[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017072831A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2017072831A1
WO2017072831A1 PCT/JP2015/080111 JP2015080111W WO2017072831A1 WO 2017072831 A1 WO2017072831 A1 WO 2017072831A1 JP 2015080111 W JP2015080111 W JP 2015080111W WO 2017072831 A1 WO2017072831 A1 WO 2017072831A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
heat
refrigerant
flow
heat exchanger
Prior art date
Application number
PCT/JP2015/080111
Other languages
English (en)
French (fr)
Inventor
祐治 本村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017547209A priority Critical patent/JP6490232B2/ja
Priority to PCT/JP2015/080111 priority patent/WO2017072831A1/ja
Priority to CN201580084002.6A priority patent/CN108139106B/zh
Priority to GB1804443.8A priority patent/GB2563119B/en
Priority to US15/755,150 priority patent/US10451305B2/en
Publication of WO2017072831A1 publication Critical patent/WO2017072831A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi air conditioner.
  • Some air conditioners have a heat source unit (outdoor unit) arranged outside the building and an indoor unit arranged inside the building, such as a multi air conditioner for buildings.
  • the refrigerant circulating in the refrigerant circuit of such an air conditioner radiates heat (heat absorption) to the air supplied to the heat exchanger of the indoor unit, and heats or cools the air.
  • the heated or cooled air is sent into the air-conditioning target space for heating or cooling.
  • heat source side refrigerant used in such an air conditioner for example, an HFC (hydrofluorocarbon) refrigerant is often used.
  • HFC hydrofluorocarbon
  • heat-source side refrigerant it has also been proposed to use a natural refrigerant such as carbon dioxide (CO 2).
  • Patent Document 1 various air conditioners including a chiller that generates cold or warm heat as heat source devices arranged outside the building have been proposed (for example, see Patent Document 1).
  • the technology described in Patent Document 1 heats or cools a heat medium such as water or antifreeze liquid by a heat exchanger between heat mediums arranged in a chiller, and heats it to an indoor unit such as a fan coil unit or a panel heater. Heating or cooling is performed by transporting through a medium pipe (for example, see Patent Document 1).
  • Patent Document 2 an air conditioner called a waste heat recovery chiller in which four heat medium pipes are connected between a heat source machine and an indoor unit has been proposed (for example, see Patent Document 2).
  • the technology described in Patent Document 2 can supply a heated heat medium and a cooled heat medium to an indoor unit at the same time, and can freely select cooling or heating in the indoor unit.
  • a secondary refrigerant circuit in which the secondary refrigerant, which is a heat medium, circulates and has a use-side heat exchanger There has been proposed an air conditioner in which an inter-heat medium heat exchanger that exchanges heat with a secondary refrigerant is disposed in the vicinity of each indoor unit (see, for example, Patent Document 3).
  • the heat source side refrigerant heated or cooled in the outdoor unit is supplied to the heat exchanger related to heat medium mounted in the branch unit, and the heat or cold of the supplied heat source side refrigerant is used as the heat between the heat medium.
  • an air conditioner that is transmitted to a heat medium via an exchanger (see, for example, Patent Document 4).
  • the indoor unit and the branch unit are connected by two heat medium pipes.
  • an air conditioner such as a multi air conditioner for buildings
  • a refrigerant such as water is circulated from the outdoor unit to the relay unit
  • a heat medium such as water is circulated from the relay unit to the indoor unit.
  • an air conditioner that reduces the conveyance power of the heat medium while circulating (see, for example, Patent Document 5).
  • one or a plurality of usage-side heat exchangers are connected in parallel to the heat exchangers between heat media, and one or more heat medium circulation circuits are configured.
  • Each heat medium circulation circuit is provided with a flow rate adjustment valve capable of adjusting the flow rate of the heat medium so that the heat medium flow circuits can have different flow rates.
  • one use side heat exchanger is connected to each heat medium circulation circuit, but a plurality of use side heat exchangers are connected to one system heat medium circulation circuit.
  • the configuration in which a plurality of usage-side heat exchangers are connected in one system the configuration is such that the flow rate of each usage-side heat exchanger in the system can be adjusted. For this reason, when the capacity
  • an object of the present invention is to provide an air conditioner capable of transporting a heat medium having a flow rate according to the heat load of each use side heat exchanger to each use side heat exchanger.
  • An air conditioner according to the present invention is a refrigerant circulation circuit in which a refrigerant, a heat source side heat exchanger, an expansion device, and a refrigerant side flow path of a plurality of heat exchangers between heat media are connected by a refrigerant pipe to circulate the heat source side refrigerant.
  • a plurality of heat medium circulations in which the heat medium circulates by connecting the heat medium side flow paths of the plurality of heat medium heat exchangers, the plurality of heat medium conveying devices, and the plurality of use side heat exchangers with the heat medium pipe.
  • Heat medium flow path that is provided for each of the circuit and the plurality of heat medium circulation circuits and switches the flow path of the heat medium so as to connect the use side heat exchanger to one of the plurality of heat exchangers between heat mediums Of the plurality of systems of heat medium circulation circuits, the switching device and the heat medium of the plurality of use side heat exchangers provided in the heat medium circulation circuit connected to the plurality of use side heat exchangers and connected to the heat medium circulation circuit And a heat medium diverting device for adjusting the flow rate of the heat medium.
  • the heat medium circulation device is provided in the heat medium circulation circuit to which a plurality of use side heat exchangers are connected, and the flow rate adjustment of each use side heat exchanger is performed by the heat medium diversion device. Is possible. As a result, a heat medium having a flow rate corresponding to the heat load of each use side heat exchanger can be conveyed to each use side heat exchanger.
  • FIG. 1 It is a refrigerant circuit diagram which shows the flow of the refrigerant
  • the figure (the 1) which showed the opening degree image of the heat-medium flow control valve 36 in the heat-medium flow dividing device 15 of the air conditioning apparatus which concerns on embodiment of this invention.
  • the figure (the 2) which showed the opening degree image of the heat-medium flow regulation valve 36 in the heat-medium flow dividing device 15 of the air conditioning apparatus which concerns on embodiment of this invention.
  • the figure (the 3) which showed the opening degree image of the heat-medium flow regulation valve 36 in the heat-medium flow dividing device 15 of the air conditioning apparatus which concerns on embodiment of this invention.
  • FIG. 1 is a schematic diagram illustrating an installation example of an air conditioner 100 according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a refrigerant circuit configuration in the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • an air conditioner 100 according to the present embodiment includes an outdoor unit (heat source unit) 1, a plurality of indoor units 3 (3a to 3d), an outdoor unit 1, and an indoor unit 3. And one relay unit 2 interposed therebetween.
  • each indoor unit 3 can select a cooling operation or a heating operation.
  • the relay unit 2 performs heat exchange between the heat source side refrigerant and the heat medium.
  • the outdoor unit 1 and the relay unit 2 are connected by a refrigerant pipe 4 through which the heat source side refrigerant flows, and constitute a refrigerant circulation circuit A that is a refrigeration cycle for circulating the heat source side refrigerant.
  • the relay unit 2 and the indoor unit 3 are connected by a heat medium pipe 5 through which the heat medium flows, and constitute a heat medium circulation circuit B that circulates the heat medium.
  • the relay unit 2 includes a plurality of connection ports 60 for connecting to the indoor unit 3.
  • the indoor unit 3 is connected to the connection port 60 via the heat medium pipe 5.
  • each component such as a switching apparatus connected to each of the refrigerant circuit A and the heat medium circuit B, will be described below again.
  • the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 3 via the relay unit 2.
  • one or a plurality of indoor units 3 can be connected to the connection port 60 (60a to 60d).
  • the indoor unit 3a is divided into two units: an indoor unit 3a-1 having a use side heat exchanger 35a-1 and an indoor unit 3a-1 having a use side heat exchanger 35a-2.
  • the two indoor units 3a-1 and 3a-2 are connected to the connection port 60a.
  • one indoor unit 3b to 3d is connected to each of the connection ports 60b to 60d.
  • the indoor units 3b to 3d are provided with use side heat exchangers 35b to 35d.
  • the heat medium diverter 15 is connected to the connection port 60, so that the heat medium is connected to the two indoor units 3a-1 and 3a-2 connected to one connection port 60a.
  • the flow rate can be adjusted.
  • the heat medium that has flowed into the heat medium diverter 15 is optimally diverted and transferred to the two indoor units 3a-1, 3a-2, and then merges so that the heat medium circulates. It has characteristics.
  • the indoor unit 3 connected to the connection port 60a is the indoor unit when there is no need to distinguish between the two indoor units 3a connected to the connection port 60a. It is assumed that the use side heat exchanger in the indoor unit 3a is also one of the use side heat exchangers 35a.
  • the outdoor unit 1 is normally disposed in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop), and supplies cold or hot heat to the indoor unit 3 via the relay unit 2. .
  • the relay unit 2 transmits the heat or cold generated by the outdoor unit 1 to the indoor unit 3.
  • the relay unit 2 is configured as a separate housing from the outdoor unit 1 and the indoor unit 3 so as to be installed at a position different from the outdoor space 6 and the indoor space 7.
  • the relay unit 2 is connected to the outdoor unit 1 through the refrigerant pipe 4 and is connected to the indoor unit 3 through the heat medium pipe 5.
  • the indoor unit 3 is disposed at a position where cooling air or heating air can be supplied to the indoor space 7 that is a space (for example, a living room) inside the building 9, and the cooling air is supplied to the indoor space 7 that is the air-conditioning target space. Alternatively, heating air is supplied.
  • the indoor unit 3 is a ceiling-embedded type, but is not limited thereto.
  • the heat source side refrigerant is conveyed from the outdoor unit 1 to the relay unit 2 through the refrigerant pipe 4.
  • the conveyed heat source side refrigerant exchanges heat with the heat medium in heat exchangers 25a to 25d (see FIG. 2) described later in the relay unit 2 to heat or cool the heat medium. That is, the heat medium is heated or cooled by the heat exchanger related to heat medium to become hot water or cold water.
  • Hot water or cold water produced by the relay unit 2 is conveyed to the indoor unit 3 via the heat medium pipe 5 by pumps 31a and 31b (see FIG. 2), which will be described later, and to the indoor space 7 by the indoor unit 3. It is used for heating operation or cooling operation.
  • heat source side refrigerant for example, a single refrigerant such as R-22 and R-134a, a pseudo azeotropic refrigerant mixture such as R-410A and R-404A, and a non-azeotropic refrigerant mixture such as R-407C can be used.
  • a heat source side refrigerant for example, a refrigerant containing a double bond in a chemical formula and having a relatively low global warming potential such as CF 3 or CF ⁇ CH 2 and a mixture thereof can be used.
  • natural refrigerants such as CO 2 or propane can be used as the heat source side refrigerant.
  • the heat medium for example, water, brine (antifreeze), a mixture of water and antifreeze, a mixture of water and an additive having a high anticorrosive effect, or the like can be used. That is, the air conditioning apparatus 100 contributes to the improvement of the safety
  • the air conditioning apparatus 100 according to the present embodiment will be described assuming that water is employed as the heat medium.
  • an air conditioner 100 includes an outdoor unit 1 and a relay unit 2 connected using two refrigerant pipes 4, and the relay unit 2 and each indoor unit 3 are connected to each other.
  • Two heat medium pipes 5 are used for connection.
  • the construction is performed by connecting each unit (the outdoor unit 1, the relay unit 2, and the indoor unit 3) using two pipes (the refrigerant pipe 4 and the heat medium pipe 5). It has become easy.
  • the relay unit 2 is installed in a space such as the back of the ceiling (hereinafter simply referred to as a space 8) that is inside the building 9 but is different from the indoor space 7.
  • a space 8 such as the back of the ceiling
  • the relay unit 2 can also be installed in a common space where there is an elevator or the like.
  • FIG. 1 shows an example in which the indoor unit 3 is a ceiling cassette type, but the present invention is not limited to this, and the indoor unit 3 is not directly limited to the indoor space 7 such as a ceiling embedded type or a ceiling suspended type.
  • any type of air can be used as long as heating air or cooling air can be blown out by a duct or the like.
  • FIG. 1 shows an example in which the outdoor unit 1 is installed in the outdoor space 6, but the present invention is not limited to this.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. If the waste heat can be exhausted outside the building 9 by an exhaust duct, the outdoor unit 1 may be installed inside the building 9. May be installed. Also, when the water-cooled outdoor unit 1 is used, the outdoor unit 1 may be installed inside the building 9. Even if the outdoor unit 1 is installed in such a place, no particular problem occurs.
  • the relay unit 2 may be installed in the vicinity of the outdoor unit 1. However, when the relay unit 2 is installed in the vicinity of the outdoor unit 1 in this way, it is preferable to pay attention to the length of the heat medium pipe 5 that connects the relay unit 2 to the indoor unit 3. This is because if the distance from the relay unit 2 to the indoor unit 3 is increased, the heat transfer power of the heat medium is increased correspondingly, and the energy saving effect is reduced.
  • the number of connected outdoor units 1, relay units 2, and indoor units 3 is not limited to the number illustrated in FIG. 1, and the number may be determined according to the building 9 in which the air conditioner 100 is installed. That's fine.
  • the plurality of relay units 2 When a plurality of relay units 2 are connected to one outdoor unit, the plurality of relay units 2 can be installed in a common space in a building such as a building or in a space such as a ceiling. By doing so, the air-conditioning load can be covered by the heat exchangers 25a and 25b (see FIG. 2) described later in each relay unit 2. Further, the indoor unit 3 can be installed at a distance or height within the allowable transport range of the pumps 31a and 31b (see FIG. 2) in each relay unit 2, and the whole unit such as a building can be installed. Placement is possible.
  • FIG. 2 is a diagram illustrating an example of circuit configurations of the outdoor unit 1 and the relay unit 2 in the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • the outdoor unit 1 and the relay unit 2 are connected by the refrigerant pipe 4 via the heat exchangers 25 a and 25 b provided in the relay unit 2.
  • the relay unit 2 and the indoor unit 3 are connected by the heat medium piping 5 via the heat exchangers 25a and 25b. That is, the heat exchangers 25 a and 25 b between the heat medium have a refrigerant side flow path and a heat medium side flow path, and the heat source side refrigerant supplied to the refrigerant side flow path via the refrigerant pipe 4 and the heat medium pipe. Heat exchange with the heat medium supplied to the heat medium side flow path via 5 is performed.
  • Outdoor unit 1 In the outdoor unit 1, a compressor 10, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 are connected and mounted via a refrigerant pipe 4.
  • the outdoor unit 1 is provided with a first connection pipe 4a, a second connection pipe 4b, and check valves 13a to 13d.
  • the air conditioner 100 can be connected from the outdoor unit 1 to the relay unit 2 regardless of the heating operation mode or the cooling operation mode.
  • the flow of the heat source side refrigerant to be introduced can be set in a certain direction.
  • the compressor 10 sucks the refrigerant, compresses the refrigerant to a high temperature and high pressure state, and conveys the refrigerant to the refrigerant circuit A.
  • the compressor 10 has a discharge side connected to the first refrigerant flow switching device 11 and a suction side connected to an accumulator 19.
  • the compressor 10 may be composed of, for example, an inverter compressor capable of capacity control.
  • the first refrigerant flow switching device 11 includes a discharge side of the compressor 10, a check valve 13d, a heat source side heat exchanger 12, and an accumulator in the heating only operation mode and the heating main operation mode of the mixed heating and cooling operation mode. 19 is connected to the suction side.
  • the first refrigerant flow switching device 11 connects the discharge side of the compressor 10 and the heat source side heat exchanger 12 in the cooling operation mode and the cooling main operation mode of the mixed heating and cooling operation mode, and performs a check.
  • the valve 13c and the suction side of the accumulator 19 are connected.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, and functions as a condenser (or radiator) during cooling operation.
  • the heat source side heat exchanger 12 exchanges heat between an air fluid supplied from a blower such as a fan (not shown) and the heat source side refrigerant, and evaporates or condenses the heat source side refrigerant. It is.
  • One side of the heat source side heat exchanger 12 is connected to the check valve 13b and the other side is connected to the suction side of the accumulator 19 in the heating operation mode.
  • one of the heat source side heat exchangers 12 is connected to the discharge side of the compressor 10 and the other is connected to the check valve 13a.
  • the heat source side heat exchanger 12 may be configured by, for example, a plate fin and tube heat exchanger that can exchange heat between the refrigerant flowing through the refrigerant pipe and the air passing through the fins.
  • the accumulator 19 stores surplus refrigerant due to a difference in required refrigerant amount between the heating operation mode and the cooling operation mode, and surplus refrigerant with respect to a transient operation change (for example, a change in the number of operating indoor units 3). is there.
  • the accumulator 19 has a suction side connected to the heat source side heat exchanger 12 and a discharge side connected to the suction side of the compressor 10 in the heating operation mode.
  • the accumulator 19 is connected to the check valve 13c on the suction side and connected to the suction side of the compressor 10 in the cooling operation mode.
  • the check valve 13a is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the relay unit 2, and flows the heat source side refrigerant only in a predetermined direction (direction from the outdoor unit 1 to the relay unit 2). It is acceptable.
  • the check valve 13c is provided in the refrigerant pipe 4 between the relay unit 2 and the first refrigerant flow switching device 11, and the heat source side refrigerant is only in a predetermined direction (direction from the relay unit 2 to the outdoor unit 1). It allows flow.
  • the check valve 13b is provided in the second connection pipe 4b and circulates the heat source side refrigerant returned from the relay unit 2 during the heating operation to the suction side of the compressor 10.
  • the check valve 13d is provided in the first connection pipe 4a, and causes the heat source side refrigerant discharged from the compressor 10 to flow through the relay unit 2 during the heating operation.
  • the first connection pipe 4 a includes a refrigerant pipe 4 between the first refrigerant flow switching device 11 and the check valve 13 c and a refrigerant pipe 4 between the check valve 13 a and the relay unit 2.
  • the second connection pipe 4b includes a refrigerant pipe 4 between the check valve 13c and the relay unit 2, a refrigerant pipe 4 between the heat source side heat exchanger 12 and the check valve 13a, Are connected.
  • FIG. 2 shows an example in which the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d are provided.
  • the present invention is not limited to this, and these are not necessarily provided.
  • the indoor unit 3 includes use side heat exchangers 35a to 35d (also simply referred to as use side heat exchangers 35).
  • the use side heat exchanger 35 includes heat medium flow rate adjusting devices 34 a to 34 d (also simply referred to as a heat medium flow rate adjusting device 34) via the heat medium pipe 5 and the second heat heat pipe 35 via the heat medium pipe 5.
  • the medium flow switching devices 33a to 33d (also simply referred to as the second heat medium flow switching device 33) are connected.
  • the use side heat exchanger 35 exchanges heat between air supplied from a blower such as a fan (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the indoor space 7. To do.
  • FIG. 2 shows an example in which the indoor units 3a to 3d are connected to the relay unit 2 via the heat medium pipe 5.
  • the use side heat exchanger 35 also includes a use side heat exchanger 35a, a use side heat exchanger 35b, a use side heat exchanger 35c, and a use side heat exchanger 35d from the upper side of the drawing. To do.
  • the number of indoor units 3 connected is not limited to four.
  • the relay unit 2 includes two heat medium heat exchangers 25a and 25b (sometimes simply referred to as the heat medium heat exchanger 25) and two expansion devices 26a and 26b (also simply referred to as the expansion device 26). 2), two opening / closing devices 27, 29, and two second refrigerant flow switching devices 28a, 28b (sometimes simply referred to as the second refrigerant flow switching device 28).
  • the relay unit 2 further includes two heat medium transfer devices, pumps 31a and 31b (sometimes simply referred to as pump 31), and four first heat medium flow switching devices 32a to 32d (simply referred to as first heat medium).
  • a flow switching device 32 four second heat medium flow switching devices 33a to 33d (also simply referred to as a second heat medium flow switching device 33), and four heat medium flow rates.
  • Adjustment devices 34a to 34d (also simply referred to as a heat medium flow rate adjustment device 34) are mounted.
  • the first heat medium flow switching devices 32a to 32d, the second heat medium flow switching devices 33a to 33d, and the heat medium flow control devices 34a to 34d are integrated flow channel switching that unifies the functions of these switching devices. It is also possible to replace it with a device.
  • the integrated flow path switching device includes, for example, the functions of the first heat medium flow path switching devices 32a to 32d, the second heat medium flow path switching devices 33a to 33d, and the heat medium flow rate adjustment devices 34a to 34d.
  • a configuration having a block (integrated) structure as described in International Publication No. 2014/128961 may be adopted.
