[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017069528A1 - 편광판 일체형 윈도우 기판 및 이의 제조 방법 - Google Patents

편광판 일체형 윈도우 기판 및 이의 제조 방법 Download PDF

Info

Publication number
WO2017069528A1
WO2017069528A1 PCT/KR2016/011811 KR2016011811W WO2017069528A1 WO 2017069528 A1 WO2017069528 A1 WO 2017069528A1 KR 2016011811 W KR2016011811 W KR 2016011811W WO 2017069528 A1 WO2017069528 A1 WO 2017069528A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display portion
liquid crystal
pattern
polarizing plate
Prior art date
Application number
PCT/KR2016/011811
Other languages
English (en)
French (fr)
Inventor
차재훈
김종민
박일우
이한배
차진규
Original Assignee
동우 화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150145935A external-priority patent/KR102024731B1/ko
Priority claimed from KR1020150161221A external-priority patent/KR102031220B1/ko
Application filed by 동우 화인켐 주식회사 filed Critical 동우 화인켐 주식회사
Priority to CN201680060893.6A priority Critical patent/CN108291993B/zh
Priority to JP2018520144A priority patent/JP2018534620A/ja
Publication of WO2017069528A1 publication Critical patent/WO2017069528A1/ko
Priority to US15/958,110 priority patent/US11360347B2/en
Priority to JP2022076615A priority patent/JP7297974B2/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a polarizing plate integrated window substrate and a method of manufacturing the same.
  • the display device includes a liquid crystal display device, an organic electro-luminescence display device, a plasma display panel, and a field emission display device.
  • an organic light emitting display device is a self-luminous display that emits light by electrically exciting a fluorescent organic compound.
  • This organic light emitting display device can be driven at a low voltage and has advantages such as thinness.
  • Such an organic light emitting display displays an image using light generated from an organic light emitting diode (OLED).
  • OLED organic light emitting diode
  • the light is sequentially incident on the polarizing plate and the phase film and the organic light emitting diode (OLED). Is reflected again by the electrode part which comprises).
  • the light reflected back by the electrode constituting the organic light emitting diode (OLED) causes a problem such as glare when the user looks at the organic light emitting display.
  • a polarizing plate is used to block reflected light.
  • the polarizing plate has a polarizer and a protective film attached to both sides thereof, and thus a total of three films are used, and thus the display panel becomes thick in its entirety. There is.
  • Korean Patent Publication No. 2012-0038133 discloses an organic light emitting diode display and a driving method thereof.
  • An object of the present invention is to provide a polarizing plate-integrated window substrate that can significantly reduce the thickness of the display device.
  • An object of this invention is to provide the manufacturing method of a polarizing plate integrated window substrate.
  • a polarizing plate-integrated window substrate comprising a base substrate, a non-display portion pattern positioned on a non-display portion of one surface of the base substrate, and a liquid crystal polarization layer positioned on the display portion of the same surface.
  • non-display portion pattern includes a first pattern partitioning the display portion and the non-display portion and a second light blocking pattern covering the non-display portion on which the first pattern is located.
  • non-display portion pattern is a polarizing plate integrated window substrate having a thickness of more than the liquid crystal polarization layer.
  • the polarizing plate integrated window substrate of claim 1 further comprising a phase difference layer on the liquid crystal polarization layer.
  • the retardation layer is a quarter wave plate polarizing plate integrated window substrate.
  • the retardation layer is a polarizing plate integrated window substrate that is a multilayer of 1/4 wave plate and 1/2 wave plate.
  • a leveling layer disposed on the overcoating layer and planarizing the display unit and the non-display unit.
  • the overcoat layer is a polarizing plate integrated window substrate positioned on the non-display portion pattern and the liquid crystal polarizing layer.
  • the window plate of claim 9 further comprising a retardation layer positioned on the leveling layer.
  • the polarizing plate integrated window substrate of claim 12 further comprising a color pattern in a leveling layer corresponding area of the non-display portion on the phase difference layer.
  • An optical laminate comprising any one of the above 1 to 14 polarizing plate integrated window substrate and a touch panel attached to the one surface of the base substrate.
  • Image display device including the optical stack of 15 above.
  • the forming of the non-display portion pattern comprises: forming a first pattern that divides the display portion and the non-display portion; And forming a light-shielding second pattern covering the non-display portion where the first pattern is located.
  • the forming of the liquid crystal polarizing layer comprises: coating an alignment layer and performing alignment treatment; Coating a liquid crystal layer on the alignment-treated alignment layer; And curing the liquid crystal layer.
  • the forming the liquid crystal polarizing layer is a step of coating the alignment layer and the alignment treatment; Coating a liquid crystal layer on the alignment-treated alignment layer; And hardening the liquid crystal layer, and attaching a release film covering the non-display portion after coating the alignment layer and before coating the liquid crystal layer.
  • the retardation layer is a multilayer of a quarter wave plate and a half wave plate.
  • the base substrate is a mother substrate having a plurality of unit cells, and each step is performed for each unit cell.
  • the polarizing plate-integrated window substrate of the present invention is provided with a liquid crystal polarizing layer and does not require a polarizer and a polarizing plate using a protective film and a total of three films on both sides thereof to exhibit a polarizing function, so that the thickness is remarkably thin. Accordingly, a thin film display device can be implemented.
  • the polarizing plate-integrated window substrate of the present invention implements a color non-display portion pattern so that a user can recognize the color of the non-display portion pattern.
  • the method for manufacturing a polarizing plate integrated window substrate of the present invention can produce a window substrate that can implement a color non-display portion pattern while reducing waste of the liquid crystal polarizing layer material.
  • FIG. 1 is a schematic cross-sectional view of a polarizing plate integrated window substrate according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a polarizing plate integrated window substrate according to an embodiment of the present invention.
  • FIG 3 is a schematic cross-sectional view of a polarizing plate integrated window substrate according to an embodiment of the present invention.
  • 4 to 7 is a schematic process diagram of a method of manufacturing a polarizing plate integrated window substrate according to an embodiment of the present invention.
  • FIG. 8 is a plan view of a base substrate to which a release film having an opening corresponding to a display unit is attached to one surface according to the exemplary embodiment of the present invention.
  • 9 to 34 are schematic process diagrams of a method of manufacturing a polarizing plate integrated window substrate according to one embodiment of the present invention.
  • 35 to 38 are schematic cross-sectional views of a polarizing plate integrated window substrate according to an embodiment of the present invention.
  • 39 and 40 are schematic process diagrams of a method of manufacturing a polarizing plate integrated window substrate according to an embodiment of the present invention.
  • FIG. 41 illustrates a case in which a base substrate is a substrate having an area greater than or equal to a unit cell in the method of manufacturing a polarizing plate integrated window substrate according to an embodiment of the present invention.
  • the base substrate is a mother substrate having a plurality of unit cells, and each step is schematically illustrated in a case where each unit cell is performed. It is a cross section.
  • the present invention includes a base substrate, a non-display portion pattern positioned on a non-display portion of one side of the base substrate, and a liquid crystal polarization layer positioned on the display portion of the same surface, so that a polarizer and a protective film on both sides thereof, a total of three films Since the polarizing plate is not required, the present invention relates to a polarizing plate-integrated window substrate capable of realizing a thin film-weighted display device and a color non-display part pattern.
  • the polarizing plate-integrated window substrate of the present invention includes a base substrate 100, a non-display portion pattern 200 positioned on a non-display portion of one surface of the base substrate 100, and a liquid crystal polarization layer 300 positioned on the display portion of the same surface.
  • the base substrate 100 may be applied to a liquid crystal display, a touch screen panel, and the like, and may be a material that is durable enough to sufficiently protect them from external forces and allows a user to see the display well.
  • Substrate 100 can be used without particular limitation.
  • glass polyethersulphone (PES), polyacrylate (PAR, polyacrylate), polyetherimide (PEI), polyethylene naphthalate (PEN, polyethyelenen napthalate), polyethylene terephthalate (PET, polyethyelene terepthalate, polyphenylene sulfide (PPS), polyallylate, polyimide, polycarbonate (PC, polycarbonate), cellulose tri acetate (TAC), cellulose acetate propionate (cellulose acetate propionate (CAP) may be used.
  • PES polyethersulphone
  • PAR polyacrylate
  • PEI polyetherimide
  • PEN polyethylene naphthalate
  • PET polyethyelene terepthalate
  • PPS polyphenylene sulfide
  • polyallylate polyimide
  • PC polycarbonate
  • TAC cellulose tri acetate
  • TAC cellulose acetate propionate
  • CAP cellulose acetate propionate
  • the thickness of the base substrate 100 is not particularly limited, and may be, for example, 10 to 200 ⁇ m. If the thickness is less than 10 ⁇ m, it may be difficult to implement sufficient hardness, strength, and the like as the window substrate. If the thickness is more than 200 ⁇ m, the overall thickness increases, making it difficult to implement the thin film weight.
  • the base substrate 100 includes a display unit for displaying an image when applied to an image display device or the like, and a non-display unit that is not covered by the non-display unit pattern 200 that forms part of the housing of the electronic device.
  • a display unit for displaying an image when applied to an image display device or the like
  • a non-display unit that is not covered by the non-display unit pattern 200 that forms part of the housing of the electronic device.
  • an image may be output from the non-display unit, but the image displayed on the non-display unit is hidden by the non-display unit pattern 200 so that the user cannot see it.
  • the non-display portion pattern 200 is positioned on the non-display portion of one surface of the base substrate 100.
  • the non-display portion pattern 200 forms a boundary between the display portion and the non-display portion and prevents the lower wiring or the like from being viewed by the user as the light blocking pattern.
  • a conventional polarizing plate-integrated window substrate that uses the liquid crystal polarization layer 300 instead of the polarizing plate for thinning has a non-display portion pattern 200 formed on the non-display portion on the liquid crystal polarization layer 300 and the liquid crystal polarization layer 300 coated on one surface thereof. ).
  • a non-display portion pattern 200 formed on the non-display portion on the liquid crystal polarization layer 300 and the liquid crystal polarization layer 300 coated on one surface thereof.
  • the non-display portion pattern 200 according to the present invention is directly in contact with the base substrate 100, light incident from the display panel to the non-display portion pattern 200 is visually recognized by the user without passing through the liquid crystal polarization layer 300.
  • the user may visually recognize the non-display unit pattern 200 in various colors.
  • the non-display portion 200 may be a single layer or a multilayer.
  • the single layer non-display portion 200 is a light blocking pattern having a color to be implemented.
  • the non-display portion 200 of the multilayer may be formed by stacking a light blocking pattern having a color to be implemented in multiple layers.
  • the multi-layered non-display portion pattern 200 may include a first pattern 210 forming a boundary between the display portion and the non-display portion, and a second light blocking pattern 220 covering the non-display portion where the first pattern 210 is positioned. It may include.
  • the first pattern 210 forms a boundary between the display unit and the non-display unit.
  • the first pattern 210 may be positioned only at an edge of the display unit and the non-display unit, or may be located in the entire non-display unit.
  • the first pattern 210 may be transparent or opaque. Even if the first pattern 210 is transparent, since the second pattern 220 is light-shielding, the second pattern 220 may prevent the lower wiring from being viewed by the user.
  • the second pattern 220 is a light blocking pattern covering the non-display portion where the first pattern 210 is located.
  • the first pattern 210 and the second pattern 220 may be a single layer or a multilayer pattern independently of each other.
  • each layer may be transparent or opaque independently of each other. However, at least one of the second patterns 220 is opaque.
  • the thickness of the non-display portion 200 is not particularly limited, and may be, for example, 1 to 100 ⁇ m. It is preferable that the non-display portion pattern 200 have a thickness greater than or equal to that of the liquid crystal polarization layer 300 in view of manufacturing processes.
  • patterns such as icons, IRs, and logos may be engraved.
  • the liquid crystal polarization layer 300 is positioned on the display unit on the same plane as the non-display unit pattern 200.
  • a conventional polarizing plate is made of a polarizer and a protective film attached to both surfaces thereof, but the liquid crystal polarizing layer 300 has an advantage of significantly reducing the thickness by using it as a coating layer serving as a polarizer.
  • the liquid crystal polarization layer 300 includes the liquid crystal layer 320 and the alignment layer 310, and may be formed by aligning the liquid crystal layer 320 by the alignment treatment 310.
  • the liquid crystal polarization layer 300 is positioned on the display unit, and as described above, light incident to the non-display unit pattern 200 from the display panel is visually recognized by the user without passing through the liquid crystal polarization layer 300, so that the user may have various colors.
  • the non-display part pattern 200 may be visually recognized.
  • the thickness of the liquid crystal polarization layer 300 is not particularly limited, and may be, for example, 1 ⁇ m to 30 ⁇ m. If the thickness is less than 1 ⁇ m, the adhesion of the liquid crystal polarization layer 300 to the base substrate 100 may be insufficient. If the thickness is greater than 30 ⁇ m, the entire thickness of the polarizing plate-integrated window substrate is increased, making it difficult to implement a thin film of an image display apparatus. have.
  • the polarizing plate integrated window substrate of the present invention may further include a phase difference layer 400 disposed on the liquid crystal polarization layer 300.
  • the retardation layer 400 may be a coating layer or a film.
  • the retardation layer 400 may be a single layer or a multilayer, and may be a quarter wave plate in the case of a single layer, and may be a multilayer of a quarter wave plate and a half wave plate in the case of a multilayer, but are not limited thereto. In the case of multiple layers of a quarter wave plate and a half wave plate, the color and image quality are excellent when applied to an image display device by phase difference correction.
  • the thickness of the retardation layer 400 is not particularly limited, and may be, for example, 1 ⁇ m to 100 ⁇ m. If the thickness is less than 1 ⁇ m, the phase characteristics may be deteriorated. If the thickness is more than 100 ⁇ m, the thickness of the entire polarizing plate-integrated window substrate is increased, which makes it difficult to implement a thin film of the image display apparatus.
  • the polarizing plate-integrated window substrate of the present invention may further include a refractive index adjusting layer 500 located on the retardation layer 400.
  • the refractive index adjusting layer 500 adjusts the refractive index to improve color and the like when applied to an image display device.
  • the refractive index adjusting layer 500 may be a coating layer or a film.
  • C-PLATE of a stretched film method or a liquid crystal coating method can be used.
  • the thickness of the refractive index adjusting layer 500 is not particularly limited, and may be, for example, 1 ⁇ m to 30 ⁇ m. If the thickness is less than 1 ⁇ m, the phase characteristics may be deteriorated. If the thickness is more than 30 ⁇ m, the thickness of the entire polarizing plate-integrated window substrate is increased, which makes it difficult to implement a thin film of the image display apparatus.
  • the polarizing plate-integrated window substrate of the present invention may further include an aqueous overcoating layer 800 and a leveling layer 900.
  • the aqueous overcoat layer 800 is positioned on the liquid crystal polarization layer 300 and serves to protect the liquid crystal polarization layer 300.
  • the liquid crystal polarization layer 300 may be damaged, and the present invention uses an aqueous overcoating composition.
  • composition for forming an aqueous overcoat layer may include, for example, an aqueous organic binder resin and water known in the art, and may further include additives such as inorganic particles.
  • the thickness of the aqueous overcoat layer 800 is not particularly limited, and may be, for example, 0.3 ⁇ m to 10 ⁇ m. If the thickness is less than 0.3 ⁇ m it may be difficult to implement a sufficient protective effect, it may be vulnerable to the generation of coating defects, such as foreign matters, if the thickness is greater than 10 ⁇ m the thickness of the entire polarizing plate integrated window substrate is difficult to implement a thin film of the image display device And, when the non-dry state is very high thickness may cause coating reliability problems.
  • the aqueous overcoat layer 800 may be positioned on the non-display portion 200.
  • the leveling layer 900 is positioned on the overcoating layer and planarizes the display unit and the non-display unit.
  • the polarizing plate-integrated window substrate includes a phase difference layer 400 on the liquid crystal polarization layer 300 and a non-display portion pattern 200 formed on the non-display portion on the phase difference layer 400.
  • the non-display portion pattern 200 directly contacts the base substrate 100, and the liquid crystal polarization layer 300 is positioned on the display portion. Therefore, it may be difficult to form the phase difference layer 400 on the liquid crystal polarization layer 300 because of the step between the liquid crystal polarization layer 300 and the non-display portion pattern 200. Accordingly, the present invention can solve the above problem by further flattening the display unit and the non-display unit by including a leveling layer 900.
  • the leveling layer 900 may be formed of a composition for forming the leveling layer 900 including an organic binder resin, an organic solvent, and the like known in the art.
  • the leveling layer 900 is positioned on the aqueous overcoating layer 800 to planarize the display and the non-display by eliminating a step between the aqueous overcoating layer 800 and the non-display portion pattern 200.
  • the leveling layer 900 may planarize the display portion and the non-display portion as illustrated in FIG. 2.
  • the polarizing plate integrated window substrate of the present invention may further include a phase difference layer 400 disposed on the leveling layer 900 as illustrated in FIG. 37.
  • the leveling layer 900 may flatten the display portion and the non-display portion, thereby resolving a problem such that the retardation layer 400 is insufficiently attached to some regions due to the step difference.
  • the phase difference layer 400 may be a single layer or a multilayer.
  • a single layer it may be a quarter wave plate, and in the case of a multilayer, it may be a multilayer of a quarter wave plate and a half wave plate, but is not limited thereto.
  • the color and image quality are excellent when applied to an image display device by phase difference correction.
  • the thickness of the retardation layer 400 is not particularly limited, and may be, for example, 1 ⁇ m to 30 ⁇ m. If the thickness is less than 1 ⁇ m, it may be difficult to realize sufficient phase difference. If the thickness is greater than 30 ⁇ m, the entire thickness of the polarizing plate-integrated window substrate is increased, making it difficult to implement a thin film of the image display apparatus.
  • the non-display portion pattern 200 is positioned on at least a portion of the non-display portion, and the leveling layer 900 is disposed on the remaining area of the non-display portion. Can be located further.
  • the area of the region where the non-display portion pattern 200 is formed is not limited, and its width can be freely adjusted.
  • the leveling layer 900 may be further located in the remaining area where the non-display portion 200 is not located.
  • the water-based overcoat layer 800 is positioned in the remaining area of the non-display portion, and the leveling layer 900 is positioned on the water-based overcoat layer 800. It may be.
  • the polarizing plate integrated window substrate may further include a color pattern 1000 on a region corresponding to the leveling layer 900 of the non-display unit on the phase difference layer 400. That is, since the color pattern 1000 is also located on the non-display unit, the color pattern 1000 may be included to further diversify the color of the non-display unit.
  • the polarizing plate-integrated window substrate of the present invention may further include a light shielding pattern 1100 on the color pattern 1000 as illustrated in FIG. 38.
  • the light blocking pattern 1100 prevents light from the display device from passing through the color pattern 1000 to prevent the non-display portion lower wiring from being recognized by the user.
  • the thickness of the color pattern 1000 and the light blocking pattern 1100 is not particularly limited, and may be, for example, 1 ⁇ m to 30 ⁇ m independently of each other. If the thickness is less than 1 ⁇ m, it may be difficult to realize sufficient color or light blocking effect. If the thickness is more than 30 ⁇ m, the entire thickness of the polarizing plate-integrated window substrate is increased, making it difficult to implement a thin film of the image display apparatus.
  • the present invention also provides an optical laminate including the polarizing plate integrated window substrate.
  • the optical laminate of the present invention includes the polarizing plate integrated window substrate and a touch sensor attached thereto.
  • the touch sensor may be attached to the side of the non-display portion pattern 200 and the liquid crystal polarization layer 300 on the window substrate.
  • the touch sensor may be attached using an aqueous, photocurable adhesive or pressure sensitive adhesive known in the art.
  • the touch sensor may be used without limitation including those known in the art, such as a base film, a sensing electrode layer, an insulating layer, and a passivation layer.
