WO2017073722A1 - Double-sided pressure-sensitive adhesive tape - Google Patents
Double-sided pressure-sensitive adhesive tape Download PDFInfo
- Publication number
- WO2017073722A1 WO2017073722A1 PCT/JP2016/082042 JP2016082042W WO2017073722A1 WO 2017073722 A1 WO2017073722 A1 WO 2017073722A1 JP 2016082042 W JP2016082042 W JP 2016082042W WO 2017073722 A1 WO2017073722 A1 WO 2017073722A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensitive adhesive
- double
- adhesive tape
- sided pressure
- radical polymerization
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/10—Adhesives in the form of films or foils without carriers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/38—Pressure-sensitive adhesives [PSA]
- C09J7/381—Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C09J7/385—Acrylic polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
- C09J133/04—Homopolymers or copolymers of esters
- C09J133/14—Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J193/00—Adhesives based on natural resins; Adhesives based on derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J193/00—Adhesives based on natural resins; Adhesives based on derivatives thereof
- C09J193/04—Rosin
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
Definitions
- the present invention relates to a double-sided pressure-sensitive adhesive tape that can exhibit high heat-resistant adhesive properties that are difficult to peel even when stress is applied at a high temperature of 80 ° C. or higher.
- Double-sided pressure-sensitive adhesive tapes are used in various industrial fields because they can be easily joined. Temporary fixing of curing sheets and bonding of interior materials in the construction field, fixing of interior parts such as seats and sensors, fixing of exterior parts such as side moldings and side visors in the automotive field, module assembly in the electrical and electronic field, Double-sided adhesive tape is used for attaching the module to the housing. Specifically, for example, a double-sided pressure-sensitive adhesive tape is used for assembly in a portable electronic device (for example, a mobile phone, a portable information terminal, or the like) equipped with an image display device or an input device.
- a portable electronic device for example, a mobile phone, a portable information terminal, or the like
- a double-sided adhesive tape is used to bond a cover panel for protecting the surface of a portable electronic device to the touch panel module or the display panel module, or to bond the touch panel module and the display panel module. It is used.
- a double-sided pressure-sensitive adhesive tape is used, for example, by being punched into a frame shape or the like and arranged around the display screen (for example, Patent Documents 1 and 2).
- double-sided adhesive tape is also used for fixing vehicle parts (for example, a vehicle-mounted panel) to a vehicle body.
- a thin double-sided adhesive tape is desired.
- the so-called narrower frame in which the periphery of the display screen is narrowed to secure a wider screen, is progressing, and the width of the peripheral part of the screen is extremely narrow in the narrowed framed mobile electronic device. Therefore, a double-sided pressure-sensitive adhesive tape whose line width is narrower (adhesion area is narrower) than before is desired.
- An object of this invention is to provide the double-sided adhesive tape which can exhibit the high heat-resistant adhesiveness which is hard to peel even if stress is applied under high temperature of 80 degreeC or more in view of the said present condition.
- the present invention relates to a polymer component containing an acrylic polymer having a crosslinkable functional group obtained by living radical polymerization and having a weight average molecular weight of 500,000 to 1,500,000 and a molecular weight distribution (Mw / Mn) of 1.05 to 2.5. And a rosin-based tackifier resin having a crosslinkable functional group, or a terpene tackifier resin having a crosslinkable functional group, and a pressure-sensitive adhesive layer containing a crosslinker, and bonded on an adhesive area of 1 cm 2
- the double-sided pressure-sensitive adhesive tape has a shear deformation rate of 100 to 300% when a shear load of 200 g is applied to the pressure-sensitive adhesive tape at 80 ° C. for 3 minutes.
- the present invention is described in detail below.
- the present inventors provide a polymer component containing an acrylic polymer having a crosslinkable functional group obtained by living radical polymerization, and a rosin-based tackifier resin having a crosslinkable functional group or a terpene adhesive having a crosslinkable functional group.
- a double-sided pressure-sensitive adhesive tape having a pressure-sensitive adhesive layer in which an imparting resin and a crosslinking agent are blended the shear deformation rate is constant when 200 g of shearing force is applied at 80 ° C. for 3 minutes to a double-sided pressure-sensitive adhesive tape affixed at a bonding area of 1 cm 2.
- the inventors have found that even a thin double-sided pressure-sensitive adhesive tape can exhibit high heat-resistant adhesiveness, and have completed the present invention.
- the double-sided pressure-sensitive adhesive tape of the present invention has a shear deformation rate of 100 to 300% when a 200 g shear load is applied at 80 ° C. for 3 minutes to a double-sided pressure-sensitive adhesive tape attached with an adhesion area of 1 cm 2 .
- the shear deformation rate is within the above range, the double-sided pressure-sensitive adhesive tape can exhibit high heat-resistant adhesiveness. If the shear deformation rate is less than 100%, the double-sided pressure-sensitive adhesive tape becomes too hard, and the adhesiveness becomes low at room temperature, so that the double-sided pressure-sensitive adhesive tape becomes too soft, and if it exceeds 300%, the double-sided pressure-sensitive adhesive tape becomes too soft. It becomes easy to peel off under.
- a more preferable lower limit of the shear deformation rate is 140%.
- FIG. 1 A schematic diagram showing an outline of an apparatus used for the measurement of the shear deformation rate is shown in FIG.
- the shear deformation rate can be measured, for example, as follows using a measuring apparatus as shown in FIG. First, the release film on one side of the double-sided pressure-sensitive adhesive tape to be tested is peeled off, and a corona-treated polyethylene terephthalate (PET) film is applied to the exposed pressure-sensitive adhesive layer, and then cut into a width of 1 cm and a length of 12 cm The test piece 5 is obtained.
- the temperature controller 4 (for example, a combination of a Peltier element and a cooling chiller unit) is set to 80 ° C. and left until it stabilizes at the set temperature.
- the other release film of the test piece 5 is removed by peeling about 3 cm from the end, and the exposed pressure-sensitive adhesive layer is attached to the adherend 3 so that the adhesion area becomes 1 cm ⁇ 1 cm.
- a quartz block 2 having a mirror-finished end surface is placed on the pasting surface, and the test piece 5 is attached to a wire connecting to a weight 6 of 200 g. Let stand in this state and incubate for 5 minutes. After 5 minutes, the PC connected to the apparatus is operated to start applying a load, and a shear load in the waterside direction is applied to the test piece 5 for 3 minutes.
- the displacement amount due to the adhesive deformation is detected by the laser interferometer 1 as the movement amount of the mirror-treated quartz block 2 on the test piece 5. After 3 minutes, the displacement amount accompanying the deformation of the adhesive can be read, and the “shear deformation rate” can be calculated based on the following calculation formula.
- Shear deformation rate (%) (displacement displacement of test piece 5 after 3 minutes) / (adhesive layer thickness of test piece 5) ⁇ 100
- the double-sided pressure-sensitive adhesive tape of the present invention is a pressure-sensitive adhesive containing a polymer component containing an acrylic polymer having a crosslinkable functional group obtained by living radical polymerization (hereinafter also simply referred to as “living radical polymerization acrylic polymer”).
- living radical polymerization acrylic polymer has a layer.
- the living radical polymerization acrylic polymer is obtained by living radical polymerization using an acrylic monomer such as (meth) acrylic acid ester or (meth) acrylic acid as a raw material, preferably living radical polymerization using an organic tellurium polymerization initiator.
- Living radical polymerization is polymerization in which molecular chains grow without the polymerization reaction being hindered by side reactions such as termination reactions or chain transfer reactions.
- living radical polymerization for example, a polymer having a more uniform molecular weight and composition than that of free radical polymerization can be obtained, and the generation of low molecular weight components and the like can be suppressed, so that the double-sided adhesive tape is peeled off even at high temperatures. It becomes difficult.
- FIG. 2 shows a schematic diagram for explaining living radical polymerization.
- Living radical polymerization is polymerization in which molecular chains grow without the polymerization reaction being hindered by side reactions such as termination reactions or chain transfer reactions.
- the reaction proceeds without the growth terminal radicals being deactivated and without generating new radical species during the reaction.
- the crosslinkable functional group-containing monomer 112 is included in all the polymers of the acrylic polymer 11 to be obtained.
- FIG. 3 is a schematic diagram for explaining a case where an acrylic polymer obtained by living radical polymerization is crosslinked.
- the composition of all polymers is uniform, and since the crosslinkable functional group-containing monomer is included, all polymer chains are involved in crosslinking.
- a hydroxyl group is shown as an example of the crosslinkable functional group.
- the shear deformation rate can be adjusted to the above range and high heat-resistant adhesion can be exhibited. it can.
- FIG. 4 shows a schematic diagram for explaining free radical polymerization.
- free radical polymerization radical species are continuously generated during the reaction and added to the monomer, and the polymerization proceeds. Therefore, in the free radical polymerization, a polymer 123 in which the growing terminal radical is deactivated during the reaction and a polymer 124 grown by the radical species newly generated during the reaction are generated. Therefore, when an acrylic polymer containing a crosslinkable functional group is produced by free radical polymerization, a polymer containing no relatively low molecular weight crosslinkable functional group-containing monomer is produced.
- FIG. 5 shows a schematic diagram for explaining a case where an acrylic polymer obtained by free radical polymerization is crosslinked.
- the acrylic polymer obtained by free radical polymerization has a non-uniform polymer composition and contains a polymer that does not contain a relatively low molecular weight crosslinkable functional group-containing monomer. ing.
- a hydroxyl group is shown as an example of the crosslinkable functional group.
- the living radical polymerization acrylic polymer has a more uniform molecular weight and composition as compared with free radical polymerization and the like, has a low content of low molecular weight components, and almost all polymers have a crosslinkable functional group-containing monomer. It has the property of being included.
- the effect of the present invention that can exhibit high heat-resistant adhesion that is difficult to peel off even when stress is applied at a high temperature of 80 ° C. or higher is exhibited for the first time by using a living radical polymerization acrylic polymer.
- the characteristics of such a living radical polymerization acrylic polymer are due to a production method called living radical polymerization in which a molecular chain grows without being hindered by a side reaction such as a termination reaction or a chain transfer reaction.
- a side reaction such as a termination reaction or a chain transfer reaction.
- Mw weight average molecular weight
- Mw / Mn molecular weight distribution
- living radical polymerization using an organic tellurium polymerization initiator protects all radical polymerizable monomers having polar functional groups such as hydroxyl groups and carboxyl groups, unlike other living radical polymerizations. Without polymerization, the same initiator can be polymerized to obtain a polymer having a uniform molecular weight and composition. For this reason, the radically polymerizable monomer having a polar functional group can be easily copolymerized.
- the organic tellurium polymerization initiator is not particularly limited as long as it is generally used for living radical polymerization, and examples thereof include organic tellurium compounds and organic telluride compounds.
- examples of the organic tellurium compounds include (methylterranyl-methyl) benzene, (1-methylterranyl-ethyl) benzene, (2-methylterranyl-propyl) benzene, 1-chloro-4- (methylterranyl-methyl) benzene, 1-hydroxy- 4- (methylterranyl-methyl) benzene, 1-methoxy-4- (methylterranyl-methyl) benzene, 1-amino-4- (methylterranyl-methyl) benzene, 1-nitro-4- (methylterranyl-methyl) benzene, 1- Cyano-4- (methylterranyl-methyl) benzene, 1-methylcarbonyl-4- (methylterranyl-methyl) benzene, 1-phenylcarbonyl-4- (methylterran
- the methyl terranyl group in these organic tellurium compounds may be an ethyl terranyl group, n-propyl terranyl group, isopropyl terranyl group, n-butyl terranyl group, isobutyl terranyl group, t-butyl terranyl group, phenyl terranyl group, etc.
- These organic tellurium compounds may be used alone or in combination of two or more.
- organic telluride compound examples include dimethyl ditelluride, diethyl ditelluride, di-n-propyl ditelluride, diisopropyl ditelluride, dicyclopropyl ditelluride, di-n-butyl ditelluride, di-sec-butyl ditelluride.
- These organic telluride compounds may be used alone or in combination of two or more. Of these, dimethyl ditelluride, diethyl ditelluride, di-n-propyl ditelluride, di-n-butyl ditelluride and diphenyl ditelluride are preferable.
- an azo compound as a polymerization initiator for the purpose of acceleration
- the azo compound is not particularly limited as long as it is generally used for radical polymerization.
- 2,2′-azobis isobutyronitrile
- the living radical polymerization acrylic polymer contains a crosslinkable functional group
- an acrylic monomer having a crosslinkable functional group is blended as an acrylic monomer that is polymerized in the living radical polymerization.
- the crosslinkable functional group include a hydroxyl group, a carboxyl group, a glycidyl group, an amino group, an amide group, and a nitrile group.
- a hydroxyl group or a carboxyl group is preferable and a hydroxyl group is more preferable.
