiched between the clad layers CLD.
- a compressive stress film 10 is formed on the surface of the core layer CRL, and an extension stress film 11 is formed over the compressive stress film 10 and over the cladding layer CLD.
- the basic idea in the first embodiment is a technical idea of using the compressive stress film 10 and the tensile stress film 11 in combination, in particular, forming the compressive stress film 10 on the surface of the core layer CRL, and This is a technical idea of covering the compressive stress film 10 and forming the tensile stress film 11 over the clad layer CLD.
- the tensile stress film 11 formed from the core layer CRL to the clad layer CLD applies global stress to the entire structure including the core layer CRL and the clad layer CLD to give a downward convex distortion.
- the tensile stress film 11 applies a compressive stress to the surface side of the cladding layer CLD with which the tensile stress film 11 is in contact.
- the front surface side of the cladding layer CLD and the core layer CRL contracts relative to the back surface side of the cladding layer CLD and the core layer CRL. Therefore, as shown in FIG.
- stretch distortion occurs in the area AR ⁇ b> 2 on the back surface side of the cladding layer CLD and the core layer CRL.
- the tensile stress can be applied to the core layer CRL from the back side of the core layer CRL by the global stress resulting from the tensile stress film 11.
- the compressive stress film 10 is interposed between the core layer CRL and the extension stress film 11 on the core layer CRL.
- the region AR1 on the surface side of the core layer CRL can be given tensile strain by the compressive stress film 10 in contact with the core layer CRL. That is, in the first embodiment, the compressive stress film 10 is interposed between the core layer CRL and the extension stress film 11, so that an extension strain can be applied to the surface side of the core layer CRL.
- the tensile stress film 11 formed over the entire structure including the core layer CRL and the cladding layer CLD warps the entire structure. It is possible to generate an extension strain on the back side (region AR2) of the core layer CRL. Furthermore, according to the first embodiment, the compressive stress film 10 locally formed on the core layer CRL can give a tensile strain to the surface side (region AR1) of the core layer CRL. As a result, according to the first embodiment, since the extension strain can be applied from both the front surface side and the back surface side of the core layer CRL, the extension strain can be applied to the entire thick core layer CRL. . Therefore, according to the first embodiment, the entire germanium forming the core layer CRL is stretched and strained. As a result, the entire germanium can be directly functioned as a transition semiconductor. Luminous efficiency when using as a light emitting layer can be improved.
- the feature point of the basic idea in the first embodiment is that the global stress and the local stress are used together, and in particular, the tensile stress is applied to the core layer CRL from the back side of the core layer CRL by the global stress.
- the basic idea in the first embodiment that combines the global stress and the local stress, It can be said that the basic idea in the first embodiment is an excellent technical idea in that an extension strain can be applied to the entire core layer CRL.
- FIG. 7A is a diagram schematically illustrating a configuration example in which both the global stress and the local stress are applied to the core layer which is the light emitting layer
- FIG. 7B visualizes the extension strain applied to the core layer.
- FIG. 7A for example, a clad layer CLD and a core layer CRL made of silicon are formed on the insulating film IF, and a core layer CRL made of germanium is formed so as to be sandwiched between the clad layers CLD. ing.
- the refractive index of germanium constituting the core layer CRL is larger than the refractive index of silicon constituting the cladding layer CLD, the light propagating through the core layer CRL is confined in the core layer CRL.
- the core layer CRL that is an optical waveguide layer is configured.
- an extensional stress film 11 is formed so as to cover the surface of the core layer CRL from the surface of the cladding layer CLD, and the local compressive stress film 10 is directly above the core layer CRL. Is formed.
- the compressive stress film 10 is a film that tends to stretch as a result of applying compressive stress to the film itself.
- the extension stress film 11 is a film to be compressed as a result of extension stress being applied to the film itself.
- the surface side of the core layer CRL that is in contact with the compressive stress film 10 is subjected to tensile strain due to local stress caused by the compressive stress film 10 and is formed from the cladding layer CLD to the surface side of the core layer CRL. Due to the global stress resulting from the stretch stress film 11, stretch strain is applied to the back side of the core layer CRL. That is, according to the configuration example shown in FIG. 7A, it is possible to apply an extension strain to the entire core layer CRL. Specifically, as shown in FIG. 7B, it can be seen that tensile strain is applied to the entire core layer CRL by applying tensile strain from both the front and back sides of the core layer CRL.
- FIG. 8 is a diagram illustrating a mode gain in a configuration example in which the compressive stress film 10 is locally formed immediately above the core layer CRL.
- the mode gain (G mod (x, z)) is an index indicating the light emission efficiency, and means that the light emission efficiency increases as the mode gain increases.
- the mode gain is the product of the light intensity distribution ( ⁇ (x, z)) and the material gain (g mat ( ⁇ (x, z))) in the core layer CRL. It can be obtained by integrating with.
- the material gain is a function of the extension strain (function of ⁇ ) applied to the core layer CRL.
- the greater the extension strain the greater the material gain. Therefore, in order to increase the mode gain, it is necessary to increase the material gain.
- the material gain of germanium to which normal stretch strain is not applied is smaller than that of the compound semiconductor.
- the core layer CRL made of germanium it is effective to increase the tensile strain applied to the core layer CRL.
- stretch distortion is applied only to a partial area (area with dots) on the surface side of the core layer CRL. Therefore, in the configuration example shown in FIG. 8, a portion with a small light intensity (region with dots) in the light intensity distribution, and a portion with a large expansion strain (dots) in the material gain corresponding to this portion. Only the product of the region marked with) contributes to the mode gain. That is, in the configuration example shown in FIG. 8, the mode gain does not increase due to the fact that only a part of the surface side of the core layer CRL is subjected to an extensional strain. In other words, it is difficult to improve the light emission efficiency in the configuration example shown in FIG. That is, in the configuration example shown in FIG. 8, the product of the light intensity and the material gain cannot be increased because it is not possible to give an extension strain to the central portion of the core layer CRL where the light intensity is high.
- FIG. 9 is a diagram for explaining the mode gain in the configuration example for realizing the basic idea in the first embodiment.
- the compressive stress film 10 is locally provided immediately above the core layer CRL, and the compressive stress film 10 is provided on the surface side of the core layer CRL extending from the core layer CRL to the cladding layer.
- An extending stress film 11 is provided.
- the tensile strain caused by the compressive stress film 10 is applied to the core layer CRYL from the surface side of the core layer CRL, and the tensile stress film is applied to the core layer CRL from the back surface side of the core layer CRL. 11 is added to the stretching strain.
- a tensile strain can be applied to the entire core layer CRL, so that the product of the light intensity contributing to the mode gain and the material gain is increased. It can be done.
- the mode gain can be significantly increased.
- the light emission efficiency in the core layer CRL that functions as the light emitting layer can be improved.
- germanium it is possible to obtain an excellent effect that light emission efficiency at the level of a direct transition semiconductor can be realized.
- FIG. 10A is a diagram showing a planar configuration of the semiconductor device according to the first embodiment.
- the semiconductor device according to the first embodiment includes, for example, an n-type germanium layer 20a, a p-type germanium layer 20b, an n-type silicon layer 30a, and a p-type silicon layer 30b.
- the n-type germanium layer 20a and the p-type germanium layer 20b are formed so as to be sandwiched between the n-type silicon layer 30a and the p-type silicon layer 30b.
- the core layer CRL is formed by the n-type germanium layer 20a and the p-type germanium layer 20b, and each of the n-type silicon layer 30a and the p-type silicon layer 30b forms a cladding layer CLD. That is, the core layer CLD is formed so as to be sandwiched between the clad layers CLD.
- the compressive stress film 10 is formed on the core layer CRL including the n-type germanium layer 20a and the p-type germanium layer 20b, and further includes the compressive stress film 10 in a plan view.
- An extensional stress film 11 is formed so as to cover 10.
- a plurality of holes HL are formed in each of the n-type silicon layer 30a and the p-type silicon layer 30b functioning as the cladding layer CLD.
- FIG. 10B is a cross-sectional view taken along the line AA in FIG.
- the microbridge structure MBS is formed above the SOI substrate composed of the substrate layer 1a, the insulating layer 1b, and the silicon layer 1c via the gap SP.
- an insulating film IF is formed on the silicon layer 1c of the SOI substrate, and a hole HL is formed so as to penetrate the insulating film IF and the silicon layer 1c. ing.
- a protective film PF is formed on the inner wall of the hole HL.
- a gap SP connected to the hole HL is formed in the insulating layer 1b, and the microbridge structure MBS is formed above the gap SP.
- the insulating layer 1b and the silicon layer 1c of the SOI substrate remain so as to surround the gap SP in a plan view, and the microbridge structure MBS is formed on the SOI substrate by this remaining portion. It is supported by.
- the core layer CRL is, for example, an indirect transition semiconductor when no extension strain is applied, and is composed of a semiconductor layer that functions as a direct transition semiconductor when the extension strain is applied.
- the core layer CRL includes an n-type germanium layer 20a and a p-type germanium layer 20b.
- the cladding layer CLD disposed on the left side of the core layer CRL is composed of an n-type silicon layer 30a
- the cladding layer CLD disposed on the right side of the core layer CRL is a p-type. It is composed of a silicon layer 30b.
- an insulating film IF1 is formed on the surface of the p-type silicon layer 30b.
- the compressive stress film 10 is formed on the surface side (first surface side) of the core layer CRL, and the core is formed so as to cover the compressive stress film in plan view.
- An extension stress film 11 is formed over the entire surface side of the layer CRL and the cladding layer CLD.
- the microbridge structure MBS in the first embodiment includes the core layer CRL that is an optical waveguide functioning as a light emitting layer, the compressive stress film 10 formed on the surface of the core layer CRL, and a plan view.
- the tensile stress film 11 is formed on the surface side of the core layer CRL so as to include the compressive stress film 10 and to cover the compressive stress film 10.
- the core layer CRL which is a semiconductor layer having a front surface and a back surface opposite to the front surface, and a compressive stress that gives a tensile strain to the front surface side of the core layer CRL.
- a configuration including the film 10 and the extension stress film 11 that applies extension strain to the back surface side of the core layer CRL is realized. This point will be described below.
- the compressive stress film 10 is formed so as to be in direct contact with the surface of the core layer CRL.
- the compressive stress film 10 is a film in which a compressive stress is applied to the film itself.
- the compressive stress film 10 tends to expand.
- an extension strain is applied to the surface side of the core layer CRL that is in contact with the compressive stress film 10. That is, according to the microbridge structure MBS in the present first embodiment, the surface layer of the core layer CRL is stretched by the local stress caused by the compressive stress film 10 formed on the surface of the core layer CRL. be able to.
- the width in the x direction of the core layer CRL is, for example, about 3 ⁇ m, and the width in the x direction of the compressive stress film 10 formed on the surface of the core layer CRL is also about 3 ⁇ m.
- the compressive stress film 10 is formed so as to be in direct contact with the surface of the core layer CRL.
- the idea is not limited to this configuration, and an intermediate layer may be interposed between the core layer CRL and the compressive stress film 10.
- an intermediate layer may be interposed between the core layer CRL and the compressive stress film 10.
- a protective film made of a GeO film or a GeO 2 film can be used as an intermediate layer and interposed between the core layer CRL and the compressive stress film 10.
- the thickness of the protective film can be, for example, 100 nm or less.
- the core layer CRL is composed of an n-type germanium layer 20a and a p-type germanium layer 20b, and both the n-type germanium layer 20a and the p-type germanium layer 20b are compressed. Covered with a membrane 10. Therefore, in the first embodiment, the pn junction portion between the n-type germanium layer 20a and the p-type germanium layer 20b is necessarily covered with the compressive stress film 10. Thereby, the light emission efficiency of the core layer CRL which is a light emitting layer can be improved.
- the fact that the n-type germanium layer 20a is covered with the compressive stress film 10 together with the pn junction portion between the n-type germanium layer 20a and the p-type germanium layer 20b also contributes to improving the light emission efficiency. That is, for example, in a germanium laser using the core layer CRL as a light emitting layer, the n-type germanium layer 20a is used as an optical gain medium.
- the core layer includes the compressive stress film 10 and covers the compressive stress film 10 in plan view.
- An extensional stress film 11 is formed over the surface side of the CRL and the surface side of the cladding layer CLD.
- the extension stress film 11 is a film in which extension stress is applied to the film itself.
- the extension stress film 11 attempts to compress. Therefore, compressive strain is applied to the surface side of the core layer CRL and the surface side of the cladding layer CLD that are in contact with the tensile stress film 11.
- the front surface side of the core layer CRL shrinks relatively than the back surface side of the core layer CRL, whereby the microbridge structure MBS warps in a downwardly convex shape.
- an extension strain is applied to the back side of the core layer CRL. That is, according to the microbridge structure MBS in the first embodiment, the microbridge structure is caused by the global stress caused by the tensile stress film 11 formed from the surface side of the core layer CRL to the surface side of the cladding layer CLD. A downwardly convex warp occurs in the MBS, and as a result, an extension strain can be applied to the back surface side of the core layer CRL.
- the total thickness of the silicon layer 1c, the insulating film IF, and the core layer CRL of the microbridge structure MBS is about 5 ⁇ m or less and is formed in the microbridge structure MBS.
- the thickness of the tensile stress film 11 is about 3 ⁇ m or less.
- the thickness of the microbridge structure MBS is reduced, and It is desirable to increase the thickness of the tensile stress film 11.
- the gap SP can be filled with an insulating material.
- the microbridge structure MBS it is possible to give a convex warp only to the microbridge structure MBS without giving a convex warp downward to the entire SOI substrate.
- the microbridge structure MBS according to the first embodiment is arranged above the SOI substrate via the gap SP.
- the microbridge structure MBS can be warped downward to generate a tensile warp on the back side of the core layer CRL, while the entire SOI substrate is flat. Therefore, the SOI substrate can be damaged and the yield in the assembly process can be improved.
- the core layer CRL which is a semiconductor layer having a front surface and a back surface opposite to the front surface, and the compressive stress film 10 that applies tensile strain to the front surface side of the core layer CRL.
- a microbridge structure MBS including the tensile stress film 11 that applies tensile strain to the back surface side of the core layer CRL.
- the surface side of the core layer CRL that is in contact with the compressive stress film 10 is subjected to tensile strain due to local stress caused by the compressive stress film 10, and A tensile stress is applied to the back side of the core layer CRL by the global stress caused by the tensile stress film 11 formed from the cladding layer CLD to the surface side of the core layer CRL.
- the tensile strain is applied to the entire core layer CRL by applying the tensile strain from both the front side and the back side of the core layer CRL.
- FIG. 10B attention is paid to the x direction.
- the core layer CRL is sandwiched between the cladding layers CLD.
- the core layer CRL is composed of an n-type germanium layer 20a and a p-type germanium layer 20b
- the cladding layer CLD is composed of an n-type silicon layer 30a and a p-type silicon layer 30b. Therefore, considering that the refractive index of germanium is higher than the refractive index of silicon, the light generated in the core layer CRL is confined by the cladding layer CLD.
- the core layer CRL is sandwiched between the compressive stress film 10 and the insulating film IF.
- the compressive stress film 10 is formed of, for example, a silicon oxide film or a silicon nitride film
- the insulating film IF is also formed of a silicon oxide film or the like
- the refractive index of the compressive stress film 10 or the insulating film The refractive index of IF is smaller than the refractive index of the core layer CRL. Therefore, the light generated in the core layer CRL is confined also in the z direction.
- the light generated in the core layer CRL is confined in both the x direction and the z direction.
- the light generated in the core layer CRL extends in the y direction. It propagates in the existing core layer CRL. That is, the core layer CRL functions as an optical waveguide.
- the compressive stress film 10 is made of, for example, a silicon oxide film or a silicon nitride film.
- the tensile stress film 11 is made of, for example, an aluminum nitride film or a silicon nitride film.
- the silicon nitride film is used as the compressive stress film 10 and also as the extension stress film 11, but the silicon nitride film depends on the composition. 10 or the tensile stress film 11.
- the silicon nitride film becomes the compressive stress film 10 or the tensile stress film 11 depending on the bond density between nitrogen and hydrogen in the silicon nitride film.
- the silicon nitride film is composed only of silicon and nitrogen.
- hydrogen is mixed, hydrogen is mixed in the silicon nitride film.
- the bond density of nitrogen and hydrogen in the silicon nitride film is low, the silicon nitride film becomes a compressive stress film.
- the bond density of nitrogen and hydrogen in the silicon nitride film increases, the silicon nitride film becomes an extensional stress film.
- a silicon nitride film having a low bond density of nitrogen and hydrogen can be used as the compressive stress film 10, and nitrogen and hydrogen can be used as the extension stress film 11.
- a silicon nitride film having a high hydrogen bond density can be used. That is, when a silicon nitride film is used for both the compressive stress film 10 and the tensile stress film 11, the composition of the silicon nitride film used for the compressive stress film 10 and the tensile stress film 11 are used. This is different from the composition of the silicon nitride film. Specifically, the bond density of nitrogen and hydrogen of the silicon nitride film used for the tensile stress film 11 is larger than the bond density of nitrogen and hydrogen of the silicon nitride film used for the compressive stress film 10. it can.
- the semiconductor device according to the first embodiment is configured as described above, and the manufacturing method thereof will be described below with reference to the drawings.
- an SOI (Silicon On On Insulator) substrate including a substrate layer 1a, an insulating layer (buried insulating layer) 1b, and a silicon layer (SOI layer) 1c is prepared.
- the thickness of the insulating layer 1b is about 1 ⁇ m
- the thickness of the silicon layer 1c made of single crystal silicon is about 50 nm.
- an insulating film IF made of a silicon oxide film is formed by using, for example, a thermal oxidation method.
- the insulating film IF is not limited to this.
- a silicon oxide film or a silicon nitride film formed by using a CVD (Chemical Vapor Deposition) method can also be used.
- the opening OP1 is formed in the insulating film IF by using a photolithography technique and an etching technique.
- the opening OP1 is formed to expose a part of the silicon layer 1c. This is because in order to grow the germanium layer, the silicon layer 1c serving as the nucleus of growth is necessary.
- the opening OP1 can be formed by the following process. That is, after a resist film is applied to the surface of the insulating film IF, the resist film is patterned by a photolithography technique (exposure and development). Thereby, the silicon layer 1c can be partially exposed from the opening OP1.
- a seed film (not shown) made of germanium is selectively formed on the silicon layer 1c exposed from the opening OP1, and then this seed film is used as a nucleus of crystal growth.
- the n-type germanium layer 20a is formed over the insulating film IF from the inside of the opening OP1.
- the seed film has many defects due to lattice mismatch between silicon and germanium, but the defect density of defects is reduced because the interface between silicon and germanium does not exist on the insulating film IF.
- an n-type impurity serving as a light emitting medium is introduced into the n-type germanium layer 20a. Furthermore, as shown in FIG.
- a junction structure (n-Ge / p-Ge / p-Si) that becomes a part of the pn diode is formed.
- the thickness in the z direction of the silicon layer 1c and the junction structure is about 5 ⁇ m.
- CMP method ChemicalCMechanical Polishing
- the thickness in the z direction of the connection structure formed on the insulating film IF is, for example, about 500 nm.
- the subsequent manufacturing process will be described focusing on the area AR surrounded by the dotted line in FIG.
- a part of the p-type silicon layer 30b is etched by using a photolithography technique and an etching technique. Thereafter, as shown in FIG. 14, an insulating film IF1 is formed on a part of the etched p-type silicon layer 30b, and the insulating film IF2 extending over the insulating film IF1 and on the p-type germanium layer 20b and the n-type germanium layer 20a. Form.
- the width in the x direction of a part of the p-type germanium layer 20b and the n-type germanium layer 20a covered with the insulating film IF2 is, for example, about 2 ⁇ m to satisfy the single mode condition of the optical waveguide.
- the n-type germanium layer 20a exposed from the insulating film IF2 is removed by an etching technique using the insulating film IF2 as a mask.
- an n-type silicon layer 30a is formed in the removed n-type germanium layer 20a.
- an n-Si / n-Ge junction structure is formed.
- an n-Si / n-Ge / p-Ge / p-Si junction structure can be formed on the insulating film IF in the x direction.
- germanium has a higher refractive index than silicon
- a germanium region (n-type germanium layer 20a + p-type germanium) sandwiched between silicon regions (n-type silicon layer 30a and p-type silicon layer 30b) with respect to the x direction.
- a structure in which light is confined in the layer 20b) is realized. That is, the n-type germanium layer 20a and the p-type germanium layer 20b function as a core layer, and the n-type silicon layer 30a and the p-type silicon layer 30b function as a cladding layer.
- the compressive stress film 10 having an internal stress of about 1 GPa and a film thickness of about 200 nm is formed by using, for example, a CVD method.
- the compressive stress film 10 having a width in the x direction of about 3 ⁇ m, for example, is left on the n-type germanium layer 20a and the p-type germanium layer 20b.
- tensile strain is applied to the n-type germanium layer 20a and the p-type germanium layer 20b formed immediately below the compressive stress film 10.
- the tensile stress film 11 having an internal stress of about 0.5 GPa and a film thickness of about 1 ⁇ m is larger than the compressive stress film 10 so as to include the compressive stress film 10.
- a metal electrode is connected to each of the n-type silicon layer 30a and the p-type silicon layer 30b to form a structure for injecting a current into the pn diode.
- the compressive stress film 10 can be formed by leaving portions of the insulating film IF2 shown in FIG. 16 formed on the n-type germanium layer 20a and the p-type germanium layer 20b. In this case, since the process of newly forming the compressive stress film 10 can be omitted, the manufacturing process can be simplified.
- the silicon oxide film is formed through the hole HL.
- the insulating layer 1b is removed.
- the microbridge structure MBS can be formed above the SOI substrate via the gap SP.
- the tensile stress film 11 causes the microbridge structure MBS to warp downward.
- tensile strain is applied to the back side of the core layer CRL shown in FIG.
- an extension strain is also applied to the surface side of the core layer CRL.
- the tensile strain is applied from both the front surface side and the back surface side of the core layer CRL, and the entire core layer CRL is subjected to the tensile strain.
- the semiconductor device according to the first embodiment can be manufactured.
- the gap SP for floating the microbridge structure MBS from the SOI substrate may be filled with an insulating material (inorganic insulating film or organic resin film), for example.
- an insulating material inorganic insulating film or organic resin film
- the mechanical strength can be improved.
- the material has a low coefficient of thermal expansion and low viscosity so that no upward warping occurs in the microbridge structure MBS.
- FIG. 21 is a cross-sectional view showing the configuration of the semiconductor device according to the second embodiment.
- the semiconductor device according to the second embodiment has an SOI substrate including a substrate layer 1a, an insulating layer 1b, and a silicon layer 1c.
