WO2017077908A1 - Acrylic resin composition - Google Patents
Acrylic resin composition Download PDFInfo
- Publication number
- WO2017077908A1 WO2017077908A1 PCT/JP2016/081638 JP2016081638W WO2017077908A1 WO 2017077908 A1 WO2017077908 A1 WO 2017077908A1 JP 2016081638 W JP2016081638 W JP 2016081638W WO 2017077908 A1 WO2017077908 A1 WO 2017077908A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- acrylic resin
- copolymer
- polymer
- resin composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L55/00—Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
Definitions
- the present invention relates to an acrylic resin composition. Moreover, this invention relates also to the acrylic resin film containing this acrylic resin composition, and the polarizing plate containing this acrylic resin film.
- Patent Documents 1 and 2 describe the impact resistance of a film formed from such a resin by blending rubber elastic particles with a copolymer of methyl methacrylate and n-butyl acrylate or methyl acrylate alone. It describes that it can improve the property and film forming property.
- An object of the present invention is to provide an acrylic resin composition having high impact resistance without lowering the elastic modulus.
- An acrylic resin composition comprising a copolymer (1) and a polymer (2),
- the copolymer (1) is a structural unit represented by the following formula (1a): [Wherein R 11 represents a hydrogen atom or a methyl group, R 12 represents a terminal group, and X represents a formula (1a-1): (Wherein R 13 is a hydrogen atom or a methyl group, and R 14 is a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or An aryl group having 6 to 18 carbon atoms, and n is a number average value of 70 or more) Or a divalent residue represented by the formula (1a-2): (Where m is a number from 10 to 1000 as a number average value) It is a divalent residue represented by And a structural unit represented by the following formula (1b): [Wherein,
- the polymer (2) is a structural unit represented by the following formula (2a): [Wherein R 21 represents a hydrogen atom or a methyl group, and R 22 represents a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or It is an aryl group having 6 to 18 carbon atoms.] (However, the structural unit represented by the formula (1a) is less than 5% by mass with respect to all the structural units contained in the polymer (2)), Acrylic resin composition comprising 1 to 90 parts by mass of copolymer (1) and 10 to 99 parts by mass of polymer (2) with respect to 100 parts by mass in total of copolymer (1) and polymer (2) object.
- X in the formula (1a) is a divalent residue represented by the formula (1a-1), and is represented by the formula (1a) for all structural units contained in the copolymer (1).
- the amount of the structural unit is 5 to 15% by mass, and 10 to 30 parts by mass of the copolymer (1) and the polymer (100% relative to the total of 100 parts by mass of the copolymer (1) and the polymer (2)).
- the acrylic resin according to [1] or [2] comprising 1 to 50 parts by mass of rubber elastic particles with respect to 100 parts by mass in total of the copolymer (1) and the polymer (2). Composition.
- the acrylic resin composition of the present invention includes a copolymer (1) and a polymer (2).
- the copolymer (1) contained in the acrylic resin composition of the present invention comprises a structural unit represented by the formula (1a) (hereinafter sometimes referred to as “structural unit (1a)”) and the formula (1b). ) (Hereinafter sometimes referred to as “structural unit (1b)”).
- the structural unit (1a) is represented by the formula (1a): Is a structural unit represented by The structural unit (1a) is a structural unit derived from a relatively high molecular weight monomer having a polymerizable unsaturated group at the terminal (hereinafter, the monomer is referred to as “macromonomer”).
- R 11 is a hydrogen atom or a methyl group, and preferably a methyl group from the viewpoint of heat resistance of the acrylic resin composition.
- the terminal group R 12 in the formula (1a) is determined by the polymerization initiator used when synthesizing the macromonomer corresponding to the structural unit (1a), it is not particularly limited. It may be a 2-cyano-2-propyl group or the like. That is, for example, when azobisisobutyronitrile is used as the polymerization initiator, R 12 is a 2-cyano-2-propyl group.
- X represents formula (1a-1): Or formula (1a-2): It is a bivalent residue shown by.
- R 13 is a hydrogen atom or a methyl group, and is preferably a methyl group from the viewpoint of heat resistance of the acrylic resin composition.
- R 14 represents a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a C 6 to 18 carbon atom. An aryl group.
- Examples of the linear alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group. , N-nonyl group, n-decyl group, n-icosyl group and the like.
- Examples of the branched alkyl group having 3 to 20 carbon atoms include i-propyl group, i-butyl group, tert-butyl group, 2-ethylhexyl group and the like.
- Examples of the cycloalkyl group having 3 to 20 carbon atoms include a cyclopropyl group, a cyclohexyl group, and an adamantyl group.
- Examples of the aryl group having 6 to 18 carbon atoms include a phenyl group and a naphthyl group. Since the corresponding macromonomer is easily available, the substituent R 14 is preferably a linear alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group.
- N in the formula (1a-1) is a number of 70 or more as a number average value. n is usually 300 or less.
- M in the formula (1a-2) is a number of 10 to 1000 as a number average value. m is preferably 30 to 100.
- X is preferably a divalent residue represented by the formula (1a-1) because the transparency of the acrylic resin composition, particularly a film containing the acrylic resin composition, becomes good.
- the structural unit (1b) is represented by the formula (1b): Is a structural unit represented by
- R 15 is a hydrogen atom or a methyl group, and is preferably a methyl group from the viewpoint of heat resistance of the acrylic resin composition.
- R 16 represents a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or an aryl group having 6 to 18 carbon atoms. It is.
- Examples of the linear alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group. Group, n-nonyl group, n-decyl group, n-icosyl group and the like.
- Examples of the branched alkyl group having 3 to 20 carbon atoms include i-propyl group, i-butyl group, tert-butyl group, 2-ethylhexyl group and the like.
- Examples of the cycloalkyl group having 3 to 20 carbon atoms include a cyclopropyl group, a cyclohexyl group, and an adamantyl group.
- Examples of the aryl group having 6 to 18 carbon atoms include a phenyl group and a naphthyl group. Since the corresponding monomer is easily available, the substituent R 16 is preferably a linear alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group.
- the amount of the structural unit (1a) contained in the copolymer (1) is 5 to 70% by mass, preferably 5 to 50% by mass with respect to 100% by mass of all the structural units contained in the copolymer (1). %, More preferably 5 to 30% by mass, still more preferably 5 to 20% by mass, and particularly preferably 5 to 15% by mass.
- the amount of the structural unit (1a) in the copolymer (1) is less than 5% by mass, the impact resistance is inferior, and when it exceeds 70% by mass, the elastic modulus is lowered. Is difficult to do.
- the structural unit (1a) one type of structural unit may be included, or a plurality of different types of structural units may be included.
- the amount of the structural unit (1b) contained in the copolymer (1) is 30 to 95% by mass, preferably 50 to 95% by mass with respect to 100% by mass of all the structural units contained in the copolymer (1). %, More preferably 70 to 95% by mass, still more preferably 80 to 95% by mass, and particularly preferably 85 to 95% by mass.
- the amount of the structural unit (1b) in the copolymer (1) exceeds 95% by mass, the impact resistance is inferior, and when it is less than 30% by mass, the elastic modulus is lowered. Is difficult to do.
- the structural unit (1b) one type of structural unit may be included, or a plurality of different types of structural units may be included.
- the copolymer (1) includes the structural unit (1a) and the structural unit (1b) as essential structural units, and includes only the structural unit (1a) and the structural unit (1b) as structural units. Alternatively, it may include a structural unit other than the structural unit (1a) and the structural unit (1b) (hereinafter sometimes referred to as “structural unit (1c)”). Such a structural unit (1c) is particularly limited as long as it is derived from a macromonomer corresponding to the structural unit (1a) and a monomer copolymerizable with the monomer corresponding to the structural unit (1b). It is not something.
- Examples thereof include structural units derived from unsaturated acids such as acrylic acid and methacrylic acid, alkenyl cyanides such as acrylonitrile and methacrylonitrile, styrene monomers such as styrene and ⁇ -methylstyrene.
- the amount is usually 10% by mass or less and 0% by mass with respect to 100% by mass of all the structural units contained in the copolymer (1). There may be. In one embodiment of the present invention, the copolymer (1) does not contain the structural unit (1c).
- the copolymer (1) is a copolymer of a macromonomer corresponding to the structural unit (1a) and a monomer corresponding to the structural unit (1b), and if necessary, a monomer corresponding to the structural unit (1c). Can be manufactured.
- the production method of the copolymer (1) is not particularly limited, and a copolymerization method known in the art can be used.
- the macromonomer and the structural unit (1b) corresponding to the structural unit (1a) can be used.
- a monomer corresponding to the structural unit (1c) are usually mixed and polymerized using a polymerization initiator.
- the macromonomer corresponding to the structural unit (1a) contained in the copolymer (1) a commercially available one can be used, for example, trade name AA-6 (methacrylic acid) manufactured by Toagosei Co., Ltd. And compounds having a methacryloyloxy group added to the terminal of the methyl polymer: number average molecular weight 7300) and AS-6 (a compound having a methacryloyloxy group added to the terminal of the styrene polymer: number average molecular weight 7000).
- trade name AA-6 methacrylic acid
- AS-6 a compound having a methacryloyloxy group added to the terminal of the styrene polymer: number average molecular weight 7000.
- Examples of the monomer corresponding to the structural unit (1b) contained in the copolymer (1) include methyl (meth) acrylate, ethyl (meth) acrylate, and propyl (meth) acrylate.
- the polymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of the monomer corresponding to each structural unit, and can be appropriately selected from known polymerization initiators.
- examples of the polymerization initiator include thermal polymerization initiators that initiate polymerization by heating organic peroxides such as lauroyl peroxide and benzoyl peroxide, and azo compounds such as azobisisobutyronitrile. Can be mentioned.
- a polymerization initiator may be used individually by 1 type, and may be used in combination of 2 or more type.
- the amount can be appropriately determined according to the type of monomer used, the content thereof, and the like.
- the amount is usually 0.01 to 5 parts by mass, preferably 1 part by mass or less, based on 100 parts by mass in total of all monomers used for constituting 1).
- Mn number average molecular weight
- a chain transfer agent may be used together with the polymerization initiator.
- the chain transfer agent for example, mercaptans such as n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan and 2-ethylhexyl thioglycolate are preferably used. These chain transfer agents may be used individually by 1 type, and may be used in combination of 2 or more type.
- the amount of the chain transfer agent can be appropriately determined according to the type of monomer used and the content thereof.
- the amount used is usually 0.01 to 5 parts by mass with respect to 100 parts by mass in total of all monomers used to constitute the copolymer (1).
- the amount is preferably 0.01 to 1 part by mass.
- the polymerization method for example, a solution polymerization method, a bulk polymerization method, an emulsion polymerization method, a suspension polymerization method, and the like can be adopted. After the polymerization, the obtained copolymer (1) can be easily purified and taken out. Therefore, it is preferable to carry out by a suspension polymerization method in which the monomer is polymerized while being dispersed as droplets in water. Specifically, polymerization is initiated with a mixture of a macromonomer corresponding to the structural unit (1a) and a monomer corresponding to the structural unit (1b) and, if necessary, a monomer corresponding to the structural unit (1c).
- the mixture After adding an agent and, if necessary, a chain transfer agent, the mixture may be dispersed in water and heated with stirring. By stirring, the monomer is dispersed as droplets in water, and by heating, the polymerization initiator acts on the monomer in the droplet to initiate polymerization.
- the bead-like polymer (1) can be obtained by taking out the solid content from the reaction mixture after polymerization, washing with water and drying.
- the polymerization conditions can be appropriately set according to the type and amount of the monomer used.
- the polymerization temperature is usually 0 to 120 ° C., for example 60 to 100 It is preferable that it is ° C.
- the polymerization time is usually 0.5 to 24 hours, for example, preferably 2 to 12 hours.
- the weight average molecular weight (Mw) of the copolymer (1) is usually 50,000 to 2,000,000, preferably 100,000 to 1,500,000. When the weight average molecular weight of the copolymer (1) is within the above range, for example, it becomes easy to heat and melt the acrylic resin composition and process it into a film or the like.
- the weight average molecular weight is determined by gel permeation chromatography using a multi-angle laser light scattering detector.
- the number average molecular weight (Mn) of the copolymer (1) is usually 10,000 to 2,000,000, preferably 20,000 to 1,500,000. When the number average molecular weight of the copolymer (1) is within the above range, for example, it becomes easy to heat and melt the acrylic resin composition and process it into a film or the like.
- the number average molecular weight is determined by gel permeation chromatography using a multi-angle laser light scattering detector.
- the molecular weight distribution (Mw / Mn) of the copolymer (1) is usually from 1 to 5, preferably from 1 to 4.
- Mw / Mn The molecular weight distribution of the copolymer (1) is usually from 1 to 5, preferably from 1 to 4.
- the copolymer (1) usually preferably has an average degree of branching of 0.3 to 0.95.
- the average degree of branching was determined by gel permeation chromatography using a multi-angle laser light scattering detector as a detector, and the mean square radius r of the copolymer (1) and the polymer having the same molecular weight as the copolymer (1).
- An average square radius r 0 of methyl methacrylate is obtained and calculated as a ratio r / r 0 thereof.
- the polymer (2) contained in the acrylic resin composition of the present invention is a polymer containing a structural unit represented by the following formula (2a) (hereinafter sometimes referred to as “structural unit (2a)”).
- the structural unit (2a) is represented by the formula (2a): Is a structural unit represented by
- R 21 represents a hydrogen atom or a methyl group, and preferably a methyl group from the viewpoint of heat resistance of the acrylic resin composition.
- R 22 is a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or an aryl group having 6 to 18 carbon atoms. is there.
- Examples of the linear alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group. , N-nonyl group, n-decyl group, n-icosyl group and the like.
- Examples of the branched alkyl group having 3 to 20 carbon atoms include i-propyl group, i-butyl group, tert-butyl group, 2-ethylhexyl group and the like.
- Examples of the cycloalkyl group having 3 to 20 carbon atoms include a cyclopropyl group, a cyclohexyl group, and an adamantyl group.
- Examples of the aryl group having 6 to 18 carbon atoms include a phenyl group and a naphthyl group.
- the substituent R 22 is preferably a linear alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group.
- the amount of the structural unit (2a) contained in the polymer (2) is preferably 10 to 100% by mass, preferably 15 to 100% by mass with respect to 100% by mass of all the structural units contained in the polymer (2). %, More preferably 20 to 100% by weight, further preferably 80 to 100% by weight, more preferably 90 to 100% by weight, and 95 to 100% by weight. % Is particularly preferred.
- the amount of the structural unit (2a) in the polymer (2) is within the above range, the transparency of the acrylic resin composition, particularly a film containing the acrylic resin composition, becomes good.
- the structural unit (2a) one type of structural unit may be included, or a plurality of different types of structural units may be included.
- the polymer (2) may contain the structural unit (1a). However, since the elastic modulus is lowered, when the polymer (2) contains the structural unit (1a), the amount is less than 5% by mass with respect to 100% by mass of all the structural units contained in the polymer (2). Yes, preferably less than 0.1% by weight. In a particularly preferred embodiment of the present invention, the polymer (2) does not contain the structural unit (1a) (that is, the amount of the structural unit (1a) may be 0% by mass).
- the polymer (2) may contain only the structural unit (2a) as a structural unit.
- the polymer (2) may include a structural unit other than the structural unit (2a) and the structural unit (1a) (hereinafter sometimes referred to as “structural unit (2b)”).
- structural unit (2b) Such a structural unit is particularly limited as long as it is derived from a monomer corresponding to the structural unit (2a) and a monomer copolymerizable with the monomer corresponding to the structural unit (1a). is not.
- Examples thereof include structural units derived from unsaturated acids such as acrylic acid and methacrylic acid, alkenyl cyanides such as acrylonitrile and methacrylonitrile, styrene monomers such as styrene and ⁇ -methylstyrene.
- the amount thereof is preferably 20% by mass or less, more preferably 10% by mass with respect to 100% by mass of all the structural units contained in the polymer (2). % Or less. In one embodiment of the present invention, the polymer (2) does not contain the structural unit (2b) (that is, the amount of the structural unit (2b) may be 0% by mass).
- the polymer (2) can be produced by polymerizing the monomer corresponding to the structural unit (2a) and, if necessary, the monomer corresponding to the structural unit (1a) and / or (2b). it can.
- the production method of the polymer (2) is not particularly limited, and a copolymerization method known in the art can be used, for example, a monomer corresponding to the structural unit (2a), and if necessary
- the monomer corresponding to the structural unit (1a) and / or (2b) is mixed and usually polymerized using a polymerization initiator.
- a solution polymerization method, a bulk polymerization method, an emulsion polymerization method, a suspension polymerization method and the like can be employed.
- Examples of the monomer corresponding to the structural unit (2a) contained in the polymer (2) include methyl (meth) acrylate, ethyl (meth) acrylate, and propyl (meth) acrylate.
- the polymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of the monomer corresponding to each structural unit, and can be appropriately selected from known polymerization initiators.
- a polymerization initiator as exemplified in the polymerization of the copolymer (1) described above can be used.
- the weight average molecular weight (Mw) of the polymer (2) is usually 50,000 to 300,000, more preferably 80,000 to 250,000. When the weight average molecular weight of the polymer (2) is within the above range, for example, it becomes easy to heat-melt the acrylic resin composition and process it into a film or the like.
- the weight average molecular weight is determined by gel permeation chromatography using a multi-angle laser light scattering detector.
- the number average molecular weight (Mn) of the polymer (2) is usually from 20,000 to 300,000, more preferably from 40,000 to 250,000. When the number average molecular weight of the polymer (2) is within the above range, for example, it becomes easy to heat and melt the acrylic resin composition and process it into a film or the like.
- the number average molecular weight is determined by gel permeation chromatography using a multi-angle laser light scattering detector.
- the molecular weight distribution (Mw / Mn) of the polymer (2) is usually 1 to 3.
- Mw / Mn The molecular weight distribution of the polymer (2) is usually 1 to 3.
- a commercially available acrylic resin can also be used as the polymer (2).
- Examples of commercially available products include “SUMIPEX MH” and “SUMIPEX MHF” manufactured by Sumitomo Chemical Co., Ltd.
- the acrylic resin composition of the present invention includes the copolymer (1) and the polymer (2).
- the acrylic resin composition of the present invention comprises 1 to 90 parts by mass of the copolymer (1) with respect to 100 parts by mass in total of the copolymer (1) and the polymer (2), preferably 5 parts by mass or more. More preferably, it is 10 parts by mass or more, preferably 50 parts by mass or less, more preferably 35 parts by mass or less, and still more preferably 30 parts by mass or less.
- the content of the copolymer (1) with respect to a total of 100 parts by mass of the copolymer (1) and the copolymer (2) may be, for example, 5 to 50 parts by mass.
- the acrylic resin composition of the present invention contains 10 to 99 parts by mass, preferably 50 parts by mass of the polymer (2) with respect to 100 parts by mass of the total amount of the copolymer (1) and the polymer (2). Part or more, preferably 65 parts by weight or more, more preferably 70 parts by weight or more, preferably 95 parts by weight or less, more preferably 90 parts by weight or less.
- the content of the copolymer (2) with respect to 100 parts by mass in total of the copolymer (1) and the copolymer (2) may be, for example, 50 to 95 parts by mass, It may be ⁇ 90 parts by mass, preferably 70 to 90 parts by mass.
- X in the structural unit (1a) is a divalent residue represented by the formula (1a-1), and the structure with respect to all structural units contained in the copolymer (1)
- the amount of the unit (1a) is 5 to 15% by mass, and the copolymer (1) is used in an amount of 10 to 30 parts by mass and
- the acrylic resin composition containing 70 to 90 parts by mass of the combined body (2) can exhibit particularly high impact resistance.
- the acrylic resin composition of the present invention may contain a polymer other than the copolymer (1) and the polymer (2).
- examples of other polymers include unsaturated acids such as acrylic acid and methacrylic acid, alkenyl cyanides such as acrylonitrile and methacrylonitrile, styrene monomers such as styrene and ⁇ -methylstyrene, and the like. And the like.
- the acrylic resin composition of the present invention contains a polymer other than the copolymer (1) and the polymer (2), the content thereof is that of the copolymer (1) and the polymer (2). It is usually 90 parts by mass or less, preferably 80 parts by mass or less with respect to 100 parts by mass in total.
- the acrylic resin composition of the present invention may contain rubber elastic particles.
- the rubber elastic particles may be particles composed only of a layer exhibiting rubber elasticity (hereinafter sometimes referred to as “rubber elastic layer”), and have other layers together with the rubber elastic layer. Particles having a multilayer structure may be used.
- the rubber elastic layer includes a rubber elastic polymer.
- rubber elastic polymers include olefin elastic polymers, diene elastic polymers, styrene-diene elastic copolymers, acrylic elastic polymers, and the like.
- an acrylic elastic polymer is preferable from the viewpoint of light resistance and transparency of the acrylic resin composition of the present invention.
- the acrylic elastic polymer may be a polymer mainly composed of alkyl acrylate, that is, a polymer containing 50 mass% or more of a structural unit derived from alkyl acrylate based on the total amount of monomers.
- the acrylic elastic polymer may be a homopolymer of alkyl acrylate, the structural unit derived from alkyl acrylate is 50% by mass or more, and the structural unit derived from another polymerizable monomer is 50% by mass or less. It may be a copolymer containing
- alkyl acrylate constituting the acrylic elastic polymer those having 4 to 8 carbon atoms in the alkyl group are usually used.
- the other polymerizable monomer include, for example, alkyl methacrylate such as methyl methacrylate and ethyl methacrylate; styrene monomer such as styrene and alkyl styrene; unsaturated nitrile such as acrylonitrile and methacrylonitrile.
- Monofunctional monomers such as allyl (meth) acrylate, alkenyl esters of unsaturated carboxylic acids such as methallyl (meth) acrylate; dialkenyl esters of dibasic acids such as diallyl maleate; alkylene glycol di Polyfunctional monomers such as unsaturated carboxylic acid diesters of glycols such as (meth) acrylates.
- the rubber particles containing an acrylic elastic polymer as the rubber elastic body are preferably multi-layered particles having an acrylic elastic polymer layer.
- an acrylic elastic polymer and a two-layer structure having a hard polymer layer mainly composed of alkyl methacrylate on the outer or inner side of the acrylic elastic polymer layer, or the acrylic elastic polymer The thing of the 3 layer structure which has the hard polymer layer which has an alkyl methacrylate as a main body inside a polymer layer is mentioned.
- Examples of the monomer composition in the polymer mainly composed of alkyl methacrylate constituting the hard polymer layer formed outside and / or inside the acrylic elastic polymer layer are methyl (meth) acrylate, (meth ) Ethyl acrylate, (meth) butyl acrylate, etc., which is a monomer composition of a polymer mainly composed of alkyl (meth) acrylate having about 1 to 4 carbon atoms, particularly a monomer composition mainly composed of methyl methacrylate Is preferably used.
- Such acrylic rubber particles having a multilayer structure can be produced, for example, by the method described in JP-B-55-27576.
- the rubber particles preferably have a diameter (average particle diameter) to the outside of the rubber elastic layer (acrylic elastic polymer layer) contained therein of preferably 10 nm or more, more preferably 30 nm or more, and even more preferably 50 nm or more. Yes, preferably 350 nm or less, more preferably 300 nm or less, and even more preferably 280 nm or less.
- the diameter (average particle diameter) of the rubber particles to the outside of the rubber elastic layer (acrylic elastic polymer layer) is measured as follows. That is, when such rubber particles are mixed into an acrylic resin composition to form a film and the cross section is dyed with an aqueous solution of ruthenium oxide, only the rubber elastic body layer is colored and observed in a substantially circular shape, and the acrylic layer of the mother layer The system resin is not dyed. Therefore, from the cross section of the film dyed in this way, a thin piece is prepared using a microtome or the like, and this is observed with an electron microscope.
- the number average value is made into the said average particle diameter.
- the obtained average particle diameter is a number average particle diameter.
- the rubber particles are rubber particles whose outermost layer is a hard polymer mainly composed of methyl methacrylate and in which the rubber elastic layer (acrylic elastic polymer layer) is encapsulated, this rubber
- the outermost layer of the rubber particles is mixed with the base acrylic resin. Therefore, when the cross section is dyed with ruthenium oxide and observed with an electron microscope, the rubber particles are observed as particles in a state excluding the outermost layer.
- the inner layer is an acrylic elastic polymer and the outer layer is a rubber particle having a two-layer structure, which is a hard polymer mainly composed of methyl methacrylate
- the acrylic elastic polymer portion of the inner layer Are dyed and observed as particles having a single layer structure.
- the innermost layer is a hard polymer mainly composed of methyl methacrylate
- the intermediate layer is an acrylic elastic polymer
- the outermost layer is a rigid polymer mainly composed of methyl methacrylate.
- the central part of the innermost layer is not dyed, and only the acrylic elastic polymer part of the intermediate layer is dyed and observed as a two-layered particle.
- the content thereof is usually 1 to 50 parts by mass with respect to 100 parts by mass in total of the copolymer (1) and the polymer (2). Yes, it is preferably 10-30 parts by mass, more preferably 10-20 parts by mass.
- the rubber elastic particles are included in the above range, higher impact resistance can be ensured as compared with the case where the rubber elastic particles are not blended.
- the acrylic resin composition of the present invention the high impact resistance of the acrylic resin composition can be ensured even if the rubber elastic body particles are not included. It may be 1 part by mass or less with respect to 100 parts by mass in total of (1) and the polymer (2), and may not contain rubber elastic particles at all (that is, the content of rubber elastic particles is 0 mass). %).
- the mass of a portion composed of a rubber elastic body layer exhibiting rubber elasticity and an inner layer thereof Is the mass of the rubber particles.
- the rubber particles having the three-layer structure described above the total mass of the acrylic elastic polymer portion in the intermediate layer and the hard polymer portion mainly composed of methyl methacrylate in the innermost layer is determined as the rubber particles.
- the acrylic rubber particles having the above three-layer structure are dissolved in acetone, the acrylic elastic polymer portion of the intermediate layer and the hard polymer portion mainly composed of methyl methacrylate remain as insoluble matter.
- the total mass ratio of the intermediate layer and the innermost layer in the three-layered acrylic rubber particles can be easily obtained.
- the acrylic resin composition of the present invention may contain additives such as an ultraviolet absorber, an antistatic agent, a light diffusing agent, a matting agent, a dye, a light stabilizer, an antioxidant, a release agent, and a flame retardant. Good.
- the acrylic resin composition of the present invention can be produced by a conventionally known method. Specifically, for example, the polymer (1), the polymer (2), and optionally the rubber elastic particles and additives are uniaxially or It can be produced by a melt kneading method using a twin screw type extruder or the like.
- the form of the acrylic resin composition of the present invention is not particularly limited, but is preferably a pellet from the viewpoint of easy handling.
- the acrylic resin film of the present invention can be produced by a known method such as a melt extrusion molding method or a press molding method. Specifically, for example, in the case of melt extrusion molding, various materials constituting the acrylic resin composition of the present invention are melt-kneaded with an extruder to obtain a molten acrylic resin composition of the present invention, or After the acrylic resin composition of the invention is melt-kneaded with an extruder to obtain a molten state, it can be produced by extruding the molten acrylic resin composition of the present invention from a die into a film.
- the molding conditions are not particularly limited, and may be appropriately adjusted according to the composition of the acrylic resin composition used, the molecular weight / molecular weight distribution of the acrylic resin composition, and the like.
- the extrusion temperature is usually about 230 to 300 ° C.
- the acrylic resin composition of the present invention is placed between a pair of press molds and heated in a state of being sandwiched between both molds. It can be produced by heating the acrylic resin composition and shaping it into a sheet as a molten state.
- the resulting acrylic resin film has a Charpy impact in the extrusion direction (MD direction) and in the width direction (TD direction) perpendicular to this in the plane.
- the content of the copolymer (1) with respect to 100 parts by mass in total of the copolymer (1) and the polymer (2) is 35 parts by mass or less.
- the content of 2) is 65 parts by mass or more, the Charpy impact strength in both the extrusion direction (MD direction) and the width direction (TD direction) is improved, which is preferable.
- the acrylic resin film of the present invention exhibits high impact resistance while maintaining the required elastic modulus, it can be used, for example, as a protective film constituting a polarizing plate.
- the thickness of the acrylic resin film is not particularly limited, but is preferably 10 to 300 ⁇ m when used for the above applications.
- the polarizing plate of the present invention includes the acrylic resin film of the present invention.
- the polarizing plate of the present invention preferably includes the acrylic resin film of the present invention as a protective film of the polarizing plate by laminating the acrylic resin film of the present invention on one or both surfaces of the polarizing film.
- the acrylic resin film may be used unstretched or may be stretched.