- Examples of the monomer having a hydroxyl group include (meth) acrylic acid esters having a hydroxyl group such as 4-hydroxybutyl (meth) acrylate and 2-hydroxyethyl (meth) acrylate.
- a monomer which has a carboxyl group (meth) acrylic acid is mentioned, for example.
- Examples of the monomer having a glycidyl group include glycidyl (meth) acrylate.
- Examples of the monomer having an amide group include hydroxyethyl acrylamide, isopropyl acrylamide, dimethylaminopropyl acrylamide and the like.
- Examples of the monomer having a nitrile group include acrylonitrile.
- the content is not particularly limited, but a preferable upper limit in the radical polymerizable monomer to be polymerized in the living radical polymerization is 30% by weight.
- a preferable upper limit in the radical polymerizable monomer to be polymerized in the living radical polymerization is 30% by weight.
- the content thereof is not particularly limited, but the preferable lower limit in the radical polymerizable monomer polymerized in the living radical polymerization is 0.1% by weight, and the preferable upper limit is 10% by weight. is there.
- the content is less than 0.1% by weight, the pressure-sensitive adhesive layer may become too soft and heat resistant adhesiveness may be deteriorated. If the content exceeds 10% by weight, the pressure-sensitive adhesive layer may become too hard and the double-sided pressure-sensitive adhesive tape may be easily peeled off.
- acrylic monomer that is polymerized in the living radical polymerization other radical polymerizable monomers other than the acrylic monomer having a crosslinkable functional group may be used.
- other (meth) acrylic acid ester is mentioned, for example.
- acrylic monomers having other polar functional groups such as amino groups, amide groups, and nitrile groups can also be used.
- a vinyl compound may be used as a monomer.
- the other (meth) acrylic acid esters are not particularly limited, and are methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, 2 (Meth) acrylic acid alkyl esters such as ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isomyristyl (meth) acrylate, stearyl (meth) acrylate, Cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, gly
- the vinyl compound is not particularly limited, and examples thereof include (meth) acrylamide compounds such as N, N-dimethylacrylamide, N, N-diethylacrylamide, N-isopropylacrylamide, N-hydroxyethylacrylamide, and acrylamide, N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylacetamide, N-acryloylmorpholine, acrylonitrile, styrene, vinyl acetate and the like can be mentioned. These vinyl compounds may be used alone or in combination of two or more.
- a dispersion stabilizer may be used.
- the dispersion stabilizer include polyvinyl pyrrolidone, polyvinyl alcohol, methyl cellulose, ethyl cellulose, poly (meth) acrylic acid, poly (meth) acrylic acid ester, and polyethylene glycol.
- the living radical polymerization method conventionally known methods are used, and examples thereof include solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, bulk polymerization and the like.
- the polymerization solvent is not particularly limited.
- a nonpolar solvent such as hexane, cyclohexane, octane, toluene, xylene, water, methanol, ethanol, propanol, butanol, acetone, Highly polar solvents such as methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, dioxane, N, N-dimethylformamide can be used. These polymerization solvents may be used alone or in combination of two or more.
- the polymerization temperature is preferably 0 to 110 ° C. from the viewpoint of the polymerization rate.
- the living radical polymerization acrylic polymer has a lower limit of 500,000 and an upper limit of 1.5 million for the weight average molecular weight (Mw).
- Mw weight average molecular weight
- the living radical polymerization acrylic polymer has a molecular weight distribution (Mw / Mn) of 1.05 to 2.5. By setting the molecular weight distribution within this range, the shear deformation rate can be adjusted within the above range, and high heat-resistant adhesiveness can be exhibited.
- a preferable upper limit of the molecular weight distribution is 2.0, and a more preferable upper limit is 1.8.
- the molecular weight distribution (Mw / Mn) is a ratio between the weight average molecular weight (Mw) and the number average molecular weight (Mn).
- a weight average molecular weight (Mw) and a number average molecular weight (Mn) are measured as a polystyrene conversion molecular weight by the gel permeation chromatography (GPC) method.
- GPC gel permeation chromatography
- the weight average molecular weight (Mw) and the number average molecular weight (Mn) are obtained by filtering a diluted solution obtained by diluting a living radical polymerization acrylic polymer with tetrahydrofuran (THF) 50 times through a filter. It is measured as a polystyrene equivalent molecular weight by the GPC method using the filtrate obtained.
- 2690 Separations Model manufactured by Waters
- the polymer component may contain a polymer other than the living radical polymerization acrylic polymer, for example, a polymer obtained by free radical polymerization.
- the minimum with preferable content of the said living radical polymerization acrylic polymer in the said polymer component is 60 weight%, and it is preferable that the whole quantity (100 weight%) of a polymer component is the said living radical polymerization acrylic polymer.
- the rosin tackifier resin or terpene tackifier resin is not included in the polymer component.
- the pressure-sensitive adhesive layer contains a rosin tackifier resin having a crosslinkable functional group or a terpene tackifier resin having a crosslinkable functional group.
- a rosin tackifier resin having a crosslinkable functional group or a terpene tackifier resin having a crosslinkable functional group.
- the living radical polymerization acrylic polymer and the tackifying resin can be obtained by using, for example, an epoxy crosslinking agent or an aziridine crosslinking agent as a crosslinking agent. Both of them react and crosslink via a crosslinking agent.
- Living radical polymerization acrylic polymer has uniform composition of almost all polymers and has crosslinkable functional groups, so almost all polymers can crosslink between polymer chains and between polymer chains and tackifying resins. Can be involved. For this reason, even if it is a thin double-sided adhesive tape, high heat-resistant adhesiveness can be exhibited.
- the lower limit of the hydroxyl value of the rosin-based tackifier resin or terpene-based tackifier resin is 25. When the hydroxyl value is 25 or more, particularly high heat-resistant adhesiveness can be exhibited. A more preferred lower limit of the hydroxyl value is 30.
- the hydroxyl value can be measured by JIS K1557 (phthalic anhydride method).
- the rosin-based tackifier resin or terpene-based tackifier resin has a preferred softening temperature lower limit of 70 ° C. and a preferred upper limit of 170 ° C. When the softening temperature is within this range, particularly excellent heat-resistant adhesiveness can be exhibited. A more preferable lower limit of the softening temperature is 120 ° C.
- the softening temperature is a softening temperature measured by the JIS K2207 ring and ball method.
- the rosin tackifier resin or terpene tackifier resin is not particularly limited, and examples thereof include rosin ester resins and terpene phenol resins, and rosin ester resins are preferable.
- the above-mentioned rosin ester resins are rosin resins mainly composed of abietic acid, disproportionated rosin resins and hydrogenated rosin resins, dimers of polymer acids such as abietic acid (polymerized rosin resins), etc. It is the resin obtained by making it. A part of the hydroxyl group of the alcohol used for esterification is contained in the resin without being used for esterification, so that the hydroxyl value is adjusted to the above range.
- the alcohol examples include polyhydric alcohols such as ethylene glycol, glycerin, and pentaerythritol.
- Resin esterified rosin resin is rosin ester resin, disproportionated rosin resin esterified disproportionated rosin ester resin, hydrogenated rosin resin esterified resin is hydrogenated rosin ester resin, polymerized rosin A resin obtained by esterifying the resin is a polymerized rosin ester resin.
- the terpene phenol resin is a resin obtained by polymerizing terpene in the presence of phenol.
- Examples of the disproportionated rosin ester resin include Superester A75 (hydroxyl value 23, softening temperature 75 ° C.) manufactured by Arakawa Chemical Industries, Superester A100 (hydroxyl value 16, softening temperature 100 ° C.) manufactured by Arakawa Chemical Co., Ltd. Examples thereof include ester A115 (hydroxyl value 19, softening temperature 115 ° C.), super ester A125 (hydroxyl value 15, softening temperature 125 ° C.) manufactured by the same company.
- Examples of the hydrogenated rosin ester resin include Pine Crystal KE-359 (hydroxyl value 42, acid value 12, softening temperature 100 ° C.) manufactured by Arakawa Chemical Industries, and ester gum H (hydroxyl value 29, softening temperature 70 ° C.) manufactured by the same company. ) And the like.
- Examples of the polymerized rosin ester resin include Pencel D135 (hydroxyl value 45, acid value 13, softening temperature 135 ° C.) manufactured by Arakawa Chemical Industries, Ltd. Pencel D125 (hydroxyl value 34, acid value 13, softening temperature 125 ° C.) And Pencel D160 (hydroxyl value 42, acid value 13, softening temperature 160 ° C.) manufactured by the same company.
- terpene-based tackifier resin examples include YS Polystar G150 (softening point 150 ° C.) manufactured by Yasuhara Chemical, YS Polystar T100 (softening point 100 ° C.) manufactured by Yasuhara Chemical, YS Polystar G125 (softening point 125 ° C.) manufactured by the company YS Polystar T115 (softening point 115 ° C), YS Polystar T130 (softening point 130 ° C), Polystar U115 (softening point 115 ° C), Polystar UH115 (softening point 115 ° C), YS Resin PX1250 (manual) Softening point 125 ° C.). These rosin-based tackifier resins or terpene-based tackifier resins may be used alone or in combination of two or more.
- the content of the rosin-based tackifier resin or the terpene-based tackifier resin is preferably 20 parts by weight with respect to 100 parts by weight of the living radical polymerization acrylic polymer, and 50 parts by weight with respect to the preferred upper limit.
- the content of the tackifying resin is within this range, the shear deformation rate can be easily adjusted to the above range, and excellent adhesiveness and heat-resistant adhesiveness can be exhibited.
- the minimum with more preferable content of the said tackifying resin is 25 weight part, and a more preferable upper limit is 45 weight part.
- the pressure-sensitive adhesive layer contains a crosslinking agent.
- the said crosslinking agent is not specifically limited, According to the combination of the said living radical polymerization acrylic polymer, a rosin type tackifying resin, or a terpene type tackifying resin, the crosslinking agent which can bridge
- the crosslinking agent include isocyanate crosslinking agents, aziridine crosslinking agents, epoxy crosslinking agents, metal chelate crosslinking agents, and the like. Especially, since it is excellent in the adhesive stability with respect to a base material, an isocyanate type crosslinking agent is preferable.
- Examples of the isocyanate-based crosslinking agent include Coronate HX (manufactured by Nippon Polyurethane Industry Co., Ltd.), Coronate L (manufactured by Nippon Polyurethane Industry Co., Ltd.), and Mytec NY260A (manufactured by Mitsubishi Chemical Corporation).
- the content of the crosslinking agent is preferably 0.01 parts by weight and preferably 5 parts by weight with respect to 100 parts by weight of the living radical polymerization acrylic polymer.
- the gel fraction of the pressure-sensitive adhesive layer can be adjusted by appropriately adjusting the type or amount of the crosslinking agent.
- the pressure-sensitive adhesive layer may contain other resins such as additives such as a plasticizer, an emulsifier, a softener, a filler, a pigment, a dye, a silane coupling agent, and an antioxidant, if necessary. Good.
- additives such as a plasticizer, an emulsifier, a softener, a filler, a pigment, a dye, a silane coupling agent, and an antioxidant, if necessary. Good.
- the pressure-sensitive adhesive layer preferably has a gel fraction of 50% by weight or less.
- the lower limit of the gel fraction of the pressure-sensitive adhesive layer is not particularly limited, but is preferably 1% by weight or more, more preferably 5% by weight or more, and more preferably 20% by weight or more from the viewpoint of heat resistance and the like. More preferably.
- the gel fraction is measured as follows. First, a double-sided pressure-sensitive adhesive tape was cut into a flat rectangular shape of 50 mm ⁇ 100 mm to prepare a test piece.
- the test piece was immersed in ethyl acetate at 23 ° C. for 24 hours, then taken out from ethyl acetate, and the condition of 110 ° C. Dry under 1 hour.
- the weight of the test piece after drying is measured, and the gel fraction is calculated using the following formula.
- the release film for protecting an adhesive layer shall not be laminated
- Gel fraction (% by weight) 100 ⁇ (W2-W0) / (W1-W0) (W0: weight of substrate, W1: weight of test piece before immersion, W2: weight of test piece after immersion and drying)
- the thickness of the pressure-sensitive adhesive layer is not particularly limited because it is set depending on the application, but a preferred lower limit is 1 ⁇ m and a preferred upper limit is 100 ⁇ m. When the thickness is less than 1 ⁇ m, the double-sided pressure-sensitive adhesive tape is easily peeled off, and the constant load peelability to a low-polar adherend such as a polypropylene (PP) plate may be lowered. When the said thickness exceeds 100 micrometers, a thin double-sided adhesive tape may not be obtained.
- the more preferable lower limit of the thickness is 5 ⁇ m, and the more preferable upper limit is 75 ⁇ m.