  • the present invention also provides an image display device including the optical laminate.
  • the optical laminated body of the present invention can be applied to various image display devices such as electroluminescent display devices, plasma display devices, field emission display devices, as well as ordinary liquid crystal display devices.
  • the present invention also provides a method of manufacturing the polarizing plate integrated window substrate.
  • a non-display part pattern 200 is formed on one surface of the base substrate 100 to partition the display part and the non-display part.
  • the base substrate 100 may be applied to a liquid crystal display, a touch screen panel, and the like, and may be a material that is durable enough to sufficiently protect them from external forces and allows a user to see the display well.
  • Substrate 100 can be used without particular limitation.
  • glass polyethersulphone (PES), polyacrylate (PAR, polyacrylate), polyetherimide (PEI), polyethylene naphthalate (PEN, polyethyelenen napthalate), polyethylene terephthalate (PET, polyethyelene terepthalate, polyphenylene sulfide (PPS), polyallylate, polyimide, polycarbonate (PC, polycarbonate), cellulose tri acetate (TAC), cellulose acetate propionate (cellulose acetate propionate (CAP) may be used.
  • PES polyethersulphone
  • PAR polyacrylate
  • PEI polyetherimide
  • PEN polyethylene naphthalate
  • PET polyethyelene terepthalate
  • PPS polyphenylene sulfide
  • polyallylate polyimide
  • PC polycarbonate
  • TAC cellulose tri acetate
  • TAC cellulose acetate propionate
  • CAP cellulose acetate propionate
  • the thickness of the base substrate 100 is not particularly limited, and may be, for example, 10 to 200 ⁇ m. If the thickness is less than 10 ⁇ m, it may be difficult to implement sufficient hardness, strength, and the like as the window substrate. If the thickness is more than 200 ⁇ m, the overall thickness increases, making it difficult to implement the thin film weight.
  • the base substrate 100 includes a display unit for displaying an image when applied to an image display device or the like, and a non-display unit that is not covered by the non-display unit pattern 200 that forms part of the housing of the electronic device.
  • a display unit for displaying an image when applied to an image display device or the like
  • a non-display unit that is not covered by the non-display unit pattern 200 that forms part of the housing of the electronic device.
  • an image may be output from the non-display unit, but the image displayed on the non-display unit is hidden by the non-display unit pattern 200 so that the user cannot see it.
  • the method of forming the non-display portion pattern 200 is not particularly limited, and any method may be used as long as the pattern can be formed by an embossing method.
  • Forming the non-display portion pattern 200 may include forming a first pattern 210 that divides the display portion and the non-display portion; And forming a light blocking second pattern 220 covering the non-display portion where the first pattern 210 is positioned.
  • the first pattern 210 forms a boundary between the display unit and the non-display unit.
  • the first pattern 210 may be positioned only at an edge of the display unit and the non-display unit, or may be located in the entire non-display unit.
  • the first pattern 210 may be transparent or opaque. Since the second pattern 220 is light-shielding, there is no problem in preventing the lower wiring from being viewed even if transparent.
  • the second pattern 220 is a light blocking pattern covering the non-display portion where the first pattern 210 is located.
  • the first pattern 210 and the second pattern 220 may be a single layer or a multilayer pattern independently of each other.
  • each layer may be transparent or opaque independently of each other. However, at least one of the second patterns 220 is opaque.
  • the thickness of the non-display portion 200 is not particularly limited, and may be, for example, 1 to 100 ⁇ m.
  • the non-display portion pattern 200 may have a thickness greater than or equal to that of the liquid crystal polarization layer 300 in that the coating layer does not pass to the non-display portion when the liquid crystal polarization layer 300 is formed by coating.
  • the liquid crystal polarization layer 300 is formed on the display portion partitioned by the non-display portion pattern 200.
  • Forming the liquid crystal polarization layer 300 may include coating and aligning the alignment layer 310; Coating a liquid crystal layer (320) on the alignment-treated alignment layer (310); And curing the liquid crystal layer 320.
  • the coating method of the alignment layer 310 and the liquid crystal layer 320 is not particularly limited, and for example, the slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, Roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, gravure printing method, flexographic printing method, offset printing method, inkjet coating method, dispenser printing method, nozzle coating method, capillary coating method, etc. The method can be mentioned.
  • the alignment treatment of the alignment layer 310 may be performed by, for example, rubbing the alignment layer 310 with a rubbing roll, but is not limited thereto, and may be performed by a method known in the art.
  • the coated liquid crystal layer 320 may be cured using UV or heat.
  • the thickness of the liquid crystal polarization layer 300 is not particularly limited, and may be, for example, 1 ⁇ m to 30 ⁇ m. If the thickness is less than 1 ⁇ m, the adhesion of the liquid crystal polarization layer 300 to the base substrate 100 may be insufficient. If the thickness is greater than 30 ⁇ m, the entire thickness of the polarizing plate-integrated window substrate is increased, making it difficult to implement a thin film of an image display apparatus. have.
  • the display portion and the non-display portion are already partitioned by the non-display portion pattern 200, when the liquid crystal polarization layer 300 is formed by coating, the material does not fall to the non-display portion, thereby preventing material loss and liquid crystal polarization.
  • the layer 300 can be easily formed only in the display portion.
  • the method of manufacturing a polarizing plate-integrated window substrate of the present invention may further include attaching a release film 700 covering the non-display portion before the liquid crystal polarization layer 300 is formed.
  • the release film 700 may cover the non-display portion to prevent the liquid crystal polarization layer 300 from flowing over to the non-display portion more efficiently.
  • the release film 700 may be cut to have an opening in the display unit so that the liquid crystal polarization layer 300 may be formed in the display unit, or may be formed by cutting after the release film 700 is attached.
  • the release film 700 may be attached before the alignment layer formation 310 of the liquid crystal polarization layer 300, or after the alignment layer 310 is formed and before the polarization layer 320 is formed.
  • the method of manufacturing a polarizing plate integrated window substrate of the present invention may further include forming a phase difference layer 400 on the liquid crystal polarization layer 300.
  • the retardation layer 400 may be formed by coating a retardation layer on the liquid crystal polarization layer 300 or by attaching a retardation film.
  • Coating method of the retardation layer 400 is not particularly limited, for example, slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire Bar coating, dip coating, spray coating, screen printing, gravure printing, flexographic printing, offset printing, inkjet coating, dispenser printing, nozzle coating, capillary coating, etc. have.
  • the retardation layer 400 may be a single layer or a multilayer, and may be a quarter wave plate in the case of a single layer, and may be a multilayer of a quarter wave plate and a half wave plate in the case of a multilayer, but are not limited thereto. In the case of multiple layers of a quarter wave plate and a half wave plate, the color and image quality are excellent when applied to an image display device by phase difference correction.
  • the thickness of the retardation layer 400 is not particularly limited, and may be, for example, 1 ⁇ m to 100 ⁇ m. If the thickness is less than 1 ⁇ m, the phase characteristics may be deteriorated. If the thickness is more than 100 ⁇ m, the thickness of the entire polarizing plate-integrated window substrate is increased, which makes it difficult to implement a thin film of the image display apparatus.
  • the method of manufacturing a polarizing plate integrated window substrate of the present invention may further include forming a refractive index adjusting layer 500 on the retardation layer 400.
  • the refractive index adjusting layer 500 may be formed by coating the refractive index adjusting layer 500 on the retardation layer 400 or by attaching a refractive index adjusting film.
  • the coating method of the refractive index adjusting layer 500 is not particularly limited, and for example, the slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, Methods such as wire bar coating, dip coating, spray coating, screen printing, gravure printing, flexographic printing, offset printing, inkjet coating, dispenser printing, nozzle coating, capillary coating Can be.
  • the refractive index adjusting layer 500 adjusts the refractive index to improve color and the like when applied to an image display device.
  • the refractive index adjusting layer 500 may be a coating layer or a film.
  • C-PLATE of a stretched film method or a liquid crystal coating method can be used.
  • the thickness of the refractive index adjusting layer 500 is not particularly limited, and may be, for example, 1 ⁇ m to 30 ⁇ m. If the thickness is less than 1 ⁇ m, the phase characteristics may be deteriorated. If the thickness is more than 30 ⁇ m, the thickness of the entire polarizing plate-integrated window substrate is increased, which makes it difficult to implement a thin film of the image display apparatus.
  • a method of manufacturing a polarizing plate-integrated window substrate of the present invention includes forming a non-display portion pattern partitioning the display portion and the non-display portion on one surface of the base substrate; And forming a liquid crystal polarization layer on the display portion partitioned by the non-display portion pattern. In addition, forming an aqueous overcoat layer on the liquid crystal polarization layer; And forming a leveling layer on the overcoat layer to planarize the display unit and the non-display unit.
  • an aqueous overcoat layer 800 is formed on the liquid crystal polarization layer 300 as illustrated in FIG. 39 (c).
  • the method of forming the aqueous overcoat layer 800 is not particularly limited, and for example, the slit coating method, the knife coating method, the spin coating method, the casting method, the micro gravure coating method, the gravure coating method, the bar coating method, the roll coating method, Methods such as wire bar coating, dip coating, spray coating, screen printing, gravure printing, flexographic printing, offset printing, inkjet coating, dispenser printing, nozzle coating, capillary coating Can be.
  • the aqueous overcoat layer 800 may be formed on the non-display portion 200 as well as the liquid crystal polarization layer 300.
  • the thickness of the aqueous overcoat layer 800 is not particularly limited, and may be, for example, 1 ⁇ m to 30 ⁇ m.
  • the leveling layer 900 is formed on the overcoating layer to planarize the display unit and the non-display unit.
  • a polarizing plate may be attached to an entire surface of a window substrate or the liquid crystal polarization layer 300 may be formed, and then the phase difference layer 400 may be formed and the non-display portion pattern 200 may be formed. 400) There is no problem in forming.
  • a step may occur between the display parts, thereby reducing the reliability of coating or attaching the retardation layer 400. And the step may be made larger by the formation of an overcoat layer.
  • the manufacturing method of the polarizing plate-integrated window substrate of the present invention solves the above problem by forming the leveling layer 900 on the overcoat layer and flattening the display portion and the non-display portion, thereby lowering the reliability of coating or attaching the phase difference layer 400.
  • the color non-display pattern 200 may be implemented without a problem.
  • the leveling layer 900 may be formed of a composition for forming the leveling layer 900 including an organic binder resin, an organic solvent, and the like known in the art.
  • the method of forming the leveling layer 900 is not particularly limited, and for example, the slit coating method, the knife coating method, the spin coating method, the casting method, the micro gravure coating method, the gravure coating method, the bar coating method, the roll coating method, the wire Bar coating, dip coating, spray coating, screen printing, gravure printing, flexographic printing, offset printing, inkjet coating, dispenser printing, nozzle coating, capillary coating, etc. have.
  • the leveling layer 900 is positioned on the water-based overcoating layer 800 to eliminate the step between the water-based overcoating layer 800 and the non-display portion pattern 200. Flatten.
  • the leveling layer 900 may planarize the display portion and the non-display portion as illustrated in FIG. 40 (d).
  • the thickness of the leveling layer 900 is not particularly limited, and may be, for example, 1 ⁇ m to 30 ⁇ m.
  • the method of manufacturing a polarizing plate integrated window substrate of the present invention may further include forming a phase difference layer 400 on the leveling layer 900 as illustrated in FIG. 40 (e).
  • the retardation layer 400 may be a coating layer or a film.
  • the retardation layer 400 When the retardation layer 400 is a film, it may be attached with an aqueous, photocurable pressure sensitive adhesive or adhesive known in the art.
  • the phase difference layer 400 may be a single layer or a multilayer.
  • a single layer it may be a quarter wave plate, and in the case of a multilayer, it may be a multilayer of a quarter wave plate and a half wave plate, but is not limited thereto.
  • the color and image quality are excellent when applied to an image display device by phase difference correction.
  • the thickness of the retardation layer 400 is not particularly limited, and may be, for example, 1 ⁇ m to 30 ⁇ m.
  • the non-display portion pattern 200 is formed on at least a portion of the non-display portion as illustrated in FIG. 40 (b), and FIG. 40 (d).
  • the leveling layer 900 may be further formed in the remaining areas of the non-display unit.
  • the area of the region where the non-display portion pattern 200 is formed is not limited, and its width can be freely adjusted.
  • the leveling layer 900 may be further formed in a region where the non-display portion 200 is not located among the non-display portions, which may be formed together when the leveling layer 900 is formed on the liquid crystal polarization layer 300 described above.
  • the polarizing plate-integrated window substrate of the present invention may include forming a color pattern 1000 on the phase difference layer 400 corresponding to the non-display portion on the phase difference layer 400 as illustrated in FIG. 40 (f). It may further include.
  • the method of manufacturing the polarizing plate integrated window substrate of the present invention may further include forming the light shielding pattern 1100 on the color pattern 1000 as illustrated in FIG. 40 (f).
  • the method of forming the color pattern 1000 and the light shielding pattern 1100 is not particularly limited.
  • the slit coating method, the knife coating method, the spin coating method, the casting method, the microgravure coating method, the gravure coating method, the bar coating method , Roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, gravure printing method, flexographic printing method, offset printing method, inkjet coating method, dispenser printing method, nozzle coating method, capillary coating method Etc. can be mentioned.
  • the thickness of the color pattern 1000 and the light blocking pattern 1100 is not particularly limited, and may be, for example, 1 ⁇ m to 30 ⁇ m independently of each other.
  • the base substrate 100 is a mother substrate having a plurality of unit cells, and each step is performed for each unit cell. Can be performed.
  • the unit cell refers to an area applied to an individual product in the base substrate 100.
  • the manufacturing method of the polarizing plate-integrated window substrate of the present invention may be performed on the base substrate 100 of the individual product size, or may be performed on each unit cell for the mother substrate having a plurality of unit cells.
  • the process yield is better.
  • the steps may be performed for each unit cell, and the base substrate 100 may be cut for each unit cell to manufacture a plurality of polarizing plate integrated window substrates.
  • FIG. 9 to 20 illustrate forming a non-display part pattern 200 defining a display part and a non-display part on one surface of the base substrate 100; Forming a liquid crystal polarization layer (300) on the display portion partitioned by the non-display portion pattern (200); Forming a phase difference layer (400) on the liquid crystal polarization layer (300); And forming a refractive index adjusting layer 500 on the retardation layer 400, according to various embodiments of the method of manufacturing the polarizing plate-integrated window substrate.
  • the non-display part pattern 200 is formed on one surface of the base substrate 100 to partition the display part from the non-display part, and then the liquid crystal polarization layer 300 is formed on the display part.
  • first step Forming a first pattern that divides the non-display unit pattern 200 into a display unit and a non-display unit; And forming a light-shielding second pattern covering the non-display portion where the first pattern is positioned.
  • two steps may be performed immediately or only the first pattern is formed.
  • two steps may be performed.
  • 9 to 20 illustrate the case where the release film 700 covering the non-display portion is further included before the formation of the liquid crystal polarization layer 300, but is not limited thereto, and the liquid crystal polarization without the release film 700 is illustrated. It is also possible to form layer 300.
  • 9 to 14 illustrate the case where the opening is formed by cutting after the release film 700 is attached
  • FIGS. 15 to 20 illustrate the case where the release film 700 having the opening is attached to expose the display unit. It is.
  • the liquid crystal polarization layer 300 may be formed on the entire surface of the base substrate 100 as shown in FIGS. 9 to 11 and 15 to 17, and FIGS. 12 to 14 and 18 to 20. It may be formed only on the display unit as shown.
  • phase difference layer 400 is formed on the liquid crystal polarization layer 300, and the refractive index adjustment layer 500 is formed on the phase difference layer 400.
  • the release time of the release film 700 is not particularly limited, and for example, the release film 700 may be peeled off after the liquid crystal polarization layer 300 is formed, after the retardation layer 400 is formed, or after the formation of the refractive index adjusting layer 500. Can be.
  • FIG. 21 illustrates another embodiment of the method of manufacturing the polarizing plate-integrated window substrate including the above step.
  • the non-display portion pattern 200 is formed until the alignment layer 310 of the liquid crystal polarization layer 300 is formed.
  • the process of attaching the release film 700 of FIGS. 9 to 20 may be performed.
  • the alignment layer 310 is already formed, only the liquid crystal layer 320 is further formed in the liquid crystal polarization layer forming process of FIGS. 9 to 20.
  • the process of forming the liquid crystal layer 320 between the alignment layer 310 forming process when the liquid crystal polarization layer 300 is formed may further include attaching the release film 700.
  • the present invention provides a method of manufacturing the polarizing plate integrated window substrate according to another embodiment.
  • the liquid crystal polarization layer 300 is formed on the display portion of one surface of the base substrate 100.
  • FIG. 5 illustrates a case in which a process is performed for each unit cell on a mother substrate having a plurality of unit cells. This is possible.
  • the base substrate 100 may be applied to a liquid crystal display, a touch screen panel, and the like, and may be a material that is durable enough to sufficiently protect them from external forces and allows a user to see the display well.
  • Substrate 100 can be used without particular limitation.
  • glass polyethersulphone (PES), polyacrylate (PAR, polyacrylate), polyetherimide (PEI), polyethylene naphthalate (PEN, polyethyelenen napthalate), polyethylene terephthalate (PET, polyethyelene terepthalate, polyphenylene sulfide (PPS), polyallylate, polyimide, polycarbonate (PC, polycarbonate), cellulose tri acetate (TAC), cellulose acetate propionate (cellulose acetate propionate (CAP) may be used.
  • PES polyethersulphone
  • PAR polyacrylate
  • PEI polyetherimide
  • PEN polyethylene naphthalate
  • PET polyethyelene terepthalate
  • PPS polyphenylene sulfide
  • polyallylate polyimide
  • PC polycarbonate
  • TAC cellulose tri acetate
  • TAC cellulose acetate propionate
  • CAP cellulose acetate propionate
  • the thickness of the base substrate 100 is not particularly limited, and may be, for example, 10 to 200 ⁇ m. If the thickness is less than 10 ⁇ m, it may be difficult to implement sufficient hardness, strength, and the like as the window substrate. If the thickness is more than 200 ⁇ m, the overall thickness increases, making it difficult to implement the thin film weight.
  • the base substrate 100 includes a display unit for displaying an image when applied to an image display device or the like, and a non-display unit that is not covered by the non-display unit pattern 200 that forms part of the housing of the electronic device.
  • a display unit for displaying an image when applied to an image display device or the like
  • a non-display unit that is not covered by the non-display unit pattern 200 that forms part of the housing of the electronic device.
  • an image may be output from the non-display unit, but the image displayed on the non-display unit is hidden by the non-display unit pattern 200 so that the user cannot see it.
  • Forming the liquid crystal polarization layer 300 may include coating the alignment layer 310 on the display unit of one surface of the base substrate 100 and performing alignment treatment; Coating a liquid crystal layer (320) on the alignment-treated alignment layer (310); And curing the liquid crystal layer 320.
  • the coating method of the alignment layer 310 and the liquid crystal layer 320 is not particularly limited, and for example, the slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, Roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, gravure printing method, flexographic printing method, offset printing method, inkjet coating method, dispenser printing method, nozzle coating method, capillary coating method, etc. The method can be mentioned.
  • the alignment treatment of the alignment layer 310 may be performed by, for example, rubbing the alignment layer 310 with a rubbing roll, but is not limited thereto, and may be performed by a method known in the art.
  • the coated liquid crystal layer 320 may be cured using UV or heat.
  • the thickness of the liquid crystal polarization layer 300 is not particularly limited, and may be, for example, 1 ⁇ m to 30 ⁇ m. If the thickness is less than 1 ⁇ m, the adhesion of the liquid crystal polarization layer 300 to the base substrate 100 may be insufficient. If the thickness is greater than 30 ⁇ m, the entire thickness of the polarizing plate-integrated window substrate is increased, making it difficult to implement a thin film of an image display apparatus. have.