- the polarizing film included in the polarizing plate of the present invention a polarizing film used in a conventionally known polarizing plate can be used.
- the polarizing film in the polarizing plate of the present invention is a film in which a dichroic dye such as iodine or a dichroic dye is adsorbed and oriented on a polyvinyl alcohol resin film, and absorbs polarized light having a vibration plane parallel to the absorption axis.
- it is an optical film having a property of transmitting polarized light having a vibration plane orthogonal to the absorption axis.
- the acrylic resin film of the present invention is laminated with a polarizing film, usually via an adhesive.
- a polarizing film and an acrylic resin film are bonded via an aqueous polyvinyl alcohol resin solution and then dried, or a polarizing film and an acrylic resin film are bonded via an ultraviolet curable adhesive. Then, the polarizing plate of this invention can be manufactured by irradiating and hardening
- the weight average molecular weight (Mw) and number average molecular weight (Mn) of the measurement sample were determined by a multi-angle laser light scattering detector (DAWN HELEOS manufactured by Wyatt Technology). Furthermore, molecular weight distribution (Mw / Mn) was calculated from these values.
- Macromonomer AA-6 was dissolved in a tetrahydrofuran (THF) solvent to prepare a measurement sample.
- THF tetrahydrofuran
- GPC gel permeation chromatography
- the elution time and strength were measured with an injection volume of the measurement sample of 20 ⁇ L, a flow rate of 1.0 mL / min, and a measurement temperature of 40 ° C.
- HLC8320-GPC manufactured by Tosoh Corporation including two “TSKgel SuperMultipore HZ_M” and one “TSKgel SuperHZ2500” manufactured by Tosoh Corporation) were used.
- a calibration curve was prepared from a standard sample using this apparatus. Based on the elution time and strength of the macromonomer determined above, the weight average molecular weight (Mw) and number average molecular weight (Mn) of the macromonomer were determined based on the calibration curve.
- the standard sample used was polymethyl methacrylate (PMMA). Furthermore, molecular weight distribution (Mw / Mn) was calculated from these values.
- the weight average molecular weight (Mw) of the macromonomer AA-6 is 13600
- the number average molecular weight (Mn) is 7300
- the molecular weight distribution (Mw / Mn) is 1.9, and is obtained from the number average molecular weight (Mn).
- the n was 72.
- a macromonomer (AS-6: a compound in which a methacryloyloxy group is added to the end of a styrene polymer, manufactured by Toagosei Co., Ltd.) was used.
- the weight average molecular weight (Mw) of the macromonomer (AS-6) is 13700
- the number average molecular weight (Mn) is 7000
- the molecular weight distribution (Mw / Mn) is 2.0
- m obtained from Mn is 65.
- the weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) of the macromonomer used in Synthesis Example 3 to Synthesis Example 8 were measured for the macromonomer (AA-6) in Synthesis Example 1. Measured and calculated in the same manner as calculated. Table 1 shows the molecular weight and average branching degree of the obtained copolymer.
- copolymers (1-A) to (1-J) prepared in Synthesis Examples 1 to 10 were used as copolymers (1).
- the acrylic resin prepared in Synthesis Example 11 and the polymer (2) is a methyl methacrylate resin containing 90% by mass or more of a structural unit derived from methyl methacrylate [hereinafter referred to as “acrylic resin (2)”.
- the amount of the structural unit (1a) in the acrylic resin (2) is 0% by mass].
- the acrylic resin (2) had a weight average molecular weight (Mw) of 102600, a number average molecular weight (Mn) of 54700, and a molecular weight distribution (Mw / Mn) of 1.9.
- the following rubber elastic particles were used.
- ⁇ Rubber elastic particles> Hard rubber obtained by polymerization of a monomer mixture consisting of 93.8% by weight of methyl methacrylate, 6.0% by weight of methyl acrylate, and 0.2% by weight of allyl methacrylate as the rubber elastic particles.
- an intermediate layer is an elastic polymer obtained by polymerization of a monomer mixture comprising 81% by mass of butyl acrylate, 17% by mass of styrene and 2% by mass of allyl methacrylate, and the outermost layer is methyl methacrylate.
- the average particle diameter of the rubber elastic particles is obtained by mixing the rubber elastic particles with the acrylic resin composition into a film, staining the elastic polymer (intermediate layer) with ruthenium oxide in the cross section, and observing with an electron microscope. It was determined from the diameter of the stained part.
- Example 1 Preparation of acrylic resin composition and production of press film> 5 parts by mass of copolymer (1-A) and 95 parts by mass of acrylic resin (2) were mixed and melt-kneaded using an extruder to form pellets. Then, the said pellet was shape
- a 210 ° C. press manufactured by Shin-Fuji Metal Industry Co., Ltd., NSF-100 type single acting compression molding machine
- Examples 2 to 14 Preparation of acrylic resin composition and production of press film> According to the composition shown in Table 2, the copolymers (1-A) to (1-H) and the acrylic resin (2) were mixed, and a pellet-shaped acrylic resin composition was prepared in the same manner as in Example 1. Then, a press film of 80 mm ⁇ 80 mm square and a thickness of 300 ⁇ m was produced.
- Examples 15 and 16 Preparation of acrylic resin composition and production of press film> According to the composition shown in Table 3, 15 parts by mass of copolymer (1-I) or copolymer (1-J), 85 parts by mass of acrylic resin (2), and copolymer (1-I) or copolymer 11.7 parts by mass of rubber elastic material particles were mixed with 100 parts by mass of the combined (1-J) and acrylic resin (2), and melt-kneaded using an extruder to form pellets. Then, it shape
- ⁇ Comparative Example 8 Preparation of acrylic resin composition and production of press film> 11.7 parts by mass of rubber elastic particles were mixed with 100 parts by mass of the acrylic resin (2), and the mixture was melt-kneaded by an extruder and pelletized. Then, it shape
- the Charpy impact strength and 80 ° C. elastic modulus of the press films prepared in Examples 1 to 16 and Comparative Examples 1 to 8 were measured according to the following methods.
- the obtained press film sample was cut into a rectangle with a length of 80 mm and a width of 10 mm, and Charpy impact strength was measured with both short sides (10 mm) fixed, and the press The impact resistance of the film was evaluated.
- the results are shown in Tables 2 and 3.
- the impact strength values are relative values (%) when the Charpy impact strength value of the press film of Comparative Example 1 (acrylic resin composition composed only of acrylic resin (2)) is 100%.
- the value of the impact strength in Table 3 is 100% of the Charpy impact strength value of the press film of Comparative Example 8 (acrylic resin composition comprising only acrylic resin (2) and rubber elastic particles). Relative value (%) in the case of the above, each indicated as “relative Charpy impact strength (%)”. If the value of the relative Charpy impact strength (%) was 100 or more, it was judged that the impact resistance was high.
- the value in 80 degreeC elasticity modulus in Table 2 is relative when the value of 80 degreeC elasticity modulus of the press film of the comparative example 1 (acrylic resin composition comprised only with acrylic resin (2)) is set to 100%.
- the value at 80 ° C. elastic modulus in Table 3 is the 80 ° C. elastic modulus of the press film of Comparative Example 8 (acrylic resin composition composed only of acrylic resin (2) and rubber elastic particles).
- n 110 determined from Mn
- the weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) of the macromonomer used in Synthesis Example 12 to Synthesis Example 14 were measured for the macromonomer (AA-6) in Synthesis Example 1. Measured and calculated in the same manner as calculated. Table 4 shows the molecular weight and average branching degree of the obtained copolymer.
- Examples 17 to 31 Preparation of acrylic resin composition and production of extruded film> According to the composition shown in Table 5, bead-shaped copolymer (1-K) or copolymer (1-L) or copolymer (1-M), acrylic resin (2), and copolymer (1 -K), or copolymer (1-L) or copolymer (1-M) and acrylic resin (2) in total, 100 parts by mass of rubber elastic body particles 11.7 parts by mass, Using an axial extruder (VS20-26V type extruder manufactured by Tanabe Plastic Machinery Co., Ltd.), the film was formed by open molding to produce an extruded film having a thickness of 40 ⁇ m. The die temperature during extrusion was 250 ° C.
- ⁇ Comparative Example 9 Preparation of acrylic resin composition and production of extruded film> 11.7 parts by mass of rubber elastic particles are mixed with 100 parts by mass of acrylic resin (2), and open molding is performed using a 20 mm ⁇ single screw extruder (VS20-26V type extruder manufactured by Tanabe Plastic Machinery Co., Ltd.). To produce an extruded film having a thickness of 40 ⁇ m. The die temperature during extrusion was 250 ° C.
- the compositions of the acrylic resin (2) and the rubber elastic particles used in Examples 17 to 31 and Comparative Example 9 are the same as those used in Example 15, respectively.
- the Charpy impact strength and 80 ° C. elastic modulus of the extruded films prepared in Examples 17 to 31 and Comparative Example 9 were measured according to the following methods.
- MD direction Charpy impact test> According to the method specified in JIS K7111-1, the extruded film is cut into a rectangle with a longitudinal direction (MD direction) of 100 mm and a lateral direction (TD direction) of 10 mm, and both short sides (sides of 10 mm) are fixed, and MD direction Charpy is fixed. The impact strength was measured and the impact resistance of the extruded film was evaluated. The results are shown in Table 5.
- the value in impact strength in Table 5 is 100% of the value of Charpy impact strength in the MD direction of the extruded film of Comparative Example 9 (acrylic resin composition composed only of acrylic resin (2) and rubber elastic particles).
- the value in 80 degreeC elasticity modulus in Table 5 is the value of 80 degreeC elasticity modulus of MD direction of the extrusion film of the comparative example 9 (acrylic resin composition comprised only with acrylic resin (2) and rubber elastic-body particle
- the value in 80 degreeC elastic modulus in Table 5 is the value of 80 degreeC elastic modulus in the TD direction of the extruded film of Comparative Example 9 (acrylic resin composition composed only of acrylic resin (2) and rubber elastic particles). It is a relative value (%) when it is 100%, and is described as “TD direction relative 80 ° C. elastic modulus”. If the value of the relative 80 ° C. elastic modulus (%) was 96 or more, it was judged that there was no decrease in elastic modulus / excellent elastic modulus.
- Example 32 Preparation of acrylic resin composition and production of press film> According to the composition shown in Table 7, the copolymer (1-N) and Densica Co., Ltd. Resphi R200 were mixed to prepare a pellet-like acrylic resin composition in the same manner as in Example 1, and then 80 mm ⁇ A press film of 80 mm square and a thickness of 300 ⁇ m was produced.
- the weight average molecular weight (Mw) of R200 is 185000, the number average molecular weight (Mn) is 79000, and the molecular weight distribution (Mw / Mn) is 2.4 (PMMA conversion).
- Example 33 Preparation of acrylic resin composition and production of press film> According to the composition shown in Table 7, the copolymer (1-I) and HT121 manufactured by Arkema Co., Ltd. were mixed to prepare a pellet-like acrylic resin composition in the same manner as in Example 1, and then 80 mm ⁇ A press film of 80 mm square and a thickness of 300 ⁇ m was produced.
- the weight average molecular weight (Mw) of HT121 is 78000
- the number average molecular weight (Mn) is 41000
- molecular weight distribution (Mw / Mn) is 1.9 (PMMA conversion).
- ⁇ Comparative Example 10 Preparation of acrylic resin composition and production of press film> According to the composition shown in Table 7, acrylic resin (2) and Denka Co., Ltd. Regisfi R200 were mixed, and in the same manner as in Example 1, a pellet-shaped acrylic resin composition was prepared, and then 80 mm ⁇ 80 mm square, A press film having a thickness of 300 ⁇ m was produced.
- the Charpy impact strength and 80 ° C. elastic modulus of the press films prepared in Examples 32 and 33 and Comparative Examples 10 and 11 were measured according to the following methods.
- the value in the 80 degreeC elasticity modulus in Example 32 in Table 7 is the value of the 80 degreeC elasticity modulus of the press film of the comparative example 10 (acrylic resin composition comprised by acrylic resin (2) and R200) as 100. %
- the value at 80 ° C. elastic modulus in Example 33 in Table 7 is that of Comparative Example 11 (acrylic resin composition composed of acrylic resin (2) and HT121). Relative values (%) when the 80 ° C. elastic modulus value of the press film is taken as 100 (%), and each is described as “relative 80 ° C. elastic modulus (%)”. If the value of the relative 80 ° C. elastic modulus (%) was 96 or more, it was judged that there was no decrease in elastic modulus / excellent elastic modulus.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polarising Elements (AREA)
Abstract
The present invention is an acrylic resin composition comprising a copolymer (1) and a polymer (2). The copolymer (1) is a copolymer that includes a structural unit represented by formula (1a) and a structural unit represented by formula (1b), and that includes 5-70 mass% of the structural unit represented by said formula (1a) and 30-95 mass% of the structural unit represented by said formula (1b) with respect to all of the structural units included in said copolymer (1). The polymer (2) is a polymer including a structural unit represented by formula (2a) (wherein the amount of the structural unit represented by said formula (1a) is less than 5 mass% with respect to all of the structural units included in said polymer (2)). The acrylic resin composition includes 1-90 parts by mass of said copolymer (1) and 10-99 parts by mass of said polymer (2) per 100 parts by mass in total of said copolymer (1) and said polymer (2).
Description
本発明は、アクリル樹脂組成物に関する。また、本発明は、このアクリル樹脂組成物を含むアクリル樹脂フィルムおよびこのアクリル樹脂フィルムを含む偏光板にも関する。
The present invention relates to an acrylic resin composition. Moreover, this invention relates also to the acrylic resin film containing this acrylic resin composition, and the polarizing plate containing this acrylic resin film.
アクリル樹脂組成物は、透明性に優れていることから、例えば、偏光板を構成する透明保護フィルムなどの光学フィルムの材料として広く用いられている。以前より、このような用途に用いられるアクリル樹脂組成物に対しては耐衝撃性の向上が求められてきており、改善された耐衝撃性を有するアクリル樹脂組成物が提案されている。例えば、特許文献1および2には、メタクリル酸メチルとアクリル酸n-ブチルまたはアクリル酸メチルとの共重合体単独にゴム弾性体粒子を配合することにより、かかる樹脂から形成されるフィルムの耐衝撃性や製膜性を向上させ得ることが記載されている。
Since the acrylic resin composition is excellent in transparency, it is widely used as a material for optical films such as a transparent protective film constituting a polarizing plate, for example. In the past, acrylic resin compositions used for such applications have been required to have improved impact resistance, and acrylic resin compositions having improved impact resistance have been proposed. For example, Patent Documents 1 and 2 describe the impact resistance of a film formed from such a resin by blending rubber elastic particles with a copolymer of methyl methacrylate and n-butyl acrylate or methyl acrylate alone. It describes that it can improve the property and film forming property.
しかしながら、上記共重合体単独にゴム弾性体粒子を配合した場合、得られるフィルムの耐衝撃性は向上するものの、十分な耐衝撃性を得るために必要な量のゴム弾性体粒子を配合した場合にはかかる樹脂から形成されるフィルムの弾性率が低下してしまうという問題があった。
However, when rubber elastic particles are blended with the above copolymer alone, the impact resistance of the resulting film is improved, but when the amount of rubber elastic particles necessary to obtain sufficient impact resistance is blended However, there is a problem that the elastic modulus of the film formed from such a resin is lowered.
本発明は、弾性率が低下することなく高い耐衝撃性を有するアクリル樹脂組成物を提供することを目的とする。
An object of the present invention is to provide an acrylic resin composition having high impact resistance without lowering the elastic modulus.
本発明は、以下の好適な態様を提供するものである。
[1]共重合体(1)および重合体(2)を含むアクリル樹脂組成物であって、
前記共重合体(1)が、下記式(1a)で示される構造単位:
〔式中、R11は水素原子またはメチル基であり、R12は末端基を表し、Xは式(1a-1):
(式中、R13は水素原子またはメチル基であり、R14は炭素数1~20の直鎖アルキル基、炭素数3~20の分枝アルキル基、炭素数3~20のシクロアルキル基または炭素数6~18のアリール基であり、nは数平均値として70以上の数である)
で示される二価の残基または式(1a-2):
(式中、mは数平均値として10~1000の数である)
で示される二価の残基である〕
と、下記式(1b)で示される構造単位:
〔式中、R15は水素原子またはメチル基であり、R16は炭素数1~20の直鎖アルキル基、炭素数3~20の分枝アルキル基、炭素数3~20のシクロアルキル基または炭素数6~18のアリール基である〕
とを含み、
共重合体(1)に含まれる全構造単位に対して、前記式(1a)で示される構造単位を5~70質量%および前記式(1b)で示される構造単位を30~95質量%含む共重合体であり、
前記重合体(2)は、下記式(2a)で示される構造単位:
〔式中、R21は水素原子またはメチル基であり、R22は炭素数1~20の直鎖アルキル基、炭素数3~20の分枝アルキル基、炭素数3~20のシクロアルキル基または炭素数6~18のアリール基である〕
を含む重合体(但し、重合体(2)に含まれる全構造単位に対して、前記式(1a)で示される構造単位は5質量%未満である)であり、
共重合体(1)および重合体(2)の合計100質量部に対して、共重合体(1)を1~90質量部および重合体(2)を10~99質量部含む、アクリル樹脂組成物。
[2]前記式(1a)中のXが式(1a-1)で示される二価の残基であり、共重合体(1)に含まれる全構造単位に対する前記式(1a)で示される構造単位の量が5~15質量%であり、共重合体(1)および重合体(2)の合計100質量部に対して、共重合体(1)を10~30質量部および重合体(2)を70~90質量部含む、前記[1]に記載のアクリル樹脂組成物。
[3]共重合体(1)および重合体(2)の合計100質量部に対して、1~50質量部のゴム弾性体粒子を含む、前記[1]または[2]に記載のアクリル樹脂組成物。
[4]前記[1]~[3]のいずれかに記載のアクリル樹脂組成物を含むアクリル樹脂フィルム。
[5]前記[4]に記載のアクリル樹脂フィルムを含む偏光板。
[6]前記[1]~[3]のいずれかに記載のアクリル樹脂組成物を溶融状態でダイからフィルム状に押出すことを含む、前記[4]に記載のアクリル樹脂フィルムの製造方法。
[7]前記アクリル樹脂組成物は、共重合体(1)および重合体(2)の合計100質量部に対して、共重合体(1)を35質量部以下および重合体(2)を65質量部以上含むアクリル樹脂組成物である、前記[6]に記載の製造方法。 The present invention provides the following preferred embodiments.
[1] An acrylic resin composition comprising a copolymer (1) and a polymer (2),
The copolymer (1) is a structural unit represented by the following formula (1a):
[Wherein R 11 represents a hydrogen atom or a methyl group, R 12 represents a terminal group, and X represents a formula (1a-1):
(Wherein R 13 is a hydrogen atom or a methyl group, and R 14 is a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or An aryl group having 6 to 18 carbon atoms, and n is a number average value of 70 or more)
Or a divalent residue represented by the formula (1a-2):
(Where m is a number from 10 to 1000 as a number average value)
It is a divalent residue represented by
And a structural unit represented by the following formula (1b):
[Wherein, R 15 represents a hydrogen atom or a methyl group, and R 16 represents a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or It is an aryl group having 6 to 18 carbon atoms.]
Including
5 to 70% by mass of the structural unit represented by the formula (1a) and 30 to 95% by mass of the structural unit represented by the formula (1b) with respect to all the structural units contained in the copolymer (1). A copolymer,
The polymer (2) is a structural unit represented by the following formula (2a):
[Wherein R 21 represents a hydrogen atom or a methyl group, and R 22 represents a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or It is an aryl group having 6 to 18 carbon atoms.]
(However, the structural unit represented by the formula (1a) is less than 5% by mass with respect to all the structural units contained in the polymer (2)),
Acrylic resin composition comprising 1 to 90 parts by mass of copolymer (1) and 10 to 99 parts by mass of polymer (2) with respect to 100 parts by mass in total of copolymer (1) and polymer (2) object.
[2] X in the formula (1a) is a divalent residue represented by the formula (1a-1), and is represented by the formula (1a) for all structural units contained in the copolymer (1). The amount of the structural unit is 5 to 15% by mass, and 10 to 30 parts by mass of the copolymer (1) and the polymer (100% relative to the total of 100 parts by mass of the copolymer (1) and the polymer (2)). The acrylic resin composition according to the above [1], comprising 70 to 90 parts by mass of 2).
[3] The acrylic resin according to [1] or [2], comprising 1 to 50 parts by mass of rubber elastic particles with respect to 100 parts by mass in total of the copolymer (1) and the polymer (2). Composition.
[4] An acrylic resin film comprising the acrylic resin composition according to any one of [1] to [3].
[5] A polarizing plate comprising the acrylic resin film according to [4].
[6] The method for producing an acrylic resin film according to [4], comprising extruding the acrylic resin composition according to any one of [1] to [3] from a die in a molten state into a film.
[7] The acrylic resin composition has 35 parts by mass or less of copolymer (1) and 65 of polymer (2) with respect to 100 parts by mass in total of copolymer (1) and polymer (2). The production method according to the above [6], which is an acrylic resin composition containing at least part by mass.
[1]共重合体(1)および重合体(2)を含むアクリル樹脂組成物であって、
前記共重合体(1)が、下記式(1a)で示される構造単位:
で示される二価の残基または式(1a-2):
で示される二価の残基である〕
と、下記式(1b)で示される構造単位:
とを含み、
共重合体(1)に含まれる全構造単位に対して、前記式(1a)で示される構造単位を5~70質量%および前記式(1b)で示される構造単位を30~95質量%含む共重合体であり、
前記重合体(2)は、下記式(2a)で示される構造単位:
を含む重合体(但し、重合体(2)に含まれる全構造単位に対して、前記式(1a)で示される構造単位は5質量%未満である)であり、
共重合体(1)および重合体(2)の合計100質量部に対して、共重合体(1)を1~90質量部および重合体(2)を10~99質量部含む、アクリル樹脂組成物。
[2]前記式(1a)中のXが式(1a-1)で示される二価の残基であり、共重合体(1)に含まれる全構造単位に対する前記式(1a)で示される構造単位の量が5~15質量%であり、共重合体(1)および重合体(2)の合計100質量部に対して、共重合体(1)を10~30質量部および重合体(2)を70~90質量部含む、前記[1]に記載のアクリル樹脂組成物。
[3]共重合体(1)および重合体(2)の合計100質量部に対して、1~50質量部のゴム弾性体粒子を含む、前記[1]または[2]に記載のアクリル樹脂組成物。
[4]前記[1]~[3]のいずれかに記載のアクリル樹脂組成物を含むアクリル樹脂フィルム。
[5]前記[4]に記載のアクリル樹脂フィルムを含む偏光板。
[6]前記[1]~[3]のいずれかに記載のアクリル樹脂組成物を溶融状態でダイからフィルム状に押出すことを含む、前記[4]に記載のアクリル樹脂フィルムの製造方法。
[7]前記アクリル樹脂組成物は、共重合体(1)および重合体(2)の合計100質量部に対して、共重合体(1)を35質量部以下および重合体(2)を65質量部以上含むアクリル樹脂組成物である、前記[6]に記載の製造方法。 The present invention provides the following preferred embodiments.
[1] An acrylic resin composition comprising a copolymer (1) and a polymer (2),
The copolymer (1) is a structural unit represented by the following formula (1a):
Or a divalent residue represented by the formula (1a-2):
It is a divalent residue represented by
And a structural unit represented by the following formula (1b):
Including
5 to 70% by mass of the structural unit represented by the formula (1a) and 30 to 95% by mass of the structural unit represented by the formula (1b) with respect to all the structural units contained in the copolymer (1). A copolymer,
The polymer (2) is a structural unit represented by the following formula (2a):
(However, the structural unit represented by the formula (1a) is less than 5% by mass with respect to all the structural units contained in the polymer (2)),
Acrylic resin composition comprising 1 to 90 parts by mass of copolymer (1) and 10 to 99 parts by mass of polymer (2) with respect to 100 parts by mass in total of copolymer (1) and polymer (2) object.
[2] X in the formula (1a) is a divalent residue represented by the formula (1a-1), and is represented by the formula (1a) for all structural units contained in the copolymer (1). The amount of the structural unit is 5 to 15% by mass, and 10 to 30 parts by mass of the copolymer (1) and the polymer (100% relative to the total of 100 parts by mass of the copolymer (1) and the polymer (2)). The acrylic resin composition according to the above [1], comprising 70 to 90 parts by mass of 2).
[3] The acrylic resin according to [1] or [2], comprising 1 to 50 parts by mass of rubber elastic particles with respect to 100 parts by mass in total of the copolymer (1) and the polymer (2). Composition.
[4] An acrylic resin film comprising the acrylic resin composition according to any one of [1] to [3].
[5] A polarizing plate comprising the acrylic resin film according to [4].
[6] The method for producing an acrylic resin film according to [4], comprising extruding the acrylic resin composition according to any one of [1] to [3] from a die in a molten state into a film.
[7] The acrylic resin composition has 35 parts by mass or less of copolymer (1) and 65 of polymer (2) with respect to 100 parts by mass in total of copolymer (1) and polymer (2). The production method according to the above [6], which is an acrylic resin composition containing at least part by mass.
本発明によれば、弾性率が低下することなく高い耐衝撃性を有するアクリル樹脂組成物を提供することができる。
According to the present invention, it is possible to provide an acrylic resin composition having high impact resistance without lowering the elastic modulus.
以下、本発明の実施の形態について、詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。
Hereinafter, embodiments of the present invention will be described in detail. Note that the scope of the present invention is not limited to the embodiment described here, and various modifications can be made without departing from the spirit of the present invention.
本発明のアクリル樹脂組成物は、共重合体(1)および重合体(2)を含む。
The acrylic resin composition of the present invention includes a copolymer (1) and a polymer (2).
〔共重合体(1)〕
本発明のアクリル樹脂組成物に含まれる共重合体(1)は、前記式(1a)で示される構造単位(以下、「構造単位(1a)」と称する場合がある)と、前記式(1b)で示される構造単位(以下、「構造単位(1b)」と称する場合がある)とを含む共重合体である。 [Copolymer (1)]
The copolymer (1) contained in the acrylic resin composition of the present invention comprises a structural unit represented by the formula (1a) (hereinafter sometimes referred to as “structural unit (1a)”) and the formula (1b). ) (Hereinafter sometimes referred to as “structural unit (1b)”).
本発明のアクリル樹脂組成物に含まれる共重合体(1)は、前記式(1a)で示される構造単位(以下、「構造単位(1a)」と称する場合がある)と、前記式(1b)で示される構造単位(以下、「構造単位(1b)」と称する場合がある)とを含む共重合体である。 [Copolymer (1)]
The copolymer (1) contained in the acrylic resin composition of the present invention comprises a structural unit represented by the formula (1a) (hereinafter sometimes referred to as “structural unit (1a)”) and the formula (1b). ) (Hereinafter sometimes referred to as “structural unit (1b)”).
構造単位(1a)は、式(1a):
で示される構造単位である。構造単位(1a)は、末端に重合可能な不飽和基を有する比較的高い分子量の単量体(以下、該単量体を「マクロモノマー」と称する)に由来する構造単位である。
The structural unit (1a) is represented by the formula (1a):
Is a structural unit represented by The structural unit (1a) is a structural unit derived from a relatively high molecular weight monomer having a polymerizable unsaturated group at the terminal (hereinafter, the monomer is referred to as “macromonomer”).
式(1a)中、R11は水素原子またはメチル基であり、アクリル樹脂組成物の耐熱性の観点から、好ましくはメチル基である。
式(1a)中の末端基R12は、構造単位(1a)に対応するマクロモノマーを合成する際に用いられる重合開始剤により決定するものであるため、特に限定されるものではなく、例えば、2-シアノ-2-プロピル基等であり得る。すなわち、例えば、重合開始剤としてアゾビスイソブチロニトリルを用いた場合には、R12は2-シアノ-2-プロピル基となる。 In formula (1a), R 11 is a hydrogen atom or a methyl group, and preferably a methyl group from the viewpoint of heat resistance of the acrylic resin composition.
Since the terminal group R 12 in the formula (1a) is determined by the polymerization initiator used when synthesizing the macromonomer corresponding to the structural unit (1a), it is not particularly limited. It may be a 2-cyano-2-propyl group or the like. That is, for example, when azobisisobutyronitrile is used as the polymerization initiator, R 12 is a 2-cyano-2-propyl group.
式(1a)中の末端基R12は、構造単位(1a)に対応するマクロモノマーを合成する際に用いられる重合開始剤により決定するものであるため、特に限定されるものではなく、例えば、2-シアノ-2-プロピル基等であり得る。すなわち、例えば、重合開始剤としてアゾビスイソブチロニトリルを用いた場合には、R12は2-シアノ-2-プロピル基となる。 In formula (1a), R 11 is a hydrogen atom or a methyl group, and preferably a methyl group from the viewpoint of heat resistance of the acrylic resin composition.