- the double-sided pressure-sensitive adhesive tape of the present invention may be a support type having a base material or a non-support type having no base material.
- the pressure-sensitive adhesive layer may be formed on one side of the base material, or the pressure-sensitive adhesive layer may be formed on both sides, but both sides can exhibit higher heat resistant adhesiveness. It is preferable that the above-mentioned pressure-sensitive adhesive layer is formed.
- a resin film, a resin foam, paper, a nonwoven fabric, a yarn cloth cloth etc. are mentioned.
- the resin film include polyolefin resin films such as polyethylene films and polypropylene films, polyester resin films such as PET films, and modified olefins such as ethylene-vinyl acetate copolymers and ethylene-acrylic ester copolymers.
- examples thereof include a resin film, a polyvinyl chloride resin film, a polyurethane resin film, and a cycloolefin polymer resin film.
- the resin foam include polyethylene foam, polypropylene foam, acrylic foam, urethane foam, and ethylene propylene rubber foam.
- Examples of the yarn cloth cloth include a woven polyethylene flat yarn and a laminate of a resin film on the surface thereof.
- black-printed substrates to prevent light transmission black-printed substrates to improve light reflectivity, metal-deposited film substrates, etc. Can also be used.
- the thickness of the substrate is not particularly limited because it is set depending on the use, but for example, in the case of a film substrate, it is preferably 1 to 100 ⁇ m, more preferably 5 to 75 ⁇ m.
- the thickness of the base material is less than 1 ⁇ m, the mechanical strength of the double-sided pressure-sensitive adhesive tape may be lowered.
- the thickness of the base material exceeds 100 ⁇ m, the double-sided pressure-sensitive adhesive tape becomes too strong, and it may be difficult to adhere and adhere together along the shape of the adherend.
- the thickness of the double-sided pressure-sensitive adhesive tape of the present invention is not particularly limited because it is set depending on the application.
- 3 to 300 ⁇ m is preferable, 15 to 225 ⁇ m is more preferable, Particularly preferred. Since the double-sided pressure-sensitive adhesive tape of the present invention can exhibit high heat-resistant adhesiveness even when it is very thin of about 15 to 30 ⁇ m, the thickness of the double-sided pressure-sensitive adhesive tape is reduced and the thickness of the laminated body bonded with the members is increased. Can be suppressed.
- the method for producing the double-sided pressure-sensitive adhesive tape of the present invention is not particularly limited.
- the living radical polymerization acrylic polymer and the rosin-based tackifier resin or the terpene-based tackifier resin may be used as necessary, for example, the crosslinking agent.
- the pressure-sensitive adhesive solution is coated and dried on a release-treated PET film to form a pressure-sensitive adhesive layer. Examples thereof include a method of transferring the layer to one or both sides of the substrate, a method of directly coating and drying the substrate, and the like.
- a pressure-sensitive adhesive layer formed by coating and drying a PET film obtained by releasing the pressure-sensitive adhesive solution may be used as a non-support type double-sided pressure-sensitive adhesive tape without a substrate.
- the double-sided pressure-sensitive adhesive tape of the present invention is not particularly limited, it can be particularly suitably used for fixing electronic device parts and in-vehicle parts.
- the double-sided pressure-sensitive adhesive tape of the present invention can be used for adhesion / fixation of electronic device parts, adhesion / fixation of in-vehicle components (for example, in-vehicle panels) in large-sized portable electronic devices.
- the double-sided pressure-sensitive adhesive tape for fixing electronic device parts comprising the double-sided pressure-sensitive adhesive tape of the present invention is also one aspect of the present invention.
- the in-vehicle component fixing double-sided pressure-sensitive adhesive tape comprising the double-sided pressure-sensitive adhesive tape of the present invention is also one aspect of the present invention.
- the shape of the double-sided pressure-sensitive adhesive tape for fixing electronic device parts and the double-sided pressure-sensitive adhesive tape for fixing vehicle-mounted parts of the present invention is not particularly limited, and examples thereof include a rectangular shape, a frame shape, a circular shape, an elliptical shape, and a donut shape. Since the double-sided pressure-sensitive adhesive tape of the present invention has a high heat-resistant adhesive property, it can be particularly preferably used for fixing electronic device parts and in-vehicle parts even if the line width is 1 mm or less.
- the double-sided adhesive tape which can exhibit the high heat-resistant adhesiveness which is hard to peel even if stress is applied under the high temperature of 80 degreeC or more can be provided.
- GPC measurement was performed under the conditions of a sample flow rate of 1 mL / min and a column temperature of 40 ° C., and the polystyrene equivalent molecular weight of the polymer was measured. (Mw) and molecular weight distribution (Mw / Mn) were determined.
- GPC KF-806L manufactured by Showa Denko was used as the column, and a differential refractometer was used as the detector.
- Examples 1 to 7, Comparative Examples 1 to 7 Ethyl acetate is added to the acrylic polymer-containing solution obtained above with respect to 100 parts by weight of the non-volatile content and stirred, and a tackifying resin and a crosslinking agent are added in the types and amounts shown in Table 2.
- a pressure-sensitive adhesive solution having a nonvolatile content of 30% by weight The obtained pressure-sensitive adhesive solution was applied to a PET film having a thickness of 50 ⁇ m which had been subjected to a release treatment so that the paste thickness would be 10 ⁇ m after drying, and then dried at 100 ° C. for 10 minutes to obtain a pressure-sensitive adhesive layer.
- the obtained pressure-sensitive adhesive layer was transferred onto one surface of a 10 ⁇ m-thick polyethylene terephthalate (PET) film having corona treatment on both surfaces serving as a base material.
- a pressure-sensitive adhesive layer having a thickness of 10 ⁇ m was transferred onto the other surface of the PET film serving as a base material by the same method to obtain a double-sided pressure-sensitive adhesive tape having a thickness of 30 ⁇ m.
- a 7 ⁇ m thick adhesive layer was transferred onto both sides of a 6 ⁇ m thick PET film to obtain a 20 ⁇ m thick double-sided adhesive tape.
- the tackifying resin and the crosslinking agent used are as follows.
- Rosin-based tackifier resin A Polymerized rosin ester resin, hydroxyl value 46, softening point 160 ° C.
- Rosin-based tackifying resin B hydrogenated rosin ester resin, hydroxyl value 42, softening point 100 ° C.
- Terpene-based tackifier resin C terpene phenol resin, softening point 150 ° C.
- Terpene-based tackifier resin D terpene phenol resin, softening point 125 ° C ⁇ Crosslinking agent> Coronate L: manufactured by Nippon Polyurethane Co., Ltd., isocyanate-based crosslinking agent
- the displacement displacement recovery rate was measured as follows using the apparatus (Asahi Seiko Co., Ltd. shear shear measuring device, NST1) used for the measurement of the shear deformation rate shown in FIG. .
- the release film on one side of the obtained double-sided pressure-sensitive adhesive tape is peeled off and a polyethylene terephthalate (PET) film subjected to corona treatment is attached to the exposed pressure-sensitive adhesive layer, and then cut into a width of 1 cm and a length of 12 cm.
- Test piece 5 was obtained.
- the temperature controller 4 of the apparatus was set to 80 ° C. and left to stabilize at the set temperature. (The following temperature controllers were used in combination: Takagi Manufacturing Co., Ltd.
- the other release film of the test piece 5 is peeled off about 3 cm from the end and removed, and the exposed adhesive layer is attached to the adherend 3 so that the adhesion area becomes 1 cm ⁇ 1 cm. I attached.
- a quartz block 2 (having chrome deposited on quartz glass) whose end face is mirror-finished is placed on the affixing surface, and the test piece 5 is attached to a wire that connects to a 200 g weight 6. The mixture was left in this state for 5 minutes.
- the PC connected to the apparatus was operated to start applying a load, and a shear load in the waterside direction was applied to the test piece 5 for 3 minutes.
- the displacement amount accompanying the deformation of the adhesive is detected as the movement amount of the mirror-treated quartz block 2 on the test piece 5 by the laser interferometer 1 (SI-F10 manufactured by Keyence), and “shear deformation” is calculated based on the above formula. "Rate” was calculated.
- the obtained double-sided adhesive tape was cut into a flat rectangular shape of 50 mm ⁇ 100 mm to prepare a test piece, and the release film was peeled off.
- the test piece was immersed in ethyl acetate at 23 ° C. for 24 hours, then taken out from the ethyl acetate and dried at 110 ° C. for 1 hour. The weight of the test piece after drying was measured, and the gel fraction was calculated using the above formula.
- FIG. 6 the schematic diagram explaining the heating PUSH test of a double-sided adhesive tape is shown.
- the obtained double-sided adhesive tape was punched into an outer diameter of 61 mm, a length of 61 mm, an inner diameter of 59 mm, and a length of 59 mm to produce a frame-shaped test piece 20 having a width of 1 mm.
- the square hole is approximately at the center of the test piece 20 from which the release paper has been peeled off from the polycarbonate plate 22 having a thickness of 50 mm and a square hole having a length of 50 mm and a thickness of 2 mm.
- a polycarbonate plate 21 having a width of 65 mm, a length of 65 mm, and a thickness of 1 mm was pasted from the upper surface of the test piece 1 so that the test piece 20 was positioned substantially at the center, and the test apparatus was assembled. Thereafter, a 200 g roller was reciprocated once from the polycarbonate plate side positioned on the upper surface of the test apparatus, and the polycarbonate plate positioned on the top and bottom were pressed against each other and the test piece was allowed to stand at 23 ° C. for 15 hours.
- the prepared test apparatus was turned upside down and fixed on a support base, and then placed in a temperature controller adjusted to 80 ° C. and left to be stable.
- a load 23 was slowly applied through the square hole at a speed of 10 mm / min.
- “X” indicates that the test piece and the polycarbonate plate were peeled off due to the load
- “ ⁇ ” indicates that the load exceeded 4N and reached 5N
- the load exceeded 5N Those that did not peel off were evaluated as “ ⁇ ”.
- the double-sided adhesive tape which can exhibit the high heat-resistant adhesiveness which is hard to peel even if stress is applied under the high temperature of 80 degreeC or more can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Adhesive Tapes (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
具体的には、例えば、画像表示装置又は入力装置を搭載した携帯電子機器(例えば、携帯電話、携帯情報端末等)において、組み立てのために両面粘着テープが用いられている。より具体的には、例えば、携帯電子機器の表面を保護するためのカバーパネルをタッチパネルモジュール又はディスプレイパネルモジュールに接着したり、タッチパネルモジュールとディスプレイパネルモジュールとを接着したりするために両面粘着テープが用いられている。このような両面粘着テープは、例えば、額縁状等の形状に打ち抜かれ、表示画面の周辺に配置されるようにして用いられる(例えば、特許文献1、2)。また、車輌部品(例えば、車載用パネル)を車両本体に固定する用途にも両面粘着テープが用いられている。 Double-sided pressure-sensitive adhesive tapes are used in various industrial fields because they can be easily joined. Temporary fixing of curing sheets and bonding of interior materials in the construction field, fixing of interior parts such as seats and sensors, fixing of exterior parts such as side moldings and side visors in the automotive field, module assembly in the electrical and electronic field, Double-sided adhesive tape is used for attaching the module to the housing.
Specifically, for example, a double-sided pressure-sensitive adhesive tape is used for assembly in a portable electronic device (for example, a mobile phone, a portable information terminal, or the like) equipped with an image display device or an input device. More specifically, for example, a double-sided adhesive tape is used to bond a cover panel for protecting the surface of a portable electronic device to the touch panel module or the display panel module, or to bond the touch panel module and the display panel module. It is used. Such a double-sided pressure-sensitive adhesive tape is used, for example, by being punched into a frame shape or the like and arranged around the display screen (for example,
以下に本発明を詳述する。 The present invention relates to a polymer component containing an acrylic polymer having a crosslinkable functional group obtained by living radical polymerization and having a weight average molecular weight of 500,000 to 1,500,000 and a molecular weight distribution (Mw / Mn) of 1.05 to 2.5. And a rosin-based tackifier resin having a crosslinkable functional group, or a terpene tackifier resin having a crosslinkable functional group, and a pressure-sensitive adhesive layer containing a crosslinker, and bonded on an adhesive area of 1 cm 2 The double-sided pressure-sensitive adhesive tape has a shear deformation rate of 100 to 300% when a shear load of 200 g is applied to the pressure-sensitive adhesive tape at 80 ° C. for 3 minutes.
The present invention is described in detail below.