- An insulating film IF is formed on the silicon layer 1c of the SOI substrate, and a core layer CRL and a cladding layer CLD sandwiching the core layer CRL are formed on the insulating film IF.
- the core layer CRL is composed of an n-type germanium layer 20a and a p-type germanium layer 20b.
- the cladding layer CLD provided on the left side of the core layer CRL is composed of the n-type silicon layer 30a, while the cladding layer CLD provided on the right side of the core layer CRL is composed of the p-type silicon layer 30b. It is configured.
- An insulating film IF1 is formed on a portion of the surface of the cladding layer CLD made of the p-type silicon layer 30b.
- the compressive stress film 10 is formed so as to be in direct contact with the surface of the core layer CRL.
- the compressive stress film 10 is made of, for example, a silicon oxide film or a silicon nitride film.
- the compressive stress film 10 is a film in which a compressive stress is applied to the film itself.
- the compressive stress film 10 tends to expand. Accordingly, an extension strain is applied to the surface side of the core layer CRL that is in contact with the compressive stress film 10. That is, also in the semiconductor device according to the second embodiment, it is possible to give a tensile strain to the surface side of the core layer CRL by local stress caused by the compressive stress film 10 formed on the surface side of the core layer CRL.
- an insulating film IF3 is partially formed on the back surface of the SOI substrate.
- the back surface of the SOI substrate exposed from the insulating film IF3 penetrates the SOI substrate to pass through the insulating film.
- a groove DIT reaching IF is formed.
- a thin portion is formed above the groove DIT, and the core layer CRL is formed in the thin portion.
- a compressive stress film 12 is formed so as to be in contact with the insulating film IF exposed from the trench DIT.
- the compressive stress film 12 is also composed of, for example, a silicon oxide film or a silicon nitride film.
- the size of the compressive stress film 12 is larger than the size of the compressive stress film 10 as shown in FIG. Therefore, the tensile strain applied to the back side of the thin portion by the compressive stress film 12 is larger than the tensile strain applied to the front surface side of the thin portion by the compressive stress film 10.
- the back surface side of the thin portion extends more than the front surface side, so that a downwardly convex warp occurs in the thin portion.
- a tensile stress is applied to the back surface side of the core layer CRL due to the global stress caused by the downwardly convex warp generated in the thin portion.
- the tensile strain is applied to the entire core layer CRL by applying the tensile strain from both the front side and the back side of the core layer CRL. It can be seen that the idea is embodied.
- the thin portion, the core layer CRL formed on the thin portion, the compressive stress film 10 formed on the surface of the core layer CRL, and the surface of the thin portion a structure having a compressive stress film 12 formed on the back surface provided on the back surface side of the core layer CRL and a size of the compressive stress film 12 larger than the size of the compressive stress film 10 is realized.
- the surface side of the core layer CRL that is in contact with the small-sized compressive stress film 10 is subjected to tensile strain due to local stress caused by the compressive stress film 10, and A tensile stress is applied to the back surface side of the core layer CRL by the global stress caused by the convex warpage below the thin portion formed by the large compressive stress film 12 formed on the bottom surface of the groove DIT.
- the tensile strain is applied from both the front surface side and the back surface side of the core layer CRL, and the entire core layer CRL is subjected to the tensile strain.
- the light emission efficiency in the core layer CRL functioning as the light emitting layer can be improved.
- the semiconductor device according to the second embodiment is configured as described above, and the manufacturing method thereof will be described below with reference to the drawings.
- an insulating film IF3 is formed on the back surface of the substrate layer 1a.
- the insulating film IF3 is formed of, for example, a silicon oxide film, and can be formed by using, for example, a CVD method.
- the insulating film IF3 is patterned to form an opening OP2 in the insulating film IF3.
- the substrate layer 1a exposed from the opening OP2 is etched using the patterned insulating film IF3 as a mask.
- This etching can be, for example, wet etching using TMAH (Tetra Methyl Ammonium Hydroxide).
- TMAH Tetra Methyl Ammonium Hydroxide
- This TMAH is an anisotropic etching solution in which the (111) plane of silicon appears. For this reason, the size of the bottom surface of the trench DIT is smaller than the size of the opening OP2 formed in the insulating film IF3.
- the size of the opening OP2 is necessary to make the size of the opening OP2 larger than the size of the thin portion, for example, about 70 ⁇ m larger than the size of the thin portion to be formed.
- the exposed insulating layer 1b is etched, and further, the exposed silicon layer 1c is etched by etching the insulating layer 1b.
- a trench DIT that penetrates the SOI substrate and reaches the insulating layer IF can be formed.
- a thin portion can be formed above the trench DIT.
- the compressive stress film 12 is formed of, for example, a silicon oxide film or a silicon nitride film, and can be formed by using, for example, a CVD method.
- the compressive stress film 12 is formed so that the size of the compressive stress film 12 is larger than the size of the compressive stress film 10 as shown in FIG.
- the tensile strain applied to the back side of the thin portion by the compressive stress film 12 is larger than the tensile strain applied to the front surface side of the thin portion by the compressive stress film 10. Therefore, since the back surface side of the thin wall portion extends more than the front surface side, the thin wall portion is warped downward.
- a tensile stress is applied to the back surface side of the core layer CRL due to the global stress caused by the downwardly convex warp generated in the thin portion.
- the tensile strain can be applied from both the front surface side and the back surface side of the core layer CRL, and the entire core layer CRL can be applied with the tensile strain.
- the silicon nitride film functioning as a compressive stress film is formed by adjusting the film formation temperature and the supply amount of the material gas. For example, when the bond density of nitrogen and hydrogen (NH bond) in the silicon nitride film is low, the silicon nitride film becomes a compressive stress film, while the bond between nitrogen and hydrogen (NH bond) in the silicon nitride film When the density is high, the silicon nitride film becomes a tensile stress film.
- the silicon nitride film used in Embodiment 2 needs to be a compressive stress film, by adjusting the film forming conditions, nitrogen and hydrogen (N—H) A silicon nitride film having a low bond density is formed as the compressive stress film 10 or the compressive stress film 12.
- the semiconductor device according to the second embodiment can be manufactured.
- FIG. 26A shows a planar configuration of the semiconductor device according to the third embodiment.
- the core layer CRL that functions as a light absorption layer (light receiving layer) is composed of a germanium layer 20 that is an intrinsic semiconductor layer, and the core layer CRL is composed of, for example, an amorphous silicon layer 21.
- the core layer CRL functioning as a light receiving portion of the light receiving element (semiconductor device) in the third embodiment is optically connected to another optical circuit. can do.
- FIG. 26 (b) is a cross-sectional view taken along line AA in FIG. 26 (a).
- the core layer CRL made of the germanium layer 20 is surrounded by the clad layer CLD made of the n-type silicon layer 30a and the clad layer CLD made of the p-type silicon layer 30b.
- the core layer CRL which is an intrinsic semiconductor layer having a front surface and a back surface opposite to the front surface, and a tensile strain on the front surface side of the core layer CRL.
- a micro-bridge structure MBS is realized that includes a compressive stress film 10 that imparts a tensile stress and a tensile stress film 11 that imparts a tensile strain to the back side of the core layer CRL. That is, also in the third embodiment, the surface side of the core layer CRL in contact with the compressive stress film 10 is subjected to tensile strain due to local stress caused by the compressive stress film 10, and from the clad layer CLD to the core layer CRL. Due to the global stress caused by the tensile stress film 11 formed over the front surface side, the tensile strain is applied to the back surface side of the core layer CRL. As a result, also in the third embodiment, the tensile strain is applied from both the front surface side and the back surface side of the core layer CRL so that the entire core layer CRL is stretched. Is embodied.
- the core layer CRL functions as a light absorption layer.
- the core layer CRL is formed from the germanium layer 20 that is an intrinsic semiconductor layer, and the entire core layer CRL is stretched to improve the light absorption efficiency in the core layer CRL. Can do. This point will be described below.
- the core layer CRL is composed of the germanium layer 20 which is an intrinsic semiconductor layer
- the core layer CRL is formed in the core layer CRL sandwiched between the clad layer CLD made of the n-type silicon layer 30a and the clad layer made of the p-type silicon layer 30b.
- the depletion layer becomes larger.
- the fact that light is absorbed in the core layer CRL means that light is absorbed in the depletion layer.
- electrons are excited from the valence band to the conduction band. This means that holes are generated in the valence band and electrons transition to the conduction band.
- the light absorption efficiency in the core layer CRL can be improved by configuring the core layer CRL functioning as the light absorption layer from the germanium layer 20 which is an intrinsic semiconductor layer.
- the surface side of the core layer CRL is subjected to tensile strain due to local stress caused by the compressive stress film 10, and from the cladding layer CLD to the core layer.
- a tensile stress is applied to the back surface side of the core layer CRL by the global stress caused by the tensile stress film 11 formed over the surface side of the CRL.
- the tensile strain is applied from both the front surface side and the back surface side of the core layer CRL, and the entire core layer CRL is subjected to the tensile strain. This means that the band gap of the germanium layer 20 constituting the core layer CRL is reduced over the entire core layer CRL.
- the energy for exciting electrons from the valence band to the conduction band decreases as the band gap decreases, even the light having a longer wavelength is absorbed by the core layer CRL. This means that according to the third embodiment, the light absorption efficiency in the core layer CRL is improved.
- the core layer CRL is formed from the germanium layer 20 which is an intrinsic semiconductor layer, and the entire core layer CRL is subjected to tensile strain.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Optical Integrated Circuits (AREA)
Abstract
To improve the performance of a semiconductor device including an optical waveguide. In order to achieve the purpose, a semiconductor device of the present invention is provided with: an optical waveguide layer formed of a semiconductor layer having a front surface and a rear surface; a first stress film that applies a tensile strain to the front surface side of the optical waveguide layer; and a second stress film that applies a tensile strain to the rear surface side of the optical waveguide layer.
Description
本発明は、半導体装置に関し、例えば、光導波路を備える半導体装置に適用して有効な技術に関する。
The present invention relates to a semiconductor device, for example, a technique effective when applied to a semiconductor device including an optical waveguide.
特開2003-207660号公報(特許文献1)には、熱膨張率の異なる複数の応力膜により、導波路に加わる応力を低減する技術が記載されている。
Japanese Patent Laid-Open No. 2003-207660 (Patent Document 1) describes a technique for reducing stress applied to a waveguide by a plurality of stress films having different thermal expansion coefficients.
非特許文献1には、窒化シリコン膜の内部応力によって、ゲルマニウム発光層に局所的なローカル応力を与えて、発光効率を向上する技術が記載されている。
Non-Patent Document 1 describes a technique for improving luminous efficiency by applying local local stress to a germanium light-emitting layer by internal stress of a silicon nitride film.
非特許文献2には、応力膜によって薄膜層に反りを生じさせることにより、薄膜層に伸張歪みを印加して、間接遷移半導体を直接遷移半導体に変化させる技術が記載されている。
Non-Patent Document 2 describes a technique in which an indirect transition semiconductor is changed to a direct transition semiconductor by applying a tensile strain to the thin film layer by causing a stress film to warp the thin film layer.
例えば、インターネット産業を支えるブロードバンドネットワークでは、光通信が採用されている。この光通信における光の送受信には、III-V族やII-VI族などの化合物半導体を用いたレーザダイオードが使用されている。
For example, optical communication is used in broadband networks that support the Internet industry. A laser diode using a compound semiconductor such as a III-V group or a II-VI group is used for transmission / reception of light in this optical communication.
一方、情報処理や情報の記憶には、シリコンを基幹としたLSI(Large Scale Integration)が使用されており、このLSIとブロードバンドネットワークとを接続するためには、互いに異なる異種材料であるシリコンと化合物半導体との接続を考慮する必要がある。この点に関し、近年では、シリコンの半導体チップ間や半導体チップ内といった近距離の光配線を、シリコンを用いた光導波路で実現しようとする研究が盛んに行なわれており、この研究分野は、「シリコンフォトニクス」と呼ばれている。この「シリコンフォトニクス」は、世界的に広く普及している洗練されたシリコンラインを用いて、光導波路に代表される光学素子を作ろうとする技術である。
On the other hand, LSI (Large Scale Integration) based on silicon is used for information processing and information storage. In order to connect this LSI to a broadband network, silicon and compounds that are different materials from each other are used. It is necessary to consider the connection with the semiconductor. In this regard, in recent years, research has been actively conducted to realize short-distance optical wiring between silicon semiconductor chips and in semiconductor chips with an optical waveguide using silicon. It is called “Silicon Photonics”. This “silicon photonics” is a technique for making an optical element typified by an optical waveguide using a sophisticated silicon line widely spread worldwide.
現在は、シリコンラインで、CMOS(Complementary Metal Oxide Semiconductor)回路に基づいてLSIが生産されているが、将来的には、「シリコンフォトニクス」による光回路とCMOS回路とを集積したフォトニクスとエレクトロニクスの融合回路技術が実現すると考えられている。
At present, LSIs are being produced on silicon lines based on CMOS (Complementary Metal Oxide Semiconductor) circuits, but in the future, photonics and electronics integrating optical circuits and CMOS circuits based on silicon photonics will be integrated. It is believed that circuit technology will be realized.
ここで、「シリコンフォトニクス」において最もチャレンジングな課題であるのが光源である。なぜなら、バルク状態のシリコンやゲルマニウムは間接遷移半導体であるため、極めて発光効率が悪いからである。すなわち、「シリコンフォトニクス」においては、シリコンやゲルマニウムなどからなる間接遷移半導体の性能向上を図ることが望まれており、特に、シリコンやゲルマニウムなどからなる間接遷移半導体を発光素子として使用した場合に、発光効率を向上させることが重要である。
Here, the most challenging issue in “Silicon Photonics” is the light source. This is because silicon and germanium in a bulk state are indirect transition semiconductors and thus have extremely low luminous efficiency. That is, in “silicon photonics”, it is desired to improve the performance of indirect transition semiconductors made of silicon, germanium, etc., and particularly when an indirect transition semiconductor made of silicon, germanium, etc. is used as a light emitting element. It is important to improve luminous efficiency.
本発明の目的は、光導波路を含む半導体装置において、性能向上を図ることができる技術を提供することにある。
An object of the present invention is to provide a technique capable of improving performance in a semiconductor device including an optical waveguide.
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
Other issues and novel features will become clear from the description of the present specification and the accompanying drawings.
一実施の形態における半導体装置は、第1面と第1面とは反対側の第2面とを有する半導体層からなる光導波路層と、光導波路層の第1面側に伸張歪みを与える第1応力膜と、光導波路層の第2面側に伸張歪みを与える第2応力膜とを備える。
In one embodiment, a semiconductor device includes an optical waveguide layer formed of a semiconductor layer having a first surface and a second surface opposite to the first surface, and a first strain applied to the first surface side of the optical waveguide layer. 1 stress film | membrane and the 2nd stress film | membrane which gives a tensile strain to the 2nd surface side of an optical waveguide layer are provided.
一実施の形態における半導体装置は、第1面と前記第1面とは反対側の第2面とを有する半導体層からなる光導波路層と、光導波路層の第1面側に設けられた第1膜と、平面視において、第1膜を内包し、かつ、第1膜を覆うように光導波路層の第1面側に設けられた第2膜とを備える。このとき、第1膜は、酸化シリコン膜あるいは第1窒化シリコン膜を含み、第2膜は、窒化アルミニウム膜あるいは第2窒化シリコン膜を含む。そして、第2窒化シリコン膜中の窒素と水素との結合密度は、第1窒化シリコン膜中の窒素と水素との結合密度よりも大きい。
In one embodiment, a semiconductor device includes an optical waveguide layer formed of a semiconductor layer having a first surface and a second surface opposite to the first surface, and a first surface provided on the first surface side of the optical waveguide layer. 1 film and the 2nd film | membrane provided in the 1st surface side of the optical waveguide layer so that the 1st film | membrane may be included and it may cover a 1st film | membrane in planar view. At this time, the first film includes a silicon oxide film or a first silicon nitride film, and the second film includes an aluminum nitride film or a second silicon nitride film. The bond density between nitrogen and hydrogen in the second silicon nitride film is larger than the bond density between nitrogen and hydrogen in the first silicon nitride film.
一実施の形態における半導体装置は、薄肉部と、薄肉部に形成され、かつ、第1面と第1面とは反対側の第2面とを有する半導体層からなる光導波路層と、光導波路層の第1面上に形成された第1膜と、薄肉部の面のうち、光導波路層の第2面側に設けられている裏面に形成され、かつ、第1膜よりもサイズの大きな第2膜とを備える。このとき、第1膜は、酸化シリコン膜あるいは圧縮応力膜である窒化シリコン膜を含み、第2膜は、酸化シリコン膜あるいは圧縮応力膜である窒化シリコン膜を含む。
According to one embodiment, a semiconductor device includes a thin-walled portion, an optical waveguide layer including a semiconductor layer formed in the thin-walled portion and having a first surface and a second surface opposite to the first surface, and an optical waveguide The first film formed on the first surface of the layer and the back surface provided on the second surface side of the optical waveguide layer among the surfaces of the thin portion, and larger in size than the first film A second film. At this time, the first film includes a silicon nitride film that is a silicon oxide film or a compressive stress film, and the second film includes a silicon nitride film that is a silicon oxide film or a compressive stress film.
一実施の形態によれば、光導波路を含む半導体装置の性能向上を図ることができる。
According to one embodiment, the performance of a semiconductor device including an optical waveguide can be improved.
以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. There are some or all of the modifications, details, supplementary explanations, and the like.
また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
Similarly, in the following embodiments, when referring to the shape, positional relationship, etc., of components, etc., unless otherwise specified, and in principle, it is considered that this is not clearly the case, it is substantially the same. Including those that are approximate or similar to the shape. The same applies to the above numerical values and ranges.
また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。
In all the drawings for explaining the embodiments, the same members are, in principle, given the same reference numerals, and the repeated explanation thereof is omitted. In order to make the drawings easy to understand, even a plan view may be hatched.
(実施の形態1)
半導体は、バンド構造の相違から、直接遷移半導体と間接遷移半導体とに区別することができる。以下では、まず、直接遷移半導体と間接遷移半導体について説明する。 (Embodiment 1)
Semiconductors can be distinguished into direct transition semiconductors and indirect transition semiconductors due to differences in band structures. In the following, first, a direct transition semiconductor and an indirect transition semiconductor will be described.
半導体は、バンド構造の相違から、直接遷移半導体と間接遷移半導体とに区別することができる。以下では、まず、直接遷移半導体と間接遷移半導体について説明する。 (Embodiment 1)
Semiconductors can be distinguished into direct transition semiconductors and indirect transition semiconductors due to differences in band structures. In the following, first, a direct transition semiconductor and an indirect transition semiconductor will be described.
<直接遷移半導体>
図1は、直接遷移半導体の模式的なバンド構造を示す図である。図1において、横軸は、運動量に対応した波数(k)を示し、縦軸は、エネルギー(E)を示している。図1において、バンド構造を構成する価電子帯と伝導帯とが示されており、価電子帯の上端をEvとして示し、伝導帯の下端をEcとして示している。ここで、直接遷移半導体では、価電子帯の上端(Ev)と伝導帯の下端(Ec)とが同じ波数を有している。ここで、例えば、伝導帯の下端(Ec)から価電子帯の上端(Ev)へ電子が遷移することを考える。この場合、まず、伝導帯の下端(Ec)と価電子帯の上端(Ev)の波数が等しいことから、伝導帯の下端(Ec)から価電子帯の上端(Ev)へ電子が遷移するとき、運動量が保存する。したがって、直接遷移半導体では、伝導帯の下端(Ec)から価電子帯の上端(Ev)へ電子が単独で遷移可能であり、この遷移において、電子のエネルギーは、「Ec」から「Ev」となることから、エネルギーの保存則により、「Ec-Ev=hν」のエネルギーを有する光が放出される。すなわち、直接遷移半導体では、価電子帯の上端(Ev)と伝導帯の下端(Ec)とが同じ波数を有していることに起因して、伝導帯の下端(Ec)から価電子帯の上端(Ev)への電子の遷移が生じることになる。このことから、直接遷移半導体を発光素子として使用した場合、発光効率が高くなる。つまり、直接遷移半導体では、バンド構造に起因して、発光効率の高い発光素子を製造することができるのである。直接遷移半導体としては、GaAsやGaNに代表される化合物半導体がある。 <Direct transition semiconductor>
FIG. 1 is a diagram showing a schematic band structure of a direct transition semiconductor. In FIG. 1, the horizontal axis indicates the wave number (k) corresponding to the momentum, and the vertical axis indicates energy (E). In FIG. 1, the valence band and the conduction band constituting the band structure are shown, and the upper end of the valence band is shown as Ev, and the lower end of the conduction band is shown as Ec. Here, in the direct transition semiconductor, the upper end (Ev) of the valence band and the lower end (Ec) of the conduction band have the same wave number. Here, for example, consider that electrons transition from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band. In this case, first, since the wave numbers of the lower end (Ec) of the conduction band and the upper end (Ev) of the valence band are equal, the electrons transition from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band. Save momentum. Therefore, in a direct transition semiconductor, an electron can transit independently from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band. In this transition, the energy of the electron is changed from “Ec” to “Ev”. Therefore, light having an energy of “Ec−Ev = hν” is emitted according to the energy conservation law. That is, in the direct transition semiconductor, the upper end (Ev) of the valence band and the lower end (Ec) of the conduction band have the same wavenumber, so that the valence band from the lower end (Ec) of the conduction band. An electron transition to the upper end (Ev) occurs. For this reason, when a direct transition semiconductor is used as a light emitting element, the luminous efficiency is increased. That is, in the direct transition semiconductor, a light emitting element with high light emission efficiency can be manufactured due to the band structure. As the direct transition semiconductor, there are compound semiconductors represented by GaAs and GaN.
