WO2017061158A1 - 装置及び方法 - Google Patents
装置及び方法 Download PDFInfo
- Publication number
- WO2017061158A1 WO2017061158A1 PCT/JP2016/070325 JP2016070325W WO2017061158A1 WO 2017061158 A1 WO2017061158 A1 WO 2017061158A1 JP 2016070325 W JP2016070325 W JP 2016070325W WO 2017061158 A1 WO2017061158 A1 WO 2017061158A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- base station
- frequency band
- terminal device
- uplinkrs
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 60
- 230000005540 biological transmission Effects 0.000 claims abstract description 62
- 238000005259 measurement Methods 0.000 claims description 29
- 239000012141 concentrate Substances 0.000 claims description 12
- 230000007246 mechanism Effects 0.000 abstract description 8
- 230000006854 communication Effects 0.000 description 140
- 238000004891 communication Methods 0.000 description 138
- 238000012545 processing Methods 0.000 description 35
- 230000006870 function Effects 0.000 description 27
- 238000010586 diagram Methods 0.000 description 20
- 238000005516 engineering process Methods 0.000 description 8
- 230000002776 aggregation Effects 0.000 description 7
- 238000004220 aggregation Methods 0.000 description 7
- 230000010267 cellular communication Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000005562 fading Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 102100031083 Uteroglobin Human genes 0.000 description 2
- 108090000203 Uteroglobin Proteins 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000001151 other effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/06—TPC algorithms
- H04W52/16—Deriving transmission power values from another channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/51—Allocation or scheduling criteria for wireless resources based on terminal or device properties
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT the frequencies being arranged in component carriers
Definitions
- the present disclosure relates to an apparatus and a method.
- small cell enhancement a technique for utilizing a small cell.
- the small cell is a concept that can include various types of cells (for example, femtocells, nanocells, picocells, microcells, and the like) that are arranged overlapping the macrocells and are smaller than the macrocells.
- a frequency band of 6 GHz or more called a millimeter wave band is being studied.
- the millimeter wave band is expected to be used in a small cell smaller than a macro cell because of its strong straightness and large radio wave propagation attenuation. Since the millimeter wave band is vast, a technique for efficiently selecting a frequency suitable for communication from the wide frequency band is important.
- the base station can select a channel suitable for communication with the terminal device by measuring an uplink reference signal transmitted from the terminal device.
- Patent Document 1 discloses a technique for appropriately setting the transmission power of the uplink signal.
- the base station uses an acquisition unit that acquires setting information from a base station, and at least one first unit frequency band of a group including a plurality of unit frequency bands indicated by the setting information.
- a selection support unit that transmits an uplink reference signal used to select a beam to be used for downlink transmission is provided.
- a setting unit that transmits setting information indicating at least one first unit frequency band among a group including a plurality of unit frequency bands to the terminal device, and the first unit by the terminal device.
- an apparatus including a selection unit that selects a beam used for downlink transmission based on a measurement result of an uplink reference signal transmitted using a frequency band.
- the base information is acquired from the base station, and at least one first unit frequency band among the groups including a plurality of unit frequency bands indicated by the setting information is used. Transmitting by the processor an uplink reference signal used by the station to select a beam to use for downlink transmission.
- setting information indicating at least one first unit frequency band among a group including a plurality of unit frequency bands is transmitted to the terminal device, and the first unit frequency is transmitted by the terminal device. Selecting a beam to be used for downlink transmission by a processor based on a measurement result of an uplink reference signal transmitted using the band.
- a mechanism capable of more efficiently selecting a beam suitable for downlink transmission is provided.
- the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
- FIG. 1 is an explanatory diagram for describing an overview of a system according to an embodiment of the present disclosure.
- FIG. It is explanatory drawing for demonstrating a component carrier. It is a block diagram which shows an example of a structure of the base station which concerns on the same embodiment. It is a block diagram which shows an example of a structure of the terminal device which concerns on the same embodiment. It is explanatory drawing for demonstrating the technical feature of 1st Embodiment. It is a sequence diagram which shows an example of the flow of the communication process performed in the system which concerns on the embodiment. It is explanatory drawing for demonstrating the technical feature of 2nd Embodiment. It is a sequence diagram which shows an example of the flow of the communication process performed in the system which concerns on the embodiment.
- FIG. 1 is an explanatory diagram for describing an overview of a system 1 according to an embodiment of the present disclosure.
- the system 1 includes a base station 10, a terminal device 20, and a communication control device 30.
- the communication control device 30 is a macro cell base station.
- the macro cell base station 30 provides a radio communication service to one or more terminal devices 20 located inside the macro cell 31.
- the macrocell base station 30 is connected to the core network 15.
- the core network 15 is connected to a packet data network (PDN) 16 via a gateway device (not shown).
- PDN packet data network
- the macro cell 31 is, for example, any wireless communication method such as LTE (Long Term Evolution), LTE-A (LTE-Advanced), GSM (registered trademark), UMTS, W-CDMA, CDMA200, WiMAX, WiMAX2, or IEEE 802.16. May be operated according to Note that the present invention is not limited to the example of FIG.
- the control node in the core network 15 or the PDN 16 may have a function of cooperatively controlling radio communication in the macro cell and the small cell.
- the macro cell base station may also be referred to as Macro eNodeB.
- the base station 10 is a small cell base station that operates the small cell 11.
- the small cell base station 10 typically has the authority to allocate radio resources to the terminal device 20 connected to its own device. However, radio resource allocation may be at least partially delegated to the communication control device 30 for coordinated control.
- the base station 10 may be a small cell base station that is fixedly installed as shown in FIG. 1 or a dynamic AP (access point) that dynamically operates the small cell 11. Note that the small cell base station may also be referred to as a pico eNB or a Femto eNB.
- the terminal device 20 is connected to the macro cell base station 30 or the small cell base station 10 and enjoys a wireless communication service.
- the terminal device 20 connected to the small cell base station 10 receives a control signal from the macro cell base station 30 and receives a data signal from the small cell base station 10.
- the terminal device 20 is also called a user.
- the user may also be referred to as user equipment (UE).
- the UE here may be a UE defined in LTE or LTE-A, and may more generally mean a communication device.
- Component carrier Carrier aggregation is a technique for improving communication throughput by forming a communication channel between a base station and a terminal device by integrating a plurality of unit frequency bands supported in LTE, for example. .
- Each unit frequency band included in one communication channel formed by carrier aggregation is referred to as a component carrier (CC).
- the CC here may be a CC defined in LTE or LTE-A, and may more generally mean a unit frequency band.
- each CC integrated may be arrange
- which CC is integrated and used can be set for each terminal device.
- PCC Primary Component Carrier
- SCC Secondary Component Carrier
- FIG. 2 is an explanatory diagram for explaining the component carrier.
- a state is shown in which two UEs are using a part of five CCs in an integrated manner.
- UE1 uses CC1, CC2, and CC3 in an integrated manner
- UE2 uses CC2 and CC4 in an integrated manner.
- the PCC of UE1 is CC2.
- the PCC of UE2 is CC4.
- the selection of PCC is implementation-dependent.
- the SCC is changed by deleting the SCC and adding another SCC. That is, it is difficult to directly change the SCC.
- Connection establishment This procedure is a procedure started with a request from the terminal device side as a trigger.
- PCC is changed by a procedure called Connection Reconfiguration.
- the procedure includes sending and receiving a handover message. This procedure is started from the base station side.
- Deletion of SCC is performed by a procedure called Connection Reconfiguration. This procedure is started from the base station side. In this procedure, the specific SCC specified in the message is deleted. Note that the deletion of the SCC is also performed by a procedure called Connection Re-establishment. This procedure is a procedure started from the terminal device side. According to this procedure, all SCCs are deleted. Deleting an SCC is also referred to as deactivating the SCC.
- PCC Physical Uplink Control Channel
- the uplink control signal includes, for example, an ACK or NACK indicating successful or unsuccessful reception of data transmitted on the downlink, a scheduling request, and the like.
- the procedure from the detection of the radio link failure to the connection re-establishment is also performed only by the PCC.
- LTE Release 12 a scenario in which different frequencies are used in a macro cell base station and a small cell base station is shown.
- a macro cell base station can be assigned a frequency of about 2 GHz
- a small cell base station can be assigned a high frequency such as 5 GHz.
- a radio wave of 3 GHz to 30 GHz (that is, a wavelength of 1 cm to 10 cm) is also called a centimeter wave.
- a radio wave of 30 GHz to 300 GHz (that is, a wavelength of 1 cm to 1 mm) is also referred to as a millimeter wave.
- Radio waves of 10 GHz to 30 GHz are also called quasi-millimeter waves.
- the millimeter wave band in this specification refers to a frequency band of 6 GHz or more among these. That is, the millimeter wave in this specification is a concept including a general centimeter wave.
- the millimeter wave band has vast frequency resources. Therefore, in the millimeter wave band, it is assumed that the CC bandwidth, which was 20 MHz in LTE Release 10, can be changed to a wider bandwidth such as 40 MHz, 80 MHz, or 160 MHz.