まず、試験対象となる両面粘着テープの一方の面の離型フィルムを剥がし、露出した粘着剤層にコロナ処理を施したポリエチレンテレフタレート(PET)フィルムを貼り付けた後、幅1cm×縦12cmにカットして試験片5とする。
温調器4(例えば、ペルチェ素子と冷却用チラーユニットとの組み合わせ)を80℃に設定し、設定温度で安定するまで放置する。
試験片5の他方の離型フィルムを端から3cm程度剥がして除去し、露出した粘着剤層を、接着面積が1cm×1cmになるよう被着体3に貼り付ける。
貼り付け面上に端面を鏡面処理した石英製のブロック2を載せ、試験片5を200gの分銅6につなぐワイヤーにとりつける。この状態で放置し、5分間恒温化する。
5分後、装置に接続しているPCを操作して荷重を加え始めて3分間、試験片5に対し水辺方向へのせん断負荷を与える。ここで粘着剤変形に伴うずれ変位量は、レーザー干渉計1によって試験片5上の鏡面処理石英ブロック2の移動量として検出される。3分後に粘着剤変形に伴うずれ変位量を読み取り、以下の計算式に基づいて「せん断変形率」を算出することができる。 A schematic diagram showing an outline of an apparatus used for the measurement of the shear deformation rate is shown in FIG. The shear deformation rate can be measured, for example, as follows using a measuring apparatus as shown in FIG.
First, the release film on one side of the double-sided pressure-sensitive adhesive tape to be tested is peeled off, and a corona-treated polyethylene terephthalate (PET) film is applied to the exposed pressure-sensitive adhesive layer, and then cut into a width of 1 cm and a length of 12 cm The
The temperature controller 4 (for example, a combination of a Peltier element and a cooling chiller unit) is set to 80 ° C. and left until it stabilizes at the set temperature.
The other release film of the
A
After 5 minutes, the PC connected to the apparatus is operated to start applying a load, and a shear load in the waterside direction is applied to the
上記リビングラジカル重合アクリル系ポリマーは、(メタ)アクリル酸エステルや(メタ)アクリル酸等のアクリル系モノマーを原料として、リビングラジカル重合、好ましくは有機テルル重合開始剤を用いたリビングラジカル重合により得られたアクリル系ポリマーである。
リビングラジカル重合は、重合反応が停止反応又は連鎖移動反応等の副反応で妨げられることなく分子鎖が生長していく重合である。リビングラジカル重合によれば、例えばフリーラジカル重合等と比較してより均一な分子量及び組成を有するポリマーが得られ、低分子量成分等の生成を抑えることができるため、高温下でも両面粘着テープが剥がれにくくなる。 The double-sided pressure-sensitive adhesive tape of the present invention is a pressure-sensitive adhesive containing a polymer component containing an acrylic polymer having a crosslinkable functional group obtained by living radical polymerization (hereinafter also simply referred to as “living radical polymerization acrylic polymer”). Has a layer.
The living radical polymerization acrylic polymer is obtained by living radical polymerization using an acrylic monomer such as (meth) acrylic acid ester or (meth) acrylic acid as a raw material, preferably living radical polymerization using an organic tellurium polymerization initiator. Acrylic polymer.
Living radical polymerization is polymerization in which molecular chains grow without the polymerization reaction being hindered by side reactions such as termination reactions or chain transfer reactions. According to living radical polymerization, for example, a polymer having a more uniform molecular weight and composition than that of free radical polymerization can be obtained, and the generation of low molecular weight components and the like can be suppressed, so that the double-sided adhesive tape is peeled off even at high temperatures. It becomes difficult.
このように、ほとんど全てのポリマーがポリマー鎖間の架橋に関与することができることから、薄い両面粘着テープであってもせん断変形率を上記範囲に調整して、高い耐熱接着性を発揮することができる。 FIG. 2 shows a schematic diagram for explaining living radical polymerization. Living radical polymerization is polymerization in which molecular chains grow without the polymerization reaction being hindered by side reactions such as termination reactions or chain transfer reactions. In living radical polymerization, the reaction proceeds without the growth terminal radicals being deactivated and without generating new radical species during the reaction. In the middle of the reaction, all polymer chains are polymerized while uniformly reacting with the monomer, and the composition of all polymers approaches uniform. Therefore, the crosslinkable functional group-containing
In this way, almost all polymers can participate in the cross-linking between polymer chains, so even with a thin double-sided adhesive tape, the shear deformation rate can be adjusted to the above range and high heat-resistant adhesion can be exhibited. it can.
図4にフリーラジカル重合を説明する模式図を示した。フリーラジカル重合では、反応中に連続的にラジカル種が発生してモノマーに付加し、重合が進行する。そのためフリーラジカル重合では、反応の途中で生長末端ラジカルが失活したポリマー123や、反応中に新しく発生したラジカル種により生長したポリマー124が生成する。そのため、架橋性官能基を含有するアクリル系ポリマーをフリーラジカル重合で製造すると、比較的低分子量の架橋性官能基含有モノマーを含まないポリマーが生成してしまう。このようなフリーラジカル重合により得られたアクリル系ポリマー12を、架橋剤を用いて架橋しても、架橋性官能基含有モノマーを含まないポリマーは、ポリマー鎖間での架橋に関与することができない。図5に、フリーラジカル重合により得られたアクリル系ポリマーを架橋した場合を説明する模式図を示した。フリーラジカル重合により得られたアクリル系ポリマーでは、ポリマーの組成が不均一であり、比較的低分子量の架橋性官能基含有モノマーを含まないポリマーを含むことから、架橋に関与できないポリマー鎖が存在している。なお、図5では架橋性官能基の例として水酸基を記載した。両面粘着テープとして被着体に貼着したときに、架橋に関与できない架橋性官能基含有モノマーを含まない部位から剥離が発生してしまうことから、高温下で応力を加えると容易に剥離してしまう。 The effect of the present invention cannot be obtained even when an acrylic polymer obtained by conventional free radical polymerization is used.
FIG. 4 shows a schematic diagram for explaining free radical polymerization. In free radical polymerization, radical species are continuously generated during the reaction and added to the monomer, and the polymerization proceeds. Therefore, in the free radical polymerization, a
このようなリビングラジカル重合アクリル系ポリマーの特性は、重合反応が停止反応又は連鎖移動反応等の副反応で妨げられることなく分子鎖が生長していくというリビングラジカル重合という製造方法によるものである。しかしながら、重量平均分子量(Mw)や分子量分布(Mw/Mn)といったポリマー全体の平均値としてリビングラジカル重合アクリル系ポリマーの特性を間接的に表すことは可能であっても、含まれる個々のポリマーの鎖長や、個々のポリマー中のモノマー成分等の構造や特性を直接的に特定することは極めて困難である。上記リビングラジカル重合アクリル系ポリマーを、その構造又は特性により直接特定することは、不可能であるか、又はおよそ実際的でないといわざるを得ない。従って、本発明においては、リビングラジカル重合アクリル系ポリマーを、「リビングラジカル重合により得られた、・・・アクリル系ポリマー」と、その物の製造方法により記載することは許容されるべきである。 As described above, the living radical polymerization acrylic polymer has a more uniform molecular weight and composition as compared with free radical polymerization and the like, has a low content of low molecular weight components, and almost all polymers have a crosslinkable functional group-containing monomer. It has the property of being included. The effect of the present invention that can exhibit high heat-resistant adhesion that is difficult to peel off even when stress is applied at a high temperature of 80 ° C. or higher is exhibited for the first time by using a living radical polymerization acrylic polymer.
The characteristics of such a living radical polymerization acrylic polymer are due to a production method called living radical polymerization in which a molecular chain grows without being hindered by a side reaction such as a termination reaction or a chain transfer reaction. However, although it is possible to indirectly represent the characteristics of the living radical polymerization acrylic polymer as an average value of the whole polymer such as weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn), It is extremely difficult to directly specify the structure and properties of the chain length and the monomer component in each polymer. It must be said that it is impossible or not practical to directly identify the living radical polymerized acrylic polymer by its structure or properties. Therefore, in the present invention, it should be allowed to describe the living radical polymerization acrylic polymer by “the acrylic polymer obtained by living radical polymerization,” and the production method thereof.
上記有機テルル化合物として、例えば、(メチルテラニル-メチル)ベンゼン、(1-メチルテラニル-エチル)ベンゼン、(2-メチルテラニル-プロピル)ベンゼン、1-クロロ-4-(メチルテラニル-メチル)ベンゼン、1-ヒドロキシ-4-(メチルテラニル-メチル)ベンゼン、1-メトキシ-4-(メチルテラニル-メチル)ベンゼン、1-アミノ-4-(メチルテラニル-メチル)ベンゼン、1-ニトロ-4-(メチルテラニル-メチル)ベンゼン、1-シアノ-4-(メチルテラニル-メチル)ベンゼン、1-メチルカルボニル-4-(メチルテラニル-メチル)ベンゼン、1-フェニルカルボニル-4-(メチルテラニル-メチル)ベンゼン、1-メトキシカルボニル-4-(メチルテラニル-メチル)ベンゼン、1-フェノキシカルボニル-4-(メチルテラニル-メチル)ベンゼン、1-スルホニル-4-(メチルテラニル-メチル)ベンゼン、1-トリフルオロメチル-4-(メチルテラニル-メチル)ベンゼン、1-クロロ-4-(1-メチルテラニル-エチル)ベンゼン、1-ヒドロキシ-4-(1-メチルテラニル-エチル)ベンゼン、1-メトキシ-4-(1-メチルテラニル-エチル)ベンゼン、1-アミノ-4-(1-メチルテラニル-エチル)ベンゼン、1-ニトロ-4-(1-メチルテラニル-エチル)ベンゼン、1-シアノ-4-(1-メチルテラニル-エチル)ベンゼン、1-メチルカルボニル-4-(1-メチルテラニル-エチル)ベンゼン、1-フェニルカルボニル-4-(1-メチルテラニル-エチル)ベンゼン、1-メトキシカルボニル-4-(1-メチルテラニル-エチル)ベンゼン、1-フェノキシカルボニル-4-(1-メチルテラニル-エチル)ベンゼン、1-スルホニル-4-(1-メチルテラニル-エチル)ベンゼン、1-トリフルオロメチル-4-(1-メチルテラニル-エチル)ベンゼン、1-クロロ-4-(2-メチルテラニル-プロピル)ベンゼン、1-ヒドロキシ-4-(2-メチルテラニル-プロピル)ベンゼン、1-メトキシ-4-(2-メチルテラニル-プロピル)ベンゼン、1-アミノ-4-(2-メチルテラニル-プロピル)ベンゼン、1-ニトロ-4-(2-メチルテラニル-プロピル)ベンゼン、1-シアノ-4-(2-メチルテラニル-プロピル)ベンゼン、1-メチルカルボニル-4-(2-メチルテラニル-プロピル)ベンゼン、1-フェニルカルボニル-4-(2-メチルテラニル-プロピル)ベンゼン、1-メトキシカルボニル-4-(2-メチルテラニル-プロピル)ベンゼン、1-フェノキシカルボニル-4-(2-メチルテラニル-プロピル)ベンゼン、1-スルホニル-4-(2-メチルテラニル-プロピル)ベンゼン、1-トリフルオロメチル-4-(2-メチルテラニル-プロピル)ベンゼン、2-(メチルテラニル-メチル)ピリジン、2-(1-メチルテラニル-エチル)ピリジン、2-(2-メチルテラニル-プロピル)ピリジン、2-メチルテラニル-エタン酸メチル、2-メチルテラニル-プロピオン酸メチル、2-メチルテラニル-2-メチルプロピオン酸メチル、2-メチルテラニル-エタン酸エチル、2-メチルテラニル-プロピオン酸エチル、2-メチルテラニル-2-メチルプロピオン酸エチル、2-メチルテラニルアセトニトリル、2-メチルテラニルプロピオニトリル、2-メチル-2-メチルテラニルプロピオニトリル等が挙げられる。これらの有機テルル化合物中のメチルテラニル基は、エチルテラニル基、n-プロピルテラニル基、イソプロピルテラニル基、n-ブチルテラニル基、イソブチルテラニル基、t-ブチルテラニル基、フェニルテラニル基等であってもよく、また、これらの有機テルル化合物は、単独で用いてもよく、2種以上を併用してもよい。 The organic tellurium polymerization initiator is not particularly limited as long as it is generally used for living radical polymerization, and examples thereof include organic tellurium compounds and organic telluride compounds.