  • the heat exchanger related to heat medium 25 functions as a condenser (heat radiator) or an evaporator, performs heat exchange between the heat source side refrigerant and the heat medium, and generates heat generated by the outdoor unit 1 or stored in the heat source side refrigerant. It transfers heat to the heat medium. That is, during the heating operation, the heat exchanger related to heat medium 25 functions as a condenser (heat radiator) and transmits the heat of the heat source side refrigerant to the heat medium. Further, during the cooling operation, the heat exchanger related to heat medium 25 functions as an evaporator and transmits the cold heat of the heat source side refrigerant to the heat medium.
  • the heat exchanger related to heat medium 25a is provided between the expansion device 26a and the second refrigerant flow switching device 28a in the refrigerant circulation circuit A, and serves to cool the heat medium in the air-conditioning mixed operation mode.
  • the heat exchanger related to heat medium 25b is provided between the expansion device 26b and the second refrigerant flow switching device 28b in the refrigerant circuit A, and serves to heat the heat medium in the air-conditioning mixed operation mode. It is.
  • the expansion device 26 has a function as a pressure reducing valve or an expansion valve, and expands the heat source side refrigerant by reducing the pressure.
  • the expansion device 26a is provided on the upstream side of the heat exchanger related to heat medium 25a in the flow of the heat source side refrigerant during the cooling operation (see FIG. 5 described later).
  • the expansion device 26b is provided on the upstream side of the heat exchanger related to heat medium 25b in the flow of the heat source side refrigerant during the cooling operation (see FIG. 5 described later).
  • the expansion device 26 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the opening / closing device 27 and the opening / closing device 29 are configured by, for example, electromagnetic valves that can be opened / closed by energization, and open / close a flow path in which they are provided. That is, the opening / closing device 27 and the opening / closing device 29 are controlled to open / close according to the operation mode, and switch the flow path of the heat source side refrigerant.
  • the opening / closing device 27 is provided in the refrigerant pipe 4 on the inlet side of the heat source side refrigerant (the refrigerant pipe 4 positioned at the lowest level in the drawing among the refrigerant pipes 4 connecting the outdoor unit 1 and the relay unit 2).
  • the opening / closing device 29 is provided in a pipe (bypass pipe 20) connecting the refrigerant pipe 4 on the inlet side of the heat source side refrigerant and the refrigerant pipe 4 on the outlet side.
  • the opening / closing device 27 and the opening / closing device 29 may be any devices that can open and close the flow path in which they are provided, and may be devices that control the opening of an electronic expansion valve, for example.
  • the second refrigerant flow switching device 28 is constituted by a four-way valve, for example, and switches the flow of the heat source side refrigerant so that the heat exchanger related to heat medium 25 functions as a condenser or an evaporator according to the operation mode. is there.
  • the second refrigerant flow switching device 28 is switched to the solid line side in FIG. 2 (switching in the opening direction during heating operation described later), and the heat between the heat medium
  • the exchanger 25 functions as an evaporator, it is switched to the dotted line side in FIG. 2 (switching of the opening direction during cooling operation described later).
  • the second refrigerant flow switching device 28a is provided on the downstream side of the heat exchanger related to heat medium 25a in the flow of the heat source side refrigerant during the cooling operation.
  • the second refrigerant flow switching device 28b is provided on the downstream side of the heat exchanger related to heat medium 25b in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the pump 31 circulates the heat medium flowing through the heat medium pipe 5 to the heat medium circuit B.
  • the pump 31 a is provided in the heat medium pipe 5 between the heat exchanger related to heat medium 25 a and the second heat medium flow switching device 33.
  • the pump 31 b is provided in the heat medium pipe 5 between the heat exchanger related to heat medium 25 b and the second heat medium flow switching device 33.
  • the pump 31 may be constituted by a capacity-controllable pump, for example, and the flow rate thereof may be adjusted according to the load in the indoor unit 3.
  • the first heat medium flow switching device 32 connects the outlet side of the heat medium flow path of the use side heat exchanger 35 to the inlet side of the heat medium flow path of the heat medium heat exchanger 25a or the heat between heat medium. It switches to the inlet side of the heat medium flow path of the exchanger 25b.
  • the number of first heat medium flow switching devices 32 is set according to the number of indoor units 3 installed (here, four). In the first heat medium flow switching device 32, one of the three sides is in the heat exchanger 25a, one of the three is in the heat exchanger 25b, and one of the three is in the heat medium flow rate. Each is connected to the adjustment device 34 and provided on the outlet side of the heat medium flow path of the use side heat exchanger 35.
  • the switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
  • the first heat medium flow switching device 32 may be constituted by a three-way valve, for example.
  • the second heat medium flow switching device 33 connects the connection side on the inlet side of the heat medium flow path of the use side heat exchanger 35 to the outlet side of the heat medium flow path of the heat medium heat exchanger 25a or the heat between heat medium. It switches to the exit side of the heat medium flow path of the exchanger 25b.
  • the second heat medium flow switching device 33 is provided in a number (four in this case) corresponding to the number of indoor units 3 installed.
  • one of the three heat transfer medium heat exchangers 25a, one of the three heat transfer medium heat exchangers 25b, and one of the three heat transfer side heats. Each is connected to the exchanger 35 and provided on the inlet side of the heat medium flow path of the use side heat exchanger 35.
  • the second heat medium flow switching device 33a, the second heat medium flow switching device 33b, the second heat medium flow switching device 33c, and the second heat medium flow switching are performed from the upper side of the drawing. Illustrated as device 33d.
  • the switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
  • the second heat medium flow switching device 33 may be constituted by a three-way valve, for example.
  • the first heat medium flow switching device 32 and the second heat medium flow switching device 33 constitute the heat medium flow switching device of the present invention.
  • the heat medium flow control device 34 is configured by a two-way valve or the like that can control the opening area, and controls the flow rate of the heat medium flowing through the heat medium pipe 5.
  • the number of the heat medium flow control devices 34 is set according to the number of indoor units 3 installed (four in this case).
  • One of the heat medium flow control devices 34 is connected to the use side heat exchanger 35 and the other is connected to the first heat medium flow switching device 32, and is connected to the outlet side of the heat medium flow channel of the use side heat exchanger 35. Is provided.
  • the heat medium flow control device 34 adjusts the amount of the heat medium flowing into the indoor unit 3 according to the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out, so that the optimum heat according to the indoor load The medium amount can be provided to the indoor unit 3.
  • the heat medium flow rate adjustment device 34a, the heat medium flow rate adjustment device 34b, the heat medium flow rate adjustment device 34c, and the heat medium flow rate adjustment device 34d are illustrated from the upper side of the drawing.
  • the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35.
  • the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35 and between the second heat medium flow switching device 33 and the use side heat exchanger 35. Good.
  • the indoor unit 3 does not require a load such as the stop mode and the thermo OFF, the heat medium supply to the indoor unit 3 can be stopped by fully closing the heat medium flow control device 34.
  • the heat medium flow control device 34 may be omitted. Is possible.
  • the first heat medium flow switching device 32, the second heat medium flow switching device 33, and the heat medium flow control device 34 are integrated (blocked), and the flow switch function, the flow control function, An integrated flow path switching device to which a flow path closing function is added can be substituted for the first heat medium flow path switching device 32, the second heat medium flow path switching device 33, and the heat medium flow rate adjustment device.
  • the relay unit 2 is provided with two temperature sensors 40a and 40b (sometimes simply referred to as the temperature sensor 40).
  • the temperature sensor 40 detects the temperature of the heat medium flowing out from the intermediate heat exchanger 25, that is, the temperature of the heat medium at the outlet of the intermediate heat exchanger 25.
  • the temperature sensor 40a is provided in the heat medium pipe 5 on the heat medium suction side of the pump 31a.
  • the temperature sensor 40b is provided in the heat medium pipe 5 on the heat medium suction side of the pump 31b.
  • the temperature sensor 40 may be composed of, for example, a thermistor.
  • the information (temperature information) detected by the temperature sensor 40 is sent to the control device 50 that performs overall control of the operation of the air conditioner 100.
  • the information (temperature information) detected by the temperature sensor 40 includes the driving frequency of the compressor 10, the rotational speed of the blower (not shown), the switching of the first refrigerant flow switching device 11, the driving frequency of the pump 31, and the second This is used for control such as switching of the refrigerant flow switching device 28, switching of the flow path of the heat medium, and adjustment of the heat medium flow rate of the indoor unit 3.
  • the state in which the control apparatus 50 is mounted in the relay unit 2 is shown as an example, the present invention is not limited to this, and the outdoor unit 1 or the indoor unit 3 or each unit is communicatably mounted. You may do it.
  • control device 50 is constituted by a microcomputer or the like, and based on detection results from various detection means and instructions from the remote controller, the driving frequency of the compressor 10, the rotational speed of the blower (including ON / OFF), the first 1
  • the switching of the refrigerant flow switching device 11, the driving of the pump 31, and the opening degree of the expansion device 26 are controlled.
  • the control device 50 switches the second refrigerant flow switching device 28, the first heat medium flow switching device 32, the second heat medium flow switching device 33, and the heat medium flow control device. 34, the opening and closing of the opening and closing devices 27 and 29, and the opening degree of the heat medium flow regulating valve 36, which will be described later, are controlled. That is, the control device 50 controls the actuators and the like constituting these various devices, and executes each operation mode described later.
  • the control device 50 performs control so that the indoor space 7 maintains the set temperature.
  • the control device 50 moves to the use side heat exchanger 35 provided in the indoor unit 3. Is stopped (thermo OFF). Further, even if the indoor space 7 has not reached the set temperature, the control device 50 only stops the supply of the heat medium to the use side heat exchanger 35 provided in the indoor unit 3 if an instruction from the user is given. Instead, the operation of the fan attached to the use side heat exchanger 35 is also stopped.
  • the heat medium pipe 5 through which the heat medium flows has one connected to the heat exchanger related to heat medium 25a and one connected to the heat exchanger related to heat medium 25b.
  • the heat medium pipe 5 is branched (here, four branches) in accordance with the number of connection ports 60 with the indoor unit 3.
  • the one connected to the heat exchanger related to heat medium 25 a and the one connected to the heat exchanger related to heat medium 25 b include the first heat medium flow switching device 32, Two heat medium flow switching devices 33 are connected.
  • the heat medium from the heat exchanger related to heat medium 25a flows into the use-side heat exchanger 35, or the heat medium Whether the heat medium from the intermediate heat exchanger 25b flows into the use side heat exchanger 35 is determined.
  • a refrigerant circulation circuit A is configured by connecting the refrigerant flow path of the container 25, the expansion device 26, and the accumulator 19 with the refrigerant pipe 4. Further, the heat medium flow path of the intermediate heat exchanger 25, the pump 31, the first heat medium flow switching device 32, the heat medium flow control device 34, the use side heat exchanger 35, and the second heat medium flow path.
  • the switching device 33 is connected by the heat medium pipe 5 to constitute the heat medium circuit B.
  • a plurality of use side heat exchangers 35 are connected in parallel to each of the heat exchangers 25 between heat media, and the heat medium circulation circuit B is made into a plurality of systems.
  • the heat medium circulation circuit B is made into a plurality of systems.
  • there are four connection ports 60 four heat medium circulation circuits B are configured.
  • the outdoor unit 1 and the relay unit 2 are connected via the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b provided in the relay unit 2, and the relay unit 2 is connected.
  • the indoor unit 3 are connected via the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b. That is, in the air conditioner 100, the heat source side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchanger 25a and the intermediate heat exchanger 25b. It is like that. By using such a configuration, the air conditioner 100 can realize an optimal cooling operation or heating operation according to the indoor load.
  • the heat medium circulation circuit B diverts the heat medium flowing through the heat medium circulation circuit B into a plurality (here, two) and supplies the heat medium to the indoor units 3a-1, 3a-2.
  • Two shunt parallel circuits 70a and 70b that flow in parallel are provided.
  • the air conditioner 100 according to the present embodiment can adjust the flow rate of each heat medium in the indoor units 3a-1 and 3a-2 by connecting the heat medium diverter 15 to the connection port 60a. It has become.
  • the heat medium diverter 15 will be described.
  • FIG. 3 is a schematic configuration diagram of the heat medium diverter 15 of the air-conditioning apparatus according to the embodiment of the present invention.
  • the heat medium diverter 15 forms part of the heat medium circulation circuit B, and includes a first connection port 61 for connection to the relay unit 2 and the indoor units 3a-1, 3a. -2 for connecting to -2.
  • the first connection port 61 has an inlet-side connection port 61a and an outlet-side connection port 61b.
  • the relay unit 2 and the heat medium branching device 15 are connected by the heat medium pipe 5 via the first connection port 61.
  • the second connection port 62 has an outlet side connection port 62a and an inlet side connection port 62b.
  • Each of the inlet-side connection port 62b and the outlet-side connection port 62a is provided in a number corresponding to the number of indoor units that can be connected to one heat medium circulation circuit B.
  • the heat medium flow dividing device 15 includes a flow dividing pipe 16 and a merging pipe 17.
  • the diversion pipe 16 connects the inlet side connection port 61a and the outlet side connection port 62a, diverts the heat medium from the relay unit 2 flowing in from the inlet side connection port 61a, and guides it to the plurality of outlet side connection ports 62a.
  • the merge pipe 17 connects the plurality of inlet side connection ports 62b and the outlet side connection ports 61b, and merges each heat medium from the indoor units 3a-1 and 3a-2 flowing in from the plurality of inlet side connection ports 62b. Then, it leads to the outlet side connection port 61b.
  • a heat medium flow adjusting valve 36 is provided in the flow dividing pipe 16.
  • the heat medium diversion adjusting valve 36 diverts the heat medium in the heat medium circulation circuit B that has flowed into the heat medium diverter 15 from the relay unit 2 at an arbitrary diversion ratio, and uses-side heat exchangers 35a-1 and 35a-2. This is to adjust the flow rate.
  • the heat medium diversion adjusting valve 36 is, for example, a three-way valve that includes a stepping motor and can change the opening area for each indicated opening. As the indicated opening increases, the heat medium flow adjusting valve 36 increases the amount of heat medium flowing into the use side heat exchanger 35a-1 while the heat medium flowing into the use side heat exchanger 35a-2. To reduce the amount of
  • the heat medium diverter 15 further includes a temperature sensor 41 and temperature sensors 42a and 42b.
  • the temperature sensor 41 detects the temperature of the heat medium flowing into the heat medium diverter 15.
  • the temperature sensors 42a and 41-b detect the temperature of the heat medium after the heat exchange by the use side heat exchangers 35a-1 and 35a-2.
  • the temperature sensor 41 and the temperature sensors 42a and 42b constitute the temperature detection device of the present invention.
  • the temperature sensors are composed of a thermistor, for example.
  • the heat medium flow control valve 36 is adjusted based on the temperature detected by these temperature sensors so that an optimum heat medium flow rate is conveyed to the use side heat exchangers 35a-1 and 35a-2. .
  • the heat medium shunt adjustment valve 36 is controlled by the control device 50 in accordance with the respective loads of the indoor units 3a-1, 3a-2. Details of the control of the heat medium flow control valve 36 will be described in detail again.
  • the air conditioner 100 can perform a heating operation or a cooling operation in the indoor unit 3 based on an instruction from each indoor unit 3. That is, the air conditioning apparatus 100 can perform the same operation for all the indoor units 3 and can perform different operations for each of the indoor units 3.
  • the operation mode executed by the air conditioner 100 includes the following four modes. Hereinafter, each operation mode will be described together with the flow of the heat source side refrigerant and the heat medium.
  • the indoor unit 3a is divided into two units, the indoor unit 3a-1 and the indoor unit 3a-2 as described above. From the viewpoint of explaining the outline of the basic operation in each mode, In the description of each mode, for convenience, the description will be made as one indoor unit 3a without distinguishing between two units. Then, the flow of the heat medium to the indoor units 3a-1, 3a-2 will be described in detail again.
  • FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 illustrated in FIG. 2 is in the heating operation mode.
  • the state where the four indoor units 3a to 3d are in the heating operation mode will be described as an example.
  • the piping represented by the thick line has shown the piping through which the heat source side refrigerant
  • the flow direction of the heat source side refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a dotted line arrow.
  • the outdoor unit 1 uses the first refrigerant flow switching device 11 as a relay unit without passing the heat source side refrigerant discharged from the compressor 10 through the heat source side heat exchanger 12. Switch to 2
  • the four first heat medium flow switching devices 32a to 32d and the four second heat medium flow switching devices 33a to 33d are on the heating side. It can be switched to the opening direction or an intermediate opening. Switching to the heating side opening degree direction means switching to the side functioning as a condenser in the heat exchangers 25a and 25b. Here, it is a heating only operation mode, and since both the heat exchangers 25a and 25b function as condensers, they indicate switching to either one of the heat exchangers 25a and 25b. It will be.
  • the intermediate opening means that the opening is set to an intermediate opening so as to secure a flow path that flows to both the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b.
  • the opening / closing device 27 is closed and the opening / closing device 29 is open. Further, the four heat medium flow control devices 34a to 34d have the opening degree at the time of adjusting the heat medium flow rate. That is, the four heat medium flow control devices 34a to 34d are controlled so as to obtain a flow rate necessary to cover the air conditioning load required in the room where the indoor units 3a to 3d are installed.
  • the operation of the pump 31 is a flow rate instruction value corresponding to the indoor unit load.
  • the switching state of the second refrigerant flow switching device 28 is the opening direction during heating operation.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the first connection pipe 4a.
  • the high-temperature and high-pressure gas refrigerant flowing out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant flowing into the relay unit 2 passes through the second refrigerant flow switching devices 28a and 28b, then passes through the heat exchangers 25a and 25b, passes through the expansion devices 26a and 26b, It passes through the opening / closing device 29.
  • the refrigerant that has passed through the opening / closing device 29 is conveyed to the outdoor unit 1 and exchanges heat with the outside air in the heat source side heat exchanger 12 to become a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the opening degree of the expansion devices 26a and 26b is controlled so that the subcooling (supercooling degree) of the outlet refrigerant of the heat exchangers 25a and 25b is constant.
  • This subcool (degree of subcooling) includes the value obtained by converting the pressure of the heat source side refrigerant flowing between the heat exchangers 25a and 25b and the expansion devices 26a and 26b into the saturation temperature, and the heat exchanger 25a. 25b is obtained as a difference from the temperature on the outlet side of 25b.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b, and the heated heat medium is heated by the pump 31a and the pump 31b.
  • the inside of the pipe 5 is allowed to flow.
  • the heat medium pressurized by the driving of the pump 31a and the pump 31b is sent to the use side heat exchangers 35a to 35d, exchanges heat with room air, and then flows out of the use side heat exchangers 35a to 35d. It flows into the flow rate adjusting devices 34a to 34d.
  • the heat medium is controlled to a flow rate required to cover the air conditioning load required indoors by the action of the heat medium flow control devices 34a to 34d, and the use side heat exchangers 35a to 35d and the heat medium flow rate are controlled. It passes through the adjusting devices 34a to 34d.
  • the heat medium flowing out of the heat medium flow control devices 34a to 34d is switched by the first heat medium flow switching devices 32a to 32d, passes through the heat medium pipe 5, and passes through the heat exchangers 25a and 25a. It flows into and passes through the heat exchanger related to heat medium 25b and is sucked into the pump 31a and the pump 31b again.
  • FIG. 5 is a refrigerant circuit diagram showing the flow of the refrigerant when the air-conditioning apparatus 100 shown in FIG. 2 is in the cooling only mode.
  • the four indoor units 3a to 3d will be described as an example of the state of the cooling operation mode.
  • the pipes represented by the thick lines indicate the pipes through which the heat source side refrigerant flows.