Since the terminal group R 12 in the formula (1a) is determined by the polymerization initiator used when synthesizing the macromonomer corresponding to the structural unit (1a), it is not particularly limited. It may be a 2-cyano-2-propyl group or the like. That is, for example, when azobisisobutyronitrile is used as the polymerization initiator, R 12 is a 2-cyano-2-propyl group.
式(1a)中、Xは、式(1a-1):
または式(1a-2):
で示される二価の残基である。
In formula (1a), X represents formula (1a-1):
Or formula (1a-2):
It is a bivalent residue shown by.
式(1a-1)中、R13は水素原子またはメチル基であり、アクリル樹脂組成物の耐熱性の観点から、好ましくはメチル基である。
式(1a-1)中、R14は、炭素数1~20の直鎖アルキル基、炭素数3~20の分枝アルキル基、炭素数3~20のシクロアルキル基または炭素数6~18のアリール基である。炭素数1~20の直鎖アルキル基としては、例えばメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-へプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-イコシル基などが挙げられる。炭素数3~20の分枝アルキル基としては、例えばi-プロピル基、i-ブチル基、tert-ブチル基、2-エチルヘキシル基などが挙げられる。炭素数3~20のシクロアルキル基としては、例えばシクロプロピル基、シクロヘキシル基、アダマンチル基などが挙げられる。炭素数6~18のアリール基としては、例えばフェニル基、ナフチル基などが挙げられる。対応するマクロモノマーの入手が容易であることから、置換基R14は、炭素数1~4の直鎖アルキル基であることが好ましく、メチル基であることがより好ましい。 In formula (1a-1), R 13 is a hydrogen atom or a methyl group, and is preferably a methyl group from the viewpoint of heat resistance of the acrylic resin composition.
In the formula (1a-1), R 14 represents a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a C 6 to 18 carbon atom. An aryl group. Examples of the linear alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group. , N-nonyl group, n-decyl group, n-icosyl group and the like. Examples of the branched alkyl group having 3 to 20 carbon atoms include i-propyl group, i-butyl group, tert-butyl group, 2-ethylhexyl group and the like. Examples of the cycloalkyl group having 3 to 20 carbon atoms include a cyclopropyl group, a cyclohexyl group, and an adamantyl group. Examples of the aryl group having 6 to 18 carbon atoms include a phenyl group and a naphthyl group. Since the corresponding macromonomer is easily available, the substituent R 14 is preferably a linear alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group.
式(1a-1)中、R14は、炭素数1~20の直鎖アルキル基、炭素数3~20の分枝アルキル基、炭素数3~20のシクロアルキル基または炭素数6~18のアリール基である。炭素数1~20の直鎖アルキル基としては、例えばメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-へプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-イコシル基などが挙げられる。炭素数3~20の分枝アルキル基としては、例えばi-プロピル基、i-ブチル基、tert-ブチル基、2-エチルヘキシル基などが挙げられる。炭素数3~20のシクロアルキル基としては、例えばシクロプロピル基、シクロヘキシル基、アダマンチル基などが挙げられる。炭素数6~18のアリール基としては、例えばフェニル基、ナフチル基などが挙げられる。対応するマクロモノマーの入手が容易であることから、置換基R14は、炭素数1~4の直鎖アルキル基であることが好ましく、メチル基であることがより好ましい。 In formula (1a-1), R 13 is a hydrogen atom or a methyl group, and is preferably a methyl group from the viewpoint of heat resistance of the acrylic resin composition.
In the formula (1a-1), R 14 represents a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a C 6 to 18 carbon atom. An aryl group. Examples of the linear alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group. , N-nonyl group, n-decyl group, n-icosyl group and the like. Examples of the branched alkyl group having 3 to 20 carbon atoms include i-propyl group, i-butyl group, tert-butyl group, 2-ethylhexyl group and the like. Examples of the cycloalkyl group having 3 to 20 carbon atoms include a cyclopropyl group, a cyclohexyl group, and an adamantyl group. Examples of the aryl group having 6 to 18 carbon atoms include a phenyl group and a naphthyl group. Since the corresponding macromonomer is easily available, the substituent R 14 is preferably a linear alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group.
式(1a-1)中のnは、数平均値として70以上の数である。nは、通常300以下である。
式(1a-2)中のmは、数平均値として10~1000の数である。mは、好ましくは30~100である。
アクリル樹脂組成物、特にそのアクリル樹脂組成物を含むフィルムの透明性が良好となることから、Xは式(1a-1)で示される二価の残基であることが好ましい。 N in the formula (1a-1) is a number of 70 or more as a number average value. n is usually 300 or less.
M in the formula (1a-2) is a number of 10 to 1000 as a number average value. m is preferably 30 to 100.
X is preferably a divalent residue represented by the formula (1a-1) because the transparency of the acrylic resin composition, particularly a film containing the acrylic resin composition, becomes good.
式(1a-2)中のmは、数平均値として10~1000の数である。mは、好ましくは30~100である。
アクリル樹脂組成物、特にそのアクリル樹脂組成物を含むフィルムの透明性が良好となることから、Xは式(1a-1)で示される二価の残基であることが好ましい。 N in the formula (1a-1) is a number of 70 or more as a number average value. n is usually 300 or less.
M in the formula (1a-2) is a number of 10 to 1000 as a number average value. m is preferably 30 to 100.
X is preferably a divalent residue represented by the formula (1a-1) because the transparency of the acrylic resin composition, particularly a film containing the acrylic resin composition, becomes good.
構造単位(1b)は、式(1b):
で示される構造単位である。
The structural unit (1b) is represented by the formula (1b):
Is a structural unit represented by
式(1b)中、R15は水素原子またはメチル基であり、アクリル樹脂組成物の耐熱性の観点から、好ましくはメチル基である。
式(1b)中、R16は、炭素数1~20の直鎖アルキル基、炭素数3~20の分枝アルキル基、炭素数3~20のシクロアルキル基または炭素数6~18のアリール基である。炭素数1~20の直鎖アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-へプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-イコシル基などが挙げられる。炭素数3~20の分枝アルキル基としては、例えばi-プロピル基、i-ブチル基、tert-ブチル基、2-エチルヘキシル基などが挙げられる。炭素数3~20のシクロアルキル基としては、例えばシクロプロピル基、シクロヘキシル基、アダマンチル基などが挙げられる。炭素数6~18のアリール基としては、例えばフェニル基、ナフチル基などが挙げられる。対応する単量体の入手が容易であることから、置換基R16は炭素数1~4の直鎖アルキル基であることが好ましく、メチル基であることがより好ましい。 In the formula (1b), R 15 is a hydrogen atom or a methyl group, and is preferably a methyl group from the viewpoint of heat resistance of the acrylic resin composition.
In the formula (1b), R 16 represents a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or an aryl group having 6 to 18 carbon atoms. It is. Examples of the linear alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group. Group, n-nonyl group, n-decyl group, n-icosyl group and the like. Examples of the branched alkyl group having 3 to 20 carbon atoms include i-propyl group, i-butyl group, tert-butyl group, 2-ethylhexyl group and the like. Examples of the cycloalkyl group having 3 to 20 carbon atoms include a cyclopropyl group, a cyclohexyl group, and an adamantyl group. Examples of the aryl group having 6 to 18 carbon atoms include a phenyl group and a naphthyl group. Since the corresponding monomer is easily available, the substituent R 16 is preferably a linear alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group.
式(1b)中、R16は、炭素数1~20の直鎖アルキル基、炭素数3~20の分枝アルキル基、炭素数3~20のシクロアルキル基または炭素数6~18のアリール基である。炭素数1~20の直鎖アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-へプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-イコシル基などが挙げられる。炭素数3~20の分枝アルキル基としては、例えばi-プロピル基、i-ブチル基、tert-ブチル基、2-エチルヘキシル基などが挙げられる。炭素数3~20のシクロアルキル基としては、例えばシクロプロピル基、シクロヘキシル基、アダマンチル基などが挙げられる。炭素数6~18のアリール基としては、例えばフェニル基、ナフチル基などが挙げられる。対応する単量体の入手が容易であることから、置換基R16は炭素数1~4の直鎖アルキル基であることが好ましく、メチル基であることがより好ましい。 In the formula (1b), R 15 is a hydrogen atom or a methyl group, and is preferably a methyl group from the viewpoint of heat resistance of the acrylic resin composition.
In the formula (1b), R 16 represents a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or an aryl group having 6 to 18 carbon atoms. It is. Examples of the linear alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group. Group, n-nonyl group, n-decyl group, n-icosyl group and the like. Examples of the branched alkyl group having 3 to 20 carbon atoms include i-propyl group, i-butyl group, tert-butyl group, 2-ethylhexyl group and the like. Examples of the cycloalkyl group having 3 to 20 carbon atoms include a cyclopropyl group, a cyclohexyl group, and an adamantyl group. Examples of the aryl group having 6 to 18 carbon atoms include a phenyl group and a naphthyl group. Since the corresponding monomer is easily available, the substituent R 16 is preferably a linear alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group.
共重合体(1)に含まれる構造単位(1a)の量は、共重合体(1)に含まれる全構造単位100質量%に対して5~70質量%であり、好ましくは5~50質量%であり、より好ましくは5~30質量%であり、さらに好ましくは5~20質量%であり、特に好ましくは5~15質量%である。共重合体(1)中の構造単位(1a)の量が、5質量%未満の場合には耐衝撃性に劣り、70質量%を超える場合には弾性率が低下し、また、重合による合成が行い難くなる。なお、共重合体(1)中に構造単位(1a)としては、1種の構造単位が含まれていてもよく、異なる複数種の構造単位が含まれていてもよい。
The amount of the structural unit (1a) contained in the copolymer (1) is 5 to 70% by mass, preferably 5 to 50% by mass with respect to 100% by mass of all the structural units contained in the copolymer (1). %, More preferably 5 to 30% by mass, still more preferably 5 to 20% by mass, and particularly preferably 5 to 15% by mass. When the amount of the structural unit (1a) in the copolymer (1) is less than 5% by mass, the impact resistance is inferior, and when it exceeds 70% by mass, the elastic modulus is lowered. Is difficult to do. In the copolymer (1), as the structural unit (1a), one type of structural unit may be included, or a plurality of different types of structural units may be included.
共重合体(1)に含まれる構造単位(1b)の量は、共重合体(1)に含まれる全構造単位100質量%に対して30~95質量%であり、好ましくは50~95質量%であり、より好ましくは70~95質量%であり、さらに好ましくは80~95質量%であり、特に好ましくは85~95質量%である。共重合体(1)中の構造単位(1b)の量が、95質量%を超える場合には耐衝撃性に劣り、30質量%未満の場合には弾性率が低下し、また、重合による合成が行い難くなる。なお、共重合体(1)中に構造単位(1b)としては、1種の構造単位が含まれていてもよく、異なる複数種の構造単位が含まれていてもよい。
The amount of the structural unit (1b) contained in the copolymer (1) is 30 to 95% by mass, preferably 50 to 95% by mass with respect to 100% by mass of all the structural units contained in the copolymer (1). %, More preferably 70 to 95% by mass, still more preferably 80 to 95% by mass, and particularly preferably 85 to 95% by mass. When the amount of the structural unit (1b) in the copolymer (1) exceeds 95% by mass, the impact resistance is inferior, and when it is less than 30% by mass, the elastic modulus is lowered. Is difficult to do. In the copolymer (1), as the structural unit (1b), one type of structural unit may be included, or a plurality of different types of structural units may be included.
共重合体(1)は、構造単位(1a)と構造単位(1b)を必須の構造単位として含むものであり、構造単位(1a)と構造単位(1b)のみを構造単位として含むものであってもよく、または、構造単位(1a)と構造単位(1b)以外の構造単位(以下、「構造単位(1c)」と称する場合がある)を含むものであってもよい。そのような構造単位(1c)は、構造単位(1a)に対応するマクロモノマーおよび構造単位(1b)に対応する単量体と共重合し得る単量体に由来するものであれば特に限定されるものではない。例えば、アクリル酸、メタクリル酸のような不飽和酸、アクリロニトリル、メタクリロニトリルのようなシアン化アルケニル、スチレン、α-メチルスチレンのようなスチレン系単量体などに由来する構造単位が挙げられる。
The copolymer (1) includes the structural unit (1a) and the structural unit (1b) as essential structural units, and includes only the structural unit (1a) and the structural unit (1b) as structural units. Alternatively, it may include a structural unit other than the structural unit (1a) and the structural unit (1b) (hereinafter sometimes referred to as “structural unit (1c)”). Such a structural unit (1c) is particularly limited as long as it is derived from a macromonomer corresponding to the structural unit (1a) and a monomer copolymerizable with the monomer corresponding to the structural unit (1b). It is not something. Examples thereof include structural units derived from unsaturated acids such as acrylic acid and methacrylic acid, alkenyl cyanides such as acrylonitrile and methacrylonitrile, styrene monomers such as styrene and α-methylstyrene.
共重合体(1)が構造単位(1c)を含む場合、その量は共重合体(1)に含まれる全構造単位100質量%に対して、通常10質量%以下であり、0質量%であってもよい。
本発明の一実施態様において、共重合体(1)は構造単位(1c)を含まない。 When the copolymer (1) contains the structural unit (1c), the amount is usually 10% by mass or less and 0% by mass with respect to 100% by mass of all the structural units contained in the copolymer (1). There may be.
In one embodiment of the present invention, the copolymer (1) does not contain the structural unit (1c).
本発明の一実施態様において、共重合体(1)は構造単位(1c)を含まない。 When the copolymer (1) contains the structural unit (1c), the amount is usually 10% by mass or less and 0% by mass with respect to 100% by mass of all the structural units contained in the copolymer (1). There may be.
In one embodiment of the present invention, the copolymer (1) does not contain the structural unit (1c).
共重合体(1)は、構造単位(1a)に対応するマクロモノマーおよび構造単位(1b)に対応する単量体、ならびに必要に応じて構造単位(1c)に対応する単量体を共重合させることにより製造することができる。共重合体(1)の製造方法としては特に制限されるものではなく、当該分野で公知の共重合方法を用いることができ、例えば、構造単位(1a)に対応するマクロモノマーおよび構造単位(1b)に対応する単量体、ならびに必要に応じて構造単位(1c)に対応する単量体を混合し、通常、重合開始剤を用いて重合することにより製造することができる。
The copolymer (1) is a copolymer of a macromonomer corresponding to the structural unit (1a) and a monomer corresponding to the structural unit (1b), and if necessary, a monomer corresponding to the structural unit (1c). Can be manufactured. The production method of the copolymer (1) is not particularly limited, and a copolymerization method known in the art can be used. For example, the macromonomer and the structural unit (1b) corresponding to the structural unit (1a) can be used. ) And a monomer corresponding to the structural unit (1c), if necessary, are usually mixed and polymerized using a polymerization initiator.
共重合体(1)に含まれる構造単位(1a)に対応するマクロモノマーとしては、市販されているものを用いることができ、例えば、東亞合成(株)製の商品名AA-6(メタクリル酸メチル重合体の末端にメタクリロイルオキシ基が付加された化合物:数平均分子量7300)、AS-6(スチレン重合体の末端にメタクリロイルオキシ基が付加された化合物:数平均分子量7000)などが挙げられる。
As the macromonomer corresponding to the structural unit (1a) contained in the copolymer (1), a commercially available one can be used, for example, trade name AA-6 (methacrylic acid) manufactured by Toagosei Co., Ltd. And compounds having a methacryloyloxy group added to the terminal of the methyl polymer: number average molecular weight 7300) and AS-6 (a compound having a methacryloyloxy group added to the terminal of the styrene polymer: number average molecular weight 7000).
共重合体(1)に含まれる構造単位(1b)に対応する単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピルなどが挙げられる。
Examples of the monomer corresponding to the structural unit (1b) contained in the copolymer (1) include methyl (meth) acrylate, ethyl (meth) acrylate, and propyl (meth) acrylate.
重合開始剤としては、前記各構造単位に対応する単量体の重合を開始する能力を有する限り特に制限されるものではなく、公知の重合開始剤の中から適宜選択して用いることができる。本発明において、重合開始剤としては、例えば、ラウロイルパーオキサイド、ベンゾイルパーオキサイド等の有機過酸化物や、アゾビスイソブチロニトリル等のアゾ化合物などの加熱により重合を開始させる熱重合開始剤が挙げられる。重合開始剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The polymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of the monomer corresponding to each structural unit, and can be appropriately selected from known polymerization initiators. In the present invention, examples of the polymerization initiator include thermal polymerization initiators that initiate polymerization by heating organic peroxides such as lauroyl peroxide and benzoyl peroxide, and azo compounds such as azobisisobutyronitrile. Can be mentioned. A polymerization initiator may be used individually by 1 type, and may be used in combination of 2 or more type.
共重合体(1)の製造において重合開始剤を使用する場合、その量は、用いる単量体の種類やその含有量等に応じて適宜決定し得るものであるが、例えば、共重合体(1)を構成するために用いる全単量体の合計100質量部に対して、通常、0.01~5質量部であり、好ましくは1質量部以下である。重合開始剤の量が多いほど、数平均分子量(Mn)の小さい共重合体(1)が得られる。
When a polymerization initiator is used in the production of the copolymer (1), the amount can be appropriately determined according to the type of monomer used, the content thereof, and the like. The amount is usually 0.01 to 5 parts by mass, preferably 1 part by mass or less, based on 100 parts by mass in total of all monomers used for constituting 1). As the amount of the polymerization initiator is larger, a copolymer (1) having a smaller number average molecular weight (Mn) is obtained.
共重合体(1)の製造において、重合開始剤とともに連鎖移動剤を用いてもよい。連鎖移動剤としては、例えば、n-ブチルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン、2-エチルヘキシルチオグリコレート等のメルカプタン類等が好ましく用いられる。これらの連鎖移動剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In the production of the copolymer (1), a chain transfer agent may be used together with the polymerization initiator. As the chain transfer agent, for example, mercaptans such as n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan and 2-ethylhexyl thioglycolate are preferably used. These chain transfer agents may be used individually by 1 type, and may be used in combination of 2 or more type.
連鎖移動剤の量は、用いる単量体の種類やその含有量等に応じて適宜決定し得るものである。連鎖移動剤を用いる場合、その使用量は、共重合体(1)を構成するために用いる全単量体の合計100質量部に対して、通常、0.01~5質量部であり、例えば0.01~1質量部であることが好ましい。
The amount of the chain transfer agent can be appropriately determined according to the type of monomer used and the content thereof. When a chain transfer agent is used, the amount used is usually 0.01 to 5 parts by mass with respect to 100 parts by mass in total of all monomers used to constitute the copolymer (1). The amount is preferably 0.01 to 1 part by mass.
重合方法としては、例えば、溶液重合法、塊状重合法、乳化重合法、懸濁重合法等を採用することができるが、重合後、得られた共重合体(1)の精製や取り出しが容易である点で、水中に単量体を液滴として分散させながら重合させる懸濁重合法により行うことが好ましい。具体的には、構造単位(1a)に対応するマクロモノマーと構造単位(1b)に対応する単量体、および必要に応じて構造単位(1c)に対応する単量体との混合物に重合開始剤を加え、必要により連鎖移動剤を加えた後、前記混合物を水中に分散させ、撹拌しながら加熱すればよい。撹拌することにより、単量体が水中に液滴として分散し、加熱することにより液滴中で重合開始剤が単量体に作用して重合が開始される。重合後の反応混合物から固形分を取り出し、水洗し、乾燥することにより、ビーズ状の重合体(1)を得ることができる。重合条件(重合温度や重合時間等)は、用いる単量体の種類およびその量等に応じて適宜設定することができるが、重合温度は、通常、0~120℃であり、例えば60~100℃であることが好ましい。また、重合時間は、通常、0.5~24時間であり、例えば2~12時間であることが好ましい。
As the polymerization method, for example, a solution polymerization method, a bulk polymerization method, an emulsion polymerization method, a suspension polymerization method, and the like can be adopted. After the polymerization, the obtained copolymer (1) can be easily purified and taken out. Therefore, it is preferable to carry out by a suspension polymerization method in which the monomer is polymerized while being dispersed as droplets in water. Specifically, polymerization is initiated with a mixture of a macromonomer corresponding to the structural unit (1a) and a monomer corresponding to the structural unit (1b) and, if necessary, a monomer corresponding to the structural unit (1c). After adding an agent and, if necessary, a chain transfer agent, the mixture may be dispersed in water and heated with stirring. By stirring, the monomer is dispersed as droplets in water, and by heating, the polymerization initiator acts on the monomer in the droplet to initiate polymerization. The bead-like polymer (1) can be obtained by taking out the solid content from the reaction mixture after polymerization, washing with water and drying. The polymerization conditions (polymerization temperature, polymerization time, etc.) can be appropriately set according to the type and amount of the monomer used. The polymerization temperature is usually 0 to 120 ° C., for example 60 to 100 It is preferable that it is ° C. The polymerization time is usually 0.5 to 24 hours, for example, preferably 2 to 12 hours.
共重合体(1)の重量平均分子量(Mw)は、通常、5万~200万であり、好ましくは10万~150万である。共重合体(1)の重量平均分子量が前記範囲内にあると、例えば、アクリル樹脂組成物を加熱溶融させてフィルム等へ加工することが容易となる。
なお、重量平均分子量は、多角度レーザー光散乱検出器を用いたゲル浸透クロマトグラフィーにより求められる。 The weight average molecular weight (Mw) of the copolymer (1) is usually 50,000 to 2,000,000, preferably 100,000 to 1,500,000. When the weight average molecular weight of the copolymer (1) is within the above range, for example, it becomes easy to heat and melt the acrylic resin composition and process it into a film or the like.
The weight average molecular weight is determined by gel permeation chromatography using a multi-angle laser light scattering detector.
なお、重量平均分子量は、多角度レーザー光散乱検出器を用いたゲル浸透クロマトグラフィーにより求められる。 The weight average molecular weight (Mw) of the copolymer (1) is usually 50,000 to 2,000,000, preferably 100,000 to 1,500,000. When the weight average molecular weight of the copolymer (1) is within the above range, for example, it becomes easy to heat and melt the acrylic resin composition and process it into a film or the like.
The weight average molecular weight is determined by gel permeation chromatography using a multi-angle laser light scattering detector.
共重合体(1)の数平均分子量(Mn)は、通常、1万~200万であり、好ましくは2万~150万である。共重合体(1)の数平均分子量が前記範囲内にあると、例えば、アクリル樹脂組成物を加熱溶融させてフィルム等へ加工することが容易となる。
なお、数平均分子量は、多角度レーザー光散乱検出器を用いたゲル浸透クロマトグラフィーにより求められる。 The number average molecular weight (Mn) of the copolymer (1) is usually 10,000 to 2,000,000, preferably 20,000 to 1,500,000. When the number average molecular weight of the copolymer (1) is within the above range, for example, it becomes easy to heat and melt the acrylic resin composition and process it into a film or the like.
The number average molecular weight is determined by gel permeation chromatography using a multi-angle laser light scattering detector.
なお、数平均分子量は、多角度レーザー光散乱検出器を用いたゲル浸透クロマトグラフィーにより求められる。 The number average molecular weight (Mn) of the copolymer (1) is usually 10,000 to 2,000,000, preferably 20,000 to 1,500,000. When the number average molecular weight of the copolymer (1) is within the above range, for example, it becomes easy to heat and melt the acrylic resin composition and process it into a film or the like.
The number average molecular weight is determined by gel permeation chromatography using a multi-angle laser light scattering detector.
共重合体(1)の分子量分布(Mw/Mn)は、通常、1~5であり、好ましくは1~4である。共重合体(1)の分子量分布が前記範囲内にあると、例えば、アクリル樹脂組成物を加熱溶融させてフィルム等へ加工することが容易となる。
The molecular weight distribution (Mw / Mn) of the copolymer (1) is usually from 1 to 5, preferably from 1 to 4. When the molecular weight distribution of the copolymer (1) is within the above range, for example, it becomes easy to heat and melt the acrylic resin composition and process it into a film or the like.
共重合体(1)は、通常、0.3~0.95の平均分岐度を有することが好ましい。
なお、平均分岐度は、検出器として多角度レーザー光散乱検出器を用いたゲル浸透クロマトグラフィーにより、共重合体(1)の平均二乗半径rと、共重合体(1)と同じ分子量のポリメタクリル酸メチルの平均二乗半径r0とを求め、その比r/r0として算出される。 The copolymer (1) usually preferably has an average degree of branching of 0.3 to 0.95.
The average degree of branching was determined by gel permeation chromatography using a multi-angle laser light scattering detector as a detector, and the mean square radius r of the copolymer (1) and the polymer having the same molecular weight as the copolymer (1). An average square radius r 0 of methyl methacrylate is obtained and calculated as a ratio r / r 0 thereof.
なお、平均分岐度は、検出器として多角度レーザー光散乱検出器を用いたゲル浸透クロマトグラフィーにより、共重合体(1)の平均二乗半径rと、共重合体(1)と同じ分子量のポリメタクリル酸メチルの平均二乗半径r0とを求め、その比r/r0として算出される。 The copolymer (1) usually preferably has an average degree of branching of 0.3 to 0.95.
The average degree of branching was determined by gel permeation chromatography using a multi-angle laser light scattering detector as a detector, and the mean square radius r of the copolymer (1) and the polymer having the same molecular weight as the copolymer (1). An average square radius r 0 of methyl methacrylate is obtained and calculated as a ratio r / r 0 thereof.
〔重合体(2)〕
本発明のアクリル樹脂組成物に含まれる重合体(2)は、下記式(2a)で示される構造単位(以下、「構造単位(2a)」と称する場合がある)を含む重合体である。 [Polymer (2)]
The polymer (2) contained in the acrylic resin composition of the present invention is a polymer containing a structural unit represented by the following formula (2a) (hereinafter sometimes referred to as “structural unit (2a)”).
本発明のアクリル樹脂組成物に含まれる重合体(2)は、下記式(2a)で示される構造単位(以下、「構造単位(2a)」と称する場合がある)を含む重合体である。 [Polymer (2)]
The polymer (2) contained in the acrylic resin composition of the present invention is a polymer containing a structural unit represented by the following formula (2a) (hereinafter sometimes referred to as “structural unit (2a)”).
構造単位(2a)は、式(2a):
で示される構造単位である。
The structural unit (2a) is represented by the formula (2a):
Is a structural unit represented by
式(2a)中、R21は水素原子またはメチル基であり、アクリル樹脂組成物の耐熱性の観点から、好ましくはメチル基である。
式(2a)中、R22は炭素数1~20の直鎖アルキル基、炭素数3~20の分枝アルキル基、炭素数3~20のシクロアルキル基または炭素数6~18のアリール基である。
炭素数1~20の直鎖アルキル基としては、例えばメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-へプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-イコシル基などが挙げられる。炭素数3~20の分枝アルキル基としては、例えばi-プロピル基、i-ブチル基、tert-ブチル基、2-エチルヘキシル基などが挙げられる。炭素数3~20のシクロアルキル基としては、例えばシクロプロピル基、シクロヘキシル基、アダマンチル基などが挙げられる。炭素数6~18のアリール基としては、例えばフェニル基、ナフチル基などが挙げられる。入手が容易であることから、置換基R22は炭素数1~4の直鎖アルキル基であることが好ましく、メチル基であることがより好ましい。 In formula (2a), R 21 represents a hydrogen atom or a methyl group, and preferably a methyl group from the viewpoint of heat resistance of the acrylic resin composition.
In the formula (2a), R 22 is a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or an aryl group having 6 to 18 carbon atoms. is there.
Examples of the linear alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group. , N-nonyl group, n-decyl group, n-icosyl group and the like. Examples of the branched alkyl group having 3 to 20 carbon atoms include i-propyl group, i-butyl group, tert-butyl group, 2-ethylhexyl group and the like. Examples of the cycloalkyl group having 3 to 20 carbon atoms include a cyclopropyl group, a cyclohexyl group, and an adamantyl group. Examples of the aryl group having 6 to 18 carbon atoms include a phenyl group and a naphthyl group. In view of easy availability, the substituent R 22 is preferably a linear alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group.
式(2a)中、R22は炭素数1~20の直鎖アルキル基、炭素数3~20の分枝アルキル基、炭素数3~20のシクロアルキル基または炭素数6~18のアリール基である。
炭素数1~20の直鎖アルキル基としては、例えばメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-へプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-イコシル基などが挙げられる。炭素数3~20の分枝アルキル基としては、例えばi-プロピル基、i-ブチル基、tert-ブチル基、2-エチルヘキシル基などが挙げられる。炭素数3~20のシクロアルキル基としては、例えばシクロプロピル基、シクロヘキシル基、アダマンチル基などが挙げられる。炭素数6~18のアリール基としては、例えばフェニル基、ナフチル基などが挙げられる。入手が容易であることから、置換基R22は炭素数1~4の直鎖アルキル基であることが好ましく、メチル基であることがより好ましい。 In formula (2a), R 21 represents a hydrogen atom or a methyl group, and preferably a methyl group from the viewpoint of heat resistance of the acrylic resin composition.