  • the method of manufacturing the polarizing plate integrated window substrate of the present invention may further include attaching a release film 700 covering the non-display portion before the liquid crystal layer 310 is formed.
  • the release film 700 may cover the non-display portion, thereby preventing the liquid crystal layer 310 from flowing over to the non-display portion more efficiently.
  • the release film 700 may be cut to have an opening in the display unit so that the liquid crystal layer 310 may be formed in the display unit, or may be formed by cutting after attaching the release film 700.
  • the method of manufacturing a polarizing plate-integrated window substrate of the present invention may further include forming a phase difference layer 400 on the liquid crystal polarization layer 300, and further adjusting the refractive index on the phase difference layer 400.
  • the method may further include forming the layer 500.
  • the retardation layer 400 may be formed by coating a retardation layer on the liquid crystal polarization layer 300 or by attaching a retardation film.
  • Coating method of the retardation layer 400 is not particularly limited, for example, slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire Bar coating, dip coating, spray coating, screen printing, gravure printing, flexographic printing, offset printing, inkjet coating, dispenser printing, nozzle coating, capillary coating, etc. have.
  • the retardation layer 400 may be a single layer or a multilayer, and may be a quarter wave plate in the case of a single layer, and may be a multilayer of a quarter wave plate and a half wave plate in the case of a multilayer, but are not limited thereto. In the case of multiple layers of a quarter wave plate and a half wave plate, the color and image quality are excellent when applied to an image display device by phase difference correction.
  • the thickness of the retardation layer 400 is not particularly limited, and may be, for example, 1 ⁇ m to 100 ⁇ m. If the thickness is less than 1 ⁇ m, the phase characteristics may be deteriorated. If the thickness is more than 100 ⁇ m, the thickness of the entire polarizing plate-integrated window substrate is increased, which makes it difficult to implement a thin film of the image display apparatus.
  • the refractive index adjusting layer 500 may be formed by coating the refractive index adjusting layer 500 on the retardation layer 400 or by attaching a refractive index adjusting film.
  • the coating method of the refractive index adjusting layer 500 is not particularly limited, and for example, the slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, Methods such as wire bar coating, dip coating, spray coating, screen printing, gravure printing, flexographic printing, offset printing, inkjet coating, dispenser printing, nozzle coating, capillary coating Can be.
  • the refractive index adjusting layer 500 adjusts the refractive index to improve color and the like when applied to an image display device.
  • the refractive index adjusting layer 500 may be a coating layer or a film.
  • C-PLATE of a stretched film method or a liquid crystal coating method can be used.
  • the thickness of the refractive index adjusting layer 500 is not particularly limited, and may be, for example, 1 ⁇ m to 30 ⁇ m. If the thickness is less than 1 ⁇ m, the phase characteristics may be deteriorated. If the thickness is more than 30 ⁇ m, the thickness of the entire polarizing plate-integrated window substrate is increased, which makes it difficult to implement a thin film of the image display apparatus.
  • the liquid crystal polarization layer 300 may be formed before the non-display portion pattern 200 is formed or after the non-display portion pattern 200 is formed.
  • the non-display portion pattern 200 may be formed, and then the retardation layer 400 and the refractive index adjustment layer 500 may be additionally formed.
  • the present invention is not limited thereto, and the non-display portion pattern 200 may be formed after the liquid crystal polarization layer 300, the retardation layer 400, and the refractive index adjustment layer 500 are formed.
  • the non-display portion pattern 200 is formed on the non-display portion of the one surface.
  • the non-display portion pattern 200 may be formed by a single layer or a multilayer, and may have a thickness in the above-described range.
  • FIG. 5C a case in which the non-display portion pattern 200 is formed after the formation of the liquid crystal polarization layer 300 is illustrated, but is not limited thereto.
  • the formation of the liquid crystal layer 320 is performed. It may be formed.
  • the base substrate 100 may be cut for each unit cell.
  • FIG. 22 is a diagram illustrating forming a liquid crystal polarization layer 300 on a display portion of one surface of a base substrate 100; Forming a phase difference layer (400) on the liquid crystal polarization layer (300); Forming a refractive index adjusting layer (500) on the retardation layer (400); And forming a non-display portion pattern 200 on the non-display portion of the one surface.
  • FIG. 22 illustrates a case in which an alignment layer 310 of the liquid crystal polarization layer 300 is formed on one surface of the base substrate 100, and may be performed from the process of attaching the release film 700 of FIGS. 9 to 20.
  • the alignment layer 310 is already formed, only the liquid crystal layer 320 is further formed in the liquid crystal polarization layer forming process of FIGS. 9 to 20.
  • the process of forming the liquid crystal layer 320 between the alignment layer 310 forming process when the liquid crystal polarization layer 300 is formed may further include attaching the release film 700.
  • the present invention provides a method of manufacturing the polarizing plate integrated window substrate according to another embodiment.
  • the liquid crystal polarization layer 300 is formed on one surface of the carrier film 600.
  • the carrier film 600 is a layer for forming the liquid crystal polarization layer 300, is peeled off according to a process to be described later, and is not included in the configuration of the polarizing plate integrated window substrate.
  • Forming the liquid crystal polarization layer 300 may include coating and aligning the alignment layer 310; Coating a liquid crystal layer (320) on the alignment-treated alignment layer (310); And curing the liquid crystal layer 320.
  • the coating method of the alignment layer 310 and the liquid crystal layer 320 is not particularly limited, and for example, the slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, Roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, gravure printing method, flexographic printing method, offset printing method, inkjet coating method, dispenser printing method, nozzle coating method, capillary coating method, etc. The method can be mentioned.
  • the alignment treatment of the alignment layer 310 may be performed by, for example, rubbing the alignment layer 310 with a rubbing roll, but is not limited thereto, and may be performed by a method known in the art.
  • the coated liquid crystal layer 320 may be cured using UV or heat.
  • the thickness of the liquid crystal polarization layer 300 is not particularly limited, and may be, for example, 1 ⁇ m to 30 ⁇ m. If the thickness is less than 1 ⁇ m, the adhesion of the liquid crystal polarization layer 300 to the base substrate 100 may be insufficient. If the thickness is greater than 30 ⁇ m, the entire thickness of the polarizing plate-integrated window substrate is increased, making it difficult to implement a thin film of an image display apparatus. have.
  • the liquid crystal polarization layer 300 is peeled off from the carrier film 600 and attached to the display unit on one surface of the base substrate 100.
  • the base substrate 100 may be applied to a liquid crystal display, a touch screen panel, and the like, and may be a material that is durable enough to sufficiently protect them from external forces and allows a user to see the display well.
  • Substrate 100 can be used without particular limitation.
  • glass polyethersulphone (PES), polyacrylate (PAR, polyacrylate), polyetherimide (PEI), polyethylene naphthalate (PEN, polyethyelenen napthalate), polyethylene terephthalate (PET, polyethyelene terepthalate, polyphenylene sulfide (PPS), polyallylate, polyimide, polycarbonate (PC, polycarbonate), cellulose tri acetate (TAC), cellulose acetate propionate (cellulose acetate propionate (CAP) may be used.
  • PES polyethersulphone
  • PAR polyacrylate
  • PEI polyetherimide
  • PEN polyethylene naphthalate
  • PET polyethyelene terepthalate
  • PPS polyphenylene sulfide
  • polyallylate polyimide
  • PC polycarbonate
  • TAC cellulose tri acetate
  • TAC cellulose acetate propionate
  • CAP cellulose acetate propionate
  • the thickness of the base substrate 100 is not particularly limited, and may be, for example, 10 to 200 ⁇ m. If the thickness is less than 10 ⁇ m, it may be difficult to implement sufficient hardness, strength, and the like as the window substrate. If the thickness is more than 200 ⁇ m, the overall thickness increases, making it difficult to implement the thin film weight.
  • the base substrate 100 includes a display unit for displaying an image when applied to an image display device or the like, and a non-display unit that is not covered by the non-display unit pattern 200 that forms part of the housing of the electronic device.
  • a display unit for displaying an image when applied to an image display device or the like
  • a non-display unit that is not covered by the non-display unit pattern 200 that forms part of the housing of the electronic device.
  • an image may be output from the non-display unit, but the image displayed on the non-display unit is hidden by the non-display unit pattern 200 so that the user cannot see it.
  • FIG. 6 illustrates a case in which a process is performed for each unit cell on a mother substrate having a plurality of unit cells.
  • the liquid crystal polarization layer 300 is cut to the display unit size of each unit cell and attached to the base substrate 100. It is shown.
  • the present invention is not limited thereto, and a process may be performed on the base substrate 100 having a unit cell size of an individual product size.
  • Attachment of the liquid crystal polarizing layer 300 may be performed using an aqueous or photocurable adhesive or pressure sensitive adhesive known in the art.
  • the method of manufacturing a polarizing plate-integrated window substrate of the present invention may further include forming a phase difference layer 400 on the liquid crystal polarization layer 300, and further adjusting the refractive index on the phase difference layer 400.
  • the method may further include forming the layer 500.
  • the retardation layer 400 may be formed by coating a retardation layer on the liquid crystal polarization layer 300 or by attaching a retardation film.
  • Coating method of the retardation layer 400 is not particularly limited, for example, slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire Bar coating, dip coating, spray coating, screen printing, gravure printing, flexographic printing, offset printing, inkjet coating, dispenser printing, nozzle coating, capillary coating, etc. have.
  • the retardation layer 400 may be a single layer or a multilayer, and may be a quarter wave plate in the case of a single layer, and may be a multilayer of a quarter wave plate and a half wave plate in the case of a multilayer, but are not limited thereto. In the case of multiple layers of a quarter wave plate and a half wave plate, the color and image quality are excellent when applied to an image display device by phase difference correction.
  • the thickness of the retardation layer 400 is not particularly limited, and may be, for example, 1 ⁇ m to 100 ⁇ m. If the thickness is less than 1 ⁇ m, the phase characteristics may be deteriorated. If the thickness is more than 100 ⁇ m, the thickness of the entire polarizing plate-integrated window substrate is increased, which makes it difficult to implement a thin film of the image display apparatus.
  • the refractive index adjusting layer 500 may be formed by coating the refractive index adjusting layer 500 on the retardation layer 400 or by attaching a refractive index adjusting film.
  • the coating method of the refractive index adjusting layer 500 is not particularly limited, and for example, the slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, Methods such as wire bar coating, dip coating, spray coating, screen printing, gravure printing, flexographic printing, offset printing, inkjet coating, dispenser printing, nozzle coating, capillary coating Can be.
  • the refractive index adjusting layer 500 adjusts the refractive index to improve color and the like when applied to an image display device.
  • the refractive index adjusting layer 500 may be a coating layer or a film.
  • C-PLATE of a stretched film method or a liquid crystal coating method can be used.
  • the thickness of the refractive index adjusting layer 500 is not particularly limited, and may be, for example, 1 ⁇ m to 30 ⁇ m. If the thickness is less than 1 ⁇ m, the phase characteristics may be deteriorated. If the thickness is more than 30 ⁇ m, the thickness of the entire polarizing plate-integrated window substrate is increased, which makes it difficult to implement a thin film of the image display apparatus.
  • the phase difference layer 400 and the refractive index adjusting layer 500 may be formed before the non-display portion pattern 200 or may be formed after the non-display portion pattern 200 is formed.
  • the non-display portion pattern 200 is formed on the non-display portion of one surface of the base substrate 100.
  • the non-display portion pattern 200 may be formed by a single layer or a multilayer, and may have a thickness in the above-described range.
  • the base substrate 100 may be cut for each unit cell.
  • the present invention provides a method of manufacturing the polarizing plate integrated window substrate according to another embodiment.
  • a liquid crystal polarizing layer is formed on the display unit.
  • the base substrate 100 may be applied to a liquid crystal display, a touch screen panel, and the like, and may be a material that is durable enough to sufficiently protect them from external forces and allows a user to see the display well.
  • Substrate 100 can be used without particular limitation.
  • glass polyethersulphone (PES), polyacrylate (PAR, polyacrylate), polyetherimide (PEI), polyethylene naphthalate (PEN, polyethyelenen napthalate), polyethylene terephthalate (PET, polyethyelene terepthalate, polyphenylene sulfide (PPS), polyallylate, polyimide, polycarbonate (PC, polycarbonate), cellulose tri acetate (TAC), cellulose acetate propionate (cellulose acetate propionate (CAP) may be used.
  • PES polyethersulphone
  • PAR polyacrylate
  • PEI polyetherimide
  • PEN polyethylene naphthalate
  • PET polyethyelene terepthalate
  • PPS polyphenylene sulfide
  • polyallylate polyimide
  • PC polycarbonate
  • TAC cellulose tri acetate
  • TAC cellulose acetate propionate
  • CAP cellulose acetate propionate
  • the thickness of the base substrate 100 is not particularly limited, and may be, for example, 10 to 200 ⁇ m. If the thickness is less than 10 ⁇ m, it may be difficult to implement sufficient hardness, strength, and the like as the window substrate. If the thickness is more than 200 ⁇ m, the overall thickness increases, making it difficult to implement the thin film weight.
  • the base substrate 100 includes a display unit for displaying an image when applied to an image display device or the like, and a non-display unit that is not covered by the non-display unit pattern 200 that forms part of the housing of the electronic device.
  • a display unit for displaying an image when applied to an image display device or the like
  • a non-display unit that is not covered by the non-display unit pattern 200 that forms part of the housing of the electronic device.
  • an image may be output from the non-display unit, but the image displayed on the non-display unit is hidden by the non-display unit pattern 200 so that the user cannot see it.
  • FIG. 7 and 8 illustrate a case in which a process is performed for each unit cell on a mother substrate having a plurality of unit cells, so that the release film 700 has a plurality of openings corresponding to the display unit of the individual unit cells. It is. However, the present invention is not limited thereto, and a process may be performed on the base substrate 100 having a unit cell size of an individual product size.
  • the release film 700 has an opening corresponding to the display portion of the base substrate 100, and when the release film 700 is attached to the base substrate 100, only the display portion is exposed by the opening.
  • the release film 700 partitions the display unit and the non-display unit, and when the liquid crystal polarization layer 300 is formed by coating, the material does not fall to the non-display unit, thereby preventing material loss, and the liquid crystal polarization layer 300 Can be easily formed only in the display portion.
  • the thickness of the release film 700 is not particularly limited, and may be, for example, 1 to 100 ⁇ m.
  • the release film 700 preferably has a thickness greater than or equal to that of the liquid crystal polarizing layer 300, and preferably includes a phase difference layer 400 of the window substrate of the present invention, or further includes a refractive index adjusting layer 500.
  • the liquid crystal polarizing layer 300 may have a thickness greater than or equal to the sum of the layers.
  • Forming the liquid crystal polarization layer 300 may include coating and aligning the alignment layer 310; Coating a liquid crystal layer (320) on the alignment-treated alignment layer (310); And curing the liquid crystal layer 320.
  • the coating method of the alignment layer 310 and the liquid crystal layer 320 is not particularly limited, and for example, the slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, Roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, gravure printing method, flexographic printing method, offset printing method, inkjet coating method, dispenser printing method, nozzle coating method, capillary coating method, etc. The method can be mentioned.
  • the alignment treatment of the alignment layer 310 may be performed by, for example, rubbing the alignment layer 310 with a rubbing roll, but is not limited thereto, and may be performed by a method known in the art.
  • the coated liquid crystal layer 320 may be cured using UV or heat.
  • the thickness of the liquid crystal polarization layer 300 is not particularly limited, and may be, for example, 1 ⁇ m to 30 ⁇ m. If the thickness is less than 1 ⁇ m, the adhesion of the liquid crystal polarization layer 300 to the base substrate 100 may be insufficient. If the thickness is greater than 30 ⁇ m, the entire thickness of the polarizing plate-integrated window substrate is increased, making it difficult to implement a thin film of an image display apparatus. have.
  • the present invention may further include attaching the release film 700 to one surface of the base substrate 100.
  • the release film 700 may be cut to have an opening corresponding to the display portion of the base substrate 100, or the release film 700 may be attached in advance to have the opening. have.
  • the method of manufacturing a polarizing plate-integrated window substrate of the present invention may further include forming a phase difference layer 400 on the liquid crystal polarization layer 300, and further adjusting the refractive index on the phase difference layer 400.
  • the method may further include forming the layer 500.
  • the retardation layer 400 may be formed by coating the retardation layer 400 on the liquid crystal polarization layer 300 or by attaching the retardation film.
  • Coating method of the retardation layer 400 is not particularly limited, for example, slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire Bar coating, dip coating, spray coating, screen printing, gravure printing, flexographic printing, offset printing, inkjet coating, dispenser printing, nozzle coating, capillary coating, etc. have.
  • the retardation layer 400 may be a single layer or a multilayer, and may be a quarter wave plate in the case of a single layer, and may be a multilayer of a quarter wave plate and a half wave plate in the case of a multilayer, but are not limited thereto. In the case of multiple layers of a quarter wave plate and a half wave plate, the color and image quality are excellent when applied to an image display device by phase difference correction.
  • the thickness of the retardation layer 400 is not particularly limited, and may be, for example, 1 ⁇ m to 100 ⁇ m. If the thickness is less than 1 ⁇ m, the phase characteristics may be deteriorated. If the thickness is more than 100 ⁇ m, the thickness of the entire polarizing plate-integrated window substrate is increased, which makes it difficult to implement a thin film of the image display apparatus.
  • the refractive index adjusting layer 500 may be formed by coating the refractive index adjusting layer 500 on the retardation layer 400 or by attaching a refractive index adjusting film.
  • the coating method of the refractive index adjusting layer 500 is not particularly limited, and for example, the slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, Methods such as wire bar coating, dip coating, spray coating, screen printing, gravure printing, flexographic printing, offset printing, inkjet coating, dispenser printing, nozzle coating, capillary coating Can be.
  • the refractive index adjusting layer 500 adjusts the refractive index to improve color and the like when applied to an image display device.
  • the refractive index adjusting layer 500 may be a coating layer or a film.
  • C-PLATE of a stretched film method or a liquid crystal coating method can be used.
  • the thickness of the refractive index adjusting layer 500 is not particularly limited, and may be, for example, 1 ⁇ m to 30 ⁇ m. If the thickness is less than 1 ⁇ m, the phase characteristics may be deteriorated. If the thickness is more than 30 ⁇ m, the thickness of the entire polarizing plate-integrated window substrate is increased, which makes it difficult to implement a thin film of the image display apparatus.
  • the release film 700 is peeled off.
  • the liquid crystal polarization layer 300 is formed on the display unit, and the non-display unit is exposed.
  • the non-display portion pattern 200 is formed on the non-display portion of the one surface.
  • the non-display portion pattern 200 may be formed by a single layer or a multilayer, and may have a thickness in the above-described range.
  • the base substrate 100 may be cut for each unit cell. This is also illustrated in FIGS. 41 and 42.
  • 23 to 34 illustrate forming a liquid crystal polarization layer on a display unit of a base substrate on which a release film having an opening corresponding to the display unit is attached to one surface thereof; Forming a phase difference layer on the liquid crystal polarization layer; Forming a refractive index adjusting layer on the retardation layer; Peeling off the release film; And forming a non-display portion pattern on the non-display portion of the one surface.
  • the process diagram according to various embodiments of the method of manufacturing the polarizing plate-integrated window substrate is included.
  • FIGS. 29 to 34 illustrate the case where the release film 700 having the opening is attached to expose the display unit. It is.
  • the liquid crystal polarization layer 300 may be formed on the entire surface of the base substrate 100 as shown in FIGS. 23 to 25 and 29 to 31, or may be formed only on the display unit as illustrated in FIGS. 26 to 28 and 32 to 34.
  • the release time of the release film 700 is not particularly limited, and for example, the release film 700 may be peeled off after the liquid crystal polarization layer 300 is formed, after the retardation layer 400 is formed, or after the formation of the refractive index adjusting layer 500. Can be.
  • base substrate 200 non-display portion pattern
  • first pattern 220 second pattern
  • liquid crystal polarizing layer 310 alignment film
  • release film 800 water based overcoating layer
  • leveling layer 1000 color pattern