- Radio wave propagation loss for each frequency band typically, radio wave propagation loss (that is, path loss) increases as the frequency squares, and radio waves attenuate.
- radio wave propagation loss that is, path loss
- the 20 GHz band has a larger 12 dB attenuation than the 5 GHz band.
- the 60 GHz band has a greater 22 dB attenuation than the 5 GHz band.
- the millimeter wave band spans a vast band from, for example, about 6 GHz to 60 GHz. Compared to the fact that the 2 GHz band is used in the current LTE, it can be said that the millimeter wave band has a vast band.
- the properties of radio waves in the millimeter wave band are not uniform due to their large size, and the radio waves belonging to the same millimeter wave band may differ greatly in properties.
- the millimeter wave band has resources in a wide range from 6 GHz to 60 GHz. Therefore, even if it is going to control this wide range resource using 2 GHz band CC, the resource of CC of 2 GHz band may run short.
- the subcarrier spacing of OFDM (Orthogonal Frequency Division Multiplexing) in LTE at the time of 3GPP Release 12 is 15 kHz.
- the width of 15 kHz is defined to be flat fading in units of subcarriers. Therefore, as a whole (for example, 20 MHz width), even if frequency selective fading occurs, flat fading occurs in subcarrier units. Thus, the width of 15 kHz brings about the merit that the characteristic deterioration at the time of reception is small.
- the frequency width in which the occurrence of this flat fading can be expected is increased.
- the subcarrier interval which was 15 kHz in the 2 GHz band, to 150 kHz in the 20 GHz band.
- the subcarrier interval can be changed to, for example, about four stages of 15 kHz, 30 kHz, 60 kHz, and 120 kHz. This is because even if it is further refined, it is considered that the effect is low for a large change in specifications.
- the table below shows an example of settings when the subcarrier interval can be changed in four stages.
- UE capabilities Since the millimeter wave band is vast in the frequency domain, the number of CCs also increases. In the case where there are several hundred CCs, for example, there are UEs that can be used in an integrated manner, for example, about 100, and there are UEs that have several upper limits that can be used in an integrated manner. It is a matter of caution in the millimeter wave band that the capabilities of UEs can be different.
- CCs having a width of 20 MHz are conventionally used, and the channel characteristics of each CC may be different.
- the channel characteristics become flat as the frequency increases, and the channel characteristics of CCs tend to be the same.
- the channel characteristics are flat over a frequency band of about 200 MHz.
- the antenna gain increases as the beam becomes sharper. Therefore, in order to increase the antenna gain, it is effective to arrange many antenna elements. When introducing the millimeter wave band, it is desirable to arrange several hundred antennas. Therefore, it is assumed that beam forming is used not on the terminal device but on the base station side. This is because it is not appropriate to mount several hundred antennas on the terminal device in terms of space and calculation performance.
- the base station performs beam forming
- the selection may be performed by a terminal device or a base station. However, the final selection is considered to be performed by the base station.
- the state of the downlink channel can be measured directly or indirectly.
- a downlink reference signal For downlink channel measurement, a downlink reference signal can be used.
- the radio wave attenuation is large in the millimeter wave band, it may be difficult to accurately measure the channel state with an omnidirectional downlink reference signal. Therefore, it is desirable that the downlink reference signal is beamformed.
- the state of the downlink channel is unknown at the stage of transmitting the downlink reference signal, it is difficult to perform beam forming only in an appropriate direction. For this reason, a method is conceivable in which the beam-formed downlink reference signal is transmitted in all directions, and the terminal device sequentially measures while changing the measurement time.
- the processing time and power consumption in the terminal device can be enormous.
- the base station should select a beam suitable for transmission of the downlink reference signal based on the measurement result of the uplink reference signal transmitted from the terminal device. It becomes. In this case, since the downlink reference signal is transmitted only in a specific direction, and the terminal apparatus does not transmit the uplink reference signal in many directions, the beam for downlink transmission is transmitted in a short time. It becomes possible to select.
- TDD Time Division Duplex
- the first problem is that the millimeter wave band is vast. It is assumed that the uplink reference signal transmitted by the terminal device is transmitted for each CC and used for measurement for each CC. This is because the characteristics can be different for each CC. In this respect, since the number of CCs can reach several hundreds in the millimeter wave band, it is desirable to provide a mechanism for efficiently measuring each CC.
- the second problem is that the uplink reference signal is non-directional or has a small antenna gain even if it has directivity. This is because the number of antennas that can be mounted on the terminal device is assumed to be about eight due to the limitation of mounting space. Since the radio wave propagation attenuation is large in the millimeter wave band, the base station may fail to receive the uplink reference signal when the omnidirectionality or the antenna gain is small.
- FIG. 3 is a block diagram illustrating an exemplary configuration of the base station 10 according to an embodiment of the present disclosure.
- the base station 10 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
- Antenna unit 110 The antenna unit 110 radiates a signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
- the wireless communication unit 120 transmits and receives signals.
- the radio communication unit 120 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
- the network communication unit 130 transmits and receives information.
- the network communication unit 130 transmits information to other nodes and receives information from other nodes.
- the other nodes include other base stations and core network nodes.
- Storage unit 140 The storage unit 140 temporarily or permanently stores a program for operating the base station 10 and various data.
- Processing unit 150 provides various functions of the base station 10.
- the processing unit 150 includes a setting unit 151 and a selection unit 153.
- the processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
- FIG. 4 is a block diagram illustrating an exemplary configuration of the terminal device 20 according to an embodiment of the present disclosure.
- the terminal device 20 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
- Antenna unit 210 The antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
- the wireless communication unit 220 transmits and receives signals.
- the radio communication unit 220 receives a downlink signal from the base station and transmits an uplink signal to the base station.
- Storage unit 230 The storage unit 230 temporarily or permanently stores a program for operating the terminal device 20 and various data.
- the processing unit 240 provides various functions of the terminal device 20.
- the processing unit 240 includes an acquisition unit 241 and a selection support unit 243. Note that the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
- the technical problem of the present embodiment is the first problem described above. More specifically, since the number of CCs becomes enormous in the millimeter wave band, it is assumed that a plurality of CCs are integrated and used at the same time (that is, carrier aggregation is performed) in order to increase the data transmission speed. Where it is necessary to select an appropriate beam for each of a plurality of CCs used at the same time, measuring the channel characteristics for each CC is a large power consumption burden for the terminal device.
- CCs a group consisting of some CCs among a plurality of CCs that can be used by the base station 10 is defined.
- This group includes at least one (typically, multiple) CCs.
- this group is also referred to as an UplinkRS group.
- One UplinkRS group includes at least one UplinkRS primary CC. An example of the UplinkRS group is shown in FIG.
- FIG. 5 shows an example of an UplinkRS group formed by four CCs.
- the first UplinkRS group is composed of CC1 to CC4, and CC2 is the UplinkRS primary CC.
- the second UplinkRS group is composed of CC5 to CC8, and CC5 is the UplinkRS primary CC.
- the number of CCs included in one UplinkRS group is arbitrary. Further, the position of the UplinkRS primary CC included in each UplinkRS group is also arbitrary.
- the UplinkRS primary CC corresponds to the first unit frequency band. CCs other than the UplinkRS primary CC included in the UplinkRS group correspond to the second unit frequency band.
- the terminal device 20 causes the base station 10 to perform downlink transmission using at least one UplinkRS primary CC among UplinkRS groups including a plurality of CCs indicated by setting information described later.
- An uplink reference signal used to select a beam to be used for transmission is transmitted.
- the uplink reference signal is also referred to as UplinkRS.
- UplinkRS may also be referred to as SRS (Sounding Reference Signal) in existing LTE.
- UplinkRS is transmitted only in the UplinkRS primary CC in the UplinkRS group. Therefore, the power consumption of the terminal device 20 is reduced as compared with the case where UplinkRS is transmitted by all of a huge number of CCs in the millimeter wave band.
- the base station 10 selects a beam to be used for downlink transmission based on the measurement result of UplinkRS transmitted by the terminal device 20 using the UplinkRS primary CC. For example, the base station 10 (for example, the selection unit 153) measures which reception beam has a large SNR (signal-to-noise ratio) while virtually changing the reception beam with respect to the UplinkRS. Based on the measurement result, a transmission beam suitable for the terminal device 20 is selected.
- SNR signal-to-noise ratio
- the base station 10 (for example, the selection unit 153) transmits a downlink reference signal using the selected beam.
- the downlink reference signal is also referred to as DownlinkRS. Since the radio wave attenuation in the millimeter wave band is compensated by the beam, the terminal device 20 can successfully receive the Downlink RS and can accurately measure the channel state.
- the base station 10 may transmit DownlinkRS using all of a plurality of CCs included in the UplinkRS group. In this case, the terminal device 20 can measure each CC included in the UplinkRS group.
- the base station 10 may select one or more beams based on UplinkRS. That is, the base station 10 may narrow down to one or more beam candidates based on UplinkRS. In this case, the base station 10 transmits one or more Downlink RSs using one or more narrowed beam candidates.