  • the flow direction of the heat source side refrigerant is indicated by solid arrows, and the flow direction of the heat medium is indicated by dotted arrows.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the four first heat medium flow switching devices 32a to 32d and the four second heat medium flow switching devices 33a to 33d have a cooling side opening degree.
  • the four heat medium flow control devices 34a to 34d have the opening degree when adjusting the heat medium flow rate.
  • the opening / closing device 27 is open and the opening / closing device 29 is closed.
  • the expansion device 26a and the expansion device 26b have openings at the time of adjusting the heat medium refrigerant flow rate.
  • the operation of the pump 31 is a flow rate instruction value corresponding to the indoor unit load.
  • the switching state of the second refrigerant flow switching device 28 is the opening direction during the cooling operation.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11.
  • the refrigerant that has flowed into the heat source side heat exchanger 12 exchanges heat with the outside air, becomes a high-temperature and high-pressure liquid or two-phase refrigerant, and flows out of the heat source side heat exchanger 12.
  • the refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 after passing through the check valve 13a.
  • the high-temperature and high-pressure liquid or two-phase refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the high-temperature and high-pressure liquid or two-phase refrigerant that has flowed into the relay unit 2 passes through the opening / closing device 27 and is then expanded by the expansion devices 26a and 26b to become a low-temperature and low-pressure two-phase refrigerant.
  • the two-phase refrigerant exchanges heat with the heat medium in the heat exchangers 25a and 25b, and then becomes a low-temperature and low-pressure gas refrigerant.
  • the gas refrigerant that has flowed out of the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b passes through the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b, and then merges to join the relay unit 2 Spill from.
  • the refrigerant that has flowed out of the relay unit 2 passes through the refrigerant pipe 4 and the check valve 13c, and is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator
  • the expansion device 26 calculates a value obtained by converting the pressure of the heat-source-side refrigerant flowing between the heat exchanger 25 between the heat medium 25 and the expansion device 26 into a saturation temperature and the temperature on the outlet side of the heat exchanger 25 between the heat media.
  • the opening degree is controlled so that the superheat (superheat degree) obtained as the difference becomes constant.
  • a saturation temperature obtained by converting the temperature at the intermediate position may be used instead. In this case, it is not necessary to install a pressure sensor, and the system can be configured at low cost.
  • the flow of the heat medium in the heat medium circuit B will be described.
  • the cold heat of the heat medium is transmitted to the heat source side refrigerant in both of the heat exchangers between heat exchangers 25a and 25b, and the cooled heat medium is heated by the pumps 31a and 31b.
  • the inside of the pipe 5 is allowed to flow.
  • the flow of the heat medium in the heat medium circuit B in the cooling only operation mode is the same as the flow of the heat medium during the heating described with reference to FIG. That is, the heat medium pressurized by driving the pump 31a and the pump 31b is sent to the use side heat exchangers 35a to 35d, exchanges heat with room air, and then flows out from the use side heat exchangers 35a to 35d.
  • the heat medium flow control devices 34a to 34d It flows into the heat medium flow control devices 34a to 34d. At this time, the heat medium is controlled to a flow rate required to cover the air conditioning load required indoors by the action of the heat medium flow control devices 34a to 34d, and the use side heat exchangers 35a to 35d and the heat medium flow rate are controlled. It passes through the adjusting devices 34a to 34d.
  • the heat medium flowing out of the heat medium flow control devices 34a to 34d is switched by the first heat medium flow switching devices 32a to 32d, passes through the heat medium pipe 5, and passes through the heat exchangers 25a and 25a. It flows into and passes through the heat exchanger related to heat medium 25b and is sucked into the pump 31a and the pump 31b again.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow during heating-main operation in the mixed operation mode of the air-conditioning apparatus 100 illustrated in FIG. 2.
  • the indoor unit 3a is in the heating operation mode
  • the indoor unit 3d is in the cooling operation mode
  • the mixed operation is an example of the operation state when the heating operation rate is larger than the cooling operation rate.
  • the other indoor units 3b and 3c are not subjected to a load due to the operation stop (there is no need to cool and heat the room, including a state where the thermo-off is performed), and the heat medium is transferred to the use side heat exchangers 35b and 35c. Shall not flow.
  • tube represented by the thick line has shown the pipe
  • the flow direction of the heat source side refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a dotted line arrow.
  • the first refrigerant flow switching device 11 relays the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. Switch to flow into unit 2.
  • the second heat medium flow switching device 33a connected to the indoor unit 3a in the heating operation mode is switched in the heating side opening direction. That is, the heat exchangers 25a and 25b are switched to the heat exchanger related to heat medium 25b functioning as a condenser. Further, the second heat medium flow switching device 33d connected to the indoor unit 3d in the cooling operation mode is switched in the cooling side opening direction. That is, the second heat medium flow switching device 33d is switched to the heat exchanger related to heat medium 25a functioning as an evaporator among the heat exchangers 25a and 25b.
  • the four heat medium flow control devices 34a to 34d are set to the opening degree when adjusting the heat medium flow rate.
  • the opening / closing device 27 is closed and the opening / closing device 29 is closed.
  • the expansion device 26a and the expansion device 26b have openings at the time of adjusting the heat medium refrigerant flow rate.
  • the operation of the pump 31 is a flow rate instruction value corresponding to the indoor unit load.
  • the switching state of the second refrigerant flow switching device 28a is the opening direction during cooling operation, and the switching state of the second refrigerant flow switching device 28b is the opening direction during heating operation.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the first connection pipe 4a.
  • the high-temperature and high-pressure gas refrigerant flowing out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the relay unit 2 passes through the second refrigerant flow switching device 28b and then passes through the heat exchanger related to heat medium 25b that functions as a condenser.
  • the refrigerant that has passed through the heat exchanger related to heat medium 25b is reduced in pressure through the expansion device 26b and the expansion device 26b, and flows into the heat exchanger related to heat medium 25a that functions as an evaporator.
  • the refrigerant that has flowed out of the heat exchanger related to heat medium 25a then flows out of the relay unit 2 after passing through the second refrigerant flow switching device 28a.
  • the refrigerant that has flowed out of the relay unit 2 is conveyed to the outdoor unit 1 through the refrigerant pipe 4 and is exchanged with the outside air in the heat source side heat exchanger 12, and then becomes a low-temperature and low-pressure gas refrigerant. .
  • the low-temperature and low-pressure gas refrigerant is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the expansion device 26b includes a value obtained by converting the pressure of the heat source side refrigerant flowing between the heat exchanger related to heat medium 25b and the expansion device 26b into a saturation temperature, and a temperature on the outlet side of the heat exchanger related to heat medium 25b.
  • the degree of opening is controlled so that the subcool (degree of supercooling) obtained as a difference from the above becomes constant.
  • the expansion device 26a is a difference between the value obtained by converting the pressure of the heat source side refrigerant flowing between the heat exchanger related to heat medium 25a and the expansion device 26a into the saturation temperature and the temperature on the outlet side of the heat exchanger related to heat medium 25a.
  • the degree of opening is controlled so that the superheat (degree of superheat) obtained is constant.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 25b, and the heated heat medium is caused to flow in the heat medium pipe 5 by the pump 31b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 25a, and the cooled heat medium is caused to flow in the heat medium pipe 5 by the pump 31a.
  • the heat medium pressurized by the drive of the pump 31b is sent to the use side heat exchanger 35a, exchanges heat with room air, heats the room, and then flows out of the use side heat exchanger 35a.
  • the heat medium flowing out from the use side heat exchanger 35a passes through the heat medium flow control device 34a and the first heat medium flow switching device 32a, and then flows into and passes through the heat exchanger related to heat medium 25a.
  • the heat medium that has passed through the heat exchanger related to heat medium 25a is sucked into the pump 31b again, and then passes through the second heat medium flow switching device 33a and is sent to the use-side heat exchanger 35a.
  • the heat medium pressurized by the driving of the pump 31a is sent to the use side heat exchanger 35d, exchanges heat with room air, cools the room, and then flows out from the use side heat exchanger 35d.
  • the heat medium that has passed through the heat medium flow control device 34e passes through the heat medium flow control device 34d and the first heat medium flow switching device 32d, and then flows into and passes through the heat exchanger related to heat medium 25a. Then, the heat medium that has passed through the heat exchanger related to heat medium 25a is sucked into the pump 31a again, and then passes through the second heat medium flow switching device 33d and is sent to the use-side heat exchanger 35d.
  • Heat medium diverter 15 a method for controlling the heat medium flow adjusting valve 36 provided in the heat medium flow dividing device 15 will be described.
  • the heat exchanger related to heat medium 25b functions as a condenser and the indoor unit 3a operates in the heating operation mode will be described as an example.
  • the flow rate of the heat medium flowing into each of the four heat medium circulation circuits B is controlled by the heat medium flow control devices 34a to 34d according to the respective heat loads of the indoor units 3a to 3d.
  • the medium diverter 15 further divides the flow rate of the heat medium assigned to the indoor unit 3a according to the heat load of the indoor units 3a-1, 3a-2, and uses side heat exchangers 35a-1, 35a- 2 is allowed to flow.
  • the heat medium absorbed by the heat exchanger related to heat medium 25a is transported from the pump 31b and flows into the heat medium diverter 15.
  • the temperature of the heat medium flowing into the heat medium diverter 15 is detected by the temperature sensor 41.
  • the heat medium that has flowed into the heat medium flow dividing device 15 flows into the heat medium flow adjusting valve 36, and is divided by adjusting the opening degree optimally according to the air conditioning load that is the heat load of each of the indoor units 3a-1, 3a-2. Is done.
  • Each of the divided heat media flows into the use side heat exchangers 35a-1 and 35a-2 connected to the downstream side of the outlet of the heat medium diverter 15, and heat is radiated to the air in the indoor space 7.
  • Each heat medium that has radiated heat to the air in the indoor space 7 flows into the heat medium diverter 15 again, joins, and is transported to the relay unit 2 again.
  • the heat medium diversion adjusting valve 36 is controlled as follows to cover the air conditioning load required in the indoor space 7. That is, the heat medium flow control valve 36 is controlled so as to keep the temperature difference of the heat medium at the inlet / outlet of each of the use side heat exchangers 35a-1 and 35a-2 at the target temperature difference ⁇ Tm.
  • the target temperature difference ⁇ Tm is a target value set from the heat exchange amount and the flow rate of the heat medium in the use side heat exchanger 35a-1 and the use side heat exchanger 35a-2.
  • the control amount of the heat medium flow control valve 36 will be specifically described using mathematical expressions.
  • the opening degree Fj instructed to the heat medium shunt adjustment valve 36 is ⁇ Fj, which is the opening degree change amount determined according to the air conditioning load of each of the use side heat exchangers 35a-1 and 35a-2.
  • Fj * the opening degree change amount determined according to the air conditioning load of each of the use side heat exchangers 35a-1 and 35a-2.
  • the opening Fj can also be said to be an opening required according to each load of the use side heat exchangers 35a-1 and 35a-2, that is, a required opening.
  • the opening change amount ⁇ Fj is obtained from the following (Equation 2).
  • ⁇ Fj ( ⁇ Fj1 + ⁇ Fj2) / 2 (Expression 2) here, ⁇ Fj1: Amount of change in the opening degree of the heat medium shunt adjustment valve 36 required according to the load of the use side heat exchanger 35a-1 ⁇ Fj2: Heat required according to the load of the use side heat exchanger 35a-2 Amount of change in opening of the medium shunt adjustment valve 36
  • the opening change amount ⁇ Fj is determined by the opening change amount ⁇ Fj1 and the opening change amount ⁇ Fj2 required in each of the use side heat exchangers 35a-1 and 35a-2. Is the average value.
  • the calculation formula of the opening change amount ⁇ Fj is not limited to (Expression 2) as long as the average opening change amount can be calculated.
  • the opening change amounts ⁇ Fj1 and ⁇ Fj2 of the heat medium diversion adjusting valve 36 required according to the loads on the use side heat exchangers 35a-1 and 35a-2 are used on the use side heat exchangers 35a-1 and 35a-. 2 and the target temperature difference ⁇ Tm and the control gain Gs in the heat medium shunt adjustment valve 36 can be calculated by the following equation.
  • the control gain Gs is determined by the opening speed of the heat medium flow control valve 36 and the responsiveness of the use side heat exchangers 35a-1 and 35a-2 to the heat load. Further, ⁇ T1 is a temperature difference of the heat medium before and after heat exchange in the use side heat exchanger 35a-1, as is clear from (Expression 7). ⁇ T2 is a temperature difference of the heat medium before and after heat exchange in the use side heat exchanger 35a-2, as is clear from (Equation 8).
  • the opening change amounts ⁇ Fj1 and ⁇ Fj2 are determined to be larger values as the difference between the current heat medium temperature difference before and after the heat exchange in the use side heat exchangers 35a-1 and 35a-2 and the target temperature difference ⁇ Tm is larger.
  • the return water temperature detected by the temperature sensor 41 changes as the indicated opening degree Fj changes.
  • the required flow rate is increased and the opening degree of the heat medium flow control device 34a is controlled to open.
  • the flow rate of the heat medium flowing into the heat medium diverter 15 increases.
  • the calculation of the instruction opening Fj of the heat medium shunt adjustment valve 36 and the instruction of the opening Fj to the heat medium shunt adjustment valve 36 are performed at every control interval, and when obtaining the instruction opening Fj, as described above, ⁇ Fj1 And ⁇ Fj2 obtained by averaging and ⁇ Fj2. Then, the instruction of the instruction opening Fj calculated using ⁇ Fj obtained in this way is repeated, and as a result, a necessary flow rate is secured for both the use side heat exchangers 35a-1 and 35a-2. can do.
  • the above numerical values of ⁇ Fj1 and ⁇ Fj2 are used for easy understanding of the description here, and are not limited to these numerical values.
  • FIG. 7 is a view showing an image of the opening degree of the heat medium flow control valve 36 in the heat medium flow dividing device 15 of the air conditioner according to the embodiment of the present invention.
  • the heat medium flow control valve 36 in FIG. 7 it means that the painted portion is sealed in the opening.
  • the opening degree image is obtained when the loads on the use side heat exchanger 35a-1 and the use side heat exchanger 35a-2 are uniform.
  • the opening degree image of FIG. 7 means that the loads on the use side heat exchanger 35a-1 and the use side heat exchanger 35a-2 are uniform, and the respective opening areas are halved.
  • This control can be realized by applying the above (Formula 1) to (Formula 8) to the heat medium flow dividing control valve 36.
  • FIG. 8 is a view showing an image of the opening degree of the heat medium flow regulating valve 36 in the heat medium flow dividing device 15 of the air conditioner according to the embodiment of the present invention.
  • the painted portion means that it is sealed in the opening as in FIG. 7.
  • all of the heat medium that has flowed into the heat medium diverter 15 flows into the use-side heat exchanger 35a-1, and the heat medium does not flow into the use-side heat exchanger 35a-2.
  • This control can be realized by applying the above (Formula 1) to (Formula 8) to the heat medium flow dividing control valve 36.
  • FIG. 9 is a view showing an image of the opening degree of the heat medium flow adjustment valve 36 in the heat medium flow dividing device 15 of the air conditioner according to the embodiment of the present invention.
  • the painted portion means that it is sealed in the opening as in FIG.
  • more than half of the heat medium flowing into the heat medium diverter 15 flows into the use side heat exchanger 35a-1, and less than half of the heat medium flows into the use side heat exchanger 35a-2.
  • This control can be realized by applying the above (Formula 1) to (Formula 8) to the heat medium flow dividing control valve 36.
  • control device 50 provided in the relay unit 2
  • control can also be realized by providing a control device in the heat medium flow dividing device 15 itself.
  • the heat medium circulation device 15 in the heat medium circuit B by providing the heat medium circulation device 15 in the heat medium circuit B, a plurality of use side heat exchangers connected to the one heat medium circuit B The flow rate of the heat medium can be adjusted for each of 35a-1 and 35a-2. For this reason, the heat medium having an optimum flow rate can be conveyed to the usage-side heat exchangers 35a-1 and 35a-2 according to the respective heat loads of the usage-side heat exchangers 35a-1 and 35a-2. Therefore, the heat medium more than necessary for the use side heat exchanger is not transported or the heat medium less than necessary is transported. As a result, in the heat medium pipe 5, it is necessary to take measures such as implementing the heat medium transport pipe considering the pressure loss in the pipe, and providing a valve for adjusting the pressure loss in the heat medium pipe 5. do not do.
  • the control of the heat medium flow dividing device 15, specifically, the control of the heat medium flow adjusting valve 36, is performed based on the temperature difference of the heat medium at the inlet / outlet of each of the use side heat exchangers 35 a-1 and 35 a-2.
  • the heat medium flow dividing device 15 is provided with a temperature sensor 41 and temperature sensors 42a and 42b for detecting the temperature difference. For this reason, only by incorporating the heat medium flow dividing device 15 into the existing air conditioner, temperature sensors for detecting the temperature necessary for controlling the heat medium flow adjusting valve 36 can be incorporated together.
  • the temperature sensor that detects the temperature necessary for controlling the heat medium flow control valve 36 is not limited to the temperature sensor 41 and the temperature sensors 42a and 42b in the heat medium flow dividing device 15, but includes (Formula 1) to (Formula 8). If the above control is realized, there is no problem even if the temperature sensor in the relay unit 2 or the temperature sensor mounted in the indoor unit 3 is substituted. However, since the temperature sensor in the heat medium shunting device 15 is physically closer to the use side heat exchangers 35a-1 and 35a-2 than the relay unit 2, considering the control accuracy, It is preferable to use the temperature sensor.
  • the second refrigerant flow switching device 28 has been described as an example of a four-way valve. However, the second refrigerant flow switching device 28 is not limited thereto, and a plurality of two-way flow switching valves or three-way flow switching valves are used. Similarly, the refrigerant may flow. Of course, there is no problem even if a plurality of heat exchangers 25 and expansion devices 26 having functions are installed. Moreover, although the case where the heat medium flow control device 34 is built in the relay unit 2 has been described as an example, it is not limited thereto. That is, the heat medium flow control device 34 may be incorporated in the indoor unit 3. As long as the indoor unit 3 has a heat medium flow rate adjustment function, the heat medium flow adjustment device 34 may not be incorporated in the heat medium flow dividing device 15, the relay unit 2, or the relay unit 2.
  • the air conditioner 100 has been described by taking a configuration in which the accumulator 19 is mounted as an example, but the accumulator 19 may not be mounted.
  • the heat source side heat exchanger 12 and the use side heat exchanger 35 are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing air, but it is not limited thereto.
  • the use-side heat exchanger 35 a panel heater using radiation can be used.
  • the heat source side heat exchanger 12 a water-cooled type that moves heat by water or antifreeze can also be used. That is, the heat source side heat exchanger 12 and the use side heat exchanger 35 can be used regardless of the type as long as they have a structure capable of radiating heat or absorbing heat.
  • the present invention is not limited thereto, and any number of heat exchangers can be installed as long as the heat medium can be cooled or / and heated. Good.
  • the number of pumps 31a and 31b is not limited to one, and a plurality of small-capacity pumps may be connected in parallel.
  • the heat medium diverting adjustment valve 36 in the heat medium diverting device is a three-way valve, and the opening degree is set so that the flow rate can be adjusted optimally with respect to the use side heat exchangers 35a-1 and 35a-2 existing on the downstream side.
  • the opening degree is set so that the flow rate can be adjusted optimally with respect to the use side heat exchangers 35a-1 and 35a-2 existing on the downstream side.
  • a three-way valve for switching the flow path and an opening adjustment valve capable of adjusting the flow rate may be combined. In this way, any structure can be used as long as it has a structure capable of adjusting and diverting to an optimum flow rate with respect to the use side heat exchangers 35a-1 and 35a-2 existing downstream of itself. .
  • the heat medium for example, an antifreeze brine, water, a mixed solution of brine and water, a mixed solution of water and an additive having a high anticorrosion effect, or the like can be used. That is, the air conditioning apparatus 100 contributes to the improvement of the safety
  • first heat medium flow switching device 32b, first heat medium flow switching device, 32c, first heat medium flow switching device, 32d, first heat medium flow switching device, 33, second heat medium flow switching device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