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 편광판 일체형 윈도우 기판 및 이의 제조 방법에 관한 것으로, 보다 상세하게는 베이스 기판, 상기 베이스 기판 일면의 비표시부에 위치한 비표시부 패턴 및 이와 동일면의 표시부에 위치한 액정편광층을 포함함으로써, 편광 기능을 나타내기 위해 편광자 및 그 양면에 보호필름, 총 3장의 필름이 사용된 편광판을 요하지 않으므로, 박막 경량화된 표시 장치를 구현할 수 있으며, 컬러 비표시부 패턴을 구현할 수 있는 편광판 일체형 윈도우 기판 및 이의 제조 방법에 관한 것이다.

Description

편광판 일체형 윈도우 기판 및 이의 제조 방법
본 발명은 편광판 일체형 윈도우 기판 및 이의 제조 방법에 관한 것이다.
정보화 사회의 발달로 인해, 정보를 표시할 수 있는 표시 장치가 활발히 개발되고 있다. 표시 장치는 액정표시장치(liquid crystal display device), 유기발광 표시장치(organic electro-luminescence display device), 플라즈마 표시장치(plasma display panel) 및 전계 방출 표시장치(field emission display device)를 포함한다.
이 중 유기발광 표시장치는 형광성 유기화합물을 전기적으로 여기시켜 발광시키는 자발광형 디스플레이이다. 이 유기발광 표시장치는 낮은 전압에서 구동이 가능하고 박형 등의 장점을 가지고 있다.
이러한 유기발광 표시장치는 유기발광 다이오드(OLED)에서 발생하는 광을 이용하여 화상을 표시하는데, 외부에서 광이 유입되게 되면, 유입된 광은 편광판 및 위상필름으로 순차적으로 입사되고 유기발광 다이오드(OLED)를 구성하는 전극부에 의해 다시 반사된다. 유기발광 다이오드(OLED)를 구성하는 전극부에 의해 다시 반사된 광으로 인해 사용자가 상기 유기발광 표시장치를 바라볼 때 눈부심 현상 등의 문제가 발생하게 된다.
또한, 전극부에 의해 반사된 광을 편광필름을 이용하여 차단함으로써 사용자로 하여금 눈부심 현상을 느끼지 못하도록 하는 방법에 제안되고 있다.
최근에는 유리 기판 대신에 고분자 필름을 이용하여 종래의 패널보다 더욱 얇고 가벼우며 구부릴 수 있는 플렉서블 디스플레이에 대한 연구가 활발히 진행 중에 있다. 따라서 종래의 유리(Glass) 기판 상에 터치 센서 패턴 등을 형성하였으나 플렉서블한 특성을 구현할 수 없다는 한계로 인해 필름 재질로 대체되고 있다. 플렉서블 디스플레이에서 가장 문제가 되는 것은 전체 디스플레이 패널의 두께로, 두께가 증가할수록 패널이 휘어질 시 받는 충격이 커져 파손 가능성이 높아지게 된다. 따라서 디스플레이 패널을 구성하는 각 요소 또한 두께 저감이 핵심 목표이다.
유기발광 표시 장치에는 반사된 광 차단을 위해 편광판이 사용되는데, 이러한 편광판은 편광자 및 그 양면에 부착된 보호필름을 구비하여, 총 3장의 필름이 사용되는 바, 디스플레이 패널의 두께가 전체적으로 두꺼워지는 문제가 있다.
한국공개특허 제2012-0038133호에는 유기발광다이오드 표시장치 및 그 구동방법이 개시되어 있다.
본 발명은 표시장치의 두께를 현저히 절감할 수 있는 편광판 일체형 윈도우 기판을 제공하는 것을 목적으로 한다.
본 발명은 편광판 일체형 윈도우 기판의 제조 방법을 제공하는 것을 목적으로 한다.
1. 베이스 기판, 상기 베이스 기판 일면의 비표시부에 위치한 비표시부 패턴 및 이와 동일면의 표시부에 위치한 액정편광층을 포함하는 편광판 일체형 윈도우 기판.
2. 위 1에 있어서, 상기 비표시부 패턴은 베이스 기판에 바로 접하는 편광판 일체형 윈도우 기판.
3. 위 1에 있어서, 상기 비표시부 패턴은 표시부와 비표시부를 구획하는 제1 패턴 및 상기 제1 패턴이 위치한 비표시부를 덮는 차광성의 제2 패턴을 포함하는 편광판 일체형 윈도우 기판.
4. 위 1에 있어서, 상기 비표시부 패턴은 액정편광층 이상의 두께를 갖는 편광판 일체형 윈도우 기판.
5. 위 1에 있어서, 상기 액정편광층 상에 위치한 위상차층을 더 포함하는 편광판 일체형 윈도우 기판.
6. 위 5에 있어서, 상기 위상차층은 1/4 파장판인 편광판 일체형 윈도우 기판.
7. 위 5에 있어서, 상기 위상차층은 1/4 파장판 및 1/2 파장판의 복층인 편광판 일체형 윈도우 기판.
8. 위 5에 있어서, 상기 위상차층 상에 위치한 굴절율 조정층을 더 포함하는 편광판 일체형 윈도우 기판.
9. 위 1에 있어서, 상기 액정편광층 상에 위치한 수계 오버코팅층; 및
상기 오버코팅층 상에 위치하며, 상기 표시부 및 비표시부를 평탄화하는 레벨링층을 포함하는 편광판 일체형 윈도우 기판.
10. 위 9에 있어서, 상기 오버코팅층은 비표시부 패턴 및 액정편광층 상에 위치하는 편광판 일체형 윈도우 기판.
11. 위 9에 있어서, 상기 레벨링층 상에 위치한 위상차층을 더 포함하는 편광판 일체형 윈도우 기판.
12. 위 11에 있어서, 상기 비표시부 패턴은 비표시부 중 적어도 일부에 위치하고, 비표시부의 나머지 영역에 레벨링층이 더 위치하는 편광판 일체형 윈도우 기판.
13. 위 12에 있어서, 상기 위상차층 상에서 비표시부의 레벨링층 대응 영역에 색상 패턴을 더 포함하는 편광판 일체형 윈도우 기판.
14. 위 13에 있어서, 상기 색상 패턴 상에 차광 패턴을 더 포함하는 편광판 일체형 윈도우 기판.
15. 위 1 내지 14 중 어느 한 항의 편광판 일체형 윈도우 기판 및 상기 베이스 기판의 상기 일면에 부착된 터치 패널을 포함하는 광학 적층체.
16. 위 15의 광학 적층체를 포함하는 화상표시장치.
17. 베이스 기판 일면에 표시부와 비표시부를 구획하는 비표시부 패턴을 형성하는 단계; 및
상기 비표시부 패턴에 의해 구획된 표시부에 액정편광층을 형성하는 단계;를 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
18. 베이스 기판 일면의 표시부에 액정편광층을 형성하는 단계; 및
상기 일면의 비표시부에 비표시부 패턴을 형성하는 단계;를 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
19. 캐리어 필름 일면에 액정편광층을 형성하는 단계;
상기 액정편광층을 캐리어 필름으로부터 박리하여 베이스 기판 일면의 표시부에 부착하는 단계; 및
상기 베이스 기판 일면의 비표시부에 비표시부 패턴을 형성하는 단계;를 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
20. 표시부에 대응되는 개구부를 갖는 이형필름이 일면에 부착된 베이스 기판의 상기 표시부에 액정편광층을 형성하는 단계;
상기 이형필름을 박리하는 단계; 및
상기 일면의 비표시부에 비표시부 패턴을 형성하는 단계;를 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
21. 위 17에 있어서, 상기 비표시부 패턴은 액정편광층 이상의 두께로 형성하는 편광판 일체형 윈도우 기판의 제조 방법.
22. 위 20에 있어서, 상기 이형필름은 액정편광층 이상의 두께를 갖는 편광판 일체형 윈도우 기판의 제조 방법.
23. 위 17 내지 20 중 어느 한 항에 있어서, 상기 비표시부 패턴을 형성하는 단계는 표시부와 비표시부를 구획하는 제1 패턴을 형성하는 단계; 및 상기 제1 패턴이 위치한 비표시부를 덮는 차광성의 제2 패턴을 형성하는 단계를 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
24. 위 17 내지 20 중 어느 한 항에 있어서, 상기 액정편광층을 형성하는 단계는 배향막을 코팅하고 배향처리하는 단계; 상기 배향처리된 배향막 상에 액정층을 코팅하는 단계; 및 상기 액정층을 경화시키는 단계를 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
25. 위 17 또는 18에 있어서, 상기 액정편광층을 형성하는 단계는 배향막을 코팅하고 배향처리하는 단계; 상기 배향처리된 배향막 상에 액정층을 코팅하는 단계; 및 상기 액정층을 경화시키는 단계를 포함하고, 상기 배향막 코팅 이후 및 액정층 코팅 이전에 비표시부를 덮는 이형필름을 부착하는 단계를 더 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
26. 위 17 내지 20 중 어느 한 항에 있어서, 상기 액정편광층 상에 위상차층을 형성하는 단계를 더 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
27. 위 26에 있어서, 상기 위상차층은 1/4 파장판인 편광판 일체형 윈도우 기판의 제조 방법.
28. 위 26에 있어서, 상기 위상차층은 1/4 파장판 및 1/2 파장판의 복층인 편광판 일체형 윈도우 기판의 제조 방법.
29. 위 26에 있어서, 상기 위상차층 상에 굴절율 조정층을 형성하는 단계를 더 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
30. 위 17에 있어서, 상기 액정편광층 상에 수계 오버코팅층을 형성하는 단계; 및 상기 오버코팅층 상에 레벨링층을 형성하여, 표시부와 비표시부를 평탄화하는 단계;를 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
31. 위 30에 있어서, 상기 오버코팅층은 액정편광층 및 비표시부 패턴 상에 오버코팅층 조성물을 도포하여 형성하는 편광판 일체형 윈도우 기판의 제조 방법.
32. 위 30에 있어서, 상기 레벨링층 상에 위상차층을 형성하는 단계를 더 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
33. 위 32에 있어서, 상기 비표시부 패턴을 비표시부 중 적어도 일부에 형성하고, 비표시부의 나머지 영역에 레벨링층을 더 형성하는 편광판 일체형 윈도우 기판의 제조 방법.
34. 위 33에 있어서, 상기 위상차층 상에서 비표시부의 레벨링층 대응 영영에 색상 패턴을 형성하는 단계를 더 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
35. 위 34에 있어서, 상기 색상 패턴 상에 차광 패턴을 형성하는 단계를 더 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
36. 위 17 내지 20 중 어느 한 항에 있어서, 상기 베이스 기판은 복수개의 단위 셀을 구비한 원장 기판이고, 각 단계는 단위 셀마다 수행되는 편광판 일체형 윈도우 기판의 제조 방법.
37. 위 36에 있어서, 상기 베이스 기판을 단위 셀 별로 절단하는 단계를 더 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
본 발명의 편광판 일체형 윈도우 기판은 액정편광층을 구비하여, 편광 기능을 나타내기 위해 편광자 및 그 양면에 보호필름, 총 3장의 필름이 사용된 편광판을 요하지 않으므로, 두께가 현저히 얇다. 이에, 박막 경량화된 표시 장치를 구현할 수 있다.
본 발명의 편광판 일체형 윈도우 기판은 컬러 비표시부 패턴을 구현하여, 사용자가 비표시부 패턴의 컬러를 시인할 수 있도록 한다.
본 발명의 편광판 일체형 윈도우 기판의 제조 방법은 액정편광층 재료의 낭비를 줄이면서, 컬러 비표시부 패턴을 구현할 수 있는 윈도우 기판을 제조할 수 있다.
도 1은 본 발명의 일 구현예에 따른 편광판 일체형 윈도우 기판의 개략적인 단면도이다.
도 2는 본 발명의 일 구현예에 따른 편광판 일체형 윈도우 기판의 개략적인 단면도이다.
도 3은 본 발명의 일 구현예에 따른 편광판 일체형 윈도우 기판의 개략적인 단면도이다.
도 4 내지 7은 본 발명의 일 구현예에 따른 편광판 일체형 윈도우 기판의 제조 방법의 개략적인 공정도이다.
도 8은 본 발명의 일 구현예에 따라 표시부에 대응되는 개구부를 갖는 이형필름이 일면에 부착된 베이스 기판의 평면도이다.
도 9 내지 34는 본 발명의 일 구현예에 따른 편광판 일체형 윈도우 기판의 제조 방법의 개략적인 공정도이다.
도 35 내지 38은 본 발명의 일 구현예에 따른 편광판 일체형 윈도우 기판의 개략적인 단면도이다.
도 39 및 40은 본 발명의 일 구현예에 따른 편광판 일체형 윈도우 기판의 제조 방법의 개략적인 공정도이다.
도 41은 본 발명의 일 구현예에 따른 편광판 일체형 윈도우 기판의 제조 방법에 있어서, 베이스 기판은 단위 셀 이상의 면적을 가지는 기판인 경우를 나타낸 것이다.
도 42는 본 발명의 일 구현예에 따른 편광판 일체형 윈도우 기판의 제조 방법에 있어서, 상기 베이스 기판은 복수개의 단위 셀을 구비한 원장 기판이고, 각 단계는 단위 셀마다 수행된 경우를 개략적으로 도시한 단면도이다.
본 발명은 베이스 기판, 상기 베이스 기판 일면의 비표시부에 위치한 비표시부 패턴 및 이와 동일면의 표시부에 위치한 액정편광층을 포함함으로써, 편광 기능을 나타내기 위해 편광자 및 그 양면에 보호필름, 총 3장의 필름이 사용된 편광판을 요하지 않으므로, 박막 경량화된 표시 장치를 구현할 수 있으며, 컬러 비표시부 패턴을 구현할 수 있는 편광판 일체형 윈도우 기판에 관한 것이다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 이들 실시예는 본 발명을 예시하는 것일 뿐 첨부된 특허청구범위를 제한하는 것이 아니며, 본 발명의 범주 및 기술사상 범위 내에서 실시예에 대한 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
본 발명의 편광판 일체형 윈도우 기판은 베이스 기판(100), 상기 베이스 기판(100) 일면의 비표시부에 위치한 비표시부 패턴(200) 및 이와 동일면의 표시부에 위치한 액정편광층(300)을 포함한다.
베이스 기판(100)은 액정표시장치, 터치 스크린 패널 등에 적용되어 이들을 외력으로부터 충분히 보호할 수 있도록 내구성이 크고, 사용자가 디스플레이를 잘 볼 수 있도록 하는 물질이라면 특별히 한정되지 않으며, 당분야에서 사용되는 베이스 기판(100)이 특별한 제한 없이 사용될 수 있다. 예를 들면, 유리, 폴리에테르술폰(PES, polyethersulphone), 폴리아크릴레이트(PAR, polyacrylate), 폴리에테르 이미드(PEI, polyetherimide), 폴리에틸렌 나프탈레이트(PEN, polyethyelenen napthalate), 폴리에틸렌 테레프탈레이트(PET, polyethyelene terepthalate), 폴리페닐렌 설파이드(polyphenylene sulfide: PPS), 폴리아릴레이트(polyallylate), 폴리이미드(polyimide), 폴리카보네이트(PC, polycarbonate), 셀룰로오스 트리 아세테이트(TAC), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate,CAP) 등이 사용될 수 있다.
베이스 기판(100)의 두께는 특별히 한정되지 않으며, 예를 들면 10 내지 200㎛일 수 있다. 두께가 10㎛ 미만이면 윈도우 기판으로서의 충분한 경도, 강도 등의 구현이 어려울 수 있고, 200㎛ 초과이면 전체 두께가 증가하여 박막 경량화의 구현이 어려워지는 문제가 있다.
베이스 기판(100)은 화상표시장치 등에 적용되었을 때 영상이 표시되는 표시부와 전자장치의 하우징을 일부 구성하는 비표시부 패턴(200)에 의해 가려져 영상이 표시되지 않는 비표시부를 포함한다. 예컨대, 비표시부에서도 영상이 출력될 수는 있으나, 비표시부에 표시된 영상은 비표시부 패턴(200)에 의해 가려지기 때문에 사용자가 볼 수 없다.
비표시부 패턴(200)은 상기 베이스 기판(100) 일면의 비표시부에 위치한다.
비표시부 패턴(200)은 표시부와 비표시부의 경계를 형성하며, 차광성 패턴으로서 하부 배선 등이 사용자에게 시인되지 않도록 한다.
박막화를 위해 편광판 대신에 액정편광층(300)을 사용하는 통상의 편광판 일체형 윈도우 기판은 일면 전체에 코팅된 액정편광층(300) 및 액정편광층(300) 상의 비표시부에 형성된 비표시부 패턴(200)을 포함한다. 이에, 화상표시장치 등에 적용되었을 때, 표시 패널로부터 비표시부 패턴(200)으로 입사되는 광이 액정편광층(300)을 거쳐 사용자에게 시인되므로 비표시부 패턴(200)의 컬러 시인이 불가능한 문제가 있다.
그러나, 본 발명에 따른 비표시부 패턴(200)은 베이스 기판(100)에 바로 접하여, 표시 패널로부터 비표시부 패턴(200)으로 입사되는 광이 액정편광층(300)을 거치지 않고 사용자에게 시인되므로, 비표시부 패턴(200)을 다양한 컬러로 형성하여, 사용자가 다양한 컬러의 비표시부 패턴(200)을 시인할 수 있다.
본 발명에 따른 비표시부 패턴(200)은 단층 또는 복층일 수 있다.
단층의 비표시부 패턴(200)은 구현하고자 하는 컬러를 갖는 차광성 패턴이다.
복층의 비표시부 패턴(200)은 구현하고자 하는 컬러를 갖는 차광성 패턴이 복층으로 적층된 것일 수 있다.
또한, 복층의 비표시부 패턴(200)은 표시부와 비표시부의 경계를 형성하는 제1 패턴(210) 및 상기 제1 패턴(210)이 위치한 비표시부를 덮는 차광성의 제2 패턴(220)을 포함할 수 있다.
제1 패턴(210)은 표시부와 비표시부의 경계를 형성하는 것으로서, 표시부와 비표시부의 테두리에만 위치할 수도 있고, 비표시부 전체에 위치할 수도 있다.
제1 패턴(210)은 투명 또는 불투명할 수 있다. 제1 패턴(210)의 투명하더라도 제2 패턴(220)이 차광성이므로 제2 패턴(220)이 사용자에게 하부 배선이 시인되는 것을 막을 수 있다.
제2 패턴(220)은 제1 패턴(210)이 위치한 비표시부를 덮는 차광성 패턴이다.
제1 패턴(210) 및 제2 패턴(220)은 서로 독립적으로 단층 또는 복층의 패턴일 수 있다.
제1 패턴(210) 또는 제2 패턴(220)이 복층의 패턴인 경우, 각 층은 서로 독립적으로 투명 또는 불투명할 수 있다. 그러나 제2 패턴(220)은 적어도 한층은 불투명하다.
비표시부 패턴(200)의 두께는 특별히 한정되지 않으며, 예를 들면 1 내지 100㎛일 수 있다. 비표시부 패턴(200)은 액정편광층(300) 이상의 두께를 갖는 것이 제조 공정상 측면에서 바람직하다.
비표시부 패턴(200)에는 아이콘, IR, 로고 등의 패턴이 음각되어 있을 수 있다.
액정편광층(300)은 비표시부 패턴(200)과 동일면의 표시부에 위치한다.
통상의 편광판은 편광자 및 그 양면에 부착된 보호필름으로 이루어지지만, 액정편광층(300)은 편광자의 역할을 하는 코팅층으로서 이를 사용함으로써 두께를 현저히 줄일 수 있는 장점이 있다.