- the terminal device 20 (for example, the selection support unit 243) transmits information related to the measurement of the DownlinkRS transmitted by the base station 10 using one or more beams selected based on the UplinkRS to the base station 10 (ie, feedback). To do.
- the terminal device 20 may simply feed back information indicating the measurement result of Downlink RS, or may select a beam suitable for downlink transmission based on the measurement result and feed back the selection result.
- the terminal device 20 further narrows down one or more beam candidates narrowed down by the base station 10.
- the feedback can be transmitted using the UplinkRS primary CC.
- the base station 10 determines a beam to be used for data transmission on the downlink from the candidates based on this feedback. With this procedure, the base station 10 can select a beam based on the measurement results of each CC included in the UplinkRS group, and more appropriate beam selection is realized.
- the base station 10 and the terminal device 20 acquire information indicating a plurality of CCs included in each UplinkRS group (that is, information indicating which CC belongs to which UplinkRS group). Hereinafter, such information is also referred to as group information.
- the base station 10 and the terminal device 20 acquire information indicating the UplinkRS primary CC in each UplinkRS group (that is, information indicating which CC is the UplinkRS primary CC). Hereinafter, such information is also referred to as primary information.
- the base station 10 and the terminal device 20 can set the UplinkRS group and the UplinkRS primary CC of each UplinkRS group by acquiring group information and primary information.
- the group information and primary information correspond to setting information.
- the base station 10 acquires setting information from an MME (Mobility Management Entity).
- the base station 10 may acquire through an interface such as O & M (Operation & Maintenance).
- the terminal device 20 (for example, the acquisition unit 241) acquires setting information from the base station 10.
- the base station 10 for example, the setting unit 151 notifies the terminal device 20 of setting information.
- dedicated signaling can be used.
- the setting information may be common to all the base stations 10 included in the system 1 or may be different for each base station 10.
- the group information may be common and the primary information may be different for each base station 10 (that is, for each cell).
- the base station 10 (for example, the setting unit 151) may acquire group information from the MME, select the UplinkRS primary CC, and notify the terminal device 20 under the group information and primary information.
- FIG. 6 is a sequence diagram illustrating an example of a flow of communication processing executed in the system 1 according to the present embodiment. In this sequence, the base station 10 and the terminal device 20 are involved.
- the base station 10 acquires group information (step S102). Next, the base station 10 determines an UplinkRS primary CC in each UplinkRS group indicated by the acquired group information (Step S104). Next, the base station 10 transmits group information and primary information to the terminal device 20 (step S106).
- the terminal device 20 transmits UplinkRS using the UplinkRS primary CC based on the received group information and primary information (Step S108).
- the base station 10 selects a plurality of beam candidates based on the measurement result of UplinkRS (step S110).
- the base station 10 transmits a plurality of beamformed Downlink RSs using the selected plurality of beam candidates (step S112).
- the terminal device 20 selects one beam candidate suitable for downlink transmission to itself based on the measurement result of the beamformed Downlink RS (step S114), and feeds back information indicating the selection result to the base station 10. (Step S116). Note that the base station 10 can receive this feedback using a beam evaluated as most suitable for communication with the terminal device 20 among the plurality of beam candidates selected in step S110. Then, the base station 10 transmits user data to the terminal device 20 using the beam indicated by the feedback from the terminal device 20 (step S118).
- the UplinkRS primary CC is set for each cell (that is, in Cell-Specific). Therefore, depending on the number of terminal devices 20 connected to the cell, resources for UplinkRS transmission in the UplinkRS primary CC may be insufficient. Further, the capabilities of each terminal device 20 may be different. For example, the frequency that can be used, the number of CCs that can be integrated and used at the same time, or the bandwidth of the CC that can be used may be different for each terminal device 20. Therefore, the appropriate UplinkRS primary CC may differ for each terminal device 20.
- a mechanism capable of setting an UplinkRS primary CC for each terminal device 20 is provided.
- the terminal device 20 (for example, the selection support unit 243) transmits capability information indicating CCs that can be used by the terminal device 20 to the base station 10.
- the capability information may include, for example, information indicating usable UplinkRS groups and CCs usable in the UplinkRS group. Thereby, in the base station 10, an appropriate UplinkRS primary CC for the terminal device 20 is selected.
- the base station 10 (for example, the setting unit 151) variably sets the UplinkRS primary CC for each terminal device 20. In particular, the base station 10 selects the UplinkRS primary CC based on the capability information. For this reason, the selected UplinkRS primary CC is appropriate for the terminal device 20.
- the selection of the UplinkRS primary CC based on the capability information will be described with reference to FIG.
- FIG. 7 shows an example of an UplinkRS group formed by four CCs CC1 to CC4.
- ten terminal devices 20 have the ability to use CC1 to CC3, and the other ten terminal devices 20 have the ability to use CC2 to CC4.
- CC2 and CC3 may be used by a total of 20 terminal devices 20, when used for UplinkRS transmission, the ratio of UplinkRS to the data becomes large, and overhead may become a problem. Therefore, the base station 10 sets the UplinkRS primary CC for the ten terminal devices 20 having the ability to use CC1 to CC3 to CC1.
- the base station 10 sets the UplinkRS primary CC for the ten terminal devices 20 having the ability to use CC2 to CC4 to CC4.
- FIG. 8 is a sequence diagram illustrating an example of a flow of communication processing executed in the system 1 according to the present embodiment. In this sequence, the base station 10 and the terminal device 20 are involved.
- the base station 10 acquires group information (step S202). Next, the base station 10 transmits the acquired group information to the terminal device 20 (step S204).
- the terminal device 20 transmits capability information to the base station 10 at the timing when the RRC connection (RRC (Radio Resource Control) connected) state is established (step S206). And base station 10 determines UplinkRS primary CC for the said terminal device 20 based on capability information (step S208), and transmits primary information to the terminal device 20 (step S210).
- RRC Radio Resource Control
- the technical problem of the present embodiment is the second problem described above. More specifically, since the radio wave propagation attenuation is large in the millimeter wave band, the UplinkRS can reach the base station 10 with a low SNR. Therefore, the selection of the beam in the base station 10 can be difficult.
- a mechanism is provided that allows UplinkRS to reach the base station 10 with a high SNR.
- UplinkRS is referred to as SRS. Further, one subframe is formed by 14 OFDM symbols, and UplinkRS is transmitted by the last 14th OFDM symbol. An example of this is shown in FIG. In the example illustrated in FIG. 9, UplinkRS is transmitted in the entire bandwidth of the 20 MHz-wide UplinkRS primary CC in the 14th OFDM symbol.
- the terminal device 20 transmits the UplinkRS in a part of the frequency band of the UplinkRS primary CC. Then, the terminal device 20 (for example, the selection support unit 243) concentrates transmission power for the other frequency bands on the partial frequency band. Thereby, it becomes possible to make UplinkRS reach the base station 10 with a high SNR.
- FIG. 10 An example of this situation is shown in FIG. In the example shown in FIG. 10, UplinkRS is transmitted on four subcarriers of the 20 MHz-wide UplinkRS primary CC in the 14th OFDM symbol. The transmission power for the remaining 92 subcarriers is concentrated on these 4 subcarriers.
- the hatched area in the figure is an area where UplinkRS is transmitted, and an area where hatching is not applied is nothing (that is, an area where NULL is transmitted).
- the subcarrier interval is 15 kHz
- 24 UplinkRSs can be accommodated in one OFDM symbol. Therefore, 24 terminal apparatuses 20 can transmit UplinkRS simultaneously with one OFDM symbol.
- the terminal device 20 may transmit the UplinkRS on one subcarrier of the UplinkRS primary CC. Then, the terminal device 20 (for example, the selection support unit 243) concentrates transmission power for other frequency bands on one subcarrier. For example, compared to the case where UplinkRS is transmitted using four subcarriers, a gain improvement of 6 dB is realized when UplinkRS is transmitted using one subcarrier. As a result, UplinkRS can be made to reach base station 10 with a higher SNR. An example of this is shown in FIG. In the example illustrated in FIG. 11, UplinkRS is transmitted in one subcarrier of the 20 MHz wide UplinkRS primary CC in the 14th OFDM symbol. The transmission power for the remaining 95 subcarriers is concentrated on this one subcarrier.
- the terminal device 20 may concentrate transmission power for CCs other than the UplinkRS primary CC included in the UplinkRS group on the UplinkRS primary CC.
- UplinkRS can be made to reach base station 10 with a higher SNR.
- the UplinkRS group includes 10 CCs and there is only one UplinkRS primary CC, it is possible to concentrate 10 CCs on one CC, thereby improving the gain of 10 dB. .
- FIG. 12 An example of this is shown in FIG.
- the UplinkRS group includes 10 CCs, and UplinkRS is transmitted in one subcarrier of the 20 MHz-wide UplinkRS primary CC in the 14th OFDM symbol.
- the transmission power for CC2 to CC10 and the transmission power for the remaining 95 subcarriers are concentrated on this one subcarrier.