図1は、直接遷移半導体の模式的なバンド構造を示す図である。図1において、横軸は、運動量に対応した波数(k)を示し、縦軸は、エネルギー(E)を示している。図1において、バンド構造を構成する価電子帯と伝導帯とが示されており、価電子帯の上端をEvとして示し、伝導帯の下端をEcとして示している。ここで、直接遷移半導体では、価電子帯の上端(Ev)と伝導帯の下端(Ec)とが同じ波数を有している。ここで、例えば、伝導帯の下端(Ec)から価電子帯の上端(Ev)へ電子が遷移することを考える。この場合、まず、伝導帯の下端(Ec)と価電子帯の上端(Ev)の波数が等しいことから、伝導帯の下端(Ec)から価電子帯の上端(Ev)へ電子が遷移するとき、運動量が保存する。したがって、直接遷移半導体では、伝導帯の下端(Ec)から価電子帯の上端(Ev)へ電子が単独で遷移可能であり、この遷移において、電子のエネルギーは、「Ec」から「Ev」となることから、エネルギーの保存則により、「Ec-Ev=hν」のエネルギーを有する光が放出される。すなわち、直接遷移半導体では、価電子帯の上端(Ev)と伝導帯の下端(Ec)とが同じ波数を有していることに起因して、伝導帯の下端(Ec)から価電子帯の上端(Ev)への電子の遷移が生じることになる。このことから、直接遷移半導体を発光素子として使用した場合、発光効率が高くなる。つまり、直接遷移半導体では、バンド構造に起因して、発光効率の高い発光素子を製造することができるのである。直接遷移半導体としては、GaAsやGaNに代表される化合物半導体がある。 <Direct transition semiconductor>
FIG. 1 is a diagram showing a schematic band structure of a direct transition semiconductor. In FIG. 1, the horizontal axis indicates the wave number (k) corresponding to the momentum, and the vertical axis indicates energy (E). In FIG. 1, the valence band and the conduction band constituting the band structure are shown, and the upper end of the valence band is shown as Ev, and the lower end of the conduction band is shown as Ec. Here, in the direct transition semiconductor, the upper end (Ev) of the valence band and the lower end (Ec) of the conduction band have the same wave number. Here, for example, consider that electrons transition from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band. In this case, first, since the wave numbers of the lower end (Ec) of the conduction band and the upper end (Ev) of the valence band are equal, the electrons transition from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band. Save momentum. Therefore, in a direct transition semiconductor, an electron can transit independently from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band. In this transition, the energy of the electron is changed from “Ec” to “Ev”. Therefore, light having an energy of “Ec−Ev = hν” is emitted according to the energy conservation law. That is, in the direct transition semiconductor, the upper end (Ev) of the valence band and the lower end (Ec) of the conduction band have the same wavenumber, so that the valence band from the lower end (Ec) of the conduction band. An electron transition to the upper end (Ev) occurs. For this reason, when a direct transition semiconductor is used as a light emitting element, the luminous efficiency is increased. That is, in the direct transition semiconductor, a light emitting element with high light emission efficiency can be manufactured due to the band structure. As the direct transition semiconductor, there are compound semiconductors represented by GaAs and GaN.
<間接遷移半導体>
一方、図2は、間接遷移半導体の模式的なバンド構造を示す図である。図2において、横軸は、運動量に対応した波数(k)を示し、縦軸は、エネルギー(E)を示している。図2において、バンド構造を構成する価電子帯と伝導帯とが示されており、価電子帯の上端をEvとして示し、伝導帯の下端をEcとして示している。ここで、間接遷移半導体では、直接遷移半導体とは異なり、価電子帯の上端(Ev)と伝導帯の下端(Ec)とが異なる波数を有している。したがって、例えば、伝導帯の下端(Ec)から価電子帯の上端(Ev)へ電子が遷移することを考えると、間接遷移半導体では、伝導帯の下端(Ec)と価電子帯の上端(Ev)の波数が異なることから、伝導帯の下端(Ec)から価電子帯の上端(Ev)へ電子が単独で遷移するとき、運動量が保存しないことなる。つまり、間接遷移半導体においては、伝導帯の下端(Ec)から価電子帯の上端(Ev)への電子単独での遷移は運動量の保存則を満たさないことになるのである。このため、間接遷移半導体においては、伝導帯の下端(Ec)から価電子帯の上端(Ev)への電子の遷移で運動量を保存するために、電子以外の構成要素との相互作用が必要となる。すなわち、間接遷移半導体においては、伝導帯の下端(Ec)から価電子帯の上端(Ev)への電子の遷移は、結晶格子の格子振動(フォノン)との相互作用が必要となるのである。つまり、間接遷移半導体において、伝導帯の下端(Ec)から価電子帯の上端(Ev)へ電子が遷移するためには、運動量の保存則を満たすフォノンの介在が必要となるのである。したがって、間接遷移半導体では、このフォノンの介在が必要となるために、間接遷移半導体を発光素子として使用した場合、発光効率が低くなるのである。つまり、間接遷移半導体では、バンド構造に起因して、発光効率が低くなるのである。このような間接遷移半導体としては、Si(シリコン)やGe(ゲルマニウム)がある。 <Indirect transition semiconductor>
On the other hand, FIG. 2 is a diagram showing a schematic band structure of an indirect transition semiconductor. In FIG. 2, the horizontal axis represents the wave number (k) corresponding to the momentum, and the vertical axis represents energy (E). In FIG. 2, the valence band and the conduction band constituting the band structure are shown, the upper end of the valence band is shown as Ev, and the lower end of the conduction band is shown as Ec. Here, in the indirect transition semiconductor, unlike the direct transition semiconductor, the upper end (Ev) of the valence band and the lower end (Ec) of the conduction band have different wave numbers. Therefore, for example, considering that electrons transition from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band, in the indirect transition semiconductor, the lower end (Ec) of the conduction band and the upper end of the valence band (Ev) ) Are different from each other, the momentum is not preserved when an electron transits alone from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band. That is, in an indirect transition semiconductor, the transition of electrons alone from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band does not satisfy the conservation of momentum. For this reason, in an indirect transition semiconductor, in order to preserve momentum by the transition of electrons from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band, interaction with components other than electrons is required. Become. That is, in the indirect transition semiconductor, the transition of electrons from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band requires interaction with the lattice vibration (phonon) of the crystal lattice. In other words, in an indirect transition semiconductor, in order for electrons to transition from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band, phonon intervention that satisfies the conservation law of momentum is required. Therefore, indirect transition semiconductors require this phonon intervention, so that when the indirect transition semiconductor is used as a light emitting element, the light emission efficiency is lowered. That is, in the indirect transition semiconductor, the light emission efficiency is lowered due to the band structure. Such indirect transition semiconductors include Si (silicon) and Ge (germanium).
一方、図2は、間接遷移半導体の模式的なバンド構造を示す図である。図2において、横軸は、運動量に対応した波数(k)を示し、縦軸は、エネルギー(E)を示している。図2において、バンド構造を構成する価電子帯と伝導帯とが示されており、価電子帯の上端をEvとして示し、伝導帯の下端をEcとして示している。ここで、間接遷移半導体では、直接遷移半導体とは異なり、価電子帯の上端(Ev)と伝導帯の下端(Ec)とが異なる波数を有している。したがって、例えば、伝導帯の下端(Ec)から価電子帯の上端(Ev)へ電子が遷移することを考えると、間接遷移半導体では、伝導帯の下端(Ec)と価電子帯の上端(Ev)の波数が異なることから、伝導帯の下端(Ec)から価電子帯の上端(Ev)へ電子が単独で遷移するとき、運動量が保存しないことなる。つまり、間接遷移半導体においては、伝導帯の下端(Ec)から価電子帯の上端(Ev)への電子単独での遷移は運動量の保存則を満たさないことになるのである。このため、間接遷移半導体においては、伝導帯の下端(Ec)から価電子帯の上端(Ev)への電子の遷移で運動量を保存するために、電子以外の構成要素との相互作用が必要となる。すなわち、間接遷移半導体においては、伝導帯の下端(Ec)から価電子帯の上端(Ev)への電子の遷移は、結晶格子の格子振動(フォノン)との相互作用が必要となるのである。つまり、間接遷移半導体において、伝導帯の下端(Ec)から価電子帯の上端(Ev)へ電子が遷移するためには、運動量の保存則を満たすフォノンの介在が必要となるのである。したがって、間接遷移半導体では、このフォノンの介在が必要となるために、間接遷移半導体を発光素子として使用した場合、発光効率が低くなるのである。つまり、間接遷移半導体では、バンド構造に起因して、発光効率が低くなるのである。このような間接遷移半導体としては、Si(シリコン)やGe(ゲルマニウム)がある。 <Indirect transition semiconductor>
On the other hand, FIG. 2 is a diagram showing a schematic band structure of an indirect transition semiconductor. In FIG. 2, the horizontal axis represents the wave number (k) corresponding to the momentum, and the vertical axis represents energy (E). In FIG. 2, the valence band and the conduction band constituting the band structure are shown, the upper end of the valence band is shown as Ev, and the lower end of the conduction band is shown as Ec. Here, in the indirect transition semiconductor, unlike the direct transition semiconductor, the upper end (Ev) of the valence band and the lower end (Ec) of the conduction band have different wave numbers. Therefore, for example, considering that electrons transition from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band, in the indirect transition semiconductor, the lower end (Ec) of the conduction band and the upper end of the valence band (Ev) ) Are different from each other, the momentum is not preserved when an electron transits alone from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band. That is, in an indirect transition semiconductor, the transition of electrons alone from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band does not satisfy the conservation of momentum. For this reason, in an indirect transition semiconductor, in order to preserve momentum by the transition of electrons from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band, interaction with components other than electrons is required. Become. That is, in the indirect transition semiconductor, the transition of electrons from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band requires interaction with the lattice vibration (phonon) of the crystal lattice. In other words, in an indirect transition semiconductor, in order for electrons to transition from the lower end (Ec) of the conduction band to the upper end (Ev) of the valence band, phonon intervention that satisfies the conservation law of momentum is required. Therefore, indirect transition semiconductors require this phonon intervention, so that when the indirect transition semiconductor is used as a light emitting element, the light emission efficiency is lowered. That is, in the indirect transition semiconductor, the light emission efficiency is lowered due to the band structure. Such indirect transition semiconductors include Si (silicon) and Ge (germanium).
以上のことから、発光素子としては、直接遷移半導体を使用することが望ましいが、「シリコンフォトニクス」で使用するシリコンやゲルマニウムは、間接遷移半導体であり、「シリコンフォトニクス」において発光効率の高い発光素子を実現するためには、工夫が必要とされることがわかる。そこで、本実施の形態1では、まず、以下に説明する知見を利用して、「シリコンフォトニクス」において発光効率の高い発光素子を実現する。
From the above, it is desirable to use a direct transition semiconductor as the light emitting element, but silicon and germanium used in “silicon photonics” are indirect transition semiconductors, and light emitting elements with high luminous efficiency in “silicon photonics” It can be seen that ingenuity is required to realize Therefore, in the first embodiment, first, a light-emitting element having high light emission efficiency in “silicon photonics” is realized by using the knowledge described below.
<実施の形態1で利用する知見>
図3(a)は、間接遷移半導体であるゲルマニウムのバンド構造を模式的に示す図である。図3(a)に示すように、ゲルマニウムのバンド構造では、Γ点における伝導帯のエネルギーがL点における伝導帯のエネルギーよりも高く、したがって、ゲルマニウムは、間接遷移半導体であることがわかる。ところが、ゲルマニウムに伸張歪みを与えると、バンドギャップが縮小することになり、このバンドギャップの縮小に伴って、Γ点における伝導帯のエネルギーがL点における伝導帯のエネルギーよりも低くなる。 <Knowledge used inEmbodiment 1>
FIG. 3A is a diagram schematically showing a band structure of germanium which is an indirect transition semiconductor. As shown in FIG. 3A, in the band structure of germanium, the energy of the conduction band at the Γ point is higher than the energy of the conduction band at the L point. Therefore, it can be seen that germanium is an indirect transition semiconductor. However, when germanium is subjected to an extension strain, the band gap is reduced, and as the band gap is reduced, the energy of the conduction band at the Γ point becomes lower than the energy of the conduction band at the L point.
図3(a)は、間接遷移半導体であるゲルマニウムのバンド構造を模式的に示す図である。図3(a)に示すように、ゲルマニウムのバンド構造では、Γ点における伝導帯のエネルギーがL点における伝導帯のエネルギーよりも高く、したがって、ゲルマニウムは、間接遷移半導体であることがわかる。ところが、ゲルマニウムに伸張歪みを与えると、バンドギャップが縮小することになり、このバンドギャップの縮小に伴って、Γ点における伝導帯のエネルギーがL点における伝導帯のエネルギーよりも低くなる。 <Knowledge used in
FIG. 3A is a diagram schematically showing a band structure of germanium which is an indirect transition semiconductor. As shown in FIG. 3A, in the band structure of germanium, the energy of the conduction band at the Γ point is higher than the energy of the conduction band at the L point. Therefore, it can be seen that germanium is an indirect transition semiconductor. However, when germanium is subjected to an extension strain, the band gap is reduced, and as the band gap is reduced, the energy of the conduction band at the Γ point becomes lower than the energy of the conduction band at the L point.
具体的に、図3(b)は、ゲルマニウムの結晶に伸張歪みを与えた場合のバンド構造を示す模式図である。図3(b)に示すように、ゲルマニウムの結晶に伸張歪みを与えると、Γ点における伝導帯のエネルギーがL点における伝導帯のエネルギーよりも低くなることがわかる。このことは、通常の結晶状態では間接遷移半導体であるゲルマニウムが、伸張歪みを与えると、直接遷移半導体として機能するようになるのである。このことから、「シリコンフォトニクス」において間接遷移半導体であるゲルマニウムを発光素子として使用する場合であっても、ゲルマニウムの結晶に伸張歪みを与える構造が実現できれば、ゲルマニウムを直接遷移半導体として機能させることができ、これによって、「シリコンフォトニクス」において、発光効率の高い発光素子を実現できることになる。すなわち、本実施の形態1では、例えば、ゲルマニウムやシリコンなどのような間接遷移半導体に伸張歪みを与えることによって、直接遷移半導体として機能させることができるという知見に基づき、「シリコンフォトニクス」において、発光効率の高い発光素子を実現する。
Specifically, FIG. 3B is a schematic diagram showing a band structure in the case where a tensile strain is applied to a germanium crystal. As shown in FIG. 3B, it can be seen that when the germanium crystal is stretched, the energy of the conduction band at the Γ point is lower than the energy of the conduction band at the L point. This means that germanium, which is an indirect transition semiconductor in a normal crystal state, functions as a direct transition semiconductor when it is given an extensional strain. Therefore, even if germanium, which is an indirect transition semiconductor, is used as a light-emitting element in “silicon photonics”, germanium can be made to function as a direct transition semiconductor if a structure that imparts tensile strain to germanium crystals can be realized. Thus, in “silicon photonics”, a light emitting element with high luminous efficiency can be realized. In other words, in the first embodiment, for example, light emission in “silicon photonics” is based on the knowledge that an indirect transition semiconductor such as germanium or silicon can be made to function as a direct transition semiconductor by applying an extension strain. A highly efficient light-emitting element is realized.
特に、ゲルマニウムでは、伸張歪みを与えない通常の状態において、Γ点における伝導帯のエネルギーがL点における伝導帯のエネルギーよりも高いが、その差はわずかであり、伸張歪みを与えると、容易にΓ点における伝導帯のエネルギーがL点における伝導帯のエネルギーよりも低くなる特性がある。すなわち、ゲルマニウムは、伸張歪みを与えることによって、間接遷移半導体から直接遷移半導体に容易に変化するのである。そこで、この点を考慮して、本明細書では、特に、ゲルマニウムに着目する。ただし、本実施の形態1における技術的思想は、ゲルマニウムに限定されるものではなく、例えば、シリコンに代表されるその他の間接遷移半導体に幅広く適用することができる。
In particular, in germanium, the energy of the conduction band at the Γ point is higher than the energy of the conduction band at the L point in a normal state where no tensile strain is applied, but the difference is slight, and it is easy to apply the tensile strain. There is a characteristic that the energy of the conduction band at the Γ point is lower than the energy of the conduction band at the L point. That is, germanium easily changes from an indirect transition semiconductor to a direct transition semiconductor by applying an extension strain. Therefore, in consideration of this point, the present specification pays particular attention to germanium. However, the technical idea in the first embodiment is not limited to germanium, and can be widely applied to, for example, other indirect transition semiconductors represented by silicon.
本発明者は、間接遷移半導体に伸張歪みを与えると直接遷移半導体として機能させることができるという上述した知見をゲルマニウムに適用する場合、以下に示す解決すべき事項が存在することを新たに見出し、この解決すべき事項について改善の検討を行なったので、以下では、この改善の検討について説明する。
The present inventor newly found that there is a matter to be solved as shown below when applying the above-described knowledge that the indirect transition semiconductor can function as a direct transition semiconductor when tensile strain is applied to the indirect transition semiconductor, Since the improvement of the matter to be solved has been examined, the following will describe the improvement.
<改善の検討>
上述したような結晶に応力を与えて高性能化を目指すアプローチは、例えば、シリコンに形成されたMOSFETの移動度を向上させるためにチャネルに歪みを加える、いわゆる歪みチャネル構造において、これまでに原理や製造技術が研究されている。ただし、この技術は、シリコンに形成されたMOSFETなどの電子デバイスの高性能化に対するアプローチであり、本発明者の新たな検討によると、結晶に応力を与えて高性能化を実現するアプローチを光デバイスに適用する場合には、新たに改善すべき事項が存在する。 <Examination of improvement>
The above-mentioned approach for improving the performance by applying stress to the crystal, for example, in the so-called strained channel structure that applies strain to the channel in order to improve the mobility of the MOSFET formed in silicon, has so far been the principle And manufacturing technology is being researched. However, this technology is an approach to improving the performance of electronic devices such as MOSFETs formed on silicon. According to a new study by the inventor, an approach to improve the performance by applying stress to crystals has been proposed. When applied to devices, there are new improvements.
上述したような結晶に応力を与えて高性能化を目指すアプローチは、例えば、シリコンに形成されたMOSFETの移動度を向上させるためにチャネルに歪みを加える、いわゆる歪みチャネル構造において、これまでに原理や製造技術が研究されている。ただし、この技術は、シリコンに形成されたMOSFETなどの電子デバイスの高性能化に対するアプローチであり、本発明者の新たな検討によると、結晶に応力を与えて高性能化を実現するアプローチを光デバイスに適用する場合には、新たに改善すべき事項が存在する。 <Examination of improvement>
The above-mentioned approach for improving the performance by applying stress to the crystal, for example, in the so-called strained channel structure that applies strain to the channel in order to improve the mobility of the MOSFET formed in silicon, has so far been the principle And manufacturing technology is being researched. However, this technology is an approach to improving the performance of electronic devices such as MOSFETs formed on silicon. According to a new study by the inventor, an approach to improve the performance by applying stress to crystals has been proposed. When applied to devices, there are new improvements.
ここで、応力の与え方の分類として、デバイスに局所的に応力を与えるローカル応力と、半導体基板(ウェハ)などの構造体全体に応力を与えるグローバル応力とがある。まず、ローカル応力に着目して、本発明者が見出した改善すべき事項について説明する。
Here, as a classification of how to give stress, there are local stress that gives stress locally to the device and global stress that gives stress to the whole structure such as a semiconductor substrate (wafer). First, focusing on the local stress, the matters to be improved found by the present inventor will be described.
図4は、ローカル応力について改善すべき事項を説明する図である。特に、図4(a)は、光導波路層であるコア層にローカル応力を与える構成例を模式的に示す図であり、図4(b)は、コア層に加わる伸張歪みを視覚化した図である。図4(a)において、例えば、絶縁膜IF上にシリコンからなるクラッド層CLDが形成されており、このクラッド層CLDに挟まれるように、ゲルマニウムからなるコア層CRLが形成されている。このとき、コア層CRLを構成するゲルマニウムの屈折率は、クラッド層CLDを構成するシリコンの屈折率よりも大きいので、コア層CRLを伝播する光は、コア層CRL内に閉じ込められることになる。このようにして、光導波路層であるコア層CRLが構成される。
FIG. 4 is a diagram for explaining matters to be improved with respect to local stress. In particular, FIG. 4A is a diagram schematically illustrating a configuration example in which local stress is applied to the core layer, which is an optical waveguide layer, and FIG. 4B is a diagram visualizing tensile strain applied to the core layer. It is. In FIG. 4A, for example, a clad layer CLD made of silicon is formed on the insulating film IF, and a core layer CRL made of germanium is formed so as to be sandwiched between the clad layers CLD. At this time, since the refractive index of germanium constituting the core layer CRL is larger than the refractive index of silicon constituting the cladding layer CLD, the light propagating through the core layer CRL is confined in the core layer CRL. In this way, the core layer CRL that is an optical waveguide layer is configured.
そして、図4(a)に示すように、クラッド層CLDで挟まれたコア層CRLの表面には、圧縮応力膜10が形成されている。このとき、圧縮応力膜10とは、膜自体に圧縮応力が加わる結果、膜自体は伸張しようとする膜である。したがって、圧縮応力膜10と接するコア層CRLには、伸張歪みが加わることになる。具体的には、図4(b)に示すように、コア層CRLの表面側に伸張歪みが加わっていることがわかる。
As shown in FIG. 4A, a compressive stress film 10 is formed on the surface of the core layer CRL sandwiched between the clad layers CLD. At this time, the compressive stress film 10 is a film that tends to stretch as a result of applying compressive stress to the film itself. Therefore, a tensile strain is applied to the core layer CRL in contact with the compressive stress film 10. Specifically, as shown in FIG. 4B, it can be seen that an extension strain is applied to the surface side of the core layer CRL.
圧縮応力膜10によって与えられる伸張歪みは、圧縮応力膜10とコア層CRLとの界面が最大であり、圧縮応力膜10からの距離が離れるにしたがって減少するため、コア層CRL内での伸張歪みの分布は不均一分布となる。この結果、圧縮応力膜10による実効的な伸張歪みの効果は、コア層CRLの表面から数十nmの深さまでの領域に限定される。したがって、圧縮応力膜10による伸張歪みは、例えば、MOSFETのチャネル領域のように、表面付近(深さ数十nm~100nm程度)に形成される部位に対しては有効に加わることになるが、数百nm以上の深さを有する部位に対しては有効に加わらなくなる。特に、本実施の形態1で対象としているゲルマニウムからなるコア層の厚さは、数百nm程度となるため、圧縮応力膜10によるローカル応力では、ゲルマニウムからなるコア層CRL全体に伸張歪みを与えることが困難となる。すなわち、間接遷移半導体に伸張歪みを与えると直接遷移半導体として機能させる観点からは、コア層CRL全体に伸張歪みを与える必要があるが、圧縮応力膜10によるローカル応力では、数百nm程度の厚さを有するコア層CRL全体に伸張歪みを与えることは困難なのである。
The tensile strain applied by the compressive stress film 10 is maximum at the interface between the compressive stress film 10 and the core layer CRL, and decreases as the distance from the compressive stress film 10 increases. Therefore, the tensile strain in the core layer CRL is reduced. The distribution of is non-uniform. As a result, the effect of effective stretching strain by the compressive stress film 10 is limited to a region from the surface of the core layer CRL to a depth of several tens of nm. Accordingly, the tensile strain due to the compressive stress film 10 is effectively applied to a portion formed near the surface (depth of about several tens to 100 nm), for example, like a channel region of a MOSFET. It does not effectively apply to a portion having a depth of several hundred nm or more. In particular, since the thickness of the core layer made of germanium targeted in the first embodiment is about several hundred nm, the local stress caused by the compressive stress film 10 gives tensile strain to the entire core layer CRL made of germanium. It becomes difficult. In other words, from the viewpoint of causing an indirect transition semiconductor to function as a direct transition semiconductor, it is necessary to give the entire core layer CRL an extension strain, but the local stress due to the compressive stress film 10 has a thickness of about several hundred nm. It is difficult to give an extension strain to the entire core layer CRL having a thickness.