액정편광층(300)은 액정층(320) 및 배향막(310)을 포함하는 것으로, 액정층(320)을 배향처리된 배향막(310)에 의해 정렬시켜 형성한 것일 수 있다.
액정편광층(300)은 표시부에 위치하는 것으로, 전술한 바와 같이 표시 패널로부터 비표시부 패턴(200)으로 입사되는 광이 액정편광층(300)을 거치지 않고 사용자에게 시인되므로, 사용자가 다양한 컬러의 비표시부 패턴(200)을 시인할 수 있도록 한다.
액정편광층(300)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 30㎛일 수 있다. 두께가 1㎛ 미만이면 액정편광층(300)의 베이스 기판(100)에 대한 밀착력이 부족할 수 있고, 30㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있다.
본 발명의 편광판 일체형 윈도우 기판은 상기 액정편광층(300) 상에 위치한 위상차층(400)을 더 포함할 수 있다.
위상차층(400)은 코팅층 또는 필름일 수 있다.
위상차층(400)은 단층 또는 복층일 수 있으며, 단층인 경우 1/4 파장판일 수 있고, 복층인 경우 1/4 파장판 및 1/2 파장판의 복층일 수 있으나, 이에 제한되는 것은 아니다. 1/4 파장판 및 1/2 파장판의 복층인 경우 위상차 보정에 의해 화상표시장치에 적용시 색감, 화질이 우수하다.
위상차층(400)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 100㎛일 수 있다. 두께가 1㎛ 미만이면 위상 특성이 저하될 우려가 있고, 100㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있다.
또한, 본 발명의 편광판 일체형 윈도우 기판은 위상차층(400) 상에 위치한 굴절율 조정층(500)을 더 포함할 수 있다.
굴절율 조정층(500)은 굴절율을 조정하여 화상표시장치에 적용시 색감 등을 개선하는 층이다.
굴절율 조정층(500)은 코팅층 또는 필름일 수 있다. 예를 들면 연신 필름 방식 또는 액정 코팅 방식의 C-PLATE를 사용할 수 있다.
굴절율 조정층(500)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 30㎛일 수 있다. 두께가 1㎛ 미만이면 위상 특성이 저하될 우려가 있고, 30㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있다.
본 발명의 다른 일 구현예에 따르면, 도 35에 예시된 바와 같이, 본 발명의 편광판 일체형 윈도우 기판은 수계 오버코팅층(800) 및 레벨링층(900)을 더 포함할 수 있다.
수계 오버코팅층(800)은 액정편광층(300) 상에 위치하여, 액정편광층(300)을 보호하는 역할을 한다.
유기용매를 포함한 오버코팅 조성을 사용할 경우 액정편광층(300)이 손상될 수 있어, 본 발명은 수계 오버코팅 조성을 사용한다.
수계 오버코팅층 형성용 조성물은 예를 들면 당 분야에 공지된 수성 유기 바인더 수지 및 물을 포함하는 것일 수 있고, 추가로 무기 입자 등의 첨가제를 더 포함하는 것일 수 있다.
수계 오버코팅층(800)의 두께는 특별히 한정되지 않으며, 예를 들면 0.3㎛ 내지 10㎛일 수 있다. 두께가 0.3㎛ 미만이면 충분한 보호 효과 구현이 어려울 수 있고, 이물 등의 코팅 결함 발생에 취약 할 수 있고, 10㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있으며, 비건조 상태일 때의 두께가 매우 높아 코팅 신뢰성 문제가 발생할 수 있다.
또한, 도 36에 예시된 바와 같이, 수계 오버코팅층(800)은 비표시부 패턴(200) 상에도 위치할 수 있다.
레벨링층(900)은 오버코팅층 상에 위치하며, 상기 표시부 및 비표시부를 평탄화한다.
통상 편광판 일체형 윈도우 기판은 액정편광층(300) 상에 위상차층(400)을 포함하고, 위상차층(400) 상의 비표시부에 형성된 비표시부 패턴(200)을 포함한다.
그런데, 본 발명의 편광판 일체형 윈도우 기판은 전술한 바와 같이, 비표시부 패턴(200)이 베이스 기판(100)에 바로 접하고, 표시부에 액정편광층(300)이 위치한다. 따라서, 액정편광층(300)과 비표시부 패턴(200) 사이의 단차 때문에 액정편광층(300) 상에 위상차층(400)의 형성이 어려울 수 있다. 이에, 본 발명은 레벨링층(900)을 더 포함하여 표시부 및 비표시부를 평탄화함으로써 상기 문제를 해결할 수 있다.
레벨링층(900)은 당 분야에 공지된 유기계 바인더 수지, 유기 용매 등을 포함한 레벨링층(900) 형성용 조성물로 형성된 것일 수 있다.
도 35에 예시된 바와 같이 레벨링층(900)은 수계 오버코팅층(800) 상에 위치하여, 수계 오버코팅층(800)과 비표시부 패턴(200) 사이의 단차를 없애 표시부 및 비표시부를 평탄화한다.
또한, 오버코팅층이 액정편광층(300) 및 비표시부 패턴(200) 상에 위치하는 경우, 도 2에 예시된 바와 같이 레벨링층(900)이 표시부 및 비표시부를 평탄화 할 수 있다.
본 발명의 편광판 일체형 윈도우 기판은 도 37에 예시된 바와 같이 상기 레벨링층(900) 상에 위치한 위상차층(400)을 더 포함할 수 있다.
전술한 바와 같이 레벨링층(900)이 표시부 및 비표시부를 평탄화하여 위상차층(400)이 단차에 의해 일부 영역이 불충분하게 부착되는 등의 문제를 해결할 수 있다.
위상차층(400)은 단층 또는 복층일 수 있다.
단층인 경우 1/4 파장판일 수 있고, 복층인 경우 1/4 파장판 및 1/2 파장판의 복층일 수 있으나, 이에 제한되는 것은 아니다. 1/4 파장판 및 1/2 파장판의 복층인 경우 위상차 보정에 의해 화상표시장치에 적용시 색감, 화질이 우수하다.
위상차층(400)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 30㎛일 수 있다. 두께가 1㎛ 미만이면 충분한 위상차 구현이 어려울 수 있고, 30㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있다.
본 발명의 편광판 일체형 윈도우 기판의 다른 일 구현예에 있어서, 도 38에 예시된 바와 같이 상기 비표시부 패턴(200)은 비표시부 중 적어도 일부에 위치하고, 비표시부의 나머지 영역에 레벨링층(900)이 더 위치할 수 있다.
비표시부 패턴(200)이 표시부와 비표시부를 구획할 수 있는 것이라면, 비표시부 패턴(200)이 형성되는 영역의 면적은 한정되지 않으며, 그 폭을 자유롭게 조절 가능하다.
그리고, 비표시부 중 비표시부 패턴(200)이 위치하지 않은 나머지 영역에 상기 레벨링층(900)이 더 위치할 수 있다.
또한, 비표시부 패턴(200)이 비표시부 중 적어도 일부에 위치하는 경우, 비표시부의 나머지 영역에 수계 오버코팅층(800)이 위치하고, 수계 오버코팅층(800) 상에 레벨링층(900)이 위치할 수도 있다.
본 발명의 편광판 일체형 윈도우 기판은 도 38에 예시된 바와 같이 상기 위상차층(400) 상에서 비표시부의 레벨링층(900) 대응 영역에 색상 패턴(1000)을 더 포함할 수 있다. 즉, 색상 패턴(1000)도 비표시부에 위치하는 것으로, 색상 패턴(1000)을 포함함으로써 비표시부의 컬러를 보다 다양화할 수 있다.
또한, 본 발명의 편광판 일체형 윈도우 기판은 도 38에 예시된 바와 같이 상기 색상 패턴(1000) 상에 차광 패턴(1100)을 더 포함할 수 있다.
차광 패턴(1100)은 표시장치로부터의 빛이 색상 패턴(1000)을 투과하여 사용자에게 비표시부 하부 배선 등이 시인되는 것을 방지하는 역할을 한다.
색상 패턴(1000) 및 차광 패턴(1100)의 두께는 특별히 한정되지 않으며, 예를 들면 서로 독립적으로 1㎛ 내지 30㎛일 수 있다. 두께가 1㎛ 미만이면 충분한 색상 또는 차광 효과의 구현이 어려울 수 있고, 30㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있다.
또한, 본 발명은 상기 편광판 일체형 윈도우 기판을 포함하는 광학 적층체를 제공한다.
본 발명의 광학 적층체는 상기 편광판 일체형 윈도우 기판 및 이에 부착된 터치 센서를 포함한다.
터치 센서는 윈도우 기판에서 비표시부 패턴(200) 및 액정편광층(300)이 존재하는 측에 부착될 수 있다.
터치 센서는 당 분야에 공지된 수계, 광경화성 접착제 또는 점착제를 이용하여 부착될 수 있다.
터치 센서는 기재 필름, 감지 전극층, 절연층, 패시베이션층 등 당 분야에 공지된 구성을 포함하는 것을 제한없이 사용할 수 있다.
또한, 본 발명은 상기 광학 적층체를 포함하는 화상표시장치를 제공한다.
본 발명의 상기 광학적층체는 통상의 액정 표시 장치뿐만 아니라, 전계 발광 표시 장치, 플라스마 표시 장치, 전계 방출 표시 장치 등 각종 화상 표시 장치에 적용이 가능하다.
또한, 본 발명은 상기 편광판 일체형 윈도우 기판의 제조 방법을 제공한다.
본 발명의 편광판 일체형 윈도우 기판의 제조 방법의 일 구현예에 따르면 먼저, 도 4(b)와 같이 베이스 기판(100) 일면에 표시부와 비표시부를 구획하는 비표시부 패턴(200)을 형성한다.
베이스 기판(100)은 액정표시장치, 터치 스크린 패널 등에 적용되어 이들을 외력으로부터 충분히 보호할 수 있도록 내구성이 크고, 사용자가 디스플레이를 잘 볼 수 있도록 하는 물질이라면 특별히 한정되지 않으며, 당분야에서 사용되는 베이스 기판(100)이 특별한 제한 없이 사용될 수 있다. 예를 들면, 유리, 폴리에테르술폰(PES, polyethersulphone), 폴리아크릴레이트(PAR, polyacrylate), 폴리에테르 이미드(PEI, polyetherimide), 폴리에틸렌 나프탈레이트(PEN, polyethyelenen napthalate), 폴리에틸렌 테레프탈레이트(PET, polyethyelene terepthalate), 폴리페닐렌 설파이드(polyphenylene sulfide: PPS), 폴리아릴레이트(polyallylate), 폴리이미드(polyimide), 폴리카보네이트(PC, polycarbonate), 셀룰로오스 트리 아세테이트(TAC), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate,CAP) 등이 사용될 수 있다.
베이스 기판(100)의 두께는 특별히 한정되지 않으며, 예를 들면 10 내지 200㎛일 수 있다. 두께가 10㎛ 미만이면 윈도우 기판으로서의 충분한 경도, 강도 등의 구현이 어려울 수 있고, 200㎛ 초과이면 전체 두께가 증가하여 박막 경량화의 구현이 어려워지는 문제가 있다.
베이스 기판(100)은 화상표시장치 등에 적용되었을 때 영상이 표시되는 표시부와 전자장치의 하우징을 일부 구성하는 비표시부 패턴(200)에 의해 가려져 영상이 표시되지 않는 비표시부를 포함한다. 예컨대, 비표시부에서도 영상이 출력될 수는 있으나, 비표시부에 표시된 영상은 비표시부 패턴(200)에 의해 가려지기 때문에 사용자가 볼 수 없다.
비표시부 패턴(200)의 형성 방법은 특별히 한정되지 않고 양각법으로 패턴을 형성할 수 있는 것이라면 어떠한 방법도 사용가능하다. 예를 들면 물리적 증착법, 화학적 증착법, 플라즈마 증착법, 플라즈마 중합법, 열 증착법, 열 산화법, 양극 산화법, 클러스터 이온빔 증착법, 슬릿 코팅법, 나이프 코팅법, 스핀 코팅법, 캐스팅법, 마이크로 그라비아 코팅법, 그라비아 코팅법, 바 코팅법, 롤 코팅법, 와이어 바 코팅법, 딥 코팅법, 스프레이 코팅법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 노즐 코팅법, 모세관 코팅법 등의 방법을 들 수 있다.
비표시부 패턴(200)을 형성하는 단계는 표시부와 비표시부를 구획하는 제1 패턴(210)을 형성하는 단계; 및 상기 제1 패턴(210)이 위치한 비표시부를 덮는 차광성의 제2 패턴(220)을 형성하는 단계를 포함할 수 있다.
제1 패턴(210)은 표시부와 비표시부의 경계를 형성하는 것으로서, 표시부와 비표시부의 테두리에만 위치할 수도 있고, 비표시부 전체에 위치할 수도 있다.
제1 패턴(210)은 투명 또는 불투명할 수 있다. 제2 패턴(220)이 차광성이므로 투명해도 하부 배선이 시인되는 것을 막기에 아무런 문제가 없다.
제2 패턴(220)은 제1 패턴(210)이 위치한 비표시부를 덮는 차광성 패턴이다.
제1 패턴(210) 및 제2 패턴(220)은 서로 독립적으로 단층 또는 복층의 패턴일 수 있다.
제1 패턴(210) 또는 제2 패턴(220)이 복층의 패턴인 경우, 각 층은 서로 독립적으로 투명 또는 불투명할 수 있다. 그러나 제2 패턴(220)은 적어도 한층은 불투명하다.
비표시부 패턴(200)의 두께는 특별히 한정되지 않으며, 예를 들면 1 내지 100㎛일 수 있다. 비표시부 패턴(200)은 액정편광층(300) 이상의 두께를 갖는 것이 코팅으로 액정편광층(300) 형성시에 코팅층이 비표시부로 넘어가지 않도록 한다는 측면에서 바람직하다.
이후, 도 4 (c)와 같이 상기 비표시부 패턴(200)에 의해 구획된 표시부에 액정편광층(300)을 형성한다.
액정편광층(300)을 형성하는 단계는 배향막(310)을 코팅하고 배향처리하는 단계; 상기 배향처리된 배향막(310) 상에 액정층(320)을 코팅하는 단계; 및 상기 액정층(320)을 경화시키는 단계를 포함할 수 있다.
배향막(310) 및 액정층(320)의 코팅 방법은 특별히 한정되지 않으며, 예를 들면 슬릿 코팅법, 나이프 코팅법, 스핀 코팅법, 캐스팅법, 마이크로 그라비아 코팅법, 그라비아 코팅법, 바 코팅법, 롤 코팅법, 와이어 바 코팅법, 딥 코팅법, 스프레이 코팅법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 노즐 코팅법, 모세관 코팅법 등의 방법을 들 수 있다.
배향막(310)의 배향처리는 예를 들면 러빙롤로 배향막(310)을 러빙하여 수행할 수 있으나, 이에 제한되는 것은 아니고 당 분야에 공지된 방법에 의할 수 있다.
코팅된 액정층(320)은 UV 또는 열 등을 사용하여 경화시킬 수 있다.
액정편광층(300)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 30㎛일 수 있다. 두께가 1㎛ 미만이면 액정편광층(300)의 베이스 기판(100)에 대한 밀착력이 부족할 수 있고, 30㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있다.
비표시부 패턴(200)에 의해 이미 표시부와 비표시부가 구획되어 있으므로, 코팅에 의해 액정편광층(300)을 형성하는 경우에 재료가 비표시부로 넘어가지 않아 재료 손실을 방지할 수 있고, 액정편광층(300)을 표시부에만 용이하게 형성할 수 있다.
필요에 따라, 본 발명의 편광판 일체형 윈도우 기판의 제조 방법은 상기 액정편광층(300)의 형성 전에 비표시부를 덮는 이형필름(700)을 부착하는 단계를 더 포함할 수 있다.
그러한 경우에 이형필름(700)이 비표시부를 덮어, 액정편광층(300)이 비표시부로 넘어오는 것을 보다 효율적으로 막을 수 있다.
이형필름(700)은 표시부에 액정편광층(300)을 형성할 수 있도록 표시부에 개구부를 갖도록 컷팅된 것일 수도 있고, 이형필름(700)의 부착 이후에 컷팅에 의해 개구부를 형성할 수도 있다.
보다 구체적으로, 이형필름(700)은 액정편광층(300)의 배향막 형성(310) 전에 부착될 수도 있고, 배향막(310) 형성 후, 편광층(320) 형성 전에 부착될 수도 있다.
필요에 따라, 본 발명의 편광판 일체형 윈도우 기판의 제조 방법은 상기 액정편광층(300) 상에 위상차층(400)을 형성하는 단계를 더 포함할 수 있다.
위상차층(400)은 액정편광층(300) 상에 위상차층을 코팅하거나, 위상차 필름을 부착함으로써 형성할 수 있다.
위상차층(400)의 코팅 방법은 특별히 한정되지 않으며, 예를 들면 슬릿 코팅법, 나이프 코팅법, 스핀 코팅법, 캐스팅법, 마이크로 그라비아 코팅법, 그라비아 코팅법, 바 코팅법, 롤 코팅법, 와이어 바 코팅법, 딥 코팅법, 스프레이 코팅법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 노즐 코팅법, 모세관 코팅법 등의 방법을 들 수 있다.
위상차층(400)은 단층 또는 복층일 수 있으며, 단층인 경우 1/4 파장판일 수 있고, 복층인 경우 1/4 파장판 및 1/2 파장판의 복층일 수 있으나, 이에 제한되는 것은 아니다. 1/4 파장판 및 1/2 파장판의 복층인 경우 위상차 보정에 의해 화상표시장치에 적용시 색감, 화질이 우수하다.
위상차층(400)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 100㎛일 수 있다. 두께가 1㎛ 미만이면 위상 특성이 저하될 우려가 있고, 100㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있다.
또한, 본 발명의 편광판 일체형 윈도우 기판의 제조 방법은 상기 위상차층(400) 상에 굴절율 조정층(500)을 형성하는 단계를 더 포함할 수 있다.
굴절율 조정층(500)은 위상차층(400) 상에 굴절율 조정층(500)을 코팅하거나, 굴절율 조절필름을 부착하여 형성할 수 있다.
굴절율 조정층(500)의 코팅 방법은 특별히 한정되지 않으며, 예를 들면 슬릿 코팅법, 나이프 코팅법, 스핀 코팅법, 캐스팅법, 마이크로 그라비아 코팅법, 그라비아 코팅법, 바 코팅법, 롤 코팅법, 와이어 바 코팅법, 딥 코팅법, 스프레이 코팅법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 노즐 코팅법, 모세관 코팅법 등의 방법을 들 수 있다.
굴절율 조정층(500)은 굴절율을 조정하여 화상표시장치에 적용시 색감 등을 개선하는 층이다.
굴절율 조정층(500)은 코팅층 또는 필름일 수 있다. 예를 들면 연신 필름 방식 또는 액정 코팅 방식의 C-PLATE를 사용할 수 있다.
굴절율 조정층(500)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 30㎛일 수 있다. 두께가 1㎛ 미만이면 위상 특성이 저하될 우려가 있고, 30㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있다.
본 발명의 다른 일 구현예에 따르면, 본 발명의 편광판 일체형 윈도우 기판의 제조 방법은 베이스 기판 일면에 표시부와 비표시부를 구획하는 비표시부 패턴을 형성하는 단계; 및 상기 비표시부 패턴에 의해 구획된 표시부에 액정편광층을 형성하는 단계;에 추가로, 상기 액정편광층 상에 수계 오버코팅층을 형성하는 단계; 및 상기 오버코팅층 상에 레벨링층을 형성하여, 표시부와 비표시부를 평탄화하는 단계;를 더 포함할 수 있다.