- the terminal device 20 may transmit the UplinkRS using all 14 OFDM symbols.
- the base station 10 can realize gain improvement by superimposing 14 received signals.
- An example of this is shown in FIG.
- UplinkRS is transmitted on one subcarrier of the UplinkRS primary CC having a width of 20 MHz in all 14 OFDM symbols.
- the UplinkRS group includes 10 CCs, and transmission power for CC2 to CC10 and transmission power for the remaining 95 subcarriers are concentrated on this one subcarrier.
- UplinkRS can be made to reach base station 10 with a high SNR.
- the subcarrier spacing can be expanded to about 120 kHz. This is because the burden of signal processing (for example, FFT (Fast Fourier Transform) or the like) is reduced at a high frequency (for example, 60 GHz band or the like) where the channel characteristic approaches a flat characteristic with little fading.
- FFT Fast Fourier Transform
- the subcarrier spacing is 120 kHz
- the subcarrier spacing is eight times that when the subcarrier spacing is 15 kHz. Therefore, since the power density (dbm / Hz) becomes 1/8, there is a possibility that the reception characteristic on the base station 10 side is deteriorated.
- the present embodiment provides a mechanism capable of maintaining the reception characteristics on the base station 10 side even when the subcarrier spacing is wide.
- the terminal device 20 (for example, the selection support unit 243) concentrates the transmission power of the remaining other frequency bands on a part of the frequency bands of one subcarrier. For example, even if it is a subcarrier of 120 kHz interval, the terminal device 20 concentrates transmission power in the 15 kHz interval, and transmits UplinkRS. As a result, even when the subcarrier spacing is wide, the reception characteristics on the base station 10 side can be maintained.
- the terminal device 20 for example, the selection support unit 243 concentrates the transmission power of the remaining other frequency bands on a part of the frequency bands of one subcarrier. For example, even if it is a subcarrier of 120 kHz interval, the terminal device 20 concentrates transmission power in the 15 kHz interval, and transmits UplinkRS. As a result, even when the subcarrier spacing is wide, the reception characteristics on the base station 10 side can be maintained.
- UplinkRS is transmitted on one subcarrier of 120 kHz width among 20 MHz width UplinkRS primary CCs.
- the transmission power for the remaining 95 subcarriers is concentrated on this one subcarrier.
- UplinkRS is transmitted at 15 kHz out of 120 kHz as shown in FIG.
- the transmission power for the remaining 105 kHz is further concentrated on this 15 kHz.
- FIG. 16 shows a configuration example of a signal processing unit (for example, wireless communication unit 220) for transmitting UplinkRS at an interval narrower than the interval of one subcarrier.
- a signal processing unit for example, wireless communication unit 220 for transmitting UplinkRS at an interval narrower than the interval of one subcarrier.
- 2048-point IFFT Inverse FFT
- 256-point IFFT is performed to generate subcarriers at intervals of 120 kHz. Therefore, as illustrated in FIG. 16, the wireless communication unit 220 includes a module that performs 2048-point IFFT and a module that performs 256-point IFFT.
- the wireless communication unit 220 selects a signal output from any of these modules by a selector, and transmits the signal with a CP (Cyclic Prefix) added.
- CP Cyclic Prefix
- the radio communication unit 220 selects a signal output from a module that performs 2048-point IFFT.
- the wireless communication unit 220 selects a signal output from a module that performs 256-point IFFT via a module that performs FFT. Each signal is separated in a time division manner, and UplinkRS and a signal including user data are not transmitted from one terminal apparatus 20 at the same time.
- the base station 10 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
- the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
- the base station 10 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
- the base station 10 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body.
- a main body also referred to as a base station apparatus
- RRHs Remote Radio Heads
- Various types of terminals to be described later may operate as the base station 10 by temporarily or semipermanently executing the base station function.
- at least some components of the base station 10 may be realized in a base station device or a module for the base station device.
- the terminal device 20 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as. Further, the terminal device 20 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication. Furthermore, at least some of the components of the terminal device 20 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
- MTC Machine Type Communication
- FIG. 17 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
- the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
- Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
- the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 17, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. 17 shows an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may include a single antenna 810.
- the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
- the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
- the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
- the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
- the controller 821 may communicate with the core network node or other eNB via the network interface 823.
- the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
- the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
- the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
- the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
- the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
- the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
- Various signal processing of Packet Data Convergence Protocol
- Packet Data Convergence Protocol is executed.
- the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
- the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
- the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
- the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
- the radio communication interface 825 may include a plurality of BB processors 826 as illustrated in FIG. 17, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 17, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively.
- FIG. 17 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827. However, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
- one or more components (setting unit 151 and / or selection unit 153) included in the processing unit 150 described with reference to FIG. 3 may be implemented in the wireless communication interface 825. Good. Alternatively, at least some of these components may be implemented in the controller 821.
- the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the one or more components are mounted in the module. Good.
- the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed.
- a program for causing a processor to function as the one or more components is installed in the eNB 800, and the radio communication interface 825 (eg, the BB processor 826) and / or the controller 821 executes the program.
- the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
- a readable recording medium in which the program is recorded may be provided.
- the wireless communication unit 120 described with reference to FIG. 3 may be implemented in the wireless communication interface 825 (for example, the RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810.
- the network communication unit 130 may be implemented in the controller 821 and / or the network interface 823.
- the storage unit 140 may be implemented in the memory 822.
- FIG. 18 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
- the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
- Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
- the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 18, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. 18 illustrates an example in which the eNB 830 includes a plurality of antennas 840, but the eNB 830 may include a single antenna 840.
- the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
- the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
- the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
- the wireless communication interface 855 may typically include a BB processor 856 and the like.
- the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 17 except that it is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
- the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG. 18, and the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. 18 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
- connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
- the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
- the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
- connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
- the connection interface 861 may be a communication module for communication on the high-speed line.
- the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
- the wireless communication interface 863 may typically include an RF circuit 864 and the like.
- the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
- the wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 18, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively.
- 18 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
- the eNB 830 illustrated in FIG. 18 one or more components (setting unit 151 and / or selection unit 153) included in the processing unit 150 described with reference to FIG. It may be implemented in interface 863. Alternatively, at least some of these components may be implemented in the controller 851.
- the eNB 830 includes a module including a part (for example, the BB processor 856) or the whole of the wireless communication interface 855 and / or the controller 851, and the one or more components are mounted in the module. Good.
- the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed.
- a program for causing a processor to function as the one or more components is installed in the eNB 830, and the wireless communication interface 855 (eg, the BB processor 856) and / or the controller 851 executes the program.
- the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
- a readable recording medium in which the program is recorded may be provided.
- the radio communication unit 120 described with reference to FIG. 3 may be implemented in the radio communication interface 863 (for example, the RF circuit 864).
- the antenna unit 110 may be mounted on the antenna 840.
- the network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
- the storage unit 140 may be mounted in the memory 852.
- FIG. 19 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
- the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
- One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
- the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
- the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
- the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
- the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
- the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
- the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
- the microphone 908 converts sound input to the smartphone 900 into an audio signal.
- the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
- the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
- the speaker 911 converts an audio signal output from the smartphone 900 into audio.
- the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
- the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
- the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
- the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
- the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
- the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG.
- FIG. 19 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914.
- the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
- the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
- a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
- Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
- Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
- the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that although FIG. 19 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
- the smartphone 900 may include an antenna 916 for each wireless communication method.
- the antenna switch 915 may be omitted from the configuration of the smartphone 900.
- the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other.
- the battery 918 supplies power to each block of the smartphone 900 shown in FIG. 19 through a power supply line partially shown by a broken line in the drawing.
- the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
- the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the one or more components in the module. May be implemented.
- the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed.
- a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (eg, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is The program may be executed.
- the smartphone 900 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided.
- a readable recording medium in which the program is recorded may be provided.
- the wireless communication unit 220 described with reference to FIG. 4 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
- the antenna unit 210 may be mounted on the antenna 916.
- the storage unit 230 may be mounted in the memory 902.
- FIG. 20 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
- the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
- the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
- the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
- the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
- the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
- the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
- the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
- the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
- the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
- the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
- the speaker 931 outputs the navigation function or the audio of the content to be played back.
- the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
- the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
- the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
- the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
- the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
- the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 20 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
- the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
- a BB processor 934 and an RF circuit 935 may be included for each communication method.
- Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
- Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
- the car navigation device 920 may have a plurality of antennas 937 as shown in FIG. 20 illustrates an example in which the car navigation apparatus 920 includes a plurality of antennas 937, the car navigation apparatus 920 may include a single antenna 937.
- the car navigation device 920 may include an antenna 937 for each wireless communication method.
- the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
- the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 20 through a power supply line partially shown by a broken line in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
- the car navigation apparatus 920 includes a module including a part (for example, the BB processor 934) or the whole of the wireless communication interface 933 and / or the processor 921, and the one or more components are mounted in the module. May be.
- the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed.
- a program for causing a processor to function as the one or more components is installed in the car navigation device 920, and the wireless communication interface 933 (eg, the BB processor 934) and / or the processor 921 executes the program.