複数の利用側熱交換器が接続された系統の熱媒体循環回路において、各利用側熱交換器の熱負荷に応じた流量の熱媒体を各利用側熱交換器に搬送可能な空気調和装置を提供することを目的とする。熱源側冷媒が循環する冷媒循環回路と、冷媒循環回路の熱源側冷媒と熱媒体間熱交換器で熱交換する熱媒体が循環し、複数の利用側熱交換器を備えた複数系統の熱媒体循環回路と、複数系統の熱媒体循環回路のうち、利用側熱交換器が複数接続された熱媒体循環回路に設けられ、熱媒体循環回路に接続された複数の利用側熱交換器の熱媒体の流量を調整する熱媒体分流装置とを備えた。

Description

空気調和装置
 本発明は、たとえばビル用マルチエアコン等に適用される空気調和装置に関するものである。
 空気調和装置には、ビル用マルチエアコンなどのように、熱源機(室外ユニット)が建物外に配置され、室内ユニットが建物の室内に配置されたものがある。このような空気調和装置の冷媒回路を循環する冷媒は、室内ユニットの熱交換器に供給される空気に放熱(吸熱)して、当該空気を加熱または冷却する。そして、加熱または冷却された空気が、空調対象空間に送り込まれて暖房または冷房が行われるようになっている。
 このような空気調和装置に使用される熱源側冷媒としては、たとえばHFC(ハイドロフルオロカーボン)系冷媒が多く採用されている。また、熱源側冷媒としては、二酸化炭素(CO)等の自然冷媒を使うものも提案されている。
 また、建物外に配置した熱源機として冷熱または温熱を生成するチラーを備えた空気調和装置が各種提案されている(たとえば、特許文献1参照)。特許文献1に記載の技術は、チラー内に配置した熱媒体間熱交換器で水、不凍液などの熱媒体を加熱または冷却し、これを、室内ユニットであるファンコイルユニット、パネルヒーターなどに熱媒体配管で搬送して暖房または冷房を行うものである(たとえば、特許文献1参照)。
 また、排熱回収型チラーと呼ばれる、熱源機と室内ユニットとの間に4本の熱媒体配管を接続した空気調和装置も提案されている(たとえば、特許文献2参照)。特許文献2に記載の技術は、加熱された熱媒体と冷却された熱媒体とを同時に室内ユニットに供給し、室内ユニットにおいて冷房または暖房を自由に選択できるものである。
 また、1次冷媒が循環する1次側冷媒回路と、熱媒体である2次冷媒が循環する回路であって利用側熱交換器を有する2次側冷媒回路とを有し、1次冷媒と2次冷媒とを熱交換する熱媒体間熱交換器が、各室内ユニットの近傍に配置された空気調和装置が提案されている(たとえば、特許文献3参照)。
 また、室外ユニットで加熱または冷却された熱源側冷媒を、分岐ユニット内に搭載された熱媒体間熱交換器に供給し、その供給された熱源側冷媒の温熱または冷熱を、該熱媒体間熱交換器を介して熱媒体に伝達させるようにした空気調和装置が提案されている(たとえば、特許文献4参照)。特許文献4に記載の技術は、室内ユニットと分岐ユニットとが2本の熱媒体配管で接続されている。
 また、ビル用マルチエアコンなどの空気調和装置において、室外ユニットから中継ユニットまで冷媒を循環させ、中継ユニットから室内ユニットまで水等の熱媒体を循環させることにより、室内ユニットに水等の熱媒体を循環させながら、熱媒体の搬送動力を低減させる空気調和装置が提案されている(たとえば、特許文献5参照)。
特開2005-140444号公報 特開平5-280818号公報 特開2001-289465号公報 特開2003-343936号公報 国際公開第10/049998号
 特許文献1~5に記載の技術では、熱媒体間熱交換器に対して1または複数の利用側熱交換器が並列に接続され、一系統または複数系統の熱媒体循環回路が構成されている。そして、各熱媒体循環回路には熱媒体の流量を調整可能な流量調整弁が設けられ、熱媒体循環回路同士で熱媒体の流量を異ならせることが可能となっている。
 特許文献1~5に記載の技術では、一系統の熱媒体循環回路毎に1台の利用側熱交換器が接続されているが、一系統の熱媒体循環回路に複数の利用側熱交換器が接続される構成もある。このように一系統内に複数の利用側熱交換器が接続されている構成では、その系統内の各利用側熱交換器のそれぞれの流量調整を行える構成とはなっていなかった。このため、各利用側熱交換器同士の容量が異なっていたり、熱負荷が異なっていたりした場合、熱負荷に応じた適切な制御ができないという問題があった。
 本発明は、上記のような課題を解決するためになされたもので、複数の利用側熱交換器が接続された系統の熱媒体循環回路において、各利用側熱交換器の流量調整を可能にして、各利用側熱交換器の熱負荷に応じた流量の熱媒体を各利用側熱交換器に搬送可能な空気調和装置を提供することを目的とする。
 本発明に係る空気調和装置は、圧縮機、熱源側熱交換器、絞り装置および複数の熱媒体間熱交換器の冷媒側流路を冷媒配管で接続して熱源側冷媒が循環する冷媒循環回路と、複数の熱媒体間熱交換器の熱媒体側流路、複数の熱媒体搬送装置、複数の利用側熱交換器を熱媒体配管で接続して熱媒体が循環する複数系統の熱媒体循環回路と、複数系統の熱媒体循環回路のそれぞれ毎に設けられ、利用側熱交換器を複数の熱媒体間熱交換器のいずれかに接続するように熱媒体の流路を切り替える熱媒体流路切替装置と、複数系統の熱媒体循環回路のうち、利用側熱交換器が複数接続された熱媒体循環回路に設けられ、熱媒体循環回路に接続された複数の利用側熱交換器の熱媒体の流量を調整する熱媒体分流装置とを備えたものである。
 本発明に係る空気調和装置によれば、複数の利用側熱交換器が接続された熱媒体循環回路に熱媒体分流装置が設けられ、熱媒体分流装置により、各利用側熱交換器の流量調整が可能となる。その結果、各利用側熱交換器の熱負荷に応じた流量の熱媒体を各利用側熱交換器に搬送可能となる。
本発明の実施の形態に係る空気調和装置100の設置例を示す概略図である。 本発明の実施の形態に係る空気調和装置100における、室外ユニット1および中継ユニット2の回路構成の一例を示す図である。 本発明の実施の形態に係る空気調和装置の熱媒体分流装置15の構成模式図である。 図2に示す空気調和装置100の暖房運転モード時における冷媒の流れを示す冷媒回路図である。 図2に示す空気調和装置100の全冷房モード時における冷媒の流れを示す冷媒回路図である。 図2に示す空気調和装置100の混在運転モード時のうち、暖房主体運転時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の熱媒体分流装置15における熱媒体分流調整弁36の開度イメージを示した図(その1)である。 本発明の実施の形態に係る空気調和装置の熱媒体分流装置15における熱媒体分流調整弁36の開度イメージを示した図(その2)である。 本発明の実施の形態に係る空気調和装置の熱媒体分流装置15における熱媒体分流調整弁36の開度イメージを示した図(その3)である。
 以下、図面に基づいて本発明の実施の形態について説明する。
実施の形態.
 図1は、本発明の実施の形態に係る空気調和装置100の設置例を示す概略図である。図2は、本発明の実施の形態に係る空気調和装置100における冷媒回路構成の一例を示す図である。
 図1に示すように、本実施の形態に係る空気調和装置100は、室外ユニット(熱源機)1と、複数台の室内ユニット3(3a~3d)と、室外ユニット1と室内ユニット3との間に介在する1台の中継ユニット2とを有している。そして、空気調和装置100は、各室内ユニット3が冷房運転または暖房運転を選択できるものである。
 中継ユニット2は、熱源側冷媒と熱媒体とで熱交換を行うものである。室外ユニット1と中継ユニット2とは、熱源側冷媒が流れる冷媒配管4で接続され、熱源側冷媒を循環させる冷凍サイクルである冷媒循環回路Aを構成している。中継ユニット2と室内ユニット3とは、熱媒体が流れる熱媒体配管5で接続され、熱媒体を循環させる熱媒体循環回路Bを構成している。
 中継ユニット2は、室内ユニット3と接続するための複数の接続口60を備えている。この接続口60に熱媒体配管5を介して室内ユニット3が接続されている。なお、冷媒循環回路Aおよび熱媒体循環回路Bのそれぞれに接続される切替装置等の各構成部品については以下で改めて説明する。そして、室外ユニット1で生成された冷熱あるいは温熱は、中継ユニット2を介して室内ユニット3に配送されるようになっている。
 本実施の形態の空気調和装置100は、接続口60(60a~60d)に対して1台または複数台の室内ユニット3の接続が可能である。室内ユニット3aは、具体的には利用側熱交換器35a-1を備えた室内ユニット3a-1と利用側熱交換器35a-2を備えた室内ユニット3a-1との2台に分けて構成されており、接続口60aには2台の室内ユニット3a-1、3a-2が接続されている。また、接続口60b~60dにはそれぞれ1台の室内ユニット3b~3dが接続された構成となっている。室内ユニット3b~3dは、利用側熱交換器35b~35dを備えている。
 そして、本実施の形態は接続口60に対して熱媒体分流装置15を接続することで、一つの接続口60aに接続された2台の室内ユニット3a-1、3a-2に対して熱媒体の流量調整を可能としたことに特徴を有している。つまり、熱媒体分流装置15内へ流入した熱媒体が最適に分流されて2台の室内ユニット3a-1、3a-2に搬送され、その後、合流して熱媒体が循環するようにした点に特徴を有している。
 以下ではまず、室外ユニット1、中継ユニット2および室内ユニット3について説明し、熱媒体分流装置15については後述する。
 なお、以下では、接続口60aに接続される室内ユニット3aが2台構成であることについて特に区別する必要がない場合には、説明の便宜上、接続口60aに接続される室内ユニット3が室内ユニット3aの1台であり、室内ユニット3a内の利用側熱交換器も利用側熱交換器35aの1台であるものと見なして説明する。
 室外ユニット1は、通常、ビルなどの建物9の外の空間(たとえば、屋上など)である室外空間6に配置され、中継ユニット2を介して室内ユニット3に冷熱または温熱を供給するものである。
 中継ユニット2は、室外ユニット1で生成される温熱または冷熱を、室内ユニット3に伝達するものである。この中継ユニット2は、室外ユニット1および室内ユニット3とは別筐体として、室外空間6および室内空間7とは別の位置に設置できるように構成されている。また、中継ユニット2は、冷媒配管4を介して室外ユニット1に接続され、また、熱媒体配管5を介して室内ユニット3に接続されている。
 室内ユニット3は、建物9の内部の空間(たとえば、居室など)である室内空間7に冷房用空気あるいは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。図1では、室内ユニット3が天井埋込型であるものを図示しているが、これに限定されるものではない。
 熱源側冷媒は、室外ユニット1から中継ユニット2に冷媒配管4を通して搬送される。搬送された熱源側冷媒は、中継ユニット2内の後述の熱媒体間熱交換器25a~25d(図2参照)にて熱媒体と熱交換を行い、熱媒体を加熱または冷却する。つまり、熱媒体は、熱媒体間熱交換器で加熱または冷却されて温水または冷水となる。中継ユニット2にて作られた温水または冷水は、後述のポンプ31a、31b(図2参照)にて、熱媒体配管5を介して室内ユニット3へ搬送され、室内ユニット3にて室内空間7に対する暖房運転または冷房運転に供される。
 熱源側冷媒としては、たとえばR-22、R-134aなどの単一冷媒、R-410A、R-404Aなどの擬似共沸混合冷媒、R-407Cなどの非共沸混合冷媒を用いることができる。熱源側冷媒として他にたとえば、化学式内に二重結合を含む、CF、CF=CHなどの地球温暖化係数が比較的小さい値とされている冷媒、およびその混合物を用いることができる。熱源側冷媒としてはさらに、COまたはプロパンなどの自然冷媒を用いることができる。
 一方、熱媒体としては、たとえば水、ブライン(不凍液)、水と不凍液の混合液、水と防食効果が高い添加剤との混合液などを用いることができる。つまり、空気調和装置100は、熱媒体としてこれらを採用することで、室内空間7への熱媒体の漏洩に対する安全性の向上に寄与することになる。なお、本実施の形態に係る空気調和装置100は、熱媒体として水が採用されているものとして説明する。
 図1に示すように、本実施の形態に係る空気調和装置100は、室外ユニット1と中継ユニット2とが2本の冷媒配管4を用いて接続され、中継ユニット2と各室内ユニット3とが2本の熱媒体配管5を用いて接続されている。このように、空気調和装置100では、2本の配管(冷媒配管4、熱媒体配管5)を用いて各ユニット(室外ユニット1、中継ユニット2および室内ユニット3)を接続することにより、施工が容易となっている。
 なお、図1においては、中継ユニット2が、建物9の内部ではあるが室内空間7とは別の空間である天井裏などの空間(以下、単に空間8と称する)に設置されている状態を例に示している。中継ユニット2は、その他、エレベーターなどがある共用空間などに設置することも可能である。また、図1においては、室内ユニット3が天井カセット型である場合を例に示してあるが、これに限定されるものではなく、天井埋込型や天井吊下式など、室内空間7に直接またはダクトなどにより、暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。
 図1においては、室外ユニット1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外ユニット1は、換気口付の機械室などの囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよい。また、水冷式の室外ユニット1を用いる場合にも室外ユニット1を建物9の内部に設置するようにしてもよい。このような場所に室外ユニット1を設置するとしても、特段の問題が発生することはない。
 また、中継ユニット2は、室外ユニット1の近傍に設置してもよい。ただし、このように中継ユニット2を室外ユニット1の近傍に設置する場合には、中継ユニット2から室内ユニット3までを接続する熱媒体配管5の長さについて留意するとよい。これは、中継ユニット2から室内ユニット3までの距離が長くなると、その分熱媒体の搬送動力が大きくなり、省エネルギー化の効果は薄れるためである。
 さらに、室外ユニット1、中継ユニット2および室内ユニット3の接続台数は、図1に図示される台数に限定されるものではなく、空気調和装置100が設置される建物9に応じて台数を決定すればよい。
 室外ユニット1台に対して複数台の中継ユニット2を接続する場合、その複数台の中継ユニット2をビルなどの建物における共用スペースまたは天井裏などのスペースに点在して設置することができる。そうすることにより、各中継ユニット2内の後述の熱媒体間熱交換器25a、25b(図2参照)で空調負荷を賄うことができる。また、室内ユニット3を、各中継ユニット2内におけるポンプ31a、31b(図2参照)の搬送許容範囲内の距離または高さに設置することが可能であり、ビルなどの建物全体へ対しての配置が可能となる。
 図2は、本発明の実施の形態に係る空気調和装置100における、室外ユニット1および中継ユニット2の回路構成の一例を示す図である。
 図2に示すように、室外ユニット1と中継ユニット2とが、中継ユニット2に備えられている熱媒体間熱交換器25a、25bを介して冷媒配管4で接続されている。また、中継ユニット2と室内ユニット3とが、熱媒体間熱交換器25a、25bを介して熱媒体配管5で接続されている。つまり、熱媒体間熱交換器25a、25bは、冷媒側流路と熱媒体側流路とを有し、冷媒配管4を介して冷媒側流路に供給される熱源側冷媒と、熱媒体配管5を介して熱媒体側流路に供給される熱媒体とを熱交換させるものである。
[室外ユニット1]
 室外ユニット1には、圧縮機10と、四方弁などの第1冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレーター19とが冷媒配管4で接続されて搭載されている。また、室外ユニット1には、第1接続配管4a、第2接続配管4b、および逆止弁13a~13dが設けられている。第1接続配管4a、第2接続配管4b、および逆止弁13a~13dが設けられることで、空気調和装置100は、暖房運転モードや冷房運転モードに関わらず、室外ユニット1から中継ユニット2に流入させる熱源側冷媒の流れを一定方向にすることができるようになっている。
 圧縮機10は、冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にして冷媒循環回路Aに搬送するものである。この圧縮機10は、吐出側が第1冷媒流路切替装置11に接続され、吸入側がアキュムレーター19に接続されている。圧縮機10は、たとえば容量制御可能なインバータ圧縮機などで構成するとよい。
 第1冷媒流路切替装置11は、全暖房運転モード時および冷暖房混在運転モードの暖房主体運転モード時において、圧縮機10の吐出側と逆止弁13d、および熱源側熱交換器12とアキュムレーター19の吸入側を接続するようにするものである。また、第1冷媒流路切替装置11は、冷房運転モード時および冷暖房混在運転モードの冷房主体運転モード時において、圧縮機10の吐出側と熱源側熱交換器12とを接続するとともに、逆止弁13cとアキュムレーター19の吸入側とを接続するようにするものである。
 熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器(または放熱器)として機能する。そして、熱源側熱交換器12は、図示省略のファンなどの送風機から供給される空気の流体と熱源側冷媒との間で熱交換を行い、その熱源側冷媒を蒸発ガス化または凝縮液化するものである。この熱源側熱交換器12は、暖房運転モード時において、一方が逆止弁13bに接続され、他方がアキュムレーター19の吸入側に接続される。また、熱源側熱交換器12は、冷房運転モード時において、一方が圧縮機10の吐出側に接続され、他方が逆止弁13aに接続される。熱源側熱交換器12は、たとえば冷媒配管を流れる冷媒とフィンを通過する空気との間で熱交換ができるようなプレートフィンアンドチューブ型熱交換器で構成するとよい。
 アキュムレーター19は、暖房運転モード時と冷房運転モード時との必要冷媒量の違いによる余剰冷媒、過渡的な運転の変化(たとえば、室内ユニット3の運転台数の変化)に対する余剰冷媒を蓄えるものである。このアキュムレーター19は、暖房運転モード時において、吸入側が熱源側熱交換器12に接続され、吐出側が圧縮機10の吸入側に接続される。また、アキュムレーター19は、冷房運転モード時において、吸入側が逆止弁13cに接続され、吐出側が圧縮機10の吸入側に接続される。
 逆止弁13aは、熱源側熱交換器12と中継ユニット2との間における冷媒配管4に設けられ、所定の方向(室外ユニット1から中継ユニット2への方向)のみに熱源側冷媒の流れを許容するものである。
 逆止弁13cは、中継ユニット2と第1冷媒流路切替装置11との間における冷媒配管4に設けられ、所定の方向(中継ユニット2から室外ユニット1への方向)のみに熱源側冷媒の流れを許容するものである。
 逆止弁13bは、第2接続配管4bに設けられ、暖房運転時において中継ユニット2から戻ってきた熱源側冷媒を圧縮機10の吸入側に流通させるものである。
 逆止弁13dは、第1接続配管4aに設けられ、暖房運転時において圧縮機10から吐出された熱源側冷媒を中継ユニット2に流通させるものである。
 第1接続配管4aは、室外ユニット1内において、第1冷媒流路切替装置11と逆止弁13cとの間における冷媒配管4と、逆止弁13aと中継ユニット2との間における冷媒配管4と、を接続するものである。第2接続配管4bは、室外ユニット1内において、逆止弁13cと中継ユニット2との間における冷媒配管4と、熱源側熱交換器12と逆止弁13aとの間における冷媒配管4と、を接続するものである。なお、図2では、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、および、逆止弁13dを設けた場合を例に示しているが、これに限定するものではなく、これらを必ずしも設ける必要はない。
[室内ユニット3]
 室内ユニット3には、利用側熱交換器35a~35d(単に利用側熱交換器35とも称することもある)が備えられている。この利用側熱交換器35は、熱媒体配管5を介して熱媒体流量調整装置34a~34d(単に熱媒体流量調整装置34とも称することもある)と、熱媒体配管5を介して第2熱媒体流路切替装置33a~33d(単に、第2熱媒体流路切替装置33とも称することもある)に接続されている。この利用側熱交換器35は、図示省略のファンなどの送風機から供給される空気と熱媒体との間で熱交換を行い、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。
 図2においては、室内ユニット3a~3dが、熱媒体配管5を介して中継ユニット2に接続されている場合の例を示している。また、室内ユニット3a~3dに応じて、利用側熱交換器35も、紙面上側から利用側熱交換器35a、利用側熱交換器35b、利用側熱交換器35c、利用側熱交換器35dとする。なお、室内ユニット3の接続台数は、4台に限定されるものではない。
[中継ユニット2]
 中継ユニット2には、2つの熱媒体間熱交換器25a、25b(単に熱媒体間熱交換器25と称することもある)と、2つの絞り装置26a、26b(単に絞り装置26と称することもある)と、2つの開閉装置27、29と、2つの第2冷媒流路切替装置28a、28b(単に第2冷媒流路切替装置28と称することもある)と、が搭載されている。中継ユニット2にはさらに、2つの熱媒体搬送装置であるポンプ31a、31b(単にポンプ31と称することもある)と、4つの第1熱媒体流路切替装置32a~32d(単に第1熱媒体流路切替装置32と称することもある)と、4つの第2熱媒体流路切替装置33a~33d(単に第2熱媒体流路切替装置33と称することもある)と、4つの熱媒体流量調整装置34a~34d(単に熱媒体流量調整装置34と称することもある)と、が搭載されている。
 なお、第1熱媒体流路切替装置32a~32d、第2熱媒体流路切替装置33a~33dおよび熱媒体流量調整装置34a~34dは、これらの切替装置の機能を一元化した一体化流路切替装置に代えることも可能である。一体化流路切替装置は、具体的にはたとえば、第1熱媒体流路切替装置32a~32d、第2熱媒体流路切替装置33a~33dおよび熱媒体流量調整装置34a~34dのそれぞれの機能を備えた、たとえば国際公開第2014/128961号に記載されたようなブロック(一体化)構造を有する構成としてもよい。
 熱媒体間熱交換器25は、凝縮器(放熱器)または蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行い、室外ユニット1で生成され熱源側冷媒に貯えられた冷熱または温熱を熱媒体に伝達するものである。つまり、暖房運転をしている際には、熱媒体間熱交換器25は凝縮器(放熱器)として機能して熱源側冷媒の温熱を熱媒体に伝達する。また、冷房運転をしている際には、熱媒体間熱交換器25は蒸発器として機能して熱源側冷媒の冷熱を熱媒体に伝達するものである。
 熱媒体間熱交換器25aは、冷媒循環回路Aにおける絞り装置26aと第2冷媒流路切替装置28aとの間に設けられており、冷暖房混在運転モード時において熱媒体の冷却に供するものである。また、熱媒体間熱交換器25bは、冷媒循環回路Aにおける絞り装置26bと第2冷媒流路切替装置28bとの間に設けられており、冷暖房混在運転モード時において熱媒体の加熱に供するものである。
 絞り装置26は、減圧弁または膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。絞り装置26aは、冷房運転時の熱源側冷媒の流れ(後述の図5参照)において熱媒体間熱交換器25aの上流側に設けられている。絞り装置26bは、冷房運転時の熱源側冷媒の流れ(後述の図5参照)において熱媒体間熱交換器25bの上流側に設けられている。絞り装置26は、開度が可変に制御可能なもの、たとえば電子式膨張弁などで構成するとよい。
 開閉装置27および開閉装置29は、たとえば通電により開閉動作が可能な電磁弁などで構成され、それらが設けられている流路を開閉するものである。つまり、開閉装置27および開閉装置29は、運転モードに応じて開閉が制御され、熱源側冷媒の流路を切り替えている。
 開閉装置27は、熱源側冷媒の入口側における冷媒配管4(室外ユニット1と中継ユニット2とを接続している冷媒配管4のうち紙面最下段に位置する冷媒配管4)に設けられている。開閉装置29は、熱源側冷媒の入口側の冷媒配管4と出口側の冷媒配管4とを接続した配管(バイパス管20)に設けられている。なお、開閉装置27および開閉装置29は、それらが設けられている流路を開閉可能なものであればよく、たとえば電子式膨張弁などの開度を制御するものでもよい。
 第2冷媒流路切替装置28は、たとえば四方弁などで構成され、運転モードに応じて熱媒体間熱交換器25が凝縮器または蒸発器として機能するよう、熱源側冷媒の流れを切り替えるものである。第2冷媒流路切替装置28は、熱媒体間熱交換器25が凝縮器として機能する場合は図2の実線側に切り替えられ(後述の暖房運転時開度方向の切り替え)、熱媒体間熱交換器25が蒸発器として機能する場合は図2の点線側に切り替えられる(後述の冷房運転時開度方向の切り替え)。第2冷媒流路切替装置28aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器25aの下流側に設けられている。第2冷媒流路切替装置28bは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器25bの下流側に設けられている。
 ポンプ31は、熱媒体配管5を流れる熱媒体を熱媒体循環回路Bに循環させるものである。ポンプ31aは、熱媒体間熱交換器25aと第2熱媒体流路切替装置33との間における熱媒体配管5に設けられている。ポンプ31bは、熱媒体間熱交換器25bと第2熱媒体流路切替装置33との間における熱媒体配管5に設けられている。ポンプ31は、たとえば容量制御可能なポンプなどで構成し、室内ユニット3における負荷の大きさによってその流量を調整できるようにしておくとよい。
 第1熱媒体流路切替装置32は、利用側熱交換器35の熱媒体流路の出口側の接続先を、熱媒体間熱交換器25aの熱媒体流路の入口側または熱媒体間熱交換器25bの熱媒体流路の入口側に切り替えるものである。第1熱媒体流路切替装置32は、室内ユニット3の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第1熱媒体流路切替装置32は、三方のうちの一つが熱媒体間熱交換器25aに、三方のうちの一つが熱媒体間熱交換器25bに、三方のうちの一つが熱媒体流量調整装置34に、それぞれ接続され、利用側熱交換器35の熱媒体流路の出口側に設けられている。なお、室内ユニット3に対応させて、紙面上側から第1熱媒体流路切替装置32a、第1熱媒体流路切替装置32b、第1熱媒体流路切替装置32c、第1熱媒体流路切替装置32dとして図示している。また、熱媒体流路の切り替えには、一方から他方への完全な切り替えだけでなく、一方から他方への部分的な切り替えも含んでいるものとする。この第1熱媒体流路切替装置32は、たとえば三方弁などで構成するとよい。
 第2熱媒体流路切替装置33は、利用側熱交換器35の熱媒体流路の入口側の接続先を、熱媒体間熱交換器25aの熱媒体流路の出口側または熱媒体間熱交換器25bの熱媒体流路の出口側に切り替えるものである。第2熱媒体流路切替装置33は、室内ユニット3の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第2熱媒体流路切替装置33は、三方のうちの一つが熱媒体間熱交換器25aに、三方のうちの一つが熱媒体間熱交換器25bに、三方のうちの一つが利用側熱交換器35に、それぞれ接続され、利用側熱交換器35の熱媒体流路の入口側に設けられている。なお、室内ユニット3に対応させて、紙面上側から第2熱媒体流路切替装置33a、第2熱媒体流路切替装置33b、第2熱媒体流路切替装置33c、第2熱媒体流路切替装置33dとして図示している。また、熱媒体流路の切り替えには、一方から他方への完全な切り替えだけでなく、一方から他方への部分的な切り替えも含んでいるものとする。この第2熱媒体流路切替装置33は、たとえば三方弁などで構成するとよい。
 第1熱媒体流路切替装置32および第2熱媒体流路切替装置33は本発明の熱媒体流路切替装置を構成している。
 熱媒体流量調整装置34は、開口面積を制御できる二方弁などで構成されており、熱媒体配管5に流れる熱媒体の流量を制御するものである。熱媒体流量調整装置34は、室内ユニット3の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。熱媒体流量調整装置34は、一方が利用側熱交換器35に、他方が第1熱媒体流路切替装置32に、それぞれ接続され、利用側熱交換器35の熱媒体流路の出口側に設けられている。すなわち、熱媒体流量調整装置34は、室内ユニット3へ流入する熱媒体の温度および流出する熱媒体の温度により室内ユニット3へ流入する熱媒体の量を調整し、室内負荷に応じた最適な熱媒体量を室内ユニット3に提供可能とするものである。
 なお、室内ユニット3に対応させて、紙面上側から熱媒体流量調整装置34a、熱媒体流量調整装置34b、熱媒体流量調整装置34c、熱媒体流量調整装置34dとして図示している。また、熱媒体流量調整装置34を利用側熱交換器35の熱媒体流路の入口側に設けてもよい。また、熱媒体流量調整装置34を利用側熱交換器35の熱媒体流路の入口側であって、第2熱媒体流路切替装置33と利用側熱交換器35との間に設けてもよい。さらに、室内ユニット3において、停止モードおよびサーモOFFなどの負荷を必要としていないときは、熱媒体流量調整装置34を全閉にすることにより、室内ユニット3への熱媒体供給を止めることができる。
 なお、第1熱媒体流路切替装置32または第2熱媒体流路切替装置33において、熱媒体流量調整装置34の機能を付加したものを用いれば、熱媒体流量調整装置34を省略することも可能である。
 また、前述の通り、第1熱媒体流路切替装置32、第2熱媒体流路切替装置33および熱媒体流量調整装置34を一体化(ブロック化)し、流路切替機能、流量調整機能、流路閉止機能を付加した一体化流路切替装置を第1熱媒体流路切替装置32、第2熱媒体流路切替装置33および熱媒体流量調整装置34に対して代用することもできる。
 また、中継ユニット2には、2つの温度センサー40a、40b(単に温度センサー40と称することもある)が設けられている。温度センサー40は、熱媒体間熱交換器25から流出した熱媒体、つまり熱媒体間熱交換器25の出口における熱媒体の温度を検出するものである。温度センサー40aは、ポンプ31aの熱媒体吸入側における熱媒体配管5に設けられている。温度センサー40bは、ポンプ31bの熱媒体吸入側における熱媒体配管5に設けられている。温度センサー40は、たとえばサーミスターなどで構成するとよい。
 温度センサー40で検出された情報(温度情報)は、空気調和装置100の動作を統括制御する制御装置50に送られる。そして、温度センサー40で検出された情報(温度情報)は、圧縮機10の駆動周波数、図示省略の送風機の回転数、第1冷媒流路切替装置11の切り替え、ポンプ31の駆動周波数、第2冷媒流路切替装置28の切り替え、熱媒体の流路の切り替え、室内ユニット3の熱媒体流量の調整などの制御に利用されることになる。なお、制御装置50が中継ユニット2内に搭載されている状態を例に示しているが、これに限定するものではなく、室外ユニット1または室内ユニット3、あるいは、各ユニットに通信可能に搭載するようにしてもよい。
 また、制御装置50は、マイコンなどで構成されており、各種検出手段での検出結果およびリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え、ポンプ31の駆動、絞り装置26の開度を制御する。制御装置50はこれらの他にも、第2冷媒流路切替装置28の切り替え、第1熱媒体流路切替装置32の切り替え、第2熱媒体流路切替装置33の切り替え、熱媒体流量調整装置34の駆動、開閉装置27、29の開閉、および後述の熱媒体分流調整弁36の開度などを制御する。つまり、制御装置50は、これらの各種機器を構成するアクチュエーターなどを制御して、後述する各運転モードを実行するようになっている。
 制御装置50は、具体的には室内空間7が設定温度を維持するように制御を行っており、室内空間7が設定温度に達すると、室内ユニット3に設けられた利用側熱交換器35への熱媒体の供給を停止させる(サーモOFF)。また、制御装置50は、室内空間7が設定温度に達していなくとも、ユーザーからの指示があれば、室内ユニット3に設けられた利用側熱交換器35への熱媒体の供給を停止させるだけでなく、利用側熱交換器35に付設されるファンの運転も停止させる。
 熱媒体が流れる熱媒体配管5は、熱媒体間熱交換器25aに接続されるものと、熱媒体間熱交換器25bに接続されるものと、を有している。熱媒体配管5は、室内ユニット3との接続口60の数に応じて分岐(ここでは、各4分岐)されている。そして、熱媒体配管5のうち熱媒体間熱交換器25aに接続されるものと、熱媒体間熱交換器25bに接続されるものとが、第1熱媒体流路切替装置32、および、第2熱媒体流路切替装置33で接続される。第1熱媒体流路切替装置32および第2熱媒体流路切替装置33を制御することで、熱媒体間熱交換器25aからの熱媒体を利用側熱交換器35に流入させるか、熱媒体間熱交換器25bからの熱媒体を利用側熱交換器35に流入させるかが決定されるようになっている。
 そして、空気調和装置100では、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置27、開閉装置29、第2冷媒流路切替装置28、熱媒体間熱交換器25の冷媒流路、絞り装置26、および、アキュムレーター19を、冷媒配管4で接続して冷媒循環回路Aを構成している。また、熱媒体間熱交換器25の熱媒体流路、ポンプ31、第1熱媒体流路切替装置32、熱媒体流量調整装置34、利用側熱交換器35、および、第2熱媒体流路切替装置33を、熱媒体配管5で接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器25のそれぞれに複数台の利用側熱交換器35が並列に接続され、熱媒体循環回路Bを複数系統としている。ここでは接続口60が4つあるため、4系統の熱媒体循環回路Bが構成されている。
 よって、空気調和装置100では、室外ユニット1と中継ユニット2とが、中継ユニット2に設けられている熱媒体間熱交換器25aおよび熱媒体間熱交換器25bを介して接続され、中継ユニット2と室内ユニット3とが、熱媒体間熱交換器25aおよび熱媒体間熱交換器25bを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器25aおよび熱媒体間熱交換器25bで冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体とが熱交換するようになっている。このような構成を用いることで、空気調和装置100は、室内負荷に応じた最適な冷房運転または暖房運転を実現することができる。
 また、空気調和装置100では、上述したように熱媒体循環回路Bが、熱媒体循環回路Bに流れる熱媒体を複数(ここでは2つ)に分流して室内ユニット3a-1、3a-2に並列に流す2つの分流並列回路70a、70bを有している。そして、本実施の形態の空気調和装置100は、接続口60aに対して熱媒体分流装置15を接続することで、室内ユニット3a-1、3a-2のそれぞれの熱媒体の流量調整が可能となっている。以下、熱媒体分流装置15について説明する。
[熱媒体分流装置15]
 図3は、本発明の実施の形態に係る空気調和装置の熱媒体分流装置15の構成模式図である。
 図3に示すように、熱媒体分流装置15は、熱媒体循環回路Bの一部を構成しており、中継ユニット2との接続用の第1接続口61と、室内ユニット3a-1、3a-2との接続用の第2接続口62とを備えている。第1接続口61は、入口側接続口61aと出口側接続口61bとを有する。そして、この第1接続口61を介して中継ユニット2と熱媒体分流装置15とが熱媒体配管5で接続されている。また、第2接続口62は、出口側接続口62aと入口側接続口62bとを有している。入口側接続口62bと出口側接続口62aとのそれぞれは、一系統の熱媒体循環回路Bに対して接続可能な室内ユニットの台数分、ここでは2つずつ備えられている。
 また、熱媒体分流装置15は、分流配管16と合流配管17とを有している。分流配管16は、入口側接続口61aと出口側接続口62aとを接続し、入口側接続口61aから流入した、中継ユニット2からの熱媒体を分流して複数の出口側接続口62aに導くものである。合流配管17は、複数の入口側接続口62bと出口側接続口61bとを接続し、複数の入口側接続口62bから流入した、室内ユニット3a-1、3a-2からの各熱媒体を合流して出口側接続口61bに導くものである。
 そして、分流配管16には熱媒体分流調整弁36が設けられている。熱媒体分流調整弁36は、中継ユニット2から熱媒体分流装置15へ流入した熱媒体循環回路Bの熱媒体を任意の分流比率で分流して、利用側熱交換器35a-1、35a-2の流量を調整するものである。熱媒体分流調整弁36はたとえばステッピングモータを備え、指示開度毎に開口面積を変更することができる三方弁である。熱媒体分流調整弁36は、指示開度が大きくなるにつれ、利用側熱交換器35a-1側に流入する熱媒体の量が増える一方、利用側熱交換器35a-2側に流入する熱媒体の量が減るようにしている。
 熱媒体分流装置15はさらに温度センサー41および温度センサー42a、42bを備えている。温度センサー41は熱媒体分流装置15に流入する熱媒体の温度を検知する。温度センサー42a、41-bは、利用側熱交換器35a-1、35a-2で熱交換後の熱媒体の温度を検知する。なお、温度センサー41および温度センサー42a、42bは本発明の温度検知装置を構成している。
 これらの温度センサーはたとえばサーミスターなどで構成される。熱媒体分流調整弁36は、これらの温度センサーで検知された温度に基づいて、利用側熱交換器35a-1、35a-2に対して最適な熱媒体流量が搬送されるように調整される。熱媒体分流調整弁36は、室内ユニット3a-1、3a-2のそれぞれの負荷に応じて制御装置50によって制御される。熱媒体分流調整弁36の制御の詳細については改めて詳述する。
[運転モード]
 空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内ユニット3からの指示に基づいて、その室内ユニット3で暖房運転または冷房運転が可能になっている。つまり、空気調和装置100は、室内ユニット3の全部で同一運転をすることができるとともに、室内ユニット3のそれぞれで異なる運転をすることができるようになっている。
 空気調和装置100が実行する運転モードには、以下の4つのモードがある。以下に、各運転モードについて、熱源側冷媒および熱媒体の流れとともに説明する。
(a)動作している室内ユニット3の全てが冷房運転を実行する全冷房運転モード
(b)動作している室内ユニット3の全てが暖房運転を実行する全暖房運転モード
(c)冷房運転と暖房運転を実行する室内ユニット3が混在する冷暖房混在運転モードであって、冷房負荷の方が大きい冷房主体運転モード
(d)冷房運転と暖房運転を実行する室内ユニット3が混在する冷暖房混在運転モードであって、暖房負荷の方が大きい暖房主体運転モード
 以下に、これらの各モードについて説明する。なお、室内ユニット3aは、上述したように室内ユニット3a-1と室内ユニット3a-2との2台に分けて構成されているが、各モードの基本動作の概要を説明する観点から、以下の各モードの説明では便宜上、2台に区別せず、1台の室内ユニット3aとして説明する。そして、室内ユニット3a-1、3a-2への熱媒体の分流については改めて詳述する。
[暖房運転モード(全暖房モード)]
 図4は、図2に示す空気調和装置100の暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図4では、4つの室内ユニット3a~3dが暖房運転モードの状態を一例として説明する。
 なお、図4では、太線で表された配管が熱源側冷媒の流れる配管を示している。また、図4では、熱源側冷媒の流れ方向を実線矢印で示し、熱媒体の流れ方向を点線矢印で示している。
 暖房運転モード(全暖房モード)の場合、室外ユニット1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに中継ユニット2へ流入させるように切り替える。
 中継ユニット2では、4つの室内ユニット3が暖房運転モードであるので、4つの第1熱媒体流路切替装置32a~32dと、4つの第2熱媒体流路切替装置33a~33dとは暖房側開度方向に切り替えられるかまたは中間開度とされる。暖房側開度方向に切り替えられるとは、熱媒体間熱交換器25a、25bのうち、凝縮器として機能する側に切り替えられることを指す。ここでは全暖房運転モードであり、熱媒体間熱交換器25a、25bの両方が凝縮器として機能するため、熱媒体間熱交換器25a、25bのうちのどちらか一方側に切り替えられることを指すことになる。また、中間開度とは、熱媒体間熱交換器25aおよび熱媒体間熱交換器25bの双方へ流れる流路が確保されるように、中間的な開度にされることを指す。
 また、開閉装置27は閉、開閉装置29は開となっている。また、4つの熱媒体流量調整装置34a~34dは、熱媒体流量調整時開度とする。すなわち、4つの熱媒体流量調整装置34a~34dは室内ユニット3a~3dがそれぞれ設置された室内にて必要とされる空調負荷を賄うのに必要な流量が得られるように制御される。
 なお、ポンプ31の動作は室内ユニット負荷に応じた流量指示値となっている。また、第2冷媒流路切替装置28の切り替え状態は、暖房運転時開度方向となっている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11、および第1接続配管4aを介して室外ユニット1から流出する。室外ユニット1から流出した高温高圧のガス冷媒は、冷媒配管4を通って中継ユニット2に流入する。中継ユニット2に流入した高温高圧のガス冷媒は、第2冷媒流路切替装置28a、28bを通過した後、熱媒体間熱交換器25a、25bを通過し、絞り装置26a、26bを通過し、開閉装置29を通過する。開閉装置29を通過後の冷媒は、室外ユニット1へと搬送され、熱源側熱交換器12にて外気との熱交換を行って低温低圧のガス冷媒となる。低温低圧のガス冷媒は、第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。
 このとき、絞り装置26a、26bは、熱媒体間熱交換器25a、25bの出口冷媒のサブクール(過冷却度)が一定になるように開度が制御される。このサブクール(過冷却度)は、熱媒体間熱交換器25a、25bと絞り装置26a、26bとの間を流れる熱源側冷媒の圧力を飽和温度に換算した値と、熱媒体間熱交換器25a、25bの出口側の温度との差として得られるものである。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全暖房運転モードでは、熱媒体間熱交換器25aおよび熱媒体間熱交換器25bの双方で熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ31aおよびポンプ31bによって熱媒体配管5内を流動させられることになる。ポンプ31aおよびポンプ31bの駆動によって加圧された熱媒体は、利用側熱交換器35a~35dに送り込まれ、室内空気と熱交換した後、利用側熱交換器35a~35dから流出して熱媒体流量調整装置34a~34dに流入する。このとき、熱媒体は、熱媒体流量調整装置34a~34dの作用によって室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器35a~35dおよび熱媒体流量調整装置34a~34dを通過するようになっている。
 そして、熱媒体流量調整装置34a~34dから流出した熱媒体は、第1熱媒体流路切替装置32a~32dにより流路が切り替えられて熱媒体配管5を通り、熱媒体間熱交換器25aおよび熱媒体間熱交換器25bへ流入通過し、再びポンプ31aおよびポンプ31bへ吸い込まれる。
[冷房運転モード(全冷房モード)]
 図5は、図2に示す空気調和装置100の全冷房モード時における冷媒の流れを示す冷媒回路図である。この図5では、4つの室内ユニット3a~3dが冷房運転モードの状態を一例として説明する。
 なお、図5では、太線で表された配管が熱源側冷媒の流れる配管を示している。また、図5では、熱源側冷媒の流れ方向を実線矢印で示し、熱媒体の流れ方向を点線矢印で示している。
 冷房運転モード(全冷房モード)の場合、室外ユニット1では、第1冷媒流路切替装置11を圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。
 中継ユニット2では、4つの室内ユニット3が冷房運転モードであるので、4つの第1熱媒体流路切替装置32a~32d、4つの第2熱媒体流路切替装置33a~33dは冷房側開度方向または中間開度とする。4つの熱媒体流量調整装置34a~34dは熱媒体流量調整時開度とする。また、開閉装置27は開、開閉装置29は閉となっている。絞り装置26aおよび絞り装置26bは熱媒体冷媒流量調整時開度となっている。
 なお、ポンプ31の動作は室内ユニット負荷に応じた流量指示値となっている。第2冷媒流路切替装置28の切り替え状態は、冷房運転時開度方向となっている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。熱源側熱交換器12に流入した冷媒は、外気との熱交換を行い、高温高圧の液または二相冷媒となり、熱源側熱交換器12から流出する。熱源側熱交換器12から流出した冷媒は、逆止弁13aを通過した後、室外ユニット1から流出する。室外ユニット1から流出した高温高圧の液または二相冷媒は、冷媒配管4を通って中継ユニット2に流入する。
 中継ユニット2に流入した高温高圧の液または二相冷媒は、開閉装置27を通過した後、絞り装置26a、26bで膨張させられて、低温低圧の二相冷媒となる。この二相冷媒は、熱媒体間熱交換器25a、25bにて熱媒体と熱交換した後、低温低圧のガス冷媒となる。熱媒体間熱交換器25aおよび熱媒体間熱交換器25bから流出したガス冷媒は、第2冷媒流路切替装置28aおよび第2冷媒流路切替装置28bを通った後、合流し、中継ユニット2から流出する。中継ユニット2を流出した冷媒は、冷媒配管4および逆止弁13cを通過して、第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。
 このとき絞り装置26は、熱媒体間熱交換器25と絞り装置26との間を流れる熱源側冷媒の圧力を飽和温度換算した値と、熱媒体間熱交換器25の出口側の温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。なお、熱媒体間熱交換器25の中間位置の温度が測定できる場合は、その中間位置での温度を換算した飽和温度を代わりに用いてもよい。この場合、圧力センサーを設置しなくて済み、安価にシステムを構成できる。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全冷房運転モードでは、熱媒体間熱交換器25aおよび熱媒体間熱交換器25bの双方で熱源側冷媒へ熱媒体の冷熱が伝えられ、冷却された熱媒体がポンプ31aおよびポンプ31bによって熱媒体配管5内を流動させられることになる。全冷房運転モードにおける熱媒体循環回路Bにおける熱媒体の流れは、図4で説明した全暖房時の熱媒体の流れと同じである。すなわち、ポンプ31aおよびポンプ31bの駆動によって加圧された熱媒体は、利用側熱交換器35a~35dに送り込まれ、室内空気と熱交換した後、利用側熱交換器35a~35dから流出して熱媒体流量調整装置34a~34dに流入する。このとき、熱媒体は、熱媒体流量調整装置34a~34dの作用によって室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器35a~35dおよび熱媒体流量調整装置34a~34dを通過するようになっている。
 そして、熱媒体流量調整装置34a~34dから流出した熱媒体は、第1熱媒体流路切替装置32a~32dにより流路が切り替えられて熱媒体配管5を通り、熱媒体間熱交換器25aおよび熱媒体間熱交換器25bへ流入通過し、再びポンプ31aおよびポンプ31bへ吸い込まれる。
[混在運転モード(暖房主体モード)]
 図6は、図2に示す空気調和装置100の混在運転モード時のうち、暖房主体運転時における冷媒の流れを示す冷媒回路図である。ここでは、4つの室内ユニット3a~3dのうち室内ユニット3aが暖房運転モード、室内ユニット3dが冷房運転モードであり、暖房運転割合の方が冷房運転割合より大きい場合の運転状態を一例として混在運転モードを説明する。そして、その他の室内ユニット3b、3cは、運転停止により負荷がかからず(室内を冷却、加熱する必要がない。サーモオフしている状態を含む)、利用側熱交換器35b、35cに熱媒体が流れないようにするものとする。
 なお、図6では、太線で表された配管が熱源側冷媒の流れる配管を示している。また、図6では、熱源側冷媒の流れ方向を実線矢印で示し、熱媒体の流れ方向を点線矢印で示している。
 混在運転モード(暖主運転モード)の場合、室外ユニット1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに中継ユニット2へ流入させるように切り替える。
 中継ユニット2では、4つの室内ユニット3のうちの室内ユニット3bが暖房運転モード、室内ユニット3dが冷房運転モードであるので、4つの第1熱媒体流路切替装置32a~32d、4つの第2熱媒体流路切替装置33a~33dのうち、暖房運転モードの室内ユニット3aに接続されている第2熱媒体流路切替装置33aは、暖房側開度方向に切り替えられる。すなわち、熱媒体間熱交換器25a、25bのうち、凝縮器として機能する熱媒体間熱交換器25b側に切り替えられる。また、冷房運転モードの室内ユニット3dに接続されている第2熱媒体流路切替装置33dは、冷房側開度方向に切り替えられる。つまり、第2熱媒体流路切替装置33dは、熱媒体間熱交換器25a、25bのうち、蒸発器として機能する熱媒体間熱交換器25a側に切り替えられる。
 また、4つの熱媒体流量調整装置34a~34dについては熱媒体流量調整時開度とする。また、開閉装置27は閉、開閉装置29は閉となっている。絞り装置26aおよび絞り装置26bは熱媒体冷媒流量調整時開度となっている。
 なお、ポンプ31の動作は室内ユニット負荷に応じた流量指示値となっている。第2冷媒流路切替装置28aの切り替え状態は冷房運転時開度方向、第2冷媒流路切替装置28bの切り替え状態は暖房運転時開度方向となっている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11、および第1接続配管4aを介して室外ユニット1から流出する。室外ユニット1から流出した高温高圧のガス冷媒は、冷媒配管4を通って中継ユニット2に流入する。中継ユニット2に流入した高温高圧のガス冷媒は、第2冷媒流路切替装置28bを通過した後、凝縮器として機能する熱媒体間熱交換器25bを通過する。熱媒体間熱交換器25bを通過した冷媒は、絞り装置26bおよび絞り装置26bを通過して減圧され、蒸発器として機能する熱媒体間熱交換器25aへと流入する。
 熱媒体間熱交換器25aを流出した冷媒は、その後、第2冷媒流路切替装置28aを通過した後、中継ユニット2から流出する。中継ユニット2から流出した冷媒は、冷媒配管4を通って室外ユニット1へと搬送され、熱源側熱交換器12にて外気との熱交換を行った後、低温低圧となったガス冷媒となる。低温低圧のガス冷媒は、第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。
 このとき、絞り装置26bは、熱媒体間熱交換器25bと絞り装置26bとの間を流れる熱源側冷媒の圧力を飽和温度に換算した値と、熱媒体間熱交換器25bの出口側の温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。
 また、絞り装置26aは熱媒体間熱交換器25aと絞り装置26aとの間を流れる熱源側冷媒の圧力を飽和温度換算した値と、熱媒体間熱交換器25aの出口側の温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 暖房主体運転モードでは、熱媒体間熱交換器25bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ31bによって熱媒体配管5内を流動させられることになる。また、暖房主体運転モードでは、熱媒体間熱交換器25aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ31aによって熱媒体配管5内を流動させられることになる。
 ポンプ31bの駆動によって加圧された熱媒体は、利用側熱交換器35aに送り込まれ、室内空気と熱交換して室内を暖房した後、利用側熱交換器35aから流出する。利用側熱交換器35aから流出した熱媒体は、熱媒体流量調整装置34aおよび第1熱媒体流路切替装置32aを通過した後、熱媒体間熱交換器25aへ流入通過する。そして、熱媒体間熱交換器25aを通過した熱媒体は、再びポンプ31bへ吸い込まれた後、第2熱媒体流路切替装置33aを通過して利用側熱交換器35aに送り込まれる。
 一方、ポンプ31aの駆動によって加圧された熱媒体は、利用側熱交換器35dに送り込まれ、室内空気と熱交換して室内を冷房した後、利用側熱交換器35dから流出する。熱媒体流量調整装置34eを通過した熱媒体は、熱媒体流量調整装置34dおよび第1熱媒体流路切替装置32dを通過した後、熱媒体間熱交換器25aへ流入通過する。そして、熱媒体間熱交換器25aを通過した熱媒体は、再びポンプ31aへ吸い込まれた後、第2熱媒体流路切替装置33dを通過して利用側熱交換器35dに送り込まれる。
 以上により、空気調和装置100の基本的な動作が明らかになったところで、熱媒体分流装置15の制御について説明する。
[熱媒体分流装置15]
 以下、熱媒体分流装置15に備えている熱媒体分流調整弁36の制御方法について説明する。ここでは、熱媒体間熱交換器25bが凝縮器として機能し、室内ユニット3aが暖房運転モードで動作する場合を例に説明する。なお、4系統の熱媒体循環回路Bのそれぞれに流入する熱媒体の流量は、室内ユニット3a~3dのそれぞれの熱負荷に応じて熱媒体流量調整装置34a~34dにて制御されており、熱媒体分流装置15では室内ユニット3aに対して割り当てられた流量の熱媒体をさらに室内ユニット3a-1、3a-2の熱負荷に応じて分流して、利用側熱交換器35a-1、35a-2に流入させるものである。
 中継ユニット2にて、熱媒体間熱交換器25aにて吸熱した熱媒体はポンプ31bから搬送され、熱媒体分流装置15へ流入する。熱媒体分流装置15へ流入した熱媒体の温度は温度センサー41にて検知される。熱媒体分流装置15へ流入した熱媒体は熱媒体分流調整弁36へと流入し、室内ユニット3a-1、3a-2のそれぞれの熱負荷である空調負荷に応じて最適な開度調整によって分流される。分流された各熱媒体は熱媒体分流装置15出口下流側へ接続された利用側熱交換器35a-1、35a-2へと流入され、室内空間7の空気に対して放熱が行われる。
 室内空間7の空気に対して放熱が行われた各熱媒体は、再び熱媒体分流装置15へと流入して合流し、再び中継ユニット2へと搬送される。
 熱媒体分流調整弁36は、室内空間7で必要とされている空調負荷を賄うために以下のように制御される。すなわち、熱媒体分流調整弁36は、利用側熱交換器35a-1、35a-2のそれぞれの出入口の熱媒体の温度差を目標温度差ΔTmに保つように制御される。目標温度差ΔTmは、利用側熱交換器35a-1、利用側熱交換器35a-2における熱交換量と熱媒体の流量とから設定される目標値である。以下、数式を用いて熱媒体分流調整弁36の制御量について具体的に説明する。
 熱媒体分流調整弁36に指示される開度Fjは、利用側熱交換器35a-1、35a-2のそれぞれの空調負荷に応じて決定される開度変更量をΔFjとし、前回の熱媒体分流調整弁36の指示開度をFj*としたとき、以下の(式1)で算出できる。
[数1]
 Fj=Fj*+ΔFj  ・・・ (式1)
 開度Fjは、利用側熱交換器35a-1、35a-2のそれぞれの負荷に応じて必要とされる開度、つまり必要開度と言うこともできる。
 また、開度変更量ΔFjは以下の(式2)から求められる。
[数2]
 ΔFj=(ΔFj1+ΔFj2)/2  ・・・ (式2)
 ここで、
 ΔFj1:利用側熱交換器35a-1の負荷に応じて必要とされる熱媒体分流調整弁36の開度変更量
 ΔFj2:利用側熱交換器35a-2の負荷に応じて必要とされる熱媒体分流調整弁36の開度変更量
 以上の(式2)から明らかなように、開度変更量ΔFjは、利用側熱交換器35a-1、35a-2のそれぞれで必要とされる開度変更量ΔFj1と開度変更量ΔFj2との平均値である。開度変更量ΔFjの算出式は、平均開度変更量を計算できるものであれば、(式2)に限ったものではない。
 利用側熱交換器35a-1、35a-2のそれぞれの負荷に応じて必要とされる熱媒体分流調整弁36の開度変更量ΔFj1、ΔFj2は、利用側熱交換器35a-1、35a-2の出入口の熱媒体温度と、目標温度差ΔTmと、熱媒体分流調整弁36における制御ゲインGsとを用いて以下の式で算出できる。
(利用側熱交換器35a-1)
[数3]
 ΔTm≧ΔT1のとき ΔFj1=Gs×(ΔTm-ΔT1)  ・・・ (式3)
[数4]
 ΔTm<ΔT1のとき ΔFj1=Gs×(ΔT1-ΔTm)  ・・・ (式4)
(利用側熱交換器35a-2)
[数5]
 ΔTm≧ΔT2のとき ΔFj2=Gs×(ΔTm-ΔT2)  ・・・ (式5)
[数6]
 ΔTm<ΔT2のとき ΔFj2=Gs×(ΔT2-ΔTm)  ・・・ (式6)
このとき、
[数7]
 ΔT1=|(温度センサ42a値)-(温度センサ41値)|  ・・・ (式7)
[数8]
 ΔT2=|(温度センサ42b値)-(温度センサ41値)|  ・・・ (式8)
 なお、制御ゲインGsは、熱媒体分流調整弁36の開度速度、利用側熱交換器35a-1、35a-2の熱負荷に対する応答性、によって決定される。また、ΔT1は(式7)より明かなように、利用側熱交換器35a-1における熱交換前後の熱媒体の温度差である。ΔT2は(式8)より明かなように利用側熱交換器35a-2における熱交換前後の熱媒体の温度差である。
 開度変更量ΔFj1、ΔFj2は利用側熱交換器35a-1、35a-2における熱交換前後の現在の熱媒体温度差と目標温度差ΔTmとの差が大きい程、大きな値に決定され、逆に目標温度差ΔTmとの差が小さい程、小さな値に決定される。
 上記の(式1)~(式8)を用いることで、熱媒体分流調整弁36の開度Fjを指示することが可能となり、利用側熱交換器35a-1、利用側熱交換器35a-2における最適な熱媒体流量を与えることが可能となる。
 具体例で説明する。例えば、利用側熱交換器35a-1、35a-2で同量ずつに熱媒体が分流されてΔFjが0の状態から、利用側熱交換器35a-1、35a-2の両方で負荷が増大した状態に変化し、負荷の増大程度は利用側熱交換器35a-2側の方が大きい場合について考える。この場合、ΔT2がΔT1よりも大きな値となり、例えばΔFj1が2、ΔFj2が4と計算されたとすると、ΔFjは3となる。この場合、ΔFjは0から3に増加することになるため、指示開度Fjは増加することになる。よって、利用側熱交換器35a-1側に流入する熱媒体流量が多くなり、利用側熱交換器35a-2側に流入する熱媒体流量が少なくなる。
 指示開度Fjが変化することで、温度センサー41で検知されるリターン水温が変化する。この事例では利用側熱交換器35a-1、35a-2で共に負荷が増加しているため、必要流量が増加し、熱媒体流量調整装置34aの開度が開く方向に制御される。これにより、熱媒体分流装置15に流入する熱媒体の流量が増加する。
 熱媒体分流調整弁36の指示開度Fjの計算および熱媒体分流調整弁36への開度Fjの指示は制御間隔毎に行われており、指示開度Fjを求めるにあたり、上述したようにΔFj1とΔFj2とを平均して得たΔFjを用いている。そして、このように平均して得たΔFjを用いて計算した指示開度Fjの指示が繰り返されることで、結果として利用側熱交換器35a-1、35a-2の両方に必要な流量を確保することができる。なお、ΔFj1およびΔFj2の上記数値は、ここでの説明を分かりやすくするために用いたものであって、この数値に限定されるものではない。
 図7は、本発明の実施の形態に係る空気調和装置の熱媒体分流装置15における熱媒体分流調整弁36の開度イメージを示した図である。図7中の熱媒体分流調整弁36において、塗りつぶし部は開口部の中で封止していることを意味している。図7の場合、利用側熱交換器35a-1、利用側熱交換器35a-2での負荷が均一な場合の開度イメージとしている。さらにいえば、図7の開度イメージは、利用側熱交換器35a-1、利用側熱交換器35a-2の負荷が均一としてそれぞれの開口面積が半分であることを意味している。この制御は、上記(式1)~(式8)を熱媒体分流調整弁36へ適用することで実現することが可能である。
 図8は、本発明の実施の形態に係る空気調和装置の熱媒体分流装置15における熱媒体分流調整弁36の開度イメージを示した図である。図8中の熱媒体分流調整弁36において、塗りつぶし部は図7と同様に開口部の中で封止していることを意味している。図8の場合、熱媒体分流装置15に流入した全ての熱媒体が利用側熱交換器35a-1へ流入し、利用側熱交換器35a-2へは熱媒体が流入していない場合の開度イメージとしている。つまり、利用側熱交換器35a-1で負荷があり、利用側熱交換器35a-2においては負荷がないことを意味している。この制御は、上記(式1)~(式8)を熱媒体分流調整弁36へ適用することで実現することが可能である。
 図9は、本発明の実施の形態に係る空気調和装置の熱媒体分流装置15における熱媒体分流調整弁36の開度イメージを示した図である。図9中の熱媒体分流調整弁36において、塗りつぶし部は図7と同様に開口部の中で封止していることを意味している。図9の場合、熱媒体分流装置15に流入した熱媒体の半分以上が利用側熱交換器35a-1へ流入し、利用側熱交換器35a-2へは半分未満の熱媒体が流入している場合の開度イメージとしている。つまり、利用側熱交換器35a-1で多くの負荷があり、利用側熱交換器35a-2においてはわずかに負荷があることを意味している。この制御は、上記(式1)~(式8)を熱媒体分流調整弁36へ適用することで実現することが可能である。
 上記制御は中継ユニット2に具備されている制御装置50によって制御を可能とすることもできるが、熱媒体分流装置15自身に制御装置を具備して制御を実現することも可能である。
 以上説明したように、本実施の形態によれば、熱媒体循環回路Bに熱媒体分流装置15を設けたことで、一系統の熱媒体循環回路Bに接続された複数の利用側熱交換器35a-1、35a-2のそれぞれに対して熱媒体の流量調整が可能となる。このため、利用側熱交換器35a-1、35a-2のそれぞれの熱負荷に応じて最適な流量の熱媒体を利用側熱交換器35a-1、35a-2に搬送できる。よって、利用側熱交換器にとって必要以上の熱媒体を搬送、または必要未満の熱媒体の搬送を行うことが無い。その結果、熱媒体配管5において、配管内圧力損失を考慮した熱媒体搬送配管の施工を実施する、熱媒体配管5中に圧力損失調整のための弁などを付与する、などの対策を必要としない。
 また、熱媒体分流装置15の制御、具体的には熱媒体分流調整弁36の制御にあたり、利用側熱交換器35a-1、35a-2のそれぞれの出入口の熱媒体の温度差に基づいて行うようにしており、その温度差を検知する温度センサー41、温度センサー42a、42bを熱媒体分流装置15に備えた。このため、既存の空気調和装置に熱媒体分流装置15を組み込むだけで、熱媒体分流調整弁36の制御に必要な温度検知を行う温度センサーをまとめて組み込むことができる。
 なお、熱媒体分流調整弁36の制御に必要な温度検知を行う温度センサーは、熱媒体分流装置15内の温度センサー41および温度センサー42a、42bに限られず、(式1)~(式8)の制御が実現されるのであれば、中継ユニット2中の温度センサー、または室内ユニット3に搭載されている温度センサーを代用しても、問題は無い。但し、中継ユニット2よりも熱媒体分流装置15内の温度センサーの方が利用側熱交換器35a-1、35a-2に物理的に近いため、制御精度を考慮すると、熱媒体分流装置15内の温度センサーを用いることが好ましい。
 なお、第2冷媒流路切替装置28は、四方弁である場合を例に説明を行ったが、それに限定されるものではなく、二方流路切替弁または三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。
 また、熱媒体間熱交換器25および絞り装置26として、機能を有するものが複数個設置されていても、当然問題ない。
 また、熱媒体流量調整装置34が、中継ユニット2に内蔵されている場合を例に説明したが、それに限定されるものではない。つまり、熱媒体流量調整装置34は、室内ユニット3に内蔵されていてもよい。室内ユニット3が熱媒体流量調整機能を有していれば、熱媒体分流装置15、中継ユニット2または中継ユニット2に熱媒体流量調整装置34が内蔵されていなくてもよい。
 空気調和装置100は、アキュムレーター19が搭載された構成を例に説明したが、アキュムレーター19が搭載されてなくてもよい。また、一般的に、熱源側熱交換器12および利用側熱交換器35には、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、それに限定されるものではない。たとえば、利用側熱交換器35としては放射を利用したパネルヒーターのようなものを用いることもできる。また、熱源側熱交換器12としては、水または不凍液により熱を移動させる水冷式のタイプのものを用いることもできる。つまり、熱源側熱交換器12および利用側熱交換器35としては、放熱あるいは吸熱をできる構造のものであれば種類を問わず、用いることができる。
 上記では、利用側熱交換器35として4つの利用側熱交換器35a~35dが設けられ、また、利用側熱交換器35a~35に対して4つの熱媒体流量調整装置34a~34dが設けられた構成(合計4組)を例示した。また、一つの熱媒体流量調整装置34aの下流側に対して熱媒体分流装置15が接続されて、さらに熱媒体分流装置15の下流側に対して2つの利用側熱交換器35a-1、35a-2が接続された構成を例示した。本発明はこの構成例に限定されるものではない。熱媒体流量調整装置34に対して1つ以上の利用側熱交換器が存在すれば良く、また、熱媒体分流装置15に対しては2つ以上の利用側熱交換器が存在すれば良い。
 また、熱媒体間熱交換器25が2つである場合を例に説明したが、それに限定されるものではなく、熱媒体を冷却または/および加熱できるように構成すれば、幾つ設置してもよい。さらに、ポンプ31a、およびポンプ31bは、それぞれ一つとは限らず、複数の小容量のポンプを並列に並べて接続してもよい。
 また、熱媒体分流装置における熱媒体分流調整弁36は三方弁とし、自身の下流側に存在する利用側熱交換器35a-1、35a-2に対して最適に流量が調整できるように開度調整できるものを示したが、次のようにしてもよい。例えば流路切り替えのための三方弁と流量調整が可能な開度調整弁とを組み合わせるようにしてもよい。このように、自身の下流側に存在する利用側熱交換器35a-1、35a-2に対して最適な流量に調整して分流できる構造のものであれば種類を問わず、用いることができる。
 また、熱媒体としては、たとえば不凍液であるブライン、水、ブラインと水の混合液、水と防食効果が高い添加剤との混合液、などを用いることができる。つまり、空気調和装置100は、熱媒体としてこれらを採用することで、室内空間7への熱媒体の漏洩に対する安全性の向上に寄与することになる。
 1 室外ユニット、2 中継ユニット、3 室内ユニット、3a 室内ユニット、3a-1 室内ユニット、3a-2 室内ユニット、3b 室内ユニット、3c 室内ユニット、3d 室内ユニット、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、5 熱媒体配管、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、13a 逆止弁、13b 逆止弁、13c 逆止弁、13d 逆止弁、15 熱媒体分流装置、16 分流配管、17 合流配管、19 アキュムレーター、20 バイパス管、25 熱媒体間熱交換器、25a 熱媒体間熱交換器、25b 熱媒体間熱交換器、26 絞り装置、26a 絞り装置、26b 絞り装置、27 開閉装置、28 第2冷媒流路切替装置、28a 第2冷媒流路切替装置、28b 第2冷媒流路切替装置、29 開閉装置、31 ポンプ、31a ポンプ、31b ポンプ、32 第1熱媒体流路切替装置、32a 第1熱媒体流路切替装置、32b 第1熱媒体流路切替装置、32c 第1熱媒体流路切替装置、32d 第1熱媒体流路切替装置、33 第2熱媒体流路切替装置、33a 第2熱媒体流路切替装置、33b 第2熱媒体流路切替装置、33c 第2熱媒体流路切替装置、33d 第2熱媒体流路切替装置、34 熱媒体流量調整装置、34a 熱媒体流量調整装置、34b 熱媒体流量調整装置、34c 熱媒体流量調整装置、34d 熱媒体流量調整装置、34e 熱媒体流量調整装置、35 利用側熱交換器、35a 利用側熱交換器、35a-1 利用側熱交換器、35a-2 利用側熱交換器、35b 利用側熱交換器、35c 利用側熱交換器、35d 利用側熱交換器、36 熱媒体分流調整弁、40 温度センサー、40a 温度センサー、40b 温度センサー、41 温度センサー、42a 温度センサー、42b 温度センサー、50 制御装置、60 接続口、60a 接続口、60b 接続口、60c 接続口、60d 接続口、61 第1接続口、61a 入口側接続口、61b 出口側接続口、62 第2接続口、62a 出口側接続口、62b 入口側接続口、70a 分流並列回路、70b 分流並列回路、100 空気調和装置、A 冷媒循環回路、B 熱媒体循環回路。

Claims (9)

  1.  圧縮機、熱源側熱交換器、絞り装置および複数の熱媒体間熱交換器の冷媒側流路を冷媒配管で接続して熱源側冷媒が循環する冷媒循環回路と、
     前記複数の熱媒体間熱交換器の熱媒体側流路、複数の熱媒体搬送装置、複数の利用側熱交換器を熱媒体配管で接続して熱媒体が循環する複数系統の熱媒体循環回路と、
     複数系統の前記熱媒体循環回路のそれぞれ毎に設けられ、前記利用側熱交換器を前記複数の熱媒体間熱交換器のいずれかに接続するように熱媒体の流路を切り替える熱媒体流路切替装置と、
     複数系統の前記熱媒体循環回路のうち、前記利用側熱交換器が複数接続された前記熱媒体循環回路に設けられ、前記熱媒体循環回路に接続された複数の前記利用側熱交換器の熱媒体の流量を調整する熱媒体分流装置と
    を備えた空気調和装置。
  2.  前記熱媒体分流装置を制御する制御装置を備え、
     前記制御装置は、前記熱媒体分流装置が設けられた前記熱媒体循環回路の複数の前記利用側熱交換器のそれぞれにおける熱負荷に応じて前記熱媒体分流装置を制御する
    請求項1記載の空気調和装置。
  3.  前記熱媒体分流装置が設けられた前記熱媒体循環回路の複数の前記利用側熱交換器のそれぞれにおける、出入口の熱媒体の温度差を検知する温度検知装置を備え、
     前記制御装置は、前記温度検知装置で検知した前記温度差に基づいて前記熱媒体分流装置を制御する
    請求項2記載の空気調和装置。
  4.  前記温度検知装置は前記熱媒体分流装置に設けられている
    請求項3記載の空気調和装置。
  5.  前記熱媒体分流装置は、前記熱媒体循環回路の熱媒体を任意の分流比率で複数に分流して複数の前記利用側熱交換器の熱媒体の流量を調整する熱媒体分流調整弁を備えた
    請求項1~請求項4のいずれか一項に記載の空気調和装置。
  6.  前記圧縮機、前記熱源側熱交換器および前記絞り装置が搭載された室外ユニットと、
     複数の前記熱媒体間熱交換器、複数の前記熱媒体搬送装置および複数の前記熱媒体流路切替装置が搭載された中継ユニットと、
     前記利用側熱交換器が搭載された複数の室内ユニットとを備えた
    請求項1~請求項5のいずれか一項に記載の空気調和装置。
  7.  前記温度検知装置が前記中継ユニットまたは前記室内ユニットに設けられている請求項3に従属する請求項6記載の空気調和装置。
  8.  前記熱媒体分流装置は、前記中継ユニットとの接続用の第1接続口と、複数の前記室内ユニットとの接続用の第2接続口と、前記第1接続口の入口側接続口から流入した、前記中継ユニットからの熱媒体を分流して前記第2接続口の複数の出口側接続口に導く分流配管と、前記第2接続口の複数の入口側接続口から流入した、複数の前記室内ユニットからの各熱媒体を合流して前記第1接続口の出口側接続口に導く合流配管とを備えた請求項6または請求項7記載の空気調和装置。
  9.  前記冷媒循環回路は、前記圧縮機から吐出された熱源側冷媒の流れを切り替えて冷房運転と暖房運転とを可能とする冷媒流路切替装置をさらに有する
    請求項1~請求項8のいずれか一項に記載の空気調和装置。
PCT/JP2015/080111 2015-10-26 2015-10-26 空気調和装置 WO2017072831A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017547209A JP6490232B2 (ja) 2015-10-26 2015-10-26 空気調和装置
PCT/JP2015/080111 WO2017072831A1 (ja) 2015-10-26 2015-10-26 空気調和装置
CN201580084002.6A CN108139106B (zh) 2015-10-26 2015-10-26 空气调节装置
GB1804443.8A GB2563119B (en) 2015-10-26 2015-10-26 Air-conditioning apparatus
US15/755,150 US10451305B2 (en) 2015-10-26 2015-10-26 Air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/080111 WO2017072831A1 (ja) 2015-10-26 2015-10-26 空気調和装置

Publications (1)

Publication Number Publication Date
WO2017072831A1 true WO2017072831A1 (ja) 2017-05-04

Family

ID=58629904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080111 WO2017072831A1 (ja) 2015-10-26 2015-10-26 空気調和装置

Country Status (5)

Country Link
US (1) US10451305B2 (ja)
JP (1) JP6490232B2 (ja)
CN (1) CN108139106B (ja)
GB (1) GB2563119B (ja)
WO (1) WO2017072831A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146214A1 (ja) * 2018-01-23 2019-08-01 住友重機械工業株式会社 極低温冷却システム
WO2022224349A1 (ja) * 2021-04-20 2022-10-27 三菱電機株式会社 空気調和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6721546B2 (ja) * 2017-07-21 2020-07-15 ダイキン工業株式会社 冷凍装置
CN212408875U (zh) * 2019-07-18 2021-01-26 木村工机株式会社 热交换器及空调机
CN111121242B (zh) * 2019-12-26 2022-06-14 宁波奥克斯电气股份有限公司 一种空调系统运行参数的调节方法、调节装置和空调系统
US12061019B2 (en) * 2020-01-08 2024-08-13 Mitsubishi Electric Corporation Air-conditioning apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278133A (ja) * 1991-03-07 1992-10-02 Matsushita Refrig Co Ltd 多室冷暖房装置
JP2010156478A (ja) * 2008-12-26 2010-07-15 Taikisha Ltd 熱負荷処理システム、及び、熱源システム
JP2013160478A (ja) * 2012-02-07 2013-08-19 Mitsubishi Electric Corp 空気調和装置
JP2013194975A (ja) * 2012-03-19 2013-09-30 Sanden Corp ヒートポンプ式暖房装置
WO2014045358A1 (ja) * 2012-09-20 2014-03-27 三菱電機株式会社 空気調和装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581711Y2 (ja) * 1978-07-06 1983-01-12 三菱電機株式会社 冷房または暖房用ヘツダ装置
JPH0820089B2 (ja) * 1988-02-09 1996-03-04 株式会社大氣社 地域冷房設備
JPH05280818A (ja) 1992-04-01 1993-10-29 Matsushita Refrig Co Ltd 多室冷暖房装置
JPH08327122A (ja) * 1995-06-05 1996-12-13 Toshiba Corp 空気調和機
JPH08338668A (ja) * 1995-06-14 1996-12-24 Hitachi Ltd 多室形空気調和機
JP2000154950A (ja) * 1998-11-19 2000-06-06 Denso Corp エンジン駆動式ヒートポンプサイクル
JP2001289465A (ja) 2000-04-11 2001-10-19 Daikin Ind Ltd 空気調和装置
JP4123829B2 (ja) 2002-05-28 2008-07-23 三菱電機株式会社 冷凍サイクル装置
KR100437805B1 (ko) * 2002-06-12 2004-06-30 엘지전자 주식회사 냉난방 동시형 멀티공기조화기 및 그 제어방법
JP2005140444A (ja) 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd 空気調和機およびその制御方法
CN1842683A (zh) * 2004-08-06 2006-10-04 大金工业株式会社 冷冻装置
JP4705878B2 (ja) * 2006-04-27 2011-06-22 ダイキン工業株式会社 空気調和装置
KR101176635B1 (ko) * 2007-06-22 2012-08-24 삼성전자주식회사 동시 냉난방형 멀티 공기조화기 및 그 제어방법
EP2314939A4 (en) 2008-10-29 2014-07-02 Mitsubishi Electric Corp AIR CONDITIONER AND RELAY DEVICE
JP5183804B2 (ja) * 2009-05-29 2013-04-17 三菱電機株式会社 冷凍サイクル装置、空気調和装置
JPWO2011030429A1 (ja) 2009-09-10 2013-02-04 三菱電機株式会社 空気調和装置
CN201569203U (zh) 2009-12-25 2010-09-01 韩旭 蒸冷式调温除湿机组
US9285128B2 (en) * 2010-03-16 2016-03-15 Mitsubishi Electric Corporation Air-conditioning apparatus with multiple outdoor, indoor, and multiple relay units
CN104364590B (zh) * 2012-07-24 2016-08-17 三菱电机株式会社 空气调节装置
US9459033B2 (en) * 2012-08-02 2016-10-04 Mitsubishi Electric Corporation Multi air-conditioning apparatus
CN202792261U (zh) * 2012-08-24 2013-03-13 广东美的暖通设备有限公司 多联机空调系统
JP5855279B2 (ja) * 2012-11-30 2016-02-09 三菱電機株式会社 空気調和装置
CN105358918B (zh) * 2013-07-02 2017-06-27 三菱电机株式会社 制冷剂回路和空调装置
US10139142B2 (en) * 2013-10-25 2018-11-27 Mitsubishi Electric Corporation Refrigeration cycle apparatus including a plurality of branch units
JP6352401B2 (ja) * 2014-04-22 2018-07-04 三菱電機株式会社 空気調和装置
CN104154629B (zh) * 2014-05-26 2017-04-05 广东美的制冷设备有限公司 一拖多空调系统的冷媒流量的控制方法及装置
WO2016009487A1 (ja) * 2014-07-14 2016-01-21 三菱電機株式会社 空気調和装置
WO2016009488A1 (ja) * 2014-07-14 2016-01-21 三菱電機株式会社 空気調和装置
JP6366837B2 (ja) * 2015-06-17 2018-08-01 三菱電機株式会社 冷媒回路及び空気調和機
US10684043B2 (en) * 2016-02-08 2020-06-16 Mitsubishi Electric Corporation Air-conditioning apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278133A (ja) * 1991-03-07 1992-10-02 Matsushita Refrig Co Ltd 多室冷暖房装置
JP2010156478A (ja) * 2008-12-26 2010-07-15 Taikisha Ltd 熱負荷処理システム、及び、熱源システム
JP2013160478A (ja) * 2012-02-07 2013-08-19 Mitsubishi Electric Corp 空気調和装置
JP2013194975A (ja) * 2012-03-19 2013-09-30 Sanden Corp ヒートポンプ式暖房装置
WO2014045358A1 (ja) * 2012-09-20 2014-03-27 三菱電機株式会社 空気調和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146214A1 (ja) * 2018-01-23 2019-08-01 住友重機械工業株式会社 極低温冷却システム
JP2019128065A (ja) * 2018-01-23 2019-08-01 住友重機械工業株式会社 極低温冷却システム
US12031682B2 (en) 2018-01-23 2024-07-09 Sumitomo Heavy Industries, Ltd. Cryogenic cooling system
WO2022224349A1 (ja) * 2021-04-20 2022-10-27 三菱電機株式会社 空気調和装置

Also Published As

Publication number Publication date
JP6490232B2 (ja) 2019-03-27
GB2563119A (en) 2018-12-05
US10451305B2 (en) 2019-10-22
CN108139106A (zh) 2018-06-08
US20180259219A1 (en) 2018-09-13
GB201804443D0 (en) 2018-05-02
GB2563119B (en) 2020-09-23
JPWO2017072831A1 (ja) 2018-05-10
CN108139106B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
JP6385436B2 (ja) 空気調和装置
JP6141454B2 (ja) 空気調和装置及び空気調和装置の制御方法
JP5452628B2 (ja) 空気調和装置
JP6095764B2 (ja) 空気調和装置
US20120042674A1 (en) Air-conditioning apparatus
WO2014128961A1 (ja) 空気調和装置
US9557083B2 (en) Air-conditioning apparatus with multiple operational modes
JP6490232B2 (ja) 空気調和装置
JP5855279B2 (ja) 空気調和装置
WO2012172613A1 (ja) 空気調和装置
US9651287B2 (en) Air-conditioning apparatus
JP5972397B2 (ja) 空気調和装置、その設計方法
EP2927614B1 (en) Air conditioning device
WO2015087421A1 (ja) 空気調和装置
WO2014128962A1 (ja) 空気調和装置
JP6429901B2 (ja) 空気調和装置
JP6062030B2 (ja) 空気調和装置
WO2023007700A1 (ja) 空気調和装置
JP5677571B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547209

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15755150

Country of ref document: US

ENP Entry into the national phase

Ref document number: 201804443

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20151026

WWE Wipo information: entry into national phase

Ref document number: 1804443.8

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907195

Country of ref document: EP

Kind code of ref document: A1