이하, 추가 단계에 대해 설명한다.
먼저, 도 39 (c)에 예시된 바와 같이 상기 액정편광층(300) 상에 수계 오버코팅층(800)을 형성한다.
수계 오버코팅층(800)의 형성 방법은 특별히 한정되지 않으며, 예를 들면 슬릿 코팅법, 나이프 코팅법, 스핀 코팅법, 캐스팅법, 마이크로 그라비아 코팅법, 그라비아 코팅법, 바 코팅법, 롤 코팅법, 와이어 바 코팅법, 딥 코팅법, 스프레이 코팅법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 노즐 코팅법, 모세관 코팅법 등의 방법을 들 수 있다.
도 40 (c)에 예시된 바와 같이 수계 오버코팅층(800)은 액정편광층(300) 뿐만 아니라 비표시부 패턴(200) 상에도 형성할 수 있다.
수계 오버코팅층(800)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 30㎛일 수 있다.
이후, 도 39 (d)에 예시된 바와 같이 상기 오버코팅층 상에 레벨링층(900)을 형성하여, 표시부와 비표시부를 평탄화한다.
종래 통상의 방법에 따라 윈도우 기판 일면 전체에 편광판을 부착하거나, 액정편광층(300)을 형성한 다음, 위상차층(400)을 형성하고, 비표시부 패턴(200)을 형성하는 경우에만 위상차층(400) 형성시에 아무런 문제가 되지 않는다.
그러나, 본 발명의 방법에 따라 비표시부에 비표시부 패턴(200), 표시부에 액정편광층(300)을 형성한 다음, 액정편광층(300) 상에 위상차층(400)을 형성하려면 표시부와 비표시부 사이에 단차가 발생하여 위상차층(400) 코팅 또는 부착의 신뢰성이 저하될 수 있다. 그리고 상기 단차는 오버코트층의 형성에 의해 더 커질 수 있다.
그러나, 본 발명의 편광판 일체형 윈도우 기판의 제조 방법은 오버코트층 상에 레벨링층(900)을 형성하여, 표시부와 비표시부를 평탄화함으로써 상기 문제를 해결하여, 위상차층(400) 코팅 또는 부착의 신뢰성 저하 문제 없이 컬러 비표시부 패턴(200)을 구현할 수 있다.
레벨링층(900)은 당 분야에 공지된 유기계 바인더 수지, 유기 용매 등을 포함한 레벨링층(900) 형성용 조성물로 형성된 것일 수 있다.
레벨링층(900)의 형성 방법은 특별히 한정되지 않으며, 예를 들면 슬릿 코팅법, 나이프 코팅법, 스핀 코팅법, 캐스팅법, 마이크로 그라비아 코팅법, 그라비아 코팅법, 바 코팅법, 롤 코팅법, 와이어 바 코팅법, 딥 코팅법, 스프레이 코팅법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 노즐 코팅법, 모세관 코팅법 등의 방법을 들 수 있다.
도 39 (d)에 예시된 바와 같이 레벨링층(900)은 수계 오버코팅층(800) 상에 위치하여, 수계 오버코팅층(800)과 비표시부 패턴(200) 사이의 단차를 없애 표시부 및 비표시부를 평탄화한다.
또한, 오버코팅층이 액정편광층(300) 및 비표시부 패턴(200) 상에 위치하는 경우, 도 40 (d)에 예시된 바와 같이 레벨링층(900)이 표시부 및 비표시부를 평탄화 할 수 있다.
레벨링층(900)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 30㎛일 수 있다.
또한, 본 발명의 편광판 일체형 윈도우 기판의 제조 방법은 도 40(e)에 예시된 바와 같이 상기 레벨링층(900) 상에 위상차층(400)을 형성하는 단계를 더 포함할 수 있다.
위상차층(400)은 코팅층 또는 필름일 수 있다.
위상차층(400)이 필름인 경우, 당 분야에 공지된 수계, 광경화성 점착제 또는 접착제로 부착될 수 있다.
위상차층(400)은 단층 또는 복층일 수 있다.
단층인 경우 1/4 파장판일 수 있고, 복층인 경우 1/4 파장판 및 1/2 파장판의 복층일 수 있으나, 이에 제한되는 것은 아니다. 1/4 파장판 및 1/2 파장판의 복층인 경우 위상차 보정에 의해 화상표시장치에 적용시 색감, 화질이 우수하다.
위상차층(400)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 30㎛일 수 있다.
본 발명의 편광판 일체형 윈도우 기판의 제조 방법의 다른 일 구현예에 따르면, 도 40 (b)에 예시된 바와 같이 상기 비표시부 패턴(200)을 비표시부 중 적어도 일부에 형성하고, 도 40 (d)에 예시된 바와 같이 비표시부의 나머지 영역에 레벨링층(900)을 더 형성할 수 있다.
비표시부 패턴(200)이 표시부와 비표시부를 구획할 수 있다면 비표시부 패턴(200)이 형성되는 영역의 면적은 한정되지 않으며, 그 폭을 자유롭게 조절 가능하다. 그리고 레벨링층(900)을 비표시부 중 상기 비표시부 패턴(200)이 위치하지 않은 영역에도 더 형성하는데, 이는 전술한 액정편광층(300) 상의 레벨링층(900) 형성시에 함께 형성 가능하다.
그러한 경우에, 본 발명의 편광판 일체형 윈도우 기판은 도 40 (f)에 예시된 바와 같이 상기 위상차층(400) 상에서 비표시부의 레벨링층(900) 대응 영영에 색상 패턴(1000)을 형성하는 단계를 더 포함할 수 있다.
또한, 본 발명의 편광판 일체형 윈도우 기판의 제조 방법은 도 40 (f)에 예시된 바와 같이 상기 색상 패턴(1000) 상에 차광 패턴(1100)을 형성하는 단계를 더 포함할 수 있다.
색상 패턴(1000) 및 차광 패턴(1100)의 형성 방법은 특별히 한정되지 않으며, 예를 들면 슬릿 코팅법, 나이프 코팅법, 스핀 코팅법, 캐스팅법, 마이크로 그라비아 코팅법, 그라비아 코팅법, 바 코팅법, 롤 코팅법, 와이어 바 코팅법, 딥 코팅법, 스프레이 코팅법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 노즐 코팅법, 모세관 코팅법 등의 방법을 들 수 있다.
색상 패턴(1000) 및 차광 패턴(1100)의 두께는 특별히 한정되지 않으며, 예를 들면 서로 독립적으로 1㎛ 내지 30㎛일 수 있다.
또한, 본 발명의 편광판 일체형 윈도우 기판의 제조 방법에 있어서, 도 5 내지 7에 예시된 바와 같이, 상기 베이스 기판(100)은 복수개의 단위 셀을 구비한 원장 기판이고, 상기 각 단계는 단위 셀마다 수행될 수 있다.
단위 셀은 베이스 기판(100)에서 개별 제품에 적용되는 영역을 의미한다.
본 발명의 편광판 일체형 윈도우 기판의 제조 방법은 개별 제품 크기의 베이스 기판(100)에 대해서 수행될 수도 있고, 복수개의 단위 셀을 구비한 원장 기판에 대해서 각 단위 셀마다 수행될 수도 있으나, 후자의 경우가 공정 수율이 더 우수하다.
그러한 경우에는 각 단위 셀마다 상기 단계들을 수행하고, 상기 베이스 기판(100)을 단위 셀 별로 절단하여, 복수개의 편광판 일체형 윈도우 기판을 제조할 수 있다.
도 9 내지 20은 상기 베이스 기판(100) 일면에 표시부와 비표시부를 구획하는 비표시부 패턴(200)을 형성하는 단계; 상기 비표시부 패턴(200)에 의해 구획된 표시부에 액정편광층(300)을 형성하는 단계; 상기 액정편광층(300) 상에 위상차층(400)을 형성하는 단계; 및 상기 위상차층(400) 상에 굴절율 조정층(500)을 형성하는 단계를 포함하는 편광판 일체형 윈도우 기판의 제조 방법의 다양한 구현예에 따른 공정도이다.
도 9 내지 20과 같이 베이스 기판(100) 일면에 비표시부 패턴(200)을 형성하여, 표시부와 비표시부를 구획한 다음, 상기 표시부에 액정편광층(300)을 형성한다.
비표시부 패턴(200)을 표시부와 비표시부를 구획하는 제1 패턴을 형성하는 단계; 및 상기 제1 패턴이 위치한 비표시부를 덮는 차광성의 제2 패턴을 형성하는 단계를 포함하여 형성하는 경우, 제1 단계 이후에 바로 2단계가 수행될 수도 있고, 제1 패턴만 형성한 다음 액정편광층(300), 위상차층(400) 또는 굴절율 조정층(500)까지 형성한 이후에 2단계가 수행될 수도 있다.
도 9 내지 20에는 액정편광층(300)의 형성 전에 비표시부를 덮는 이형필름(700)을 부착하는 경우를 더 포함하는 경우를 도시하고 있으나, 이에 제한되지 않고, 이형필름(700) 없이 액정편광층(300)을 형성하는 것도 가능하다. 도 9 내지 14에는 이형필름(700)의 부착 이후에 컷팅에 의해 개구부를 형성한 경우가 도시되어 있고, 도 15 내지 20에는 표시부가 노출되도록 개구부를 갖는 이형필름(700)을 부착하는 경우가 도시되어 있다.
이형필름(700)이 부착된 경우, 도 9 내지 11, 도 15 내지 17과 같이 액정편광층(300)은 베이스 기판(100) 일면 전체에 형성될 수도 있고, 도 12 내지 14, 도 18 내지 20과 같이 표시부에만 형성될 수도 있다.
이후에, 액정편광층(300) 상에 위상차층(400)을 형성하고, 위상차층(400) 상에 굴절율 조정층(500)을 형성한다.
이형필름(700)의 박리 시기는 특별히 한정되지 않으며, 예를 들면 액정편광층(300) 형성 이후에, 위상차층(400)의 형성 이후에, 또는 굴절율 조정층(500)의 형성 이후에 박리될 수 있다.
또한 도 21에는 상기 단계를 포함하는 편광판 일체형 윈도우 기판의 제조 방법의 또다른 구현예가 도시되어 있다.
도 21에는 비표시부 패턴(200) 형성 이후 액정편광층(300)의 배향막(310) 형성시까지 도시되어 있는 것으로, 그 이후에는 도 9 내지 20의 이형필름(700) 부착 공정부터 수행이 가능하다. 다만, 배향막(310)은 이미 형성되어 있는 바, 도 9 내지 20의 액정편광층 형성 공정에서 액정층(320)만을 더 형성한다. 이와 같이, 액정편광층(300) 형성시의 배향막(310) 형성 공정 사이에 액정층(320)의 형성 공정도 이형필름(700) 부착이 추가로 수행될 수 있다.
또한, 본 발명은 또다른 일 구현예에 따른 상기 편광판 일체형 윈도우 기판의 제조 방법을 제공한다.
먼저, 도 5(a) 및 (b)에 예시된 바와 같이 베이스 기판(100) 일면의 표시부에 액정편광층(300)을 형성한다.
도 5에는 복수개의 단위 셀을 구비한 원장 기판 상에서 각 단위 셀마다 공정이 수행되는 경우가 예시되어 있으나, 이에 제한되지 않고 개별 제품 크기의 1개 단위 셀 크기의 베이스 기판(100)에 대해서도 공정 수행이 가능하다.
베이스 기판(100)은 액정표시장치, 터치 스크린 패널 등에 적용되어 이들을 외력으로부터 충분히 보호할 수 있도록 내구성이 크고, 사용자가 디스플레이를 잘 볼 수 있도록 하는 물질이라면 특별히 한정되지 않으며, 당분야에서 사용되는 베이스 기판(100)이 특별한 제한 없이 사용될 수 있다. 예를 들면, 유리, 폴리에테르술폰(PES, polyethersulphone), 폴리아크릴레이트(PAR, polyacrylate), 폴리에테르 이미드(PEI, polyetherimide), 폴리에틸렌 나프탈레이트(PEN, polyethyelenen napthalate), 폴리에틸렌 테레프탈레이트(PET, polyethyelene terepthalate), 폴리페닐렌 설파이드(polyphenylene sulfide: PPS), 폴리아릴레이트(polyallylate), 폴리이미드(polyimide), 폴리카보네이트(PC, polycarbonate), 셀룰로오스 트리 아세테이트(TAC), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate,CAP) 등이 사용될 수 있다.
베이스 기판(100)의 두께는 특별히 한정되지 않으며, 예를 들면 10 내지 200㎛일 수 있다. 두께가 10㎛ 미만이면 윈도우 기판으로서의 충분한 경도, 강도 등의 구현이 어려울 수 있고, 200㎛ 초과이면 전체 두께가 증가하여 박막 경량화의 구현이 어려워지는 문제가 있다.
베이스 기판(100)은 화상표시장치 등에 적용되었을 때 영상이 표시되는 표시부와 전자장치의 하우징을 일부 구성하는 비표시부 패턴(200)에 의해 가려져 영상이 표시되지 않는 비표시부를 포함한다. 예컨대, 비표시부에서도 영상이 출력될 수는 있으나, 비표시부에 표시된 영상은 비표시부 패턴(200)에 의해 가려지기 때문에 사용자가 볼 수 없다.
액정편광층(300)을 형성하는 단계는 베이스 기판(100) 일면의 표시부에 배향막(310)을 코팅하고 배향처리하는 단계; 상기 배향처리된 배향막(310) 상에 액정층(320)을 코팅하는 단계; 및 상기 액정층(320)을 경화시키는 단계를 포함할 수 있다.
배향막(310) 및 액정층(320)의 코팅 방법은 특별히 한정되지 않으며, 예를 들면 슬릿 코팅법, 나이프 코팅법, 스핀 코팅법, 캐스팅법, 마이크로 그라비아 코팅법, 그라비아 코팅법, 바 코팅법, 롤 코팅법, 와이어 바 코팅법, 딥 코팅법, 스프레이 코팅법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 노즐 코팅법, 모세관 코팅법 등의 방법을 들 수 있다.
배향막(310)의 배향처리는 예를 들면 러빙롤로 배향막(310)을 러빙하여 수행할 수 있으나, 이에 제한되는 것은 아니고 당 분야에 공지된 방법에 의할 수 있다.
코팅된 액정층(320)은 UV 또는 열 등을 사용하여 경화시킬 수 있다.
액정편광층(300)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 30㎛일 수 있다. 두께가 1㎛ 미만이면 액정편광층(300)의 베이스 기판(100)에 대한 밀착력이 부족할 수 있고, 30㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있다.
필요에 따라, 본 발명의 편광판 일체형 윈도우 기판의 제조 방법은 상기 액정층(310)의 형성 전에 비표시부를 덮는 이형필름(700)을 부착하는 단계를 더 포함할 수 있다. 그러한 경우에 이형필름(700)이 비표시부를 덮어, 액정층(310)이 비표시부로 넘어오는 것을 보다 효율적으로 막을 수 있다.
이형필름(700)은 표시부에 액정층(310)을 형성할 수 있도록 표시부에 개구부를 갖도록 컷팅된 것일 수도 있고, 이형필름(700)의 부착 이후에 컷팅에 의해 개구부를 형성할 수도 있다.
필요에 따라, 본 발명의 편광판 일체형 윈도우 기판의 제조 방법은 액정편광층(300) 상에 위상차층(400)을 형성하는 단계를 더 포함할 수 있고, 추가로 위상차층(400) 상에 굴절율 조정층(500)을 형성하는 단계를 더 포함할 수 있다.
위상차층(400)은 액정편광층(300) 상에 위상차층을 코팅하거나, 위상차 필름을 부착함으로써 형성할 수 있다.
위상차층(400)의 코팅 방법은 특별히 한정되지 않으며, 예를 들면 슬릿 코팅법, 나이프 코팅법, 스핀 코팅법, 캐스팅법, 마이크로 그라비아 코팅법, 그라비아 코팅법, 바 코팅법, 롤 코팅법, 와이어 바 코팅법, 딥 코팅법, 스프레이 코팅법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 노즐 코팅법, 모세관 코팅법 등의 방법을 들 수 있다.
위상차층(400)은 단층 또는 복층일 수 있으며, 단층인 경우 1/4 파장판일 수 있고, 복층인 경우 1/4 파장판 및 1/2 파장판의 복층일 수 있으나, 이에 제한되는 것은 아니다. 1/4 파장판 및 1/2 파장판의 복층인 경우 위상차 보정에 의해 화상표시장치에 적용시 색감, 화질이 우수하다.
위상차층(400)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 100㎛일 수 있다. 두께가 1㎛ 미만이면 위상 특성이 저하될 우려가 있고, 100㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있다.
굴절율 조정층(500)은 위상차층(400) 상에 굴절율 조정층(500)을 코팅하거나, 굴절율 조절필름을 부착하여 형성할 수 있다.
굴절율 조정층(500)의 코팅 방법은 특별히 한정되지 않으며, 예를 들면 슬릿 코팅법, 나이프 코팅법, 스핀 코팅법, 캐스팅법, 마이크로 그라비아 코팅법, 그라비아 코팅법, 바 코팅법, 롤 코팅법, 와이어 바 코팅법, 딥 코팅법, 스프레이 코팅법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 노즐 코팅법, 모세관 코팅법 등의 방법을 들 수 있다.
굴절율 조정층(500)은 굴절율을 조정하여 화상표시장치에 적용시 색감 등을 개선하는 층이다.
굴절율 조정층(500)은 코팅층 또는 필름일 수 있다. 예를 들면 연신 필름 방식 또는 액정 코팅 방식의 C-PLATE를 사용할 수 있다.
굴절율 조정층(500)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 30㎛일 수 있다. 두께가 1㎛ 미만이면 위상 특성이 저하될 우려가 있고, 30㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있다.
액정편광층(300)의 형성은 도 5에 예시된 바와 같이, 비표시부 패턴(200) 형성 이전에 형성될 수도 있고, 비표시부 패턴(200) 형성 이후에 형성될 수도 있다.
또한, 도 5에 예시된 공정에 의하면 액정편광층(300)의 형성 이후에 비표시부 패턴(200)을 형성한 다음, 추가적으로 위상차층(400) 및 굴절율 조정층(500) 형성 공정을 수행할 수 있으나, 이에 제한되지 않고, 액정편광층(300), 위상차층(400) 및 굴절율 조정층(500)의 형성 이후에 비표시부 패턴(200)을 형성하는 것도 가능하다.
이후에, 도 5(c)에 예시된 바와 같이 상기 일면의 비표시부에 비표시부 패턴(200)을 형성한다.
비표시부 패턴(200)은 단층 또는 복층으로, 전술한 방법에 의해 형성할 수 있으며, 전술한 범위의 두께를 가질 수 있다.
도 5(c)에는 액정편광층(300)의 형성 이후에 비표시부 패턴(200)을 형성하는 경우가 예시되어 있으나, 이에 한정되지 않고 배향막(310) 형성 이후, 액정층(320) 형성 이전에 형성할 수도 있다.
추가로, 도 5(d)에 예시된 바와 같이 복수개의 단위 셀을 구비한 원장 기판 상에서 각 단위 셀마다 공정이 수행되는 경우에 베이스 기판(100)을 각 단위 셀 별로 절단할 수 있다.
이에 따라 단위 셀의 개수에 대응되는 수의 편광판 일체형 윈도우 기판을 얻을 수 있다.
도 22는 베이스 기판(100) 일면의 표시부에 액정편광층(300)을 형성하는 단계; 상기 액정편광층(300) 상에 위상차층(400)을 형성하는 단계; 상기 위상차층(400) 상에 굴절율 조정층(500)을 형성하는 단계; 및 상기 일면의 비표시부에 비표시부 패턴(200)을 형성하는 단계;를 포함하는 편광판 일체형 윈도우 기판의 제조 방법의 일 구현예에 따른 공정도이다.