- the car navigation apparatus 920 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components may be provided. Good.
- a readable recording medium in which the program is recorded may be provided.
- the wireless communication unit 220 described with reference to FIG. 4 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935).
- the antenna unit 210 may be mounted on the antenna 937.
- the storage unit 230 may be implemented in the memory 922.
- the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, the in-vehicle system (or vehicle) 940 may be provided as an apparatus including the acquisition unit 241 and / or the selection support unit 243.
- the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
- the terminal device 20 acquires the setting information from the base station 10, and the base station 10 is down using at least one UplinkRS primary CC among UplinkRS groups including a plurality of CCs indicated by the setting information.
- An UplinkRS used to select a beam used for link transmission is transmitted.
- the base station 10 can select a transmission beam suitable for the terminal device 20 based on the measurement result of UplinkRS.
- UplinkRS is transmitted only in the UplinkRS primary CC in the UplinkRS group, the power consumption of the terminal device 20 is reduced as compared with the case where the UplinkRS is transmitted in all of the enormous number of CCs in the millimeter wave band. Since efficient beam selection is realized in this way, the base station 10 can efficiently carry out carrier aggregation in the millimeter wave band, and the traffic accommodation efficiency in the cellular network can be improved. it can.
- a selection support unit that transmits A device comprising: (2) The selection support unit transmits information on measurement of a downlink reference signal transmitted by the base station using one or more beams selected based on the uplink reference signal to the base station. ) Device. (3) The apparatus according to (2), wherein the information related to the measurement is transmitted using the first unit frequency band.
- the selection support unit transmits capability information indicating the unit frequency band that can be used by the apparatus to the base station.
- the capability information includes information indicating the group that can be used and the unit frequency band that can be used in the group.
- the selection support unit transmits the uplink reference signal in a part of the first unit frequency band, and concentrates the transmission power of the other frequency band in the part of the frequency band.
- the apparatus according to any one of (1) to (5).
- the selection support unit concentrates transmission power corresponding to a second unit frequency band other than the first unit frequency band included in the group on the partial frequency band, according to (6). apparatus.
- the selection support unit concentrates transmission power of the remaining other frequency bands in a part of the frequency bands of one subcarrier.
- the group includes a part of the unit frequency bands among the plurality of unit frequency bands that can be used by a base station.
- the unit frequency band is a component carrier.
- the unit frequency band has a frequency of 6 GHz or more.
- a setting unit that transmits setting information indicating at least one first unit frequency band among groups including a plurality of unit frequency bands to the terminal device;
- a selection unit that selects a beam to be used for downlink transmission based on a measurement result of an uplink reference signal transmitted by the terminal device using the first unit frequency band;
- a device comprising: (14) The apparatus according to (13), wherein the selection unit transmits a downlink reference signal using the selected beam.
- the apparatus according to (14), wherein the selection unit transmits the downlink reference signal using all of the plurality of unit frequency bands included in the group.
- the said selection part is an apparatus as described in said (15) which selects the beam used for downlink transmission based on the information regarding the measurement of the said downlink reference signal by the said terminal device.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
1.はじめに
1.1.スモールセル
1.2.キャリアアグリゲーション
1.3.ミリ波帯に関する考察
1.4.ビームフォーミング
2.構成例
2.1.基地局の構成例
2.2.端末装置の構成例
3.第1の実施形態
3.1.技術的課題
3.2.技術的特徴
3.3.処理の流れ
4.第2の実施形態
4.1.技術的課題
4.2.技術的特徴
4.3.処理の流れ
5.第3の実施形態
5.1.技術的課題
5.2.技術的特徴
6.第4の実施形態
6.1.技術的課題
6.2.技術的特徴
7.応用例
8.まとめ
<1.1.スモールセル>
図1は、本開示の一実施形態に係るシステム1の概要について説明するための説明図である。図1に示すように、システム1は、基地局10、端末装置20及び通信制御装置30を含む。
以下では、LTEリリース10(即ち、3GPPリリース10)において規定されたキャリアアグリゲーションに関する技術について説明する。
キャリアアグリゲーションとは、基地局と端末装置との間の通信チャネルを、例えばLTEにおいてサポートされる単位周波数帯域を複数統合することにより形成し、通信のスループットを向上させる技術である。キャリアアグリゲーションにより形成される1つの通信チャネルに含まれる個々の単位周波数帯域を、コンポーネントキャリア(CC:Component Carrier)という。ここでのCCは、LTE又はLTE-Aにおいて定義されているCCであってもよく、より一般的に単位周波数帯域を意味していてもよい。
端末装置が、RRC Idle状態からRRC Connected状態に遷移する場合に、最初に接続を確立するCCがPCCである。PCCの変更は、ハンドオーバと同様の手続きにより行われる。
SCCの追加は、Connection Reconfigurationと呼ばれる手続により行われる。本手続は、基地局側から開始される手続きである。SCCは、PCCに追加され、PCCに従属することとなる。SCCを追加することは、SCCをアクティベートするとも称される。
SCCの削除は、Connection Reconfigurationと呼ばれる手続により行われる。本手続は、基地局側から開始される手続きである。本手続においては、メッセージの中で指定された特定のSCCが削除される。なお、SCCの削除は、Connection Re-establishmentと呼ばれる手続によっても行われる。本手続は、端末装置側から開始される手続である。本手続によれば、全てのSCCが削除される。SCCを削除することは、SCCをディアクティベートするとも称される。
PCCは、SCCとは異なる特別な役割を有する。例えば、Connection establishmentにおけるNAS signalingの送受信は、PCCでのみ行われる。また、PUCCH(Physical Uplink Control Channel)の伝送は、PCCでのみ行われる。なお、アップリンクの制御信号には、例えば、ダウンリンクで送信されたデータに対する受信成功又は失敗を示すACK又はNACK、及びスケジューリングリクエスト等がある。また、Radio Link Failureの検出からConnection Re-establishmentの手続きも、PCCでのみ行われる。
LTEリリース12においては、マクロセル基地局とスモールセル基地局とでは、別々の周波数を用いるシナリオが示されている。例えば、マクロセル基地局には2GHz程度の周波数が割り当てられ、スモールセル基地局には5GHz等の高い周波数が割り当てられ得る。
以下では、ミリ波帯に関する考察について説明する。
一般的には、3GHz~30GHz(即ち、波長1cm~10cm)の電波はセンチメートル波とも称される。また、30GHz~300GHz(即ち、波長1cm~1mm)の電波はミリ波とも称される。また、10GHz~30GHzの電波は準ミリ波とも称される。本明細書におけるミリ波帯とは、これらのうち6GHz以上の周波数帯域を指すものとする。即ち、本明細書におけるミリ波とは、一般的なセンチメートル波も含む概念である。
ミリ波帯には広大な周波数リソースがある。そのため、ミリ波帯においては、LTEリリース10では20MHzとされていたCCの帯域幅を、例えば40MHz、80MHz又は160MHzといったより広い帯域幅にも変更可能になると想定される。
周波数が高くなるにしたがって、電波のまわり込みがなくなり、直進性が強くなる。また、周波数が高くなるにしたがって、反射時の減衰も大きくなる。そのため、ミリ波帯のうち特に10GHz以上の電波は、基本的に、見通し内通信での使用を想定すべきであると言える。
典型的には、周波数の二乗に応じて電波伝搬ロス(即ち、パスロス)が大きくなり、電波は減衰していく。例えば、20GHz帯は、5GHz帯に比べて12dB減衰が大きくなる。60GHz帯は、5GHz帯に比べて22dB減衰が大きくなる。
3GPPリリース12の時点でのLTEにおけるOFDM(Orthogonal Frequency Division Multiplexing)のサブキャリア間隔(Subcarrier spacing)は、15kHzである。この15kHzという幅は、サブキャリア単位ではフラットフェージングとなるよう定義されている。そのため、全体(例えば、20MHz幅)としては、周波数選択制フェージングが発生していても、サブキャリア単位ではフラットフェージングが発生することとなる。このように、15kHzという幅は、受信時の特性劣化が少ないというメリットをもたらす。
ミリ波帯は、周波数領域が広大であるため、CCの数も多くなる。数百のCCがある場合に、例えば100個程度を統合して使用することが可能なUEもいれば、統合して使用可能な上限が数個であるUEもいると考えられる。このような、UEのケイパビリティがそれぞれ異なり得るということは、ミリ波帯では注意すべき事項である。
2GHz帯及び5GHz帯では、従来20MHz幅のCCが使用されており、各々のCCのチャネル特性は異なり得た。一方で、ミリ波帯では、周波数が高くなるにつれてチャネル特性がフラットになり、CC同士のチャネル特性が同じになっていく傾向にある。例えば、30GHzにおいては、200MHz程度の周波数帯に渡って、チャネル特性がフラットである。20MHz幅のCCしか処理できない端末装置の存在を想定すると、200MHzを20MHzのCCに分けて管理する方が望ましい場合がある。その場合、周波数が近い20MHz幅のCC同士のチャネル特性がほぼ同じになり得る。
ミリ波帯では、電波伝搬減衰を補うために、ビームフォーミングが行われることが想定される。ビームフォーミングを行うことで得られるアンテナ利得(Antenna Gain)により、電波伝搬減衰を補うことが可能なためである。このアンテナ利得は、電波を全ての方向に放射するのではなく、特定の方向にビームを集中させることで得られる。全方向に拡散されていたエネルギーが、一方向に集中されるためである。
<2.1.基地局の構成例>
続いて、図3を参照して、本開示の一実施形態に係る基地局10の構成を説明する。図3は、本開示の一実施形態に係る基地局10の構成の一例を示すブロック図である。図3を参照すると、基地局10は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部150を備える。
アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
記憶部140は、基地局10の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
処理部150は、基地局10の様々な機能を提供する。処理部150は、設定部151及び選択部153を含む。なお、処理部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部150は、これらの構成要素の動作以外の動作も行い得る。
続いて、図4を参照して、本開示の実施形態に係る端末装置20の構成の一例を説明する。図4は、本開示の一実施形態に係る端末装置20の構成の一例を示すブロック図である。図4を参照すると、端末装置20は、アンテナ部210、無線通信部220、記憶部230及び処理部240を備える。
アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
記憶部230は、端末装置20の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
処理部240は、端末装置20の様々な機能を提供する。処理部240は、取得部241及び選択支援部243を含む。なお、処理部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、これらの構成要素の動作以外の動作も行い得る。
<3.1.技術的課題>
本実施形態の技術的課題は、上述した第1の問題点である。より詳しく説明すると、ミリ波帯では、CCの数が膨大になるので、データ送信スピードを上げるために同時に複数のCCを統合して使用する(即ち、キャリアアグリゲーションを行う)ことが想定される。同時に使用される複数のCCの各々で適切なビームが選択されることが要されるところ、CC毎にチャネル特性を測定することは端末装置にとって大きな消費電力上の負担となる。
(1)CCのグループ化
本実施形態では、基地局10が使用可能な複数のCCのうち一部のCCから成るグループが定義される。このグループは、少なくともひとつ(典型的には、複数)のCCを含む。このグループを、以下ではUplinkRSグループとも称する。1つのUplinkRSグループは、少なくとも1つのUplinkRSプライマリCCを含む。UplinkRSグループの一例を、図5に示した。
端末装置20(例えば、選択支援部243)は、後述する設定情報が示す複数のCCを含むUplinkRSグループのうち少なくともひとつのUplinkRSプライマリCCを用いて、基地局10がダウンリンク送信に用いるビームを選択するために使用するアップリンクのリファレンス信号を送信する。なお、以下ではアップリンクのリファレンス信号を、UplinkRSとも称する。UplinkRSは、既存のLTEにおいてSRS(Sounding Reference Signal)とも称される場合がある。UplinkRSグループのうちUplinkRSプライマリCCでしかUplinkRSが送信されない。そのため、ミリ波帯における膨大な数のCCのすべてでUplinkRSを送信する場合と比較して、端末装置20の消費電力が低減される。
基地局10及び端末装置20は、UplinkRSグループの設定及び各々のUplinkRSグループのUplinkRSプライマリCCの設定を行う。
例えば、グループ情報は共通で、プライマリ情報は基地局10ごと(即ち、セルごと)に異なっていてもよい。その場合、基地局10(例えば、設定部151)は、グループ情報をMMEから取得し、UplinkRSプライマリCCを自身で選択し、グループ情報及びプライマリ情報を配下の端末装置20へ通知し得る。
図6は、本実施形態に係るシステム1において実行される通信処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局10及び端末装置20が関与する。
<4.1.技術的課題>
第1の実施形態では、セルごとに(即ち、Cell-Specificに)UplinkRSプライマリCCが設定されていた。そのため、セルに接続する端末装置20の数によっては、UplinkRSプライマリCCにおけるUplinkRS送信のためのリソースが不足し得る。また、各々の端末装置20のケイパビリティは異なり得る。例えば、端末装置20ごとに、使用可能な周波数、同時に統合して使用可能なCCの数、又は使用可能なCCの帯域幅等が異なり得る。そのため、端末装置20ごとに、適切なUplinkRSプライマリCCは異なり得る。
端末装置20(例えば、選択支援部243)は、端末装置20自身が使用可能なCCを示すケイパビリティ情報を基地局10へ送信する。このケイパビリティ情報は、例えば、使用可能なUplinkRSグループ及び当該UplinkRSグループの中で使用可能なCCを示す情報を含み得る。これにより、基地局10において、端末装置20にとって適切なUplinkRSプライマリCCが選択されることとなる。
図8は、本実施形態に係るシステム1において実行される通信処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局10及び端末装置20が関与する。
<5.1.技術的課題>
本実施形態の技術的課題は、上述した第2の問題点である。より詳しく説明すると、ミリ波帯では電波伝搬減衰が大きいため、UplinkRSはSNRが低い状態で基地局10に到達し得る。そのため、基地局10におけるビームの選択が困難になり得る。
既存のLTEでは、UplinkRSはSRSと称されている。また、14OFDMシンボルで1サブフレームが形成されており、その最後の14個目のOFDMシンボルでUplinkRSが送信されていた。その様子の一例を、図9に示した。図9に示した例では、14個目のOFDMシンボルにおいて、20MHz幅のUplinkRSプライマリCCの全ての帯域幅で、UplinkRSが送信されている。
<6.1.技術的課題>
第3の実施形態によれば、UplinkRSをSNRが高い状態で基地局10に到達させることが可能となる。ここで、ミリ波帯では、上記表1に示すようにサブキャリアの間隔が120kHz程度にまで広がり得る。チャネル特性が、フェージングがあまりないフラットな特性に近づいていく高い周波数(例えば、60GHz帯等)では、信号処理(例えば、FFT(Fast Fourier Transform)等)の負担が減るためである。しかし、サブキャリアの間隔が120kHzの場合は、サブキャリアの間隔が15kHzである場合と比較して8倍のサブキャリアの間隔となる。そのため、電力密度(dbm/Hz)が1/8となってしまうので、基地局10側での受信特性を劣化させるおそれがある。
端末装置20(例えば、選択支援部243)は、1つのサブキャリアのうちさらに一部の周波数帯域に、残りの他の周波数帯域の送信電力を集中させる。例えば、端末装置20は、120kHz間隔のサブキャリアであっても、そのうちの15kHz間隔に送信電力を集中させてUplinkRSを送信する。これにより、サブキャリアの間隔が広い場合であっても、基地局10側での受信特性を維持することが可能となる。以下、図14及び図15を参照して、詳しく説明する。
本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局10は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局10は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局10は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局10として動作してもよい。さらに、基地局10の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。
(第1の応用例)
図17は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
図18は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
(第1の応用例)
図19は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
図20は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
以上、図1~図20を参照して、本開示の一実施形態について詳細に説明した。上記説明したように、端末装置20は、基地局10から設定情報を取得し、設定情報が示す、複数のCCを含むUplinkRSグループのうち少なくともひとつのUplinkRSプライマリCCを用いて、基地局10がダウンリンク送信に用いるビームを選択するために使用するUplinkRSを送信する。基地局10は、UplinkRSの測定結果に基づいて、端末装置20に適した送信ビームを選択することが可能となる。また、UplinkRSグループのうちUplinkRSプライマリCCでしかUplinkRSが送信されないため、ミリ波帯における膨大な数のCCのすべてでUplinkRSを送信する場合と比較して、端末装置20の消費電力が低減される。このようにして、効率的なビーム選択が実現されるので、基地局10がミリ波帯でのキャリアアグリゲーションを効率的に実施することが可能となり、セルラーネットワークにおけるトラフィックの収容効率を向上させることができる。
(1)
基地局から設定情報を取得する取得部と、
前記設定情報が示す、複数の単位周波数帯域を含むグループのうち少なくともひとつの第1の単位周波数帯域を用いて、前記基地局がダウンリンク送信に用いるビームを選択するために使用するアップリンクリファレンス信号を送信する選択支援部と、
を備える装置。
(2)