Examples of the organic tellurium compounds include (methylterranyl-methyl) benzene, (1-methylterranyl-ethyl) benzene, (2-methylterranyl-propyl) benzene, 1-chloro-4- (methylterranyl-methyl) benzene, 1-hydroxy- 4- (methylterranyl-methyl) benzene, 1-methoxy-4- (methylterranyl-methyl) benzene, 1-amino-4- (methylterranyl-methyl) benzene, 1-nitro-4- (methylterranyl-methyl) benzene, 1- Cyano-4- (methylterranyl-methyl) benzene, 1-methylcarbonyl-4- (methylterranyl-methyl) benzene, 1-phenylcarbonyl-4- (methylterranyl-methyl) benzene, 1-methoxycarbonyl-4- (methylterranyl-methyl) ) Benzene, 1- Enoxycarbonyl-4- (methylterranyl-methyl) benzene, 1-sulfonyl-4- (methylterranyl-methyl) benzene, 1-trifluoromethyl-4- (methylterranyl-methyl) benzene, 1-chloro-4- (1 -Methylterranyl-ethyl) benzene, 1-hydroxy-4- (1-methylterranyl-ethyl) benzene, 1-methoxy-4- (1-methylterranyl-ethyl) benzene, 1-amino-4- (1-methylterranyl-ethyl) Benzene, 1-nitro-4- (1-methylterranyl-ethyl) benzene, 1-cyano-4- (1-methylterranyl-ethyl) benzene, 1-methylcarbonyl-4- (1-methylterranyl-ethyl) benzene, 1- Phenylcarbonyl-4- (1-methylterranyl-ethyl) benzene, 1-meth Sicarbonyl-4- (1-methylterranyl-ethyl) benzene, 1-phenoxycarbonyl-4- (1-methylterranyl-ethyl) benzene, 1-sulfonyl-4- (1-methylterranyl-ethyl) benzene, 1-trifluoromethyl -4- (1-methylterranyl-ethyl) benzene, 1-chloro-4- (2-methylterranyl-propyl) benzene, 1-hydroxy-4- (2-methylterranyl-propyl) benzene, 1-methoxy-4- (2 -Methylterranyl-propyl) benzene, 1-amino-4- (2-methylterranyl-propyl) benzene, 1-nitro-4- (2-methylterranyl-propyl) benzene, 1-cyano-4- (2-methylterranyl-propyl) Benzene, 1-methylcarbonyl-4- (2-methylterranyl-propyl ) Benzene, 1-phenylcarbonyl-4- (2-methylterranyl-propyl) benzene, 1-methoxycarbonyl-4- (2-methylterranyl-propyl) benzene, 1-phenoxycarbonyl-4- (2-methylterranyl-propyl) benzene 1-sulfonyl-4- (2-methylterranyl-propyl) benzene, 1-trifluoromethyl-4- (2-methylterranyl-propyl) benzene, 2- (methylterranyl-methyl) pyridine, 2- (1-methylterranyl-ethyl) ) Pyridine, 2- (2-methyl teranyl-propyl) pyridine, 2-methyl teranyl-methyl ethanoate, 2-methyl teranyl-methyl propionate, 2-methyl teranyl-2-methyl propionate, 2-methyl teranyl-ethyl ethanoate, 2 -Methylterranil Ethyl propionate, 2-Mechiruteraniru -2-methylpropionic acid ethyl, 2-methyl-Terra alkylsulfonyl acetonitrile, 2-methyl-Terra sulfonyl propionitrile, 2-methyl-2-methyl-Terra sulfonyl propionitrile, and the like. The methyl terranyl group in these organic tellurium compounds may be an ethyl terranyl group, n-propyl terranyl group, isopropyl terranyl group, n-butyl terranyl group, isobutyl terranyl group, t-butyl terranyl group, phenyl terranyl group, etc. These organic tellurium compounds may be used alone or in combination of two or more.
上記アゾ化合物は、ラジカル重合に一般的に用いられるものであれば特に限定されず、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、1,1-アゾビス(シクロヘキサン-1-カルボニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、4,4’-アゾビス(4-シアノバレリアン酸)、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)、ジメチル-1,1’-アゾビス(1-シクロヘキサンカルボキシレート)、2,2’-アゾビス{2-メチル-N-[1,1’-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物、2,2’-アゾビス(1-イミノ-1-ピロリジノ-2-メチルプロパン)二塩酸塩、2,2’-アゾビス(2,4,4-トリメチルペンタン)等が挙げられる。これらのアゾ化合物は、単独で用いてもよく、2種以上を併用してもよい。 In addition, within the range which does not impair the effect of this invention, in addition to the said organic tellurium polymerization initiator, you may use an azo compound as a polymerization initiator for the purpose of acceleration | stimulation of a polymerization rate.
The azo compound is not particularly limited as long as it is generally used for radical polymerization. For example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2-methylbutyronitrile) is used. ), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 1,1-azobis (cyclohexane-1-carbonitrile) ), 1-[(1-cyano-1-methylethyl) azo] formamide, 4,4′-azobis (4-cyanovaleric acid), dimethyl-2,2′-azobis (2-methylpropionate), Dimethyl-1,1′-azobis (1-cyclohexanecarboxylate), 2,2′-azobis {2-methyl-N- [1,1′-bis (hydroxymethyl) -2-hydroxyethyl Propionamide}, 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2′-azobis [N- (2-propenyl) -2-methylpropionamide], 2 , 2′-azobis (N-butyl-2-methylpropionamide), 2,2′-azobis (N-cyclohexyl-2-methylpropionamide), 2,2′-azobis [2- (2-imidazoline-2 -Yl) propane] dihydrochloride, 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride, 2,2'-azobis [2 -(2-imidazolin-2-yl) propane], 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropionami Tetrahydrate, 2,2′-azobis (1-imino-1-pyrrolidino-2-methylpropane) dihydrochloride, 2,2′-azobis (2,4,4-trimethylpentane), etc. It is done. These azo compounds may be used alone or in combination of two or more.
上記架橋性官能基としては、例えば、水酸基、カルボキシル基、グリジシル基、アミノ基、アミド基、ニトリル基等が挙げられる。なかでも、上記粘着剤層のゲル分率の調整が容易であることから、水酸基又はカルボキシル基が好ましく、水酸基がより好ましい。 Since the living radical polymerization acrylic polymer contains a crosslinkable functional group, an acrylic monomer having a crosslinkable functional group is blended as an acrylic monomer that is polymerized in the living radical polymerization.
Examples of the crosslinkable functional group include a hydroxyl group, a carboxyl group, a glycidyl group, an amino group, an amide group, and a nitrile group. Especially, since adjustment of the gel fraction of the said adhesive layer is easy, a hydroxyl group or a carboxyl group is preferable and a hydroxyl group is more preferable.
カルボキシル基を有するモノマーとしては、例えば、(メタ)アクリル酸が挙げられる。
グリシジル基を有するモノマーとしては、例えば、グリシジル(メタ)アクリレートが挙げられる。
アミド基を有するモノマーとしては、例えば、ヒドロキシエチルアクリルアミド、イソプロピルアクリルアミド、ジメチルアミノプロピルアクリルアミド等が挙げられる。
ニトリル基を有するモノマーとしては、例えば、アクリロニトリル等が挙げられる。 Examples of the monomer having a hydroxyl group include (meth) acrylic acid esters having a hydroxyl group such as 4-hydroxybutyl (meth) acrylate and 2-hydroxyethyl (meth) acrylate.
As a monomer which has a carboxyl group, (meth) acrylic acid is mentioned, for example.
Examples of the monomer having a glycidyl group include glycidyl (meth) acrylate.
Examples of the monomer having an amide group include hydroxyethyl acrylamide, isopropyl acrylamide, dimethylaminopropyl acrylamide and the like.
Examples of the monomer having a nitrile group include acrylonitrile.
上記リビングラジカル重合の方法として、従来公知の方法が用いられ、例えば、溶液重合(沸点重合又は定温重合)、乳化重合、懸濁重合、塊状重合等が挙げられる。
上記リビングラジカル重合において重合溶媒を用いる場合、該重合溶媒は特に限定されず、例えば、ヘキサン、シクロヘキサン、オクタン、トルエン、キシレン等の非極性溶媒や、水、メタノール、エタノール、プロパノール、ブタノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、ジオキサン、N,N-ジメチルホルムアミド等の高極性溶媒を用いることができる。これらの重合溶媒は、単独で用いてもよく、2種以上を併用してもよい。
また、重合温度は、重合速度の観点から0~110℃が好ましい。 In the living radical polymerization, a dispersion stabilizer may be used. Examples of the dispersion stabilizer include polyvinyl pyrrolidone, polyvinyl alcohol, methyl cellulose, ethyl cellulose, poly (meth) acrylic acid, poly (meth) acrylic acid ester, and polyethylene glycol.
As the living radical polymerization method, conventionally known methods are used, and examples thereof include solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, bulk polymerization and the like.
When a polymerization solvent is used in the living radical polymerization, the polymerization solvent is not particularly limited. For example, a nonpolar solvent such as hexane, cyclohexane, octane, toluene, xylene, water, methanol, ethanol, propanol, butanol, acetone, Highly polar solvents such as methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, dioxane, N, N-dimethylformamide can be used. These polymerization solvents may be used alone or in combination of two or more.
The polymerization temperature is preferably 0 to 110 ° C. from the viewpoint of the polymerization rate.
重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパミエーションクロマトグラフィ(GPC)法によりポリスチレン換算分子量として測定される。具体的には、重量平均分子量(Mw)及び数平均分子量(Mn)は、リビングラジカル重合アクリル系ポリマーをテトラヒドロフラン(THF)によって50倍希釈して得られた希釈液をフィルターで濾過し、得られた濾液を用いてGPC法によりポリスチレン換算分子量として測定される。GPC法では、例えば、2690 Separations Model(Waters社製)等を使用できる。 The molecular weight distribution (Mw / Mn) is a ratio between the weight average molecular weight (Mw) and the number average molecular weight (Mn).
A weight average molecular weight (Mw) and a number average molecular weight (Mn) are measured as a polystyrene conversion molecular weight by the gel permeation chromatography (GPC) method. Specifically, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are obtained by filtering a diluted solution obtained by diluting a living radical polymerization acrylic polymer with tetrahydrofuran (THF) 50 times through a filter. It is measured as a polystyrene equivalent molecular weight by the GPC method using the filtrate obtained. In the GPC method, for example, 2690 Separations Model (manufactured by Waters) or the like can be used.
ただし、上記ポリマー成分中における上記リビングラジカル重合アクリル系ポリマーの含有量の好ましい下限は60重量%であり、ポリマー成分の全量(100重量%)が上記リビングラジカル重合アクリル系ポリマーであることが好ましい。ポリマー成分中の上記リビングラジカル重合アクリル系ポリマーの含有量を60重量%以上とすることにより、より高い高温接着性を発揮することができる。
なお、上記ロジン系粘着付与樹脂又はテルペン系粘着付与樹脂は、ポリマー成分には含まない。 The polymer component may contain a polymer other than the living radical polymerization acrylic polymer, for example, a polymer obtained by free radical polymerization.
However, the minimum with preferable content of the said living radical polymerization acrylic polymer in the said polymer component is 60 weight%, and it is preferable that the whole quantity (100 weight%) of a polymer component is the said living radical polymerization acrylic polymer. By setting the content of the living radical polymerization acrylic polymer in the polymer component to 60% by weight or more, higher high-temperature adhesiveness can be exhibited.
The rosin tackifier resin or terpene tackifier resin is not included in the polymer component.
上記リビングラジカル重合アクリルポリマーと粘着付与樹脂の双方が水酸基を有する場合、架橋剤として例えばイソシアネート系架橋剤を用いることにより、上記リビングラジカル重合アクリル系ポリマーと粘着付与樹脂の双方が架橋剤を介して反応して架橋する。また、上記リビングラジカル重合アクリルポリマーと粘着付与樹脂の双方がカルボキシル基を有する場合、架橋剤として例えばエポキシ系架橋剤又はアジリジン系架橋剤を用いることにより、上記リビングラジカル重合アクリル系ポリマーと粘着付与樹脂の双方が架橋剤を介して反応して架橋する。リビングラジカル重合アクリルポリマーは、含有するほぼ全てのポリマーの組成が均一で、架橋性官能基を有することから、ほぼ全てのポリマーがポリマー鎖間の架橋や、ポリマー鎖と粘着付与樹脂との架橋に関与することができる。このため、薄い両面粘着テープであっても、高い耐熱接着性を発揮することができる。
ゲル分率と粘着性能を制御しやすいことから、上記リビングラジカル重合アクリル系ポリマーと粘着付与樹脂の双方が水酸基を有し、かつ、架橋剤としてイソシアネート系架橋剤を用いる組み合わせが特に好適である。 The pressure-sensitive adhesive layer contains a rosin tackifier resin having a crosslinkable functional group or a terpene tackifier resin having a crosslinkable functional group.
