[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017061155A1 - 情報処理装置、情報処理方法及び情報処理システム - Google Patents

情報処理装置、情報処理方法及び情報処理システム Download PDF

Info

Publication number
WO2017061155A1
WO2017061155A1 PCT/JP2016/070121 JP2016070121W WO2017061155A1 WO 2017061155 A1 WO2017061155 A1 WO 2017061155A1 JP 2016070121 W JP2016070121 W JP 2016070121W WO 2017061155 A1 WO2017061155 A1 WO 2017061155A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
unit
region
analysis
information processing
Prior art date
Application number
PCT/JP2016/070121
Other languages
English (en)
French (fr)
Inventor
真司 渡辺
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2017544391A priority Critical patent/JP6777086B2/ja
Priority to US15/761,572 priority patent/US20180342078A1/en
Publication of WO2017061155A1 publication Critical patent/WO2017061155A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/255Detecting or recognising potential candidate objects based on visual cues, e.g. shapes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20092Interactive image processing based on input by user
    • G06T2207/20104Interactive definition of region of interest [ROI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro

Definitions

  • the present disclosure relates to an information processing apparatus, an information processing method, and an information processing system.
  • Patent Literature 1 discloses a technique for executing a plurality of region extraction algorithms for a plurality of image data and selecting an algorithm that extracts the feature in a region of interest in one image designated by the user with the highest accuracy. It is disclosed.
  • Patent Document 2 discloses a technique for analyzing a cell by selecting an algorithm according to the type of the cell.
  • Patent Document 1 an algorithm is determined according to the characteristics of the cell shown in one image. Therefore, when a change due to cell growth or proliferation occurs, the determined algorithm is determined. It is difficult to analyze changes in the cells using. Further, in the technique disclosed in Patent Document 2, a detector for analyzing the state of a cell at a certain point in time is selected from the type of cell, so that the shape or state of the cell, such as cell proliferation or cell death. It is difficult to analyze temporal changes continuously.
  • the present disclosure proposes a new and improved information processing apparatus, information processing method, and information processing system capable of performing highly accurate analysis of cell changes.
  • the detection determining unit that determines at least one detector according to the analysis method and the at least one detector determined by the detector determining unit, the analysis by the analysis method is performed.
  • An information processing apparatus is provided.
  • information including determining at least one detector according to an analysis method and performing analysis by the analysis method using the determined at least one detector A processing method is provided.
  • an imaging apparatus including an imaging unit that generates a captured image, a detector determining unit that determines at least one detector according to an analysis method, and the above-described determination determined by the detector determining unit
  • An information processing system includes an information processing apparatus including an analysis unit that performs analysis by the analysis method on the captured image using at least one detector.
  • FIG. 2 is a block diagram illustrating a configuration example of an information processing device according to a first embodiment of the present disclosure.
  • FIG. It is a table
  • FIG. 3 is a block diagram illustrating a hardware configuration example of an information processing apparatus according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating an outline of a configuration of an information processing system 1 according to an embodiment of the present disclosure.
  • the information processing system 1 includes an imaging device 10 and an information processing device 20.
  • the imaging device 10 and the information processing device 20 are connected by various wired or wireless networks.
  • the imaging device 10 is a device that generates a captured image (moving image).
  • the imaging device 10 according to the present embodiment is realized by a digital camera, for example.
  • the imaging device 10 may be realized by any device having an imaging function, such as a smartphone, a tablet, a game machine, or a wearable device.
  • the imaging apparatus 10 uses various members such as an imaging element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and a lens for controlling the formation of a subject image on the imaging element. Capture real space.
  • the imaging device 10 includes a communication device for transmitting and receiving captured images and the like with the information processing device 20.
  • the imaging device 10 is provided above the imaging stage S for imaging the culture medium M in which the cells to be analyzed are cultured. And the imaging device 10 produces
  • the imaging device 10 may image the culture medium M directly (without passing through other members), or may image the culture medium M through other members such as a microscope.
  • the frame rate is not particularly limited, but is preferably set according to the degree of change of the observation target. Note that the imaging device 10 images a certain imaging region including the culture medium M in order to correctly track changes in the observation target.
  • the moving image data generated by the imaging device 10 is transmitted to the information processing device 20.
  • the imaging device 10 is a camera installed in an optical microscope or the like, but the present technology is not limited to such an example.
  • the imaging device 10 may be an imaging device included in an electron microscope using an electron beam such as an SEM (Scanning Electron Microscope) or a TEM (Transmission Electron Microscope), or an AFM. Even an imaging device included in an SPM (Scanning Probe Microscope) using a short needle such as an (Atomic Force Microscope) or STM (Scanning Tunneling Microscope) Good.
  • the captured image generated by the imaging device 10 is, for example, an image obtained by irradiating an observation target with an electron beam in the case of an electron microscope, and in the case of SPM, the observation target is traced using a short needle. It is an image obtained by this.
  • These captured images can also be analyzed by the information processing apparatus 20 according to the present embodiment.
  • the information processing apparatus 20 is an apparatus having an image analysis function.
  • the information processing apparatus 20 is realized by any apparatus having an image analysis function, such as a PC (Personal Computer), a tablet, and a smartphone. Further, the information processing apparatus 20 may be realized by one or a plurality of information processing apparatuses on a network.
  • the information processing apparatus 20 acquires a captured image from the imaging apparatus 10 and performs tracking of a region to be observed on the acquired captured image.
  • the analysis result of the tracking process by the information processing device 20 is output to a storage device or a display device provided inside or outside the information processing device 20. A functional configuration for realizing each function of the information processing apparatus 20 will be described later.
  • the information processing system 1 is comprised by the imaging device 10 and the information processing apparatus 20, this technique is not limited to this example.
  • the imaging device 10 may perform processing (for example, tracking processing) regarding the information processing device 20.
  • the information processing system 1 is realized by an imaging device having a function of tracking an observation target.
  • the cells to be observed are different from ordinary subjects such as humans, animals, plants, living tissues, or inanimate structures, and grow, divide, join, deform, or necrosis (necrosis) in a short time. ) And other phenomena.
  • a detector is selected on the basis of an image of a cell at a certain time point. Therefore, when a cell changes its shape or state, the same detector is selected. It is difficult to analyze the cells using In the technique disclosed in Japanese Patent No. 4852890, a detector for analyzing the state of the cell at a certain point in time is selected from the cell type, so that the cell shape or cell death, such as cell proliferation or cell death, can be obtained.
  • observation target is an animal, plant, or inanimate structure
  • structure or shape of the observation target changes significantly in a short time, such as the growth of a thin film or nanocluster crystal, observation according to the type of observation It is difficult to continue to analyze the subject continuously.
  • the information processing system 1 selects a detector associated with the analysis method or the evaluation method of the observation target from the detector group, and performs analysis using the selected detector.
  • the information processing system 1 is mainly used for evaluating a change or the like of an observation target.
  • the change or the like of the observation object is analyzed.
  • the information processing system 1 uses the analysis method BB or CC for analysis. Is performed on the observation target. That is, the analysis using the detector selected according to the evaluation method is included in the analysis using the detector selected according to the analysis method. Therefore, in the present disclosure, the analysis method will be described as including an evaluation method.
  • the overview of the information processing system 1 according to an embodiment of the present disclosure has been described above.
  • the information processing apparatus 20 included in the information processing system 1 according to an embodiment of the present disclosure is realized in a plurality of embodiments.
  • a specific configuration example and operation processing of the information processing apparatus 20 will be described.
  • FIG. 2 is a block diagram illustrating a configuration example of the information processing apparatus 20-1 according to the first embodiment of the present disclosure.
  • the information processing apparatus 20-1 includes a detector database (DB) 200, an analysis method acquisition unit 210, a detector determination unit 220, an image acquisition unit 230, a detection unit 240, a detection parameter adjustment unit 250, An area drawing unit 260, an analysis unit 270, and an output control unit 280 are included.
  • DB detector database
  • the detector DB 200 is a database that stores detectors necessary for detecting an analysis target.
  • the detector stored by the detector DB 200 is used to calculate a feature amount from a captured image obtained by capturing an observation target, and to detect a region corresponding to the observation target based on the feature amount.
  • a plurality of detectors are stored in the detector DB 200, and these detectors are optimized according to an analysis method or an evaluation method performed on a specific observation target. For example, in order to detect a specific change in the observation target, a plurality of detectors are associated with the specific change.
  • a set of a plurality of detectors for detecting this specific change is defined herein as a “detection recipe”.
  • the combination of detectors included in the detection recipe is determined in advance for each observation target and for each phenomenon that the observation target can develop.
  • FIG. 3 is a table for explaining the detection recipe according to the present embodiment.
  • the detection recipe is associated with a change (and observation object) of a cell that is an observation target, and a detector (and a corresponding feature amount) for detecting the change of the associated cell is provided.
  • the feature amount means a variable used for detecting an observation target.
  • the attention area detector is a detector for detecting an area where an observation target exists from a captured image.
  • the attention area detector for example, when the observation target is various cells, a cell area detector is included. This attention area detector is used, for example, to detect an existence area of an observation target by calculating a feature quantity such as an edge or a shading.
  • the identification area detector is a detector for detecting, from the captured image, an area that changes due to part or all of the observation target.
  • an identification region detector for example, when the observation target is various cells, a proliferation region detector, a rhythm region detector, a differentiation region detector, a lumen region detector, a death region detector, a neuronal cell body region detector , And axonal region detectors and the like.
  • This identification area detector is used, for example, to detect a change area of an observation target by calculating a feature quantity such as motion between a plurality of frames or LBP (Local Binary Pattern). Thereby, it becomes easy to analyze the characteristic change seen in the observation target.
  • LBP Local Binary Pattern
  • the detection recipe described above has an attention area detector and an identification area detector. By using such a detection recipe, it is possible to detect a region (a region of interest) corresponding to an observation target and identify a region in which the change of the observation target further occurs in the region of interest.
  • the detection recipe may include only the attention area detector.
  • the detection recipe is identified. Only the area detector may be included.
  • the detection recipe A is a detection recipe for detecting changes such as cell migration or infiltration. Therefore, the detection recipe A includes a cell region detector for detecting a cell region and a growth region detector for detecting a cell growth region that causes cell migration or invasion.
  • a region corresponding to cancer cells is detected using a cell region detector, and further, cancer cells are detected using a growth region detector. A region causing infiltration can be detected.
  • the detection recipe A may be prepared for each observation target, for example, a detection recipe Aa for detecting cancer cells, a detection recipe Ab for detecting blood cells, and a detection recipe Ac for detecting lymphocytes. . This is because the characteristics for detection differ for each observation object.
  • a plurality of identification region detectors may be included for one detection recipe.
  • the new observation target is detected again without adopting a detector corresponding to the new observation target, Can be analyzed.
  • a region having a specific feature can be identified and analyzed.
  • the detector as described above may be generated by machine learning using a set of an analysis method or an evaluation method for an observation target and a captured image including an image of the observation target as learning data.
  • the analysis method or the evaluation method for the observation target is associated with at least one detection recipe. Therefore, detection accuracy can be improved by performing machine learning in advance using a captured image including an image of an observation target that is an object of an analysis method or an evaluation method corresponding to the detection recipe.
  • the feature quantity used in the identification region detector may include time series information such as vector data, for example. This is because, for example, the degree of temporal change of the region to be identified in the observation target is detected with higher accuracy.
  • the machine learning described above may be, for example, machine learning using a boost, a support vector machine, or the like. According to these methods, a detector relating to a feature amount that a plurality of images of the observation target has in common is generated.
  • the feature amount used in these methods may be, for example, an edge, LBP, or Haar-like feature amount.
  • Deep Learning may be used as machine learning. In Deep Learning, feature quantities for detecting the above regions are automatically generated, so that a detector can be generated simply by machine learning of a set of learning data.
  • the analysis method acquisition unit 210 is an analysis method or an evaluation method for analyzing an observation target (because the evaluation method is included in the analysis method as described above. Information).
  • the analysis method acquisition unit 210 may acquire an analysis method input by the user via an input unit (not shown) when the observation target is analyzed using the information processing apparatus 20-1.
  • the analysis method acquisition unit 210 may acquire the analysis method from a storage unit (not shown) at a predetermined time.
  • the analysis method acquisition unit 210 may acquire an analysis method via a communication unit (not shown).
  • the analysis method acquisition unit 210 acquires information related to an analysis method (evaluation method) such as “scratch assay of cancer cells” and “evaluation of drug efficacy of cardiomyocytes”, for example.
  • an analysis method evaluation method
  • the analysis method is simply “size analysis”, “motion analysis”, or the like
  • the analysis method acquisition unit 210 may acquire information on the type of cell to be observed in addition to the analysis method.
  • Information regarding the analysis method acquired by the analysis method acquisition unit 210 is output to the detector determination unit 220.
  • the detector determination unit 220 determines at least one detector according to the information on the analysis method acquired from the analysis method acquisition unit 210. For example, the detector determining unit 220 determines a detection recipe associated with the type of the acquired analysis method, and acquires the detector included in the detection recipe from the detector DB 200.
  • FIG. 4 is a table showing an example of a detection recipe corresponding to the analysis method.
  • one analysis method is associated with at least one change (and observation object) of cells to be observed. This is because cell analysis is performed for specific changes in the cell. Further, as shown in FIG. 3, each change in the observation target is associated with a detection recipe. Therefore, if the analysis method is determined, the detector used for the detection process is also determined according to the analysis method.
  • the detector determining unit 220 determines a detection recipe A corresponding to the cancer cell scratch assay. This is because the cancer cell scratch assay evaluates cancer cell migration and invasion.
  • the detection recipe A determined here may be a detection recipe Aa corresponding to a cancer cell. Thereby, detection accuracy and analysis accuracy can be further improved.
  • the detector determination unit 220 acquires the detectors included in the detection recipe A from the detector DB 200.
  • the detector determining unit 220 determines detection recipe B, detection recipe C, and detection recipe D as detection recipes corresponding to cardiomyocyte drug efficacy evaluation. This is because cardiomyocyte pharmacological evaluation evaluates cardiomyocyte rhythm, proliferation, division, or cell death by administration. In this case, a detection recipe B corresponding to rhythm, a detection recipe C corresponding to proliferation and division, and a detection recipe D corresponding to cell death are determined. By detecting using the detectors included in these detection recipes, it is possible to classify the rhythmic region, the dividing region, the cell dead region, and the like of the cardiomyocytes. Thereby, an analysis result can be enriched more.