この点に関し、コア層CRL全体に伸張歪みを与えるために、ゲルマニウムからなるコア層CRLの厚さを薄くすることが考えられるが、ゲルマニウムからなるコア層CRLの厚さを薄くすることは妥当ではないのである。以下に、この理由について説明する。
In this regard, it is conceivable to reduce the thickness of the core layer CRL made of germanium in order to give the entire core layer CRL a tensile strain. However, it is appropriate to reduce the thickness of the core layer CRL made of germanium. There is no. The reason for this will be described below.
光導波路層となるコア層CRLは、伝搬光をコア層CRL内に閉じ込めるため、コア層CRLとして、(波長/屈折率)程度の厚さが必要となる。さらには、ゲルマニウムの物性や品質を維持する観点から、コア層CRLを厚くする必要があるのである。なぜなら、ゲルマニウムをシリコン上に形成する際、ゲルマニウムとシリコンとの格子定数の不一致によって、シリコン上に形成されるゲルマニウムには、原理的に欠陥密度や転位密度が大きくなるため、これらの欠陥密度や転位密度を減少させるために、コア層CRL(ゲルマニウム層)を厚くする必要があるからである。すなわち、欠陥密度や転位密度を減少させて結晶性を向上させるために、数十nmのバッファ層を含むコア層CRL全体の厚さを数百nm以上に厚くする必要があるのである。さらに、ゲルマニウムは、化合物半導体に比べて、材料利得が小さいため、発光層であるコア層CRLを厚くすることによる体積効果によって、小さな材料利得を補って、発光効率を示すモード利得を大きくする必要がある。以上のことから、コア層CRLの厚さを薄くすることは困難なのである。
The core layer CRL serving as the optical waveguide layer needs to have a thickness of about (wavelength / refractive index) as the core layer CRL in order to confine propagating light in the core layer CRL. Furthermore, it is necessary to increase the thickness of the core layer CRL from the viewpoint of maintaining the physical properties and quality of germanium. This is because, when germanium is formed on silicon, germanium formed on silicon due to a mismatch in lattice constant between germanium and silicon, in principle, has a large defect density and dislocation density. This is because the core layer CRL (germanium layer) needs to be thickened in order to reduce the dislocation density. In other words, in order to improve the crystallinity by reducing the defect density and the dislocation density, it is necessary to increase the thickness of the entire core layer CRL including the buffer layer of several tens of nm to several hundred nm or more. Furthermore, since germanium has a smaller material gain than a compound semiconductor, it is necessary to compensate for the small material gain and increase the mode gain indicating the luminous efficiency by the volume effect by increasing the thickness of the core layer CRL as the light emitting layer. There is. From the above, it is difficult to reduce the thickness of the core layer CRL.
ゲルマニウムの発光波長は、約1600nmであり、ゲルマニウムの屈折率は、約4である。さらに、モード利得の増大を意図して、コア層CRL(発光層)に伝搬光の電界を多く分布させるためには、(波長/屈折率)=400nm程度の厚さが必要である。ここで、(波長/屈折率)程度のコア層CRLを伝搬する伝搬光の電界ピークは、コア層CRLの中心付近に位置する。このため、コア層CRLの中心付近の材料利得が伝搬光の増幅に寄与する比率が高くなる。逆に言えば、コア層CRLの表面付近や裏面付近の材料特性が発光特性に与える影響は小さいのである。すなわち、図4(a)に示す圧縮応力膜10によるローカル応力では、コア層CRLの表面に局所的に伸張歪みを与えることはできるが、コア層CRL全体に伸張歪みを与えることはできないとともに、発光効率を示すモード利得というパラメータへの寄与も小さいのである。したがって、図4(a)に示す圧縮応力膜10によるローカル応力では、充分に発光効率を向上することが困難なのである。
The emission wavelength of germanium is about 1600 nm, and the refractive index of germanium is about 4. Further, in order to increase the mode gain and distribute the electric field of propagating light in the core layer CRL (light emitting layer), a thickness of (wavelength / refractive index) = about 400 nm is required. Here, the electric field peak of the propagation light propagating through the core layer CRL of about (wavelength / refractive index) is located near the center of the core layer CRL. For this reason, the ratio that the material gain near the center of the core layer CRL contributes to the amplification of the propagation light becomes high. In other words, the influence of the material properties near the front surface and near the back surface of the core layer CRL on the light emission properties is small. That is, in the local stress caused by the compressive stress film 10 shown in FIG. 4A, the surface of the core layer CRL can be locally stretched, but the entire core layer CRL cannot be stretched. The contribution to the parameter called mode gain indicating the luminous efficiency is also small. Therefore, it is difficult to sufficiently improve the light emission efficiency with the local stress by the compressive stress film 10 shown in FIG.
この点に関し、応力を与える別の手法として、構造体全体(例えば、半導体基板全体)を変形させるグローバル応力というものがある。例えば、グローバル応力としては、半導体基板(ウェハ)全体を反らせる手法がある。このグローバル応力は、ローカル応力に比べて、半導体基板全体に強く均一な応力を加えることができるという長所を有している。一方、グローバル応力を加える手法では、半導体基板への反りの発生や過大な応力による半導体基板の破損などが懸念される。さらには、以下に示すように、グローバル応力を加える手法においても、充分に発光効率を向上することが困難なのである。
In this regard, another technique for applying stress is global stress that deforms the entire structure (for example, the entire semiconductor substrate). For example, as the global stress, there is a method of warping the entire semiconductor substrate (wafer). This global stress has an advantage that a strong and uniform stress can be applied to the entire semiconductor substrate compared to the local stress. On the other hand, in the method of applying global stress, there is a concern that the semiconductor substrate may be warped or the semiconductor substrate may be damaged due to excessive stress. Furthermore, as shown below, it is difficult to sufficiently improve the light emission efficiency even in the method of applying global stress.
図5は、グローバル応力について改善すべき事項を説明する図である。特に、図5(a)は、光導波路層であるコア層にグローバル応力を与える構成例を模式的に示す図であり、図5(b)は、コア層に加わる伸張歪みを視覚化した図である。図5(a)において、例えば、絶縁膜IF上にシリコンからなるクラッド層CLDが形成されており、このクラッド層CLDに挟まれるように、ゲルマニウムからなるコア層CRLが形成されている。このとき、コア層CRLを構成するゲルマニウムの屈折率は、クラッド層CLDを構成するシリコンの屈折率よりも大きいので、コア層CRLを伝播する光は、コア層CRL内に閉じ込められることになる。このようにして、光導波路層であるコア層CRLが構成される。
FIG. 5 is a diagram for explaining matters to be improved regarding global stress. In particular, FIG. 5A is a diagram schematically showing a configuration example in which global stress is applied to the core layer which is an optical waveguide layer, and FIG. 5B is a diagram visualizing the extension strain applied to the core layer. It is. In FIG. 5A, for example, a clad layer CLD made of silicon is formed on the insulating film IF, and a core layer CRL made of germanium is formed so as to be sandwiched between the clad layers CLD. At this time, since the refractive index of germanium constituting the core layer CRL is larger than the refractive index of silicon constituting the cladding layer CLD, the light propagating through the core layer CRL is confined in the core layer CRL. In this way, the core layer CRL that is an optical waveguide layer is configured.
そして、図5(a)に示すように、クラッド層CLDの表面からコア層CRLの表面を覆うように伸張応力膜11が形成されている。このとき、伸張応力膜11とは、膜自体に伸張応力が加わる結果、膜自体は圧縮しようとする膜である。したがって、伸張応力膜11と接するコア層CRLには、圧縮歪みが加わることになる。具体的には、図5(b)に示すように、コア層CRLの表面側に圧縮歪みが加わっていることがわかる。
Then, as shown in FIG. 5A, an extension stress film 11 is formed so as to cover the surface of the core layer CRL from the surface of the cladding layer CLD. At this time, the extension stress film 11 is a film to be compressed as a result of extension stress being applied to the film itself. Therefore, compressive strain is applied to the core layer CRL in contact with the tensile stress film 11. Specifically, as shown in FIG. 5B, it can be seen that compressive strain is applied to the surface side of the core layer CRL.
ここで、グローバル応力によって、構造体に歪みを与える場合には、図5(b)に示すように、構造体が延びる部分(裏面側)と構造体が縮む部分(表面側)とが存在する。すなわち、グローバル応力では、構造体全体に同一方向(同じ特性)の歪みを与えることが困難なのである。この結果、グローバル応力では、コア層CRL全体に伸張歪みを与えることができなくなるのである。つまり、コア層CRLにグローバル応力を加える場合、伸張歪みが加わる箇所においては、発光効率が高くなる一方、圧縮歪みが加わる箇所においては、発光効率が低くなる。このことから、グローバル応力によっても、充分にコア層CRLの発光効率を向上することが困難となるのである。
Here, when the structure is distorted by the global stress, as shown in FIG. 5B, there are a portion where the structure is extended (back side) and a portion where the structure is contracted (front side). . That is, with global stress, it is difficult to impart distortion in the same direction (same characteristics) to the entire structure. As a result, the global stress cannot give the entire core layer CRL an extensional strain. In other words, when global stress is applied to the core layer CRL, the light emission efficiency is increased at the location where the extension strain is applied, while the light emission efficiency is decreased at the location where the compression strain is applied. For this reason, it is difficult to sufficiently improve the light emission efficiency of the core layer CRL even by the global stress.
以上のことから、本発明者の検討によると、数百nm程度の厚さを有するコア層CRL全体に伸張歪みを与えることにより、コア層CRL全体の発光効率を向上させるためには、工夫が必要とされることがわかる。そこで、本実施の形態1では、数百nm程度の厚さを有するコア層CRL全体に伸張歪みを与える工夫を施すことにより、コア層CRL全体の発光効率を向上させることを実現している。以下では、この工夫を施した本実施の形態1における基本思想について、図面を参照しながら説明することにする。
From the above, according to the study of the present inventor, in order to improve the light emission efficiency of the entire core layer CRL by applying a tensile strain to the entire core layer CRL having a thickness of about several hundreds of nanometers, a device is devised. You can see that it is needed. Therefore, in the first embodiment, it is possible to improve the light emission efficiency of the entire core layer CRL by applying a device for imparting tensile strain to the entire core layer CRL having a thickness of about several hundred nm. In the following, the basic idea in the first embodiment to which this device has been applied will be described with reference to the drawings.
<実施の形態1における基本思想>
図6は、本実施の形態1における基本思想を説明する図である。図6に示すように、絶縁膜IF上にクラッド層CLDとコア層CRLとが形成されており、このクラッド層CLDに挟まれるようにコア層CRLが配置されている。そして、コア層CRLの表面上には、圧縮応力膜10が形成されており、さらに、この圧縮応力膜10を覆い、かつ、クラッド層CLD上にわたって伸張応力膜11が形成されている。すなわち、本実施の形態1における基本思想は、圧縮応力膜10と伸張応力膜11とを併用する技術的思想であり、特に、コア層CRLの表面上に圧縮応力膜10を形成し、かつ、圧縮応力膜10を覆い、かつ、クラッド層CLD上にわたって伸張応力膜11を形成する技術的思想である。 <Basic idea inEmbodiment 1>
FIG. 6 is a diagram for explaining the basic idea in the first embodiment. As shown in FIG. 6, a clad layer CLD and a core layer CRL are formed on the insulating film IF, and the core layer CRL is arranged so as to be sandwiched between the clad layers CLD. Acompressive stress film 10 is formed on the surface of the core layer CRL, and an extension stress film 11 is formed over the compressive stress film 10 and over the cladding layer CLD. That is, the basic idea in the first embodiment is a technical idea of using the compressive stress film 10 and the tensile stress film 11 in combination, in particular, forming the compressive stress film 10 on the surface of the core layer CRL, and This is a technical idea of covering the compressive stress film 10 and forming the tensile stress film 11 over the clad layer CLD.
図6は、本実施の形態1における基本思想を説明する図である。図6に示すように、絶縁膜IF上にクラッド層CLDとコア層CRLとが形成されており、このクラッド層CLDに挟まれるようにコア層CRLが配置されている。そして、コア層CRLの表面上には、圧縮応力膜10が形成されており、さらに、この圧縮応力膜10を覆い、かつ、クラッド層CLD上にわたって伸張応力膜11が形成されている。すなわち、本実施の形態1における基本思想は、圧縮応力膜10と伸張応力膜11とを併用する技術的思想であり、特に、コア層CRLの表面上に圧縮応力膜10を形成し、かつ、圧縮応力膜10を覆い、かつ、クラッド層CLD上にわたって伸張応力膜11を形成する技術的思想である。 <Basic idea in
FIG. 6 is a diagram for explaining the basic idea in the first embodiment. As shown in FIG. 6, a clad layer CLD and a core layer CRL are formed on the insulating film IF, and the core layer CRL is arranged so as to be sandwiched between the clad layers CLD. A
これにより、まず、コア層CRLからクラッド層CLDにわたって形成されている伸張応力膜11によって、コア層CRLとクラッド層CLDとを含む構造体全体にグローバル応力が加わって下に凸の歪みを与えることができる。具体的には、伸張応力膜11によって、伸張応力膜11が接触しているクラッド層CLDの表面側に圧縮応力が加わる。この結果、図6に示すように、クラッド層CLDおよびコア層CRLの裏面側よりもクラッド層CLDおよびコア層CRLの表面側が相対的に縮む。したがって、図6に示すように、クラッド層CLDおよびコア層CRLの裏面側の領域AR2には、伸張歪みが生じることになる。このようにして、伸張応力膜11に起因するグローバル応力によって、コア層CRLの裏面側からコア層CRLに伸張歪みを与えることができる。
Thereby, first, the tensile stress film 11 formed from the core layer CRL to the clad layer CLD applies global stress to the entire structure including the core layer CRL and the clad layer CLD to give a downward convex distortion. Can do. Specifically, the tensile stress film 11 applies a compressive stress to the surface side of the cladding layer CLD with which the tensile stress film 11 is in contact. As a result, as shown in FIG. 6, the front surface side of the cladding layer CLD and the core layer CRL contracts relative to the back surface side of the cladding layer CLD and the core layer CRL. Therefore, as shown in FIG. 6, stretch distortion occurs in the area AR <b> 2 on the back surface side of the cladding layer CLD and the core layer CRL. In this way, the tensile stress can be applied to the core layer CRL from the back side of the core layer CRL by the global stress resulting from the tensile stress film 11.
一方、伸張応力膜11に起因するグローバル応力では、コア層CRLの表面側に圧縮歪みが加わることになることから、グローバル応力だけでは、コア層CRLの表面側に伸張歪みを与えることができない。このため、本実施の形態1では、図6に示すように、コア層CRL上であって、コア層CRLと伸張応力膜11との間に圧縮応力膜10を介在させている。これにより、コア層CRLの表面側にある領域AR1には、コア層CRLと接触している圧縮応力膜10によって伸張歪みを与えることができる。つまり、本実施の形態1では、コア層CRLと伸張応力膜11との間に圧縮応力膜10を介在させることにより、コア層CRLの表面側に伸張歪みを与えることができるのである。
On the other hand, in the global stress caused by the tensile stress film 11, compressive strain is applied to the surface side of the core layer CRL. Therefore, the global strain alone cannot apply the tensile strain to the surface side of the core layer CRL. Therefore, in the first embodiment, as shown in FIG. 6, the compressive stress film 10 is interposed between the core layer CRL and the extension stress film 11 on the core layer CRL. As a result, the region AR1 on the surface side of the core layer CRL can be given tensile strain by the compressive stress film 10 in contact with the core layer CRL. That is, in the first embodiment, the compressive stress film 10 is interposed between the core layer CRL and the extension stress film 11, so that an extension strain can be applied to the surface side of the core layer CRL.
以上のことから、本実施の形態1によれば、図6に示すように、コア層CRLとクラッド層CLDを含む構造体全体にわたって形成されている伸張応力膜11によって、構造体全体に反りを発生させて、コア層CRLの裏面側(領域AR2)に伸張歪みを与えることができる。さらに、本実施の形態1によれば、コア層CRL上に局所的に形成されている圧縮応力膜10によって、コア層CRLの表面側(領域AR1)に伸張歪みを与えることができる。この結果、本実施の形態1によれば、コア層CRLの表面側と裏面側との両側から伸張歪みを加えることができるため、厚さの厚いコア層CRL全体にわたって伸張歪みを与えることができる。したがって、本実施の形態1によれば、コア層CRLを形成しているゲルマニウム全体に伸張歪みを与えることになる結果、ゲルマニウム全体を直接遷移半導体として機能させることができ、これによって、コア層CRLを発光層として使用する場合の発光効率を向上させることができる。
From the above, according to the first embodiment, as shown in FIG. 6, the tensile stress film 11 formed over the entire structure including the core layer CRL and the cladding layer CLD warps the entire structure. It is possible to generate an extension strain on the back side (region AR2) of the core layer CRL. Furthermore, according to the first embodiment, the compressive stress film 10 locally formed on the core layer CRL can give a tensile strain to the surface side (region AR1) of the core layer CRL. As a result, according to the first embodiment, since the extension strain can be applied from both the front surface side and the back surface side of the core layer CRL, the extension strain can be applied to the entire thick core layer CRL. . Therefore, according to the first embodiment, the entire germanium forming the core layer CRL is stretched and strained. As a result, the entire germanium can be directly functioned as a transition semiconductor. Luminous efficiency when using as a light emitting layer can be improved.
すなわち、本実施の形態1における基本思想の特徴点は、グローバル応力とローカル応力とを併用する点にあり、特に、グローバル応力によって、コア層CRLの裏面側からコア層CRLに伸張歪みを与えることが可能となるとともに、ローカル応力によって、コア層CRLの表面側からコア層CRLに伸張歪みを与えることが可能となる。つまり、単独のグローバル応力および単独のローカル応力では、コア層CRL全体に伸張歪みを与えることが困難である一方で、グローバル応力とローカル応力とを組み合わせる本実施の形態1における基本思想によれば、コア層CRL全体に伸張歪みを与えることができるという点で、本実施の形態1における基本思想は、優れた技術的思想であるということができる。
That is, the feature point of the basic idea in the first embodiment is that the global stress and the local stress are used together, and in particular, the tensile stress is applied to the core layer CRL from the back side of the core layer CRL by the global stress. In addition, it is possible to give an extension strain to the core layer CRL from the surface side of the core layer CRL by local stress. That is, with the single global stress and the single local stress, it is difficult to give an extension strain to the entire core layer CRL. On the other hand, according to the basic idea in the first embodiment that combines the global stress and the local stress, It can be said that the basic idea in the first embodiment is an excellent technical idea in that an extension strain can be applied to the entire core layer CRL.
図7(a)は、発光層であるコア層にグローバル応力とローカル応力の両方を与える構成例を模式的に示す図であり、図7(b)は、コア層に加わる伸張歪みを視覚化した図である。図7(a)において、例えば、絶縁膜IF上にシリコンからなるクラッド層CLDとコア層CRLとが形成されており、このクラッド層CLDに挟まれるように、ゲルマニウムからなるコア層CRLが形成されている。このとき、コア層CRLを構成するゲルマニウムの屈折率は、クラッド層CLDを構成するシリコンの屈折率よりも大きいので、コア層CRLを伝播する光は、コア層CRL内に閉じ込められることになる。このようにして、光導波路層であるコア層CRLが構成される。そして、図7(a)に示すように、クラッド層CLDの表面からコア層CRLの表面を覆うように伸張応力膜11が形成され、かつ、コア層CRLの直上に局所的な圧縮応力膜10が形成されている。このとき、圧縮応力膜10とは、膜自体に圧縮応力が加わる結果、膜自体は伸張しようとする膜である。一方、伸張応力膜11とは、膜自体に伸張応力が加わる結果、膜自体は圧縮しようとする膜である。したがって、圧縮応力膜10と接しているコア層CRLの表面側には、圧縮応力膜10に起因するローカル応力によって伸張歪みが加わるとともに、クラッド層CLDからコア層CRLの表面側にわたって形成されている伸張応力膜11に起因するグローバル応力によって、コア層CRLの裏面側に伸張歪みが加わることになる。つまり、図7(a)に示す構成例によれば、コア層CRL全体に伸張歪みを加えることができる。具体的には、図7(b)に示すように、コア層CRLの表面側と裏面側の両側から伸張歪みが加わって、コア層CRL全体に伸張歪みが与えられていることがわかる。
FIG. 7A is a diagram schematically illustrating a configuration example in which both the global stress and the local stress are applied to the core layer which is the light emitting layer, and FIG. 7B visualizes the extension strain applied to the core layer. FIG. In FIG. 7A, for example, a clad layer CLD and a core layer CRL made of silicon are formed on the insulating film IF, and a core layer CRL made of germanium is formed so as to be sandwiched between the clad layers CLD. ing. At this time, since the refractive index of germanium constituting the core layer CRL is larger than the refractive index of silicon constituting the cladding layer CLD, the light propagating through the core layer CRL is confined in the core layer CRL. In this way, the core layer CRL that is an optical waveguide layer is configured. Then, as shown in FIG. 7A, an extensional stress film 11 is formed so as to cover the surface of the core layer CRL from the surface of the cladding layer CLD, and the local compressive stress film 10 is directly above the core layer CRL. Is formed. At this time, the compressive stress film 10 is a film that tends to stretch as a result of applying compressive stress to the film itself. On the other hand, the extension stress film 11 is a film to be compressed as a result of extension stress being applied to the film itself. Accordingly, the surface side of the core layer CRL that is in contact with the compressive stress film 10 is subjected to tensile strain due to local stress caused by the compressive stress film 10 and is formed from the cladding layer CLD to the surface side of the core layer CRL. Due to the global stress resulting from the stretch stress film 11, stretch strain is applied to the back side of the core layer CRL. That is, according to the configuration example shown in FIG. 7A, it is possible to apply an extension strain to the entire core layer CRL. Specifically, as shown in FIG. 7B, it can be seen that tensile strain is applied to the entire core layer CRL by applying tensile strain from both the front and back sides of the core layer CRL.