When both the living radical polymerization acrylic polymer and the tackifying resin have a hydroxyl group, by using, for example, an isocyanate-based crosslinking agent as a crosslinking agent, both the living radical polymerization acrylic polymer and the tackifying resin are interposed via the crosslinking agent. It reacts and crosslinks. When both the living radical polymerization acrylic polymer and the tackifying resin have a carboxyl group, the living radical polymerization acrylic polymer and the tackifying resin can be obtained by using, for example, an epoxy crosslinking agent or an aziridine crosslinking agent as a crosslinking agent. Both of them react and crosslink via a crosslinking agent. Living radical polymerization acrylic polymer has uniform composition of almost all polymers and has crosslinkable functional groups, so almost all polymers can crosslink between polymer chains and between polymer chains and tackifying resins. Can be involved. For this reason, even if it is a thin double-sided adhesive tape, high heat-resistant adhesiveness can be exhibited.
Since the gel fraction and the adhesive performance can be easily controlled, a combination in which both the living radical polymerization acrylic polymer and the tackifier resin have a hydroxyl group and an isocyanate crosslinking agent is used as a crosslinking agent is particularly suitable.
なお、水酸基価は、JIS K1557(無水フタル酸法)により測定できる。 The lower limit of the hydroxyl value of the rosin-based tackifier resin or terpene-based tackifier resin is 25. When the hydroxyl value is 25 or more, particularly high heat-resistant adhesiveness can be exhibited. A more preferred lower limit of the hydroxyl value is 30.
The hydroxyl value can be measured by JIS K1557 (phthalic anhydride method).
なお、軟化温度とは、JIS K2207環球法により測定した軟化温度である。 The rosin-based tackifier resin or terpene-based tackifier resin has a preferred softening temperature lower limit of 70 ° C. and a preferred upper limit of 170 ° C. When the softening temperature is within this range, particularly excellent heat-resistant adhesiveness can be exhibited. A more preferable lower limit of the softening temperature is 120 ° C.
The softening temperature is a softening temperature measured by the JIS K2207 ring and ball method.
上記ロジンエステル系樹脂とは、アビエチン酸を主成分とするロジン樹脂、不均化ロジン樹脂及び水添ロジン樹脂、アビエチン酸等の樹脂酸の二量体(重合ロジン樹脂)等を、アルコールによってエステル化させて得られた樹脂である。エステル化に用いたアルコールの水酸基の一部がエステル化に使用されずに樹脂内に含有されることで、水酸基価が上記範囲に調整される。アルコールとしては、エチレングリコール、グリセリン、ペンタエリスリトール等の多価アルコールが挙げられる。
なお、ロジン樹脂をエステル化した樹脂がロジンエステル樹脂、不均化ロジン樹脂をエステル化した樹脂が不均化ロジンエステル樹脂、水添ロジン樹脂をエステル化した樹脂が水添ロジンエステル樹脂、重合ロジン樹脂をエステル化した樹脂が重合ロジンエステル樹脂である。
上記テルペンフェノール樹脂とは、フェノールの存在下においてテルペンを重合させて得られた樹脂である。 The rosin tackifier resin or terpene tackifier resin is not particularly limited, and examples thereof include rosin ester resins and terpene phenol resins, and rosin ester resins are preferable.
The above-mentioned rosin ester resins are rosin resins mainly composed of abietic acid, disproportionated rosin resins and hydrogenated rosin resins, dimers of polymer acids such as abietic acid (polymerized rosin resins), etc. It is the resin obtained by making it. A part of the hydroxyl group of the alcohol used for esterification is contained in the resin without being used for esterification, so that the hydroxyl value is adjusted to the above range. Examples of the alcohol include polyhydric alcohols such as ethylene glycol, glycerin, and pentaerythritol.
Resin esterified rosin resin is rosin ester resin, disproportionated rosin resin esterified disproportionated rosin ester resin, hydrogenated rosin resin esterified resin is hydrogenated rosin ester resin, polymerized rosin A resin obtained by esterifying the resin is a polymerized rosin ester resin.
The terpene phenol resin is a resin obtained by polymerizing terpene in the presence of phenol.
上記テルペン系粘着付与樹脂としては、例えば、ヤスハラケミカル社製YSポリスターG150(軟化点150℃)、同社製YSポリスターT100(軟化点100℃)、同社製YSポリスターG125(軟化点125℃)、同社製YSポリスターT115(軟化点115℃)、同社製YSポリスターT130(軟化点130℃)、同社製ポリスターU115(軟化点115℃)、同社製ポリスターUH115(軟化点115℃)、同社製YSレジンPX1250(軟化点125℃)等が挙げられる。
これらのロジン系粘着付与樹脂又はテルペン系粘着付与樹脂は、単独で用いてもよく、2種以上を併用してもよい。 Examples of the disproportionated rosin ester resin include Superester A75 (
Examples of the terpene-based tackifier resin include YS Polystar G150 (softening point 150 ° C.) manufactured by Yasuhara Chemical, YS Polystar T100 (softening point 100 ° C.) manufactured by Yasuhara Chemical, YS Polystar G125 (softening point 125 ° C.) manufactured by the company YS Polystar T115 (softening point 115 ° C), YS Polystar T130 (softening point 130 ° C), Polystar U115 (softening point 115 ° C), Polystar UH115 (softening point 115 ° C), YS Resin PX1250 (manual) Softening point 125 ° C.).
These rosin-based tackifier resins or terpene-based tackifier resins may be used alone or in combination of two or more.
上記架橋剤は特に限定されず、上記リビングラジカル重合アクリル系ポリマーと、ロジン系粘着付与樹脂又はテルペン系粘着付与樹脂との組合せに応じて、これらを架橋可能な架橋剤を適宜選択する。
上記架橋剤は、例えば、イソシアネート系架橋剤、アジリジン系架橋剤、エポキシ系架橋剤、金属キレート型架橋剤等が挙げられる。なかでも、基材に対する密着安定性に優れるため、イソシアネート系架橋剤が好ましい。
上記イソシアネート系架橋剤として、例えば、コロネートHX(日本ポリウレタン工業社製)、コロネートL(日本ポリウレタン工業社製)、マイテックNY260A(三菱化学社製)等が挙げられる。 The pressure-sensitive adhesive layer contains a crosslinking agent.
The said crosslinking agent is not specifically limited, According to the combination of the said living radical polymerization acrylic polymer, a rosin type tackifying resin, or a terpene type tackifying resin, the crosslinking agent which can bridge | crosslink these is selected suitably.
Examples of the crosslinking agent include isocyanate crosslinking agents, aziridine crosslinking agents, epoxy crosslinking agents, metal chelate crosslinking agents, and the like. Especially, since it is excellent in the adhesive stability with respect to a base material, an isocyanate type crosslinking agent is preferable.
Examples of the isocyanate-based crosslinking agent include Coronate HX (manufactured by Nippon Polyurethane Industry Co., Ltd.), Coronate L (manufactured by Nippon Polyurethane Industry Co., Ltd.), and Mytec NY260A (manufactured by Mitsubishi Chemical Corporation).
上記架橋剤の種類又は量を適宜調整することによって、上記粘着剤層のゲル分率を調整することができる。 The content of the crosslinking agent is preferably 0.01 parts by weight and preferably 5 parts by weight with respect to 100 parts by weight of the living radical polymerization acrylic polymer.
The gel fraction of the pressure-sensitive adhesive layer can be adjusted by appropriately adjusting the type or amount of the crosslinking agent.
上記粘着剤層のゲル分率の下限は特に限定されないが、耐熱性等の点からは1重量%以上であることが好ましく、5重量%以上であることがより好ましく、20重量%以上であることが更に好ましい。
なお、ゲル分率は、次のようにして測定される。まず、両面粘着テープを50mm×100mmの平面長方形状に裁断して試験片を作製し、試験片を酢酸エチル中に23℃にて24時間浸漬した後、酢酸エチルから取り出して、110℃の条件下で1時間乾燥させる。乾燥後の試験片の重量を測定し、下記式を用いてゲル分率を算出する。なお、試験片には、粘着剤層を保護するための離型フィルムは積層されていないものとする。
ゲル分率(重量%)=100×(W2-W0)/(W1-W0)
(W0:基材の重量、W1:浸漬前の試験片の重量、W2:浸漬、乾燥後の試験片の重量) The pressure-sensitive adhesive layer preferably has a gel fraction of 50% by weight or less. When the gel fraction exceeds 50% by weight, the cross-linking density of the pressure-sensitive adhesive layer becomes too high, and the double-sided pressure-sensitive adhesive tape tends to peel off, and the heat-resistant adhesiveness may be lowered.
The lower limit of the gel fraction of the pressure-sensitive adhesive layer is not particularly limited, but is preferably 1% by weight or more, more preferably 5% by weight or more, and more preferably 20% by weight or more from the viewpoint of heat resistance and the like. More preferably.
The gel fraction is measured as follows. First, a double-sided pressure-sensitive adhesive tape was cut into a flat rectangular shape of 50 mm × 100 mm to prepare a test piece. The test piece was immersed in ethyl acetate at 23 ° C. for 24 hours, then taken out from ethyl acetate, and the condition of 110 ° C. Dry under 1 hour. The weight of the test piece after drying is measured, and the gel fraction is calculated using the following formula. In addition, the release film for protecting an adhesive layer shall not be laminated | stacked on the test piece.
Gel fraction (% by weight) = 100 × (W2-W0) / (W1-W0)
(W0: weight of substrate, W1: weight of test piece before immersion, W2: weight of test piece after immersion and drying)
上記粘着剤層の厚みは用途によって設定されるので特に限定されないが、好ましい下限が1μm、好ましい上限が100μmである。上記厚みが1μm未満であると、両面粘着テープが剥がれやすくなり、ポリプロピレン(PP)板等の低極性被着体に対する定荷重剥離性が低下することがある。上記厚みが100μmを超えると、薄い両面粘着テープが得られないことがある。上記厚みのより好ましい下限は5μm、より好ましい上限は75μmである。 Even if the double-sided pressure-sensitive adhesive tape of the present invention is a thin double-sided pressure-sensitive adhesive tape, it is difficult for the double-sided pressure-sensitive adhesive tape to peel off.
The thickness of the pressure-sensitive adhesive layer is not particularly limited because it is set depending on the application, but a preferred lower limit is 1 μm and a preferred upper limit is 100 μm. When the thickness is less than 1 μm, the double-sided pressure-sensitive adhesive tape is easily peeled off, and the constant load peelability to a low-polar adherend such as a polypropylene (PP) plate may be lowered. When the said thickness exceeds 100 micrometers, a thin double-sided adhesive tape may not be obtained. The more preferable lower limit of the thickness is 5 μm, and the more preferable upper limit is 75 μm.
上記樹脂フィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム等のポリオレフィン系樹脂フィルム、PETフィルム等のポリエステル系樹脂フィルム、エチレン-酢酸ビニル共重合体やエチレン-アクリル酸エステル共重合体等の変性オレフィン系樹脂フィルム、ポリ塩化ビニル系樹脂フィルム、ポリウレタン系樹脂フィルム、シクロオレフィンポリマー樹脂フィルム等が挙げられる。
上記樹脂発泡体としては、例えば、ポリエチレンフォーム、ポリプロピレンフォーム、アクリルフォーム、ウレタンフォーム、エチレンプロピレンゴムフォーム等が挙げられる。
上記ヤーンクロス布としては、例えば、ポリエチレンフラットヤーンを織ったものや、その表面に樹脂フィルムをラミネートしたもの等が挙げられる。
特にディスプレイモジュールの組み立てにおいて用いられる両面テープの場合には、光透過防止のために黒色印刷された基材、光反射性向上のために白色印刷された基材、金属蒸着されたフィルム基材等も用いることができる。 Although the said base material is not specifically limited, A resin film, a resin foam, paper, a nonwoven fabric, a yarn cloth cloth etc. are mentioned.
Examples of the resin film include polyolefin resin films such as polyethylene films and polypropylene films, polyester resin films such as PET films, and modified olefins such as ethylene-vinyl acetate copolymers and ethylene-acrylic ester copolymers. Examples thereof include a resin film, a polyvinyl chloride resin film, a polyurethane resin film, and a cycloolefin polymer resin film.
Examples of the resin foam include polyethylene foam, polypropylene foam, acrylic foam, urethane foam, and ethylene propylene rubber foam.
Examples of the yarn cloth cloth include a woven polyethylene flat yarn and a laminate of a resin film on the surface thereof.
Especially in the case of double-sided tapes used in the assembly of display modules, black-printed substrates to prevent light transmission, white-printed substrates to improve light reflectivity, metal-deposited film substrates, etc. Can also be used.
本発明の両面粘着テープからなる電子機器部品固定用両面粘着テープもまた、本発明の1つである。本発明の両面粘着テープからなる車載部品固定用両面粘着テープもまた、本発明の1つである。
本発明の電子機器部品固定用両面粘着テープ及び車載部品固定用両面粘着テープの形状は特に限定されないが、長方形、額縁状、円形、楕円形、ドーナツ型等が挙げられる。
本発明の両面粘着テープは、高い耐熱接着性を有することから、1mm以下の狭い線幅であっても、電子機器部品の固定や車載部品の固定に特に好適に用いることができる。 Although the use of the double-sided pressure-sensitive adhesive tape of the present invention is not particularly limited, it can be particularly suitably used for fixing electronic device parts and in-vehicle parts. Specifically, the double-sided pressure-sensitive adhesive tape of the present invention can be used for adhesion / fixation of electronic device parts, adhesion / fixation of in-vehicle components (for example, in-vehicle panels) in large-sized portable electronic devices.