  • the detector determination unit 220 determines a plurality of detectors according to the analysis method
  • the following analysis is also possible. For example, there are cases where it is desired to simultaneously analyze a plurality of types of cells.
  • the detector determining unit 220 can acquire a plurality of types of cells at a time by acquiring the detectors according to a plurality of analysis methods. Thereby, for example, when analyzing fertilization, it becomes possible to detect and analyze an egg and a sperm, respectively. When it is desired to analyze the interaction between cancer cells and immune cells, two cells can be detected and analyzed, respectively. It is also possible to identify cells (red blood cells, white blood cells, or platelets) included in the blood cell group.
  • the function of the detector determination unit 220 has been described above. Information regarding the detector determined by the detector determination unit 220 is output to the detection unit 240.
  • the image acquisition unit 230 acquires image data including a captured image generated by the imaging device 10 via a communication device (not shown). For example, the image acquisition unit 230 acquires the moving image data generated by the imaging device 10 in time series. The acquired image data is output to the detection unit 240.
  • the image acquired by the image acquisition unit 230 includes an RGB image or a grayscale image.
  • the image acquisition unit 230 converts the captured image that is the RGB image into a gray scale.
  • the detection unit 240 detects a region of interest for the captured image acquired by the image acquisition unit 230 using the detector determined by the detector determination unit 220.
  • the attention area is an area corresponding to the observation target as described above.
  • the detection unit 240 detects a region corresponding to the observation target in the captured image by using a region-of-interest detector included in the detection recipe. Moreover, the detection part 240 detects the area
  • the detection unit 240 calculates a feature amount designated by the detector from the acquired captured image, and generates feature amount data regarding the captured image.
  • the detection unit 240 detects the attention area from the captured image using the feature amount data.
  • Boost an algorithm for the detection unit 240 to detect the attention area
  • the feature amount data generated for the captured image is data regarding the feature amount specified by the detector used by the detection unit 240. If the detector used by the detector 240 is generated by a learning method that does not require preset feature values such as Deep Learning, the detector 240 uses the feature values automatically set by the detector. Calculated from the captured image.
  • the detection unit 240 may detect each region of interest using the plurality of detectors.
  • the detection unit 240 may detect a region of interest using a region-of-interest detector, and may further detect a region desired to be identified from the region of interest previously detected using a recognition region detector. Thereby, the specific change of the observation target to be analyzed can be detected in more detail.
  • the detection unit 240 detects an observation target using the detection recipe A (see FIG. 3) determined by the detector determination unit 220.
  • the detection recipe A includes a cell region detector and a growth region detector for cancer cells.
  • the detection unit 240 can detect a region corresponding to a cancer cell using a cell region detector, and can further detect a region in which the cancer cell causes infiltration by using a growth region detector. .
  • the detection unit 240 may perform processing for associating the detected attention area with the analysis result obtained by the analysis by the analysis unit 270. For example, although described later in detail, the detection unit 240 may assign an ID for identifying an analysis method or the like for each detected attention area. Thereby, for example, management of each analysis result obtained in the post-analysis processing of each attention area can be facilitated. Moreover, the detection part 240 may determine the value of ID provided to each attention area
  • the detection unit 240 assigns IDs “10000001” and “10000002” to the two regions of interest detected using the first detector, and detects using the second detector.
  • An ID “00010001” may be assigned to one attention area.
  • the detection section 240 may assign an ID “1000001” to the attention area.
  • the detection unit 240 may detect the attention area based on the detection parameter.
  • the detection parameter means a parameter that can be adjusted according to the state of the captured image that varies depending on the state of the observation target or the observation condition, or the imaging condition or specification of the imaging device 10. More specifically, the detection parameters include the scale of the captured image, the size of the observation target, the speed of movement, the size of the cluster formed by the observation target, a random variable, and the like.
  • the detection parameter may be automatically adjusted according to the state of the observation target or the observation condition as described above, or the imaging parameter of the imaging apparatus 10 (for example, imaging magnification, imaging frame, brightness, etc.). It may be adjusted automatically accordingly. Further, this detection parameter may be adjusted by a detection parameter adjustment unit described later.
  • the detection unit 240 outputs the detection result (information such as the attention region, the identification region, and the label) to the region drawing unit 260 and the analysis unit 270.
  • the detection parameter adjustment unit 250 adjusts the detection parameters related to the detection processing of the detection unit 240 according to the state of the observation target, the observation conditions, the imaging conditions of the imaging device 10, or the like. For example, the detection parameter adjustment unit 250 may automatically adjust the detection parameter according to each of the above states and conditions, or the detection parameter may be adjusted by a user operation.
  • FIG. 5 is a diagram illustrating an example of an interface for inputting adjustment contents to the detection parameter adjustment unit 250 according to the present embodiment.
  • the interface 2000 for adjusting the detection parameters includes a detection parameter type 2001 and a slider 2002.
  • Detection parameter types 2001 include Size Ratio (reduction rate of captured image), Object Size (threshold of detection size), and Cluster Size (threshold for determining whether the observation target corresponding to the detected attention area is the same. ), And Step Size (frame unit of detection processing).
  • other detection parameters such as a luminance threshold value may be included in the detection parameter type 2001 as an adjustment target. These detection parameters are changed by operating the slider 2002.
  • the detection parameter adjusted by the detection parameter adjustment unit 250 is output to the detection unit 240.
  • the area drawing unit 260 superimposes the detection results such as the attention area, the identification area, and the ID on the captured image that is the target of the detection process of the detection unit 240.
  • the area drawing unit 260 may indicate the attention area, the identification area, and the like by a graphic such as a straight line, a curve, or a plane closed by a curve, for example.
  • the shape of the plane showing these regions may be an arbitrary shape such as a rectangle, a circle, an ellipse, or the like, or may be a shape formed according to the contour of the region corresponding to the observation target.
  • the area drawing unit 260 may display the ID in the vicinity of the attention area or the identification area. Specific drawing processing by the area drawing unit 260 will be described later.
  • the area drawing unit 260 outputs the drawing processing result to the output control unit 280.
  • the analysis unit 270 analyzes the attention area (and the identification area) detected by the detection unit 240. For example, the analysis unit 270 performs an analysis based on an analysis method associated with the detector used for detecting the attention area on the attention area.
  • the analysis performed by the analysis unit 270 is an analysis for quantitatively evaluating, for example, the growth, proliferation, division, cell death, movement, or shape change of a cell to be observed. In this case, the analysis unit 270 calculates, for example, feature quantities such as cell size, area, number, shape (for example, roundness), and motion vector from the attention area or the identification area.
  • the analysis unit 270 analyzes the degree of migration or invasion of the region of interest corresponding to the cancer cells. Specifically, the analysis unit 270 analyzes a region in which a phenomenon of migration or invasion occurs in a region of interest corresponding to a cancer cell. The analysis unit 270 calculates the area, size, motion vector, and the like of the region of interest as a feature amount of the region of interest or a region where migration or infiltration occurs.
  • the analysis unit 270 when the medicinal efficacy evaluation is performed on the cardiomyocytes, the analysis unit 270 generates a region in which rhythm is generated, a region in which proliferation (division) occurs, and cell death among regions of interest corresponding to the cardiomyocytes Analysis is performed for each of the areas. More specifically, the analysis unit 270 analyzes the size of the rhythm of the region where the rhythm is generated, analyzes the differentiation speed of the region where the proliferation occurs, and also determines the area of the region where the cell death occurs. May be analyzed. Thus, the analysis unit 270 may perform analysis for each detection result obtained using each detector by the detection unit 240. As a result, even for a single type of cell, a plurality of analyzes can be performed at a time, so that an evaluation requiring a plurality of analyzes can be comprehensively performed.
  • the analysis unit 270 outputs an analysis result including the calculated feature amount and the like to the output control unit 280.
  • the output control unit 280 outputs the drawing information acquired from the region drawing unit 260 (the captured image after the region superimposition) and the analysis result acquired from the analysis unit 270 as output data.
  • the output control unit 280 may display the output data on a display unit (not shown) provided inside or outside the information processing apparatus 20-1.
  • the output control unit 280 may store the output data in a storage unit (not shown) provided inside or outside the information processing apparatus 20-1.
  • the output control unit 280 may transmit the output data to an external device (server, cloud, terminal device) or the like via a communication unit (not shown) included in the information processing device 20-1.
  • the output control unit 280 may display a captured image including an ID and a figure indicating at least one of the attention region or the identification region superimposed by the region drawing unit 260. Good.
  • the output control unit 280 may output the analysis result acquired from the analysis unit 270 in association with the region of interest.
  • the output control unit 280 may output the analysis result with an ID for identifying the region of interest. Thereby, the observation object corresponding to the attention area can be output in association with the analysis result.
  • the output control unit 280 may process the analysis result acquired from the analysis unit 270 into a table, a graph, a chart, or the like, or may output the data as a data file suitable for analysis by another analysis device. It may be output.
  • the output control unit 280 may further superimpose a display indicating the analysis result on a captured image including a graphic indicating the region of interest and output the captured image.
  • the output control unit 280 may output a heat map that is color-coded according to the analysis result (for example, the magnitude of the movement) of the specific movement of the observation target, superimposed on the captured image.
  • FIG. 6 is a flowchart illustrating an example of processing performed by the information processing device 20-1 according to the first embodiment of the present disclosure.
  • the analysis method acquisition unit 210 acquires information on an analysis method through a user operation or batch processing (S101).
  • the detector determination unit 220 acquires information on the analysis method from the analysis method acquisition unit 210, and selects and determines a detection recipe associated with the analysis method from the detector DB 200 (S103).
  • the image acquisition unit 230 acquires data related to the captured image generated by the imaging device 10 via a communication unit (not shown) (S105).
  • FIG. 7 is a diagram illustrating an example of a captured image generated by the imaging device 10 according to the present embodiment.
  • a captured image 1000 includes cancer cell regions 300a, 300b, and 300c, and immune cell regions 400a and 400b.
  • This captured image 1000 is a captured image obtained by the imaging device 10 imaging cancer cells and immune cells present in the medium M.
  • regions of interest corresponding to cancer cells and immune cells are detected, and each region of interest is analyzed.
  • the detection unit 240 detects a region of interest using a detector included in the detection recipe determined by the detector determination unit 220 (S107). Then, the detection unit 240 performs labeling on the detected attention area (S109).
  • the detection unit 240 detects the region of interest using all the detectors (S111). For example, in the example shown in FIG. 7, the detector 240 uses two detectors, a detector for detecting cancer cells and a detector for detecting immune cells.
  • the area drawing unit 260 draws the attention area and the ID associated with the attention area on the captured image used for the detection process (S113). ).
  • FIG. 8 is a diagram illustrating an example of a drawing process performed by the area drawing unit 260 according to the present embodiment.
  • rectangular attention regions 301a, 301b, and 301c are drawn around the cancer cell regions 300a, 300b, and 300c.
  • rectangular attention regions 401a, 401b, and 401c are drawn around the immune cell regions 400a, 400b, and 400c.
  • the area drawing unit 260 may change the outline indicating the attention area to a solid line, a broken line, or the like. May be changed.
  • the area drawing unit 260 may attach an ID indicating the attention area in the vicinity of each of the attention areas 301 and 401 (in the example illustrated in FIG. 8, outside the frame of the attention area).
  • IDs 302a, 302b, 302c, 402a, and 402b may be attached in the vicinity of the attention areas 301a, 301b, 301c, 401a, and 401b.
  • ID 302a is displayed as “ID: 00000001”, and ID 402a is displayed as “ID: 00010001”.
  • ID is not limited to the above-described example, but is numbered so that it can be easily distinguished according to the type of analysis or the state of the cell.
  • the output control unit 280 outputs the drawing information by the region drawing unit 260 (S115).
  • the analysis unit 270 analyzes the attention area detected by the detection unit 240 (S117).
  • the output control unit 280 outputs the analysis result by the analysis unit 270 (S119).
  • FIG. 9 is a diagram illustrating an output example by the output control unit 280 according to the present embodiment.
  • the display unit D (provided inside or outside the information processing apparatus 20-1) shows a captured image 1000 drawn by the region drawing unit 260 and an analysis result by the analysis unit 270.
  • a table 1100 is included. A region of interest and an ID are superimposed on the captured image 1000. Further, in the table 1100 showing the analysis results, the length (Length), size (Size), roundness (Circularity), and cell type of the region of interest corresponding to each ID are shown. For example, in the row of ID “00000001” in Table 1100, the length (150), size (1000), and roundness (0.
  • the output control unit 280 may output the analysis results as a table, or the output control unit 280 may output the analysis results in a format such as a graph or mapping.
  • a detection recipe (detector) is determined according to the analysis method acquired by the analysis method acquisition unit 210, and the detection unit 240 detects a region of interest from the captured image using the determined detector.
  • the analysis unit 270 analyzes the region of interest.
  • the user can detect the observation target from the captured image and analyze the observation target only by determining the analysis method of the observation target.
  • a detector suitable for each shape and state of the observation object that changes with the passage of time is selected. This makes it possible to analyze the observation target with high accuracy regardless of the change in the observation target.
  • a detector suitable for detecting a change in the observation target is automatically selected, which improves convenience for the user who wants to analyze the change in the observation target.
  • the detection unit 240 first detects a region of interest of a plurality of cells using one detector, and the detection unit 240 further detects an attention corresponding to an observation target that shows a specific change from the detected region of interest.
  • the area is narrowed down using other detectors. Thereby, only the attention area
  • FIG. 10 is a diagram showing a first output example by the region-of-interest narrowing processing by the plurality of detectors according to the present embodiment.
  • captured image 1001 includes cancer cell regions 311a, 311b, 410a and 410b.
  • the cancer cell regions 311a and 311b are regions that have changed from the cancer cell regions 310a and 310b one frame before due to the proliferation of the cancer cells.
  • the cancer cell regions 410a and 410b have not changed (eg, due to cell death or inactivity).
  • the detection unit 240 first detects the region of interest using a detector (cell region detector) that detects the region of the cancer cell. Then, the detection unit 240 further narrows down the attention area where the proliferation phenomenon has occurred from the attention area detected previously using a detector (growth area detector) that detects the area where the cells are growing.
  • a detector cell region detector
  • growth area detector detector
  • attention regions 312a and 312b are drawn around the cancer cell regions 311a and 311b.
  • motion vectors 313a and 313b which are feature quantities indicating motion, are drawn inside the attention areas 312a and 312b.
  • rectangular regions 411a and 411b are drawn around the cancer cell regions 410a and 410b, but the line type of the rectangular region 411 is set to be different from the line type of the region of interest 312. .
  • the analysis results corresponding to the narrowed attention area 312 are displayed.
  • the growth rate of cancer cells corresponding to the attention area 312 is displayed in the table 1200.
  • the state of the cancer cell corresponding to the attention area 312 is indicated as “Carcinoma Proliferation”, and it is displayed in Table 1200 that the cancer cell is in a proliferating state.
  • the detection unit 240 detects a plurality of regions of interest of one type of cell using a plurality of detectors. Thereby, even if one cell has a plurality of different features, it is possible to analyze the attention area detected according to each feature. Therefore, for example, even when one cell has a specific feature such as an axon like a nerve cell, it is possible to detect and analyze only the region of the axon.
  • FIG. 11 is a diagram showing a second output example by the region-of-interest narrowing processing by the plurality of detectors according to the present embodiment.
  • the captured image 1002 includes a nerve cell region 320.
  • the nerve cell includes a nerve cell body and an axon. Since the nerve cell body has a planar structure, it is easy to detect the area 320A of the nerve cell body included in the captured image 1002, but the axon has a long structure and is three-dimensional. Therefore, it is difficult to distinguish the background of the captured image 1002 from the axon region 320B, as shown in FIG. Therefore, the detection unit 240 according to the present embodiment uses two detectors, a detector for detecting a region of a nerve cell body and a detector for detecting a region of an axon. Each component is detected separately.
  • the detection unit 240 when the detection unit 240 uses a detector for detecting a region of the neuronal cell body, the detection unit 240 detects the attention region 321 corresponding to the neuronal cell body.
  • the detector 240 when the detector 240 uses a detector for detecting an axon region, the detector 240 detects a region of interest 322 corresponding to the axon.
  • the attention area 322 may be drawn by a curve indicating an axon area.
  • FIG. 12 is a block diagram illustrating a configuration example of the information processing device 20-2 according to the second embodiment of the present disclosure.
  • the information processing apparatus 20-2 includes a detector database (DB) 200, an analysis method acquisition unit 210, a detector determination unit 220, an image acquisition unit 230, a detection unit 240, a detection parameter adjustment unit 250,
  • DB detector database
  • a shape setting unit 290 and a region specifying unit 295 are further included.
  • functions of the shape setting unit 290 and the region specifying unit 295 will be described.
  • the shape setting unit 290 sets a display shape indicating the region of interest drawn by the region drawing unit 260.
  • FIG. 13 is a diagram illustrating an example of the shape setting process of the region of interest by the shape setting unit 290 according to the present embodiment.
  • a region of interest 331 is drawn around the region 330 to be observed.
  • the shape setting unit 290 may set the display shape indicating the attention area 331 to a rectangle (area 331a) or an ellipse (area 331b).
  • the shape setting unit 290 detects a region corresponding to the outline of the observation target region 330 by image analysis on a captured image (not shown), and uses the shape obtained based on the detection result as the shape of the attention region 331. It may be set. For example, as illustrated in FIG. 13, the shape setting unit 290 detects the contour of the observation target region 330 by image analysis, and pays attention to the shape indicated by the closed curve (or curve) that displays the detected contour.
  • the shape of the region 331 may be used (for example, the region 331c). Thereby, the area 330 to be observed and the attention area 331 can be more closely associated on the captured image.
  • a fitting technique such as Snakes or Level Set can be used.
  • the region drawing unit 260 may perform the shape setting process of the region of interest based on the shape of the outline of the region to be observed as described above.
  • the region drawing unit 260 may set the shape of the attention region using the attention region detection result by the detection unit 240.
  • the detection result can be used as it is for setting the shape of the region of interest, and there is no need to perform image analysis on the captured image again.
  • the region specifying unit 295 specifies a region of interest that is to be analyzed by the analysis unit 270 from the region of interest detected by the detection unit 240.
  • the region specifying unit 295 specifies a region of interest to be analyzed among a plurality of regions of interest detected by the detection unit 240 according to a user operation or a predetermined condition.
  • the analysis unit 270 analyzes the attention region specified by the region specification unit 295. More specifically, when the attention area is specified by the user's operation, the area specifying unit 295 selects which attention area to specify from among the plurality of attention areas displayed by the output control unit 280 by the user's operation. Then, the analysis unit 270 analyzes the selected attention area.
  • FIG. 14 is a diagram illustrating an example of a region-of-interest specifying process by the region specifying unit 295 according to the present embodiment.
  • the display unit D includes a captured image 1000 and a table 1300 indicating analysis results.
  • the captured image 1000 includes cancer cell regions 350a, 350b, and 350c, and other cell regions 400a and 400b.
  • the detection unit 240 detects a region of interest corresponding to the cancer cell region 300.
  • the region drawing unit 260 draws attention regions around the cancer cell regions 350a, 350b, and 350c, and the output control unit 280 displays each attention region.
  • the region of interest 351a corresponding to the cancer cell region 350a and the region of interest 351b corresponding to the cancer cell region 350b are selected as the region of interest to be analyzed by the region specifying unit 295.
  • the region of interest corresponding to the cancer cell region 350b is excluded from the selection, and thus is not subject to analysis. Thereby, only the selected attention areas 351a and 351b are analyzed.
  • Table 1300 includes IDs (corresponding to IDs 352a and 352b) corresponding to the attention areas 351a and 352b, and descriptions regarding the length, size, roundness, and cell type of each attention area.
  • IDs corresponding to IDs 352a and 352b
  • Table 1300 includes IDs (corresponding to IDs 352a and 352b) corresponding to the attention areas 351a and 352b, and descriptions regarding the length, size, roundness, and cell type of each attention area.
  • the area specifying unit 295 is displayed in the table 1300. Similar to the above-described selection of the attention area, analysis results for all the attention areas detected before the area identification processing by the area identification unit 295 may be displayed in the table 1300. In this case, the analysis result for the attention area in which the attention area is not specified by the area specifying unit 295 may be removed from the table 1300.
  • the region specifying unit 295 may specify the region of interest as the analysis target by selecting the region of interest again from the region of interest once removed from the analysis target
  • the analysis result of the attention area may be displayed again in the table 1300.
  • a necessary analysis result can be freely selected, and an analysis result necessary for evaluation can be extracted. Further, for example, it is possible to compare analysis results regarding a plurality of attention areas, and to perform a new analysis by comparing the analysis results.
  • a display 340 (340a and 340b) for indicating the region of interest identified by the region identifying unit 295 may be displayed in the vicinity of the region of interest 351. Thereby, it can be grasped which attention area is specified as an analysis object.
  • the configuration example of the information processing apparatus 20-2 according to the second embodiment of the present disclosure has been described.
  • the shape of a graphic that defines a region of interest For example, a shape that fits the contour of the region to be observed can be set as the shape of the region of interest.
  • region used as the analysis object can be specified among the detected attention area
  • the information processing apparatus 20-2 includes both the shape setting unit 290 and the region specifying unit 295, but the present technology is not limited to such an example.
  • the information processing apparatus may further add only the shape setting unit 290 or may further add only the region specifying unit 295 to the configuration of the information processing apparatus according to the first embodiment of the present disclosure. .
  • FIG. 15 is a block diagram illustrating a hardware configuration example of the information processing apparatus according to the embodiment of the present disclosure.
  • the illustrated information processing apparatus 900 can be realized, for example, by the information processing apparatus 20 in the above-described embodiment.
  • the information processing apparatus 900 includes a CPU (Central Processing unit) 901, a ROM (Read Only Memory) 903, and a RAM (Random Access Memory) 905.
  • the information processing apparatus 900 may include a host bus 907, a bridge 909, an external bus 911, an interface 913, an input device 915, an output device 917, a storage device 919, a drive 921, a connection port 925, and a communication device 929.
  • the information processing apparatus 900 may include a processing circuit called DSP (Digital Signal Processor) or ASIC (Application Specific Integrated Circuit) instead of or in addition to the CPU 901.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • the CPU 901 functions as an arithmetic processing unit and a control unit, and controls all or a part of the operation in the information processing apparatus 900 according to various programs recorded in the ROM 903, the RAM 905, the storage apparatus 919, or the removable recording medium 923.
  • the CPU 901 controls the overall operation of each functional unit included in the information processing apparatus 20 in the above embodiment.
  • the ROM 903 stores programs and calculation parameters used by the CPU 901.
  • the RAM 905 primarily stores programs used in the execution of the CPU 901, parameters that change as appropriate during the execution, and the like.
  • the CPU 901, the ROM 903, and the RAM 905 are connected to each other by a host bus 907 configured by an internal bus such as a CPU bus. Further, the host bus 907 is connected to an external bus 911 such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 909.
  • PCI Peripheral Component Interconnect / Interface
  • the input device 915 is a device operated by the user, such as a mouse, a keyboard, a touch panel, a button, a switch, and a lever.
  • the input device 915 may be, for example, a remote control device using infrared rays or other radio waves, or may be an external connection device 927 such as a mobile phone that supports the operation of the information processing device 900.
  • the input device 915 includes an input control circuit that generates an input signal based on information input by the user and outputs the input signal to the CPU 901. The user operates the input device 915 to input various data and instruct processing operations to the information processing device 900.
  • the output device 917 is a device that can notify the user of the acquired information visually or audibly.
  • the output device 917 can be, for example, a display device such as an LCD, PDP, and OELD, an acoustic output device such as a speaker and headphones, and a printer device.
  • the output device 917 outputs the result obtained by the processing of the information processing device 900 as a video such as text or an image, or outputs it as a sound such as sound.
  • the storage device 919 is a data storage device configured as an example of a storage unit of the information processing device 900.
  • the storage device 919 includes, for example, a magnetic storage device such as an HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, or a magneto-optical storage device.
  • the storage device 919 stores programs executed by the CPU 901, various data, various data acquired from the outside, and the like.
  • the drive 921 is a reader / writer for a removable recording medium 923 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, and is built in or externally attached to the information processing apparatus 900.
  • the drive 921 reads information recorded on the attached removable recording medium 923 and outputs the information to the RAM 905.
  • the drive 921 writes a record in the mounted removable recording medium 923.
  • the connection port 925 is a port for directly connecting a device to the information processing apparatus 900.
  • the connection port 925 can be, for example, a USB (Universal Serial Bus) port, an IEEE 1394 port, a SCSI (Small Computer System Interface) port, or the like. Further, the connection port 925 may be an RS-232C port, an optical audio terminal, an HDMI (registered trademark) (High-Definition Multimedia Interface) port, or the like.
  • the communication device 929 is a communication interface configured with a communication device for connecting to the communication network NW, for example.
  • the communication device 929 may be, for example, a communication card for wired or wireless LAN (Local Area Network), Bluetooth (registered trademark), or WUSB (Wireless USB).
  • the communication device 929 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), or a modem for various communication.
  • the communication device 929 transmits and receives signals and the like using a predetermined protocol such as TCP / IP with the Internet and other communication devices, for example.
  • the communication network NW connected to the communication device 929 is a network connected by wire or wireless, and is, for example, the Internet, a home LAN, infrared communication, radio wave communication, satellite communication, or the like.
  • Each component described above may be configured using a general-purpose member, or may be configured by hardware specialized for the function of each component. Such a configuration can be appropriately changed according to the technical level at the time of implementation.
  • the information processing system 1 is configured to include the imaging device 10 and the information processing device 20, but the present technology is not limited to such an example.
  • the imaging apparatus 10 may include functions (detection function and analysis function) that the information processing apparatus 20 has.
  • the information processing system 1 is realized by the imaging device 10.
  • the information processing apparatus 20 may include a function (imaging function) of the imaging apparatus 10.
  • the information processing system 1 is realized by the information processing apparatus 20.
  • the imaging apparatus 10 may have a part of the functions of the information processing apparatus 20, and the information processing apparatus 20 may have a part of the functions of the imaging apparatus 10.
  • the cells are listed as the observation target of the analysis by the information processing system 1, but the present technology is not limited to such an example.
  • the observation object may be a cell organelle, a biological tissue, an organ, a human, an animal, a plant, or an inanimate structure, etc., and when these structures or shapes change in a short time, It is possible to analyze the change of the observation target using the information processing system 1.
  • each step in the processing of the information processing apparatus of the present specification does not necessarily have to be processed in time series in the order described as a flowchart.
  • each step in the processing of the information processing apparatus may be processed in an order different from the order described in the flowchart, or may be processed in parallel.
  • a detector determining unit that determines at least one detector according to an analysis method; Using the at least one detector determined by the detector determination unit, an analysis unit that performs analysis by the analysis method;
  • An information processing apparatus comprising: (2) Using the at least one detector determined by the detector determination unit, further comprising a detection unit for detecting a region of interest from within the captured image; The information processing apparatus according to (1), wherein the analysis unit analyzes the region of interest. (3) When a plurality of detectors are determined by the detector determining unit, The information processing apparatus according to (2), wherein the detection unit determines the region of interest based on a plurality of detection results obtained using the plurality of detectors.
  • An area drawing unit that draws a display indicating the region of interest on the captured image based on a detection result of the detection unit;
  • a display shape corresponding to the attention area includes a shape detected based on an image analysis on the captured image.
  • a display shape corresponding to the attention area includes a shape calculated based on a detection result of the attention area by the detection unit.
  • the information processing apparatus according to any one of (2) to (9), further including a region specifying unit that specifies a target region to be analyzed by the analysis unit from the detected target region.
  • the detector is a detector generated by machine learning using as a learning data a set of the analysis method and image data related to an analysis object analyzed by the analysis method, The information processing apparatus according to any one of (2) to (10), wherein the detection unit detects the region of interest based on feature data obtained from the captured image using the detector.
  • the detector determining unit determines at least one detector according to a type of change indicated by an analysis target analyzed by the analysis method. Processing equipment.
  • the information processing apparatus wherein the analysis target analyzed by the analysis method includes a cell, an organelle, or a biological tissue formed by the cell.
  • An information processing method including: (15) An imaging device including an imaging unit that generates a captured image; A detector determining unit that determines at least one detector according to an analysis method; Using the at least one detector determined by the detector determination unit, an analysis unit that performs analysis by the analysis method on the captured image;
  • An information processing apparatus comprising:
  • An information processing system comprising:
  • imaging device 20 information processing device 200 detector DB 210 analysis method acquisition unit 220 detector determination unit 230 image acquisition unit 240 detection unit 250 detection parameter adjustment unit 260 region drawing unit 270 analysis unit 280 output control unit 290 shape setting unit 295 region specifying unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Image Analysis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】細胞の変化について精度高く解析を行うこと。 【解決手段】解析方法に応じて少なくとも一の検出器を決定する検出器決定部と、上記検出器決定部により決定された上記少なくとも一の検出器を用いて、上記解析方法による解析を行う解析部と、を備える情報処理装置が提供される。

Description

情報処理装置、情報処理方法及び情報処理システム
 本開示は、情報処理装置、情報処理方法及び情報処理システムに関する。
 医療および生命科学の研究において、多くの種類の細胞の運動、成長、代謝、または増殖等の変化を観察し、解析することが行われている。しかし、観察者の目視による細胞の観察は観察者の主観によるところが大きく、客観的な解析結果を得ることが困難である。そこで、近年、細胞を撮像して得られる撮像画像を画像解析することにより細胞の変化を解析する技術の開発が進められている。
 撮像画像に含まれる細胞に対応する領域について解析するためには、細胞を検出するためのアルゴリズムを適切に選択することが求められる。例えば、下記特許文献1には、複数の画像データについて複数の領域抽出アルゴリズムを実行し、ユーザが指定した一の画像内の注目領域における特徴を最も精度高く抽出したアルゴリズムを選択するための技術が開示されている。また、下記特許文献2には、細胞の種類に応じたアルゴリズムを選択することにより当該細胞を解析するための技術が開示されている。
特許第5284863号公報 特許第4852890号公報
 しかし、上記特許文献1に開示された技術では、一の画像に示された細胞の特徴に応じてアルゴリズムが決定されるので、細胞の成長または増殖等による変化が生じた場合、決定されたアルゴリズムを用いて当該細胞の変化を解析することは困難である。また、上記特許文献2に開示された技術では、ある時点における細胞の状態について解析するための検出器が細胞の種類から選択されるので、細胞の増殖または細胞死等、細胞の形状または状態の時間変化を連続的に解析することが困難である。
 そこで、本開示では、細胞の変化について精度高く解析を行うことが可能な、新規かつ改良された情報処理装置、情報処理方法および情報処理システムを提案する。
 本開示によれば、解析方法に応じて少なくとも一の検出器を決定する検出器決定部と、上記検出器決定部により決定された上記少なくとも一の検出器を用いて、上記解析方法による解析を行う解析部と、を備える情報処理装置が提供される。
 また、本開示によれば、解析方法に応じて少なくとも一の検出器を決定することと、決定された上記少なくとも一の検出器を用いて、上記解析方法による解析を行うことと、を含む情報処理方法が提供される。
 また、本開示によれば、撮像画像を生成する撮像部を備える撮像装置と、解析方法に応じて少なくとも一の検出器を決定する検出器決定部と、上記検出器決定部により決定された上記少なくとも一の検出器を用いて、上記撮像画像について上記解析方法による解析を行う解析部と、を備える情報処理装置と、を備える情報処理システムが提供される。
 以上説明したように本開示によれば、細胞の変化について精度高く解析を行うことができる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係る情報処理システムの構成の概要を示す図である。 本開示の第1の実施形態に係る情報処理装置の構成例を示すブロック図である。 同実施形態に係る検出レシピを説明するための表である。 解析方法に対応する検出レシピの一例を示す表である。 同実施形態に係る検出パラメータ調整部に調整内容を入力するためのインターフェースの一例を示す図である。 同実施形態に係る情報処理装置による処理の一例を示すフローチャートである。 同実施形態に係る撮像装置により生成された撮像画像の一例を示す図である。 同実施形態に係る領域描画部による描画処理の一例を示す図である。 同実施形態に係る出力制御部による出力例を示す図である。 同実施形態に係る複数の検出器による注目領域の絞り込み処理による第1の出力例を示す図である。 同実施形態に係る複数の検出器による注目領域の絞り込み処理による第2の出力例を示す図である。 本開示の第2の実施形態に係る情報処理装置の構成例を示すブロック図である。 同実施形態に係る形状設定部による注目領域の形状の設定処理に関する例を示す図である。 同実施形態に係る領域特定部による注目領域の特定処理に関する例を示す図である。 本開示の実施形態に係る情報処理装置のハードウェア構成例を示すブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.情報処理システムの概要
 2.第1の実施形態
  2.1.情報処理装置の構成例
  2.2.情報処理装置の処理例
  2.3.効果
  2.4.応用例
 3.第2の実施形態
  3.1.情報処理装置の構成例
  3.2.効果
 4.ハードウェア構成例
 5.まとめ
 <1.情報処理システムの概要>
 図1は、本開示の一実施形態に係る情報処理システム1の構成の概要を示す図である。図1に示すように、情報処理システム1は、撮像装置10、および情報処理装置20を備える。撮像装置10および情報処理装置20は、有線または無線の各種ネットワークにより接続される。
 (撮像装置)
 撮像装置10は、撮像画像(動画像)を生成する装置である。本実施形態に係る撮像装置10は、例えば、デジタルカメラにより実現される。他にも、撮像装置10は、例えばスマートフォン、タブレット、ゲーム機、またはウェアラブル装置など、撮像機能を有するあらゆる装置により実現されてもよい。例えば、撮像装置10は、CCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子、および撮像素子への被写体像の結像を制御するためのレンズなどの各種の部材を用いて実空間を撮像する。また、撮像装置10は、情報処理装置20との間で撮像画像等を送受信するための通信装置を含む。本実施形態において、撮像装置10は、解析対象である細胞が培養されている培地Mを撮像するための撮像ステージSの上方に設けられる。そして、撮像装置10は、培地Mを特定のフレームレートで撮像することにより動画像データを生成する。なお、撮像装置10は、培地Mを直接(他の部材を介さずに)撮像してもよいし、顕微鏡等の他の部材を介して培地Mを撮像してもよい。また、上記フレームレートは特に限定されないが、観察対象の変化の度合いに応じて設定されることが好ましい。なお、撮像装置10は、観察対象の変化を正しく追跡するため、培地Mを含む一定の撮像領域を撮像する。撮像装置10により生成された動画像データは、情報処理装置20へ送信される。
 なお、本実施形態において、撮像装置10は光学顕微鏡等に設置されるカメラであることを想定しているが、本技術はかかる例に限定されない。例えば、撮像装置10は、SEM(Scanning Electron Microscope;走査型電子顕微鏡)、もしくはTEM(Transmission Electron Microscope;透過型電子顕微鏡)等の電子線を用いた電子顕微鏡等に含まれる撮像装置、または、AFM(Atomic Force Microscope;原子間力顕微鏡)、もしくはSTM(Scanning Tunneling Microscope;走査型トンネル顕微鏡)等の短針を用いたSPM(Scanning Probe Microscope;走査型プローブ顕微鏡)等に含まれる撮像装置であってもよい。この場合、撮像装置10により生成される撮像画像は、例えば電子顕微鏡の場合、電子線を観察対象に照射することにより得られる画像であり、また、SPMの場合、短針を用いて観察対象をなぞることにより得られる画像である。これらの撮像画像も、本実施形態に係る情報処理装置20により画像解析され得る。
 (情報処理装置)
 情報処理装置20は、画像解析機能を有する装置である。情報処理装置20は、PC(Personal Computer)、タブレット、スマートフォンなど、画像解析機能を有するあらゆる装置により実現される。また、情報処理装置20は、ネットワーク上の1または複数の情報処理装置によって実現されてもよい。本実施形態に係る情報処理装置20は、撮像装置10から撮像画像を取得し、取得した撮像画像について観察対象の領域の追跡を実行する。情報処理装置20による追跡処理の解析結果は、情報処理装置20の内部または外部に備えられる記憶装置または表示装置等に出力される。なお、情報処理装置20の各機能を実現する機能構成については後述する。
 なお、本実施形態において、撮像装置10および情報処理装置20により情報処理システム1が構成されるが、本技術はかかる例に限定されない。例えば、撮像装置10が、情報処理装置20に関する処理(例えば追跡処理)を行ってもよい。この場合、情報処理システム1は、観察対象の追跡機能を有する撮像装置により実現される。
 ここで、観察対象となる細胞は、人、動物、植物、生体組織、または無生物である構造体等の通常の被写体と異なり、短時間において成長、分裂、結合、変形、またはネクローシス(Necrosis;壊死)等の各種現象を発生させる。そうすると、例えば特許第5284863号明細書に開示された技術では、ある時点における細胞の画像をもとに検出器が選択されるため、細胞が形状または状態を変化させた場合に、同一の検出器を用いて当該細胞を解析することは困難である。また、特許第4852890号明細書に開示された技術では、ある時点における細胞の状態について解析するための検出器が細胞の種類から選択されるので、細胞の増殖または細胞死等、細胞の形状または状態の時間変化を連続的に解析することが困難である。そのため、上記文献に開示された技術では、細胞の変化について解析または評価を行うことが困難である。また、観察対象が動物、植物または無生物である構造体であっても、薄膜またはナノクラスタ結晶の成長等、観察対象の構造または形状が短時間で著しく変化する場合、観察の種類に応じた観察対象を連続的に解析し続けることは困難である。
 そこで、本実施形態に係る情報処理システム1は、観察対象の解析方法または評価方法に関連付けられた検出器を検出器群から選択し、選択された検出器を用いて解析を行う。かかる技術により、観察対象の変化を解析するための解析方法または評価するための評価方法を選択することで、当該解析方法等に応じた変化を発生させている観察対象を検出し、当該観察対象について解析することができる。これにより、観察対象の変化についてより精度高く解析を行うことができる。なお、本実施形態に係る情報処理システム1は、主に観察対象の変化等を評価するために用いられることが想定される。しかし、観察対象の変化等を評価するためには、観察対象の変化等を解析することが前提となる。例えば、ユーザが情報処理システム1を用いて観察対象についてAAという評価を行う場合、AAという評価に必要な解析方法がBBまたはCCであれば、情報処理システム1において、解析方法BBまたはCCによる解析が当該観察対象について行われることとなる。つまり、評価方法に応じて選択された検出器を用いて解析することは、解析方法に応じて選択された検出器を用いて解析することに含まれる。そのため、本開示において、解析方法は評価方法を含むものとして説明する。
 以上、本開示の一実施形態に係る情報処理システム1の概要について説明した。本開示の一実施形態に係る情報処理システム1に含まれる情報処理装置20は、複数の実施形態において実現される。以下、情報処理装置20の具体的な構成例および動作処理について説明する。
 <2.第1の実施形態>
 まず、図2~図11を参照して本開示の第1の実施形態に係る情報処理装置20-1について説明する。
  [2.1.情報処理装置の構成例]
 図2は、本開示の第1の実施形態に係る情報処理装置20-1の構成例を示すブロック図である。図2に示すように、情報処理装置20-1は、検出器データベース(DB)200、解析方法取得部210、検出器決定部220、画像取得部230、検出部240、検出パラメータ調整部250、領域描画部260、解析部270、および出力制御部280を含む。
 (検出器DB)
 検出器DB200は、解析対象を検出するために必要な検出器を格納するデータベースである。検出器DB200により格納された検出器は、観察対象を撮像した撮像画像から特徴量を計算し、当該特徴量に基づいて当該観察対象に対応する領域を検出するために用いられる。検出器DB200には複数の検出器が格納されており、これらの検出器は、特定の観察対象に対して行う解析方法または評価方法に応じてそれぞれ最適化されている。例えば、観察対象のある特定の変化を検出するために、当該特定の変化に対して複数の検出器が関連付けられている。この特定の変化を検出するための複数の検出器の組を、本明細書において「検出レシピ」と定義する。検出レシピに含まれる検出器の組み合わせは、例えば、観察対象ごとに、および当該観察対象が発現し得る現象ごとに予め決定される。
 図3は、本実施形態に係る検出レシピを説明するための表である。図3に示すように、検出レシピは、観察対象である細胞の変化(および観察対象)に関連付けられており、関連付けられた細胞の変化を検出するための検出器(および対応する特徴量)を有している。特徴量とは、観察対象を検出するために用いられる変数を意味する。
 ここで、図3に示すように、検出器DB200に格納される検出器として、注目領域検出器、および識別領域検出器の2種類が存在する。注目領域検出器は、観察対象が存在する領域を撮像画像から検出するための検出器である。注目領域検出器として、例えば、観察対象が種々の細胞である場合、細胞領域検出器が含まれる。この注目領域検出器は、例えば、エッジまたは濃淡等の特徴量を計算することにより観察対象の存在領域を検出するために用いられる。
 一方、識別領域検出器は、観察対象の一部または全部により変化している領域を撮像画像から検出するための検出器である。識別領域検出器として、例えば、観察対象が種々の細胞である場合、増殖領域検出器、律動領域検出器、分化領域検出器、内腔領域検出器、死領域検出器、神経細胞体領域検出器、および軸索領域検出器等が含まれる。この識別領域検出器は、例えば、複数フレーム間における動きまたはLBP(Local Binary Pattern)等の特徴量を計算することにより観察対象の変化領域を検出するために用いられる。これにより、観察対象にみられる特有の変化について解析することが容易になる。
 上述した検出レシピは、注目領域検出器、および識別領域検出器を有する。このような検出レシピを用いることにより、観察対象に対応する領域(注目領域)を検出し、当該注目領域のうち、さらに観察対象の変化が生じている領域を識別することができる。なお、単に観察対象に対応する領域に関する解析を行う場合(例えば細胞領域の大きさまたは移動等について解析する場合)、検出レシピには注目領域検出器のみが含まれていてもよい。また、観察対象に対応する領域が撮像画像中に一つしか含まれていない場合、または観察対象の解析において個々の観察対象に対応する領域を検出しなくてもよい場合、検出レシピには識別領域検出器のみが含まれていてもよい。
 図3に示すように、例えば、検出レシピAは、細胞の遊走または浸潤といった変化を検出するための検出レシピである。そのため、検出レシピAには、細胞の領域を検出するための細胞領域検出器、および細胞の遊走または浸潤を引き起こす細胞の増殖領域を検出するための増殖領域検出器が含まれる。がん細胞の浸潤について解析する場合、検出レシピAを選択することにより、細胞領域検出器を用いてがん細胞に対応する領域を検出し、さらに、増殖領域検出器を用いてがん細胞が浸潤を引き起こしている領域を検出することができる。
 なお、この検出レシピAは、例えば、がん細胞検出用の検出レシピAa、血球検出用の検出レシピAb、およびリンパ球検出用の検出レシピAcというように、観察対象ごとに用意されてもよい。観察対象ごとに、検出するための特徴が異なるからである。
 また、検出レシピCおよび検出レシピEのように、一つの検出レシピに対して複数の識別領域検出器が含まれていてもよい。これにより、例えば、細胞の分化等により異なる特徴を有する観察対象が新たに生じた場合においても、再度新たな観察対象に対応する検出器を採用することなく、当該新たな観察対象について検出し、解析することができる。また、一つの観察対象について複数の異なる特徴を有している場合であっても、特定の特徴を有する領域を識別して解析することができる。
 これらの検出器は、観察対象について精度高く検出するよう最適化され得る。例えば、上述したような検出器は、観察対象に対する解析方法または評価方法と、観察対象の像を含む撮像画像との組を学習データとする機械学習により生成されてもよい。具体的には後述するが、観察対象に対する解析方法または評価方法は、少なくとも一の検出レシピと関連付けられている。そのため、検出レシピと対応する解析方法または評価方法の対象である観察対象の像を含む撮像画像を用いて予め機械学習させることにより、検出精度を向上させることができる。
 なお、識別領域検出器に用いられる特徴量には、例えば、ベクトルデータ等の時系列情報が含まれてもよい。これは、例えば、観察対象のうち識別したい領域の時間変化の程度をより精度高く検出するためである。
 上述した機械学習は、例えば、boost、サポートベクタマシン等による機械学習であってもよい。これらの手法によれば、複数の観察対象の像が共通して有する特徴量に関する検出器が生成される。これらの手法において用いられる特徴量は、例えば、エッジ、LBP、またはHaar-like特徴量などであってもよい。また、機械学習としてDeep Learningが用いられてもよい。Deep Learningでは、上記のような領域を検出するための特徴量を自動で生成するので、学習データの組について機械学習させるだけで検出器を生成することができる。
 (解析方法取得部)
 解析方法取得部210は、観察対象を解析するための解析方法または評価方法(上述したように評価方法は解析方法に含まれるため、以下、評価方法と解析方法とを併せて「解析方法」と呼称する)に関する情報を取得する。例えば、解析方法取得部210は、情報処理装置20-1を用いて観察対象の解析を行う際に、不図示の入力部を介してユーザにより入力された解析方法を取得してもよい。また、解析方法取得部210は、例えば、予め決められたスケジュールに従って解析を行う際は、所定の時点において不図示の記憶部から解析方法を取得してもよい。さらに、解析方法取得部210は、不図示の通信部を介して解析方法を取得してもよい。
 解析方法取得部210は、例えば、「がん細胞のスクラッチアッセイ」「心筋細胞の薬効評価」等の解析方法(評価方法)に関する情報を取得する。解析方法が単に「大きさ解析」「動き解析」等である場合は、解析方法取得部210は、解析方法に加えて、観察対象である細胞の種類に関する情報を併せて取得してもよい。
 解析方法取得部210により取得された解析方法に関する情報は、検出器決定部220に出力される。
 (検出器決定部)
 検出器決定部220は、解析方法取得部210から取得した解析方法に関する情報に応じて、少なくとも一の検出器を決定する。例えば、検出器決定部220は、取得した解析方法の種類に関連付けられている検出レシピを決定し、検出器DB200から当該検出レシピに含まれている検出器を取得する。
 図4は、解析方法に対応する検出レシピの一例を示す表である。図4に示すように、一の解析方法は、観察対象である細胞の少なくとも一の変化(および観察対象)に関連付けられている。これは、細胞の解析が、細胞の特定の変化について行われるものだからである。また、図3に示したように、観察対象のそれぞれの変化は、検出レシピに対応づけられている。そのため、解析方法が決定されれば、検出処理に用いられる検出器も解析方法に応じて決定される。
 例えば、図4に示したように、評価としてがん細胞スクラッチアッセイを行う場合、検出器決定部220は、がん細胞スクラッチアッセイに応じた検出レシピAを決定する。これは、がん細胞スクラッチアッセイが、がん細胞の遊走および浸潤について評価するものだからである。ここで決定された検出レシピAは、がん細胞に対応する検出レシピAaであってもよい。これにより、さらに検出精度および解析精度を向上させることができる。検出器決定部220は、検出レシピAに含まれる検出器を検出器DB200から取得する。
 また、心筋細胞薬効評価を行う場合、検出器決定部220は、心筋細胞薬効評価に対応する検出レシピとして、検出レシピB、検出レシピC、および検出レシピDを決定する。これは、心筋細胞薬効評価として、投薬により心筋細胞の律動、増殖、分裂、または細胞死等を評価するものだからである。この場合、律動に対応する検出レシピB、増殖および分裂に対応する検出レシピC、並びに細胞死に対応する検出レシピDが決定される。これらの検出レシピに含まれる検出器を用いて検出することにより、心筋細胞のうち律動している領域、分裂している領域、および細胞死した領域等をそれぞれ分別することができる。これにより、解析結果をより充実させることができる。
 他にも、検出器決定部220が解析方法に応じて複数の検出器を決定することにより、以下のような解析も可能となる。例えば、複数の種類の細胞について同時に解析したい場合が存在する。この場合、検出器決定部220が複数の解析方法に応じて検出器をそれぞれ取得することにより、一度に複数の種類の細胞について解析することができる。これにより、例えば、受精について解析する場合に、卵子と精子についてそれぞれ検出し、解析することが可能となる。また、がん細胞と免疫細胞の相互作用について解析したい場合、2つの細胞をそれぞれ検出し、解析することができる。また、血球細胞群に含まれる細胞(赤血球、白血球、または血小板など)を識別することも可能となる。
 また、細胞の成長過程における変化について解析したい場合が存在する。この場合、成長による形態の変化に応じて最適化された複数の検出器を含む検出レシピを決定することにより、形態が変化しつつある細胞について連続的に解析を行うことができる。これにより、例えば、神経細胞の軸索の成長および変化、培地においてコロニーを形成する培養細胞の形態の変化、並びに受精卵の形態の変化等を追跡的に解析することが可能となる。
 さらに、細胞が複数の反応を示し得る試験について評価したい場合が存在する。この場合、細胞が取り得る形態または状態に対応する複数の検出器を含む検出レシピを決定することにより、細胞群の複数の反応について総合的に評価することができる。これにより、例えば、薬効評価または毒性試験評価における細胞の形態の変化、拍動、生死、および増殖能の変化等について、総合的に解析を行うことが可能となる。
 以上、検出器決定部220の機能について説明した。検出器決定部220により決定された検出器に関する情報は、検出部240に出力される。
 (画像取得部)
 画像取得部230は、撮像装置10により生成された撮像画像を含む画像データを、不図示の通信装置を介して取得する。例えば、画像取得部230は、撮像装置10により生成された動画像データを時系列に取得する。取得した画像データは、検出部240に出力される。
 なお、画像取得部230が取得する画像は、RGB画像またはグレースケール画像等が含まれる。取得した画像がRGB画像である場合、画像取得部230は、当該RGB画像である撮像画像をグレースケールに変換する。
 (検出部)
 検出部240は、画像取得部230が取得した撮像画像について、検出器決定部220において決定された検出器を用いて注目領域を検出する。注目領域とは、上述したように、観察対象に対応する領域である。
 例えば、検出部240は、検出レシピに含まれている注目領域検出器を用いることにより、撮像画像内の観察対象に対応する領域を検出する。また、検出部240は、検出レシピに含まれている識別領域検出器を用いることにより、観察対象において特定の変化が生じている領域を検出する。
 検出部240は、より具体的には、検出器が指定する特徴量を取得した撮像画像から算出し、当該撮像画像に関する特徴量データを生成する。検出部240は、この特徴量データを用いて、注目領域を撮像画像内から検出する。例えば、検出部240が注目領域を検出するためのアルゴリズムとして、Boost、サポートベクタマシン等が挙げられる。当該撮像画像ついて生成される特徴量データは、検出部240が用いる検出器が指定する特徴量についてのデータである。なお、検出部240が用いる検出器がDeep Learning等、特徴量を予め設定する必要がない学習法により生成された場合は、検出部240は、当該検出器により自動的に設定された特徴量について撮像画像から算出する。
 また、検出部240は、検出器決定部220が決定した検出レシピに複数の検出器が含まれている場合、その複数の検出器を用いてそれぞれ注目領域を検出してもよい。この場合、例えば、検出部240は、注目領域検出器を用いて注目領域を検出し、さらに識別領域検出器を用いて先に検出された注目領域からさらに識別したい領域を検出してもよい。これにより、解析したい観察対象の特定の変化をより詳細に検出することができる。
 例えば、検出部240は、検出器決定部220により決定された検出レシピA(図3参照)を用いて観察対象の検出を行うとする。検出レシピAには、がん細胞を対象とする細胞領域検出器および増殖領域検出器が含まれている。検出部240は、細胞領域検出器を用いてがん細胞に対応する領域を検出し、さらに、増殖領域検出器を用いることにより、がん細胞が浸潤を引き起こしている領域を検出することができる。
 なお、検出部240は、検出した注目領域を、解析部270による解析により得られる解析結果と関連付けるための処理を行ってもよい。例えば、詳しくは後述するが、検出部240は、検出した各注目領域について、解析方法等を識別するためのIDを付与してもよい。これにより、例えば各注目領域のポスト解析処理において得られた各解析結果についての管理を容易にすることができる。また、検出部240は、複数の検出器による検出結果に応じて、各注目領域に付与されるIDの値を決定してもよい。例えば、検出部240は、複数の桁を有するIDのうち、下位の桁に検出された注目領域を識別するための番号を付番し、上位の桁に注目領域の検出に用いられた検出器に対応する番号を付番してもよい。より具体的には、検出部240は、第1の検出器を用いて検出した2つの注目領域について「10000001」、および「10000002」というIDを付与し、第2の検出器を用いて検出した1つの注目領域について「00010001」というIDを付与してもよい。また、検出部240は、1つの注目領域について第1の検出器および第2の検出器のいずれを用いても検出できた場合、当該注目領域について「10010001」というIDを付与してもよい。これにより、解析部270による解析処理時において、解析結果に対応する注目領域についてどの解析方法に対応するかを容易に識別することができる。
 また、検出部240は、検出パラメータに基づいて注目領域を検出してもよい。ここで検出パラメータとは、観察対象の状態もしくは観察条件等に応じて変動する撮像画像の状態、または撮像装置10の撮像条件もしくは仕様等に応じて調整可能なパラメータを意味する。より具体的には、検出パラメータには、撮像画像の縮尺、観察対象の大きさ、動きの速さ、観察対象が形成するクラスタの大きさ、確率変数等が含まれる。検出パラメータは、例えば、上述したような観察対象の状態または観察条件等に応じて自動的に調整されてもよいし、撮像装置10の撮像条件(例えば撮像倍率、撮像フレーム、明るさ等)に応じて自動的に調整されてもよい。また、この検出パラメータは後述する検出パラメータ調整部により調整されてもよい。
 検出部240は、検出結果(注目領域、識別領域、およびラべル等の情報)を、領域描画部260、および解析部270に出力する。
 (検出パラメータ調整部)
 検出パラメータ調整部250は、上述したように、観察対象の状態、観察条件または撮像装置10の撮像条件等に応じて、検出部240の検出処理に関する検出パラメータを調整する。検出パラメータ調整部250は、例えば上記の各状態および各条件に応じて検出パラメータを自動的に調整してもよいし、ユーザの操作により検出パラメータが調整されてもよい。
 図5は、本実施形態に係る検出パラメータ調整部250に調整内容を入力するためのインターフェースの一例を示す図である。図5に示したように、検出パラメータを調整するためのインターフェース2000には、検出パラメータの種類2001、およびスライダ2002が含まれている。検出パラメータの種類2001には、Size Ratio(撮像画像の縮小率)、Object Size(検出サイズの閾値)、Cluster Size(検出した注目領域に対応する観察対象が同一であるかを判別するための閾値)、およびStep Size(検出処理のフレーム単位)が含まれる。他にも、輝度の閾値等の他の検出パラメータも調整対象として検出パラメータの種類2001に含まれてもよい。これらの検出パラメータは、スライダ2002を操作することにより変更される。
 検出パラメータ調整部250により調整された検出パラメータは、検出部240に出力される。
 (領域描画部)
 領域描画部260は、検出部240の検出処理の対象である撮像画像上に、注目領域、識別領域、およびID等の検出結果を重畳させる。領域描画部260は、例えば、直線、曲線、または曲線等によって閉じられた平面等の図形により注目領域および識別領域等を示してもよい。これらの領域を示す平面の形状は、例えば矩形、円形、楕円形等、任意の形状であってもよく、また、観察対象に対応する領域の輪郭に応じて形成された形状であってもよい。また、領域描画部260は、上記のIDを注目領域または識別領域の近傍に表示させてもよい。領域描画部260による具体的な描画処理については、後述する。領域描画部260は、描画処理の結果を出力制御部280に出力する。
 (解析部)
 解析部270は、検出部240が検出した注目領域(および識別領域)について解析を行う。解析部270は、例えば、注目領域の検出に用いられた検出器に関連付けられている解析方法に基づく解析を、当該注目領域について行う。解析部270により行われる解析とは、例えば観察対象である細胞の成長、増殖、分裂、細胞死、運動または形状の変化を定量的に評価するための解析である。この場合、解析部270は、例えば、細胞のサイズ、面積、個数、形状(例えば、真円度)、動きベクトル等の特徴量について注目領域または識別領域から算出する。
 図4を参照すると、例えばがん細胞についてスクラッチアッセイを行う場合、解析部270は、がん細胞に対応する注目領域の遊走または浸潤の程度について解析する。具体的には、解析部270は、がん細胞に対応する注目領域のうち、遊走または浸潤の現象が発生している領域について解析する。解析部270は、注目領域または遊走もしくは浸潤の現象が発生している領域の特徴量として、当該領域の面積、サイズ、動きベクトルなどを算出する。
 また、例えば、心筋細胞について薬効評価を行う場合、解析部270は、心筋細胞に対応する注目領域のうち、律動が生じている領域、増殖(分裂)が生じている領域、および細胞死が生じている領域の各々について、解析を行う。より具体的には、解析部270は、律動が生じている領域の律動の大きさを解析し、増殖が生じている領域の分化スピードを解析し、また、細胞死が生じている領域の面積について解析してもよい。このように解析部270は、検出部240による各々の検出器を用いて得られた検出結果ごとに、解析を行ってもよい。これにより、単一の種類の細胞についても、複数の解析を一度に行うことができるので、複数の解析が必要な評価を総合的に行うことができる。
 解析部270は、算出した特徴量等を含む解析結果を、出力制御部280に出力する。
 (出力制御部)
 出力制御部280は、領域描画部260から取得した描画情報(領域重畳後の撮像画像等)、および解析部270から取得した解析結果を出力データとして出力する。出力制御部280は、例えば、情報処理装置20-1の内部または外部に備えられる表示部(不図示)に出力データを表示してもよい。また、出力制御部280は、情報処理装置20-1の内部または外部に備えられる記憶部(不図示)に出力データを記憶してもよい。また、出力制御部280は、情報処理装置20-1の備える通信部(不図示)を介して、外部装置(サーバ、クラウド、端末装置)等に出力データを送信してもよい。
 出力制御部280は、例えば、表示部に出力データを表示する場合、領域描画部260によって重畳された注目領域または識別領域の少なくともいずれかを示す図形、およびIDを含む撮像画像を表示してもよい。
 また、出力制御部280は、解析部270から取得した解析結果を注目領域に関連付けて出力してもよい。例えば、出力制御部280は、解析結果に注目領域を識別するIDを付して出力してもよい。これにより、注目領域に対応する観察対象を解析結果に関連付けて出力することができる。
 また、出力制御部280は、解析部270から取得した解析結果を、表、グラフ、チャート等に加工して出力してもよいし、他の解析装置による解析に適したデータファイルに加工して出力してもよい。
 また、出力制御部280は、注目領域を示す図形を含む撮像画像に、解析結果を示す表示をさらに重畳させて出力させてもよい。例えば、出力制御部280は、観察対象の特定の動きの解析結果(例えば動きの大きさ)に応じて色分けされるヒートマップを、撮像画像上に重畳させて出力させてもよい。これにより、当該撮像画像が表示部に表示されたときに、当該撮像画像を視認することにより、観察対象の解析結果について直感的に理解することができる。
 なお、出力制御部280による出力例について、詳しくは後述する。
  [2.2.情報処理装置の処理例]
 以上、本開示の一実施形態に係る情報処理装置20-1の構成例について説明した。次に、本開示の一実施形態に係る情報処理装置20-1による処理の一例について、図6~図9を参照して説明する。
 図6は、本開示の第1の実施形態に係る情報処理装置20-1による処理の一例を示すフローチャートである。まず、解析方法取得部210は、ユーザの操作またはバッチ処理等により解析方法に関する情報を取得する(S101)。次に、検出器決定部220は、解析方法取得部210から解析方法に関する情報を取得し、解析方法に関連付けられている検出レシピを検出器DB200から選択して決定する(S103)。
 また、画像取得部230は、撮像装置10により生成された撮像画像に関するデータを不図示の通信部を介して取得する(S105)。
 図7は、本実施形態に係る撮像装置10により生成された撮像画像の一例を示す図である。図7に示すように、撮像画像1000には、がん細胞(Carcinoma)の領域300a、300bおよび300c、並びに免疫細胞(Immune)の領域400aおよび400bが含まれている。この撮像画像1000は、撮像装置10が培地Mに存在するがん細胞および免疫細胞を撮像することにより得られた撮像画像である。以降の処理では、がん細胞および免疫細胞に対応する注目領域が検出され、各注目領域について解析が行われる。
 図6に戻ると、次に、検出部240は、検出器決定部220により決定された検出レシピに含まれる検出器を用いて、注目領域を検出する(S107)。そして、検出部240は、検出した注目領域についてラべリングを行う(S109)。
 なお、検出レシピに複数の検出器が含まれている場合、検出部240は全ての検出器を用いて注目領域の検出を行う(S111)。例えば、図7に示した例では、検出部240は、がん細胞を検出するための検出器、および免疫細胞を検出するための検出器の、2つの検出器が用いられる。
 全ての検出器を用いて検出処理が行われた後(S111/YES)、領域描画部260は、注目領域および注目領域に関連付けられたIDを、検出処理に用いた撮像画像に描画する(S113)。
 図8は、本実施形態に係る領域描画部260による描画処理の一例を示す図である。図8に示すように、がん細胞の領域300a、300b、および300cの周囲には、矩形の注目領域301a、301b、および301cが描画されている。また、免疫細胞の領域400a、400b、および400cの周囲には、矩形の注目領域401a、401b、および401cが描画されている。細胞の種類に応じた区別を明確にするために、例えば図8に示すように、領域描画部260は、注目領域を示す輪郭線を実線または破線等に変更してもよく、輪郭線の配色を変えてもよい。また、領域描画部260は、各注目領域301および401の近傍(図8に示した例では注目領域の枠外)に、注目領域を示すIDが付されてもよい。例えば、注目領域301a、301b、301c、401a、および401bの近傍に、ID302a、302b、302c、402a、および402bが付されてもよい。
 図8に示した例では、ID302aは「ID:00000001」と表示し、ID402aは「ID:00010001」と表示している。このように、5桁目の数字を変更することにより、細胞の種類に応じて各注目領域を区別することができる。なお、IDは、上述した例に限られず、解析の種類、または細胞の状態等に応じて区別しやすいように付番される。
 図6に戻ると、出力制御部280は、領域描画部260による描画情報を出力する(S115)。
 また、解析部270は、検出部240により検出された注目領域について解析を行う(S117)。次に、出力制御部280が、解析部270による解析結果を出力する(S119)。
 図9は、本実施形態に係る出力制御部280による出力例を示す図である。図9に示すように、表示部D(情報処理装置20-1の内部または外部に備えられる)には、領域描画部260により描画処理された撮像画像1000、および解析部270による解析結果を示す表1100が含まれている。撮像画像1000には、注目領域およびIDが重畳されている。また、解析結果を示す表1100には、各IDに対応する注目領域の長さ(Length)、サイズ(Size)、真円度(Circularity)、および細胞の種類が示されている。例えば、表1100のID「00000001」の行には、撮像画像1000において「ID:00000001」のIDが付されたがん細胞の長さ(150)、サイズ(1000)、真円度(0.56)、およびがん細胞の種類(Carcinoma)が表示されている。このように、出力制御部280は解析結果を表として出力してもよいし、出力制御部280は、解析結果を、グラフやマッピング等の形式により出力してもよい。
  [2.3.効果]
 以上、本開示の第1の実施形態に係る情報処理装置20-1の構成例および処理例について説明した。本実施形態によれば、解析方法取得部210が取得した解析方法に応じて検出レシピ(検出器)が決定され、検出部240が決定された検出器を用いて撮像画像から注目領域を検出し、解析部270が当該注目領域について解析を行う。これにより、ユーザは観察対象の解析方法を決めるだけで、当該観察対象を撮像画像から検出し、当該観察対象についての解析を行うことができる。解析方法に基づいて検出器を決定することにより、時間の経過に応じて変化する観察対象のそれぞれの形状および状態に適した検出器が選択される。これにより、観察対象の変化にかかわらず観察対象を精度高く解析することが可能となる。また、解析方法を選択すれば観察対象の変化の検出に適した検出器が自動的に選択されるので、観察対象の変化を解析したいユーザにとっての利便性も向上する。
  [2.4.応用例]
 続いて、本開示の第1の実施形態に係る情報処理装置20-1による処理の応用例について、図10および図11を参照しながら説明する。
 (複数の検出器による注目領域の絞り込み処理の第1の例)
 まず、複数の検出器による注目領域の絞り込み処理の第1の例について説明する。本応用例では、検出部240は、まず一の検出器を用いて複数の細胞の注目領域を検出し、さらに検出部240は、検出した注目領域から特定の変化を示す観察対象に対応する注目領域を、他の検出器を用いて絞り込む。これにより、複数の注目領域から、特定の変化を示す観察対象に対応する注目領域のみを解析対象とすることができる。したがって、例えば、複数のがん細胞のうち、増殖しているもの、および細胞死しているものを区別して、当該がん細胞を解析することが可能となる。
 図10は、本実施形態に係る複数の検出器による注目領域の絞り込み処理による第1の出力例を示す図である。図10を参照すると、撮像画像1001にはがん細胞の領域311a、311b、410aおよび410bが含まれている。このうち、がん細胞の領域311aおよび311bは、がん細胞の増殖等により、一フレーム前におけるがん細胞の領域310aおよび310bから変化した領域である。その一方で、がん細胞の領域410aおよび410bは変化していない(例えば細胞死または不活性などが原因である)。
 この場合、検出部240は、まずがん細胞の領域を検出する検出器(細胞領域検出器)を用いて注目領域を検出する。そして、検出部240はさらに、細胞が増殖している領域を検出する検出器(増殖領域検出器)を用いて、先に検出した注目領域から、増殖現象が生じている注目領域を絞り込む。
 図10に示した例では、がん細胞の領域311aおよび311bの周囲には、注目領域312aおよび312bが描画されている。また、注目領域312aおよび312bの内部には、動きを示す特徴量である動きベクトル313aおよび313bが描画されている。一方で、がん細胞の領域410aおよび410bの周囲には、矩形領域411aおよび411bが描画されているが、矩形領域411の線種は、注目領域312の線種と異なるように設定されている。これにより、同一の種類の細胞であっても、解析対象が絞り込まれていることを示すことができる。
 また、解析結果を示す表1200には、絞り込まれた注目領域312に対応する解析結果のみが表示される。また、注目領域312に対応するがん細胞の成長速度が、表1200に表示される。また、注目領域312に対応するがん細胞の状態は、「Carcinoma Proliferation」と示されており、当該がん細胞が増殖状態にあることが表1200に表示される。
 以上、本応用例によれば、ある種類の細胞について特定の変化を示している細胞のみを検出することが可能である。したがって、特定の変化について解析したい場合において、当該特定の変化を示している細胞のみを解析することが可能となる。
 (応用例2:複数の検出器による注目領域の絞り込み処理の第2の例)
 次に、複数の検出器による注目領域の絞り込み処理の第2の例について説明する。本応用例では、検出部240は、複数の検出器を用いて、一の種類の細胞の注目領域を複数検出する。これにより、一の細胞が複数の異なる特徴を有している場合であっても、それぞれの特徴に応じて検出される注目領域について解析することができる。したがって、例えば、神経細胞のように一の細胞に軸索のような特異的な特徴を有する場合であっても、軸索の領域のみを検出して解析することが可能となる。
 図11は、本実施形態に係る複数の検出器による注目領域の絞り込み処理による第2の出力例を示す図である。図11を参照すると、撮像画像1002には、神経細胞の領域320が含まれている。神経細胞は、上述したように、神経細胞体および軸索を含む。神経細胞体は平面的な構造を有しているため、撮像画像1002に含まれる神経細胞体の領域320Aの検出は容易であるが、軸索は長尺状の構造を有し、3次元的に伸長する特性を有するため、図11に示すように、撮像画像1002の背景と軸索の領域320Bとの判別が困難である。そのため、本実施形態に係る検出部240は、神経細胞体の領域を検出するための検出器、および軸索の領域を検出するための検出器の2つの検出器を用いることにより、神経細胞の構成要素のそれぞれを区別して検出する。
 例えば、撮像画像1002bに示すように、検出部240が神経細胞体の領域を検出するための検出器を用いた場合、検出部240は神経細胞体に対応する注目領域321を検出する。一方で、撮像画像1002cに示すように、検出部240が軸索の領域を検出するための検出器を用いた場合、検出部240は軸索に対応する注目領域322を検出する。この注目領域322は、例えば軸索の領域を示す曲線により描画されてもよい。
 以上、本応用例によれば、一の細胞について複数の特徴を有する場合にそれぞれを区別して検出することが可能である。したがって、一の細胞の有するある特徴について解析したい場合において、当該特徴を有する領域のみを解析することが可能となる。
 <3.第2の実施形態>
 次に、図12~図14を参照して本開示の第2の実施形態に係る情報処理装置20-2について説明する。
  [3.1.情報処理装置の構成例]
 図12は、本開示の第2の実施形態に係る情報処理装置20-2の構成例を示すブロック図である。図12に示すように、情報処理装置20-2は、検出器データベース(DB)200、解析方法取得部210、検出器決定部220、画像取得部230、検出部240、検出パラメータ調整部250、領域描画部260、解析部270、および出力制御部280に加えて、さらに形状設定部290、および領域特定部295を含む。以下、形状設定部290および領域特定部295の機能について説明する。
 (形状設定部)
 形状設定部290は、領域描画部260により描画される注目領域を示す表示の形状を設定する。
 図13は、本実施形態に係る形状設定部290による注目領域の形状の設定処理に関する例を示す図である。図13に示したように、観察対象の領域330の周囲には、注目領域331が描画されている。形状設定部290は、例えば、注目領域331を示す表示の形状を、矩形(領域331a)、または楕円形(領域331b)としてもよい。
 また、形状設定部290は、撮像画像(不図示)に対する画像解析により観察対象の領域330の輪郭に相当する領域を検出し、当該検出結果に基づいて得られた形状を注目領域331の形状として設定してもよい。例えば、図13に示したように、形状設定部290は、観察対象の領域330の輪郭を画像解析により検出し、検出された当該輪郭を表示する閉曲線(または曲線)により示される形状を、注目領域331の形状としてもよい(例えば領域331c)。これにより、観察対象の領域330と注目領域331とを、撮像画像上においてより密接に関連付けることができる。なお、観察対象の領域330の輪郭をより詳細にフィッティングするためには、例えば、SnakesまたはLevel Setといったようなフィッティング技術が用いられ得る。
 形状設定部290により決定された形状に関する情報は、領域描画部260に出力される。
 なお、上述したような観察対象の領域の輪郭の形状に基づく注目領域の形状の設定処理は、領域描画部260により行われてもよい。この場合、領域描画部260は、検出部240による注目領域の検出結果を用いて、注目領域の形状を設定してもよい。これにより、検出結果をそのまま注目領域の形状の設定に利用することができるので、再度撮像画像に対して画像解析を実施する必要がない。
 (領域特定部)
 領域特定部295は、検出部240により検出された注目領域から、解析部270による解析の対象となる注目領域を特定する。例えば、領域特定部295は、検出部240により検出された複数の注目領域のうち、解析の対象とする注目領域を、ユーザの操作または所定の条件に応じて特定する。そして、解析部270は、領域特定部295により特定された注目領域について解析を行う。より具体的には、ユーザの操作により注目領域を特定する場合、領域特定部295は、出力制御部280により表示された複数の注目領域のうちどの注目領域を特定するかをユーザの操作により選択し、選択された注目領域について解析部270は解析を行う。
 図14は、本実施形態に係る領域特定部295による注目領域の特定処理に関する例を示す図である。図14に示すように、表示部Dには、撮像画像1000および解析結果を示す表1300が含まれる。撮像画像1000には、がん細胞の領域350a、350b、および350c、並びに他の細胞の領域400aおよび400bが含まれている。ここで、検出部240ががん細胞の領域300に対応する注目領域を検出したとする。この場合、当初は領域描画部260によりがん細胞の領域350a、350bおよび350cの周囲にそれぞれ注目領域が描画され、出力制御部280により各注目領域が表示される。このとき、領域特定部295により、がん細胞の領域350aに対応する注目領域351aおよびがん細胞の領域350bに対応する注目領域351bが、解析の対象となる注目領域として選択されたとする。この場合、がん細胞の領域350bに対応する注目領域は選択から外されたこととなるため、解析の対象とならない。これにより、選択された注目領域351aおよび351bのみが解析される。
 表1300には、注目領域351aおよび352bに対応するID(ID352aおよび352bに相当)、並びに各注目領域の長さ、サイズ、真円度、および細胞の種類に関する記載が含まれる。この表1300には、領域特定部295により特定された注目領域についての解析結果のみが表示される。なお、上述した注目領域の選択と同様に、領域特定部295による領域特定処理以前において、検出された全ての注目領域についての解析結果が表1300に表示されてよい。この場合、領域特定部295により注目領域が特定されなかった注目領域についての解析結果は、表1300から除去されてもよい。また、領域特定部295は、一度解析対象から除いた注目領域について、再度当該注目領域を選択することにより、解析対象として当該注目領域を特定してもよい。その際、当該注目領域の解析結果が再度表1300に表示されてもよい。これにより、必要な解析結果について自由に選択することができ、評価に必要な解析結果を抽出することができる。また、例えば複数の注目領域に関する解析結果について比較することができ、当該解析結果の比較による新たな解析を行うことが可能となる。
 なお、表示部Dの撮像画像1000上には、領域特定部295により特定された注目領域を示すための表示340(340aおよび340b)が、注目領域351の近傍に表示されてもよい。これにより、どの注目領域が解析対象として特定されているかを把握することができる。
  [3.2.効果]
 以上、本開示の第2の実施形態に係る情報処理装置20-2の構成例について説明した。本実施形態によれば、注目領域を定義する図形の形状を設定することが可能であり、例えば、観察対象の領域の輪郭にフィットする形状を注目領域の形状として設定することもできる。これにより、観察対象の領域と注目領域とをより密接に関連付けて解析することができる。また、本実施形態によれば、検出された注目領域のうち、解析の対象とする注目領域を特定することができる。これにより、評価に必要な解析結果を抽出したり、解析結果の比較をすることが可能となる。
 なお、本実施形態に係る情報処理装置20-2は、形状設定部290および領域特定部295をともに含む構成としたが、本技術はかかる例に限定されない。例えば、情報処理装置は、本開示の第1の実施形態に係る情報処理装置の構成に、形状設定部290のみをさらに追加してもよいし、領域特定部295のみをさらに追加してもよい。
 <4.ハードウェア構成例>
 次に、図15を参照して、本開示の実施形態に係る情報処理装置のハードウェア構成について説明する。図15は、本開示の実施形態に係る情報処理装置のハードウェア構成例を示すブロック図である。図示された情報処理装置900は、例えば、上記の実施形態における情報処理装置20実現しうる。
 情報処理装置900は、CPU(Central Processing unit)901、ROM(Read Only Memory)903、およびRAM(Random Access Memory)905を含む。また、情報処理装置900は、ホストバス907、ブリッジ909、外部バス911、インターフェース913、入力装置915、出力装置917、ストレージ装置919、ドライブ921、接続ポート925、通信装置929を含んでもよい。情報処理装置900は、CPU901に代えて、またはこれとともに、DSP(Digital Signal Processor)またはASIC(Application Specific Integrated Circuit)と呼ばれるような処理回路を有してもよい。
 CPU901は、演算処理装置および制御装置として機能し、ROM903、RAM905、ストレージ装置919、またはリムーバブル記録媒体923に記録された各種プログラムに従って、情報処理装置900内の動作全般またはその一部を制御する。例えば、CPU901は、上記の実施形態における情報処理装置20に含まれる各機能部の動作全般を制御する。ROM903は、CPU901が使用するプログラムや演算パラメータなどを記憶する。RAM905は、CPU901の実行において使用するプログラムや、その実行において適宜変化するパラメータなどを一次記憶する。CPU901、ROM903、およびRAM905は、CPUバスなどの内部バスにより構成されるホストバス907により相互に接続されている。さらに、ホストバス907は、ブリッジ909を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス911に接続されている。
 入力装置915は、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチおよびレバーなど、ユーザによって操作される装置である。入力装置915は、例えば、赤外線やその他の電波を利用したリモートコントロール装置であってもよいし、情報処理装置900の操作に対応した携帯電話などの外部接続機器927であってもよい。入力装置915は、ユーザが入力した情報に基づいて入力信号を生成してCPU901に出力する入力制御回路を含む。ユーザは、この入力装置915を操作することによって、情報処理装置900に対して各種のデータを入力したり処理動作を指示したりする。
 出力装置917は、取得した情報をユーザに対して視覚的または聴覚的に通知することが可能な装置で構成される。出力装置917は、例えば、LCD、PDP、OELDなどの表示装置、スピーカおよびヘッドホンなどの音響出力装置、ならびにプリンタ装置などでありうる。出力装置917は、情報処理装置900の処理により得られた結果を、テキストまたは画像などの映像として出力したり、音響などの音として出力したりする。
 ストレージ装置919は、情報処理装置900の記憶部の一例として構成されたデータ格納用の装置である。ストレージ装置919は、例えば、HDD(Hard Disk Drive)などの磁気記憶部デバイス、半導体記憶デバイス、光記憶デバイス、または光磁気記憶デバイスなどにより構成される。このストレージ装置919は、CPU901が実行するプログラムや各種データ、および外部から取得した各種のデータなどを格納する。
 ドライブ921は、磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリなどのリムーバブル記録媒体923のためのリーダライタであり、情報処理装置900に内蔵、あるいは外付けされる。ドライブ921は、装着されているリムーバブル記録媒体923に記録されている情報を読み出して、RAM905に出力する。また、ドライブ921は、装着されているリムーバブル記録媒体923に記録を書き込む。
 接続ポート925は、機器を情報処理装置900に直接接続するためのポートである。接続ポート925は、例えば、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)ポートなどでありうる。また、接続ポート925は、RS-232Cポート、光オーディオ端子、HDMI(登録商標)(High-Definition Multimedia Interface)ポートなどであってもよい。接続ポート925に外部接続機器927を接続することで、情報処理装置900と外部接続機器927との間で各種のデータが交換されうる。
 通信装置929は、例えば、通信ネットワークNWに接続するための通信デバイスなどで構成された通信インターフェースである。通信装置929は、例えば、有線または無線LAN(Local Area Network)、Bluetooth(登録商標)、またはWUSB(Wireless USB)用の通信カードなどでありうる。また、通信装置929は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、または、各種通信用のモデムなどであってもよい。通信装置929は、例えば、インターネットや他の通信機器との間で、TCP/IPなどの所定のプロトコルを用いて信号などを送受信する。また、通信装置929に接続される通信ネットワークNWは、有線または無線によって接続されたネットワークであり、例えば、インターネット、家庭内LAN、赤外線通信、ラジオ波通信または衛星通信などである。
 以上、情報処理装置900のハードウェア構成の一例を示した。上記の各構成要素は、汎用的な部材を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。かかる構成は、実施する時々の技術レベルに応じて適宜変更されうる。
 <5.まとめ>
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、上記実施形態では、情報処理システム1は撮像装置10と情報処理装置20とを備える構成であるとしたが、本技術はかかる例に限定されない。例えば、撮像装置10が情報処理装置20の有する機能(検出機能および解析機能)を備えてもよい。この場合、情報処理システム1は、撮像装置10により実現される。また、情報処理装置20が撮像装置10の有する機能(撮像機能)を備えてもよい。この場合、情報処理システム1は、情報処理装置20により実現される。また、情報処理装置20の有する機能の一部を撮像装置10が有してもよく、撮像装置10の有する機能の一部を情報処理装置20が有してもよい。
 また、上記実施形態では、情報処理システム1による解析の観察対象として細胞が挙げられていたが、本技術はかかる例に限定されない。例えば、上記観察対象は、細胞小器官、生体組織、臓器、人、動物、植物または無生物である構造体等であってもよく、これらの構造または形状が短時間で変化する場合に、これらの観察対象の変化を当該情報処理システム1を用いて解析することが可能である。
 なお、本明細書の情報処理装置の処理における各ステップは、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はない。例えば、情報処理装置の処理における各ステップは、フローチャートとして記載した順序と異なる順序で処理されても、並列的に処理されてもよい。
 また、情報処理装置に内蔵されるCPU、ROMおよびRAMなどのハードウェアに、上述した調整指示特定部等を備える情報処理装置の各構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、該コンピュータプログラムを記憶させた記憶媒体も提供される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
(1)
 解析方法に応じて少なくとも一の検出器を決定する検出器決定部と、
 前記検出器決定部により決定された前記少なくとも一の検出器を用いて、前記解析方法による解析を行う解析部と、
 を備える情報処理装置。
(2)
 前記検出器決定部により決定された前記少なくとも一の検出器を用いて、撮像画像内から注目領域を検出する検出部をさらに備え、
 前記解析部は、前記注目領域について解析を行う、前記(1)に記載の情報処理装置。
(3)
 前記検出器決定部により複数の検出器が決定された場合、
 前記検出部は、前記複数の検出器を用いて得られる複数の検出結果に基づいて前記注目領域を決定する、前記(2)に記載の情報処理装置。
(4)
 前記検出部は、前記検出器を用いて検出した前記注目領域を、前記解析部による前記注目領域についての解析により得られる解析結果と関連付ける、前記(2)または(3)に記載の情報処理装置。
(5)
 前記検出器の検出パラメータを調整する検出パラメータ調整部をさらに備え、
 前記検出部は、決定された前記検出器の前記検出パラメータに基づいて前記撮像画像内から前記注目領域を検出する、前記(2)~(4)のいずれか1項に記載の情報処理装置。
(6)
 前記解析部による解析結果を、解析結果に対応する注目領域と関連付けて出力する出力制御部をさらに備える、前記(2)~(5)のいずれか1項に記載の情報処理装置。
(7)
 前記注目領域を示す表示を前記検出部による検出結果に基づいて前記撮像画像に描画する領域描画部をさらに備え、
 前記出力制御部は、前記領域描画部により描画された前記注目領域に相当する表示を含む前記撮像画像を出力する、前記(6)に記載の情報処理装置。
(8)
 前記注目領域に相当する表示の形状は、前記撮像画像に対する画像解析に基づいて検出される形状を含む、前記(7)に記載の情報処理装置。
(9)
 前記注目領域に相当する表示の形状は、前記検出部による注目領域の検出結果に基づいて算出される形状を含む、前記(7)に記載の情報処理装置。
(10)
 検出された前記注目領域から、前記解析部による解析の対象とする注目領域を特定する領域特定部をさらに備える、前記(2)~(9)のいずれか1項に記載の情報処理装置。
(11)
 前記検出器は、前記解析方法と前記解析方法により解析される解析対象に関する画像データとの組を学習データとする機械学習により生成される検出器であり、
 前記検出部は、前記検出器を用いて前記撮像画像から得られる特徴データに基づいて前記注目領域を検出する、前記(2)~(10)のいずれか1項に記載の情報処理装置。
(12)
 前記検出器決定部は、前記解析方法により解析される解析対象が示す変化の種類に応じて少なくとも一の検出器を決定する、前記(1)~(11)のいずれか1項に記載の情報処理装置。
(13)
 前記解析方法により解析される解析対象は、細胞、細胞小器官、または前記細胞により形成される生体組織を含む、前記(12)に記載の情報処理装置。
(14)
 解析方法に応じて少なくとも一の検出器を決定することと、
 決定された前記少なくとも一の検出器を用いて、前記解析方法による解析を行うことと、
 を含む情報処理方法。
(15)
  撮像画像を生成する撮像部
 を備える撮像装置と、
  解析方法に応じて少なくとも一の検出器を決定する検出器決定部と、
  前記検出器決定部により決定された前記少なくとも一の検出器を用いて、前記撮像画像について前記解析方法による解析を行う解析部と、
 を備える情報処理装置と、
 を備える情報処理システム。
 10  撮像装置
 20  情報処理装置
 200 検出器DB
 210 解析方法取得部
 220 検出器決定部
 230 画像取得部
 240 検出部
 250 検出パラメータ調整部
 260 領域描画部
 270 解析部
 280 出力制御部
 290 形状設定部
 295 領域特定部

Claims (15)

  1.  解析方法に応じて少なくとも一の検出器を決定する検出器決定部と、
     前記検出器決定部により決定された前記少なくとも一の検出器を用いて、前記解析方法による解析を行う解析部と、
     を備える情報処理装置。
  2.  前記検出器決定部により決定された前記少なくとも一の検出器を用いて、撮像画像内から注目領域を検出する検出部をさらに備え、
     前記解析部は、前記注目領域について解析を行う、請求項1に記載の情報処理装置。
  3.  前記検出器決定部により複数の検出器が決定された場合、
     前記検出部は、前記複数の検出器を用いて得られる複数の検出結果に基づいて前記注目領域を決定する、請求項2に記載の情報処理装置。
  4.  前記検出部は、前記検出器を用いて検出した前記注目領域を、前記解析部による前記注目領域についての解析により得られる解析結果と関連付ける、請求項2に記載の情報処理装置。
  5.  前記検出器の検出パラメータを調整する検出パラメータ調整部をさらに備え、
     前記検出部は、決定された前記検出器の前記検出パラメータに基づいて前記撮像画像内から前記注目領域を検出する、請求項2に記載の情報処理装置。
  6.  前記解析部による解析結果を、解析結果に対応する注目領域と関連付けて出力する出力制御部をさらに備える、請求項2に記載の情報処理装置。
  7.  前記注目領域を示す表示を前記検出部による検出結果に基づいて前記撮像画像に描画する領域描画部をさらに備え、
     前記出力制御部は、前記領域描画部により描画された前記注目領域に相当する表示を含む前記撮像画像を出力する、請求項6に記載の情報処理装置。
  8.  前記注目領域に相当する表示の形状は、前記撮像画像に対する画像解析に基づいて検出される形状を含む、請求項7に記載の情報処理装置。
  9.  前記注目領域に相当する表示の形状は、前記検出部による注目領域の検出結果に基づいて算出される形状を含む、請求項7に記載の情報処理装置。
  10.  検出された前記注目領域から、前記解析部による解析の対象とする注目領域を特定する領域特定部をさらに備える、請求項2に記載の情報処理装置。
  11.  前記検出器は、前記解析方法と前記解析方法により解析される解析対象に関する画像データとの組を学習データとする機械学習により生成される検出器であり、
     前記検出部は、前記検出器を用いて前記撮像画像から得られる特徴データに基づいて前記注目領域を検出する、請求項2に記載の情報処理装置。
  12.  前記検出器決定部は、前記解析方法により解析される解析対象が示す変化の種類に応じて少なくとも一の検出器を決定する、請求項1に記載の情報処理装置。
  13.  前記解析方法により解析される解析対象は、細胞、細胞小器官、または前記細胞により形成される生体組織を含む、請求項12に記載の情報処理装置。
  14.  解析方法に応じて少なくとも一の検出器を決定することと、
     決定された前記少なくとも一の検出器を用いて、前記解析方法による解析を行うことと、
     を含む情報処理方法。
  15.   撮像画像を生成する撮像部
     を備える撮像装置と、
      解析方法に応じて少なくとも一の検出器を決定する検出器決定部と、
      前記検出器決定部により決定された前記少なくとも一の検出器を用いて、前記撮像画像について前記解析方法による解析を行う解析部と、
     を備える情報処理装置と、
     を備える情報処理システム。
PCT/JP2016/070121 2015-10-08 2016-07-07 情報処理装置、情報処理方法及び情報処理システム WO2017061155A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017544391A JP6777086B2 (ja) 2015-10-08 2016-07-07 情報処理装置、情報処理方法及び情報処理システム
US15/761,572 US20180342078A1 (en) 2015-10-08 2016-07-07 Information processing device, information processing method, and information processing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015199990 2015-10-08
JP2015-199990 2015-10-08

Publications (1)

Publication Number Publication Date
WO2017061155A1 true WO2017061155A1 (ja) 2017-04-13

Family

ID=58487485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070121 WO2017061155A1 (ja) 2015-10-08 2016-07-07 情報処理装置、情報処理方法及び情報処理システム

Country Status (3)

Country Link
US (1) US20180342078A1 (ja)
JP (1) JP6777086B2 (ja)
WO (1) WO2017061155A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082617A1 (ja) * 2017-10-26 2019-05-02 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び観察システム
WO2019180833A1 (ja) * 2018-03-20 2019-09-26 株式会社島津製作所 細胞観察装置
WO2019180811A1 (ja) * 2018-03-20 2019-09-26 株式会社島津製作所 細胞観察装置及び細胞観察用プログラム
JP2020160369A (ja) * 2019-03-28 2020-10-01 コニカミノルタ株式会社 表示システム、表示制御装置及び表示制御方法
CN112400023A (zh) * 2019-03-14 2021-02-23 株式会社日立高新技术 药剂敏感性检查方法
JP2021083431A (ja) * 2019-11-29 2021-06-03 シスメックス株式会社 細胞解析方法、細胞解析装置、細胞解析システム、及び細胞解析プログラム
JP2021517255A (ja) * 2018-03-07 2021-07-15 ヴァーディクト ホールディングス プロプライエタリー リミテッド 顕微鏡による生物学的物質の同定方法
JPWO2021166120A1 (ja) * 2020-02-19 2021-08-26

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102521386B1 (ko) * 2019-08-07 2023-04-14 주식회사 히타치하이테크 치수 계측 장치, 치수 계측 방법 및 반도체 제조 시스템
US11989906B2 (en) * 2020-01-29 2024-05-21 Rakuten Group, Inc. Object recognition system, position information acquisition method, and program
DE102020126953B3 (de) * 2020-10-14 2021-12-30 Bayerische Motoren Werke Aktiengesellschaft System und Verfahren zum Erfassen einer räumlichen Orientierung einer tragbaren Vorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006018706A (ja) * 2004-07-05 2006-01-19 Nippon Telegr & Teleph Corp <Ntt> 被写体識別器設定装置、その設定方法とその設定プログラム、および被写体識別装置、その識別方法とその識別プログラム
WO2011016189A1 (ja) * 2009-08-07 2011-02-10 株式会社ニコン 細胞の分類手法、この手法を用いた画像処理プログラム及び画像処理装置、並びに細胞塊の製造方法
JP2011193159A (ja) * 2010-03-12 2011-09-29 Toshiba Corp 監視システム、画像処理装置、及び監視方法
JP2012073179A (ja) * 2010-09-29 2012-04-12 Dainippon Screen Mfg Co Ltd 病理診断支援装置、病理診断支援方法、病理診断支援のための制御プログラムおよび該制御プログラムを記録した記録媒体
JP2015137857A (ja) * 2014-01-20 2015-07-30 富士ゼロックス株式会社 検出制御装置、プログラム及び検出システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069346A (ja) * 1998-06-12 2000-03-03 Canon Inc カメラ制御装置、方法、カメラ、追尾カメラシステム及びコンピュ―タ読み取り可能な記憶媒体
US7203360B2 (en) * 2003-04-09 2007-04-10 Lee Shih-Jong J Learnable object segmentation
JP2007222073A (ja) * 2006-02-23 2007-09-06 Yamaguchi Univ 画像処理により細胞運動特性を評価する方法、そのための画像処理装置及び画像処理プログラム
US9398266B2 (en) * 2008-04-02 2016-07-19 Hernan Carzalo Object content navigation
JP5530126B2 (ja) * 2009-07-24 2014-06-25 オリンパス株式会社 三次元細胞画像解析システム及びそれに用いる三次元細胞画像解析装置
EP2293248A1 (en) * 2009-09-08 2011-03-09 Koninklijke Philips Electronics N.V. Motion monitoring system for monitoring motion within a region of interest
EP2499827A4 (en) * 2009-11-13 2018-01-03 Pixel Velocity, Inc. Method for tracking an object through an environment across multiple cameras
US8941706B2 (en) * 2010-04-07 2015-01-27 Apple Inc. Image processing for a dual camera mobile device
EP2549735A3 (en) * 2011-07-19 2014-08-27 Samsung Electronics Co., Ltd. Method of editing static digital combined images comprising images of multiple objects
CN104024913A (zh) * 2011-12-22 2014-09-03 松下健康医疗器械株式会社 观察系统、观察系统的控制方法以及程序
JP5945434B2 (ja) * 2012-03-16 2016-07-05 オリンパス株式会社 生物試料の画像解析方法、画像解析装置、画像撮影装置およびプログラム
JP6102166B2 (ja) * 2012-10-10 2017-03-29 株式会社ニコン 心筋細胞の運動検出方法、心筋細胞の培養方法、薬剤評価方法、画像処理プログラム及び画像処理装置
KR102173123B1 (ko) * 2013-11-22 2020-11-02 삼성전자주식회사 전자장치에서 이미지 내의 특정 객체를 인식하기 위한 방법 및 장치
KR101736173B1 (ko) * 2014-02-14 2017-05-17 한국전자통신연구원 관심 객체 고속 검출 장치 및 그 방법
JP6024719B2 (ja) * 2014-09-09 2016-11-16 カシオ計算機株式会社 検出装置、検出方法、及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006018706A (ja) * 2004-07-05 2006-01-19 Nippon Telegr & Teleph Corp <Ntt> 被写体識別器設定装置、その設定方法とその設定プログラム、および被写体識別装置、その識別方法とその識別プログラム
WO2011016189A1 (ja) * 2009-08-07 2011-02-10 株式会社ニコン 細胞の分類手法、この手法を用いた画像処理プログラム及び画像処理装置、並びに細胞塊の製造方法
JP2011193159A (ja) * 2010-03-12 2011-09-29 Toshiba Corp 監視システム、画像処理装置、及び監視方法
JP2012073179A (ja) * 2010-09-29 2012-04-12 Dainippon Screen Mfg Co Ltd 病理診断支援装置、病理診断支援方法、病理診断支援のための制御プログラムおよび該制御プログラムを記録した記録媒体
JP2015137857A (ja) * 2014-01-20 2015-07-30 富士ゼロックス株式会社 検出制御装置、プログラム及び検出システム

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019082617A1 (ja) * 2017-10-26 2020-11-26 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び観察システム
WO2019082617A1 (ja) * 2017-10-26 2019-05-02 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び観察システム
JP2021517255A (ja) * 2018-03-07 2021-07-15 ヴァーディクト ホールディングス プロプライエタリー リミテッド 顕微鏡による生物学的物質の同定方法
JP2021184766A (ja) * 2018-03-20 2021-12-09 株式会社島津製作所 細胞観察装置及び細胞観察方法
WO2019180833A1 (ja) * 2018-03-20 2019-09-26 株式会社島津製作所 細胞観察装置
WO2019180811A1 (ja) * 2018-03-20 2019-09-26 株式会社島津製作所 細胞観察装置及び細胞観察用プログラム
JPWO2019180833A1 (ja) * 2018-03-20 2020-12-03 株式会社島津製作所 細胞観察装置
JPWO2019180811A1 (ja) * 2018-03-20 2020-12-03 株式会社島津製作所 細胞観察装置及び細胞観察用プログラム
JP7428173B2 (ja) 2018-03-20 2024-02-06 株式会社島津製作所 細胞観察装置及び細胞観察方法
JP7461935B2 (ja) 2019-03-14 2024-04-04 株式会社日立ハイテク 薬剤感受性の検査方法
CN112400023A (zh) * 2019-03-14 2021-02-23 株式会社日立高新技术 药剂敏感性检查方法
JP2022511399A (ja) * 2019-03-14 2022-01-31 株式会社日立ハイテク 薬剤感受性の検査方法
JP7172796B2 (ja) 2019-03-28 2022-11-16 コニカミノルタ株式会社 表示システム、表示制御装置及び表示制御方法
US11806181B2 (en) 2019-03-28 2023-11-07 Konica Minolta, Inc. Display system, display control device, and display control method
JP2020160369A (ja) * 2019-03-28 2020-10-01 コニカミノルタ株式会社 表示システム、表示制御装置及び表示制御方法
JP2021083431A (ja) * 2019-11-29 2021-06-03 シスメックス株式会社 細胞解析方法、細胞解析装置、細胞解析システム、及び細胞解析プログラム
US12020492B2 (en) 2019-11-29 2024-06-25 Sysmex Corporation Cell analysis method, cell analysis device, and cell analysis system
JP7545202B2 (ja) 2019-11-29 2024-09-04 シスメックス株式会社 細胞解析方法、細胞解析装置、細胞解析システム、及び細胞解析プログラム
WO2021166120A1 (ja) * 2020-02-19 2021-08-26 三菱電機株式会社 情報処理装置、情報処理方法及び情報処理プログラム
JP7038933B2 (ja) 2020-02-19 2022-03-18 三菱電機株式会社 情報処理装置、情報処理方法及び情報処理プログラム
JPWO2021166120A1 (ja) * 2020-02-19 2021-08-26

Also Published As

Publication number Publication date
JPWO2017061155A1 (ja) 2018-08-02
US20180342078A1 (en) 2018-11-29
JP6777086B2 (ja) 2020-10-28

Similar Documents

Publication Publication Date Title
JP6777086B2 (ja) 情報処理装置、情報処理方法及び情報処理システム
US11229419B2 (en) Method for processing 3D image data and 3D ultrasonic imaging method and system
US9798770B2 (en) Information processing unit, information processing method, and program
US10929985B2 (en) System and methods for tracking motion of biological cells
Yamamoto et al. Node detection and internode length estimation of tomato seedlings based on image analysis and machine learning
US20120092478A1 (en) Incubated state evaluating device, incubated state evaluating method, incubator, and program
CN107580715A (zh) 用于自动计数微生物菌落的方法和系统
CN111227864A (zh) 使用超声图像利用计算机视觉进行病灶检测的方法与装置
WO2018083984A1 (ja) 情報処理装置、情報処理方法及び情報処理システム
WO2017154318A1 (ja) 情報処理装置、情報処理方法、プログラム及び情報処理システム
CN108846828A (zh) 一种基于深度学习的病理图像目标区域定位方法及系统
EP3806101A1 (en) Training data collecting device, training data collecting method and program, training system, trained model, and endoscope image processing device
EP3485458B1 (en) Information processing device, information processing method, and information processing system
CN107408198A (zh) 细胞图像和视频的分类
CN108830222A (zh) 一种基于信息性和代表性主动学习的微表情识别方法
EP3432269B1 (en) Information processing device, information processing method, program, and information processing system
Yin et al. A novel method of situ measurement algorithm for oudemansiella raphanipies caps based on YOLO v4 and distance filtering
CN108460370A (zh) 一种固定式家禽生命信息报警装置
JPWO2018105298A1 (ja) 情報処理装置、情報処理方法及び情報処理システム
CN113469942B (zh) 一种ct图像病变检测方法
López Flórez et al. Automatic Cell Counting With YOLOv5: A Fluorescence Microscopy Approach
Masdiyasa et al. A new method to improve movement tracking of human sperms
US20230230398A1 (en) Image processing device, image processing method, image processing program, and diagnosis support system
Durgadevi et al. Image characterization based fetal brain MRI localization and extraction
CN111275754B (zh) 一种基于深度学习的脸部痘印比例计算方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544391

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15761572

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853310

Country of ref document: EP

Kind code of ref document: A1