次に、本実施の形態1における基本思想による効果について説明する。まず、図8は、コア層CRLの直上に局所的に圧縮応力膜10を形成する構成例におけるモード利得について説明する図である。図8において、モード利得(Gmod(x,z))とは、発光効率を示す指標であり、モード利得が大きい程、発光効率が大きくなることを意味する。そして、図8に示すように、モード利得は、コア層CRL内の光強度分布(Γ(x,z)と材料利得(gmat(ε(x,z))との積をコア層CRL内で積分して得ることができる。
Next, the effect by the basic idea in this Embodiment 1 is demonstrated. First, FIG. 8 is a diagram illustrating a mode gain in a configuration example in which the compressive stress film 10 is locally formed immediately above the core layer CRL. In FIG. 8, the mode gain (G mod (x, z)) is an index indicating the light emission efficiency, and means that the light emission efficiency increases as the mode gain increases. As shown in FIG. 8, the mode gain is the product of the light intensity distribution (Γ (x, z)) and the material gain (g mat (ε (x, z))) in the core layer CRL. It can be obtained by integrating with.
このとき、材料利得は、コア層CRLに加えられる伸張歪みの関数(εの関数)であり、例えば、伸張歪みが大きくなる程、材料利得は大きくなる。したがって、モード利得を大きくするためには、材料利得を大きくする必要があるが、例えば、通常の伸張歪みが加わらないゲルマニウムの材料利得は化合物半導体に比べて小さい。
At this time, the material gain is a function of the extension strain (function of ε) applied to the core layer CRL. For example, the greater the extension strain, the greater the material gain. Therefore, in order to increase the mode gain, it is necessary to increase the material gain. For example, the material gain of germanium to which normal stretch strain is not applied is smaller than that of the compound semiconductor.
したがって、ゲルマニウムから構成されるコア層CRLの材料利得を大きくするためには、コア層CRLに加える伸張歪みを大きくすることが有効である。言い換えれば、コア層CRLを構成するゲルマニウムに伸張歪みを与えて直接遷移半導体として機能させることにより、材料利得を大きくすることが重要である。
Therefore, in order to increase the material gain of the core layer CRL made of germanium, it is effective to increase the tensile strain applied to the core layer CRL. In other words, it is important to increase the material gain by applying a tensile strain to the germanium constituting the core layer CRL and causing it to function directly as a transition semiconductor.
この点に関し、図8に示す構成例では、コア層CRLの表面側の一部領域(ドットを付した領域)にしか伸張歪みが加わらない。このことから,図8に示す構成例では、光強度分布のうちの光強度の小さな部分(ドットを付した領域)と、この部分に対応した材料利得のうちに伸張歪みが大きくなる部分(ドットを付した領域)の積だけがモード利得に寄与することになる。すなわち、図8に示す構成例では、コア層CRLの表面側の一部分しか伸張歪みが加わらないことに起因して、モード利得が大きくならないのである。言い換えれば、図8に示す構成例では、発光効率を向上することが困難なのである。つまり、図8に示す構成例では、光強度が大きいコア層CRLの中心部分に伸張歪みを与えることができないことによって、光強度と材料利得の積を大きくすることができないのである。
In this regard, in the configuration example shown in FIG. 8, stretch distortion is applied only to a partial area (area with dots) on the surface side of the core layer CRL. Therefore, in the configuration example shown in FIG. 8, a portion with a small light intensity (region with dots) in the light intensity distribution, and a portion with a large expansion strain (dots) in the material gain corresponding to this portion. Only the product of the region marked with) contributes to the mode gain. That is, in the configuration example shown in FIG. 8, the mode gain does not increase due to the fact that only a part of the surface side of the core layer CRL is subjected to an extensional strain. In other words, it is difficult to improve the light emission efficiency in the configuration example shown in FIG. That is, in the configuration example shown in FIG. 8, the product of the light intensity and the material gain cannot be increased because it is not possible to give an extension strain to the central portion of the core layer CRL where the light intensity is high.
一方、図9は、本実施の形態1における基本思想を実現する構成例におけるモード利得を説明する図である。図9において、本実施の形態1における基本思想では、コア層CRLの直上に局所的に圧縮応力膜10を設けるとともに、コア層CRLからクラッド層にわたるコア層CRLの表面側に圧縮応力膜10を覆う伸張応力膜11を設けている。この結果、図9に示す構成例では、コア層CRLの表面側からコア層CRYLに圧縮応力膜10に起因する伸張歪みが加わり、かつ、コア層CRLの裏面側からコア層CRLに伸張応力膜11に起因する伸張歪みが加わる。これにより、図9に示す本実施の形態1における基本思想を具現化した構成例では、コア層CRL全体に伸張歪みが加わることになる(ドットを付している)。したがって、図9に示す本実施の形態1における基本思想を実現した構成例では、コア層CRL全体に伸張歪みが加わることによって、コア層CRL全体において材料利得(伸張歪みに対応する)が大きくなり、これによって、光強度分布のうちの光強度が大きい部分からのモード利得への寄与を大きくすることができる。すなわち、図9に示す本実施の形態1における基本思想を実現した構成例では、コア層CRL全体に伸張歪みを加えることができる結果、モード利得に寄与する光強度と材料利得の積を大きくすることができるのである。これにより、図9に示す本実施の形態1における基本思想を実現した構成例では、大幅なモード利得の増加を図ることができる。このことは、図9に示す本実施の形態1における基本思想を実現した構成例では、発光層として機能するコア層CRLでの発光効率を向上できることを意味し、「シリコンフォトニクス」として間接遷移半導体であるゲルマニウムを使用しながらも、直接遷移半導体レベルの発光効率を実現できるという優れた効果を得ることができるのである。
On the other hand, FIG. 9 is a diagram for explaining the mode gain in the configuration example for realizing the basic idea in the first embodiment. In FIG. 9, in the basic idea in the first embodiment, the compressive stress film 10 is locally provided immediately above the core layer CRL, and the compressive stress film 10 is provided on the surface side of the core layer CRL extending from the core layer CRL to the cladding layer. An extending stress film 11 is provided. As a result, in the configuration example shown in FIG. 9, the tensile strain caused by the compressive stress film 10 is applied to the core layer CRYL from the surface side of the core layer CRL, and the tensile stress film is applied to the core layer CRL from the back surface side of the core layer CRL. 11 is added to the stretching strain. As a result, in the configuration example that embodies the basic idea in the first embodiment shown in FIG. 9, an expansion strain is applied to the entire core layer CRL (dots are attached). Therefore, in the configuration example in which the basic idea in the first embodiment shown in FIG. 9 is realized, the material gain (corresponding to the tensile strain) is increased in the entire core layer CRL by adding the tensile strain to the entire core layer CRL. This makes it possible to increase the contribution to the mode gain from the portion of the light intensity distribution where the light intensity is high. That is, in the configuration example in which the basic idea in the first embodiment shown in FIG. 9 is realized, a tensile strain can be applied to the entire core layer CRL, so that the product of the light intensity contributing to the mode gain and the material gain is increased. It can be done. Thereby, in the configuration example that realizes the basic idea in the first embodiment shown in FIG. 9, the mode gain can be significantly increased. This means that in the configuration example that realizes the basic idea in the first embodiment shown in FIG. 9, the light emission efficiency in the core layer CRL that functions as the light emitting layer can be improved. In spite of the use of germanium, it is possible to obtain an excellent effect that light emission efficiency at the level of a direct transition semiconductor can be realized.
<基本思想を具現化した半導体装置の構成>
続いて、本実施の形態1における基本思想を具現化した半導体装置の構成について、図面を参照しながら説明することにする。具体的に、本実施の形態1では、発光層として機能する光導波路を含む半導体装置の構成について説明する。 <Configuration of a semiconductor device that embodies the basic idea>
Next, the configuration of the semiconductor device that embodies the basic idea of the first embodiment will be described with reference to the drawings. Specifically, in the first embodiment, the structure of a semiconductor device including an optical waveguide that functions as a light emitting layer will be described.
続いて、本実施の形態1における基本思想を具現化した半導体装置の構成について、図面を参照しながら説明することにする。具体的に、本実施の形態1では、発光層として機能する光導波路を含む半導体装置の構成について説明する。 <Configuration of a semiconductor device that embodies the basic idea>
Next, the configuration of the semiconductor device that embodies the basic idea of the first embodiment will be described with reference to the drawings. Specifically, in the first embodiment, the structure of a semiconductor device including an optical waveguide that functions as a light emitting layer will be described.
図10(a)は、本実施の形態1における半導体装置の平面構成を示す図である。図10(a)に示すように、本実施の形態1における半導体装置は、例えば、n型ゲルマニウム層20aと、p型ゲルマニウム層20bと、n型シリコン層30aと、p型シリコン層30bとを有している。このとき、n型シリコン層30aとp型シリコン層30bとに挟まれるように、n型ゲルマニウム層20aとp型ゲルマニウム層20bとが形成されている。すなわち、n型ゲルマニウム層20aとp型ゲルマニウム層20bとによりコア層CRLが形成され、n型シリコン層30aとp型シリコン層30bのそれぞれがクラッド層CLDを形成している。つまり、コア層CLDは、クラッド層CLDに挟まれるように形成されている。そして、n型ゲルマニウム層20aとp型ゲルマニウム層20bとからなるコア層CRL上に圧縮応力膜10が形成されており、さらに、平面視において、圧縮応力膜10を内包し、かつ、圧縮応力膜10を覆うように伸張応力膜11が形成されている。また、クラッド層CLDとして機能するn型シリコン層30aおよびp型シリコン層30bのそれぞれには、複数の孔HLが形成されている。
FIG. 10A is a diagram showing a planar configuration of the semiconductor device according to the first embodiment. As shown in FIG. 10A, the semiconductor device according to the first embodiment includes, for example, an n-type germanium layer 20a, a p-type germanium layer 20b, an n-type silicon layer 30a, and a p-type silicon layer 30b. Have. At this time, the n-type germanium layer 20a and the p-type germanium layer 20b are formed so as to be sandwiched between the n-type silicon layer 30a and the p-type silicon layer 30b. That is, the core layer CRL is formed by the n-type germanium layer 20a and the p-type germanium layer 20b, and each of the n-type silicon layer 30a and the p-type silicon layer 30b forms a cladding layer CLD. That is, the core layer CLD is formed so as to be sandwiched between the clad layers CLD. The compressive stress film 10 is formed on the core layer CRL including the n-type germanium layer 20a and the p-type germanium layer 20b, and further includes the compressive stress film 10 in a plan view. An extensional stress film 11 is formed so as to cover 10. A plurality of holes HL are formed in each of the n-type silicon layer 30a and the p-type silicon layer 30b functioning as the cladding layer CLD.
図10(b)は、図10(a)のA-A線で切断した断面図である。図10(b)において、基板層1aと絶縁層1bとシリコン層1cとからなるSOI基板の上方に、隙間SPを介して、マイクロブリッジ構造体MBSが形成されている。具体的には、図10(b)に示すように、SOI基板のシリコン層1c上に絶縁膜IFが形成されており、この絶縁膜IFおよびシリコン層1cを貫通するように孔HLが形成されている。この孔HLの内壁には保護膜PFが形成されている。そして、SOI基板には、孔HLと繋がる隙間SPが絶縁層1bに形成されており、この隙間SPの上方にマイクロブリッジ構造体MBSが形成されている。なお、図10(b)では、図示されないが、平面的に隙間SPを囲むようにSOI基板の絶縁層1bおよびシリコン層1cが残存しており、この残存部分によってマイクロブリッジ構造体MBSはSOI基板で支持されている。
FIG. 10B is a cross-sectional view taken along the line AA in FIG. In FIG. 10B, the microbridge structure MBS is formed above the SOI substrate composed of the substrate layer 1a, the insulating layer 1b, and the silicon layer 1c via the gap SP. Specifically, as shown in FIG. 10B, an insulating film IF is formed on the silicon layer 1c of the SOI substrate, and a hole HL is formed so as to penetrate the insulating film IF and the silicon layer 1c. ing. A protective film PF is formed on the inner wall of the hole HL. In the SOI substrate, a gap SP connected to the hole HL is formed in the insulating layer 1b, and the microbridge structure MBS is formed above the gap SP. Although not shown in FIG. 10B, the insulating layer 1b and the silicon layer 1c of the SOI substrate remain so as to surround the gap SP in a plan view, and the microbridge structure MBS is formed on the SOI substrate by this remaining portion. It is supported by.
マイクロブリッジ構造体MBSにおいては、シリコン層1c上に絶縁膜IFが形成されており、この絶縁膜IF上にコア層CRLとクラッド層CLDが形成されている。このとき、コア層CRLは、クラッド層CLDで挟まれるように配置されている。本実施の形態1において、このコア層CRLは、例えば、伸張歪みが加わらない場合には間接遷移半導体である一方、伸張歪みが加わることによって、直接遷移半導体として機能する半導体層から構成されている。具体的な一例として、コア層CRLは、n型ゲルマニウム層20aとp型ゲルマニウム層20bから構成されている。また、図10(b)において、コア層CRLの左側に配置されているクラッド層CLDは、n型シリコン層30aから構成され、コア層CRLの右側に配置されているクラッド層CLDは、p型シリコン層30bから構成されている。さらに、p型シリコン層30bの表面には、絶縁膜IF1が形成されている。そして、図10(b)に示すように、コア層CRLの表面側(第1面側)には、圧縮応力膜10が形成され、かつ、平面視において、圧縮応力膜を覆うように、コア層CRLおよびクラッド層CLDの表面側全体にわたって、伸張応力膜11が形成されている。このことから、本実施の形態1におけるマイクロブリッジ構造体MBSは、発光層として機能する光導波路であるコア層CRLと、コア層CRLの表面上に形成された圧縮応力膜10と、平面視において、圧縮応力膜10を内包し、かつ、圧縮応力膜10を覆うようにコア層CRLの表面側に形成された伸張応力膜11とを有することになる。このように構成されているマイクロブリッジ構造体MBSによれば、表面と表面とは反対側の裏面とを有する半導体層であるコア層CRLと、コア層CRLの表面側に伸張歪みを与える圧縮応力膜10と、コア層CRLの裏面側に伸張歪みを与える伸張応力膜11とを備える構成が実現される。以下に、この点について説明する。
In the microbridge structure MBS, an insulating film IF is formed on the silicon layer 1c, and a core layer CRL and a cladding layer CLD are formed on the insulating film IF. At this time, the core layer CRL is disposed so as to be sandwiched between the clad layers CLD. In the first embodiment, the core layer CRL is, for example, an indirect transition semiconductor when no extension strain is applied, and is composed of a semiconductor layer that functions as a direct transition semiconductor when the extension strain is applied. . As a specific example, the core layer CRL includes an n-type germanium layer 20a and a p-type germanium layer 20b. In FIG. 10B, the cladding layer CLD disposed on the left side of the core layer CRL is composed of an n-type silicon layer 30a, and the cladding layer CLD disposed on the right side of the core layer CRL is a p-type. It is composed of a silicon layer 30b. Further, an insulating film IF1 is formed on the surface of the p-type silicon layer 30b. As shown in FIG. 10 (b), the compressive stress film 10 is formed on the surface side (first surface side) of the core layer CRL, and the core is formed so as to cover the compressive stress film in plan view. An extension stress film 11 is formed over the entire surface side of the layer CRL and the cladding layer CLD. From this, the microbridge structure MBS in the first embodiment includes the core layer CRL that is an optical waveguide functioning as a light emitting layer, the compressive stress film 10 formed on the surface of the core layer CRL, and a plan view. The tensile stress film 11 is formed on the surface side of the core layer CRL so as to include the compressive stress film 10 and to cover the compressive stress film 10. According to the microbridge structure MBS configured as described above, the core layer CRL, which is a semiconductor layer having a front surface and a back surface opposite to the front surface, and a compressive stress that gives a tensile strain to the front surface side of the core layer CRL. A configuration including the film 10 and the extension stress film 11 that applies extension strain to the back surface side of the core layer CRL is realized. This point will be described below.
まず、図10(b)に示すように、本実施の形態1におけるマイクロブリッジ構造体MBSでは、コア層CRLの表面と直接接触するように圧縮応力膜10が形成されている。ここで、圧縮応力膜10は、膜自体に圧縮応力が加わる膜であり、この反作用として、圧縮応力膜10は伸張しようとする。したがって、圧縮応力膜10に接触しているコア層CRLの表面側には伸張歪みが加わることになる。つまり、本実施の形態1におけるマイクロブリッジ構造体MBSによれば、コア層CRLの表面側に形成されている圧縮応力膜10に起因するローカル応力によって、コア層CRLの表面側に伸張歪みを与えることができる。例えば、コア層CRLのx方向の幅は、例えば、3μm程度であり、このコア層CRLの表面に形成されている圧縮応力膜10のx方向の幅も、3μm程度である。
First, as shown in FIG. 10B, in the microbridge structure MBS in the first embodiment, the compressive stress film 10 is formed so as to be in direct contact with the surface of the core layer CRL. Here, the compressive stress film 10 is a film in which a compressive stress is applied to the film itself. As a reaction, the compressive stress film 10 tends to expand. Accordingly, an extension strain is applied to the surface side of the core layer CRL that is in contact with the compressive stress film 10. That is, according to the microbridge structure MBS in the present first embodiment, the surface layer of the core layer CRL is stretched by the local stress caused by the compressive stress film 10 formed on the surface of the core layer CRL. be able to. For example, the width in the x direction of the core layer CRL is, for example, about 3 μm, and the width in the x direction of the compressive stress film 10 formed on the surface of the core layer CRL is also about 3 μm.
なお、本実施の形態1では、例えば、図10(b)に示すように、コア層CRLの表面と直接接触するように圧縮応力膜10を形成しているが、本実施の形態1における技術的思想は、この構成に限らず、コア層CRLと圧縮応力膜10との間に中間層を介在させてもよい。例えば、コア層CRLの表面側に加える伸張歪みを大きくする観点からは、コア層CRLの表面と直接接触するように圧縮応力膜10を形成することが望ましい。一方、コア層CRLを保護する機能を付加する観点からは、GeO膜やGeO2膜からなる保護膜を中間層として、コア層CRLと圧縮応力膜10との間に介在させることもできる。このとき、保護膜の膜厚は、例えば、100nm以下とすることができる。
In the first embodiment, for example, as shown in FIG. 10B, the compressive stress film 10 is formed so as to be in direct contact with the surface of the core layer CRL. The idea is not limited to this configuration, and an intermediate layer may be interposed between the core layer CRL and the compressive stress film 10. For example, from the viewpoint of increasing the tensile strain applied to the surface side of the core layer CRL, it is desirable to form the compressive stress film 10 so as to be in direct contact with the surface of the core layer CRL. On the other hand, from the viewpoint of adding a function of protecting the core layer CRL, a protective film made of a GeO film or a GeO 2 film can be used as an intermediate layer and interposed between the core layer CRL and the compressive stress film 10. At this time, the thickness of the protective film can be, for example, 100 nm or less.
図10(b)に示すように、コア層CRLは、n型ゲルマニウム層20aとp型ゲルマニウム層20bから構成されており、n型ゲルマニウム層20aとp型ゲルマニウム層20bの両方の層が圧縮応力膜10で覆われている。したがって、本実施の形態1では、必然的に、n型ゲルマニウム層20aとp型ゲルマニウム層20bとのpn接合部分が圧縮応力膜10によって覆われていることになる。これにより、発光層であるコア層CRLの発光効率を向上することができる。なぜなら、n型ゲルマニウム層20aとp型ゲルマニウム層20bとのpn接合部分においては、空乏層が形成され、この空乏層にn型ゲルマニウム層20aから電子が供給されるとともにp型ゲルマニウム層20bから正孔が供給される結果、空乏層において、主に、電子と正孔の結合による発光が生じるからである。つまり、伸張歪みを与えることによって、発光が生じる空乏層内のバンド構造を直接遷移半導体のバンド構造とすることにより、発光効率を向上することができるのである。
As shown in FIG. 10B, the core layer CRL is composed of an n-type germanium layer 20a and a p-type germanium layer 20b, and both the n-type germanium layer 20a and the p-type germanium layer 20b are compressed. Covered with a membrane 10. Therefore, in the first embodiment, the pn junction portion between the n-type germanium layer 20a and the p-type germanium layer 20b is necessarily covered with the compressive stress film 10. Thereby, the light emission efficiency of the core layer CRL which is a light emitting layer can be improved. This is because a depletion layer is formed at the pn junction between the n-type germanium layer 20a and the p-type germanium layer 20b, and electrons are supplied to the depletion layer from the n-type germanium layer 20a and positive from the p-type germanium layer 20b. This is because, as a result of supplying the holes, light emission mainly occurs due to the combination of electrons and holes in the depletion layer. In other words, by applying a tensile strain, the light emission efficiency can be improved by making the band structure in the depletion layer in which light emission occurs directly a band structure of a transition semiconductor.
さらに、n型ゲルマニウム層20aとp型ゲルマニウム層20bとのpn接合部分とともに、n型ゲルマニウム層20aを圧縮応力膜10で覆われていることも発光効率を向上に寄与する。すなわち、例えば、コア層CRLを発光層とするゲルマニウムレーザでは、n型ゲルマニウム層20aを光学利得媒質として使用するからである。
Furthermore, the fact that the n-type germanium layer 20a is covered with the compressive stress film 10 together with the pn junction portion between the n-type germanium layer 20a and the p-type germanium layer 20b also contributes to improving the light emission efficiency. That is, for example, in a germanium laser using the core layer CRL as a light emitting layer, the n-type germanium layer 20a is used as an optical gain medium.
続いて、図10(b)に示すように、本実施の形態1におけるマイクロブリッジ構造体MBSでは、平面視において、圧縮応力膜10を内包し、かつ、圧縮応力膜10を覆うようにコア層CRLの表面側とクラッド層CLDの表面側にわたって伸張応力膜11が形成されている。ここで、伸張応力膜11は、膜自体に伸張応力が加わる膜であり、この反作用として、伸張応力膜11は圧縮しようとする。したがって、伸張応力膜11に接触しているコア層CRLの表面側およびクラッド層CLDの表面側には圧縮歪みが加わることになる。このことは、コア層CRLの表面側が、コア層CRLの裏面側よりも相対的に縮むことを意味し、これによって、マイクロブリッジ構造体MBSは、下に凸の形状に反ることになる。この結果、コア層CRLの裏面側に伸張歪みが加わることになる。つまり、本実施の形態1におけるマイクロブリッジ構造体MBSによれば、コア層CRLの表面側からクラッド層CLDの表面側にわたって形成されている伸張応力膜11に起因するグローバル応力よって、マイクロブリッジ構造体MBSに下に凸の反りが発生し、この結果、コア層CRLの裏面側に伸張歪みを与えることができるのである。
Subsequently, as shown in FIG. 10B, in the microbridge structure MBS in the first embodiment, the core layer includes the compressive stress film 10 and covers the compressive stress film 10 in plan view. An extensional stress film 11 is formed over the surface side of the CRL and the surface side of the cladding layer CLD. Here, the extension stress film 11 is a film in which extension stress is applied to the film itself. As a reaction, the extension stress film 11 attempts to compress. Therefore, compressive strain is applied to the surface side of the core layer CRL and the surface side of the cladding layer CLD that are in contact with the tensile stress film 11. This means that the front surface side of the core layer CRL shrinks relatively than the back surface side of the core layer CRL, whereby the microbridge structure MBS warps in a downwardly convex shape. As a result, an extension strain is applied to the back side of the core layer CRL. That is, according to the microbridge structure MBS in the first embodiment, the microbridge structure is caused by the global stress caused by the tensile stress film 11 formed from the surface side of the core layer CRL to the surface side of the cladding layer CLD. A downwardly convex warp occurs in the MBS, and as a result, an extension strain can be applied to the back surface side of the core layer CRL.