In the formula (2a), R 22 is a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or an aryl group having 6 to 18 carbon atoms. is there.
Examples of the linear alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group. , N-nonyl group, n-decyl group, n-icosyl group and the like. Examples of the branched alkyl group having 3 to 20 carbon atoms include i-propyl group, i-butyl group, tert-butyl group, 2-ethylhexyl group and the like. Examples of the cycloalkyl group having 3 to 20 carbon atoms include a cyclopropyl group, a cyclohexyl group, and an adamantyl group. Examples of the aryl group having 6 to 18 carbon atoms include a phenyl group and a naphthyl group. In view of easy availability, the substituent R 22 is preferably a linear alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group.
重合体(2)に含まれる構造単位(2a)の量は、重合体(2)に含まれる全構造単位100質量%に対して、10~100質量%であることが好ましく、15~100質量%であることがより好ましく、20~100質量%であることが特に好ましく、さらには、80~100質量%であることが好ましく、90~100質量%であることがより好ましく、95~100質量%であることが特に好ましい。重合体(2)中の構造単位(2a)の量が前記範囲内にあると、アクリル樹脂組成物、特にそのアクリル樹脂組成物を含むフィルムの透明性が良好となる。なお、共重合体(2)中に構造単位(2a)としては、1種の構造単位が含まれていてもよく、異なる複数種の構造単位が含まれていてもよい。
The amount of the structural unit (2a) contained in the polymer (2) is preferably 10 to 100% by mass, preferably 15 to 100% by mass with respect to 100% by mass of all the structural units contained in the polymer (2). %, More preferably 20 to 100% by weight, further preferably 80 to 100% by weight, more preferably 90 to 100% by weight, and 95 to 100% by weight. % Is particularly preferred. When the amount of the structural unit (2a) in the polymer (2) is within the above range, the transparency of the acrylic resin composition, particularly a film containing the acrylic resin composition, becomes good. In the copolymer (2), as the structural unit (2a), one type of structural unit may be included, or a plurality of different types of structural units may be included.
重合体(2)には、前記構造単位(1a)が含まれていてもよい。ただし、弾性率が低下するため、重合体(2)が構造単位(1a)を含む場合、その量は、重合体(2)に含まれる全構造単位100質量%に対して5質量%未満であり、好ましくは0.1質量%未満である。本発明の特に好適な実施態様において、重合体(2)は前記構造単位(1a)を含まない(すなわち、構造単位(1a)の量は0質量%であってよい)。
The polymer (2) may contain the structural unit (1a). However, since the elastic modulus is lowered, when the polymer (2) contains the structural unit (1a), the amount is less than 5% by mass with respect to 100% by mass of all the structural units contained in the polymer (2). Yes, preferably less than 0.1% by weight. In a particularly preferred embodiment of the present invention, the polymer (2) does not contain the structural unit (1a) (that is, the amount of the structural unit (1a) may be 0% by mass).
重合体(2)は、構造単位(2a)のみを構造単位として含むものであってもよく、構造単位(2a)と、重合体(2)に含まれる全構造単位100質量%に対して5質量%未満の構造単位(1a)を含むものであってもよい。さらに、重合体(2)は、構造単位(2a)および構造単位(1a)以外の構造単位(以下、「構造単位(2b)」と称する場合がある)を含むものであってもよい。そのような構造単位は、構造単位(2a)に対応する単量体および構造単位(1a)に対応する単量体と共重合し得る単量体に由来するものであれば特に限定されるものではない。例えば、アクリル酸、メタクリル酸のような不飽和酸、アクリロニトリル、メタクリロニトリルのようなシアン化アルケニル、スチレン、α-メチルスチレンのようなスチレン系単量体などに由来する構造単位が挙げられる。
The polymer (2) may contain only the structural unit (2a) as a structural unit. The polymer (2a) and the structural unit (2a) and 5% with respect to 100% by mass of all the structural units contained in the polymer (2). It may contain less than mass% of structural units (1a). Furthermore, the polymer (2) may include a structural unit other than the structural unit (2a) and the structural unit (1a) (hereinafter sometimes referred to as “structural unit (2b)”). Such a structural unit is particularly limited as long as it is derived from a monomer corresponding to the structural unit (2a) and a monomer copolymerizable with the monomer corresponding to the structural unit (1a). is not. Examples thereof include structural units derived from unsaturated acids such as acrylic acid and methacrylic acid, alkenyl cyanides such as acrylonitrile and methacrylonitrile, styrene monomers such as styrene and α-methylstyrene.
重合体(2)が構造単位(2b)を含む場合、その量は重合体(2)に含まれる全構造単位100質量%に対して、好ましくは20質量%以下であり、より好ましくは10質量%以下である。本発明の一実施態様において、重合体(2)は構造単位(2b)を含まない(すなわち、構造単位(2b)の量は0質量%であってもよい)。
When the polymer (2) contains the structural unit (2b), the amount thereof is preferably 20% by mass or less, more preferably 10% by mass with respect to 100% by mass of all the structural units contained in the polymer (2). % Or less. In one embodiment of the present invention, the polymer (2) does not contain the structural unit (2b) (that is, the amount of the structural unit (2b) may be 0% by mass).
重合体(2)は、構造単位(2a)に対応する単量体、および必要に応じて構造単位(1a)および/または(2b)に対応する単量体を重合させることにより製造することができる。重合体(2)の製造方法としては特に制限されるものではなく、当該分野で公知の共重合方法を用いることができ、例えば、構造単位(2a)に対応する単量体、および必要に応じて構造単位(1a)および/または(2b)に対応する単量体を混合し、通常、重合開始剤を用いて重合することにより製造することができる。重合方法としては、例えば、溶液重合法、塊状重合法、乳化重合法、懸濁重合法等を採用することができる。
The polymer (2) can be produced by polymerizing the monomer corresponding to the structural unit (2a) and, if necessary, the monomer corresponding to the structural unit (1a) and / or (2b). it can. The production method of the polymer (2) is not particularly limited, and a copolymerization method known in the art can be used, for example, a monomer corresponding to the structural unit (2a), and if necessary The monomer corresponding to the structural unit (1a) and / or (2b) is mixed and usually polymerized using a polymerization initiator. As the polymerization method, for example, a solution polymerization method, a bulk polymerization method, an emulsion polymerization method, a suspension polymerization method and the like can be employed.
重合体(2)に含まれる構造単位(2a)に対応する単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピルなどが挙げられる。
Examples of the monomer corresponding to the structural unit (2a) contained in the polymer (2) include methyl (meth) acrylate, ethyl (meth) acrylate, and propyl (meth) acrylate.
重合開始剤としては、前記各構造単位に対応する単量体の重合を開始する能力を有する限り特に制限されるものではなく、公知の重合開始剤の中から適宜選択して用いることができる。例えば、上述した共重合体(1)の重合において例示したような重合開始剤を用いることができる。
The polymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of the monomer corresponding to each structural unit, and can be appropriately selected from known polymerization initiators. For example, a polymerization initiator as exemplified in the polymerization of the copolymer (1) described above can be used.
重合体(2)の重量平均分子量(Mw)は、通常、5万~30万であり、より好ましくは8万~25万である。重合体(2)の重量平均分子量が前記範囲内にあると、例えば、アクリル樹脂組成物を加熱溶融させてフィルム等へ加工することが容易となる。
なお、重量平均分子量は、多角度レーザー光散乱検出器を用いたゲル浸透クロマトグラフィーにより求められる。 The weight average molecular weight (Mw) of the polymer (2) is usually 50,000 to 300,000, more preferably 80,000 to 250,000. When the weight average molecular weight of the polymer (2) is within the above range, for example, it becomes easy to heat-melt the acrylic resin composition and process it into a film or the like.
The weight average molecular weight is determined by gel permeation chromatography using a multi-angle laser light scattering detector.
なお、重量平均分子量は、多角度レーザー光散乱検出器を用いたゲル浸透クロマトグラフィーにより求められる。 The weight average molecular weight (Mw) of the polymer (2) is usually 50,000 to 300,000, more preferably 80,000 to 250,000. When the weight average molecular weight of the polymer (2) is within the above range, for example, it becomes easy to heat-melt the acrylic resin composition and process it into a film or the like.
The weight average molecular weight is determined by gel permeation chromatography using a multi-angle laser light scattering detector.
重合体(2)の数平均分子量(Mn)は、通常、2万~30万であり、より好ましくは4万~25万である。重合体(2)の数平均分子量が前記範囲内にあると、例えば、アクリル樹脂組成物を加熱溶融させてフィルム等へ加工することが容易となる。
なお、数平均分子量は、多角度レーザー光散乱検出器を用いたゲル浸透クロマトグラフィーにより求められる。 The number average molecular weight (Mn) of the polymer (2) is usually from 20,000 to 300,000, more preferably from 40,000 to 250,000. When the number average molecular weight of the polymer (2) is within the above range, for example, it becomes easy to heat and melt the acrylic resin composition and process it into a film or the like.
The number average molecular weight is determined by gel permeation chromatography using a multi-angle laser light scattering detector.
なお、数平均分子量は、多角度レーザー光散乱検出器を用いたゲル浸透クロマトグラフィーにより求められる。 The number average molecular weight (Mn) of the polymer (2) is usually from 20,000 to 300,000, more preferably from 40,000 to 250,000. When the number average molecular weight of the polymer (2) is within the above range, for example, it becomes easy to heat and melt the acrylic resin composition and process it into a film or the like.
The number average molecular weight is determined by gel permeation chromatography using a multi-angle laser light scattering detector.
重合体(2)の分子量分布(Mw/Mn)は、通常、1~3である。重合体(2)の分子量分布が前記範囲内にあると、例えば、アクリル樹脂組成物を加熱溶融させてフィルム等へ加工することが容易となる。
The molecular weight distribution (Mw / Mn) of the polymer (2) is usually 1 to 3. When the molecular weight distribution of the polymer (2) is within the above range, for example, it becomes easy to heat and melt the acrylic resin composition and process it into a film or the like.
重合体(2)としては、市販されているアクリル樹脂を用いることもできる。市販品としては、例えば、住友化学(株)製「スミペックスMH」、「スミペックスMHF」などが挙げられる。
A commercially available acrylic resin can also be used as the polymer (2). Examples of commercially available products include “SUMIPEX MH” and “SUMIPEX MHF” manufactured by Sumitomo Chemical Co., Ltd.
〔アクリル樹脂組成物〕
本発明のアクリル樹脂組成物は、前記共重合体(1)と重合体(2)を含む。
本発明のアクリル樹脂組成物は、共重合体(1)と重合体(2)の合計100質量部に対して共重合体(1)を1~90質量部含み、好ましくは5質量部以上、より好ましくは10質量部以上含み、また好ましくは50質量部以下、より好ましくは35質量部以下、さらに好ましくは30質量部以下含む。本発明の一実施態様において、共重合体(1)と共重合体(2)の合計100質量部に対する共重合体(1)の含有量は、例えば5~50質量部であってよく、10~50質量部であってもよく、好ましくは10~30質量部である。また、本発明のアクリル樹脂組成物は、重合体(2)を、共重合体(1)と重合体(2)の合計量100質量部に対して10~99質量部含み、好ましくは50質量部以上、より好ましくは65質量部以上、さらに好ましくは70質量部以上含み、好ましくは95質量部以下、より好ましくは90質量部以下含む。本発明の一実施態様において、共重合体(1)と共重合体(2)の合計100質量部に対する共重合体(2)の含有量は、例えば50~95質量部であってよく、50~90質量部であってもよく、好ましくは70~90質量部である。共重合体(1)および重合体(2)の含有量が前記範囲内であると、アクリル樹脂組成物の弾性率を低下させることなく高い耐衝撃性を確保することができる。 [Acrylic resin composition]
The acrylic resin composition of the present invention includes the copolymer (1) and the polymer (2).
The acrylic resin composition of the present invention comprises 1 to 90 parts by mass of the copolymer (1) with respect to 100 parts by mass in total of the copolymer (1) and the polymer (2), preferably 5 parts by mass or more. More preferably, it is 10 parts by mass or more, preferably 50 parts by mass or less, more preferably 35 parts by mass or less, and still more preferably 30 parts by mass or less. In one embodiment of the present invention, the content of the copolymer (1) with respect to a total of 100 parts by mass of the copolymer (1) and the copolymer (2) may be, for example, 5 to 50 parts by mass. It may be ˜50 parts by mass, preferably 10 to 30 parts by mass. Further, the acrylic resin composition of the present invention contains 10 to 99 parts by mass, preferably 50 parts by mass of the polymer (2) with respect to 100 parts by mass of the total amount of the copolymer (1) and the polymer (2). Part or more, preferably 65 parts by weight or more, more preferably 70 parts by weight or more, preferably 95 parts by weight or less, more preferably 90 parts by weight or less. In one embodiment of the present invention, the content of the copolymer (2) with respect to 100 parts by mass in total of the copolymer (1) and the copolymer (2) may be, for example, 50 to 95 parts by mass, It may be ˜90 parts by mass, preferably 70 to 90 parts by mass. When the contents of the copolymer (1) and the polymer (2) are within the above range, high impact resistance can be ensured without reducing the elastic modulus of the acrylic resin composition.
本発明のアクリル樹脂組成物は、前記共重合体(1)と重合体(2)を含む。
本発明のアクリル樹脂組成物は、共重合体(1)と重合体(2)の合計100質量部に対して共重合体(1)を1~90質量部含み、好ましくは5質量部以上、より好ましくは10質量部以上含み、また好ましくは50質量部以下、より好ましくは35質量部以下、さらに好ましくは30質量部以下含む。本発明の一実施態様において、共重合体(1)と共重合体(2)の合計100質量部に対する共重合体(1)の含有量は、例えば5~50質量部であってよく、10~50質量部であってもよく、好ましくは10~30質量部である。また、本発明のアクリル樹脂組成物は、重合体(2)を、共重合体(1)と重合体(2)の合計量100質量部に対して10~99質量部含み、好ましくは50質量部以上、より好ましくは65質量部以上、さらに好ましくは70質量部以上含み、好ましくは95質量部以下、より好ましくは90質量部以下含む。本発明の一実施態様において、共重合体(1)と共重合体(2)の合計100質量部に対する共重合体(2)の含有量は、例えば50~95質量部であってよく、50~90質量部であってもよく、好ましくは70~90質量部である。共重合体(1)および重合体(2)の含有量が前記範囲内であると、アクリル樹脂組成物の弾性率を低下させることなく高い耐衝撃性を確保することができる。 [Acrylic resin composition]
The acrylic resin composition of the present invention includes the copolymer (1) and the polymer (2).
The acrylic resin composition of the present invention comprises 1 to 90 parts by mass of the copolymer (1) with respect to 100 parts by mass in total of the copolymer (1) and the polymer (2), preferably 5 parts by mass or more. More preferably, it is 10 parts by mass or more, preferably 50 parts by mass or less, more preferably 35 parts by mass or less, and still more preferably 30 parts by mass or less. In one embodiment of the present invention, the content of the copolymer (1) with respect to a total of 100 parts by mass of the copolymer (1) and the copolymer (2) may be, for example, 5 to 50 parts by mass. It may be ˜50 parts by mass, preferably 10 to 30 parts by mass. Further, the acrylic resin composition of the present invention contains 10 to 99 parts by mass, preferably 50 parts by mass of the polymer (2) with respect to 100 parts by mass of the total amount of the copolymer (1) and the polymer (2). Part or more, preferably 65 parts by weight or more, more preferably 70 parts by weight or more, preferably 95 parts by weight or less, more preferably 90 parts by weight or less. In one embodiment of the present invention, the content of the copolymer (2) with respect to 100 parts by mass in total of the copolymer (1) and the copolymer (2) may be, for example, 50 to 95 parts by mass, It may be ˜90 parts by mass, preferably 70 to 90 parts by mass. When the contents of the copolymer (1) and the polymer (2) are within the above range, high impact resistance can be ensured without reducing the elastic modulus of the acrylic resin composition.
本発明のアクリル樹脂組成物のうち、構造単位(1a)中のXが式(1a-1)で示される二価の残基であり、共重合体(1)に含まれる全構造単位に対する構造単位(1a)の量が5~15質量%であり、共重合体(1)および重合体(2)の合計100質量部に対して、共重合体(1)を10~30質量部および重合体(2)を70~90質量部含むアクリル樹脂組成物は、特に高い耐衝撃性を発現することができる。
In the acrylic resin composition of the present invention, X in the structural unit (1a) is a divalent residue represented by the formula (1a-1), and the structure with respect to all structural units contained in the copolymer (1) The amount of the unit (1a) is 5 to 15% by mass, and the copolymer (1) is used in an amount of 10 to 30 parts by mass and The acrylic resin composition containing 70 to 90 parts by mass of the combined body (2) can exhibit particularly high impact resistance.
本発明のアクリル樹脂組成物は、前記共重合体(1)と重合体(2)以外の他の重合体を含んでいてもよい。他の重合体としては、例えばアクリル酸、メタクリル酸のような不飽和酸、アクリロニトリル、メタクリロニトリルのようなシアン化アルケニル、スチレン、α-メチルスチレンのようなスチレン系単量体等から構成される重合体などが挙げられる。本発明のアクリル樹脂組成物がこのような共重合体(1)と重合体(2)以外の他の重合体を含む場合、その含有量は共重合体(1)と重合体(2)の合計100質量部に対して、通常90質量部以下、好ましくは80質量部以下である。
The acrylic resin composition of the present invention may contain a polymer other than the copolymer (1) and the polymer (2). Examples of other polymers include unsaturated acids such as acrylic acid and methacrylic acid, alkenyl cyanides such as acrylonitrile and methacrylonitrile, styrene monomers such as styrene and α-methylstyrene, and the like. And the like. When the acrylic resin composition of the present invention contains a polymer other than the copolymer (1) and the polymer (2), the content thereof is that of the copolymer (1) and the polymer (2). It is usually 90 parts by mass or less, preferably 80 parts by mass or less with respect to 100 parts by mass in total.
本発明のアクリル樹脂組成物は、ゴム弾性体粒子を含有していてもよい。
本発明において、ゴム弾性体粒子は、ゴム弾性を示す層(以下、「ゴム弾性体層」と称する場合がある)のみからなる粒子であってもよく、ゴム弾性体層とともに他の層を有する多層構造の粒子であってもよい。 The acrylic resin composition of the present invention may contain rubber elastic particles.
In the present invention, the rubber elastic particles may be particles composed only of a layer exhibiting rubber elasticity (hereinafter sometimes referred to as “rubber elastic layer”), and have other layers together with the rubber elastic layer. Particles having a multilayer structure may be used.
本発明において、ゴム弾性体粒子は、ゴム弾性を示す層(以下、「ゴム弾性体層」と称する場合がある)のみからなる粒子であってもよく、ゴム弾性体層とともに他の層を有する多層構造の粒子であってもよい。 The acrylic resin composition of the present invention may contain rubber elastic particles.
In the present invention, the rubber elastic particles may be particles composed only of a layer exhibiting rubber elasticity (hereinafter sometimes referred to as “rubber elastic layer”), and have other layers together with the rubber elastic layer. Particles having a multilayer structure may be used.
ゴム弾性体層はゴム弾性重合体を含む。ゴム弾性重合体としては、例えば、オレフィン系弾性重合体、ジエン系弾性重合体、スチレン-ジエン系弾性共重合体、アクリル系弾性重合体などが挙げられる。中でも、本発明のアクリル樹脂組成物の耐光性及び透明性の観点から、アクリル系弾性重合体であることが好ましい。
The rubber elastic layer includes a rubber elastic polymer. Examples of rubber elastic polymers include olefin elastic polymers, diene elastic polymers, styrene-diene elastic copolymers, acrylic elastic polymers, and the like. Among these, an acrylic elastic polymer is preferable from the viewpoint of light resistance and transparency of the acrylic resin composition of the present invention.
アクリル系弾性重合体は、アクリル酸アルキルを主体とする、すなわち、全モノマー量を基準にアクリル酸アルキル由来の構成単位を50質量%以上含む重合体であってよい。
アクリル系弾性重合体は、アクリル酸アルキルの単独重合体であってもよいし、アクリル酸アルキル由来の構成単位を50質量%以上と、他の重合性モノマー由来の構成単位を50質量%以下とを含む共重合体であってもよい。 The acrylic elastic polymer may be a polymer mainly composed of alkyl acrylate, that is, a polymer containing 50 mass% or more of a structural unit derived from alkyl acrylate based on the total amount of monomers.
The acrylic elastic polymer may be a homopolymer of alkyl acrylate, the structural unit derived from alkyl acrylate is 50% by mass or more, and the structural unit derived from another polymerizable monomer is 50% by mass or less. It may be a copolymer containing
アクリル系弾性重合体は、アクリル酸アルキルの単独重合体であってもよいし、アクリル酸アルキル由来の構成単位を50質量%以上と、他の重合性モノマー由来の構成単位を50質量%以下とを含む共重合体であってもよい。 The acrylic elastic polymer may be a polymer mainly composed of alkyl acrylate, that is, a polymer containing 50 mass% or more of a structural unit derived from alkyl acrylate based on the total amount of monomers.
The acrylic elastic polymer may be a homopolymer of alkyl acrylate, the structural unit derived from alkyl acrylate is 50% by mass or more, and the structural unit derived from another polymerizable monomer is 50% by mass or less. It may be a copolymer containing
アクリル系弾性重合体を構成するアクリル酸アルキルとしては通常、そのアルキル基の炭素数が4~8のものが用いられる。上記他の重合性モノマーの例を挙げれば、例えば、メタクリル酸メチル、メタクリル酸エチルのようなメタクリル酸アルキル;スチレン、アルキルスチレンのようなスチレン系モノマー;アクリロニトリル、メタクリロニトリルのような不飽和ニトリル等の単官能モノマー、さらには、(メタ)アクリル酸アリル、(メタ)アクリル酸メタリルのような不飽和カルボン酸のアルケニルエステル;マレイン酸ジアリルのような二塩基酸のジアルケニルエステル;アルキレングリコールジ(メタ)アクリレートのようなグリコール類の不飽和カルボン酸ジエステル等の多官能モノマーである。
As the alkyl acrylate constituting the acrylic elastic polymer, those having 4 to 8 carbon atoms in the alkyl group are usually used. Examples of the other polymerizable monomer include, for example, alkyl methacrylate such as methyl methacrylate and ethyl methacrylate; styrene monomer such as styrene and alkyl styrene; unsaturated nitrile such as acrylonitrile and methacrylonitrile. Monofunctional monomers such as allyl (meth) acrylate, alkenyl esters of unsaturated carboxylic acids such as methallyl (meth) acrylate; dialkenyl esters of dibasic acids such as diallyl maleate; alkylene glycol di Polyfunctional monomers such as unsaturated carboxylic acid diesters of glycols such as (meth) acrylates.
ゴム弾性体としてアクリル系弾性重合体を含むゴム粒子は、アクリル系弾性重合体の層を有する多層構造の粒子であることが好ましい。具体的には、アクリル系弾性重合体および該アクリル系弾性重合体の層の外側または内側にメタクリル酸アルキルを主体とする硬質の重合体層を有する2層構造のものや、さらに該アクリル系弾性重合体の層の内側にメタクリル酸アルキルを主体とする硬質の重合体層を有する3層構造のものが挙げられる。
The rubber particles containing an acrylic elastic polymer as the rubber elastic body are preferably multi-layered particles having an acrylic elastic polymer layer. Specifically, an acrylic elastic polymer and a two-layer structure having a hard polymer layer mainly composed of alkyl methacrylate on the outer or inner side of the acrylic elastic polymer layer, or the acrylic elastic polymer The thing of the 3 layer structure which has the hard polymer layer which has an alkyl methacrylate as a main body inside a polymer layer is mentioned.
アクリル系弾性重合体の層の外側および/または内側に形成される硬質の重合体層を構成するメタクリル酸アルキルを主体とする重合体におけるモノマー組成の例は、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の炭素数は通常1~4程度の(メタ)アクリル酸アルキルを主体とする重合体のモノマー組成であり、特にメタクリル酸メチルを主体とするモノマー組成が好ましく用いられる。このような多層構造のアクリル系ゴム粒子は、例えば特公昭55-27576号公報に記載の方法によって製造することができる。
Examples of the monomer composition in the polymer mainly composed of alkyl methacrylate constituting the hard polymer layer formed outside and / or inside the acrylic elastic polymer layer are methyl (meth) acrylate, (meth ) Ethyl acrylate, (meth) butyl acrylate, etc., which is a monomer composition of a polymer mainly composed of alkyl (meth) acrylate having about 1 to 4 carbon atoms, particularly a monomer composition mainly composed of methyl methacrylate Is preferably used. Such acrylic rubber particles having a multilayer structure can be produced, for example, by the method described in JP-B-55-27576.
ゴム粒子は、その中に含まれるゴム弾性体層(アクリル系弾性重合体の層)の外側までの径(平均粒子径)が好ましくは10nm以上、より好ましくは30nm以上、さらに好ましくは50nm以上であり、好ましくは350nm以下、より好ましくは300nm以下、さらに好ましくは280nm以下である。
The rubber particles preferably have a diameter (average particle diameter) to the outside of the rubber elastic layer (acrylic elastic polymer layer) contained therein of preferably 10 nm or more, more preferably 30 nm or more, and even more preferably 50 nm or more. Yes, preferably 350 nm or less, more preferably 300 nm or less, and even more preferably 280 nm or less.
ゴム粒子におけるゴム弾性体層(アクリル系弾性重合体の層)の外側までの径(平均粒子径)は、次のようにして測定される。すなわち、このようなゴム粒子をアクリル樹脂組成物に混合してフィルム化し、その断面を酸化ルテニウムの水溶液で染色すると、ゴム弾性体層だけが着色してほぼ円形状に観察され、母層のアクリル系樹脂は染色されない。そこで、このようにして染色されたフィルム断面から、ミクロトーム等を用いて薄片を調製し、これを電子顕微鏡で観察する。そして、無作為に100個の染色されたゴム粒子を抽出し、各々の粒子径(ゴム弾性体層の外側までの径)を測定した後、その数平均値を上記平均粒子径とする。このような方法で測定するため、得られる上記平均粒子径は数平均粒子径である。
The diameter (average particle diameter) of the rubber particles to the outside of the rubber elastic layer (acrylic elastic polymer layer) is measured as follows. That is, when such rubber particles are mixed into an acrylic resin composition to form a film and the cross section is dyed with an aqueous solution of ruthenium oxide, only the rubber elastic body layer is colored and observed in a substantially circular shape, and the acrylic layer of the mother layer The system resin is not dyed. Therefore, from the cross section of the film dyed in this way, a thin piece is prepared using a microtome or the like, and this is observed with an electron microscope. And after extracting 100 dye | stained rubber particles at random and measuring each particle diameter (diameter to the outer side of a rubber elastic-body layer), the number average value is made into the said average particle diameter. In order to measure by such a method, the obtained average particle diameter is a number average particle diameter.
ゴム粒子が、最外層がメタクリル酸メチルを主体とする硬質の重合体であり、その中にゴム弾性体層(アクリル系弾性重合体の層)が包み込まれているゴム粒子である場合、このゴム粒子を母体のアクリル系樹脂に混合すると、ゴム粒子の最外層が母体のアクリル系樹脂と混和する。そのため、その断面を酸化ルテニウムで染色し、電子顕微鏡で観察すると、ゴム粒子は、最外層を除いた状態の粒子として観察される。具体的には、内層がアクリル系弾性重合体であり、外層がメタクリル酸メチルを主体とする硬質の重合体である2層構造のゴム粒子である場合には、内層のアクリル系弾性重合体部分が染色されて単層構造の粒子として観察される。また、最内層がメタクリル酸メチルを主体とする硬質の重合体であり、中間層がアクリル系弾性重合体であり、最外層がメタクリル酸メチルを主体とする硬質の重合体である3層構造のゴム粒子の場合には、最内層の粒子中心部分が染色されず、中間層のアクリル系弾性重合体部分のみが染色された2層構造の粒子として観察されることになる。
When the rubber particles are rubber particles whose outermost layer is a hard polymer mainly composed of methyl methacrylate and in which the rubber elastic layer (acrylic elastic polymer layer) is encapsulated, this rubber When the particles are mixed with the base acrylic resin, the outermost layer of the rubber particles is mixed with the base acrylic resin. Therefore, when the cross section is dyed with ruthenium oxide and observed with an electron microscope, the rubber particles are observed as particles in a state excluding the outermost layer. Specifically, when the inner layer is an acrylic elastic polymer and the outer layer is a rubber particle having a two-layer structure, which is a hard polymer mainly composed of methyl methacrylate, the acrylic elastic polymer portion of the inner layer Are dyed and observed as particles having a single layer structure. The innermost layer is a hard polymer mainly composed of methyl methacrylate, the intermediate layer is an acrylic elastic polymer, and the outermost layer is a rigid polymer mainly composed of methyl methacrylate. In the case of rubber particles, the central part of the innermost layer is not dyed, and only the acrylic elastic polymer part of the intermediate layer is dyed and observed as a two-layered particle.