The double-sided pressure-sensitive adhesive tape for fixing electronic device parts comprising the double-sided pressure-sensitive adhesive tape of the present invention is also one aspect of the present invention. The in-vehicle component fixing double-sided pressure-sensitive adhesive tape comprising the double-sided pressure-sensitive adhesive tape of the present invention is also one aspect of the present invention.
The shape of the double-sided pressure-sensitive adhesive tape for fixing electronic device parts and the double-sided pressure-sensitive adhesive tape for fixing vehicle-mounted parts of the present invention is not particularly limited, and examples thereof include a rectangular shape, a frame shape, a circular shape, an elliptical shape, and a donut shape.
Since the double-sided pressure-sensitive adhesive tape of the present invention has a high heat-resistant adhesive property, it can be particularly preferably used for fixing electronic device parts and in-vehicle parts even if the line width is 1 mm or less.
(合成1)
(合成1-1)
Tellurium(40メッシュ、金属テルル、アルドリッチ社製)6.38g(50mmol)をテトラヒドロフラン(THF)50mLに懸濁させ、これに1.6mol/Lのn-ブチルリチウム/ヘキサン溶液(アルドリッチ社製)34.4mL(55mmol)を、室温でゆっくり滴下した。この反応溶液を金属テルルが完全に消失するまで攪拌した。この反応溶液に、エチル-2-ブロモーイソブチレート10.7g(55mmol)を室温で加え、2時間攪拌した。反応終了後、減圧下で溶媒を濃縮し、続いて減圧蒸留して、黄色油状物の2-メチル-2-n-ブチルテラニル-プロピオン酸エチルを得た。 <Synthesis of acrylic polymer>
(Synthesis 1)
(Synthesis 1-1)
Tellurium (40 mesh, metal tellurium, Aldrich) 6.38 g (50 mmol) was suspended in tetrahydrofuran (THF) 50 mL, and 1.6 mol / L n-butyllithium / hexane solution (Aldrich) 34 4 mL (55 mmol) was slowly added dropwise at room temperature. The reaction solution was stirred until the metal tellurium disappeared completely. To this reaction solution, 10.7 g (55 mmol) of ethyl-2-bromo-isobutyrate was added at room temperature and stirred for 2 hours. After completion of the reaction, the solvent was concentrated under reduced pressure, followed by distillation under reduced pressure to obtain a yellow oily ethyl 2-methyl-2-n-butylteranyl-propionate.
アルゴン置換したグローブボックス内で、反応容器中に、合成例1-1で製造した2-メチル-2-n-ブチルテラニル-プロピオン酸エチル19μL、V-60(2,2’-アゾビスイソブチロニトリル、和光純薬工業社製)34mg、酢酸エチル1mLを投入した後、反応容器を密閉し、反応容器をグローブボックスから取り出した。続いて、反応容器にアルゴンガスを流入しながら、反応容器内に、表1に示す混合モノマーの合計100g、重合溶媒として酢酸エチル66.5gを投入し、60℃で20時間重合反応を行い、リビングラジカル重合されたアクリル系ポリマー含有溶液を得た。
得られたアクリル系ポリマー含有溶液をテトラヒドロフラン(THF)によって50倍希釈して得られた希釈液をフィルター(材質:ポリテトラフルオロエチレン、ポア径:0.2μm)で濾過し、得られた濾液をゲルパミエーションクロマトグラフ(Waters社製、2690 Separations Model)に供給して、サンプル流量1mL/min、カラム温度40℃の条件でGPC測定を行い、ポリマーのポリスチレン換算分子量を測定して、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。カラムとしてはGPC KF-806L(昭和電工社製)を用い、検出器としては示差屈折計を用いた。 (Synthesis 1-2)
In a glove box substituted with argon, in a reaction vessel, 19 μL of ethyl 2-methyl-2-n-butylterranyl-propionate prepared in Synthesis Example 1-1, V-60 (2,2′-azobisisobutyro After adding 34 mg of nitrile (manufactured by Wako Pure Chemical Industries, Ltd.) and 1 mL of ethyl acetate, the reaction vessel was sealed and the reaction vessel was taken out of the glove box. Subsequently, while flowing argon gas into the reaction vessel, a total of 100 g of the mixed monomers shown in Table 1 and 66.5 g of ethyl acetate as a polymerization solvent were charged into the reaction vessel, and a polymerization reaction was performed at 60 ° C. for 20 hours. A living radical polymerized acrylic polymer-containing solution was obtained.
The obtained acrylic polymer-containing solution was diluted 50-fold with tetrahydrofuran (THF), and the resulting diluted solution was filtered with a filter (material: polytetrafluoroethylene, pore diameter: 0.2 μm). Supplied to a gel permeation chromatograph (manufactured by Waters, 2690 Separations Model), GPC measurement was performed under the conditions of a sample flow rate of 1 mL / min and a column temperature of 40 ° C., and the polystyrene equivalent molecular weight of the polymer was measured. (Mw) and molecular weight distribution (Mw / Mn) were determined. GPC KF-806L (manufactured by Showa Denko) was used as the column, and a differential refractometer was used as the detector.
2-メチル-2-n-ブチルテラニル-プロピオン酸エチルの仕込み量、V-60(2,2’-アゾビスイソブチロニトリル、和光純薬工業社製)の仕込み量、及び、混合モノマーの組成を表1のようにした以外は、合成1と同様にしてリビングラジカル重合されたアクリル系ポリマー含有溶液を得て、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。 (Synthesis 2)
Charge amount of ethyl 2-methyl-2-n-butylterranyl-propionate, charge amount of V-60 (2,2′-azobisisobutyronitrile, manufactured by Wako Pure Chemical Industries, Ltd.), and composition of mixed monomer Except for the above, Table 1 was used to obtain a living radical polymerized acrylic polymer-containing solution in the same manner as in
反応容器内に、重合溶媒として酢酸エチル50gを加え、窒素でバブリングした後、窒素を流入しながら反応容器を加熱して還流を開始した。続いて、重合開始剤としてV-60(2,2’-アゾビスイソブチロニトリル、和光純薬社製)0.1gを酢酸エチルで10倍希釈した重合開始剤溶液を反応容器内に再度投入し、6時間重合反応を行い、フリーラジカル重合アクリル系ポリマー含有溶液を得た。
合成1と同様にして、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。 (Synthesis 3)
50 g of ethyl acetate was added as a polymerization solvent in the reaction vessel, and after bubbling with nitrogen, the reaction vessel was heated while flowing nitrogen and refluxing was started. Subsequently, a polymerization initiator solution in which 0.1 g of V-60 (2,2′-azobisisobutyronitrile, manufactured by Wako Pure Chemical Industries, Ltd.) as a polymerization initiator was diluted 10-fold with ethyl acetate was again put in the reaction vessel. Then, a polymerization reaction was performed for 6 hours to obtain a free radical polymerization acrylic polymer-containing solution.
In the same manner as in
上記で得られたアクリル系ポリマー含有溶液に、その不揮発分100重量部に対して酢酸エチルを加えて攪拌し、表2に示した種類及び配合量で粘着付与樹脂と、架橋剤とを添加して攪拌し、不揮発分30重量%の粘着剤溶液を得た。厚み50μmの離型処理したPETフィルムに、得られた粘着剤溶液を、乾燥後に糊厚みが10μmとなるように塗工した後、100℃で10分間乾燥させて粘着剤層を得た。得られた粘着剤層を、基材となる両面にコロナ処理を施した厚み10μmのポリエチレンテレフタレート(PET)フィルムの一方の面に転着させた。基材となるPETフィルムの他方の面にも、同様の方法により厚さ10μmの粘着剤層を転着させて、厚み30μmの両面粘着テープを得た。
ただし、実施例7においては、厚み6μmのPETフィルムの両面に厚み7μmの粘着剤層を転着させて、厚み20μmの両面粘着テープを得た。
なお、用いた粘着付与樹脂、架橋剤は以下のようである。 (Examples 1 to 7, Comparative Examples 1 to 7)
Ethyl acetate is added to the acrylic polymer-containing solution obtained above with respect to 100 parts by weight of the non-volatile content and stirred, and a tackifying resin and a crosslinking agent are added in the types and amounts shown in Table 2. To obtain a pressure-sensitive adhesive solution having a nonvolatile content of 30% by weight. The obtained pressure-sensitive adhesive solution was applied to a PET film having a thickness of 50 μm which had been subjected to a release treatment so that the paste thickness would be 10 μm after drying, and then dried at 100 ° C. for 10 minutes to obtain a pressure-sensitive adhesive layer. The obtained pressure-sensitive adhesive layer was transferred onto one surface of a 10 μm-thick polyethylene terephthalate (PET) film having corona treatment on both surfaces serving as a base material. A pressure-sensitive adhesive layer having a thickness of 10 μm was transferred onto the other surface of the PET film serving as a base material by the same method to obtain a double-sided pressure-sensitive adhesive tape having a thickness of 30 μm.
However, in Example 7, a 7 μm thick adhesive layer was transferred onto both sides of a 6 μm thick PET film to obtain a 20 μm thick double-sided adhesive tape.
The tackifying resin and the crosslinking agent used are as follows.
ロジン系粘着付与樹脂A:重合ロジンエステル樹脂、水酸基価46、軟化点160℃
ロジン系粘着付与樹脂B:水添ロジンエステル樹脂、水酸基価42、軟化点100℃
テルペン系粘着付与樹脂C:テルペンフェノール樹脂、軟化点150℃
テルペン系粘着付与樹脂D:テルペンフェノール樹脂、軟化点125℃
<架橋剤>
コロネートL:日本ポリウレタン社製、イソシアネート系架橋剤 <Tackifying resin>
Rosin-based tackifier resin A: Polymerized rosin ester resin, hydroxyl value 46, softening point 160 ° C.
Rosin-based tackifying resin B: hydrogenated rosin ester resin, hydroxyl value 42, softening point 100 ° C.
Terpene-based tackifier resin C: terpene phenol resin, softening point 150 ° C.
Terpene-based tackifier resin D: terpene phenol resin, softening point 125 ° C
<Crosslinking agent>
Coronate L: manufactured by Nippon Polyurethane Co., Ltd., isocyanate-based crosslinking agent
まず、得られた両面粘着テープの一方の面の離型フィルムを剥がし、露出した粘着剤層にコロナ処理を施したポリエチレンテレフタレート(PET)フィルムを貼り付けた後、幅1cm×縦12cmにカットして試験片5とした。装置の温調器4を80℃に設定し、設定温度で安定するまで放置した。(温調器は以下のものを組み合わせて用いた:株式会社高木製作所 温度調節器SA100、型式 SA100FK08-MN-4 ※NN-NN;株式会社高木製作所 銅製水冷ペルチェユニット、型式 PU-50W;EYELA 冷却水循環装置 クールエース、型式 CCA1111型)試験片5の他方の離型フィルムを端から3cm程度剥がして除去し、露出した粘着剤層を、接着面積が1cm×1cmになるよう被着体3に貼り付けた。貼り付け面上に端面を鏡面処理した石英製のブロック2(石英ガラスにクロム蒸着したもの)を載せ、試験片5を200gの分銅6につなぐワイヤーにとりつける。この状態で放置し、5分間恒温化した。5分後、装置に接続しているPCを操作して荷重を加え始め、3分間、試験片5に対し水辺方向へのせん断負荷を与えた。ここで粘着剤変形に伴うずれ変位量を、レーザー干渉計1(キーエンス製 SI-F10)によって試験片5上の鏡面処理石英ブロック2の移動量として検出し、上記計算式に基づいて「せん断変形率」を算出した。 About the obtained double-sided adhesive tape, the displacement displacement recovery rate was measured as follows using the apparatus (Asahi Seiko Co., Ltd. shear shear measuring device, NST1) used for the measurement of the shear deformation rate shown in FIG. .
First, the release film on one side of the obtained double-sided pressure-sensitive adhesive tape is peeled off and a polyethylene terephthalate (PET) film subjected to corona treatment is attached to the exposed pressure-sensitive adhesive layer, and then cut into a width of 1 cm and a length of 12 cm.
実施例、比較例で得られた両面粘着テープについて、下記の評価を行った。結果を表2に示した。 (Evaluation)
The following evaluation was performed about the double-sided adhesive tape obtained by the Example and the comparative example. The results are shown in Table 2.