例えば、図10(b)において、マイクロブリッジ構造体MBSのシリコン層1cと絶縁膜IFとコア層CRLとを合わせた厚さは、5μm程度以下であり、マイクロブリッジ構造体MBSに形成されている伸張応力膜11の厚さは、3μm程度以下である。特に、マイクロブリッジ構造体MBSに対して下に凸の反りを発生させることにより、コア層CRLの裏面側に大きな伸張歪みを与える観点からは、マイクロブリッジ構造体MBSの厚さを薄くし、かつ、伸張応力膜11の厚さを厚くすることが望ましい。なお、図10(b)において、SOI基板の機械的強度を確保する観点からは、例えば、隙間SPを絶縁材料で充填することもできる。
For example, in FIG. 10B, the total thickness of the silicon layer 1c, the insulating film IF, and the core layer CRL of the microbridge structure MBS is about 5 μm or less and is formed in the microbridge structure MBS. The thickness of the tensile stress film 11 is about 3 μm or less. In particular, from the viewpoint of giving a large tensile strain to the back surface side of the core layer CRL by generating a downward convex warp with respect to the microbridge structure MBS, the thickness of the microbridge structure MBS is reduced, and It is desirable to increase the thickness of the tensile stress film 11. In FIG. 10B, from the viewpoint of ensuring the mechanical strength of the SOI substrate, for example, the gap SP can be filled with an insulating material.
本実施の形態1では、SOI基板全体に下に凸の反りを与えることなく、マイクロブリッジ構造体MBSだけに下に凸の反りを与えることができる。なぜなら、図10(b)に示すように、本実施の形態1におけるマイクロブリッジ構造体MBSが、SOI基板の上方に隙間SPを介して配置されているからである。この結果、本実施の形態1によれば、マイクロブリッジ構造体MBSに下に凸の反りを発生させることによって、コア層CRLの裏面側に伸張歪みを与えることができる一方、SOI基板全体の平坦性を確保することができることから、SOI基板の破損や組立工程での歩留り向上を図ることができる。
In the first embodiment, it is possible to give a convex warp only to the microbridge structure MBS without giving a convex warp downward to the entire SOI substrate. This is because, as shown in FIG. 10B, the microbridge structure MBS according to the first embodiment is arranged above the SOI substrate via the gap SP. As a result, according to the first embodiment, the microbridge structure MBS can be warped downward to generate a tensile warp on the back side of the core layer CRL, while the entire SOI substrate is flat. Therefore, the SOI substrate can be damaged and the yield in the assembly process can be improved.
以上のことから、本実施の形態1によれば、表面と表面とは反対側の裏面とを有する半導体層であるコア層CRLと、コア層CRLの表面側に伸張歪みを与える圧縮応力膜10と、コア層CRLの裏面側に伸張歪みを与える伸張応力膜11とを備えるマイクロブリッジ構造体MBSが実現される。すなわち、本実施の形態1におけるマイクロブリッジ構造体MBSによれば、圧縮応力膜10と接しているコア層CRLの表面側には、圧縮応力膜10に起因するローカル応力によって伸張歪みが加わるとともに、クラッド層CLDからコア層CRLの表面側にわたって形成されている伸張応力膜11に起因するグローバル応力によって、コア層CRLの裏面側に伸張歪みが加わることになる。この結果、本実施の形態1におけるマイクロブリッジ構造体MBSによれば、コア層CRLの表面側と裏面側の両側から伸張歪みが加わって、コア層CRL全体に伸張歪みが与えられていることになり、本実施の形態1における基本思想が具現化されていることがわかる。
From the above, according to the first embodiment, the core layer CRL, which is a semiconductor layer having a front surface and a back surface opposite to the front surface, and the compressive stress film 10 that applies tensile strain to the front surface side of the core layer CRL. And a microbridge structure MBS including the tensile stress film 11 that applies tensile strain to the back surface side of the core layer CRL. That is, according to the microbridge structure MBS in the first embodiment, the surface side of the core layer CRL that is in contact with the compressive stress film 10 is subjected to tensile strain due to local stress caused by the compressive stress film 10, and A tensile stress is applied to the back side of the core layer CRL by the global stress caused by the tensile stress film 11 formed from the cladding layer CLD to the surface side of the core layer CRL. As a result, according to the microbridge structure MBS in the first embodiment, the tensile strain is applied to the entire core layer CRL by applying the tensile strain from both the front side and the back side of the core layer CRL. Thus, it can be seen that the basic idea of the first embodiment is embodied.
次に、代表的な材料構成について説明する。図10(b)において、x方向に着目する。x方向において、コア層CRLはクラッド層CLDで挟まれている。コア層CRLは、n型ゲルマニウム層20aとp型ゲルマニウム層20bから構成され、クラッド層CLDは、n型シリコン層30aとp型シリコン層30bから構成されている。したがって、ゲルマニウムの屈折率がシリコンの屈折率よりも大きいことを考慮すると、コア層CRLで発生した光は、クラッド層CLDにより閉じ込められることになる。一方、z方向に着目すると、コア層CRLは、圧縮応力膜10と絶縁膜IFとにより挟まれている。ここで、圧縮応力膜10は、例えば、酸化シリコン膜や窒化シリコン膜から形成され、絶縁膜IFも酸化シリコン膜などから形成されていることを考慮すると、圧縮応力膜10の屈折率や絶縁膜IFの屈折率は、コア層CRLの屈折率よりも小さい。したがって、z方向においても、コア層CRLで発生した光は閉じ込められることになる。このように、本実施の形態1においては、コア層CRLで発生した光は、x方向およびz方向のいずれの方向においても閉じこめられる結果、コア層CRL内で発生した光は、y方向に延在するコア層CRL内を伝搬することになる。すなわち、コア層CRLは、光導波路として機能することになる。
Next, a typical material configuration will be described. In FIG. 10B, attention is paid to the x direction. In the x direction, the core layer CRL is sandwiched between the cladding layers CLD. The core layer CRL is composed of an n-type germanium layer 20a and a p-type germanium layer 20b, and the cladding layer CLD is composed of an n-type silicon layer 30a and a p-type silicon layer 30b. Therefore, considering that the refractive index of germanium is higher than the refractive index of silicon, the light generated in the core layer CRL is confined by the cladding layer CLD. On the other hand, focusing on the z direction, the core layer CRL is sandwiched between the compressive stress film 10 and the insulating film IF. Here, considering that the compressive stress film 10 is formed of, for example, a silicon oxide film or a silicon nitride film, and the insulating film IF is also formed of a silicon oxide film or the like, the refractive index of the compressive stress film 10 or the insulating film The refractive index of IF is smaller than the refractive index of the core layer CRL. Therefore, the light generated in the core layer CRL is confined also in the z direction. As described above, in the first embodiment, the light generated in the core layer CRL is confined in both the x direction and the z direction. As a result, the light generated in the core layer CRL extends in the y direction. It propagates in the existing core layer CRL. That is, the core layer CRL functions as an optical waveguide.
上述したように、圧縮応力膜10は、例えば、酸化シリコン膜や窒化シリコン膜から構成される。一方、伸張応力膜11は、例えば、窒化アルミニウム膜や窒化シリコン膜から構成される。ここで、窒化シリコン膜は、圧縮応力膜10としても使用され、かつ、伸張応力膜11としても使用されている点に疑問が生じるかもしれないが、窒化シリコン膜は、組成によって、圧縮応力膜10になったり、伸張応力膜11になったりするのである。具体的には、窒化シリコン膜中の窒素と水素との結合密度の大小によって、窒化シリコン膜は、圧縮応力膜10になったり、伸張応力膜11になったりする。窒化シリコン膜は、シリコンと窒素だけから構成されていると思われるかもしれないが、実際の窒化シリコン膜の製造工程では、水素を混入するため、窒化シリコン膜の膜中には水素が混入し、窒素と水素の結合が存在する。そして、定性的に言うと、窒化シリコン膜中の窒素と水素の結合密度が小さい場合には、窒化シリコン膜は、圧縮応力膜となる。一方、窒化シリコン膜中の窒素と水素の結合密度が大きくなると、窒化シリコン膜は、伸張応力膜となる。したがって、窒化シリコン膜の成膜条件を変更することにより、例えば、圧縮応力膜10として、窒素と水素の結合密度の小さな窒化シリコン膜を使用することができるとともに、伸張応力膜11として、窒素と水素の結合密度の大きな窒化シリコン膜を使用することができるのである。つまり、圧縮応力膜10と伸張応力膜11のいずれにも窒化シリコン膜が使用されている場合、圧縮応力膜10に使用されている窒化シリコン膜の組成と、伸張応力膜11に使用されている窒化シリコン膜の組成とは異なるのである。具体的に、伸張応力膜11に使用されている窒化シリコン膜の窒素と水素の結合密度は、圧縮応力膜10に使用されている窒化シリコン膜の窒素と水素の結合密度よりも大きいということができる。
As described above, the compressive stress film 10 is made of, for example, a silicon oxide film or a silicon nitride film. On the other hand, the tensile stress film 11 is made of, for example, an aluminum nitride film or a silicon nitride film. Here, it may be questioned that the silicon nitride film is used as the compressive stress film 10 and also as the extension stress film 11, but the silicon nitride film depends on the composition. 10 or the tensile stress film 11. Specifically, the silicon nitride film becomes the compressive stress film 10 or the tensile stress film 11 depending on the bond density between nitrogen and hydrogen in the silicon nitride film. It may seem that the silicon nitride film is composed only of silicon and nitrogen. However, in the actual manufacturing process of the silicon nitride film, since hydrogen is mixed, hydrogen is mixed in the silicon nitride film. There is a bond of nitrogen and hydrogen. Qualitatively speaking, when the bond density of nitrogen and hydrogen in the silicon nitride film is low, the silicon nitride film becomes a compressive stress film. On the other hand, when the bond density of nitrogen and hydrogen in the silicon nitride film increases, the silicon nitride film becomes an extensional stress film. Therefore, by changing the film formation conditions of the silicon nitride film, for example, a silicon nitride film having a low bond density of nitrogen and hydrogen can be used as the compressive stress film 10, and nitrogen and hydrogen can be used as the extension stress film 11. A silicon nitride film having a high hydrogen bond density can be used. That is, when a silicon nitride film is used for both the compressive stress film 10 and the tensile stress film 11, the composition of the silicon nitride film used for the compressive stress film 10 and the tensile stress film 11 are used. This is different from the composition of the silicon nitride film. Specifically, the bond density of nitrogen and hydrogen of the silicon nitride film used for the tensile stress film 11 is larger than the bond density of nitrogen and hydrogen of the silicon nitride film used for the compressive stress film 10. it can.
<半導体装置の製造方法>
本実施の形態1における半導体装置は、上記のように構成されており、以下に、その製造方法について、図面を参照しながら説明することにする。 <Method for Manufacturing Semiconductor Device>
The semiconductor device according to the first embodiment is configured as described above, and the manufacturing method thereof will be described below with reference to the drawings.
本実施の形態1における半導体装置は、上記のように構成されており、以下に、その製造方法について、図面を参照しながら説明することにする。 <Method for Manufacturing Semiconductor Device>
The semiconductor device according to the first embodiment is configured as described above, and the manufacturing method thereof will be described below with reference to the drawings.
まず、図11に示すように、基板層1aと絶縁層(埋め込み絶縁層)1bとシリコン層(SOI層)1cからなるSOI(Silicon On Insulator)基板を用意する。SOI基板では、例えば、絶縁層1bの厚さは、1μm程度であり、単結晶シリコンからなるシリコン層1cの厚さは、50nm程度である。
First, as shown in FIG. 11, an SOI (Silicon On On Insulator) substrate including a substrate layer 1a, an insulating layer (buried insulating layer) 1b, and a silicon layer (SOI layer) 1c is prepared. In the SOI substrate, for example, the thickness of the insulating layer 1b is about 1 μm, and the thickness of the silicon layer 1c made of single crystal silicon is about 50 nm.
次に、SOI基板を洗浄した後、例えば、熱酸化法を使用することにより、酸化シリコン膜からなる絶縁膜IFを形成する。ただし、絶縁膜IFは、これに限らず、例えば、CVD(Chemical Vapor Deposition)法を使用することにより形成された酸化シリコン膜や窒化シリコン膜を使用することもできる。そして、フォトリソグラフィ技術およびエッチング技術を使用することにより、絶縁膜IFに開口部OP1を形成する。開口部OP1は、シリコン層1cの一部を露出するために形成される。なぜなら、ゲルマニウム層を成長させるためには、成長の核となるシリコン層1cが必要であるからである。具体的に、開口部OP1は、以下に示す工程によって形成することができる。すなわち、絶縁膜IFの表面にレジスト膜を塗布した後、フォトリソグラフィ技術(露光および現像)によって、レジスト膜をパターニングする。これにより、開口部OP1からシリコン層1cを部分的に露出することができる。
Next, after the SOI substrate is cleaned, an insulating film IF made of a silicon oxide film is formed by using, for example, a thermal oxidation method. However, the insulating film IF is not limited to this. For example, a silicon oxide film or a silicon nitride film formed by using a CVD (Chemical Vapor Deposition) method can also be used. Then, the opening OP1 is formed in the insulating film IF by using a photolithography technique and an etching technique. The opening OP1 is formed to expose a part of the silicon layer 1c. This is because in order to grow the germanium layer, the silicon layer 1c serving as the nucleus of growth is necessary. Specifically, the opening OP1 can be formed by the following process. That is, after a resist film is applied to the surface of the insulating film IF, the resist film is patterned by a photolithography technique (exposure and development). Thereby, the silicon layer 1c can be partially exposed from the opening OP1.
続いて、図12に示すように、開口部OP1から露出するシリコン層1c上にゲルマニウムからなるシード膜(図示せず)を選択的に成膜し、その後、このシード膜を結晶成長の核として、開口部OP1の内部から絶縁膜IF上にわたってn型ゲルマニウム層20aを形成する。例えば、シード膜には、シリコンとゲルマニウムの格子不整合に起因した欠陥が多数生じているが、絶縁膜IF上では、シリコンとゲルマニウムの界面が存在しないため、欠陥の欠陥密度は低減されている。なお、n型ゲルマニウム層20aには、発光媒質となるn型不純物が導入されている。さらに、図12に示すように、p型ゲルマニウム層20bとp型シリコン層30bを形成することにより、pnダイオードの一部分となる接合構造(n-Ge/p-Ge/p-Si)が形成される。このとき、例えば、シリコン層1cと接合構造とを合わせたz方向の厚さは、5μm程度となる。そして、例えば、化学的機械的研磨法(CMP法:Chemical Mechanical Polishing)を使用することにより、絶縁膜IF上に形成されたn型ゲルマニウム層20aとp型ゲルマニウム層20bとp型シリコン層30bとの表面を平坦化する。この結果、絶縁膜IF上に形成された接続構造のz方向の厚さは、例えば、500nm程度となる。以下に示す工程では、図12の点線で囲む領域ARに着目して、その後の製造工程について説明する。
Subsequently, as shown in FIG. 12, a seed film (not shown) made of germanium is selectively formed on the silicon layer 1c exposed from the opening OP1, and then this seed film is used as a nucleus of crystal growth. Then, the n-type germanium layer 20a is formed over the insulating film IF from the inside of the opening OP1. For example, the seed film has many defects due to lattice mismatch between silicon and germanium, but the defect density of defects is reduced because the interface between silicon and germanium does not exist on the insulating film IF. . Note that an n-type impurity serving as a light emitting medium is introduced into the n-type germanium layer 20a. Furthermore, as shown in FIG. 12, by forming the p-type germanium layer 20b and the p-type silicon layer 30b, a junction structure (n-Ge / p-Ge / p-Si) that becomes a part of the pn diode is formed. The At this time, for example, the thickness in the z direction of the silicon layer 1c and the junction structure is about 5 μm. Then, for example, by using a chemical mechanical polishing method (CMP method: ChemicalCMechanical) Polishing), the n-type germanium layer 20a, the p-type germanium layer 20b, and the p-type silicon layer 30b formed on the insulating film IF Flatten the surface. As a result, the thickness in the z direction of the connection structure formed on the insulating film IF is, for example, about 500 nm. In the following process, the subsequent manufacturing process will be described focusing on the area AR surrounded by the dotted line in FIG.
図13に示すように、フォトリソグラフィ技術およびエッチング技術を使用することにより、p型シリコン層30bの一部分をエッチングする。その後、図14に示すように、エッチングされたp型シリコン層30bの一部分に絶縁膜IF1を形成し、絶縁膜IF1上からp型ゲルマニウム層20bおよびn型ゲルマニウム層20aの一部分上にわたる絶縁膜IF2を形成する。このとき、絶縁膜IF2で覆われるp型ゲルマニウム層20bとn型ゲルマニウム層20aの一部分のx方向の幅は、例えば、光導波路のシングルモード条件を満たすため、2μm程度となっている。
As shown in FIG. 13, a part of the p-type silicon layer 30b is etched by using a photolithography technique and an etching technique. Thereafter, as shown in FIG. 14, an insulating film IF1 is formed on a part of the etched p-type silicon layer 30b, and the insulating film IF2 extending over the insulating film IF1 and on the p-type germanium layer 20b and the n-type germanium layer 20a. Form. At this time, the width in the x direction of a part of the p-type germanium layer 20b and the n-type germanium layer 20a covered with the insulating film IF2 is, for example, about 2 μm to satisfy the single mode condition of the optical waveguide.
次に、図15に示すように、絶縁膜IF2をマスクにしたエッチング技術により、絶縁膜IF2から露出するn型ゲルマニウム層20aを除去する。その後、図16に示すように、除去したn型ゲルマニウム層20aの領域にn型シリコン層30aを形成する。これにより、n-Si/n-Ge接合構造を形成する。以上のようにして、x方向において、絶縁膜IF上に、n-Si/n-Ge/p-Ge/p-Si接合構造を形成することができる。ここで、ゲルマニウムは、シリコンよりも屈折率が大きいため、x方向に対して、シリコン領域(n型シリコン層30a、p型シリコン層30b)に挟まれたゲルマニウム領域(n型ゲルマニウム層20a+p型ゲルマニウム層20b)に光が閉じ込められる構造が実現される。つまり、n型ゲルマニウム層20aとp型ゲルマニウム層20bとがコア層として機能し、n型シリコン層30aとp型シリコン層30bとがクラッド層として機能することになる。
Next, as shown in FIG. 15, the n-type germanium layer 20a exposed from the insulating film IF2 is removed by an etching technique using the insulating film IF2 as a mask. Thereafter, as shown in FIG. 16, an n-type silicon layer 30a is formed in the removed n-type germanium layer 20a. As a result, an n-Si / n-Ge junction structure is formed. As described above, an n-Si / n-Ge / p-Ge / p-Si junction structure can be formed on the insulating film IF in the x direction. Here, since germanium has a higher refractive index than silicon, a germanium region (n-type germanium layer 20a + p-type germanium) sandwiched between silicon regions (n-type silicon layer 30a and p-type silicon layer 30b) with respect to the x direction. A structure in which light is confined in the layer 20b) is realized. That is, the n-type germanium layer 20a and the p-type germanium layer 20b function as a core layer, and the n-type silicon layer 30a and the p-type silicon layer 30b function as a cladding layer.
続いて、n型ゲルマニウム層20aとp型ゲルマニウム層20bとからなるコア層に伸張歪みを与えるため、応力膜の多層構造を形成する。具体的には、図17に示すように、絶縁膜IF2を除去した後、例えば、CVD法を使用することにより、内部応力が1GPa程度で、かつ、膜厚が200nm程度の圧縮応力膜10を成膜し、その後、n型ゲルマニウム層20aおよびp型ゲルマニウム層20bの上部に、例えば、x方向の幅が3μm程度の圧縮応力膜10を残存させる。これにより、圧縮応力膜10の直下に形成されているn型ゲルマニウム層20aおよびp型ゲルマニウム層20bに伸張歪みが加わる。
Subsequently, a multilayer structure of stress films is formed in order to give a tensile strain to the core layer composed of the n-type germanium layer 20a and the p-type germanium layer 20b. Specifically, as shown in FIG. 17, after removing the insulating film IF2, the compressive stress film 10 having an internal stress of about 1 GPa and a film thickness of about 200 nm is formed by using, for example, a CVD method. After the film formation, the compressive stress film 10 having a width in the x direction of about 3 μm, for example, is left on the n-type germanium layer 20a and the p-type germanium layer 20b. As a result, tensile strain is applied to the n-type germanium layer 20a and the p-type germanium layer 20b formed immediately below the compressive stress film 10.
次に、図18に示すように、内部応力が0.5GPa程度で、かつ、膜厚が1μm程度の伸張応力膜11を、圧縮応力膜10を内包するように、圧縮応力膜10よりも大きい領域にわたって形成する。その後、図示はしないが、n型シリコン層30aとp型シリコン層30bのそれぞれに金属電極を接続し、pnダイオードに電流を注入する構造を形成する。なお、図16に示す絶縁膜IF2のうち、n型ゲルマニウム層20aおよびp型ゲルマニウム層20b上に形成されている部分を残存させることにより、圧縮応力膜10とすることもできる。この場合、新たに圧縮応力膜10を形成する工程を省略することができるため、製造工程の簡略化を図ることができる。
Next, as shown in FIG. 18, the tensile stress film 11 having an internal stress of about 0.5 GPa and a film thickness of about 1 μm is larger than the compressive stress film 10 so as to include the compressive stress film 10. Form over the area. Thereafter, although not shown, a metal electrode is connected to each of the n-type silicon layer 30a and the p-type silicon layer 30b to form a structure for injecting a current into the pn diode. Note that the compressive stress film 10 can be formed by leaving portions of the insulating film IF2 shown in FIG. 16 formed on the n-type germanium layer 20a and the p-type germanium layer 20b. In this case, since the process of newly forming the compressive stress film 10 can be omitted, the manufacturing process can be simplified.