前記選択支援部は、前記アップリンクリファレンス信号に基づいて選択されたひとつ以上のビームを用いて前記基地局により送信されたダウンリンクリファレンス信号の測定に関する情報を前記基地局へ送信する、前記(1)に記載の装置。
(3)
前記測定に関する情報は、前記第1の単位周波数帯域を用いて送信される、前記(2)に記載の装置。
(4)
前記選択支援部は、前記装置が使用可能な前記単位周波数帯域を示すケイパビリティ情報を前記基地局へ送信する、前記(1)~(3)のいずれか一項に記載の装置。
(5)
前記ケイパビリティ情報は、使用可能な前記グループ及び当該グループの中で使用可能な前記単位周波数帯域を示す情報を含む、前記(4)に記載の装置。
(6)
前記選択支援部は、前記第1の単位周波数帯域のうち一部の周波数帯域で前記アップリンクリファレンス信号を送信し、前記一部の周波数帯域に他の周波数帯域の分の送信電力を集中させる、前記(1)~(5)のいずれか一項に記載の装置。
(7)
前記選択支援部は、前記一部の周波数帯域に、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域の分の送信電力を集中させる、前記(6)に記載の装置。
(8)
前記一部の周波数帯域は、1つのサブキャリアである、前記(6)又は(7)に記載の装置。
(9)
前記選択支援部は、1つのサブキャリアのうちさらに一部の周波数帯域に、残りの他の周波数帯域の送信電力を集中させる、前記(8)に記載の装置。
(10)
前記グループは、基地局が使用可能な複数の前記単位周波数帯域のうち一部の前記単位周波数帯域から成る、前記(1)~(9)のいずれか一項に記載の装置。
(11)
前記単位周波数帯域は、コンポーネントキャリアである、前記(1)~(10)のいずれか一項に記載の装置。
(12)
前記単位周波数帯域は、周波数が6GHz以上である、前記(1)~(11)のいずれか一項に記載の装置。
(13)
複数の単位周波数帯域を含むグループのうち少なくともひとつの第1の単位周波数帯域を示す設定情報を端末装置へ送信する設定部と、
前記端末装置により前記第1の単位周波数帯域を用いて送信されたアップリンクリファレンス信号の測定結果に基づいて、ダウンリンク送信に用いるビームを選択する選択部と、
を備える装置。
(14)
前記選択部は、選択されたビームを用いてダウンリンクリファレンス信号を送信する、前記(13)に記載の装置。
(15)
前記選択部は、前記グループに含まれる複数の前記単位周波数帯域の全てを用いて前記ダウンリンクリファレンス信号を送信する、前記(14)に記載の装置。
(16)
前記選択部は、前記端末装置による前記ダウンリンクリファレンス信号の測定に関する情報に基づいて、ダウンリンク送信に用いるビームを選択する、前記(15)に記載の装置。
(17)
前記設定部は、前記端末装置ごとに前記第1の単位周波数帯域を可変に設定する、前記(13)~(16)のいずれか一項に記載の装置。
(18)
前記設定部は、前記端末装置が使用可能な前記単位周波数帯域を示すケイパビリティ情報に基づいて、前記第1の単位周波数帯域を選択する、前記(17)に記載の装置。
(19)
基地局から設定情報を取得することと、
前記設定情報が示す、複数の単位周波数帯域を含むグループのうち少なくともひとつの第1の単位周波数帯域を用いて、前記基地局がダウンリンク送信に用いるビームを選択するために使用するアップリンクリファレンス信号をプロセッサにより送信することと、
を含む方法。
(20)
複数の単位周波数帯域を含むグループのうち少なくともひとつの第1の単位周波数帯域を示す設定情報を端末装置へ送信することと、
前記端末装置により前記第1の単位周波数帯域を用いて送信されたアップリンクリファレンス信号の測定結果に基づいて、ダウンリンク送信に用いるビームをプロセッサにより選択することと、
を含む方法。
10 基地局
11 スモールセル
15 コアネットワーク
16 パケットデータネットワーク
20 端末装置
30 通信制御装置
31 マクロセル
110 アンテナ部
120 無線通信部
130 ネットワーク通信部
140 記憶部
150 処理部
151 設定部
153 選択部
210 アンテナ部
220 無線通信部
230 記憶部
240 処理部
241 取得部
243 選択支援部
Claims (20)
- 基地局から設定情報を取得する取得部と、
前記設定情報が示す、複数の単位周波数帯域を含むグループのうち少なくともひとつの第1の単位周波数帯域を用いて、前記基地局がダウンリンク送信に用いるビームを選択するために使用するアップリンクリファレンス信号を送信する選択支援部と、
を備える装置。 - 前記選択支援部は、前記アップリンクリファレンス信号に基づいて選択されたひとつ以上のビームを用いて前記基地局により送信されたダウンリンクリファレンス信号の測定に関する情報を前記基地局へ送信する、請求項1に記載の装置。
- 前記測定に関する情報は、前記第1の単位周波数帯域を用いて送信される、請求項2に記載の装置。
- 前記選択支援部は、前記装置が使用可能な前記単位周波数帯域を示すケイパビリティ情報を前記基地局へ送信する、請求項1に記載の装置。
- 前記ケイパビリティ情報は、使用可能な前記グループ及び当該グループの中で使用可能な前記単位周波数帯域を示す情報を含む、請求項4に記載の装置。
- 前記選択支援部は、前記第1の単位周波数帯域のうち一部の周波数帯域で前記アップリンクリファレンス信号を送信し、前記一部の周波数帯域に他の周波数帯域の分の送信電力を集中させる、請求項1に記載の装置。
- 前記選択支援部は、前記一部の周波数帯域に、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域の分の送信電力を集中させる、請求項6に記載の装置。
- 前記一部の周波数帯域は、1つのサブキャリアである、請求項6に記載の装置。
- 前記選択支援部は、1つのサブキャリアのうちさらに一部の周波数帯域に、残りの他の周波数帯域の送信電力を集中させる、請求項8に記載の装置。
- 前記グループは、基地局が使用可能な複数の前記単位周波数帯域のうち一部の前記単位周波数帯域から成る、請求項1に記載の装置。
- 前記単位周波数帯域は、コンポーネントキャリアである、請求項1に記載の装置。
- 前記単位周波数帯域は、周波数が6GHz以上である、請求項1に記載の装置。
- 複数の単位周波数帯域を含むグループのうち少なくともひとつの第1の単位周波数帯域を示す設定情報を端末装置へ送信する設定部と、
前記端末装置により前記第1の単位周波数帯域を用いて送信されたアップリンクリファレンス信号の測定結果に基づいて、ダウンリンク送信に用いるビームを選択する選択部と、
を備える装置。 - 前記選択部は、選択されたビームを用いてダウンリンクリファレンス信号を送信する、請求項13に記載の装置。
- 前記選択部は、前記グループに含まれる複数の前記単位周波数帯域の全てを用いて前記ダウンリンクリファレンス信号を送信する、請求項14に記載の装置。
- 前記選択部は、前記端末装置による前記ダウンリンクリファレンス信号の測定に関する情報に基づいて、ダウンリンク送信に用いるビームを選択する、請求項15に記載の装置。
- 前記設定部は、前記端末装置ごとに前記第1の単位周波数帯域を可変に設定する、請求項13に記載の装置。
- 前記設定部は、前記端末装置が使用可能な前記単位周波数帯域を示すケイパビリティ情報に基づいて、前記第1の単位周波数帯域を選択する、請求項17に記載の装置。
- 基地局から設定情報を取得することと、
前記設定情報が示す、複数の単位周波数帯域を含むグループのうち少なくともひとつの第1の単位周波数帯域を用いて、前記基地局がダウンリンク送信に用いるビームを選択するために使用するアップリンクリファレンス信号をプロセッサにより送信することと、
を含む方法。 - 複数の単位周波数帯域を含むグループのうち少なくともひとつの第1の単位周波数帯域を示す設定情報を端末装置へ送信することと、
前記端末装置により前記第1の単位周波数帯域を用いて送信されたアップリンクリファレンス信号の測定結果に基づいて、ダウンリンク送信に用いるビームをプロセッサにより選択することと、
を含む方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018111192A RU2717961C2 (ru) | 2015-10-06 | 2016-07-08 | Устройство и способ |
CN202211396959.2A CN115942461A (zh) | 2015-10-06 | 2016-07-08 | 装置及方法 |
JP2017544393A JP6819601B2 (ja) | 2015-10-06 | 2016-07-08 | 装置及び方法 |
US15/761,589 US10448403B2 (en) | 2015-10-06 | 2016-07-08 | Apparatus and method for beam selection in downlink transmission |
CN202211396960.5A CN115942462A (zh) | 2015-10-06 | 2016-07-08 | 装置及方法 |
CN201680057261.4A CN108141852B (zh) | 2015-10-06 | 2016-07-08 | 用于无线通信的装置及方法 |
ES16853313T ES2844853T3 (es) | 2015-10-06 | 2016-07-08 | Aparato y procedimiento |
EP16853313.1A EP3361798B1 (en) | 2015-10-06 | 2016-07-08 | Apparatus and method |
US16/594,370 US10827497B2 (en) | 2015-10-06 | 2019-10-07 | Apparatus and method for beam selection in downlink transmission |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015198343 | 2015-10-06 | ||
JP2015-198343 | 2015-10-06 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/761,589 A-371-Of-International US10448403B2 (en) | 2015-10-06 | 2016-07-08 | Apparatus and method for beam selection in downlink transmission |
US16/594,370 Continuation US10827497B2 (en) | 2015-10-06 | 2019-10-07 | Apparatus and method for beam selection in downlink transmission |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017061158A1 true WO2017061158A1 (ja) | 2017-04-13 |
Family
ID=58487410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/070325 WO2017061158A1 (ja) | 2015-10-06 | 2016-07-08 | 装置及び方法 |
Country Status (8)
Country | Link |
---|---|
US (2) | US10448403B2 (ja) |
EP (1) | EP3361798B1 (ja) |
JP (1) | JP6819601B2 (ja) |
CN (3) | CN115942462A (ja) |
ES (1) | ES2844853T3 (ja) |
RU (1) | RU2717961C2 (ja) |
TW (1) | TW201731322A (ja) |
WO (1) | WO2017061158A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3817269A4 (en) * | 2018-08-14 | 2021-08-04 | Huawei Technologies Co., Ltd. | RESOURCE MANAGEMENT PROCESS AND DEVICE |
WO2023161990A1 (ja) * | 2022-02-22 | 2023-08-31 | 株式会社Nttドコモ | 通信装置および通信方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017061158A1 (ja) * | 2015-10-06 | 2017-04-13 | ソニー株式会社 | 装置及び方法 |
EP3306990B1 (en) * | 2016-10-07 | 2020-03-11 | ASUSTek Computer Inc. | Method and apparatus for deriving transmit power of ul (uplink) rs (reference signal) in a wireless communication system |