図6に、両面粘着テープの加熱PUSH試験を説明する模式図を示す。得られた両面粘着テープを外径が幅61mm、長さ61mm、内径が幅59mm、長さ59mmに打ち抜き、幅1mmの枠状の試験片20を作製した。次いで、図6(a)に示すように、中央部分に幅50mm、長さ50mmの四角い穴のあいた厚さ2mmのポリカーボネート板22に対して離型紙を剥がした試験片20を四角い穴がほぼ中央に位置するように貼り付けた後、試験片1の上面から幅65mm、長さ65mm、厚1mmのポリカーボネート板21を試験片20がほぼ中央に位置するように貼り付け、試験装置を組み立てた。
その後、試験装置の上面に位置するポリカーボネート板側から200gのローラーを1往復させて上下に位置するポリカーボネート板と試験片とを圧着し、23℃で15時間放置した。 (Heating PUSH test)
In FIG. 6, the schematic diagram explaining the heating PUSH test of a double-sided adhesive tape is shown. The obtained double-sided adhesive tape was punched into an outer diameter of 61 mm, a length of 61 mm, an inner diameter of 59 mm, and a length of 59 mm to produce a frame-shaped
Thereafter, a 200 g roller was reciprocated once from the polycarbonate plate side positioned on the upper surface of the test apparatus, and the polycarbonate plate positioned on the top and bottom were pressed against each other and the test piece was allowed to stand at 23 ° C. for 15 hours.
2 鏡面処理石英ブロック
3 被着体(JIS Z 0237規定ステンレス鋼)
4 温調器
5 試験片(両面粘着テープ)
6 分銅
7 粘着剤層
8 残存離型フィルム面
9 コロナ処理PETフィルム面
10 鏡面処理面
11 リビングラジカル重合により得られたアクリル系ポリマー
111 架橋性官能基を含まないモノマー
112 架橋性官能基含有モノマー
12 フリーラジカル重合により得られたアクリル系ポリマー
121 架橋性官能基を含まないモノマー
122 架橋性官能基含有モノマー
123 反応の途中で生長末端ラジカルが失活したポリマー
124 反応中に新しく発生したラジカル種により生長したポリマー
20 両面粘着テープ試験片(枠状)
21 ポリカーボネート板
22 ポリカーボネート板
23 荷重 DESCRIPTION OF
4
6 Weight 7
21
Claims (4)
- リビングラジカル重合により得られた、重量平均分子量50万~150万、分子量分布(Mw/Mn)1.05~2.5の架橋性官能基を有するアクリル系ポリマーを含有するポリマー成分と、架橋性官能基を有するロジン系粘着付与樹脂、又は、架橋性官能基を有するテルペン系粘着付与樹脂と、架橋剤とを含有する粘着剤層を有し、
接着面積1cm2で貼付した両面粘着テープに、80℃で200gのせん断負荷を3分間加えたときのせん断変形率が100~300%である
ことを特徴とする両面粘着テープ。 A polymer component containing an acrylic polymer having a crosslinkable functional group having a weight average molecular weight of 500,000 to 1,500,000 and a molecular weight distribution (Mw / Mn) of 1.05 to 2.5 obtained by living radical polymerization; It has a pressure-sensitive adhesive layer containing a rosin-based tackifying resin having a functional group, or a terpene-based tackifying resin having a crosslinkable functional group, and a crosslinking agent,
A double-sided pressure-sensitive adhesive tape characterized by having a shear deformation ratio of 100 to 300% when a shear load of 200 g is applied at 80 ° C. for 3 minutes to a double-sided pressure-sensitive adhesive tape affixed with an adhesion area of 1 cm 2 . - 粘着剤層のゲル分率が50重量%以下であることを特徴とする請求項1記載の両面粘着テープ。 The double-sided pressure-sensitive adhesive tape according to claim 1, wherein the pressure-sensitive adhesive layer has a gel fraction of 50% by weight or less.
- 請求項1又は2記載の両面粘着テープからなることを特徴とする電子機器部品固定用両面粘着テープ。 A double-sided pressure-sensitive adhesive tape for fixing electronic device parts, comprising the double-sided pressure-sensitive adhesive tape according to claim 1.
- 請求項1又は2記載の両面粘着テープからなることを特徴とする車載部品固定用両面粘着テープ。 A double-sided pressure-sensitive adhesive tape for fixing on-vehicle components, comprising the double-sided pressure-sensitive adhesive tape according to claim 1.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016567442A JPWO2017073722A1 (en) | 2015-10-30 | 2016-10-28 | Double-sided adhesive tape |
CN201680032524.6A CN107709494A (en) | 2015-10-30 | 2016-10-28 | Double-faced adhesive tape |
KR1020177026205A KR20180078180A (en) | 2015-10-30 | 2016-10-28 | Double-sided pressure-sensitive adhesive tape |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-214123 | 2015-10-30 | ||
JP2015214123 | 2015-10-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017073722A1 true WO2017073722A1 (en) | 2017-05-04 |
Family
ID=58631713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/082042 WO2017073722A1 (en) | 2015-10-30 | 2016-10-28 | Double-sided pressure-sensitive adhesive tape |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2017073722A1 (en) |
KR (1) | KR20180078180A (en) |
CN (1) | CN107709494A (en) |
WO (1) | WO2017073722A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018154832A (en) * | 2017-03-16 | 2018-10-04 | 積水化学工業株式会社 | Adhesive tape |
CN109294509A (en) * | 2017-07-24 | 2019-02-01 | 荒川化学工业株式会社 | Ultraviolet-curing adhesive, solidfied material, bonding sheet |
JP2020063325A (en) * | 2018-10-15 | 2020-04-23 | 大塚化学株式会社 | Adhesive composition and adhesive film |
JP2021046503A (en) * | 2019-09-19 | 2021-03-25 | 積水化学工業株式会社 | Pressure-sensitive adhesive, and pressure sensitive adhesive tape |
WO2021161990A1 (en) * | 2020-02-10 | 2021-08-19 | 積水化学工業株式会社 | Adhesive tape |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110885648B (en) * | 2018-09-07 | 2023-03-17 | 德莎欧洲股份公司 | Composition for producing pressure-sensitive adhesive |
US20220169896A1 (en) * | 2019-03-18 | 2022-06-02 | Sekisui Chemical Co., Ltd. | Composite structure and double-sided adhesive tape |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013040329A (en) * | 2011-07-15 | 2013-02-28 | Nitto Denko Corp | Double-sided adhesive sheet |
JP2013213192A (en) * | 2012-03-07 | 2013-10-17 | Nitto Denko Corp | Double-sided adhesive tape |
JP2014108968A (en) * | 2012-11-30 | 2014-06-12 | Soken Chem & Eng Co Ltd | Adhesive composition |
JP2015040218A (en) * | 2013-08-20 | 2015-03-02 | Dic株式会社 | Adhesive sheet and speaker |
WO2015068746A1 (en) * | 2013-11-07 | 2015-05-14 | 積水化学工業株式会社 | Adhesive tape |
JP2015131897A (en) * | 2014-01-10 | 2015-07-23 | 積水化学工業株式会社 | Pressure-sensitive adhesive composition for processing electronic component/glass substrate, pressure-sensitive adhesive tape for processing electronic component/glass substrate and method for manufacturing electronic component/glass substrate |
JP2016023236A (en) * | 2014-07-18 | 2016-02-08 | 積水化学工業株式会社 | Pressure sensitive adhesive sheet for electronic apparatus |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4607275B2 (en) * | 2000-02-24 | 2011-01-05 | 日東電工株式会社 | Adhesive composition, its adhesive sheet and method for producing them |
TWI347337B (en) * | 2006-04-14 | 2011-08-21 | Otsuka Chemical Co Ltd | Resin composition and heat resistant adhesive |
KR20160055105A (en) * | 2013-09-10 | 2016-05-17 | 세키스이가가쿠 고교가부시키가이샤 | Adhesive sheet for electronic devices |
JP6352219B2 (en) * | 2013-11-07 | 2018-07-04 | 積水化学工業株式会社 | Adhesive tape |
KR102263797B1 (en) * | 2014-10-30 | 2021-06-10 | 세키스이가가쿠 고교가부시키가이샤 | Adhesive tape |
-
2016
- 2016-10-28 CN CN201680032524.6A patent/CN107709494A/en active Pending
- 2016-10-28 KR KR1020177026205A patent/KR20180078180A/en unknown
- 2016-10-28 WO PCT/JP2016/082042 patent/WO2017073722A1/en active Application Filing
- 2016-10-28 JP JP2016567442A patent/JPWO2017073722A1/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013040329A (en) * | 2011-07-15 | 2013-02-28 | Nitto Denko Corp | Double-sided adhesive sheet |
JP2013213192A (en) * | 2012-03-07 | 2013-10-17 | Nitto Denko Corp | Double-sided adhesive tape |
JP2014108968A (en) * | 2012-11-30 | 2014-06-12 | Soken Chem & Eng Co Ltd | Adhesive composition |
JP2015040218A (en) * | 2013-08-20 | 2015-03-02 | Dic株式会社 | Adhesive sheet and speaker |
WO2015068746A1 (en) * | 2013-11-07 | 2015-05-14 | 積水化学工業株式会社 | Adhesive tape |
JP2015131897A (en) * | 2014-01-10 | 2015-07-23 | 積水化学工業株式会社 | Pressure-sensitive adhesive composition for processing electronic component/glass substrate, pressure-sensitive adhesive tape for processing electronic component/glass substrate and method for manufacturing electronic component/glass substrate |
JP2016023236A (en) * | 2014-07-18 | 2016-02-08 | 積水化学工業株式会社 | Pressure sensitive adhesive sheet for electronic apparatus |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018154832A (en) * | 2017-03-16 | 2018-10-04 | 積水化学工業株式会社 | Adhesive tape |
JP7065655B2 (en) | 2017-03-16 | 2022-05-12 | 積水化学工業株式会社 | Adhesive tape |
CN109294509A (en) * | 2017-07-24 | 2019-02-01 | 荒川化学工业株式会社 | Ultraviolet-curing adhesive, solidfied material, bonding sheet |
JP2019023292A (en) * | 2017-07-24 | 2019-02-14 | 荒川化学工業株式会社 | Ultraviolet curable adhesive, cured product and adhesive sheet |
JP2020063325A (en) * | 2018-10-15 | 2020-04-23 | 大塚化学株式会社 | Adhesive composition and adhesive film |
JP7137434B2 (en) | 2018-10-15 | 2022-09-14 | 大塚化学株式会社 | Adhesive composition and adhesive film |
JP2021046503A (en) * | 2019-09-19 | 2021-03-25 | 積水化学工業株式会社 | Pressure-sensitive adhesive, and pressure sensitive adhesive tape |
JP7284051B2 (en) | 2019-09-19 | 2023-05-30 | 積水化学工業株式会社 | Adhesives and adhesive tapes |
WO2021161990A1 (en) * | 2020-02-10 | 2021-08-19 | 積水化学工業株式会社 | Adhesive tape |
Also Published As
Publication number | Publication date |
---|---|
KR20180078180A (en) | 2018-07-09 |
JPWO2017073722A1 (en) | 2018-08-16 |
CN107709494A (en) | 2018-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5779696B2 (en) | Adhesive tape | |
WO2017073722A1 (en) | Double-sided pressure-sensitive adhesive tape | |
JP6364224B2 (en) | Double-sided adhesive tape for fixing optical films | |
JP5721917B1 (en) | Adhesive tape | |
JP7065655B2 (en) | Adhesive tape | |
JP6457922B2 (en) | Optical adhesive, optical adhesive tape and laminate | |
WO2017110839A1 (en) | Adhesive composition and adhesive tape | |
JP5820512B1 (en) | Structure-controlled block copolymer, adhesive and adhesive tape | |
JP6352219B2 (en) | Adhesive tape | |
WO2016181691A1 (en) | Double-sided adhesive tape for fixing optical film | |
JP2019196492A (en) | Adhesive tape | |
JP6560022B2 (en) | Adhesive tape | |
JP6352159B2 (en) | Thermally conductive adhesive tape and thermally conductive adhesive composition | |
JP2018003012A (en) | Flame-retardant adhesive composition and flame-retardant adhesive tape | |
JP6564499B2 (en) | Thermal conductive adhesive tape | |
JP2018188630A (en) | Adhesive tape | |
JP6557510B2 (en) | Conductive adhesive tape and conductive adhesive composition | |
JP6174993B2 (en) | Double-sided adhesive tape for graphite sheets | |
JP7348811B2 (en) | Adhesive tape | |
JP2018002999A (en) | Adhesive tape and double-sided adhesive tape for fixing abrasive material | |
JP2016023238A (en) | Adhesive tape |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016567442 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16859950 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177026205 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16859950 Country of ref document: EP Kind code of ref document: A1 |