その後、図19に示すように、フォトリソグラフィ技術およびエッチング技術を使用することにより、n型シリコン層30aと絶縁膜IFとシリコン層1cを貫通して、絶縁層1bに達する孔HLと、絶縁膜IF1とp型シリコン層30bと絶縁膜IFとシリコン層1cとを貫通して、絶縁層1bに達する孔HLとを形成する。
After that, as shown in FIG. 19, by using a photolithography technique and an etching technique, a hole HL that penetrates the n-type silicon layer 30a, the insulating film IF, and the silicon layer 1c and reaches the insulating layer 1b, and the insulating film A hole HL that penetrates through IF1, the p-type silicon layer 30b, the insulating film IF, and the silicon layer 1c to reach the insulating layer 1b is formed.
そして、図20に示すように、孔HLの内壁にフッ酸に対して耐性のある保護膜PFを形成した後、例えば、フッ酸を使用することにより、孔HLを介して、酸化シリコン膜からなる絶縁層1bを除去する。これにより、図10(b)に示すように、SOI基板の上方に隙間SPを介して、マイクロブリッジ構造体MBSを形成することができる。このとき、伸張応力膜11によって、マイクロブリッジ構造体MBSは下に凸に反ることになる。この結果、図10(b)に示すコア層CRLの裏面側には、伸張歪みが加わることになる。一方、コア層CRLの表面側にも、圧縮応力膜10に起因して、伸張歪みが加わることになる。したがって、本実施の形態1における半導体装置によれば、コア層CRLの表面側と裏面側の両側から伸張歪みが加わって、コア層CRL全体に伸張歪みが与えられる。以上のようにして、本実施の形態1における半導体装置を製造することができる。
Then, as shown in FIG. 20, after forming a protective film PF resistant to hydrofluoric acid on the inner wall of the hole HL, for example, by using hydrofluoric acid, the silicon oxide film is formed through the hole HL. The insulating layer 1b is removed. As a result, as shown in FIG. 10B, the microbridge structure MBS can be formed above the SOI substrate via the gap SP. At this time, the tensile stress film 11 causes the microbridge structure MBS to warp downward. As a result, tensile strain is applied to the back side of the core layer CRL shown in FIG. On the other hand, due to the compressive stress film 10, an extension strain is also applied to the surface side of the core layer CRL. Therefore, according to the semiconductor device in the first embodiment, the tensile strain is applied from both the front surface side and the back surface side of the core layer CRL, and the entire core layer CRL is subjected to the tensile strain. As described above, the semiconductor device according to the first embodiment can be manufactured.
なお、図10(b)において、マイクロブリッジ構造体MBSをSOI基板から浮かせるための隙間SPは、例えば、絶縁材料(無機絶縁膜や有機樹脂膜)などによって埋め込んでもよい。この場合、機械強度を向上することができる。ただし、マイクロブリッジ構造体MBSに上に凸の反りが発生しないように、熱膨張率が小さく、かつ、粘性の低い材料であることが条件となる。
In FIG. 10B, the gap SP for floating the microbridge structure MBS from the SOI substrate may be filled with an insulating material (inorganic insulating film or organic resin film), for example. In this case, the mechanical strength can be improved. However, it is a condition that the material has a low coefficient of thermal expansion and low viscosity so that no upward warping occurs in the microbridge structure MBS.
(実施の形態2)
<基本思想を具現化した半導体装置の構成>
図21は、本実施の形態2における半導体装置の構成を示す断面図である。図21に示すように、本実施の形態2における半導体装置は、基板層1aと絶縁層1bとシリコン層1cからなるSOI基板を有している。そして、SOI基板のシリコン層1c上に絶縁膜IFが形成されており、この絶縁膜IF上にコア層CRLとコア層CRLを挟むクラッド層CLDとが形成されている。コア層CRLは、n型ゲルマニウム層20aとp型ゲルマニウム層20bとから構成されている。また、コア層CRLの左側に設けられているクラッド層CLDは、n型シリコン層30aから構成されている一方、コア層CRLの右側に設けられているクラッド層CLDは、p型シリコン層30bから構成されている。そして、p型シリコン層30bからなるクラッド層CLDの表面の一部分には、絶縁膜IF1が形成されている。さらに、本実施の形態2においても、コア層CRLの表面と直接接触するように圧縮応力膜10が形成されている。この圧縮応力膜10は、例えば、酸化シリコン膜や窒化シリコン膜から構成されている。ここで、圧縮応力膜10は、膜自体に圧縮応力が加わる膜であり、この反作用として、圧縮応力膜10は伸張しようとする。したがって、圧縮応力膜10に接触しているコア層CRLの表面側には伸張歪みが加わることになる。つまり、本実施の形態2における半導体装置においても、コア層CRLの表面側に形成されている圧縮応力膜10に起因するローカル応力によって、コア層CRLの表面側に伸張歪みを与えることができる。 (Embodiment 2)
<Configuration of a semiconductor device that embodies the basic idea>
FIG. 21 is a cross-sectional view showing the configuration of the semiconductor device according to the second embodiment. As shown in FIG. 21, the semiconductor device according to the second embodiment has an SOI substrate including asubstrate layer 1a, an insulating layer 1b, and a silicon layer 1c. An insulating film IF is formed on the silicon layer 1c of the SOI substrate, and a core layer CRL and a cladding layer CLD sandwiching the core layer CRL are formed on the insulating film IF. The core layer CRL is composed of an n-type germanium layer 20a and a p-type germanium layer 20b. The cladding layer CLD provided on the left side of the core layer CRL is composed of the n-type silicon layer 30a, while the cladding layer CLD provided on the right side of the core layer CRL is composed of the p-type silicon layer 30b. It is configured. An insulating film IF1 is formed on a portion of the surface of the cladding layer CLD made of the p-type silicon layer 30b. Further, also in the second embodiment, the compressive stress film 10 is formed so as to be in direct contact with the surface of the core layer CRL. The compressive stress film 10 is made of, for example, a silicon oxide film or a silicon nitride film. Here, the compressive stress film 10 is a film in which a compressive stress is applied to the film itself. As a reaction, the compressive stress film 10 tends to expand. Accordingly, an extension strain is applied to the surface side of the core layer CRL that is in contact with the compressive stress film 10. That is, also in the semiconductor device according to the second embodiment, it is possible to give a tensile strain to the surface side of the core layer CRL by local stress caused by the compressive stress film 10 formed on the surface side of the core layer CRL.
<基本思想を具現化した半導体装置の構成>
図21は、本実施の形態2における半導体装置の構成を示す断面図である。図21に示すように、本実施の形態2における半導体装置は、基板層1aと絶縁層1bとシリコン層1cからなるSOI基板を有している。そして、SOI基板のシリコン層1c上に絶縁膜IFが形成されており、この絶縁膜IF上にコア層CRLとコア層CRLを挟むクラッド層CLDとが形成されている。コア層CRLは、n型ゲルマニウム層20aとp型ゲルマニウム層20bとから構成されている。また、コア層CRLの左側に設けられているクラッド層CLDは、n型シリコン層30aから構成されている一方、コア層CRLの右側に設けられているクラッド層CLDは、p型シリコン層30bから構成されている。そして、p型シリコン層30bからなるクラッド層CLDの表面の一部分には、絶縁膜IF1が形成されている。さらに、本実施の形態2においても、コア層CRLの表面と直接接触するように圧縮応力膜10が形成されている。この圧縮応力膜10は、例えば、酸化シリコン膜や窒化シリコン膜から構成されている。ここで、圧縮応力膜10は、膜自体に圧縮応力が加わる膜であり、この反作用として、圧縮応力膜10は伸張しようとする。したがって、圧縮応力膜10に接触しているコア層CRLの表面側には伸張歪みが加わることになる。つまり、本実施の形態2における半導体装置においても、コア層CRLの表面側に形成されている圧縮応力膜10に起因するローカル応力によって、コア層CRLの表面側に伸張歪みを与えることができる。 (Embodiment 2)
<Configuration of a semiconductor device that embodies the basic idea>
FIG. 21 is a cross-sectional view showing the configuration of the semiconductor device according to the second embodiment. As shown in FIG. 21, the semiconductor device according to the second embodiment has an SOI substrate including a
続いて、図21に示すように、SOI基板の裏面に部分的に絶縁膜IF3が形成されており、この絶縁膜IF3から露出するSOI基板の裏面には、SOI基板を貫通して、絶縁膜IFに達する溝DITが形成されている。この結果、溝DITの上方に薄肉部が形成されることになり、この薄肉部にコア層CRLが形成されていることになる。そして、この溝DITから露出する絶縁膜IFと接触するように圧縮応力膜12が形成されている。この圧縮応力膜12も、例えば、酸化シリコン膜や窒化シリコン膜から構成されている。特に、本実施の形態2では、図21に示すように、圧縮応力膜12のサイズが圧縮応力膜10のサイズよりも大きくなっている。したがって、圧縮応力膜10によって薄肉部の表面側に加わる伸張歪みよりも、圧縮応力膜12によって薄肉部の裏面側に加わる伸張歪みが大きくなる。この結果、本実施の形態2によれば、薄肉部の裏面側が表面側よりも伸びるため、薄肉部には下に凸の反りが発生することになる。これにより、薄肉部に発生する下に凸の反りに起因するグローバル応力によって、コア層CRLの裏面側に伸張歪みが加わることになる。この結果、本実施の形態2における半導体装置によれば、コア層CRLの表面側と裏面側の両側から伸張歪みが加わって、コア層CRL全体に伸張歪みが与えられていることになり、基本思想が具現化されていることがわかる。
Subsequently, as shown in FIG. 21, an insulating film IF3 is partially formed on the back surface of the SOI substrate. The back surface of the SOI substrate exposed from the insulating film IF3 penetrates the SOI substrate to pass through the insulating film. A groove DIT reaching IF is formed. As a result, a thin portion is formed above the groove DIT, and the core layer CRL is formed in the thin portion. A compressive stress film 12 is formed so as to be in contact with the insulating film IF exposed from the trench DIT. The compressive stress film 12 is also composed of, for example, a silicon oxide film or a silicon nitride film. In particular, in the second embodiment, the size of the compressive stress film 12 is larger than the size of the compressive stress film 10 as shown in FIG. Therefore, the tensile strain applied to the back side of the thin portion by the compressive stress film 12 is larger than the tensile strain applied to the front surface side of the thin portion by the compressive stress film 10. As a result, according to the second embodiment, the back surface side of the thin portion extends more than the front surface side, so that a downwardly convex warp occurs in the thin portion. As a result, a tensile stress is applied to the back surface side of the core layer CRL due to the global stress caused by the downwardly convex warp generated in the thin portion. As a result, according to the semiconductor device in the second embodiment, the tensile strain is applied to the entire core layer CRL by applying the tensile strain from both the front side and the back side of the core layer CRL. It can be seen that the idea is embodied.
以上のことから、本実施の形態2によれば、薄肉部と、薄肉部に形成されたコア層CRLと、コア層CRLの表面上に形成された圧縮応力膜10と、薄肉部の面のうち、コア層CRLの裏面側に設けられている裏面に形成された圧縮応力膜12とを有し、圧縮応力膜12のサイズが圧縮応力膜10のサイズよりも大きい構造が実現される。言い換えれば、本実施の形態2において、薄肉部に形成され、かつ、表面と裏面とを有する半導体層からなるコア層CRLと、コア層CRLの表面上に形成されたサイズの小さな酸化シリコン膜あるいは窒化シリコン膜と、コア層CRLの裏面側に形成されたサイズの大きな酸化シリコン膜あるいは窒化シリコン膜とを有する構造が実現される。すなわち、本実施の形態2における半導体装置によれば、サイズの小さな圧縮応力膜10と接しているコア層CRLの表面側には、圧縮応力膜10に起因するローカル応力によって伸張歪みが加わるとともに、溝DITの底面に形成されているサイズの大きな圧縮応力膜12による薄肉部の下に凸の反りに起因するグローバル応力によって、コア層CRLの裏面側に伸張歪みが加わることになる。この結果、本実施の形態2における半導体装置によれば、コア層CRLの表面側と裏面側の両側から伸張歪みが加わって、コア層CRL全体に伸張歪みが与えられていることになり、これによって、発光層として機能するコア層CRLにおける発光効率を向上することができる。
From the above, according to the second embodiment, the thin portion, the core layer CRL formed on the thin portion, the compressive stress film 10 formed on the surface of the core layer CRL, and the surface of the thin portion Among them, a structure having a compressive stress film 12 formed on the back surface provided on the back surface side of the core layer CRL and a size of the compressive stress film 12 larger than the size of the compressive stress film 10 is realized. In other words, in the second embodiment, a core layer CRL formed of a semiconductor layer formed in a thin portion and having a front surface and a back surface, and a small-sized silicon oxide film formed on the surface of the core layer CRL or A structure having a silicon nitride film and a large-sized silicon oxide film or silicon nitride film formed on the back side of the core layer CRL is realized. That is, according to the semiconductor device in the present second embodiment, the surface side of the core layer CRL that is in contact with the small-sized compressive stress film 10 is subjected to tensile strain due to local stress caused by the compressive stress film 10, and A tensile stress is applied to the back surface side of the core layer CRL by the global stress caused by the convex warpage below the thin portion formed by the large compressive stress film 12 formed on the bottom surface of the groove DIT. As a result, according to the semiconductor device in the present second embodiment, the tensile strain is applied from both the front surface side and the back surface side of the core layer CRL, and the entire core layer CRL is subjected to the tensile strain. Thus, the light emission efficiency in the core layer CRL functioning as the light emitting layer can be improved.
<半導体装置の製造方法>
本実施の形態2における半導体装置は、上記のように構成されており、以下に、その製造方法について、図面を参照しながら説明することにする。 <Method for Manufacturing Semiconductor Device>
The semiconductor device according to the second embodiment is configured as described above, and the manufacturing method thereof will be described below with reference to the drawings.
本実施の形態2における半導体装置は、上記のように構成されており、以下に、その製造方法について、図面を参照しながら説明することにする。 <Method for Manufacturing Semiconductor Device>
The semiconductor device according to the second embodiment is configured as described above, and the manufacturing method thereof will be described below with reference to the drawings.
まず、図11~図17に示す前記実施の形態1と同様の工程を経ることにより、図22に示す構造が形成される。次に、図23に示すように、基板層1aの裏面に絶縁膜IF3を形成する。絶縁膜IF3は、例えば、酸化シリコン膜から形成され、例えば、CVD法を使用することにより形成することができる。
First, the structure shown in FIG. 22 is formed through the same steps as those in the first embodiment shown in FIGS. Next, as shown in FIG. 23, an insulating film IF3 is formed on the back surface of the substrate layer 1a. The insulating film IF3 is formed of, for example, a silicon oxide film, and can be formed by using, for example, a CVD method.
続いて、図24に示すように、フォトリソグラフィ技術およびエッチング技術を使用することにより、絶縁膜IF3をパターニングして、絶縁膜IF3に開口部OP2を形成する。その後、図25に示すように、パターニングした絶縁膜IF3をマスクとして、開口部OP2から露出する基板層1aをエッチングする。このエッチングは、例えば、TMAH(Tetra Methyl Ammonium Hydroxide)を使用したウェットエッチングとすることができる。このTMAHは、シリコンの(111)面が現れる異方性エッチング液である。このため、絶縁膜IF3に形成した開口部OP2のサイズよりも、溝DITの底面のサイズが小さくなる。したがって、開口部OP2のサイズを薄肉部のサイズよりも大きく形成する必要があり、例えば、形成する薄肉部のサイズよりも約70μm程度大きくしている。このようにして、基板層1aをエッチングした後、露出する絶縁層1bをエッチングし、さらに、絶縁層1bをエッチングすることにより露出するシリコン層1cをエッチングする。これにより、図25に示すように、SOI基板を貫通して絶縁層IFに達する溝DITを形成することができ、この結果、溝DITの上方に薄肉部を形成することができる。
Subsequently, as shown in FIG. 24, by using a photolithography technique and an etching technique, the insulating film IF3 is patterned to form an opening OP2 in the insulating film IF3. Thereafter, as shown in FIG. 25, the substrate layer 1a exposed from the opening OP2 is etched using the patterned insulating film IF3 as a mask. This etching can be, for example, wet etching using TMAH (Tetra Methyl Ammonium Hydroxide). This TMAH is an anisotropic etching solution in which the (111) plane of silicon appears. For this reason, the size of the bottom surface of the trench DIT is smaller than the size of the opening OP2 formed in the insulating film IF3. Therefore, it is necessary to make the size of the opening OP2 larger than the size of the thin portion, for example, about 70 μm larger than the size of the thin portion to be formed. In this way, after etching the substrate layer 1a, the exposed insulating layer 1b is etched, and further, the exposed silicon layer 1c is etched by etching the insulating layer 1b. As a result, as shown in FIG. 25, a trench DIT that penetrates the SOI substrate and reaches the insulating layer IF can be formed. As a result, a thin portion can be formed above the trench DIT.
次に、図21に示すように、溝DITの底面から露出する絶縁膜IFに接触する圧縮応力膜12を形成する。この圧縮応力膜12は、例えば、酸化シリコン膜や窒化シリコン膜から形成されており、例えば、CVD法を使用することにより形成することができる。
Next, as shown in FIG. 21, a compressive stress film 12 that contacts the insulating film IF exposed from the bottom surface of the trench DIT is formed. The compressive stress film 12 is formed of, for example, a silicon oxide film or a silicon nitride film, and can be formed by using, for example, a CVD method.
このとき、図21に示すように、圧縮応力膜12のサイズが圧縮応力膜10のサイズよりも大きくなるように圧縮応力膜12が形成される。この結果、圧縮応力膜10によって薄肉部の表面側に加わる伸張歪みよりも、圧縮応力膜12によって薄肉部の裏面側に加わる伸張歪みが大きくなる。したがって、薄肉部の裏面側が表面側よりも伸びるため、薄肉部には下に凸の反りが発生することになる。これにより、薄肉部に発生する下に凸の反りに起因するグローバル応力によって、コア層CRLの裏面側に伸張歪みが加わることになる。この結果、本実施の形態2における半導体装置によれば、コア層CRLの表面側と裏面側の両側から伸張歪みが加わって、コア層CRL全体に伸張歪みを加えることができる。
At this time, the compressive stress film 12 is formed so that the size of the compressive stress film 12 is larger than the size of the compressive stress film 10 as shown in FIG. As a result, the tensile strain applied to the back side of the thin portion by the compressive stress film 12 is larger than the tensile strain applied to the front surface side of the thin portion by the compressive stress film 10. Therefore, since the back surface side of the thin wall portion extends more than the front surface side, the thin wall portion is warped downward. As a result, a tensile stress is applied to the back surface side of the core layer CRL due to the global stress caused by the downwardly convex warp generated in the thin portion. As a result, according to the semiconductor device in the second embodiment, the tensile strain can be applied from both the front surface side and the back surface side of the core layer CRL, and the entire core layer CRL can be applied with the tensile strain.
なお、窒化シリコン膜は、膜内の各元素間の結合密度や分布状態によって内部応力や光学特性が大きく変化する。このことから、本実施の形態2においては、成膜温度や材料ガスの供給量を調整することにより、圧縮応力膜として機能する窒化シリコン膜を形成する。例えば、窒化シリコン膜中の窒素と水素(N-H結合)の結合密度が小さい場合、窒化シリコン膜は圧縮応力膜となる一方、窒化シリコン膜中の窒素と水素(N-H結合)の結合密度が大きい場合、窒化シリコン膜は伸張応力膜となる。したがって、本実施の形態2で使用する窒化シリコン膜は圧縮応力膜である必要があるため、成膜条件を調整することにより、圧縮応力膜となる程度に膜中の窒素と水素(N-H結合)の結合密度が小さい窒化シリコン膜を圧縮応力膜10や圧縮応力膜12として形成することになる。
Note that the internal stress and optical characteristics of the silicon nitride film vary greatly depending on the bond density and distribution state between the elements in the film. Therefore, in the second embodiment, the silicon nitride film functioning as a compressive stress film is formed by adjusting the film formation temperature and the supply amount of the material gas. For example, when the bond density of nitrogen and hydrogen (NH bond) in the silicon nitride film is low, the silicon nitride film becomes a compressive stress film, while the bond between nitrogen and hydrogen (NH bond) in the silicon nitride film When the density is high, the silicon nitride film becomes a tensile stress film. Therefore, since the silicon nitride film used in Embodiment 2 needs to be a compressive stress film, by adjusting the film forming conditions, nitrogen and hydrogen (N—H) A silicon nitride film having a low bond density is formed as the compressive stress film 10 or the compressive stress film 12.
以上のようにして、本実施の形態2における半導体装置を製造することができる。
As described above, the semiconductor device according to the second embodiment can be manufactured.
(実施の形態3)
前記実施の形態1では、本発明の基本思想を発光素子に適用する例について説明したが、本実施の形態3では、本発明の基本思想を受光素子に適用する例について説明する。すなわち、前記実施の形態1では、発光層として機能するコア層の構成例について説明したが、本実施の形態3では、受光層(光吸収層)として機能するコア層の構成例について説明する。なお、前記実施の形態1における半導体装置の構成と、本実施の形態3における半導体装置の構成とは、ほぼ同様であるため、相違点を中心に説明する。 (Embodiment 3)
In the first embodiment, an example in which the basic idea of the present invention is applied to a light emitting element has been described. In the third embodiment, an example in which the basic idea of the present invention is applied to a light receiving element will be described. That is, in the first embodiment, the configuration example of the core layer functioning as the light emitting layer has been described. In the third embodiment, the configuration example of the core layer functioning as the light receiving layer (light absorption layer) will be described. Since the configuration of the semiconductor device in the first embodiment and the configuration of the semiconductor device in the third embodiment are substantially the same, the description will focus on the differences.
前記実施の形態1では、本発明の基本思想を発光素子に適用する例について説明したが、本実施の形態3では、本発明の基本思想を受光素子に適用する例について説明する。すなわち、前記実施の形態1では、発光層として機能するコア層の構成例について説明したが、本実施の形態3では、受光層(光吸収層)として機能するコア層の構成例について説明する。なお、前記実施の形態1における半導体装置の構成と、本実施の形態3における半導体装置の構成とは、ほぼ同様であるため、相違点を中心に説明する。 (Embodiment 3)
In the first embodiment, an example in which the basic idea of the present invention is applied to a light emitting element has been described. In the third embodiment, an example in which the basic idea of the present invention is applied to a light receiving element will be described. That is, in the first embodiment, the configuration example of the core layer functioning as the light emitting layer has been described. In the third embodiment, the configuration example of the core layer functioning as the light receiving layer (light absorption layer) will be described. Since the configuration of the semiconductor device in the first embodiment and the configuration of the semiconductor device in the third embodiment are substantially the same, the description will focus on the differences.