EP3579446B1 (en) * | 2017-02-06 | 2021-04-07 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method for use in transmitting signal, terminal device, and network device |
US10952236B2 (en) * | 2019-05-10 | 2021-03-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Beam selection systems and methods |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003283394A (ja) * | 2002-03-27 | 2003-10-03 | Nec Corp | マルチビームアンテナ送受信装置及び送受信方法並びに送信ビーム選択方法 |
JP2013528968A (ja) * | 2010-03-29 | 2013-07-11 | パンテック カンパニー リミテッド | 無線通信システムにおけるランダムアクセスを実行する装置及び方法 |
WO2014104800A1 (en) * | 2012-12-27 | 2014-07-03 | Samsung Electronics Co., Ltd. | Uplink power control method and apparatus in a beam-forming based wireless communication system |
JP2015023444A (ja) * | 2013-07-19 | 2015-02-02 | 株式会社Nttドコモ | 無線通信方法、無線基地局、ユーザ端末及び無線通信システム |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101373951B1 (ko) * | 2008-01-30 | 2014-03-13 | 엘지전자 주식회사 | 다중안테나 시스템에서 프리코딩 정보 전송방법 |
CN101572896B (zh) * | 2008-04-29 | 2011-01-26 | 大唐移动通信设备有限公司 | 一种配置上行探测参考信号的方法和装置 |
KR101486378B1 (ko) * | 2008-05-07 | 2015-01-26 | 엘지전자 주식회사 | 협력적 다중 입출력 안테나 이동 통신 시스템에서의 데이터송수신 방법 |
CN101741442B (zh) * | 2008-11-20 | 2013-03-20 | 华为技术有限公司 | 协作多点传输中确定资源映射的方法、网络设备及系统 |
JP5302417B2 (ja) | 2009-01-29 | 2013-10-02 | エルジー エレクトロニクス インコーポレイティド | 伝送電力を制御する方法及び伝送電力を制御する装置 |
KR20120060940A (ko) * | 2009-06-08 | 2012-06-12 | 엘지전자 주식회사 | 다중 반송파 지원 무선 통신 시스템에서 중계기 백홀 링크 및 액세스 링크 상의 반송파 할당 방법 |
CN102237926B (zh) * | 2010-04-20 | 2014-03-19 | 中国移动通信集团公司 | 发送与接收信道探测参考信号的方法、装置与系统 |
US8687728B2 (en) * | 2010-05-13 | 2014-04-01 | Qualcomm Incorporated | Cubic-metric based frequency selective precoding for uplink in MIMO communication system |
US8855053B2 (en) * | 2010-06-18 | 2014-10-07 | Mediatek Inc. | Sounding mechanism and configuration under carrier aggregation |
US9585083B2 (en) * | 2011-06-17 | 2017-02-28 | Samsung Electronics Co., Ltd. | Apparatus and method for supporting network entry in a millimeter-wave mobile broadband communication system |
KR101800221B1 (ko) * | 2011-08-11 | 2017-11-22 | 삼성전자주식회사 | 무선통신 시스템에서 빔 추적 방법 및 장치 |
KR102085003B1 (ko) * | 2013-04-30 | 2020-04-14 | 삼성전자주식회사 | 빔포밍 시스템에서 최적의 송수신 빔 제공 방법 및 장치 |
JP6344893B2 (ja) | 2013-07-19 | 2018-06-20 | キヤノン株式会社 | 通信装置、通信方法およびプログラム |
WO2016053426A1 (en) * | 2014-10-01 | 2016-04-07 | Intel IP Corporation | Mobile communication in macro-cell assisted small cell networks |
CN107534467B (zh) * | 2015-04-17 | 2021-06-15 | 华为技术有限公司 | 传输信息的方法、基站和用户设备 |
WO2017061158A1 (ja) * | 2015-10-06 | 2017-04-13 | ソニー株式会社 | 装置及び方法 |
-
2016
- 2016-07-08 WO PCT/JP2016/070325 patent/WO2017061158A1/ja active Application Filing
- 2016-07-08 RU RU2018111192A patent/RU2717961C2/ru active
- 2016-07-08 CN CN202211396960.5A patent/CN115942462A/zh active Pending
- 2016-07-08 ES ES16853313T patent/ES2844853T3/es active Active
- 2016-07-08 CN CN201680057261.4A patent/CN108141852B/zh active Active
- 2016-07-08 CN CN202211396959.2A patent/CN115942461A/zh active Pending
- 2016-07-08 JP JP2017544393A patent/JP6819601B2/ja not_active Expired - Fee Related
- 2016-07-08 EP EP16853313.1A patent/EP3361798B1/en active Active
- 2016-07-08 US US15/761,589 patent/US10448403B2/en active Active
- 2016-09-26 TW TW105131072A patent/TW201731322A/zh unknown
-
2019
- 2019-10-07 US US16/594,370 patent/US10827497B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003283394A (ja) * | 2002-03-27 | 2003-10-03 | Nec Corp | マルチビームアンテナ送受信装置及び送受信方法並びに送信ビーム選択方法 |
JP2013528968A (ja) * | 2010-03-29 | 2013-07-11 | パンテック カンパニー リミテッド | 無線通信システムにおけるランダムアクセスを実行する装置及び方法 |
WO2014104800A1 (en) * | 2012-12-27 | 2014-07-03 | Samsung Electronics Co., Ltd. | Uplink power control method and apparatus in a beam-forming based wireless communication system |
JP2015023444A (ja) * | 2013-07-19 | 2015-02-02 | 株式会社Nttドコモ | 無線通信方法、無線基地局、ユーザ端末及び無線通信システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3361798A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3817269A4 (en) * | 2018-08-14 | 2021-08-04 | Huawei Technologies Co., Ltd. | RESOURCE MANAGEMENT PROCESS AND DEVICE |
US11963205B2 (en) | 2018-08-14 | 2024-04-16 | Huawei Technologies Co., Ltd. | Resource management method and apparatus |
WO2023161990A1 (ja) * | 2022-02-22 | 2023-08-31 | 株式会社Nttドコモ | 通信装置および通信方法 |
Also Published As
Publication number | Publication date |
---|---|
RU2018111192A3 (ja) | 2019-10-01 |
US20200037302A1 (en) | 2020-01-30 |
ES2844853T3 (es) | 2021-07-22 |
CN108141852B (zh) | 2022-11-29 |
US20180352539A1 (en) | 2018-12-06 |
JP6819601B2 (ja) | 2021-01-27 |
RU2717961C2 (ru) | 2020-03-27 |
JPWO2017061158A1 (ja) | 2018-08-02 |
EP3361798B1 (en) | 2020-12-30 |
RU2018111192A (ru) | 2019-10-01 |
EP3361798A4 (en) | 2019-05-08 |
CN108141852A (zh) | 2018-06-08 |
US10827497B2 (en) | 2020-11-03 |
EP3361798A1 (en) | 2018-08-15 |
TW201731322A (zh) | 2017-09-01 |
CN115942462A (zh) | 2023-04-07 |
US10448403B2 (en) | 2019-10-15 |
CN115942461A (zh) | 2023-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019129006A1 (zh) | 用于无线通信系统的电子设备、方法、装置和存储介质 | |
EP3522585A1 (en) | User equipment, base station, and method therefor | |
US10827497B2 (en) | Apparatus and method for beam selection in downlink transmission | |
JP6894842B2 (ja) | 無線装置及び方法 | |
WO2018020900A1 (ja) | 端末装置、基地局、方法及び記録媒体 | |
US20240334442A1 (en) | Downlink quality improvement method and apparatus | |
JP6992743B2 (ja) | 通信制御装置、端末装置、方法及びプログラム | |
EP3346750B1 (en) | Apparatus and method | |
WO2022153461A1 (ja) | 端末装置及び無線通信方法 | |
US20240147550A1 (en) | Communication control method, wireless terminal, and base station | |
WO2021156994A1 (ja) | 端末装置、基地局装置、及び無線通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16853313 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017544393 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018111192 Country of ref document: RU |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016853313 Country of ref document: EP |