도 22에는 베이스 기판(100) 일면에 액정편광층(300)의 배향막(310)까지 형성한 경우를 도시한 것으로, 이후에 도 9 내지 20의 이형필름(700) 부착 공정부터 수행이 가능하다. 다만, 배향막(310)은 이미 형성되어 있는 바, 도 9 내지 20의 액정편광층 형성 공정에서 액정층(320)만을 더 형성한다. 이와 같이, 액정편광층(300) 형성시의 배향막(310) 형성 공정 사이에 액정층(320)의 형성 공정도 이형필름(700) 부착이 추가로 수행될 수 있다.
또한, 본 발명은 또 다른 일 구현예에 따른 상기 편광판 일체형 윈도우 기판의 제조 방법을 제공한다.
먼저, 도 6(a) 및 (b)에 예시된 바와 같이 캐리어 필름(600) 일면에 액정편광층(300)을 형성한다.
캐리어 필름(600)은 액정편광층(300)의 형성을 위한 층으로, 후술할 공정에 따라 박리되어, 편광판 일체형 윈도우 기판의 구성으로 포함되지 않는다.
액정편광층(300)을 형성하는 단계는 배향막(310)을 코팅하고 배향처리하는 단계; 상기 배향처리된 배향막(310) 상에 액정층(320)을 코팅하는 단계; 및 상기 액정층(320)을 경화시키는 단계를 포함할 수 있다.
배향막(310) 및 액정층(320)의 코팅 방법은 특별히 한정되지 않으며, 예를 들면 슬릿 코팅법, 나이프 코팅법, 스핀 코팅법, 캐스팅법, 마이크로 그라비아 코팅법, 그라비아 코팅법, 바 코팅법, 롤 코팅법, 와이어 바 코팅법, 딥 코팅법, 스프레이 코팅법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 노즐 코팅법, 모세관 코팅법 등의 방법을 들 수 있다.
배향막(310)의 배향처리는 예를 들면 러빙롤로 배향막(310)을 러빙하여 수행할 수 있으나, 이에 제한되는 것은 아니고 당 분야에 공지된 방법에 의할 수 있다.
코팅된 액정층(320)은 UV 또는 열 등을 사용하여 경화시킬 수 있다.
액정편광층(300)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 30㎛일 수 있다. 두께가 1㎛ 미만이면 액정편광층(300)의 베이스 기판(100)에 대한 밀착력이 부족할 수 있고, 30㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있다.
이후에, 도 6 (c) 및 (d)에 예시된 바와 같이, 상기 액정편광층(300)을 캐리어 필름(600)으로부터 박리하여 베이스 기판(100) 일면의 표시부에 부착한다.
베이스 기판(100)은 액정표시장치, 터치 스크린 패널 등에 적용되어 이들을 외력으로부터 충분히 보호할 수 있도록 내구성이 크고, 사용자가 디스플레이를 잘 볼 수 있도록 하는 물질이라면 특별히 한정되지 않으며, 당분야에서 사용되는 베이스 기판(100)이 특별한 제한 없이 사용될 수 있다. 예를 들면, 유리, 폴리에테르술폰(PES, polyethersulphone), 폴리아크릴레이트(PAR, polyacrylate), 폴리에테르 이미드(PEI, polyetherimide), 폴리에틸렌 나프탈레이트(PEN, polyethyelenen napthalate), 폴리에틸렌 테레프탈레이트(PET, polyethyelene terepthalate), 폴리페닐렌 설파이드(polyphenylene sulfide: PPS), 폴리아릴레이트(polyallylate), 폴리이미드(polyimide), 폴리카보네이트(PC, polycarbonate), 셀룰로오스 트리 아세테이트(TAC), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate,CAP) 등이 사용될 수 있다.
베이스 기판(100)의 두께는 특별히 한정되지 않으며, 예를 들면 10 내지 200㎛일 수 있다. 두께가 10㎛ 미만이면 윈도우 기판으로서의 충분한 경도, 강도 등의 구현이 어려울 수 있고, 200㎛ 초과이면 전체 두께가 증가하여 박막 경량화의 구현이 어려워지는 문제가 있다.
베이스 기판(100)은 화상표시장치 등에 적용되었을 때 영상이 표시되는 표시부와 전자장치의 하우징을 일부 구성하는 비표시부 패턴(200)에 의해 가려져 영상이 표시되지 않는 비표시부를 포함한다. 예컨대, 비표시부에서도 영상이 출력될 수는 있으나, 비표시부에 표시된 영상은 비표시부 패턴(200)에 의해 가려지기 때문에 사용자가 볼 수 없다.
도 6에는 복수개의 단위 셀을 구비한 원장 기판 상에서 각 단위 셀마다 공정이 수행되는 경우가 예시되어 있어, 액정편광층(300)을 개별 단위 셀의 표시부 사이즈로 절단하여 베이스 기판(100)에 부착하는 것으로 도시되어 있다. 그러나, 이에 제한되지 않고 개별 제품 크기의 1개 단위 셀 크기의 베이스 기판(100)에 대해서도 공정 수행이 가능하다.
액정편광층(300)의 부착은 당 분야에 공지된 수계 또는 광경화성 접착제, 점착제를 사용하여 수행될 수 있다.
필요에 따라, 본 발명의 편광판 일체형 윈도우 기판의 제조 방법은 액정편광층(300) 상에 위상차층(400)을 형성하는 단계를 더 포함할 수 있고, 추가로 위상차층(400) 상에 굴절율 조정층(500)을 형성하는 단계를 더 포함할 수 있다.
위상차층(400)은 액정편광층(300) 상에 위상차층을 코팅하거나, 위상차 필름을 부착함으로써 형성할 수 있다.
위상차층(400)의 코팅 방법은 특별히 한정되지 않으며, 예를 들면 슬릿 코팅법, 나이프 코팅법, 스핀 코팅법, 캐스팅법, 마이크로 그라비아 코팅법, 그라비아 코팅법, 바 코팅법, 롤 코팅법, 와이어 바 코팅법, 딥 코팅법, 스프레이 코팅법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 노즐 코팅법, 모세관 코팅법 등의 방법을 들 수 있다.
위상차층(400)은 단층 또는 복층일 수 있으며, 단층인 경우 1/4 파장판일 수 있고, 복층인 경우 1/4 파장판 및 1/2 파장판의 복층일 수 있으나, 이에 제한되는 것은 아니다. 1/4 파장판 및 1/2 파장판의 복층인 경우 위상차 보정에 의해 화상표시장치에 적용시 색감, 화질이 우수하다.
위상차층(400)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 100㎛일 수 있다. 두께가 1㎛ 미만이면 위상 특성이 저하될 우려가 있고, 100㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있다.
굴절율 조정층(500)은 위상차층(400) 상에 굴절율 조정층(500)을 코팅하거나, 굴절율 조절필름을 부착하여 형성할 수 있다.
굴절율 조정층(500)의 코팅 방법은 특별히 한정되지 않으며, 예를 들면 슬릿 코팅법, 나이프 코팅법, 스핀 코팅법, 캐스팅법, 마이크로 그라비아 코팅법, 그라비아 코팅법, 바 코팅법, 롤 코팅법, 와이어 바 코팅법, 딥 코팅법, 스프레이 코팅법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 노즐 코팅법, 모세관 코팅법 등의 방법을 들 수 있다.
굴절율 조정층(500)은 굴절율을 조정하여 화상표시장치에 적용시 색감 등을 개선하는 층이다.
굴절율 조정층(500)은 코팅층 또는 필름일 수 있다. 예를 들면 연신 필름 방식 또는 액정 코팅 방식의 C-PLATE를 사용할 수 있다.
굴절율 조정층(500)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 30㎛일 수 있다. 두께가 1㎛ 미만이면 위상 특성이 저하될 우려가 있고, 30㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있다.
위상차층(400) 및 굴절율 조정층(500)은 도 6에 예시된 바와 같이, 비표시부 패턴(200) 형성 이전에 형성될 수도 있고, 비표시부 패턴(200) 형성 이후에 형성될 수도 있다.
이후, 도 6 (e)에 예시된 바와 같이 상기 베이스 기판(100) 일면의 비표시부에 비표시부 패턴(200)을 형성한다.
비표시부 패턴(200)은 단층 또는 복층으로, 전술한 방법에 의해 형성할 수 있으며, 전술한 범위의 두께를 가질 수 있다.
추가로, 도 6(f)에 예시된 바와 같이 복수개의 단위 셀을 구비한 원장 기판 상에서 각 단위 셀마다 공정이 수행되는 경우에 베이스 기판(100)을 각 단위 셀 별로 절단할 수 있다.
이에 따라 단위 셀의 개수에 대응되는 수의 편광판 일체형 윈도우 기판을 얻을 수 있다.
또한, 본 발명은 또다른 일 구현예에 따른 상기 편광판 일체형 윈도우 기판의 제조 방법을 제공한다.
먼저, 도 7 (a) 및 도 8에 예시된 바와 같이 표시부에 대응되는 개구부를 갖는 이형필름(700)이 일면에 부착된 베이스 기판(100)에서, 상기 표시부에 액정편광층을 형성한다.
베이스 기판(100)은 액정표시장치, 터치 스크린 패널 등에 적용되어 이들을 외력으로부터 충분히 보호할 수 있도록 내구성이 크고, 사용자가 디스플레이를 잘 볼 수 있도록 하는 물질이라면 특별히 한정되지 않으며, 당분야에서 사용되는 베이스 기판(100)이 특별한 제한 없이 사용될 수 있다. 예를 들면, 유리, 폴리에테르술폰(PES, polyethersulphone), 폴리아크릴레이트(PAR, polyacrylate), 폴리에테르 이미드(PEI, polyetherimide), 폴리에틸렌 나프탈레이트(PEN, polyethyelenen napthalate), 폴리에틸렌 테레프탈레이트(PET, polyethyelene terepthalate), 폴리페닐렌 설파이드(polyphenylene sulfide: PPS), 폴리아릴레이트(polyallylate), 폴리이미드(polyimide), 폴리카보네이트(PC, polycarbonate), 셀룰로오스 트리 아세테이트(TAC), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate,CAP) 등이 사용될 수 있다.
베이스 기판(100)의 두께는 특별히 한정되지 않으며, 예를 들면 10 내지 200㎛일 수 있다. 두께가 10㎛ 미만이면 윈도우 기판으로서의 충분한 경도, 강도 등의 구현이 어려울 수 있고, 200㎛ 초과이면 전체 두께가 증가하여 박막 경량화의 구현이 어려워지는 문제가 있다.
베이스 기판(100)은 화상표시장치 등에 적용되었을 때 영상이 표시되는 표시부와 전자장치의 하우징을 일부 구성하는 비표시부 패턴(200)에 의해 가려져 영상이 표시되지 않는 비표시부를 포함한다. 예컨대, 비표시부에서도 영상이 출력될 수는 있으나, 비표시부에 표시된 영상은 비표시부 패턴(200)에 의해 가려지기 때문에 사용자가 볼 수 없다.
도 7 및 8에는 복수개의 단위 셀을 구비한 원장 기판 상에서 각 단위 셀마다 공정이 수행되는 경우가 예시되어 있어, 이형필름(700)이 개별 단위셀의 표시부에 대응되는 복수개의 개구부를 갖는 것으로 도시되어 있다. 그러나, 이에 제한되지 않고 개별 제품 크기의 1개 단위 셀 크기의 베이스 기판(100)에 대해서도 공정 수행이 가능하다.
이형필름(700)은 베이스 기판(100)의 표시부에 대응되는 개구부를 가져, 이를 베이스 기판(100)에 부착하면 표시부만 상기 개구부에 의해 노출된다.
이형필름(700)은 표시부와 비표시부를 구획하여, 코팅에 의해 액정편광층(300)을 형성하는 경우에 재료가 비표시부로 넘어가지 않아 재료 손실을 방지할 수 있고, 액정편광층(300)을 표시부에만 용이하게 형성할 수 있다.
이형필름(700)의 두께는 특별히 한정되지 않으며, 예를 들면 1 내지 100㎛일 수 있다.
이형필름(700)은 액정편광층(300) 이상의 두께를 갖는 것이 제조 공정상 측면에서 바람직하고, 본 발명의 윈도우 기판의 위상차층(400)을 더 포함하거나, 또한 굴절율 조정층(500)을 더 포함하는 경우에는 액정편광층(300)과 상기 층들의 합계 이상의 두께를 갖는 것이 바람직하다.
액정편광층(300)을 형성하는 단계는 배향막(310)을 코팅하고 배향처리하는 단계; 상기 배향처리된 배향막(310) 상에 액정층(320)을 코팅하는 단계; 및 상기 액정층(320)을 경화시키는 단계를 포함할 수 있다.
배향막(310) 및 액정층(320)의 코팅 방법은 특별히 한정되지 않으며, 예를 들면 슬릿 코팅법, 나이프 코팅법, 스핀 코팅법, 캐스팅법, 마이크로 그라비아 코팅법, 그라비아 코팅법, 바 코팅법, 롤 코팅법, 와이어 바 코팅법, 딥 코팅법, 스프레이 코팅법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 노즐 코팅법, 모세관 코팅법 등의 방법을 들 수 있다.
배향막(310)의 배향처리는 예를 들면 러빙롤로 배향막(310)을 러빙하여 수행할 수 있으나, 이에 제한되는 것은 아니고 당 분야에 공지된 방법에 의할 수 있다.
코팅된 액정층(320)은 UV 또는 열 등을 사용하여 경화시킬 수 있다.
액정편광층(300)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 30㎛일 수 있다. 두께가 1㎛ 미만이면 액정편광층(300)의 베이스 기판(100)에 대한 밀착력이 부족할 수 있고, 30㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있다.
본 발명은 상기 베이스 기판(100)의 일면에 이형필름(700)을 부착하는 단계를 더 포함할 수 있다.
이형필름(700)의 부착 이후에 이형필름(700)을 컷팅하여 베이스 기판(100)의 표시부에 대응되는 개구부를 갖도록 할 수도 있고, 사전에 컷팅되어 개구부를 갖는 이형필름(700)을 부착할 수도 있다.
필요에 따라, 본 발명의 편광판 일체형 윈도우 기판의 제조 방법은 액정편광층(300) 상에 위상차층(400)을 형성하는 단계를 더 포함할 수 있고, 추가로 위상차층(400) 상에 굴절율 조정층(500)을 형성하는 단계를 더 포함할 수 있다.
위상차층(400)은 액정편광층(300) 상에 위상차층(400)을 코팅하거나, 위상차 필름을 부착함으로써 형성할 수 있다.
위상차층(400)의 코팅 방법은 특별히 한정되지 않으며, 예를 들면 슬릿 코팅법, 나이프 코팅법, 스핀 코팅법, 캐스팅법, 마이크로 그라비아 코팅법, 그라비아 코팅법, 바 코팅법, 롤 코팅법, 와이어 바 코팅법, 딥 코팅법, 스프레이 코팅법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 노즐 코팅법, 모세관 코팅법 등의 방법을 들 수 있다.
위상차층(400)은 단층 또는 복층일 수 있으며, 단층인 경우 1/4 파장판일 수 있고, 복층인 경우 1/4 파장판 및 1/2 파장판의 복층일 수 있으나, 이에 제한되는 것은 아니다. 1/4 파장판 및 1/2 파장판의 복층인 경우 위상차 보정에 의해 화상표시장치에 적용시 색감, 화질이 우수하다.
위상차층(400)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 100㎛일 수 있다. 두께가 1㎛ 미만이면 위상 특성이 저하될 우려가 있고, 100㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있다.
굴절율 조정층(500)은 위상차층(400) 상에 굴절율 조정층(500)을 코팅하거나, 굴절율 조절필름을 부착하여 형성할 수 있다.
굴절율 조정층(500)의 코팅 방법은 특별히 한정되지 않으며, 예를 들면 슬릿 코팅법, 나이프 코팅법, 스핀 코팅법, 캐스팅법, 마이크로 그라비아 코팅법, 그라비아 코팅법, 바 코팅법, 롤 코팅법, 와이어 바 코팅법, 딥 코팅법, 스프레이 코팅법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 노즐 코팅법, 모세관 코팅법 등의 방법을 들 수 있다.
굴절율 조정층(500)은 굴절율을 조정하여 화상표시장치에 적용시 색감 등을 개선하는 층이다.
굴절율 조정층(500)은 코팅층 또는 필름일 수 있다. 예를 들면 연신 필름 방식 또는 액정 코팅 방식의 C-PLATE를 사용할 수 있다.
굴절율 조정층(500)의 두께는 특별히 한정되지 않으며, 예를 들면 1㎛ 내지 30㎛일 수 있다. 두께가 1㎛ 미만이면 위상 특성이 저하될 우려가 있고, 30㎛ 초과이면 편광판 일체형 윈도우 기판 전체의 두께가 증가하여 화상표시장치의 박막 구현이 어려운 문제가 있다.
이후에, 상기 이형필름(700)을 박리한다.
이형필름(700)을 박리하면 표시부에 액정편광층(300)이 형성되어 있고, 비표시부는 노출된 상태가 된다.
이후에, 상기 일면의 비표시부에 비표시부 패턴(200)을 형성한다.
비표시부 패턴(200)은 단층 또는 복층으로, 전술한 방법에 의해 형성할 수 있으며, 전술한 범위의 두께를 가질 수 있다.
추가로, 도 7(f)에 예시된 바와 같이 복수개의 단위 셀을 구비한 원장 기판 상에서 각 단위 셀마다 공정이 수행되는 경우에 베이스 기판(100)을 각 단위 셀 별로 절단할 수 있다. 또한, 이는 도 41 및 42에도 예시되어 있다.
이에 따라 단위 셀의 개수에 대응되는 수의 편광판 일체형 윈도우 기판을 얻을 수 있다.
도 23 내지 34는 표시부에 대응되는 개구부를 갖는 이형필름이 일면에 부착된 베이스 기판의 상기 표시부에 액정편광층을 형성하는 단계; 상기 액정편광층 상에 위상차층을 형성하는 단계; 상기 위상차층 상에 굴절율 조정층을 형성하는 단계; 상기 이형필름을 박리하는 단계; 및 상기 일면의 비표시부에 비표시부 패턴을 형성하는 단계;를 포함하는 편광판 일체형 윈도우 기판의 제조 방법의 다양한 구현예에 따른 공정도이다.
도 23 내지 28에는 이형필름(700)의 부착 이후에 컷팅에 의해 개구부를 형성한 경우가 도시되어 있고, 도 29 내지 34에는 표시부가 노출되도록 개구부를 갖는 이형필름(700)을 부착하는 경우가 도시되어 있다.
도 23 내지 25, 도 29 내지 31과 같이 액정편광층(300)은 베이스 기판(100) 일면 전체에 형성될 수도 있고, 도 26 내지 28, 도 32 내지 34와 같이 표시부에만 형성될 수도 있다.
이형필름(700)의 박리 시기는 특별히 한정되지 않으며, 예를 들면 액정편광층(300) 형성 이후에, 위상차층(400)의 형성 이후에, 또는 굴절율 조정층(500)의 형성 이후에 박리될 수 있다.
[부호의 설명]
100: 베이스 기판 200: 비표시부 패턴
210: 제1 패턴 220: 제2 패턴
300: 액정편광층 310: 배향막
320: 액정층 400: 위상차층
500: 굴절율 조정층 600: 캐리어 필름
700: 이형필름 800: 수계 오버코팅층
900: 레벨링층 1000: 색상 패턴
1100: 차광 패턴

Claims (37)

  1. 베이스 기판, 상기 베이스 기판 일면의 비표시부에 위치한 비표시부 패턴 및 이와 동일면의 표시부에 위치한 액정편광층을 포함하는 편광판 일체형 윈도우 기판.
  2. 청구항 1에 있어서, 상기 비표시부 패턴은 베이스 기판에 바로 접하는 편광판 일체형 윈도우 기판.
  3. 청구항 1에 있어서, 상기 비표시부 패턴은 표시부와 비표시부를 구획하는 제1 패턴 및 상기 제1 패턴이 위치한 비표시부를 덮는 차광성의 제2 패턴을 포함하는 편광판 일체형 윈도우 기판.
  4. 청구항 1에 있어서, 상기 비표시부 패턴은 액정편광층 이상의 두께를 갖는 편광판 일체형 윈도우 기판.
  5. 청구항 1에 있어서, 상기 액정편광층 상에 위치한 위상차층을 더 포함하는 편광판 일체형 윈도우 기판.
  6. 청구항 5에 있어서, 상기 위상차층은 1/4 파장판인 편광판 일체형 윈도우 기판.
  7. 청구항 5에 있어서, 상기 위상차층은 1/4 파장판 및 1/2 파장판의 복층인 편광판 일체형 윈도우 기판.
  8. 청구항 5에 있어서, 상기 위상차층 상에 위치한 굴절율 조정층을 더 포함하는 편광판 일체형 윈도우 기판.
  9. 청구항 1에 있어서, 상기 액정편광층 상에 위치한 수계 오버코팅층; 및
    상기 오버코팅층 상에 위치하며, 상기 표시부 및 비표시부를 평탄화하는 레벨링층을 포함하는 편광판 일체형 윈도우 기판.
  10. 청구항 9에 있어서, 상기 오버코팅층은 비표시부 패턴 및 액정편광층 상에 위치하는 편광판 일체형 윈도우 기판.
  11. 청구항 9에 있어서, 상기 레벨링층 상에 위치한 위상차층을 더 포함하는 편광판 일체형 윈도우 기판.
  12. 청구항 11에 있어서, 상기 비표시부 패턴은 비표시부 중 적어도 일부에 위치하고, 비표시부의 나머지 영역에 레벨링층이 더 위치하는 편광판 일체형 윈도우 기판.
  13. 청구항 12에 있어서, 상기 위상차 필름 상에서 비표시부의 레벨링층 대응 영역에 색상 패턴을 더 포함하는 편광판 일체형 윈도우 기판.
  14. 청구항 13에 있어서, 상기 색상 패턴 상에 차광 패턴을 더 포함하는 편광판 일체형 윈도우 기판.
  15. 청구항 1 내지 14 중 어느 한 항의 편광판 일체형 윈도우 기판 및 상기 베이스 기판의 상기 일면에 부착된 터치 패널을 포함하는 광학 적층체.
  16. 청구항 15의 광학 적층체를 포함하는 화상표시장치.
  17. 베이스 기판 일면에 표시부와 비표시부를 구획하는 비표시부 패턴을 형성하는 단계; 및
    상기 비표시부 패턴에 의해 구획된 표시부에 액정편광층을 형성하는 단계;를 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
  18. 베이스 기판 일면의 표시부에 액정편광층을 형성하는 단계; 및
    상기 일면의 비표시부에 비표시부 패턴을 형성하는 단계;를 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
  19. 캐리어 필름 일면에 액정편광층을 형성하는 단계;
    상기 액정편광층을 캐리어 필름으로부터 박리하여 베이스 기판 일면의 표시부에 부착하는 단계; 및
    상기 베이스 기판 일면의 비표시부에 비표시부 패턴을 형성하는 단계;를 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
  20. 표시부에 대응되는 개구부를 갖는 이형필름이 일면에 부착된 베이스 기판의 상기 표시부에 액정편광층을 형성하는 단계;
    상기 이형필름을 박리하는 단계; 및
    상기 일면의 비표시부에 비표시부 패턴을 형성하는 단계;를 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
  21. 청구항 17에 있어서, 상기 비표시부 패턴은 액정편광층 이상의 두께로 형성하는 편광판 일체형 윈도우 기판의 제조 방법.
  22. 청구항 20에 있어서, 상기 이형필름은 액정편광층 이상의 두께를 갖는 편광판 일체형 윈도우 기판의 제조 방법.
  23. 청구항 17 내지 20 중 어느 한 항에 있어서, 상기 비표시부 패턴을 형성하는 단계는 표시부와 비표시부를 구획하는 제1 패턴을 형성하는 단계; 및 상기 제1 패턴이 위치한 비표시부를 덮는 차광성의 제2 패턴을 형성하는 단계를 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
  24. 청구항 17 내지 20 중 어느 한 항에 있어서, 상기 액정편광층을 형성하는 단계는 배향막을 코팅하고 배향처리하는 단계; 상기 배향처리된 배향막 상에 액정층을 코팅하는 단계; 및 상기 액정층을 경화시키는 단계를 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
  25. 청구항 17 또는 18에 있어서, 상기 액정편광층을 형성하는 단계는 배향막을 코팅하고 배향처리하는 단계; 상기 배향처리된 배향막 상에 액정층을 코팅하는 단계; 및 상기 액정층을 경화시키는 단계를 포함하고, 상기 배향막 코팅 이후 및 액정층 코팅 이전에 비표시부를 덮는 이형필름을 부착하는 단계를 더 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
  26. 청구항 17 내지 20 중 어느 한 항에 있어서, 상기 액정편광층 상에 위상차층을 형성하는 단계를 더 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
  27. 청구항 26에 있어서, 상기 위상차층은 1/4 파장판인 편광판 일체형 윈도우 기판의 제조 방법.
  28. 청구항 26에 있어서, 상기 위상차층은 1/4 파장판 및 1/2 파장판의 복층인 편광판 일체형 윈도우 기판의 제조 방법.
  29. 청구항 26에 있어서, 상기 위상차층 상에 굴절율 조정층을 형성하는 단계를 더 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
  30. 청구항 17에 있어서, 상기 액정편광층 상에 수계 오버코팅층을 형성하는 단계; 및 상기 오버코팅층 상에 레벨링층을 형성하여, 표시부와 비표시부를 평탄화하는 단계;를 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
  31. 청구항 30에 있어서, 상기 오버코팅층은 액정편광층 및 비표시부 패턴 상에 오버코팅층 조성물을 도포하여 형성하는 편광판 일체형 윈도우 기판의 제조 방법.
  32. 청구항 30에 있어서, 상기 레벨링층 상에 위상차층을 형성하는 단계를 더 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
  33. 청구항 32에 있어서, 상기 비표시부 패턴을 비표시부 중 적어도 일부에 형성하고, 비표시부의 나머지 영역에 레벨링층을 더 형성하는 편광판 일체형 윈도우 기판의 제조 방법.
  34. 청구항 33에 있어서, 상기 위상차 필름 상에서 비표시부의 레벨링층 대응 영영에 색상 패턴을 형성하는 단계를 더 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
  35. 청구항 34에 있어서, 상기 색상 패턴 상에 차광 패턴을 형성하는 단계를 더 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
  36. 청구항 17 내지 20 중 어느 한 항에 있어서, 상기 베이스 기판은 복수개의 단위 셀을 구비한 원장 기판이고, 각 단계는 단위 셀마다 수행되는 편광판 일체형 윈도우 기판의 제조 방법.
  37. 청구항 36에 있어서, 상기 베이스 기판을 단위 셀 별로 절단하는 단계를 더 포함하는 편광판 일체형 윈도우 기판의 제조 방법.
PCT/KR2016/011811 2015-10-20 2016-10-20 편광판 일체형 윈도우 기판 및 이의 제조 방법 WO2017069528A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680060893.6A CN108291993B (zh) 2015-10-20 2016-10-20 整合有偏光板的窗基板及其制备方法
JP2018520144A JP2018534620A (ja) 2015-10-20 2016-10-20 偏光板一体型のウィンドウ基板及びその製造方法
US15/958,110 US11360347B2 (en) 2015-10-20 2018-04-20 Window substrate integrated with polarizing plate and method of preparing the same
JP2022076615A JP7297974B2 (ja) 2015-10-20 2022-05-06 偏光板一体型のウィンドウ基板及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020150145935A KR102024731B1 (ko) 2015-10-20 2015-10-20 편광판 일체형 윈도우 기판 및 이의 제조 방법
KR10-2015-0145935 2015-10-20
KR1020150161221A KR102031220B1 (ko) 2015-11-17 2015-11-17 편광판 일체형 윈도우 기판 및 이의 제조 방법
KR10-2015-0161221 2015-11-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/958,110 Continuation US11360347B2 (en) 2015-10-20 2018-04-20 Window substrate integrated with polarizing plate and method of preparing the same

Publications (1)

Publication Number Publication Date
WO2017069528A1 true WO2017069528A1 (ko) 2017-04-27

Family

ID=58557422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011811 WO2017069528A1 (ko) 2015-10-20 2016-10-20 편광판 일체형 윈도우 기판 및 이의 제조 방법

Country Status (5)

Country Link
US (1) US11360347B2 (ko)
JP (2) JP2018534620A (ko)
CN (1) CN108291993B (ko)
TW (1) TWI717401B (ko)
WO (1) WO2017069528A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215926A1 (en) 2020-04-24 2021-10-28 Merus N.V. Treatment of cancers with an antibody that binds lgr5 and egfr
WO2022131912A1 (en) 2020-12-15 2022-06-23 Merus N.V. Treatment of cancers with an antibody that binds lgr5 and egfr
WO2023059191A1 (en) 2021-10-06 2023-04-13 Merus N.V. Treatment of immune checkpoint inhibitor-treated cancers with high egfr expression using an antibody that binds at least egfr
WO2024136658A1 (en) 2022-12-23 2024-06-27 Merus N.V. Combination treatment of cancers using an antibody that binds at least egfr and an immune checkpoint inhibitor
WO2024144401A1 (en) 2022-12-28 2024-07-04 Merus N.V. Treatment of cancer with a combination of an antibody that binds egfr and cytotoxic drugs

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018321A (ja) * 2019-07-19 2021-02-15 住友化学株式会社 光学積層体及びその製造方法
GB2594036A (en) * 2020-02-19 2021-10-20 Merck Patent Gmbh A Process for surface planarization
CN113703524B (zh) * 2021-08-27 2024-05-28 联想(北京)有限公司 一种电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814339B1 (ko) * 2001-11-16 2008-03-18 엘지.필립스 엘시디 주식회사 콜레스테릭 액정 컬러필터를 가지는 반사형 액정표시장치
KR20080089991A (ko) * 2007-04-03 2008-10-08 엘지디스플레이 주식회사 편광판 및 원형 액정패널에 편광판 부착방법
KR20090065017A (ko) * 2007-12-17 2009-06-22 주식회사 엘지화학 편광판 및 이의 제조방법
KR100975120B1 (ko) * 2009-06-18 2010-08-11 주식회사 엘엠에스 위상지연을 갖는 편광성 회절소자
KR101427136B1 (ko) * 2012-08-28 2014-08-06 엘지디스플레이 주식회사 표시장치

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486935A (en) * 1993-06-29 1996-01-23 Kaiser Aerospace And Electronics Corporation High efficiency chiral nematic liquid crystal rear polarizer for liquid crystal displays having a notch polarization bandwidth of 100 nm to 250 nm
EP0786684A4 (en) * 1995-07-17 1998-04-29 Seiko Epson Corp REFLECTIVE COLOR LIQUID CRYSTAL DEVICE AND ELECTRONIC DEVICE USING THIS
US6317263B1 (en) * 1999-06-18 2001-11-13 3M Innovative Properties Company Projection screen using dispersing lens array for asymmetric viewing angle
DE60131304T2 (de) * 2000-04-24 2008-08-28 Nitto Denko Corp., Ibaraki Flüssigkristallanzeige mit dichroiden O-Typ und E-Typ Polarisatoren
JP2002006133A (ja) * 2000-06-19 2002-01-09 Nitto Denko Corp 偏光子、偏光板及びそれを用いた液晶表示装置
US6771327B2 (en) * 2000-09-18 2004-08-03 Citizen Watch Co., Ltd. Liquid crystal display device with an input panel
JP4011292B2 (ja) * 2001-01-15 2007-11-21 株式会社日立製作所 発光素子、及び表示装置
KR100830524B1 (ko) * 2001-12-29 2008-05-21 엘지디스플레이 주식회사 액정표시장치의 빛샘 방지 구조
JP4797320B2 (ja) * 2002-07-31 2011-10-19 大日本印刷株式会社 光学素子
US7224426B2 (en) 2002-07-31 2007-05-29 Dai Nippon Printing Co., Ltd. Optical element
JP2004219825A (ja) * 2003-01-16 2004-08-05 Nippon Zeon Co Ltd 光学積層体、光学素子および光学製品
JP2004302075A (ja) * 2003-03-31 2004-10-28 Nitto Denko Corp 広帯域コレステリック液晶フィルムの製造方法、円偏光板、直線偏光素子、照明装置および液晶表示装置
KR100969148B1 (ko) 2003-05-30 2010-07-08 엘지디스플레이 주식회사 편광된 uv를 이용한 위상차 필름의 제조방법
JP2007041583A (ja) * 2005-07-30 2007-02-15 Samsung Electronics Co Ltd 偏光補償フィルム、偏光プリズムフィルムの製造方法、表示パネルアセンブリ、及び表示装置
KR101306136B1 (ko) * 2008-06-16 2013-09-09 엘지디스플레이 주식회사 액정표시장치
KR100955762B1 (ko) * 2008-08-26 2010-04-30 주식회사 에이스 디지텍 코팅형 편광판의 제조방법 및 그로 인해 제조된 코팅형 편광판
KR20100039013A (ko) * 2008-10-07 2010-04-15 삼성전자주식회사 표시 장치와 상기 표시 장치의 제조방법
JP2010286597A (ja) * 2009-06-10 2010-12-24 Dainippon Printing Co Ltd 位相差板
JP5535739B2 (ja) 2010-04-13 2014-07-02 株式会社ジャパンディスプレイ 表示装置
JP5749568B2 (ja) * 2010-05-28 2015-07-15 富士フイルム株式会社 立体画像印刷用印画紙、立体画像印刷物、立体画像印刷物の製造方法、及び立体画像の提供方法
KR101695294B1 (ko) 2010-10-13 2017-01-13 엘지디스플레이 주식회사 유기발광다이오드 표시장치 및 그 구동방법
US10254453B2 (en) * 2010-11-02 2019-04-09 Arizona Board Of Regents On Behalf Of The University Of Arizona Thin-film broadband and wide-angle devices for generating and sampling polarization states
KR101250396B1 (ko) * 2010-11-04 2013-04-05 엘지이노텍 주식회사 와이어그리드편광자 및 이를 포함하는 액정표시장치
CN102707352A (zh) * 2011-04-19 2012-10-03 京东方科技集团股份有限公司 彩色滤光片和彩色滤光片的制造方法
KR101782028B1 (ko) 2011-04-20 2017-09-27 엘지디스플레이 주식회사 터치패널 타입 액정표시장치
US8796704B2 (en) * 2011-05-02 2014-08-05 Innolux Corporation Emissive display having polarizer and retarder films
KR20130106633A (ko) 2012-03-20 2013-09-30 동우 화인켐 주식회사 편광판 및 이를 구비한 화상표시장치
KR101885109B1 (ko) * 2012-04-16 2018-08-03 엘지디스플레이 주식회사 편광필름, 편광필름 제조방법, 및 이를 사용하는 디스플레이 장치
US9114598B2 (en) * 2013-04-16 2015-08-25 Shenzhen China Star Optoelectronics Technology Co., Ltd Method for laminating polarization film
KR102062842B1 (ko) 2013-06-03 2020-01-07 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
KR101850565B1 (ko) * 2013-06-18 2018-04-19 주식회사 엘지화학 편광판 및 상기 편광판을 포함하는 디스플레이 장치
KR102174761B1 (ko) * 2013-08-14 2020-11-06 삼성디스플레이 주식회사 플렉서블 표시장치 및 그 제조방법
KR102158802B1 (ko) * 2013-10-31 2020-09-23 삼성디스플레이 주식회사 표시 패널 및 액정 표시 장치
KR102204756B1 (ko) * 2013-12-31 2021-01-19 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
KR20160013485A (ko) * 2014-07-25 2016-02-04 삼성디스플레이 주식회사 터치 패널 및 그 제조방법
JP6669160B2 (ja) * 2015-03-19 2020-03-18 日本ゼオン株式会社 液晶性組成物、位相差層の製造方法及び円偏光板
KR102312304B1 (ko) * 2015-06-22 2021-10-14 삼성디스플레이 주식회사 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814339B1 (ko) * 2001-11-16 2008-03-18 엘지.필립스 엘시디 주식회사 콜레스테릭 액정 컬러필터를 가지는 반사형 액정표시장치
KR20080089991A (ko) * 2007-04-03 2008-10-08 엘지디스플레이 주식회사 편광판 및 원형 액정패널에 편광판 부착방법
KR20090065017A (ko) * 2007-12-17 2009-06-22 주식회사 엘지화학 편광판 및 이의 제조방법
KR100975120B1 (ko) * 2009-06-18 2010-08-11 주식회사 엘엠에스 위상지연을 갖는 편광성 회절소자
KR101427136B1 (ko) * 2012-08-28 2014-08-06 엘지디스플레이 주식회사 표시장치

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215926A1 (en) 2020-04-24 2021-10-28 Merus N.V. Treatment of cancers with an antibody that binds lgr5 and egfr
WO2022131912A1 (en) 2020-12-15 2022-06-23 Merus N.V. Treatment of cancers with an antibody that binds lgr5 and egfr
WO2023059191A1 (en) 2021-10-06 2023-04-13 Merus N.V. Treatment of immune checkpoint inhibitor-treated cancers with high egfr expression using an antibody that binds at least egfr
WO2024136658A1 (en) 2022-12-23 2024-06-27 Merus N.V. Combination treatment of cancers using an antibody that binds at least egfr and an immune checkpoint inhibitor
WO2024144401A1 (en) 2022-12-28 2024-07-04 Merus N.V. Treatment of cancer with a combination of an antibody that binds egfr and cytotoxic drugs

Also Published As

Publication number Publication date
CN108291993B (zh) 2021-10-08
TWI717401B (zh) 2021-02-01
CN108291993A (zh) 2018-07-17
US11360347B2 (en) 2022-06-14
JP7297974B2 (ja) 2023-06-26
TW201730595A (zh) 2017-09-01
US20180239191A1 (en) 2018-08-23
JP2022109296A (ja) 2022-07-27
JP2018534620A (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
WO2017069528A1 (ko) 편광판 일체형 윈도우 기판 및 이의 제조 방법
WO2021054759A1 (en) Display module and electronic device including the same
WO2012057582A1 (en) Display apparatus
WO2016036194A1 (ko) 광 제어 장치, 광 제어 장치의 제조 방법 및 광 제어 장치를 포함하는 표시 장치
WO2012096440A1 (en) Display apparatus
WO2016122173A1 (ko) 터치 윈도우
WO2016171421A1 (ko) 터치 윈도우
WO2012057570A2 (en) Display apparatus
WO2012099328A1 (en) Display apparatus
WO2014196724A1 (ko) 벽걸이형 플렉시블 디스플레이
WO2016043497A2 (ko) 광 제어 장치, 광 제어 장치의 제조 방법 및 광 제어 장치를 포함하는 표시 장치
WO2016018016A1 (en) Display assembly and display apparatus using the same background
WO2012015220A2 (ko) 편광디스플레이장치
WO2021221358A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2015111874A1 (ko) 디스플레이 장치
WO2021154057A1 (ko) 플렉서블 디스플레이 표면을 보호하는 초 박막 글라스
WO2017034088A1 (en) Display apparatus
WO2019083338A1 (ko) 산화물 반도체 박막 트랜지스터 및 그 제조방법
WO2018004138A1 (ko) 지문센서 커버, 지문센싱 장치, 및 이를 포함하는 터치 디바이스
WO2017078257A1 (ko) 지문센서 커버
WO2022025529A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2021221357A1 (ko) 탄성 부재
WO2021230541A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2021210834A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2017171272A1 (ko) 컬러필터 및 이를 포함하는 화상표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857786

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018520144

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857786

Country of ref document: EP

Kind code of ref document: A1