図26(a)は、本実施の形態3における半導体装置の平面構成を示す図である。図26(a)において、光吸収層(受光層)として機能するコア層CRLは、真性半導体層であるゲルマニウム層20から構成されており、このコア層CRLは、例えば、アモルファスシリコン層21からなる光導波路と接続されている。このとき、この光導波路に回折格子やモード変換器を付加することにより、本実施の形態3における受光素子(半導体装置)の受光部として機能するコア層CRLを他の光回路と光学的に接続することができる。
FIG. 26A shows a planar configuration of the semiconductor device according to the third embodiment. In FIG. 26A, the core layer CRL that functions as a light absorption layer (light receiving layer) is composed of a germanium layer 20 that is an intrinsic semiconductor layer, and the core layer CRL is composed of, for example, an amorphous silicon layer 21. Connected to the optical waveguide. At this time, by adding a diffraction grating or a mode converter to the optical waveguide, the core layer CRL functioning as a light receiving portion of the light receiving element (semiconductor device) in the third embodiment is optically connected to another optical circuit. can do.
図26(b)は、図26(a)のA-A線で切断した断面図である。図26(b)に示すように、ゲルマニウム層20からなるコア層CRLは、n型シリコン層30aからなるクラッド層CLDとp型シリコン層30bからなるクラッド層CLDで囲まれている。そして、本実施の形態3においても、前記実施の形態1と同様に、表面と表面とは反対側の裏面とを有する真性半導体層であるコア層CRLと、コア層CRLの表面側に伸張歪みを与える圧縮応力膜10と、コア層CRLの裏面側に伸張歪みを与える伸張応力膜11とを備えるマイクロブリッジ構造体MBSが実現されている。すなわち、本実施の形態3においても、圧縮応力膜10と接しているコア層CRLの表面側には、圧縮応力膜10に起因するローカル応力によって伸張歪みが加わるとともに、クラッド層CLDからコア層CRLの表面側にわたって形成されている伸張応力膜11に起因するグローバル応力によって、コア層CRLの裏面側に伸張歪みが加わることになる。この結果、本実施の形態3においても、コア層CRLの表面側と裏面側の両側から伸張歪みが加わって、コア層CRL全体に伸張歪みが与えられていることになり、本発明における基本思想が具現化される。
FIG. 26 (b) is a cross-sectional view taken along line AA in FIG. 26 (a). As shown in FIG. 26B, the core layer CRL made of the germanium layer 20 is surrounded by the clad layer CLD made of the n-type silicon layer 30a and the clad layer CLD made of the p-type silicon layer 30b. Also in the third embodiment, as in the first embodiment, the core layer CRL, which is an intrinsic semiconductor layer having a front surface and a back surface opposite to the front surface, and a tensile strain on the front surface side of the core layer CRL. A micro-bridge structure MBS is realized that includes a compressive stress film 10 that imparts a tensile stress and a tensile stress film 11 that imparts a tensile strain to the back side of the core layer CRL. That is, also in the third embodiment, the surface side of the core layer CRL in contact with the compressive stress film 10 is subjected to tensile strain due to local stress caused by the compressive stress film 10, and from the clad layer CLD to the core layer CRL. Due to the global stress caused by the tensile stress film 11 formed over the front surface side, the tensile strain is applied to the back surface side of the core layer CRL. As a result, also in the third embodiment, the tensile strain is applied from both the front surface side and the back surface side of the core layer CRL so that the entire core layer CRL is stretched. Is embodied.
ここで、本実施の形態3では、コア層CRLは光吸収層として機能する。そして、本実施の形態3では、コア層CRLを真性半導体層であるゲルマニウム層20から形成し、かつ、コア層CRL全体に伸張歪みを与えることにより、コア層CRLにおける光吸収効率を向上することができる。以下にこの点について説明する。
Here, in the third embodiment, the core layer CRL functions as a light absorption layer. In the third embodiment, the core layer CRL is formed from the germanium layer 20 that is an intrinsic semiconductor layer, and the entire core layer CRL is stretched to improve the light absorption efficiency in the core layer CRL. Can do. This point will be described below.
まず、コア層CRLを真性半導体層であるゲルマニウム層20から構成する場合、n型シリコン層30aからなるクラッド層CLDとp型シリコン層30bからなるクラッド層で挟まれたコア層CRL内に形成される空乏層が大きくなる。このため、コア層CRLで光が吸収されるということは、空乏層内で光が吸収されることを意味する。そして、空乏層内で光が吸収されることにより、価電子帯から伝導帯に電子が励起される。このことは、価電子帯に正孔が生成されて伝導帯に電子が遷移することを意味する。このとき、空乏層内で光が吸収されて正孔・電子対が生成される場合、空乏層内の電界により、伝導帯に励起された電子はn型シリコン層30aに向かって加速される一方、価電子帯に生成された正孔はp型シリコン層30bに向かって加速される。したがって、電子と正孔は、互いに逆方向に移動することから、電子と正孔が再結合する確率が小さくなる。このことは、空乏層内で光が吸収される場合、電子と正孔の再結合が起こりにくくなることを意味し、これによって、光吸収効率が増大することになる。すなわち、本実施の形態3では、光吸収層として機能するコア層CRLを真性半導体層であるゲルマニウム層20から構成することにより、コア層CRLでの光吸収効率を向上することができるのである。
First, when the core layer CRL is composed of the germanium layer 20 which is an intrinsic semiconductor layer, the core layer CRL is formed in the core layer CRL sandwiched between the clad layer CLD made of the n-type silicon layer 30a and the clad layer made of the p-type silicon layer 30b. The depletion layer becomes larger. For this reason, the fact that light is absorbed in the core layer CRL means that light is absorbed in the depletion layer. Then, when light is absorbed in the depletion layer, electrons are excited from the valence band to the conduction band. This means that holes are generated in the valence band and electrons transition to the conduction band. At this time, when light is absorbed in the depletion layer and hole / electron pairs are generated, electrons excited in the conduction band are accelerated toward the n-type silicon layer 30a by the electric field in the depletion layer. The holes generated in the valence band are accelerated toward the p-type silicon layer 30b. Therefore, since electrons and holes move in opposite directions, the probability of recombination of electrons and holes decreases. This means that when light is absorbed in the depletion layer, recombination of electrons and holes is less likely to occur, thereby increasing light absorption efficiency. That is, in the third embodiment, the light absorption efficiency in the core layer CRL can be improved by configuring the core layer CRL functioning as the light absorption layer from the germanium layer 20 which is an intrinsic semiconductor layer.
さらに、本実施の形態3では、図26(b)に示すように、コア層CRLの表面側には、圧縮応力膜10に起因するローカル応力によって伸張歪みが加わるとともに、クラッド層CLDからコア層CRLの表面側にわたって形成されている伸張応力膜11に起因するグローバル応力によって、コア層CRLの裏面側に伸張歪みが加わることになる。この結果、本実施の形態3においても、コア層CRLの表面側と裏面側の両側から伸張歪みが加わって、コア層CRL全体に伸張歪みが与えられることになる。このことは、コア層CRL全体にわたって、コア層CRLを構成するゲルマニウム層20のバンドギャップが縮小することを意味する。そして、バンドギャップが小さくなるほど、価電子帯から伝導帯に電子を励起するエネルギーが小さくなることを考慮すると、より長波長の光においても、コア層CRLで吸収されることになる。このことは、本実施の形態3によれば、コア層CRLにおける光吸収効率が向上することを意味する。
Further, in the present third embodiment, as shown in FIG. 26B, the surface side of the core layer CRL is subjected to tensile strain due to local stress caused by the compressive stress film 10, and from the cladding layer CLD to the core layer. A tensile stress is applied to the back surface side of the core layer CRL by the global stress caused by the tensile stress film 11 formed over the surface side of the CRL. As a result, also in the third embodiment, the tensile strain is applied from both the front surface side and the back surface side of the core layer CRL, and the entire core layer CRL is subjected to the tensile strain. This means that the band gap of the germanium layer 20 constituting the core layer CRL is reduced over the entire core layer CRL. Then, considering that the energy for exciting electrons from the valence band to the conduction band decreases as the band gap decreases, even the light having a longer wavelength is absorbed by the core layer CRL. This means that according to the third embodiment, the light absorption efficiency in the core layer CRL is improved.
以上のことから、本実施の形態3における半導体装置(受光素子)によれば、コア層CRLを真性半導体層であるゲルマニウム層20から形成する点と、コア層CRL全体に伸張歪みを与える点との相乗効果によって、コア層CRLにおける光吸収効率を大幅に向上することができるという優れた効果を得ることができる。
From the above, according to the semiconductor device (light receiving element) in the present third embodiment, the core layer CRL is formed from the germanium layer 20 which is an intrinsic semiconductor layer, and the entire core layer CRL is subjected to tensile strain. By this synergistic effect, it is possible to obtain an excellent effect that the light absorption efficiency in the core layer CRL can be greatly improved.
以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
10 圧縮応力膜
11 伸張応力膜
AR1 領域
AR2 領域
CLD クラッド層
CRL コア層
IF 絶縁膜 10Compressive stress film 11 Tensile stress film AR1 region AR2 region CLD Clad layer CRL Core layer IF Insulating film
11 伸張応力膜
AR1 領域
AR2 領域
CLD クラッド層
CRL コア層
IF 絶縁膜 10
Claims (15)
- 第1面と前記第1面とは反対側の第2面とを有する半導体層からなる光導波路層と、
前記光導波路層の前記第1面側に伸張歪みを与える第1応力膜と、
前記光導波路層の前記第2面側に伸張歪みを与える第2応力膜と、
を備える、半導体装置。 An optical waveguide layer comprising a semiconductor layer having a first surface and a second surface opposite to the first surface;
A first stress film for applying an extension strain to the first surface side of the optical waveguide layer;
A second stress film for applying an extension strain to the second surface side of the optical waveguide layer;
A semiconductor device comprising: - 請求項1に記載の半導体装置において、
前記半導体装置は、基板上に隙間を介して設けられた構造体を有し、
前記構造体は、
前記光導波路層と、
前記光導波路層の前記第1面上に形成された圧縮応力膜からなる前記第1応力膜と、
平面視において、前記第1応力膜を内包し、かつ、前記第1応力膜を覆うように前記光導波路層の前記第1面側に形成された伸張応力膜からなる前記第2応力膜と、
を有する、半導体装置。 The semiconductor device according to claim 1,
The semiconductor device has a structure provided on a substrate via a gap,
The structure is
The optical waveguide layer;
The first stress film comprising a compressive stress film formed on the first surface of the optical waveguide layer;
In plan view, the second stress film including the first stress film and made of an extensional stress film formed on the first surface side of the optical waveguide layer so as to cover the first stress film;
A semiconductor device. - 請求項2に記載の半導体装置において、
前記隙間には、絶縁膜が埋め込まれている、半導体装置。 The semiconductor device according to claim 2,
A semiconductor device in which an insulating film is embedded in the gap. - 請求項1に記載の半導体装置において、
前記半導体装置は、
薄肉部と、
前記薄肉部に形成された前記光導波路層と、
前記光導波路層の前記第1面上に形成された圧縮応力膜からなる前記第1応力膜と、
前記薄肉部の面のうち、前記光導波路層の前記第2面側に設けられている裏面に形成された圧縮応力膜からなる前記第2応力膜と、
を有し、
前記第2応力膜のサイズは、前記第1応力膜のサイズよりも大きい、半導体装置。 The semiconductor device according to claim 1,
The semiconductor device includes:
Thin part,
The optical waveguide layer formed in the thin portion;
The first stress film comprising a compressive stress film formed on the first surface of the optical waveguide layer;
Of the surface of the thin portion, the second stress film made of a compressive stress film formed on the back surface provided on the second surface side of the optical waveguide layer;
Have
The size of the second stress film is a semiconductor device larger than the size of the first stress film. - 請求項1に記載の半導体装置において、
前記光導波路層は、前記伸張歪みが加わらない場合には間接遷移半導体である一方、前記伸張歪みが加わることによって、直接遷移半導体として機能する前記半導体層から構成されている、半導体装置。 The semiconductor device according to claim 1,
The optical waveguide layer is an indirect transition semiconductor when the extension strain is not applied, and includes the semiconductor layer that functions as a direct transition semiconductor when the extension strain is applied. - 請求項1に記載の半導体装置において、
前記光導波路層は、発光層として機能する、半導体装置。 The semiconductor device according to claim 1,
The optical waveguide layer is a semiconductor device that functions as a light emitting layer. - 請求項6に記載の半導体装置において、
前記光導波路層は、n型半導体層を有する、半導体装置。 The semiconductor device according to claim 6.
The optical waveguide layer is a semiconductor device having an n-type semiconductor layer. - 請求項6に記載の半導体装置において、
前記光導波路層は、n型半導体層とp型半導体層との接合部を含む、半導体装置。 The semiconductor device according to claim 6.
The optical waveguide layer is a semiconductor device including a junction between an n-type semiconductor layer and a p-type semiconductor layer. - 請求項1に記載の半導体装置において、
前記光導波路層は、光吸収層として機能する、半導体装置。 The semiconductor device according to claim 1,
The optical waveguide layer is a semiconductor device that functions as a light absorption layer. - 請求項1に記載の半導体装置において、
前記第1応力膜は、前記光導波路層と直接接触している、半導体装置。 The semiconductor device according to claim 1,
The semiconductor device, wherein the first stress film is in direct contact with the optical waveguide layer. - 請求項1に記載の半導体装置において、
前記光導波路層と前記第1応力膜との間に中間層が介在している、半導体装置。 The semiconductor device according to claim 1,
A semiconductor device, wherein an intermediate layer is interposed between the optical waveguide layer and the first stress film. - 請求項1に記載の半導体装置において、
前記光導波路層は、ゲルマニウムを含む、半導体装置。 The semiconductor device according to claim 1,
The optical waveguide layer is a semiconductor device containing germanium. - 第1面と前記第1面とは反対側の第2面とを有する半導体層からなる光導波路層と、
前記光導波路層の前記第1面側に設けられた第1膜と、
平面視において、前記第1膜を内包し、かつ、前記第1膜を覆うように前記光導波路層の前記第1面側に設けられた第2膜と、
を備え、
前記第1膜は、酸化シリコン膜あるいは第1窒化シリコン膜を含み、
前記第2膜は、窒化アルミニウム膜あるいは第2窒化シリコン膜を含み、
前記第2窒化シリコン膜中の窒素と水素との結合密度は、前記第1窒化シリコン膜中の窒素と水素との結合密度よりも大きい、半導体装置。 An optical waveguide layer comprising a semiconductor layer having a first surface and a second surface opposite to the first surface;
A first film provided on the first surface side of the optical waveguide layer;
A second film provided on the first surface side of the optical waveguide layer so as to enclose the first film and cover the first film in plan view;
With
The first film includes a silicon oxide film or a first silicon nitride film,
The second film includes an aluminum nitride film or a second silicon nitride film,
The semiconductor device, wherein a bond density between nitrogen and hydrogen in the second silicon nitride film is larger than a bond density between nitrogen and hydrogen in the first silicon nitride film. - 請求項13に記載の半導体装置において、
前記半導体装置は、基板上に隙間を介して設けられた構造体を有し、
前記構造体には、
前記光導波路層と、
前記第1膜と、
前記第2膜と、
が形成されている、半導体装置。 The semiconductor device according to claim 13,
The semiconductor device has a structure provided on a substrate via a gap,
The structure includes
The optical waveguide layer;
The first film;
The second film;
A semiconductor device in which is formed. - 薄肉部と、
前記薄肉部に形成され、かつ、第1面と前記第1面とは反対側の第2面とを有する半導体層からなる光導波路層と、
前記光導波路層の前記第1面上に形成された第1膜と、
前記薄肉部の面のうち、前記光導波路層の前記第2面側に設けられている裏面に形成され、かつ、前記第1膜よりもサイズの大きな第2膜と、
を備え、
前記第1膜は、酸化シリコン膜あるいは圧縮応力膜である窒化シリコン膜を含み、
前記第2膜は、酸化シリコン膜あるいは圧縮応力膜である窒化シリコン膜を含む、半導体装置。 Thin part,
An optical waveguide layer formed of a semiconductor layer formed in the thin portion and having a first surface and a second surface opposite to the first surface;
A first film formed on the first surface of the optical waveguide layer;
Of the surface of the thin portion, a second film formed on the back surface provided on the second surface side of the optical waveguide layer and having a size larger than the first film,
With
The first film includes a silicon nitride film that is a silicon oxide film or a compressive stress film,
The second film includes a silicon oxide film or a silicon nitride film that is a compressive stress film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/081882 WO2017081796A1 (en) | 2015-11-12 | 2015-11-12 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/081882 WO2017081796A1 (en) | 2015-11-12 | 2015-11-12 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017081796A1 true WO2017081796A1 (en) | 2017-05-18 |
Family
ID=58694783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/081882 WO2017081796A1 (en) | 2015-11-12 | 2015-11-12 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017081796A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0534525A (en) * | 1991-07-26 | 1993-02-12 | Nippon Telegr & Teleph Corp <Ntt> | Optical circuit |
JPH10256158A (en) * | 1997-03-13 | 1998-09-25 | Hitachi Ltd | Semiconductor device and manufacture thereof |
JP2003207660A (en) * | 2002-01-11 | 2003-07-25 | Nippon Telegr & Teleph Corp <Ntt> | Optical waveguide |
JP2003248130A (en) * | 2002-02-26 | 2003-09-05 | Mitsubishi Electric Corp | Quartz-based optical waveguide component |
JP2007173590A (en) * | 2005-12-22 | 2007-07-05 | Toshiba Corp | Semiconductor light-emitting material and light-emitting element using same |
WO2007094057A1 (en) * | 2006-02-15 | 2007-08-23 | Fujitsu Limited | Optical device |
JP2007294628A (en) * | 2006-04-25 | 2007-11-08 | Hitachi Ltd | Silicon light emitting diode, silicon optical transistor, silicon laser, and manufacturing method of them |
US7391801B1 (en) * | 2005-11-25 | 2008-06-24 | The United States Of America As Represented By The Secretary Of The Air Force | Electrically pumped Group IV semiconductor micro-ring laser |
WO2010055750A1 (en) * | 2008-11-12 | 2010-05-20 | 株式会社日立製作所 | Light emitting element, light receiving element, and method for manufacturing the light receiving element |
JP2014175526A (en) * | 2013-03-11 | 2014-09-22 | Hitachi Ltd | Semiconductor optical element and manufacturing method of the same |
-
2015
- 2015-11-12 WO PCT/JP2015/081882 patent/WO2017081796A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0534525A (en) * | 1991-07-26 | 1993-02-12 | Nippon Telegr & Teleph Corp <Ntt> | Optical circuit |
JPH10256158A (en) * | 1997-03-13 | 1998-09-25 | Hitachi Ltd | Semiconductor device and manufacture thereof |
JP2003207660A (en) * | 2002-01-11 | 2003-07-25 | Nippon Telegr & Teleph Corp <Ntt> | Optical waveguide |
JP2003248130A (en) * | 2002-02-26 | 2003-09-05 | Mitsubishi Electric Corp | Quartz-based optical waveguide component |
US7391801B1 (en) * | 2005-11-25 | 2008-06-24 | The United States Of America As Represented By The Secretary Of The Air Force | Electrically pumped Group IV semiconductor micro-ring laser |
JP2007173590A (en) * | 2005-12-22 | 2007-07-05 | Toshiba Corp | Semiconductor light-emitting material and light-emitting element using same |
WO2007094057A1 (en) * | 2006-02-15 | 2007-08-23 | Fujitsu Limited | Optical device |
JP2007294628A (en) * | 2006-04-25 | 2007-11-08 | Hitachi Ltd | Silicon light emitting diode, silicon optical transistor, silicon laser, and manufacturing method of them |
WO2010055750A1 (en) * | 2008-11-12 | 2010-05-20 | 株式会社日立製作所 | Light emitting element, light receiving element, and method for manufacturing the light receiving element |
JP2014175526A (en) * | 2013-03-11 | 2014-09-22 | Hitachi Ltd | Semiconductor optical element and manufacturing method of the same |
Non-Patent Citations (1)
Title |
---|
NAM ET AL.: "Strained german ium thin film membrane on silicon substrate for optoelectronics", OPTICS EXPRESS, vol. 19, no. 27, December 2011 (2011-12-01), pages 25866 - 25872, XP055380970 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5167384B2 (en) | Substrate dividing method | |
US9653639B2 (en) | Laser using locally strained germanium on silicon for opto-electronic applications | |
US8088637B1 (en) | Method of manufacturing a semiconductor device including a superlattice strain relief layer | |
US9209023B2 (en) | Growing III-V compound semiconductors from trenches filled with intermediate layers | |
US7442999B2 (en) | Semiconductor substrate, substrate for semiconductor crystal growth, semiconductor device, optical semiconductor device, and manufacturing method thereof | |
US20130156364A1 (en) | Electronic/photonic integrated circuit architecture and method of manufacture thereof | |
US20140299885A1 (en) | Substrate structures and semiconductor devices employing the same | |
WO2013118248A1 (en) | Light-emitting element | |
KR101878742B1 (en) | Method of growing GaN layer on graphene layer and light emitting device using GaN layer on graphene layer | |
JP2016188956A (en) | Mode conversion element and optical function element | |
TW201943072A (en) | RE-based integrated photonic and electronic layered structures | |
JP6525554B2 (en) | CMOS device including substrate structure | |
KR102210325B1 (en) | Complementary metal oxide semiconductor device and method of manufacturing the same | |
TWI523264B (en) | Method for producing an optoelectronic semiconductor chip and a semiconductor chip of this type | |
WO2017081796A1 (en) | Semiconductor device | |
JP2014183194A (en) | Semiconductor device manufacturing method | |
JP2018041957A (en) | Photoelectric conversion device and method of controlling operation wavelength of the same | |
JP6127103B2 (en) | Semiconductor light receiving element and manufacturing method thereof | |
TW202234479A (en) | Semiconductor substrate, method for producing semiconductor substrate, device for producing semiconductor substrate, electronic component, and electronic device | |
JP3879604B2 (en) | Semiconductor multilayer substrate and method for manufacturing semiconductor multilayer film | |
JP2015179749A (en) | semiconductor optical element | |
JP2014183055A (en) | Light emitter, and method of manufacturing the same | |
JP4656888B2 (en) | Substrate dividing method | |
JP4910492B2 (en) | Method for dividing nitride semiconductor wafer | |
JP2015179748A (en) | Manufacturing method of semiconductor optical element and semiconductor optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15908316 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15908316 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |