[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017057762A1 - Electrode portion of lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery - Google Patents

Electrode portion of lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery Download PDF

Info

Publication number
WO2017057762A1
WO2017057762A1 PCT/JP2016/079180 JP2016079180W WO2017057762A1 WO 2017057762 A1 WO2017057762 A1 WO 2017057762A1 JP 2016079180 W JP2016079180 W JP 2016079180W WO 2017057762 A1 WO2017057762 A1 WO 2017057762A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium ion
ion secondary
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2016/079180
Other languages
French (fr)
Japanese (ja)
Inventor
小川 浩
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2017543664A priority Critical patent/JPWO2017057762A1/en
Publication of WO2017057762A1 publication Critical patent/WO2017057762A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode part of a lithium ion secondary battery, a lithium ion secondary battery, and a method of manufacturing a lithium ion secondary battery.
  • This application claims priority based on Japanese Patent Application No. 2015-195345 for which it applied to Japan on September 30, 2015, and uses the content here.
  • Lithium ion secondary batteries are characterized by higher energy density and electromotive force than lead-acid batteries and nickel metal hydride batteries. Therefore, they are widely used as power sources for various devices that require miniaturization and weight reduction. ing.
  • the lithium ion secondary battery includes a positive electrode part in which a positive electrode active material is applied to a positive electrode current collector, and a negative electrode part in which a negative electrode active material is applied to a negative positive electrode current collector. And have. And while laminating
  • a predetermined pressure is applied between both electrodes. This is because if the electrode and the electrolyte are not sufficiently adhered, the internal resistance of the battery increases and the power loss increases, and if the electrolyte and the electrode do not have a sufficient contact area, a predetermined battery capacity is obtained. This is because it cannot be obtained.
  • the pressurizing action at the time of manufacturing such a lithium ion secondary battery may cause a short circuit between both electrodes, which may reduce the yield of the product.
  • a projection so-called burr
  • burr a projection
  • the protrusion breaks the separator, causing a short circuit between both electrodes.
  • an electrical insulating material insulating tape made of polyimide or polypropylene is preliminarily attached to a place where an electrode short-circuit is likely to occur (for example, Patent Documents). 2).
  • the present invention has been made to solve the above-mentioned problems, and its object is to improve the adhesion of the insulating layer between the electrodes, thereby preventing a short circuit between the two electrodes and maintaining the battery performance. It is providing the electrode part of a lithium ion secondary battery, the lithium ion secondary battery using the electrode part, and its manufacturing method.
  • an electrode part of a lithium ion secondary battery according to the present invention is an electrode part of a lithium ion secondary battery having a positive electrode, a negative electrode, and an electrolyte layer between the positive electrode and the negative electrode, A current collector and an active material layer laminated on the surface of the current collector, the current collector end of the positive electrode and the negative electrode, and the other negative electrode and the positive electrode laminated on each of the positive electrode and the negative electrode.
  • the portion facing the end of the current collector is coated with an insulating coating film.
  • an insulation coating film shows the coating film comprised by apply
  • the electrode part is an electrode part of a lithium ion secondary battery having a positive electrode, a negative electrode, and an electrolyte layer between the positive electrode and the negative electrode.
  • the positive electrode and the negative electrode are formed from a current collector and an active material layer laminated on the surface thereof.
  • a current collector exposing portion in which no electrolyte layer is formed at an end portion of the surface of the positive electrode and the negative electrode facing each of the positive electrode and the negative electrode, and the current collector exposing portion is It is preferable that it is an electrode part of the lithium ion secondary battery coat
  • the electrode part of the lithium ion secondary battery according to the present invention is an electrode part of a lithium ion secondary battery having a positive electrode, a negative electrode, and an electrolyte layer therebetween, and is formed at end portions of the positive electrode and the negative electrode.
  • the protrusion, the other negative electrode laminated on each of the positive electrode and the negative electrode on which the protrusion is formed, and the portion facing the protrusion of the positive electrode are coated with an insulating coating film. It is a feature.