本発明のアクリル樹脂組成物がゴム弾性体粒子を含有する場合、その含有量は、共重合体(1)および重合体(2)の合計100質量部に対して、通常1~50質量部であり、10~30質量部であることが好ましく、10~20質量部であることがより好ましい。
ゴム弾性体粒子を前記範囲の量で含む場合、ゴム弾性体粒子を配合しない場合と比較してより高い耐衝撃性を確保することができる。しかしながら、本発明のアクリル樹脂組成物では、ゴム弾性体粒子を含まなくても、アクリル樹脂組成物の高い耐衝撃性を確保することができるため、ゴム弾性体粒子の含有量は、共重合体(1)および重合体(2)の合計100質量部に対して1質量部以下であってよく、ゴム弾性体粒子を全く含まなくてもよい(すなわち、ゴム弾性体粒子の含有量は0質量%である)。ゴム弾性体粒子の含有量が少ないほど、弾性率の低下を抑えることができるため、フィルムにした時にその加熱収縮を抑えることができ、フィルムの耐熱性の低下を、ひいてはこのフィルムを用いた偏光板の耐熱性の低下を抑えることができる。
なお、本発明においては、ゴム粒子として、ゴム弾性を示す層とともに他の層を有する多層構造の粒子を用いた場合は、ゴム弾性を示すゴム弾性体層とその内側の層からなる部分の質量を、ゴム粒子の質量とする。例えば、上述の3層構造のゴム粒子を用いた場合は、中間層のアクリル系弾性重合体部分と最内層のメタクリル酸メチルを主体とする硬質の重合体部分との合計質量を、ゴム粒子の質量とする。上述の3層構造のアクリル系ゴム粒子をアセトンに溶解させると、中間層のアクリル系弾性重合体部分と最内層のメタクリル酸メチルを主体とする硬質の重合体部分とは、不溶分として残るので、3層構造のアクリル系ゴム粒子に占める中間層と最内層の合計の質量割合は、容易に求めることができる。 When the acrylic resin composition of the present invention contains rubber elastic particles, the content thereof is usually 1 to 50 parts by mass with respect to 100 parts by mass in total of the copolymer (1) and the polymer (2). Yes, it is preferably 10-30 parts by mass, more preferably 10-20 parts by mass.
When the rubber elastic particles are included in the above range, higher impact resistance can be ensured as compared with the case where the rubber elastic particles are not blended. However, in the acrylic resin composition of the present invention, the high impact resistance of the acrylic resin composition can be ensured even if the rubber elastic body particles are not included. It may be 1 part by mass or less with respect to 100 parts by mass in total of (1) and the polymer (2), and may not contain rubber elastic particles at all (that is, the content of rubber elastic particles is 0 mass). %). Since the lower the elastic rubber particle content, the lower the modulus of elasticity can be suppressed. Therefore, the heat shrinkage of the film can be suppressed, and the heat resistance of the film is reduced. A decrease in the heat resistance of the plate can be suppressed.
In the present invention, when a particle having a multilayer structure having another layer in addition to a layer exhibiting rubber elasticity is used as the rubber particle, the mass of a portion composed of a rubber elastic body layer exhibiting rubber elasticity and an inner layer thereof Is the mass of the rubber particles. For example, when the rubber particles having the three-layer structure described above are used, the total mass of the acrylic elastic polymer portion in the intermediate layer and the hard polymer portion mainly composed of methyl methacrylate in the innermost layer is determined as the rubber particles. Mass. When the acrylic rubber particles having the above three-layer structure are dissolved in acetone, the acrylic elastic polymer portion of the intermediate layer and the hard polymer portion mainly composed of methyl methacrylate remain as insoluble matter. The total mass ratio of the intermediate layer and the innermost layer in the three-layered acrylic rubber particles can be easily obtained.
ゴム弾性体粒子を前記範囲の量で含む場合、ゴム弾性体粒子を配合しない場合と比較してより高い耐衝撃性を確保することができる。しかしながら、本発明のアクリル樹脂組成物では、ゴム弾性体粒子を含まなくても、アクリル樹脂組成物の高い耐衝撃性を確保することができるため、ゴム弾性体粒子の含有量は、共重合体(1)および重合体(2)の合計100質量部に対して1質量部以下であってよく、ゴム弾性体粒子を全く含まなくてもよい(すなわち、ゴム弾性体粒子の含有量は0質量%である)。ゴム弾性体粒子の含有量が少ないほど、弾性率の低下を抑えることができるため、フィルムにした時にその加熱収縮を抑えることができ、フィルムの耐熱性の低下を、ひいてはこのフィルムを用いた偏光板の耐熱性の低下を抑えることができる。
なお、本発明においては、ゴム粒子として、ゴム弾性を示す層とともに他の層を有する多層構造の粒子を用いた場合は、ゴム弾性を示すゴム弾性体層とその内側の層からなる部分の質量を、ゴム粒子の質量とする。例えば、上述の3層構造のゴム粒子を用いた場合は、中間層のアクリル系弾性重合体部分と最内層のメタクリル酸メチルを主体とする硬質の重合体部分との合計質量を、ゴム粒子の質量とする。上述の3層構造のアクリル系ゴム粒子をアセトンに溶解させると、中間層のアクリル系弾性重合体部分と最内層のメタクリル酸メチルを主体とする硬質の重合体部分とは、不溶分として残るので、3層構造のアクリル系ゴム粒子に占める中間層と最内層の合計の質量割合は、容易に求めることができる。 When the acrylic resin composition of the present invention contains rubber elastic particles, the content thereof is usually 1 to 50 parts by mass with respect to 100 parts by mass in total of the copolymer (1) and the polymer (2). Yes, it is preferably 10-30 parts by mass, more preferably 10-20 parts by mass.
When the rubber elastic particles are included in the above range, higher impact resistance can be ensured as compared with the case where the rubber elastic particles are not blended. However, in the acrylic resin composition of the present invention, the high impact resistance of the acrylic resin composition can be ensured even if the rubber elastic body particles are not included. It may be 1 part by mass or less with respect to 100 parts by mass in total of (1) and the polymer (2), and may not contain rubber elastic particles at all (that is, the content of rubber elastic particles is 0 mass). %). Since the lower the elastic rubber particle content, the lower the modulus of elasticity can be suppressed. Therefore, the heat shrinkage of the film can be suppressed, and the heat resistance of the film is reduced. A decrease in the heat resistance of the plate can be suppressed.
In the present invention, when a particle having a multilayer structure having another layer in addition to a layer exhibiting rubber elasticity is used as the rubber particle, the mass of a portion composed of a rubber elastic body layer exhibiting rubber elasticity and an inner layer thereof Is the mass of the rubber particles. For example, when the rubber particles having the three-layer structure described above are used, the total mass of the acrylic elastic polymer portion in the intermediate layer and the hard polymer portion mainly composed of methyl methacrylate in the innermost layer is determined as the rubber particles. Mass. When the acrylic rubber particles having the above three-layer structure are dissolved in acetone, the acrylic elastic polymer portion of the intermediate layer and the hard polymer portion mainly composed of methyl methacrylate remain as insoluble matter. The total mass ratio of the intermediate layer and the innermost layer in the three-layered acrylic rubber particles can be easily obtained.
本発明のアクリル樹脂組成物は、紫外線吸収剤、帯電防止剤、光拡散剤、艶消剤、染料、光安定剤、酸化防止剤、離型剤、難燃剤などの添加剤を含んでいてもよい。
The acrylic resin composition of the present invention may contain additives such as an ultraviolet absorber, an antistatic agent, a light diffusing agent, a matting agent, a dye, a light stabilizer, an antioxidant, a release agent, and a flame retardant. Good.
本発明のアクリル樹脂組成物は従来公知の方法により製造することができ、具体的には、例えば重合体(1)、重合体(2)、場合によりゴム弾性体粒子および添加剤を、一軸または二軸型等の押出機を用いて溶融混練する方法により製造することができる。本発明のアクリル樹脂組成物の形態は特に限定されるものではないが、取り扱いが容易である点でペレット状であることが好ましい。
The acrylic resin composition of the present invention can be produced by a conventionally known method. Specifically, for example, the polymer (1), the polymer (2), and optionally the rubber elastic particles and additives are uniaxially or It can be produced by a melt kneading method using a twin screw type extruder or the like. The form of the acrylic resin composition of the present invention is not particularly limited, but is preferably a pellet from the viewpoint of easy handling.
〔アクリル樹脂フィルムおよび偏光板〕
本発明のアクリル樹脂フィルムは、例えば、溶融押出成形法、プレス成形法などの公知の方法により製造することができる。具体的には、例えば溶融押出成形法であれば、本発明のアクリル樹脂組成物を構成する各種材料を押出機にて溶融混練して溶融状態の本発明のアクリル樹脂組成物を得、または本発明のアクリル樹脂組成物を押出機にて溶融混練して溶融状態とした後、溶融状態の本発明のアクリル樹脂組成物をダイからフィルム状に押出すことで製造することができる。成形条件(押出条件)は特に限定されるものではなく、用いるアクリル樹脂組成物の組成、アクリル樹脂組成物の分子量・分子量分布等に応じて適宜調整すればよい。例えば、押出温度は、通常230~300℃程度である。また、プレス成形法であれば、本発明のアクリル樹脂組成物をプレス成形用の一対の金型の間に配置し、両金型の間に挟みこんだ状態で加熱することにより、各種材料またはアクリル樹脂組成物を加熱し、溶融状態としてシート状に賦形することにより製造することができる。 [Acrylic resin film and polarizing plate]
The acrylic resin film of the present invention can be produced by a known method such as a melt extrusion molding method or a press molding method. Specifically, for example, in the case of melt extrusion molding, various materials constituting the acrylic resin composition of the present invention are melt-kneaded with an extruder to obtain a molten acrylic resin composition of the present invention, or After the acrylic resin composition of the invention is melt-kneaded with an extruder to obtain a molten state, it can be produced by extruding the molten acrylic resin composition of the present invention from a die into a film. The molding conditions (extrusion conditions) are not particularly limited, and may be appropriately adjusted according to the composition of the acrylic resin composition used, the molecular weight / molecular weight distribution of the acrylic resin composition, and the like. For example, the extrusion temperature is usually about 230 to 300 ° C. Further, in the case of a press molding method, the acrylic resin composition of the present invention is placed between a pair of press molds and heated in a state of being sandwiched between both molds. It can be produced by heating the acrylic resin composition and shaping it into a sheet as a molten state.
本発明のアクリル樹脂フィルムは、例えば、溶融押出成形法、プレス成形法などの公知の方法により製造することができる。具体的には、例えば溶融押出成形法であれば、本発明のアクリル樹脂組成物を構成する各種材料を押出機にて溶融混練して溶融状態の本発明のアクリル樹脂組成物を得、または本発明のアクリル樹脂組成物を押出機にて溶融混練して溶融状態とした後、溶融状態の本発明のアクリル樹脂組成物をダイからフィルム状に押出すことで製造することができる。成形条件(押出条件)は特に限定されるものではなく、用いるアクリル樹脂組成物の組成、アクリル樹脂組成物の分子量・分子量分布等に応じて適宜調整すればよい。例えば、押出温度は、通常230~300℃程度である。また、プレス成形法であれば、本発明のアクリル樹脂組成物をプレス成形用の一対の金型の間に配置し、両金型の間に挟みこんだ状態で加熱することにより、各種材料またはアクリル樹脂組成物を加熱し、溶融状態としてシート状に賦形することにより製造することができる。 [Acrylic resin film and polarizing plate]
The acrylic resin film of the present invention can be produced by a known method such as a melt extrusion molding method or a press molding method. Specifically, for example, in the case of melt extrusion molding, various materials constituting the acrylic resin composition of the present invention are melt-kneaded with an extruder to obtain a molten acrylic resin composition of the present invention, or After the acrylic resin composition of the invention is melt-kneaded with an extruder to obtain a molten state, it can be produced by extruding the molten acrylic resin composition of the present invention from a die into a film. The molding conditions (extrusion conditions) are not particularly limited, and may be appropriately adjusted according to the composition of the acrylic resin composition used, the molecular weight / molecular weight distribution of the acrylic resin composition, and the like. For example, the extrusion temperature is usually about 230 to 300 ° C. Further, in the case of a press molding method, the acrylic resin composition of the present invention is placed between a pair of press molds and heated in a state of being sandwiched between both molds. It can be produced by heating the acrylic resin composition and shaping it into a sheet as a molten state.
溶融押出成形法により本発明のアクリル樹脂フィルムを製造する場合、得られるアクリル樹脂フィルムは、その面内で押出方向(MD方向)と、これに直交する幅方向(TD方向)とで、シャルピー衝撃強度の向上する割合が異なることもあるが、共重合体(1)と重合体(2)の合計100質量部に対する共重合体(1)の含有量が35質量部以下であり、重合体(2)の含有量が65質量部以上であると、押出方向(MD方向)と幅方向(TD方向)との両方向のシャルピー衝撃強度が向上して、好ましい。
When the acrylic resin film of the present invention is produced by the melt extrusion molding method, the resulting acrylic resin film has a Charpy impact in the extrusion direction (MD direction) and in the width direction (TD direction) perpendicular to this in the plane. Although the ratio of increasing the strength may be different, the content of the copolymer (1) with respect to 100 parts by mass in total of the copolymer (1) and the polymer (2) is 35 parts by mass or less. When the content of 2) is 65 parts by mass or more, the Charpy impact strength in both the extrusion direction (MD direction) and the width direction (TD direction) is improved, which is preferable.
本発明のアクリル樹脂フィルムは、必要とされる弾性率を維持したまま、高い耐衝撃性を示すため、例えば、偏光板を構成する保護フィルムとして用いることができる。アクリル樹脂フィルムの厚みは、特に制限されるものではないが、前記用途に用いられる場合には、10~300μmであることが好ましい。
Since the acrylic resin film of the present invention exhibits high impact resistance while maintaining the required elastic modulus, it can be used, for example, as a protective film constituting a polarizing plate. The thickness of the acrylic resin film is not particularly limited, but is preferably 10 to 300 μm when used for the above applications.
本発明の偏光板は本発明のアクリル樹脂フィルムを含む。本発明の偏光板は、好ましくは偏光フィルムの一方または両方の面に本発明のアクリル樹脂フィルムを積層し、偏光板の保護フィルムとして本発明のアクリル樹脂フィルムを含む。この場合、アクリル樹脂フィルムは未延伸で用いてもよいし、延伸して用いてもよい。
The polarizing plate of the present invention includes the acrylic resin film of the present invention. The polarizing plate of the present invention preferably includes the acrylic resin film of the present invention as a protective film of the polarizing plate by laminating the acrylic resin film of the present invention on one or both surfaces of the polarizing film. In this case, the acrylic resin film may be used unstretched or may be stretched.
本発明の偏光板に含まれる偏光フィルムとしては、従来公知の偏光板に用いられる偏光フィルムを用いることができる。本発明の偏光板における偏光フィルムは、例えばヨウ素または二色性染料などの二色性色素がポリビニルアルコール系樹脂フィルムに吸着配向したフィルムであり、吸収軸に平行な振動面を有する偏光光を吸収し、吸収軸に直交する振動面を有する偏光光は透過する性質を持つ光学フィルムである。本発明のアクリル樹脂フィルムは偏光フィルムと、通常接着剤を介して積層される。例えばポリビニルアルコール樹脂水溶液を介して偏光フィルムとアクリル樹脂フィルムとを貼合したのち、乾燥させて形成されることで、または、紫外線硬化型接着剤を介して偏光フィルムとアクリル樹脂フィルムとを貼合したのち、紫外線を照射して硬化させることで本発明の偏光板を製造することができる。
As the polarizing film included in the polarizing plate of the present invention, a polarizing film used in a conventionally known polarizing plate can be used. The polarizing film in the polarizing plate of the present invention is a film in which a dichroic dye such as iodine or a dichroic dye is adsorbed and oriented on a polyvinyl alcohol resin film, and absorbs polarized light having a vibration plane parallel to the absorption axis. In addition, it is an optical film having a property of transmitting polarized light having a vibration plane orthogonal to the absorption axis. The acrylic resin film of the present invention is laminated with a polarizing film, usually via an adhesive. For example, a polarizing film and an acrylic resin film are bonded via an aqueous polyvinyl alcohol resin solution and then dried, or a polarizing film and an acrylic resin film are bonded via an ultraviolet curable adhesive. Then, the polarizing plate of this invention can be manufactured by irradiating and hardening | curing an ultraviolet-ray.
以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、実施例、比較例中の「%」および「部」は特に断りのない限り、それぞれ「質量%」および「質量部」を表す。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the examples and comparative examples, “%” and “parts” represent “% by mass” and “parts by mass”, respectively, unless otherwise specified.
1.共重合体(1)の調製
<合成例1>
表1に示す組成に従い、87.3質量%のメタクリル酸メチル(MMA)、10.7質量%のマクロモノマー(AA-6:メタクリル酸メチル重合体の末端にメタクリロイルオキシ基が付加された構造、東亞合成(株)製)、および2.0質量%のアクリル酸メチル(MA)を混合して単量体成分を得た。この単量体成分に、単量体成分100質量部に対して0.1質量部のラウロイルパーオキサイド(重合開始剤)と、0.2質量部のn-オクチルカプタン(連鎖移動剤)を添加し、これらを溶解させて単量体混合物を得た。これとは別に、イオン交換水100質量部に対して、懸濁安定剤としてポリアクリル酸ナトリウムを0.05質量部、無水第一リン酸ナトリウムを0.24質量部、第二リン酸ナトリウム7水和物を0.28質量部添加し、これらを溶解させて懸濁重合水相を得た。次いで、前記単量体混合物に、懸濁重合水相を単量体成分100質量部に対して200質量部添加し、懸濁重合を行った。得られたスラリー状の反応液を脱水機により脱水、洗浄した後、乾燥してビーズ状の共重合体(1-A)を得た。得られた共重合体(1-A)について、下記方法に従い、分子量および平均分岐度を測定した。結果を表1に示す。 1. Preparation of Copolymer (1) <Synthesis Example 1>
According to the composition shown in Table 1, 87.3% by mass of methyl methacrylate (MMA), 10.7% by mass of macromonomer (AA-6: a structure in which a methacryloyloxy group is added to the end of the methyl methacrylate polymer, Toagosei Co., Ltd.) and 2.0% by mass of methyl acrylate (MA) were mixed to obtain a monomer component. To this monomer component, 0.1 part by weight of lauroyl peroxide (polymerization initiator) and 0.2 part by weight of n-octylcaptan (chain transfer agent) are added based on 100 parts by weight of the monomer component. These were added and dissolved to obtain a monomer mixture. Separately, with respect to 100 parts by mass of ion-exchanged water, 0.05 parts by mass of sodium polyacrylate, 0.24 parts by mass of anhydrous sodium phosphate as a suspension stabilizer, 7 parts of dibasic sodium phosphate 7 0.28 parts by mass of hydrate was added and dissolved to obtain a suspension polymerization aqueous phase. Next, 200 parts by mass of the suspension polymerization aqueous phase was added to 100 parts by mass of the monomer component to the monomer mixture, and suspension polymerization was performed. The obtained slurry-like reaction liquid was dehydrated and washed with a dehydrator and then dried to obtain a bead-shaped copolymer (1-A). With respect to the obtained copolymer (1-A), the molecular weight and the average branching degree were measured according to the following method. The results are shown in Table 1.
<合成例1>
表1に示す組成に従い、87.3質量%のメタクリル酸メチル(MMA)、10.7質量%のマクロモノマー(AA-6:メタクリル酸メチル重合体の末端にメタクリロイルオキシ基が付加された構造、東亞合成(株)製)、および2.0質量%のアクリル酸メチル(MA)を混合して単量体成分を得た。この単量体成分に、単量体成分100質量部に対して0.1質量部のラウロイルパーオキサイド(重合開始剤)と、0.2質量部のn-オクチルカプタン(連鎖移動剤)を添加し、これらを溶解させて単量体混合物を得た。これとは別に、イオン交換水100質量部に対して、懸濁安定剤としてポリアクリル酸ナトリウムを0.05質量部、無水第一リン酸ナトリウムを0.24質量部、第二リン酸ナトリウム7水和物を0.28質量部添加し、これらを溶解させて懸濁重合水相を得た。次いで、前記単量体混合物に、懸濁重合水相を単量体成分100質量部に対して200質量部添加し、懸濁重合を行った。得られたスラリー状の反応液を脱水機により脱水、洗浄した後、乾燥してビーズ状の共重合体(1-A)を得た。得られた共重合体(1-A)について、下記方法に従い、分子量および平均分岐度を測定した。結果を表1に示す。 1. Preparation of Copolymer (1) <Synthesis Example 1>
According to the composition shown in Table 1, 87.3% by mass of methyl methacrylate (MMA), 10.7% by mass of macromonomer (AA-6: a structure in which a methacryloyloxy group is added to the end of the methyl methacrylate polymer, Toagosei Co., Ltd.) and 2.0% by mass of methyl acrylate (MA) were mixed to obtain a monomer component. To this monomer component, 0.1 part by weight of lauroyl peroxide (polymerization initiator) and 0.2 part by weight of n-octylcaptan (chain transfer agent) are added based on 100 parts by weight of the monomer component. These were added and dissolved to obtain a monomer mixture. Separately, with respect to 100 parts by mass of ion-exchanged water, 0.05 parts by mass of sodium polyacrylate, 0.24 parts by mass of anhydrous sodium phosphate as a suspension stabilizer, 7 parts of dibasic sodium phosphate 7 0.28 parts by mass of hydrate was added and dissolved to obtain a suspension polymerization aqueous phase. Next, 200 parts by mass of the suspension polymerization aqueous phase was added to 100 parts by mass of the monomer component to the monomer mixture, and suspension polymerization was performed. The obtained slurry-like reaction liquid was dehydrated and washed with a dehydrator and then dried to obtain a bead-shaped copolymer (1-A). With respect to the obtained copolymer (1-A), the molecular weight and the average branching degree were measured according to the following method. The results are shown in Table 1.
<重量平均分子量(Mw)および数平均分子量(Mn)>
得られた共重合体(1-A)を、テトラヒドロフラン(THF)溶媒に溶解させ、測定試料を作製した。ゲル浸透クロマトグラフィー(GPC)装置を用いて、測定試料の注入量を200μL、流量を1.0mL/分、測定温度を40℃として、溶出時間と強度とを測定した。GPC装置には、東ソー(株)製 HLC8220-GPC(カラムとして、東ソー(株)製「TSKgel GMHHR-H」2本を備え、RI検出器を内蔵している)を用いた。多角度レーザー光散乱検出器(Wyatt Technology製 DAWN HELEOS)により、測定試料の重量平均分子量(Mw)と数平均分子量(Mn)とを求めた。さらに、これらの値から分子量分布(Mw/Mn)を算出した。 <Weight average molecular weight (Mw) and number average molecular weight (Mn)>
The obtained copolymer (1-A) was dissolved in a tetrahydrofuran (THF) solvent to prepare a measurement sample. Using a gel permeation chromatography (GPC) apparatus, the elution time and strength were measured at an injection volume of the measurement sample of 200 μL, a flow rate of 1.0 mL / min, and a measurement temperature of 40 ° C. As the GPC apparatus, HLC8220-GPC manufactured by Tosoh Corporation (two “TSKgel GMHHR-H” manufactured by Tosoh Corporation as a column and equipped with an RI detector) was used. The weight average molecular weight (Mw) and number average molecular weight (Mn) of the measurement sample were determined by a multi-angle laser light scattering detector (DAWN HELEOS manufactured by Wyatt Technology). Furthermore, molecular weight distribution (Mw / Mn) was calculated from these values.
得られた共重合体(1-A)を、テトラヒドロフラン(THF)溶媒に溶解させ、測定試料を作製した。ゲル浸透クロマトグラフィー(GPC)装置を用いて、測定試料の注入量を200μL、流量を1.0mL/分、測定温度を40℃として、溶出時間と強度とを測定した。GPC装置には、東ソー(株)製 HLC8220-GPC(カラムとして、東ソー(株)製「TSKgel GMHHR-H」2本を備え、RI検出器を内蔵している)を用いた。多角度レーザー光散乱検出器(Wyatt Technology製 DAWN HELEOS)により、測定試料の重量平均分子量(Mw)と数平均分子量(Mn)とを求めた。さらに、これらの値から分子量分布(Mw/Mn)を算出した。 <Weight average molecular weight (Mw) and number average molecular weight (Mn)>
The obtained copolymer (1-A) was dissolved in a tetrahydrofuran (THF) solvent to prepare a measurement sample. Using a gel permeation chromatography (GPC) apparatus, the elution time and strength were measured at an injection volume of the measurement sample of 200 μL, a flow rate of 1.0 mL / min, and a measurement temperature of 40 ° C. As the GPC apparatus, HLC8220-GPC manufactured by Tosoh Corporation (two “TSKgel GMHHR-H” manufactured by Tosoh Corporation as a column and equipped with an RI detector) was used. The weight average molecular weight (Mw) and number average molecular weight (Mn) of the measurement sample were determined by a multi-angle laser light scattering detector (DAWN HELEOS manufactured by Wyatt Technology). Furthermore, molecular weight distribution (Mw / Mn) was calculated from these values.
<平均分岐度>
前記の多角度レーザー光散乱検出器を用いたゲル浸透クロマトグラフィーにより、共重合体(1-A)の平均二乗半径rと、同一の分子量における直鎖ポリメタクリル酸メチルの平均二乗半径r0とを求め、r/r0により算出した。この数値が小さいほど、高分子鎖一本あたりに分岐構造が多く導入されていることを示す。 <Average branching degree>
By gel permeation chromatography using the multi-angle laser light scattering detector, the mean square radius r of the copolymer (1-A) and the mean square radius r 0 of the linear polymethyl methacrylate having the same molecular weight are obtained. the demand was calculated by r / r 0. The smaller this value, the more branched structures are introduced per polymer chain.
前記の多角度レーザー光散乱検出器を用いたゲル浸透クロマトグラフィーにより、共重合体(1-A)の平均二乗半径rと、同一の分子量における直鎖ポリメタクリル酸メチルの平均二乗半径r0とを求め、r/r0により算出した。この数値が小さいほど、高分子鎖一本あたりに分岐構造が多く導入されていることを示す。 <Average branching degree>
By gel permeation chromatography using the multi-angle laser light scattering detector, the mean square radius r of the copolymer (1-A) and the mean square radius r 0 of the linear polymethyl methacrylate having the same molecular weight are obtained. the demand was calculated by r / r 0. The smaller this value, the more branched structures are introduced per polymer chain.
<マクロモノマーの重量平均分子量(Mw)および数平均分子量(Mn)>
マクロモノマーAA-6を、テトラヒドロフラン(THF)溶媒に溶解させ、測定試料を作製した。ゲル浸透クロマトグラフィー(GPC)装置を用いて、測定試料の注入量を20μL、流量を1.0mL/分、測定温度を40℃として、溶出時間と強度とを測定した。GPC装置には、東ソー(株)製 HLC8320-GPC(カラムとして、東ソー(株)製「TSKgel SuperMultipore HZ_M」2本と「TSKgel SuperHZ2500」1本を備える)を用いた。一方、この装置を用いて標準試料から検量線を作成した。上記で求めたマクロモノマーの溶出時間におよび強度から、前記検量線に基づいてマクロモノマーの重量平均分子量(Mw)と数平均分子量(Mn)とを求めた。なお、標準試料はポリメチルメタクリレート(PMMA)を用いた。さらに、これらの値から分子量分布(Mw/Mn)を算出した。マクロモノマーAA-6の重量平均分子量(Mw)は13600であり、数平均分子量(Mn)は7300であり、分子量分布(Mw/Mn)は1.9であり、数平均分子量(Mn)から求めたnは72であった。 <Weight average molecular weight (Mw) and number average molecular weight (Mn) of macromonomer>
Macromonomer AA-6 was dissolved in a tetrahydrofuran (THF) solvent to prepare a measurement sample. Using a gel permeation chromatography (GPC) apparatus, the elution time and strength were measured with an injection volume of the measurement sample of 20 μL, a flow rate of 1.0 mL / min, and a measurement temperature of 40 ° C. As the GPC apparatus, HLC8320-GPC manufactured by Tosoh Corporation (including two “TSKgel SuperMultipore HZ_M” and one “TSKgel SuperHZ2500” manufactured by Tosoh Corporation) were used. On the other hand, a calibration curve was prepared from a standard sample using this apparatus. Based on the elution time and strength of the macromonomer determined above, the weight average molecular weight (Mw) and number average molecular weight (Mn) of the macromonomer were determined based on the calibration curve. The standard sample used was polymethyl methacrylate (PMMA). Furthermore, molecular weight distribution (Mw / Mn) was calculated from these values. The weight average molecular weight (Mw) of the macromonomer AA-6 is 13600, the number average molecular weight (Mn) is 7300, the molecular weight distribution (Mw / Mn) is 1.9, and is obtained from the number average molecular weight (Mn). The n was 72.
マクロモノマーAA-6を、テトラヒドロフラン(THF)溶媒に溶解させ、測定試料を作製した。ゲル浸透クロマトグラフィー(GPC)装置を用いて、測定試料の注入量を20μL、流量を1.0mL/分、測定温度を40℃として、溶出時間と強度とを測定した。GPC装置には、東ソー(株)製 HLC8320-GPC(カラムとして、東ソー(株)製「TSKgel SuperMultipore HZ_M」2本と「TSKgel SuperHZ2500」1本を備える)を用いた。一方、この装置を用いて標準試料から検量線を作成した。上記で求めたマクロモノマーの溶出時間におよび強度から、前記検量線に基づいてマクロモノマーの重量平均分子量(Mw)と数平均分子量(Mn)とを求めた。なお、標準試料はポリメチルメタクリレート(PMMA)を用いた。さらに、これらの値から分子量分布(Mw/Mn)を算出した。マクロモノマーAA-6の重量平均分子量(Mw)は13600であり、数平均分子量(Mn)は7300であり、分子量分布(Mw/Mn)は1.9であり、数平均分子量(Mn)から求めたnは72であった。 <Weight average molecular weight (Mw) and number average molecular weight (Mn) of macromonomer>
Macromonomer AA-6 was dissolved in a tetrahydrofuran (THF) solvent to prepare a measurement sample. Using a gel permeation chromatography (GPC) apparatus, the elution time and strength were measured with an injection volume of the measurement sample of 20 μL, a flow rate of 1.0 mL / min, and a measurement temperature of 40 ° C. As the GPC apparatus, HLC8320-GPC manufactured by Tosoh Corporation (including two “TSKgel SuperMultipore HZ_M” and one “TSKgel SuperHZ2500” manufactured by Tosoh Corporation) were used. On the other hand, a calibration curve was prepared from a standard sample using this apparatus. Based on the elution time and strength of the macromonomer determined above, the weight average molecular weight (Mw) and number average molecular weight (Mn) of the macromonomer were determined based on the calibration curve. The standard sample used was polymethyl methacrylate (PMMA). Furthermore, molecular weight distribution (Mw / Mn) was calculated from these values. The weight average molecular weight (Mw) of the macromonomer AA-6 is 13600, the number average molecular weight (Mn) is 7300, the molecular weight distribution (Mw / Mn) is 1.9, and is obtained from the number average molecular weight (Mn). The n was 72.
<合成例2~10>
表1に示す組成に従い、合成例1と同様の手順で共重合体(1-B)~(1-J)を調製した。なお、合成例3~6では、単量体成分100質量部に対して150質量部の懸濁重合水相を添加した。合成例3および4では、マクロモノマー(AA-6)に代えて、メタクリル酸メチル重合体の末端にメタクリロイルオキシ基が付加された構造のマクロモノマー(Mw=20500、Mn=10000、Mw/Mn=2.0、Mnから求めたn=100)を、合成例5および6では、メタクリル酸メチル重合体の末端にメタクリロイルオキシ基が付加された構造のマクロモノマー(Mw=37300、Mn=19100、Mw/Mn=1.9、Mnから求めたn=190)をそれぞれ用いた。また、合成例7および合成例8では、マクロモノマー(AA-6)に代えてマクロモノマー(AS-6:スチレン重合体の末端にメタクリロイルオキシ基が付加された化合物、東亞合成(株)製)を用いた。マクロモノマー(AS-6)の重量平均分子量(Mw)は13700であり、数平均分子量(Mn)は7000であり、分子量分布(Mw/Mn)は2.0であり、Mnから求めたmは65であった。合成例3~合成例8で用いたマクロモノマーの重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)は、合成例1においてマクロモノマー(AA-6)について測定し、算出したのと同様の方法で測定し算出した。得られた共重合体の分子量および平均分岐度を表1に示す。 <Synthesis Examples 2 to 10>
According to the composition shown in Table 1, copolymers (1-B) to (1-J) were prepared in the same procedure as in Synthesis Example 1. In Synthesis Examples 3 to 6, 150 parts by mass of the suspension polymerization aqueous phase was added to 100 parts by mass of the monomer component. In Synthesis Examples 3 and 4, instead of the macromonomer (AA-6), a macromonomer having a structure in which a methacryloyloxy group is added to the end of the methyl methacrylate polymer (Mw = 20500, Mn = 10000, Mw / Mn = 2.0, n = 100 determined from Mn) in Synthesis Examples 5 and 6, a macromonomer having a structure in which a methacryloyloxy group was added to the end of the methyl methacrylate polymer (Mw = 37300, Mn = 19100, Mw). /Mn=1.9 and n = 190 determined from Mn were used. In Synthesis Example 7 and Synthesis Example 8, instead of the macromonomer (AA-6), a macromonomer (AS-6: a compound in which a methacryloyloxy group is added to the end of a styrene polymer, manufactured by Toagosei Co., Ltd.) Was used. The weight average molecular weight (Mw) of the macromonomer (AS-6) is 13700, the number average molecular weight (Mn) is 7000, the molecular weight distribution (Mw / Mn) is 2.0, and m obtained from Mn is 65. The weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) of the macromonomer used in Synthesis Example 3 to Synthesis Example 8 were measured for the macromonomer (AA-6) in Synthesis Example 1. Measured and calculated in the same manner as calculated. Table 1 shows the molecular weight and average branching degree of the obtained copolymer.
表1に示す組成に従い、合成例1と同様の手順で共重合体(1-B)~(1-J)を調製した。なお、合成例3~6では、単量体成分100質量部に対して150質量部の懸濁重合水相を添加した。合成例3および4では、マクロモノマー(AA-6)に代えて、メタクリル酸メチル重合体の末端にメタクリロイルオキシ基が付加された構造のマクロモノマー(Mw=20500、Mn=10000、Mw/Mn=2.0、Mnから求めたn=100)を、合成例5および6では、メタクリル酸メチル重合体の末端にメタクリロイルオキシ基が付加された構造のマクロモノマー(Mw=37300、Mn=19100、Mw/Mn=1.9、Mnから求めたn=190)をそれぞれ用いた。また、合成例7および合成例8では、マクロモノマー(AA-6)に代えてマクロモノマー(AS-6:スチレン重合体の末端にメタクリロイルオキシ基が付加された化合物、東亞合成(株)製)を用いた。マクロモノマー(AS-6)の重量平均分子量(Mw)は13700であり、数平均分子量(Mn)は7000であり、分子量分布(Mw/Mn)は2.0であり、Mnから求めたmは65であった。合成例3~合成例8で用いたマクロモノマーの重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)は、合成例1においてマクロモノマー(AA-6)について測定し、算出したのと同様の方法で測定し算出した。得られた共重合体の分子量および平均分岐度を表1に示す。 <Synthesis Examples 2 to 10>
According to the composition shown in Table 1, copolymers (1-B) to (1-J) were prepared in the same procedure as in Synthesis Example 1. In Synthesis Examples 3 to 6, 150 parts by mass of the suspension polymerization aqueous phase was added to 100 parts by mass of the monomer component. In Synthesis Examples 3 and 4, instead of the macromonomer (AA-6), a macromonomer having a structure in which a methacryloyloxy group is added to the end of the methyl methacrylate polymer (Mw = 20500, Mn = 10000, Mw / Mn = 2.0, n = 100 determined from Mn) in Synthesis Examples 5 and 6, a macromonomer having a structure in which a methacryloyloxy group was added to the end of the methyl methacrylate polymer (Mw = 37300, Mn = 19100, Mw). /Mn=1.9 and n = 190 determined from Mn were used. In Synthesis Example 7 and Synthesis Example 8, instead of the macromonomer (AA-6), a macromonomer (AS-6: a compound in which a methacryloyloxy group is added to the end of a styrene polymer, manufactured by Toagosei Co., Ltd.) Was used. The weight average molecular weight (Mw) of the macromonomer (AS-6) is 13700, the number average molecular weight (Mn) is 7000, the molecular weight distribution (Mw / Mn) is 2.0, and m obtained from Mn is 65. The weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) of the macromonomer used in Synthesis Example 3 to Synthesis Example 8 were measured for the macromonomer (AA-6) in Synthesis Example 1. Measured and calculated in the same manner as calculated. Table 1 shows the molecular weight and average branching degree of the obtained copolymer.
<合成例11>
表1に示す組成に従い、合成例1と同様の手順で、マクロモノマー由来の構造単位を含まないビーズ状のアクリル樹脂を得た。得られたアクリル樹脂の分子量を表1に示す。 <Synthesis Example 11>
According to the composition shown in Table 1, a bead-like acrylic resin not containing a macromonomer-derived structural unit was obtained in the same procedure as in Synthesis Example 1. Table 1 shows the molecular weight of the obtained acrylic resin.
表1に示す組成に従い、合成例1と同様の手順で、マクロモノマー由来の構造単位を含まないビーズ状のアクリル樹脂を得た。得られたアクリル樹脂の分子量を表1に示す。 <Synthesis Example 11>
According to the composition shown in Table 1, a bead-like acrylic resin not containing a macromonomer-derived structural unit was obtained in the same procedure as in Synthesis Example 1. Table 1 shows the molecular weight of the obtained acrylic resin.
2.アクリル樹脂組成物およびアクリル樹脂フィルムの調製
以下の実施例および比較例においては、共重合体(1)として、前記合成例1~10で調製した共重合体(1-A)~(1-J)または合成例11で調製したアクリル樹脂を用い、重合体(2)として、メタクリル酸メチル由来の構造単位を90質量%以上含むメタクリル酸メチル系樹脂〔以下、「アクリル樹脂(2)」と称する:アクリル樹脂(2)中の構造単位(1a)の量は0質量%である〕を用いた。なお、アクリル樹脂(2)の重量平均分子量(Mw)は102600であり、数平均分子量(Mn)は54700であり、分子量分布(Mw/Mn)は1.9であった。また、ゴム弾性体粒子としては以下のものを用いた。 2. Preparation of Acrylic Resin Composition and Acrylic Resin Film In the following examples and comparative examples, copolymers (1-A) to (1-J) prepared in Synthesis Examples 1 to 10 were used as copolymers (1). ) Or the acrylic resin prepared in Synthesis Example 11, and the polymer (2) is a methyl methacrylate resin containing 90% by mass or more of a structural unit derived from methyl methacrylate [hereinafter referred to as “acrylic resin (2)”. The amount of the structural unit (1a) in the acrylic resin (2) is 0% by mass]. The acrylic resin (2) had a weight average molecular weight (Mw) of 102600, a number average molecular weight (Mn) of 54700, and a molecular weight distribution (Mw / Mn) of 1.9. The following rubber elastic particles were used.
以下の実施例および比較例においては、共重合体(1)として、前記合成例1~10で調製した共重合体(1-A)~(1-J)または合成例11で調製したアクリル樹脂を用い、重合体(2)として、メタクリル酸メチル由来の構造単位を90質量%以上含むメタクリル酸メチル系樹脂〔以下、「アクリル樹脂(2)」と称する:アクリル樹脂(2)中の構造単位(1a)の量は0質量%である〕を用いた。なお、アクリル樹脂(2)の重量平均分子量(Mw)は102600であり、数平均分子量(Mn)は54700であり、分子量分布(Mw/Mn)は1.9であった。また、ゴム弾性体粒子としては以下のものを用いた。 2. Preparation of Acrylic Resin Composition and Acrylic Resin Film In the following examples and comparative examples, copolymers (1-A) to (1-J) prepared in Synthesis Examples 1 to 10 were used as copolymers (1). ) Or the acrylic resin prepared in Synthesis Example 11, and the polymer (2) is a methyl methacrylate resin containing 90% by mass or more of a structural unit derived from methyl methacrylate [hereinafter referred to as “acrylic resin (2)”. The amount of the structural unit (1a) in the acrylic resin (2) is 0% by mass]. The acrylic resin (2) had a weight average molecular weight (Mw) of 102600, a number average molecular weight (Mn) of 54700, and a molecular weight distribution (Mw / Mn) of 1.9. The following rubber elastic particles were used.
<ゴム弾性体粒子>
ゴム弾性体粒子として、最内層がメタクリル酸メチル93.8質量%、アクリル酸メチル6.0質量%およびメタクリル酸アリル0.2質量%とからなる単量体混合物の重合により得られた硬質重合体であり、中間層がアクリル酸ブチル81質量%、スチレン17質量%およびメタクリル酸アリル2質量%とからなる単量体混合物の重合により得られた弾性重合体であり、最外層がメタクリル酸メチル94質量%およびアクリル酸メチル6質量%とからなる単量体混合物の重合により得られた硬質重合体であり、前記最内層/中間層/最外層の質量割合が35/45/20であり、中間層の弾性重合体の層の平均粒子径が0.22μmである、乳化重合法によって得られた球形3層構造のゴム弾性体粒子を用いた。 <Rubber elastic particles>
Hard rubber obtained by polymerization of a monomer mixture consisting of 93.8% by weight of methyl methacrylate, 6.0% by weight of methyl acrylate, and 0.2% by weight of allyl methacrylate as the rubber elastic particles. And an intermediate layer is an elastic polymer obtained by polymerization of a monomer mixture comprising 81% by mass of butyl acrylate, 17% by mass of styrene and 2% by mass of allyl methacrylate, and the outermost layer is methyl methacrylate. A hard polymer obtained by polymerization of a monomer mixture consisting of 94% by mass and 6% by mass of methyl acrylate, wherein the mass ratio of the innermost layer / intermediate layer / outermost layer is 35/45/20, Rubber elastic particles having a spherical three-layer structure obtained by an emulsion polymerization method in which the average particle diameter of the elastic polymer layer of the intermediate layer was 0.22 μm were used.
ゴム弾性体粒子として、最内層がメタクリル酸メチル93.8質量%、アクリル酸メチル6.0質量%およびメタクリル酸アリル0.2質量%とからなる単量体混合物の重合により得られた硬質重合体であり、中間層がアクリル酸ブチル81質量%、スチレン17質量%およびメタクリル酸アリル2質量%とからなる単量体混合物の重合により得られた弾性重合体であり、最外層がメタクリル酸メチル94質量%およびアクリル酸メチル6質量%とからなる単量体混合物の重合により得られた硬質重合体であり、前記最内層/中間層/最外層の質量割合が35/45/20であり、中間層の弾性重合体の層の平均粒子径が0.22μmである、乳化重合法によって得られた球形3層構造のゴム弾性体粒子を用いた。 <Rubber elastic particles>
Hard rubber obtained by polymerization of a monomer mixture consisting of 93.8% by weight of methyl methacrylate, 6.0% by weight of methyl acrylate, and 0.2% by weight of allyl methacrylate as the rubber elastic particles. And an intermediate layer is an elastic polymer obtained by polymerization of a monomer mixture comprising 81% by mass of butyl acrylate, 17% by mass of styrene and 2% by mass of allyl methacrylate, and the outermost layer is methyl methacrylate. A hard polymer obtained by polymerization of a monomer mixture consisting of 94% by mass and 6% by mass of methyl acrylate, wherein the mass ratio of the innermost layer / intermediate layer / outermost layer is 35/45/20, Rubber elastic particles having a spherical three-layer structure obtained by an emulsion polymerization method in which the average particle diameter of the elastic polymer layer of the intermediate layer was 0.22 μm were used.
ゴム弾性体粒子の平均粒子径は、ゴム弾性体粒子を前記アクリル樹脂組成物と混合してフィルム化し、その断面において酸化ルテニウムにより弾性重合体(中間層)を染色し、電子顕微鏡で観察して、染色された部分の直径から求めた。
The average particle diameter of the rubber elastic particles is obtained by mixing the rubber elastic particles with the acrylic resin composition into a film, staining the elastic polymer (intermediate layer) with ruthenium oxide in the cross section, and observing with an electron microscope. It was determined from the diameter of the stained part.
<実施例1:アクリル樹脂組成物の調製およびプレスフィルム作製>
共重合体(1-A)5質量部とアクリル樹脂(2)95質量部とを混合し、押出機を用いて溶融混練してペレット化した。その後、前記ペレットを圧縮成形機で成形し、80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。プレス処理には、210℃のプレス機(神藤金属工業所製、NSF-100型単動圧縮成形機)を用いた。まず、予熱として5分間加熱し、次いで、約2MPaの圧力下で3分間保持した。その後、約13MPaの圧力下で1分間保持した。さらに、成形したフィルムを鉄板で挟んだ状態のままプレス機から取り出し、冷却盤上で5分間冷却してプレスフィルムを得た。 <Example 1: Preparation of acrylic resin composition and production of press film>
5 parts by mass of copolymer (1-A) and 95 parts by mass of acrylic resin (2) were mixed and melt-kneaded using an extruder to form pellets. Then, the said pellet was shape | molded with the compression molding machine, and produced the press film of 80 mm x 80 mm square and thickness 300 micrometers. For the press treatment, a 210 ° C. press (manufactured by Shin-Fuji Metal Industry Co., Ltd., NSF-100 type single acting compression molding machine) was used. First, it was heated for 5 minutes as preheating, and then held for 3 minutes under a pressure of about 2 MPa. Thereafter, it was held for 1 minute under a pressure of about 13 MPa. Further, the molded film was taken out from the press while being sandwiched between iron plates, and cooled on a cooling plate for 5 minutes to obtain a press film.
共重合体(1-A)5質量部とアクリル樹脂(2)95質量部とを混合し、押出機を用いて溶融混練してペレット化した。その後、前記ペレットを圧縮成形機で成形し、80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。プレス処理には、210℃のプレス機(神藤金属工業所製、NSF-100型単動圧縮成形機)を用いた。まず、予熱として5分間加熱し、次いで、約2MPaの圧力下で3分間保持した。その後、約13MPaの圧力下で1分間保持した。さらに、成形したフィルムを鉄板で挟んだ状態のままプレス機から取り出し、冷却盤上で5分間冷却してプレスフィルムを得た。 <Example 1: Preparation of acrylic resin composition and production of press film>
5 parts by mass of copolymer (1-A) and 95 parts by mass of acrylic resin (2) were mixed and melt-kneaded using an extruder to form pellets. Then, the said pellet was shape | molded with the compression molding machine, and produced the press film of 80 mm x 80 mm square and thickness 300 micrometers. For the press treatment, a 210 ° C. press (manufactured by Shin-Fuji Metal Industry Co., Ltd., NSF-100 type single acting compression molding machine) was used. First, it was heated for 5 minutes as preheating, and then held for 3 minutes under a pressure of about 2 MPa. Thereafter, it was held for 1 minute under a pressure of about 13 MPa. Further, the molded film was taken out from the press while being sandwiched between iron plates, and cooled on a cooling plate for 5 minutes to obtain a press film.
<実施例2~14:アクリル樹脂組成物の調製およびプレスフィルム作製>
表2に示す組成に従い、共重合体(1-A)~(1-H)とアクリル樹脂(2)とを混合し、実施例1と同様にして、ペレット状のアクリル樹脂組成物を調製し、次いで80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Examples 2 to 14: Preparation of acrylic resin composition and production of press film>
According to the composition shown in Table 2, the copolymers (1-A) to (1-H) and the acrylic resin (2) were mixed, and a pellet-shaped acrylic resin composition was prepared in the same manner as in Example 1. Then, a press film of 80 mm × 80 mm square and a thickness of 300 μm was produced.
表2に示す組成に従い、共重合体(1-A)~(1-H)とアクリル樹脂(2)とを混合し、実施例1と同様にして、ペレット状のアクリル樹脂組成物を調製し、次いで80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Examples 2 to 14: Preparation of acrylic resin composition and production of press film>
According to the composition shown in Table 2, the copolymers (1-A) to (1-H) and the acrylic resin (2) were mixed, and a pellet-shaped acrylic resin composition was prepared in the same manner as in Example 1. Then, a press film of 80 mm × 80 mm square and a thickness of 300 μm was produced.
<実施例15および16:アクリル樹脂組成物の調製およびプレスフィルム作製>
表3に示す組成に従い、共重合体(1-I)または共重合体(1-J)15質量部と、アクリル樹脂(2)85質量部、および共重合体(1-I)または共重合体(1-J)とアクリル樹脂(2)の合計100質量部に対してゴム弾性体粒子11.7質量部を混合し、押出機を用いて溶融混練してペレット化した。その後、実施例1と同様にして圧縮成形機で成形し、80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Examples 15 and 16: Preparation of acrylic resin composition and production of press film>
According to the composition shown in Table 3, 15 parts by mass of copolymer (1-I) or copolymer (1-J), 85 parts by mass of acrylic resin (2), and copolymer (1-I) or copolymer 11.7 parts by mass of rubber elastic material particles were mixed with 100 parts by mass of the combined (1-J) and acrylic resin (2), and melt-kneaded using an extruder to form pellets. Then, it shape | molded with the compression molding machine like Example 1, and produced the press film of 80 mm x 80 mm square and thickness 300 micrometers.
表3に示す組成に従い、共重合体(1-I)または共重合体(1-J)15質量部と、アクリル樹脂(2)85質量部、および共重合体(1-I)または共重合体(1-J)とアクリル樹脂(2)の合計100質量部に対してゴム弾性体粒子11.7質量部を混合し、押出機を用いて溶融混練してペレット化した。その後、実施例1と同様にして圧縮成形機で成形し、80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Examples 15 and 16: Preparation of acrylic resin composition and production of press film>
According to the composition shown in Table 3, 15 parts by mass of copolymer (1-I) or copolymer (1-J), 85 parts by mass of acrylic resin (2), and copolymer (1-I) or copolymer 11.7 parts by mass of rubber elastic material particles were mixed with 100 parts by mass of the combined (1-J) and acrylic resin (2), and melt-kneaded using an extruder to form pellets. Then, it shape | molded with the compression molding machine like Example 1, and produced the press film of 80 mm x 80 mm square and thickness 300 micrometers.
<比較例1:プレスフィルム作製>
ペレット状のアクリル樹脂(2)から、実施例1と同様にして80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Comparative Example 1: Production of press film>
A 80 mm × 80 mm square, 300 μm-thick press film was produced from the pellet-shaped acrylic resin (2) in the same manner as in Example 1.
ペレット状のアクリル樹脂(2)から、実施例1と同様にして80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Comparative Example 1: Production of press film>
A 80 mm × 80 mm square, 300 μm-thick press film was produced from the pellet-shaped acrylic resin (2) in the same manner as in Example 1.
<比較例2~4:アクリル樹脂組成物の調製とプレスフィルム作製>
ビーズ状の共重合体(1-A)、共重合体(1-B)または共重合体(1-G)を押出機によりペレット化した後、実施例1と同様にして圧縮成形機で成形し、80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Comparative Examples 2 to 4: Preparation of acrylic resin composition and production of press film>
The bead-like copolymer (1-A), copolymer (1-B) or copolymer (1-G) is pelletized with an extruder and then molded with a compression molding machine in the same manner as in Example 1. Then, a press film of 80 mm × 80 mm square and a thickness of 300 μm was produced.
ビーズ状の共重合体(1-A)、共重合体(1-B)または共重合体(1-G)を押出機によりペレット化した後、実施例1と同様にして圧縮成形機で成形し、80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Comparative Examples 2 to 4: Preparation of acrylic resin composition and production of press film>
The bead-like copolymer (1-A), copolymer (1-B) or copolymer (1-G) is pelletized with an extruder and then molded with a compression molding machine in the same manner as in Example 1. Then, a press film of 80 mm × 80 mm square and a thickness of 300 μm was produced.
<比較例5および6:アクリル樹脂組成物の調製とプレスフィルムの作製>
合成例11で合成したアクリル樹脂とアクリル樹脂(2)とを表2に示す組成に従い混合し、押出機を用いて溶融混練してペレット化した。その後、実施例1と同様にして圧縮成形機で成形し、80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Comparative Examples 5 and 6: Preparation of acrylic resin composition and production of press film>
The acrylic resin synthesized in Synthesis Example 11 and the acrylic resin (2) were mixed according to the composition shown in Table 2, and melt-kneaded using an extruder to be pelletized. Then, it shape | molded with the compression molding machine like Example 1, and produced the press film of 80 mm x 80 mm square and thickness 300 micrometers.
合成例11で合成したアクリル樹脂とアクリル樹脂(2)とを表2に示す組成に従い混合し、押出機を用いて溶融混練してペレット化した。その後、実施例1と同様にして圧縮成形機で成形し、80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Comparative Examples 5 and 6: Preparation of acrylic resin composition and production of press film>
The acrylic resin synthesized in Synthesis Example 11 and the acrylic resin (2) were mixed according to the composition shown in Table 2, and melt-kneaded using an extruder to be pelletized. Then, it shape | molded with the compression molding machine like Example 1, and produced the press film of 80 mm x 80 mm square and thickness 300 micrometers.
<比較例7:プレスフィルムの作製>
合成例11で合成したビーズ状のアクリル樹脂を押出機によりペレット化した。その後、実施例1と同様にして圧縮成形機で成形し、80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Comparative Example 7: Production of press film>
The bead-shaped acrylic resin synthesized in Synthesis Example 11 was pelletized with an extruder. Then, it shape | molded with the compression molding machine like Example 1, and produced the press film of 80 mm x 80 mm square and thickness 300 micrometers.
合成例11で合成したビーズ状のアクリル樹脂を押出機によりペレット化した。その後、実施例1と同様にして圧縮成形機で成形し、80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Comparative Example 7: Production of press film>
The bead-shaped acrylic resin synthesized in Synthesis Example 11 was pelletized with an extruder. Then, it shape | molded with the compression molding machine like Example 1, and produced the press film of 80 mm x 80 mm square and thickness 300 micrometers.
<比較例8:アクリル樹脂組成物の調製とプレスフィルム作製>
アクリル樹脂(2)100質量部に対し、ゴム弾性体粒子11.7質量部を混合し、押出機により溶融混練してペレット化した。その後、実施例1と同様にして圧縮成形機で成形し、80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Comparative Example 8: Preparation of acrylic resin composition and production of press film>
11.7 parts by mass of rubber elastic particles were mixed with 100 parts by mass of the acrylic resin (2), and the mixture was melt-kneaded by an extruder and pelletized. Then, it shape | molded with the compression molding machine like Example 1, and produced the press film of 80 mm x 80 mm square and thickness 300 micrometers.
アクリル樹脂(2)100質量部に対し、ゴム弾性体粒子11.7質量部を混合し、押出機により溶融混練してペレット化した。その後、実施例1と同様にして圧縮成形機で成形し、80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Comparative Example 8: Preparation of acrylic resin composition and production of press film>
11.7 parts by mass of rubber elastic particles were mixed with 100 parts by mass of the acrylic resin (2), and the mixture was melt-kneaded by an extruder and pelletized. Then, it shape | molded with the compression molding machine like Example 1, and produced the press film of 80 mm x 80 mm square and thickness 300 micrometers.
実施例1~16および比較例1~8において調製されたプレスフィルムのシャルピー衝撃強度および80℃弾性率を下記方法に従い測定した。
The Charpy impact strength and 80 ° C. elastic modulus of the press films prepared in Examples 1 to 16 and Comparative Examples 1 to 8 were measured according to the following methods.
<シャルピー衝撃試験>
JIS K7111-1に規定される方法に従い、得られたプレスフィルムサンプルを、縦方向80mm、横方向10mmの長方形に切り出し、両短辺(10mm)を固定した状態でシャルピー衝撃強度を測定し、プレスフィルムの耐衝撃性を評価した。結果を表2および3に示す。なお、表2における衝撃強度における値は、比較例1(アクリル樹脂(2)のみで構成されたアクリル樹脂組成物)のプレスフィルムのシャルピー衝撃強度の値を100%とした場合の相対値(%)であり、表3における衝撃強度における値は、比較例8(アクリル樹脂(2)およびゴム弾性体粒子のみで構成されたアクリル樹脂組成物)のプレスフィルムのシャルピー衝撃強度の値を100%とした場合の相対値(%)であり、それぞれ「相対シャルピー衝撃強度(%)」と記した。この相対シャルピー衝撃強度(%)の値が100以上であれば、高い耐衝撃性を有すると判断した。 <Charpy impact test>
In accordance with the method defined in JIS K7111-1, the obtained press film sample was cut into a rectangle with a length of 80 mm and a width of 10 mm, and Charpy impact strength was measured with both short sides (10 mm) fixed, and the press The impact resistance of the film was evaluated. The results are shown in Tables 2 and 3. In Table 2, the impact strength values are relative values (%) when the Charpy impact strength value of the press film of Comparative Example 1 (acrylic resin composition composed only of acrylic resin (2)) is 100%. The value of the impact strength in Table 3 is 100% of the Charpy impact strength value of the press film of Comparative Example 8 (acrylic resin composition comprising only acrylic resin (2) and rubber elastic particles). Relative value (%) in the case of the above, each indicated as “relative Charpy impact strength (%)”. If the value of the relative Charpy impact strength (%) was 100 or more, it was judged that the impact resistance was high.
JIS K7111-1に規定される方法に従い、得られたプレスフィルムサンプルを、縦方向80mm、横方向10mmの長方形に切り出し、両短辺(10mm)を固定した状態でシャルピー衝撃強度を測定し、プレスフィルムの耐衝撃性を評価した。結果を表2および3に示す。なお、表2における衝撃強度における値は、比較例1(アクリル樹脂(2)のみで構成されたアクリル樹脂組成物)のプレスフィルムのシャルピー衝撃強度の値を100%とした場合の相対値(%)であり、表3における衝撃強度における値は、比較例8(アクリル樹脂(2)およびゴム弾性体粒子のみで構成されたアクリル樹脂組成物)のプレスフィルムのシャルピー衝撃強度の値を100%とした場合の相対値(%)であり、それぞれ「相対シャルピー衝撃強度(%)」と記した。この相対シャルピー衝撃強度(%)の値が100以上であれば、高い耐衝撃性を有すると判断した。 <Charpy impact test>
In accordance with the method defined in JIS K7111-1, the obtained press film sample was cut into a rectangle with a length of 80 mm and a width of 10 mm, and Charpy impact strength was measured with both short sides (10 mm) fixed, and the press The impact resistance of the film was evaluated. The results are shown in Tables 2 and 3. In Table 2, the impact strength values are relative values (%) when the Charpy impact strength value of the press film of Comparative Example 1 (acrylic resin composition composed only of acrylic resin (2)) is 100%. The value of the impact strength in Table 3 is 100% of the Charpy impact strength value of the press film of Comparative Example 8 (acrylic resin composition comprising only acrylic resin (2) and rubber elastic particles). Relative value (%) in the case of the above, each indicated as “relative Charpy impact strength (%)”. If the value of the relative Charpy impact strength (%) was 100 or more, it was judged that the impact resistance was high.
<80℃弾性率測定>
実施例および比較例の各プレスフィルムを縦方向80mm、横方向25mmの長方形に切り出し、80℃で、チャック間距離を50mmとして縦方向に引張速度1mm/分で引張試験を行った。引張強度が1MPaから3MPaとなる領域での応力-歪み曲線の傾きから、80℃引張弾性率を算出した。結果を表2および3に示す。なお、表2における80℃弾性率における値は、比較例1(アクリル樹脂(2)のみで構成されたアクリル樹脂組成物)のプレスフィルムの80℃弾性率の値を100%とした場合の相対値(%)であり、表3における80℃弾性率における値は、比較例8(アクリル樹脂(2)およびゴム弾性体粒子のみで構成されたアクリル樹脂組成物)のプレスフィルムの80℃弾性率の値を100(%)とした場合の相対値(%)であり、それぞれ「相対80℃弾性率(%)」と記した。この相対80℃弾性率(%)の値が96以上であれば、弾性率の低下がない/優れた弾性率を有すると判断した。 <80 ° C elastic modulus measurement>
Each press film of the example and the comparative example was cut into a rectangle of 80 mm in the vertical direction and 25 mm in the horizontal direction, and a tensile test was performed at 80 ° C. with a distance between chucks of 50 mm and a tensile speed of 1 mm / min in the vertical direction. The tensile elastic modulus at 80 ° C. was calculated from the slope of the stress-strain curve in the region where the tensile strength was from 1 MPa to 3 MPa. The results are shown in Tables 2 and 3. In addition, the value in 80 degreeC elasticity modulus in Table 2 is relative when the value of 80 degreeC elasticity modulus of the press film of the comparative example 1 (acrylic resin composition comprised only with acrylic resin (2)) is set to 100%. The value at 80 ° C. elastic modulus in Table 3 is the 80 ° C. elastic modulus of the press film of Comparative Example 8 (acrylic resin composition composed only of acrylic resin (2) and rubber elastic particles). Are relative values (%) when the value of 100 is 100 (%), and each is described as “relative 80 ° C. elastic modulus (%)”. If the value of the relative 80 ° C. elastic modulus (%) was 96 or more, it was judged that there was no decrease in elastic modulus / excellent elastic modulus.
実施例および比較例の各プレスフィルムを縦方向80mm、横方向25mmの長方形に切り出し、80℃で、チャック間距離を50mmとして縦方向に引張速度1mm/分で引張試験を行った。引張強度が1MPaから3MPaとなる領域での応力-歪み曲線の傾きから、80℃引張弾性率を算出した。結果を表2および3に示す。なお、表2における80℃弾性率における値は、比較例1(アクリル樹脂(2)のみで構成されたアクリル樹脂組成物)のプレスフィルムの80℃弾性率の値を100%とした場合の相対値(%)であり、表3における80℃弾性率における値は、比較例8(アクリル樹脂(2)およびゴム弾性体粒子のみで構成されたアクリル樹脂組成物)のプレスフィルムの80℃弾性率の値を100(%)とした場合の相対値(%)であり、それぞれ「相対80℃弾性率(%)」と記した。この相対80℃弾性率(%)の値が96以上であれば、弾性率の低下がない/優れた弾性率を有すると判断した。 <80 ° C elastic modulus measurement>
Each press film of the example and the comparative example was cut into a rectangle of 80 mm in the vertical direction and 25 mm in the horizontal direction, and a tensile test was performed at 80 ° C. with a distance between chucks of 50 mm and a tensile speed of 1 mm / min in the vertical direction. The tensile elastic modulus at 80 ° C. was calculated from the slope of the stress-strain curve in the region where the tensile strength was from 1 MPa to 3 MPa. The results are shown in Tables 2 and 3. In addition, the value in 80 degreeC elasticity modulus in Table 2 is relative when the value of 80 degreeC elasticity modulus of the press film of the comparative example 1 (acrylic resin composition comprised only with acrylic resin (2)) is set to 100%. The value at 80 ° C. elastic modulus in Table 3 is the 80 ° C. elastic modulus of the press film of Comparative Example 8 (acrylic resin composition composed only of acrylic resin (2) and rubber elastic particles). Are relative values (%) when the value of 100 is 100 (%), and each is described as “relative 80 ° C. elastic modulus (%)”. If the value of the relative 80 ° C. elastic modulus (%) was 96 or more, it was judged that there was no decrease in elastic modulus / excellent elastic modulus.
表2に示すとおり、共重合体に含まれる全構造単位に対して、5~70質量%の式(1a)で示される構造単位と、30~95質量%の式(1b)で示される構造単位とを含む共重合体(1)と、式(2a)で示される構造単位を含む重合体(2)とを含み、共重合体(1)と重合体(2)の合計100質量部に対して共重合体(1)が1~90質量部、重合体(2)が10~99質量部であるアクリル樹脂組成物から構成されるフィルムでは、弾性率が低下することなく、耐衝撃性が向上した(実施例1~14)。一方、共重合体(1)および重合体(2)の含有量が前記範囲にない場合には十分な耐衝撃性が得られなかったり、80℃弾性率が著しく低下したりした(比較例2~7)。
また、ゴム弾性体を添加することにより、耐衝撃性がより高くなることが確認された(実施例15および16)。 As shown in Table 2, 5 to 70% by mass of the structural unit represented by the formula (1a) and 30 to 95% by mass of the structure represented by the formula (1b) with respect to all the structural units contained in the copolymer. The copolymer (1) containing the unit and the polymer (2) containing the structural unit represented by the formula (2a), and the total amount of the copolymer (1) and the polymer (2) is 100 parts by mass. On the other hand, a film composed of an acrylic resin composition having 1 to 90 parts by mass of the copolymer (1) and 10 to 99 parts by mass of the polymer (2) does not decrease the elastic modulus and has impact resistance. (Examples 1 to 14) were improved. On the other hand, when the contents of the copolymer (1) and the polymer (2) are not within the above ranges, sufficient impact resistance cannot be obtained, or the 80 ° C. elastic modulus is remarkably reduced (Comparative Example 2). ~ 7).
Moreover, it was confirmed that the impact resistance is further increased by adding a rubber elastic body (Examples 15 and 16).
また、ゴム弾性体を添加することにより、耐衝撃性がより高くなることが確認された(実施例15および16)。 As shown in Table 2, 5 to 70% by mass of the structural unit represented by the formula (1a) and 30 to 95% by mass of the structure represented by the formula (1b) with respect to all the structural units contained in the copolymer. The copolymer (1) containing the unit and the polymer (2) containing the structural unit represented by the formula (2a), and the total amount of the copolymer (1) and the polymer (2) is 100 parts by mass. On the other hand, a film composed of an acrylic resin composition having 1 to 90 parts by mass of the copolymer (1) and 10 to 99 parts by mass of the polymer (2) does not decrease the elastic modulus and has impact resistance. (Examples 1 to 14) were improved. On the other hand, when the contents of the copolymer (1) and the polymer (2) are not within the above ranges, sufficient impact resistance cannot be obtained, or the 80 ° C. elastic modulus is remarkably reduced (Comparative Example 2). ~ 7).
Moreover, it was confirmed that the impact resistance is further increased by adding a rubber elastic body (Examples 15 and 16).
<合成例12~14>
表4に示す組成に従い、合成例1と同様の手順でビーズ状の共重合体(1-K)~(1-M)を調製した。合成例12では、マクロモノマー(AA-6)に代えて、メタクリル酸メチル重合体の末端にメタクリロイルオキシ基が付加された構造のマクロモノマー(Mw=22300、Mn=11000、Mw/Mn=2.0、Mnから求めたn=110)を、合成例13では、メタクリル酸メチル重合体の末端にメタクリロイルオキシ基が付加された構造のマクロモノマー(Mw=41500、Mn=20100、Mw/Mn=2.1、Mnから求めたn=200)を、合成例14では、メタクリル酸メチル重合体の末端にメタクリロイルオキシ基が付加された構造のマクロモノマー(Mw=55900、Mn=24300、Mw/Mn=2.3、Mnから求めたn=241)をそれぞれ用いた。合成例12~合成例14で用いたマクロモノマーの重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)は、合成例1においてマクロモノマー(AA-6)について測定し、算出したのと同様の方法で測定し算出した。得られた共重合体の分子量および平均分岐度を表4に示す。 <Synthesis Examples 12 to 14>
According to the composition shown in Table 4, bead-like copolymers (1-K) to (1-M) were prepared in the same procedure as in Synthesis Example 1. In Synthesis Example 12, instead of the macromonomer (AA-6), a macromonomer having a structure in which a methacryloyloxy group is added to the terminal of the methyl methacrylate polymer (Mw = 22300, Mn = 11000, Mw / Mn = 2. 0, n = 110 determined from Mn, in Synthesis Example 13, a macromonomer having a structure in which a methacryloyloxy group was added to the end of a methyl methacrylate polymer (Mw = 41500, Mn = 20100, Mw / Mn = 2) .1, n = 200 determined from Mn), in Synthesis Example 14, a macromonomer (Mw = 55900, Mn = 24300, Mw / Mn =) having a structure in which a methacryloyloxy group was added to the end of the methyl methacrylate polymer. 2.3, n = 241) determined from Mn was used. The weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) of the macromonomer used in Synthesis Example 12 to Synthesis Example 14 were measured for the macromonomer (AA-6) in Synthesis Example 1. Measured and calculated in the same manner as calculated. Table 4 shows the molecular weight and average branching degree of the obtained copolymer.
表4に示す組成に従い、合成例1と同様の手順でビーズ状の共重合体(1-K)~(1-M)を調製した。合成例12では、マクロモノマー(AA-6)に代えて、メタクリル酸メチル重合体の末端にメタクリロイルオキシ基が付加された構造のマクロモノマー(Mw=22300、Mn=11000、Mw/Mn=2.0、Mnから求めたn=110)を、合成例13では、メタクリル酸メチル重合体の末端にメタクリロイルオキシ基が付加された構造のマクロモノマー(Mw=41500、Mn=20100、Mw/Mn=2.1、Mnから求めたn=200)を、合成例14では、メタクリル酸メチル重合体の末端にメタクリロイルオキシ基が付加された構造のマクロモノマー(Mw=55900、Mn=24300、Mw/Mn=2.3、Mnから求めたn=241)をそれぞれ用いた。合成例12~合成例14で用いたマクロモノマーの重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)は、合成例1においてマクロモノマー(AA-6)について測定し、算出したのと同様の方法で測定し算出した。得られた共重合体の分子量および平均分岐度を表4に示す。 <Synthesis Examples 12 to 14>
According to the composition shown in Table 4, bead-like copolymers (1-K) to (1-M) were prepared in the same procedure as in Synthesis Example 1. In Synthesis Example 12, instead of the macromonomer (AA-6), a macromonomer having a structure in which a methacryloyloxy group is added to the terminal of the methyl methacrylate polymer (Mw = 22300, Mn = 11000, Mw / Mn = 2. 0, n = 110 determined from Mn, in Synthesis Example 13, a macromonomer having a structure in which a methacryloyloxy group was added to the end of a methyl methacrylate polymer (Mw = 41500, Mn = 20100, Mw / Mn = 2) .1, n = 200 determined from Mn), in Synthesis Example 14, a macromonomer (Mw = 55900, Mn = 24300, Mw / Mn =) having a structure in which a methacryloyloxy group was added to the end of the methyl methacrylate polymer. 2.3, n = 241) determined from Mn was used. The weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) of the macromonomer used in Synthesis Example 12 to Synthesis Example 14 were measured for the macromonomer (AA-6) in Synthesis Example 1. Measured and calculated in the same manner as calculated. Table 4 shows the molecular weight and average branching degree of the obtained copolymer.
<実施例17~31:アクリル樹脂組成物の調製および押出フィルム作製>
表5に示す組成に従い、ビーズ状の共重合体(1-K)または共重合体(1-L)または共重合体(1-M)と、アクリル樹脂(2)、および共重合体(1-K)または共重合体(1-L)または共重合体(1-M)とアクリル樹脂(2)の合計100質量部に対してゴム弾性体粒子11.7質量部を混合し、20mmφ単軸押出機(田辺プラスチック機械(株)製、VS20-26V型押出機)を用いてオープン成形で成形し、厚さ40μmの押出フィルムを作製した。押出時のダイス温度は250℃とした。 <Examples 17 to 31: Preparation of acrylic resin composition and production of extruded film>
According to the composition shown in Table 5, bead-shaped copolymer (1-K) or copolymer (1-L) or copolymer (1-M), acrylic resin (2), and copolymer (1 -K), or copolymer (1-L) or copolymer (1-M) and acrylic resin (2) in total, 100 parts by mass of rubber elastic body particles 11.7 parts by mass, Using an axial extruder (VS20-26V type extruder manufactured by Tanabe Plastic Machinery Co., Ltd.), the film was formed by open molding to produce an extruded film having a thickness of 40 μm. The die temperature during extrusion was 250 ° C.
表5に示す組成に従い、ビーズ状の共重合体(1-K)または共重合体(1-L)または共重合体(1-M)と、アクリル樹脂(2)、および共重合体(1-K)または共重合体(1-L)または共重合体(1-M)とアクリル樹脂(2)の合計100質量部に対してゴム弾性体粒子11.7質量部を混合し、20mmφ単軸押出機(田辺プラスチック機械(株)製、VS20-26V型押出機)を用いてオープン成形で成形し、厚さ40μmの押出フィルムを作製した。押出時のダイス温度は250℃とした。 <Examples 17 to 31: Preparation of acrylic resin composition and production of extruded film>
According to the composition shown in Table 5, bead-shaped copolymer (1-K) or copolymer (1-L) or copolymer (1-M), acrylic resin (2), and copolymer (1 -K), or copolymer (1-L) or copolymer (1-M) and acrylic resin (2) in total, 100 parts by mass of rubber elastic body particles 11.7 parts by mass, Using an axial extruder (VS20-26V type extruder manufactured by Tanabe Plastic Machinery Co., Ltd.), the film was formed by open molding to produce an extruded film having a thickness of 40 μm. The die temperature during extrusion was 250 ° C.
<比較例9:アクリル樹脂組成物の調製と押出フィルム作製>
アクリル樹脂(2)100質量部に対し、ゴム弾性体粒子11.7質量部を混合し、20mmφ単軸押出機(田辺プラスチック機械(株)製、VS20-26V型押出機)を用いてオープン成形で成形し、厚さ40μmの押出フィルムを作製した。押出時のダイス温度は250℃とした。
なお、実施例17~31および比較例9において用いたアクリル樹脂(2)およびゴム弾性体粒子の組成は、それぞれ、実施例15で用いたものと同じである。 <Comparative Example 9: Preparation of acrylic resin composition and production of extruded film>
11.7 parts by mass of rubber elastic particles are mixed with 100 parts by mass of acrylic resin (2), and open molding is performed using a 20 mmφ single screw extruder (VS20-26V type extruder manufactured by Tanabe Plastic Machinery Co., Ltd.). To produce an extruded film having a thickness of 40 μm. The die temperature during extrusion was 250 ° C.
The compositions of the acrylic resin (2) and the rubber elastic particles used in Examples 17 to 31 and Comparative Example 9 are the same as those used in Example 15, respectively.
アクリル樹脂(2)100質量部に対し、ゴム弾性体粒子11.7質量部を混合し、20mmφ単軸押出機(田辺プラスチック機械(株)製、VS20-26V型押出機)を用いてオープン成形で成形し、厚さ40μmの押出フィルムを作製した。押出時のダイス温度は250℃とした。
なお、実施例17~31および比較例9において用いたアクリル樹脂(2)およびゴム弾性体粒子の組成は、それぞれ、実施例15で用いたものと同じである。 <Comparative Example 9: Preparation of acrylic resin composition and production of extruded film>
11.7 parts by mass of rubber elastic particles are mixed with 100 parts by mass of acrylic resin (2), and open molding is performed using a 20 mmφ single screw extruder (VS20-26V type extruder manufactured by Tanabe Plastic Machinery Co., Ltd.). To produce an extruded film having a thickness of 40 μm. The die temperature during extrusion was 250 ° C.
The compositions of the acrylic resin (2) and the rubber elastic particles used in Examples 17 to 31 and Comparative Example 9 are the same as those used in Example 15, respectively.
実施例17~31および比較例9において調製された押出フィルムのシャルピー衝撃強度および80℃弾性率を下記方法に従い測定した。
The Charpy impact strength and 80 ° C. elastic modulus of the extruded films prepared in Examples 17 to 31 and Comparative Example 9 were measured according to the following methods.
<MD方向シャルピー衝撃試験>
JIS K7111-1に規定される方法に従い、押出フィルムを縦方向(MD方向)100mm、横方向(TD方向)10mmの長方形に切り出し、両短辺(10mmの辺)を固定して、MD方向シャルピー衝撃強度を測定し、押出フィルムの耐衝撃性を評価した。結果を表5に示す。なお、表5における衝撃強度における値は、比較例9(アクリル樹脂(2)およびゴム弾性体粒子のみで構成されたアクリル樹脂組成物)の押出フィルムのMD方向のシャルピー衝撃強度の値を100%とした場合の相対値(%)であり、「MD方向相対シャルピー衝撃強度(%)」と記した。このMD方向相対シャルピー衝撃強度(%)の値が100以上であれば、高い耐衝撃性を有すると判断した。 <MD direction Charpy impact test>
According to the method specified in JIS K7111-1, the extruded film is cut into a rectangle with a longitudinal direction (MD direction) of 100 mm and a lateral direction (TD direction) of 10 mm, and both short sides (sides of 10 mm) are fixed, and MD direction Charpy is fixed. The impact strength was measured and the impact resistance of the extruded film was evaluated. The results are shown in Table 5. The value in impact strength in Table 5 is 100% of the value of Charpy impact strength in the MD direction of the extruded film of Comparative Example 9 (acrylic resin composition composed only of acrylic resin (2) and rubber elastic particles). The relative value (%) in the case of “MD direction relative Charpy impact strength (%)”. If the value of MD direction relative Charpy impact strength (%) was 100 or more, it was judged that the impact resistance was high.
JIS K7111-1に規定される方法に従い、押出フィルムを縦方向(MD方向)100mm、横方向(TD方向)10mmの長方形に切り出し、両短辺(10mmの辺)を固定して、MD方向シャルピー衝撃強度を測定し、押出フィルムの耐衝撃性を評価した。結果を表5に示す。なお、表5における衝撃強度における値は、比較例9(アクリル樹脂(2)およびゴム弾性体粒子のみで構成されたアクリル樹脂組成物)の押出フィルムのMD方向のシャルピー衝撃強度の値を100%とした場合の相対値(%)であり、「MD方向相対シャルピー衝撃強度(%)」と記した。このMD方向相対シャルピー衝撃強度(%)の値が100以上であれば、高い耐衝撃性を有すると判断した。 <MD direction Charpy impact test>
According to the method specified in JIS K7111-1, the extruded film is cut into a rectangle with a longitudinal direction (MD direction) of 100 mm and a lateral direction (TD direction) of 10 mm, and both short sides (sides of 10 mm) are fixed, and MD direction Charpy is fixed. The impact strength was measured and the impact resistance of the extruded film was evaluated. The results are shown in Table 5. The value in impact strength in Table 5 is 100% of the value of Charpy impact strength in the MD direction of the extruded film of Comparative Example 9 (acrylic resin composition composed only of acrylic resin (2) and rubber elastic particles). The relative value (%) in the case of “MD direction relative Charpy impact strength (%)”. If the value of MD direction relative Charpy impact strength (%) was 100 or more, it was judged that the impact resistance was high.
<TD方向シャルピー衝撃試験>
JIS K7111-1に規定される方法に従い、押出フィルムを縦方向(MD方向)10mm、横方向(TD方向)100mmの長方形に切り出し、両短辺(10mmの辺)を固定して、シャルピー衝撃強度を測定し、押出フィルムの耐衝撃性を評価した。結果を表5に示す。なお、表5における衝撃強度における値は、比較例9(アクリル樹脂(2)およびゴム弾性体粒子のみで構成されたアクリル樹脂組成物)の押出フィルムのTD方向のシャルピー衝撃強度の値を100%とした場合の相対値(%)であり、「TD方向相対シャルピー衝撃強度(%)」と記した。このTD方向相対シャルピー衝撃強度(%)の値が100以上であれば、高い耐衝撃性を有すると判断した。 <TD direction Charpy impact test>
In accordance with the method specified in JIS K7111-1, the extruded film is cut into a rectangle of 10 mm in the machine direction (MD direction) and 100 mm in the transverse direction (TD direction), and both short sides (sides of 10 mm) are fixed. Was measured and the impact resistance of the extruded film was evaluated. The results are shown in Table 5. The value in impact strength in Table 5 is 100% of the value of Charpy impact strength in the TD direction of the extruded film of Comparative Example 9 (acrylic resin composition composed only of acrylic resin (2) and rubber elastic particles). The relative value (%) in the case of “TD direction relative Charpy impact strength (%)”. If the value of the TD direction relative Charpy impact strength (%) was 100 or more, it was judged that the impact resistance was high.
JIS K7111-1に規定される方法に従い、押出フィルムを縦方向(MD方向)10mm、横方向(TD方向)100mmの長方形に切り出し、両短辺(10mmの辺)を固定して、シャルピー衝撃強度を測定し、押出フィルムの耐衝撃性を評価した。結果を表5に示す。なお、表5における衝撃強度における値は、比較例9(アクリル樹脂(2)およびゴム弾性体粒子のみで構成されたアクリル樹脂組成物)の押出フィルムのTD方向のシャルピー衝撃強度の値を100%とした場合の相対値(%)であり、「TD方向相対シャルピー衝撃強度(%)」と記した。このTD方向相対シャルピー衝撃強度(%)の値が100以上であれば、高い耐衝撃性を有すると判断した。 <TD direction Charpy impact test>
In accordance with the method specified in JIS K7111-1, the extruded film is cut into a rectangle of 10 mm in the machine direction (MD direction) and 100 mm in the transverse direction (TD direction), and both short sides (sides of 10 mm) are fixed. Was measured and the impact resistance of the extruded film was evaluated. The results are shown in Table 5. The value in impact strength in Table 5 is 100% of the value of Charpy impact strength in the TD direction of the extruded film of Comparative Example 9 (acrylic resin composition composed only of acrylic resin (2) and rubber elastic particles). The relative value (%) in the case of “TD direction relative Charpy impact strength (%)”. If the value of the TD direction relative Charpy impact strength (%) was 100 or more, it was judged that the impact resistance was high.
<MD方向の80℃弾性率測定>
押出フィルムを縦方向(MD方向)100mm、横方向(TD方向)25mmの長方形に切り出し、80℃で、チャック間距離を50mmとして縦方向に引張速度1mm/分で引張試験を行った。引張強度が3MPaから6MPaとなる領域での応力-歪み曲線の傾きから、80℃引張弾性率を算出した。結果を表5に示す。なお、表5における80℃弾性率における値は、比較例9(アクリル樹脂(2)およびゴム弾性体粒子のみで構成されたアクリル樹脂組成物)の押出フィルムのMD方向80℃弾性率の値を100%とした場合の相対値(%)であり、「MD方向相対80℃弾性率」と記した。この相対80℃弾性率(%)の値が96以上であれば、弾性率の低下がない/優れた弾性率を有すると判断した。 <Measurement of elastic modulus at 80 ° C. in MD direction>
The extruded film was cut into a rectangle having a longitudinal direction (MD direction) of 100 mm and a transverse direction (TD direction) of 25 mm, and a tensile test was conducted at 80 ° C. with a distance between chucks of 50 mm and a longitudinal speed of 1 mm / min. The tensile elastic modulus at 80 ° C. was calculated from the slope of the stress-strain curve in the region where the tensile strength was 3 MPa to 6 MPa. The results are shown in Table 5. In addition, the value in 80 degreeC elasticity modulus in Table 5 is the value of 80 degreeC elasticity modulus of MD direction of the extrusion film of the comparative example 9 (acrylic resin composition comprised only with acrylic resin (2) and rubber elastic-body particle | grains). It is a relative value (%) when it is 100%, and is described as “MD direction relative 80 ° C. elastic modulus”. If the value of the relative 80 ° C. elastic modulus (%) was 96 or more, it was judged that there was no decrease in elastic modulus / excellent elastic modulus.
押出フィルムを縦方向(MD方向)100mm、横方向(TD方向)25mmの長方形に切り出し、80℃で、チャック間距離を50mmとして縦方向に引張速度1mm/分で引張試験を行った。引張強度が3MPaから6MPaとなる領域での応力-歪み曲線の傾きから、80℃引張弾性率を算出した。結果を表5に示す。なお、表5における80℃弾性率における値は、比較例9(アクリル樹脂(2)およびゴム弾性体粒子のみで構成されたアクリル樹脂組成物)の押出フィルムのMD方向80℃弾性率の値を100%とした場合の相対値(%)であり、「MD方向相対80℃弾性率」と記した。この相対80℃弾性率(%)の値が96以上であれば、弾性率の低下がない/優れた弾性率を有すると判断した。 <Measurement of elastic modulus at 80 ° C. in MD direction>
The extruded film was cut into a rectangle having a longitudinal direction (MD direction) of 100 mm and a transverse direction (TD direction) of 25 mm, and a tensile test was conducted at 80 ° C. with a distance between chucks of 50 mm and a longitudinal speed of 1 mm / min. The tensile elastic modulus at 80 ° C. was calculated from the slope of the stress-strain curve in the region where the tensile strength was 3 MPa to 6 MPa. The results are shown in Table 5. In addition, the value in 80 degreeC elasticity modulus in Table 5 is the value of 80 degreeC elasticity modulus of MD direction of the extrusion film of the comparative example 9 (acrylic resin composition comprised only with acrylic resin (2) and rubber elastic-body particle | grains). It is a relative value (%) when it is 100%, and is described as “MD direction relative 80 ° C. elastic modulus”. If the value of the relative 80 ° C. elastic modulus (%) was 96 or more, it was judged that there was no decrease in elastic modulus / excellent elastic modulus.
<TD方向の80℃弾性率測定>
押出フィルムを縦方向(MD方向)25mm、横方向(TD方向)100mmの長方形に切り出し、80℃で、チャック間距離を50mmとして縦方向に引張速度1mm/分で引張試験を行った。引張強度が3MPaから6MPaとなる領域での応力-歪み曲線の傾きから、80℃引張弾性率を算出した。結果を表5に示す。なお、表5における80℃弾性率における値は、比較例9(アクリル樹脂(2)およびゴム弾性体粒子のみで構成されたアクリル樹脂組成物)の押出フィルムのTD方向80℃弾性率の値を100%とした場合の相対値(%)であり、「TD方向相対80℃弾性率」と記した。この相対80℃弾性率(%)の値が96以上であれば、弾性率の低下がない/優れた弾性率を有すると判断した。 <Measurement of elastic modulus at 80 ° C in TD direction>
The extruded film was cut into a rectangle with a longitudinal direction (MD direction) of 25 mm and a transverse direction (TD direction) of 100 mm, and a tensile test was conducted at 80 ° C. with a distance between chucks of 50 mm at a tensile speed of 1 mm / min. The tensile elastic modulus at 80 ° C. was calculated from the slope of the stress-strain curve in the region where the tensile strength was 3 MPa to 6 MPa. The results are shown in Table 5. In addition, the value in 80 degreeC elastic modulus in Table 5 is the value of 80 degreeC elastic modulus in the TD direction of the extruded film of Comparative Example 9 (acrylic resin composition composed only of acrylic resin (2) and rubber elastic particles). It is a relative value (%) when it is 100%, and is described as “TD direction relative 80 ° C. elastic modulus”. If the value of the relative 80 ° C. elastic modulus (%) was 96 or more, it was judged that there was no decrease in elastic modulus / excellent elastic modulus.
押出フィルムを縦方向(MD方向)25mm、横方向(TD方向)100mmの長方形に切り出し、80℃で、チャック間距離を50mmとして縦方向に引張速度1mm/分で引張試験を行った。引張強度が3MPaから6MPaとなる領域での応力-歪み曲線の傾きから、80℃引張弾性率を算出した。結果を表5に示す。なお、表5における80℃弾性率における値は、比較例9(アクリル樹脂(2)およびゴム弾性体粒子のみで構成されたアクリル樹脂組成物)の押出フィルムのTD方向80℃弾性率の値を100%とした場合の相対値(%)であり、「TD方向相対80℃弾性率」と記した。この相対80℃弾性率(%)の値が96以上であれば、弾性率の低下がない/優れた弾性率を有すると判断した。 <Measurement of elastic modulus at 80 ° C in TD direction>
The extruded film was cut into a rectangle with a longitudinal direction (MD direction) of 25 mm and a transverse direction (TD direction) of 100 mm, and a tensile test was conducted at 80 ° C. with a distance between chucks of 50 mm at a tensile speed of 1 mm / min. The tensile elastic modulus at 80 ° C. was calculated from the slope of the stress-strain curve in the region where the tensile strength was 3 MPa to 6 MPa. The results are shown in Table 5. In addition, the value in 80 degreeC elastic modulus in Table 5 is the value of 80 degreeC elastic modulus in the TD direction of the extruded film of Comparative Example 9 (acrylic resin composition composed only of acrylic resin (2) and rubber elastic particles). It is a relative value (%) when it is 100%, and is described as “TD direction relative 80 ° C. elastic modulus”. If the value of the relative 80 ° C. elastic modulus (%) was 96 or more, it was judged that there was no decrease in elastic modulus / excellent elastic modulus.
<合成例15>
表6に示す組成に従い、合成例1と同様の手順でビーズ状の共重合体(1-N)を調製した。得られた共重合体(1-N)について、合成例1と同様の方法に従い、分子量および平均分岐度を測定した。結果を表6に示す。 <Synthesis Example 15>
According to the composition shown in Table 6, a bead-shaped copolymer (1-N) was prepared in the same procedure as in Synthesis Example 1. The obtained copolymer (1-N) was measured for molecular weight and average degree of branching according to the same method as in Synthesis Example 1. The results are shown in Table 6.
表6に示す組成に従い、合成例1と同様の手順でビーズ状の共重合体(1-N)を調製した。得られた共重合体(1-N)について、合成例1と同様の方法に従い、分子量および平均分岐度を測定した。結果を表6に示す。 <Synthesis Example 15>
According to the composition shown in Table 6, a bead-shaped copolymer (1-N) was prepared in the same procedure as in Synthesis Example 1. The obtained copolymer (1-N) was measured for molecular weight and average degree of branching according to the same method as in Synthesis Example 1. The results are shown in Table 6.
<実施例32:アクリル樹脂組成物の調製およびプレスフィルム作製>
表7に示す組成に従い、共重合体(1-N)とデンカ(株)製レジスファイR200とを混合し、実施例1と同様にして、ペレット状のアクリル樹脂組成物を調製し、次いで80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。なお、R200の重量平均分子量(Mw)は185000であり、数平均分子量(Mn)は79000であり、分子量分布(Mw/Mn)は2.4である(PMMA換算)。 <Example 32: Preparation of acrylic resin composition and production of press film>
According to the composition shown in Table 7, the copolymer (1-N) and Densica Co., Ltd. Resphi R200 were mixed to prepare a pellet-like acrylic resin composition in the same manner as in Example 1, and then 80 mm × A press film of 80 mm square and a thickness of 300 μm was produced. The weight average molecular weight (Mw) of R200 is 185000, the number average molecular weight (Mn) is 79000, and the molecular weight distribution (Mw / Mn) is 2.4 (PMMA conversion).
表7に示す組成に従い、共重合体(1-N)とデンカ(株)製レジスファイR200とを混合し、実施例1と同様にして、ペレット状のアクリル樹脂組成物を調製し、次いで80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。なお、R200の重量平均分子量(Mw)は185000であり、数平均分子量(Mn)は79000であり、分子量分布(Mw/Mn)は2.4である(PMMA換算)。 <Example 32: Preparation of acrylic resin composition and production of press film>
According to the composition shown in Table 7, the copolymer (1-N) and Densica Co., Ltd. Resphi R200 were mixed to prepare a pellet-like acrylic resin composition in the same manner as in Example 1, and then 80 mm × A press film of 80 mm square and a thickness of 300 μm was produced. The weight average molecular weight (Mw) of R200 is 185000, the number average molecular weight (Mn) is 79000, and the molecular weight distribution (Mw / Mn) is 2.4 (PMMA conversion).
<実施例33:アクリル樹脂組成物の調製およびプレスフィルム作製>
表7に示す組成に従い、共重合体(1-I)とアルケマ(株)社製HT121とを混合し、実施例1と同様にして、ペレット状のアクリル樹脂組成物を調製し、次いで80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。なお、HT121の重量平均分子量(Mw)は78000であり、数平均分子量(Mn)は41000であり、分子量分布(Mw/Mn)は1.9である(PMMA換算)。 <Example 33: Preparation of acrylic resin composition and production of press film>
According to the composition shown in Table 7, the copolymer (1-I) and HT121 manufactured by Arkema Co., Ltd. were mixed to prepare a pellet-like acrylic resin composition in the same manner as in Example 1, and then 80 mm × A press film of 80 mm square and a thickness of 300 μm was produced. In addition, the weight average molecular weight (Mw) of HT121 is 78000, the number average molecular weight (Mn) is 41000, and molecular weight distribution (Mw / Mn) is 1.9 (PMMA conversion).
表7に示す組成に従い、共重合体(1-I)とアルケマ(株)社製HT121とを混合し、実施例1と同様にして、ペレット状のアクリル樹脂組成物を調製し、次いで80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。なお、HT121の重量平均分子量(Mw)は78000であり、数平均分子量(Mn)は41000であり、分子量分布(Mw/Mn)は1.9である(PMMA換算)。 <Example 33: Preparation of acrylic resin composition and production of press film>
According to the composition shown in Table 7, the copolymer (1-I) and HT121 manufactured by Arkema Co., Ltd. were mixed to prepare a pellet-like acrylic resin composition in the same manner as in Example 1, and then 80 mm × A press film of 80 mm square and a thickness of 300 μm was produced. In addition, the weight average molecular weight (Mw) of HT121 is 78000, the number average molecular weight (Mn) is 41000, and molecular weight distribution (Mw / Mn) is 1.9 (PMMA conversion).
<比較例10:アクリル樹脂組成物の調製およびプレスフィルム作製>
表7に示す組成に従い、アクリル樹脂(2)とデンカ(株)製レジスファイR200とを混合し、実施例1と同様にして、ペレット状のアクリル樹脂組成物を調製し、次いで80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Comparative Example 10: Preparation of acrylic resin composition and production of press film>
According to the composition shown in Table 7, acrylic resin (2) and Denka Co., Ltd. Regisfi R200 were mixed, and in the same manner as in Example 1, a pellet-shaped acrylic resin composition was prepared, and then 80 mm × 80 mm square, A press film having a thickness of 300 μm was produced.
表7に示す組成に従い、アクリル樹脂(2)とデンカ(株)製レジスファイR200とを混合し、実施例1と同様にして、ペレット状のアクリル樹脂組成物を調製し、次いで80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Comparative Example 10: Preparation of acrylic resin composition and production of press film>
According to the composition shown in Table 7, acrylic resin (2) and Denka Co., Ltd. Regisfi R200 were mixed, and in the same manner as in Example 1, a pellet-shaped acrylic resin composition was prepared, and then 80 mm × 80 mm square, A press film having a thickness of 300 μm was produced.
<比較例11:アクリル樹脂組成物の調製およびプレスフィルム作製>
表7に示す組成に従い、アクリル樹脂(2)とアルケマ(株)社製HT121とを混合し、実施例1と同様にして、ペレット状のアクリル樹脂組成物を調製し、次いで80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Comparative Example 11: Preparation of acrylic resin composition and production of press film>
According to the composition shown in Table 7, the acrylic resin (2) and HT121 manufactured by Arkema Co., Ltd. were mixed to prepare a pellet-shaped acrylic resin composition in the same manner as in Example 1, and then 80 mm × 80 mm square, A press film having a thickness of 300 μm was produced.
表7に示す組成に従い、アクリル樹脂(2)とアルケマ(株)社製HT121とを混合し、実施例1と同様にして、ペレット状のアクリル樹脂組成物を調製し、次いで80mm×80mm四方、厚さ300μmのプレスフィルムを作製した。 <Comparative Example 11: Preparation of acrylic resin composition and production of press film>
According to the composition shown in Table 7, the acrylic resin (2) and HT121 manufactured by Arkema Co., Ltd. were mixed to prepare a pellet-shaped acrylic resin composition in the same manner as in Example 1, and then 80 mm × 80 mm square, A press film having a thickness of 300 μm was produced.
実施例32および33ならびに比較例10および11において調製されたプレスフィルムのシャルピー衝撃強度および80℃弾性率を下記方法に従い測定した。
The Charpy impact strength and 80 ° C. elastic modulus of the press films prepared in Examples 32 and 33 and Comparative Examples 10 and 11 were measured according to the following methods.
<シャルピー衝撃試験>
JIS K7111-1に規定される方法に従い、得られたプレスフィルムサンプルを、縦方向80mm、横方向10mmの長方形に切り出し、両短辺(10mm)を固定した状態でシャルピー衝撃強度を測定し、プレスフィルムの耐衝撃性を評価した。結果を表7に示す。なお、表7中の実施例32における衝撃強度における値は、比較例10(アクリル樹脂(2)とR200で構成されたアクリル樹脂組成物)のプレスフィルムのシャルピー衝撃強度の値を100%とした場合の相対値(%)であり、表7中の実施例33における衝撃強度における値は、比較例11(アクリル樹脂(2)とHT121で構成されたアクリル樹脂組成物)のプレスフィルムのシャルピー衝撃強度の値を100%とした場合の相対値(%)であり、それぞれ「相対シャルピー衝撃強度(%)」と記した。この相対シャルピー衝撃強度(%)の値が100以上であれば、高い耐衝撃性を有すると判断した。 <Charpy impact test>
In accordance with the method defined in JIS K7111-1, the obtained press film sample was cut into a rectangle with a length of 80 mm and a width of 10 mm, and Charpy impact strength was measured with both short sides (10 mm) fixed, and the press The impact resistance of the film was evaluated. The results are shown in Table 7. The value of impact strength in Example 32 in Table 7 is 100% of the Charpy impact strength value of the press film of Comparative Example 10 (acrylic resin composition composed of acrylic resin (2) and R200). Relative value (%) in Table 7, and the value in impact strength in Example 33 in Table 7 is the Charpy impact of the press film of Comparative Example 11 (acrylic resin composition composed of acrylic resin (2) and HT121). It is a relative value (%) when the strength value is 100%, and is described as “relative Charpy impact strength (%)”. If the value of the relative Charpy impact strength (%) was 100 or more, it was judged that the impact resistance was high.
JIS K7111-1に規定される方法に従い、得られたプレスフィルムサンプルを、縦方向80mm、横方向10mmの長方形に切り出し、両短辺(10mm)を固定した状態でシャルピー衝撃強度を測定し、プレスフィルムの耐衝撃性を評価した。結果を表7に示す。なお、表7中の実施例32における衝撃強度における値は、比較例10(アクリル樹脂(2)とR200で構成されたアクリル樹脂組成物)のプレスフィルムのシャルピー衝撃強度の値を100%とした場合の相対値(%)であり、表7中の実施例33における衝撃強度における値は、比較例11(アクリル樹脂(2)とHT121で構成されたアクリル樹脂組成物)のプレスフィルムのシャルピー衝撃強度の値を100%とした場合の相対値(%)であり、それぞれ「相対シャルピー衝撃強度(%)」と記した。この相対シャルピー衝撃強度(%)の値が100以上であれば、高い耐衝撃性を有すると判断した。 <Charpy impact test>
In accordance with the method defined in JIS K7111-1, the obtained press film sample was cut into a rectangle with a length of 80 mm and a width of 10 mm, and Charpy impact strength was measured with both short sides (10 mm) fixed, and the press The impact resistance of the film was evaluated. The results are shown in Table 7. The value of impact strength in Example 32 in Table 7 is 100% of the Charpy impact strength value of the press film of Comparative Example 10 (acrylic resin composition composed of acrylic resin (2) and R200). Relative value (%) in Table 7, and the value in impact strength in Example 33 in Table 7 is the Charpy impact of the press film of Comparative Example 11 (acrylic resin composition composed of acrylic resin (2) and HT121). It is a relative value (%) when the strength value is 100%, and is described as “relative Charpy impact strength (%)”. If the value of the relative Charpy impact strength (%) was 100 or more, it was judged that the impact resistance was high.
<80℃弾性率測定>
実施例および比較例の各プレスフィルムを縦方向80mm、横方向25mmの長方形に切り出し、80℃で、チャック間距離を50mmとして縦方向に引張速度1mm/分で引張試験を行った。引張強度が1MPaから3MPaとなる領域での応力-歪み曲線の傾きから、80℃引張弾性率を算出した。結果を表7に示す。なお、表7中の実施例32における80℃弾性率における値は、比較例10(アクリル樹脂(2)とR200で構成されたアクリル樹脂組成物)のプレスフィルムの80℃弾性率の値を100%とした場合の相対値(%)であり、表7中の実施例33における80℃弾性率における値は、比較例11(アクリル樹脂(2)とHT121で構成されたアクリル樹脂組成物)のプレスフィルムの80℃弾性率の値を100(%)とした場合の相対値(%)であり、それぞれ「相対80℃弾性率(%)」と記した。この相対80℃弾性率(%)の値が96以上であれば、弾性率の低下がない/優れた弾性率を有すると判断した。 <80 ° C elastic modulus measurement>
Each press film of the example and the comparative example was cut into a rectangle of 80 mm in the vertical direction and 25 mm in the horizontal direction, and a tensile test was performed at 80 ° C. with a distance between chucks of 50 mm and a tensile speed of 1 mm / min in the vertical direction. The tensile elastic modulus at 80 ° C. was calculated from the slope of the stress-strain curve in the region where the tensile strength was from 1 MPa to 3 MPa. The results are shown in Table 7. In addition, the value in the 80 degreeC elasticity modulus in Example 32 in Table 7 is the value of the 80 degreeC elasticity modulus of the press film of the comparative example 10 (acrylic resin composition comprised by acrylic resin (2) and R200) as 100. %, The value at 80 ° C. elastic modulus in Example 33 in Table 7 is that of Comparative Example 11 (acrylic resin composition composed of acrylic resin (2) and HT121). Relative values (%) when the 80 ° C. elastic modulus value of the press film is taken as 100 (%), and each is described as “relative 80 ° C. elastic modulus (%)”. If the value of the relative 80 ° C. elastic modulus (%) was 96 or more, it was judged that there was no decrease in elastic modulus / excellent elastic modulus.
実施例および比較例の各プレスフィルムを縦方向80mm、横方向25mmの長方形に切り出し、80℃で、チャック間距離を50mmとして縦方向に引張速度1mm/分で引張試験を行った。引張強度が1MPaから3MPaとなる領域での応力-歪み曲線の傾きから、80℃引張弾性率を算出した。結果を表7に示す。なお、表7中の実施例32における80℃弾性率における値は、比較例10(アクリル樹脂(2)とR200で構成されたアクリル樹脂組成物)のプレスフィルムの80℃弾性率の値を100%とした場合の相対値(%)であり、表7中の実施例33における80℃弾性率における値は、比較例11(アクリル樹脂(2)とHT121で構成されたアクリル樹脂組成物)のプレスフィルムの80℃弾性率の値を100(%)とした場合の相対値(%)であり、それぞれ「相対80℃弾性率(%)」と記した。この相対80℃弾性率(%)の値が96以上であれば、弾性率の低下がない/優れた弾性率を有すると判断した。 <80 ° C elastic modulus measurement>
Each press film of the example and the comparative example was cut into a rectangle of 80 mm in the vertical direction and 25 mm in the horizontal direction, and a tensile test was performed at 80 ° C. with a distance between chucks of 50 mm and a tensile speed of 1 mm / min in the vertical direction. The tensile elastic modulus at 80 ° C. was calculated from the slope of the stress-strain curve in the region where the tensile strength was from 1 MPa to 3 MPa. The results are shown in Table 7. In addition, the value in the 80 degreeC elasticity modulus in Example 32 in Table 7 is the value of the 80 degreeC elasticity modulus of the press film of the comparative example 10 (acrylic resin composition comprised by acrylic resin (2) and R200) as 100. %, The value at 80 ° C. elastic modulus in Example 33 in Table 7 is that of Comparative Example 11 (acrylic resin composition composed of acrylic resin (2) and HT121). Relative values (%) when the 80 ° C. elastic modulus value of the press film is taken as 100 (%), and each is described as “relative 80 ° C. elastic modulus (%)”. If the value of the relative 80 ° C. elastic modulus (%) was 96 or more, it was judged that there was no decrease in elastic modulus / excellent elastic modulus.
Claims (7)
- 共重合体(1)および重合体(2)を含むアクリル樹脂組成物であって、
前記共重合体(1)が、下記式(1a)で示される構造単位:
で示される二価の残基または式(1a-2):
で示される二価の残基である〕
と、下記式(1b)で示される構造単位:
とを含み、
共重合体(1)に含まれる全構造単位に対して、前記式(1a)で示される構造単位を5~70質量%および前記式(1b)で示される構造単位を30~95質量%含む共重合体であり、
前記重合体(2)は、下記式(2a)で示される構造単位:
を含む重合体(但し、重合体(2)に含まれる全構造単位に対して、前記式(1a)で示される構造単位は5質量%未満である)であり、
共重合体(1)および重合体(2)の合計100質量部に対して、共重合体(1)を1~90質量部および重合体(2)を10~99質量部含む、アクリル樹脂組成物。 An acrylic resin composition comprising a copolymer (1) and a polymer (2),
The copolymer (1) is a structural unit represented by the following formula (1a):
Or a divalent residue represented by the formula (1a-2):
It is a divalent residue represented by
And a structural unit represented by the following formula (1b):
Including
5 to 70% by mass of the structural unit represented by the formula (1a) and 30 to 95% by mass of the structural unit represented by the formula (1b) with respect to all the structural units contained in the copolymer (1). A copolymer,
The polymer (2) is a structural unit represented by the following formula (2a):
(However, the structural unit represented by the formula (1a) is less than 5% by mass with respect to all the structural units contained in the polymer (2)),
Acrylic resin composition comprising 1 to 90 parts by mass of copolymer (1) and 10 to 99 parts by mass of polymer (2) with respect to 100 parts by mass in total of copolymer (1) and polymer (2) object. - 前記式(1a)中のXが式(1a-1)で示される二価の残基であり、共重合体(1)に含まれる全構造単位に対する前記式(1a)で示される構造単位の量が5~15質量%であり、共重合体(1)および重合体(2)の合計100質量部に対して、共重合体(1)を10~30質量部および重合体(2)を70~90質量部含む、請求項1に記載のアクリル樹脂組成物。 X in the formula (1a) is a divalent residue represented by the formula (1a-1), and the structural unit represented by the formula (1a) with respect to all the structural units contained in the copolymer (1). The amount is 5 to 15% by mass, and 10 to 30 parts by mass of the copolymer (1) and the polymer (2) with respect to 100 parts by mass in total of the copolymer (1) and the polymer (2). The acrylic resin composition according to claim 1, comprising 70 to 90 parts by mass.
- 共重合体(1)および重合体(2)の合計100質量部に対して、1~50質量部のゴム弾性体粒子を含む、請求項1または2に記載のアクリル樹脂組成物。 The acrylic resin composition according to claim 1 or 2, comprising 1 to 50 parts by mass of rubber elastic body particles with respect to a total of 100 parts by mass of the copolymer (1) and the polymer (2).
- 請求項1~3のいずれかに記載のアクリル樹脂組成物を含むアクリル樹脂フィルム。 An acrylic resin film comprising the acrylic resin composition according to any one of claims 1 to 3.
- 請求項4に記載のアクリル樹脂フィルムを含む偏光板。 A polarizing plate comprising the acrylic resin film according to claim 4.
- 請求項1~3のいずれかに記載のアクリル樹脂組成物を溶融状態でダイからフィルム状に押出すことを含む、請求項4に記載のアクリル樹脂フィルムの製造方法。 The method for producing an acrylic resin film according to claim 4, comprising extruding the acrylic resin composition according to any one of claims 1 to 3 from a die in a molten state.
- 前記アクリル樹脂組成物は、共重合体(1)および重合体(2)の合計100質量部に対して、共重合体(1)を35質量部以下および重合体(2)を65質量部以上含むアクリル樹脂組成物である、請求項6に記載の製造方法。 The acrylic resin composition comprises 35 parts by mass or less of the copolymer (1) and 65 parts by mass or more of the polymer (2) with respect to a total of 100 parts by mass of the copolymer (1) and the polymer (2). The manufacturing method of Claim 6 which is an acrylic resin composition containing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017548718A JPWO2017077908A1 (en) | 2015-11-06 | 2016-10-25 | Acrylic resin composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-218732 | 2015-11-06 | ||
JP2015218732 | 2015-11-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017077908A1 true WO2017077908A1 (en) | 2017-05-11 |
Family
ID=58662003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/081638 WO2017077908A1 (en) | 2015-11-06 | 2016-10-25 | Acrylic resin composition |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2017077908A1 (en) |
WO (1) | WO2017077908A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6377963A (en) * | 1986-09-19 | 1988-04-08 | Mitsubishi Rayon Co Ltd | Thermoplastic resin composition |
JPH1072513A (en) * | 1997-09-22 | 1998-03-17 | Mitsubishi Rayon Co Ltd | Acryic copolymer having comb structure and high impact resin composition |
JPH10254133A (en) * | 1997-03-14 | 1998-09-25 | Fuji Photo Film Co Ltd | Radiation sensitive colored composition |
JPH10265638A (en) * | 1997-03-25 | 1998-10-06 | Mitsubishi Rayon Co Ltd | Thermoplastic resin composition and molded resin item |
JP2001220492A (en) * | 2000-01-20 | 2001-08-14 | Samsung Electronics Co Ltd | Syndiotactic styrene copolymer resin composition including macromonomer for increasing shock resistance |
JP2001261746A (en) * | 2000-03-15 | 2001-09-26 | Dainichiseika Color & Chem Mfg Co Ltd | Latent hydrophilic resin and composition containing the resin |
JP2012018383A (en) * | 2010-06-08 | 2012-01-26 | Sumitomo Chemical Co Ltd | Optical film, anti-glare film, and polarizing plate |
JP2015081260A (en) * | 2013-10-21 | 2015-04-27 | 三菱レイヨン株式会社 | Resin composition and film |
JP2016020415A (en) * | 2014-07-14 | 2016-02-04 | 三菱レイヨン株式会社 | Processing aid for acrylic elastomer resin, acrylic elastomer resin composition and molded body |
-
2016
- 2016-10-25 WO PCT/JP2016/081638 patent/WO2017077908A1/en active Application Filing
- 2016-10-25 JP JP2017548718A patent/JPWO2017077908A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6377963A (en) * | 1986-09-19 | 1988-04-08 | Mitsubishi Rayon Co Ltd | Thermoplastic resin composition |
JPH10254133A (en) * | 1997-03-14 | 1998-09-25 | Fuji Photo Film Co Ltd | Radiation sensitive colored composition |
JPH10265638A (en) * | 1997-03-25 | 1998-10-06 | Mitsubishi Rayon Co Ltd | Thermoplastic resin composition and molded resin item |
JPH1072513A (en) * | 1997-09-22 | 1998-03-17 | Mitsubishi Rayon Co Ltd | Acryic copolymer having comb structure and high impact resin composition |
JP2001220492A (en) * | 2000-01-20 | 2001-08-14 | Samsung Electronics Co Ltd | Syndiotactic styrene copolymer resin composition including macromonomer for increasing shock resistance |
JP2001261746A (en) * | 2000-03-15 | 2001-09-26 | Dainichiseika Color & Chem Mfg Co Ltd | Latent hydrophilic resin and composition containing the resin |
JP2012018383A (en) * | 2010-06-08 | 2012-01-26 | Sumitomo Chemical Co Ltd | Optical film, anti-glare film, and polarizing plate |
JP2015081260A (en) * | 2013-10-21 | 2015-04-27 | 三菱レイヨン株式会社 | Resin composition and film |
JP2016020415A (en) * | 2014-07-14 | 2016-02-04 | 三菱レイヨン株式会社 | Processing aid for acrylic elastomer resin, acrylic elastomer resin composition and molded body |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017077908A1 (en) | 2018-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6725113B2 (en) | Acrylic film | |
JP5193600B2 (en) | Methacrylic resin composition | |
JP6479362B2 (en) | Polarizer protective film and polarizing plate | |
KR102281963B1 (en) | Acrylic thermoplastic resin composition, molded article, film, manufacturing method thereof, and laminate | |
JP2015210474A (en) | Polarizer protection film and polarizing plate | |
US10479886B2 (en) | Optical resin composition and film | |
KR20130008519A (en) | Fluorine-containing (meth)acrylic (co)polymer and molded body films thereof | |
TWI609912B (en) | Method for manufacturing (meth) acrylic resin composition, method for manufacturing optical element, and method for manufacturing polarizer | |
US7514140B2 (en) | Acrylic film for lens substrate, lens film using the same lens sheet | |
KR20160089610A (en) | an acylic elastomer resin composition and a a film manufactured by using the resin composition | |
WO2017077908A1 (en) | Acrylic resin composition | |
JP2019011427A (en) | Acrylic resin composition | |
WO2017077951A1 (en) | Acrylic resin composition | |
TWI285661B (en) | Methacrylic resin molded article, production method of the same, and resin composition providing the same | |
JPH10338792A (en) | Methacrylic resin composition and laminate by using the same | |
TWI840579B (en) | Methacrylic resin composition and method for producing molded product and film thereof | |
JP5324023B2 (en) | Display window protection sheet | |
JP2011063721A (en) | Acrylic resin film for electron beam irradiation | |
JP2009235236A (en) | Film for automobile | |
TWI705994B (en) | Resin film and production method of the same | |
JP2018053210A (en) | Multi-layered body and manufacturing method thereof, and composite body and method for manufacturing the same | |
JP7333382B2 (en) | Core-shell type polymer for interlayer film, resin composition, interlayer film for laminated glass | |
WO2019031485A1 (en) | Methacrylic resin cast sheet and production method therefor | |
JP2010037429A (en) | Film for use in automobile | |
WO2024161763A1 (en) | (meth)acrylic resin composition and molded object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16861970 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017548718 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16861970 Country of ref document: EP Kind code of ref document: A1 |