  • this electrode part is an electrode part of a lithium ion secondary battery having a positive electrode, a negative electrode, and an electrolyte layer therebetween, and a protrusion is formed at an end of one of the positive electrode and the negative electrode, A current collector exposed portion in which an electrolyte layer is not formed at the end of the other electrode facing the protruding portion is provided, and at least one of the protruding portion and the current collector exposed portion is formed of an insulating coating film.
  • the electrode part of the lithium ion secondary battery that is coated is preferable.
  • a lithium ion secondary battery according to the present invention includes the above-described electrode portion.
  • a method of manufacturing a lithium ion secondary battery according to the present invention is a method of manufacturing a lithium ion secondary battery including the above-described electrode unit, and includes a collection of the positive electrode and the negative electrode. And a step of coating an end portion of the electric conductor, another negative electrode laminated on each of the positive electrode and the negative electrode, and a portion facing the current collector end portion of the positive electrode with an insulating coating film. It is said. Further, in this method, a current collector exposing portion in which an electrolyte layer is not formed is provided at an end portion of the surface of the positive electrode and the negative electrode where the positive electrode and the negative electrode face each other. It is preferable that it is a manufacturing method of a lithium ion secondary battery which has the process of coating an exposed part with an insulating coating film.
  • the protrusions are formed even on the positive electrode and the negative electrode. Since the insulating coating film is interposed between the positive electrode and the negative electrode in the vicinity of the portion, a short circuit between the positive electrode and the negative electrode can be effectively prevented. Moreover, the performance of a lithium ion secondary battery can be maintained by improving the adhesiveness of the insulating coating film between electrodes. In addition, since the insulating coating can be formed by applying a paint having electrical insulation properties, the thickness can be reduced and simpler than when a conventional insulating tape is applied. Productivity can be increased.
  • the electrode part of the lithium ion secondary battery according to the present invention is characterized in that the insulating coating (that is, the paint having electrical insulation) includes insulating particles having electrical insulation.
  • the particles are preferably organic particles made of inorganic particles such as alumina and silica, or organic materials such as phenol resin, epoxy resin, and silicon resin.
  • the insulating coating film is configured to include insulating particles such as alumina, an insulating coating film having excellent mechanical strength can be formed.
  • the insulating coating film is porous.
  • the insulating coating film is porous, it is possible to suppress a decrease in the contact area between the positive electrode active material layer of the positive electrode and the negative electrode active material layer of the negative electrode.
  • the electrode part of the lithium ion secondary battery according to the present invention, the lithium ion secondary battery using the electrode part, and the method for producing the lithium ion secondary battery are provided with an insulating coating film on the positive electrode or / and the negative electrode. Even if the positive electrode and negative electrode have protrusions and the separator breaks, the short circuit between the positive electrode and the negative electrode is effectively achieved by improving the adhesion of the insulating layer (that is, the insulating coating film) between the electrodes. Battery performance can be maintained. Moreover, since the insulating coating is formed by applying a paint having electrical insulation properties, the thickness can be reduced more easily than when a conventional insulating tape is applied, and the electrode portion and the lithium ion secondary Battery productivity can be increased.
  • FIG. 1 is a cross-sectional view of a lithium ion secondary battery LB according to an embodiment of the present invention, in which a negative electrode 1 is provided on the upper side and a positive electrode 10 is provided on the lower side.
  • a separator 20 and an electrolyte layer 22 are interposed between the negative electrode 1 and the positive electrode 10.
  • the electrode part P has the positive electrode 10, the negative electrode 1, and the electrolyte layer 22 between them, and comprises a lithium ion secondary battery.
  • the negative electrode 1 has a negative electrode current collector (current collector) 2 made of, for example, copper foil, and negative electrode active material layers (active material layers) 3 respectively formed on the upper and lower surfaces of the negative electrode current collector 2. Configured.
  • a known negative electrode active material such as aluminum, graphite, metal silicon, or metal lithium foil is used.
  • the negative electrode current collector 2 is provided with a terminal 4 protruding from a part of one side (left side in FIG. 1).
  • the current collector end 1e of the negative electrode 1 is a portion that is cut by a cutter when the negative electrode 1 is manufactured in a large area by, for example, a roll-to-roll method (RtoR method) or the like and cut into a desired size. Is shown.
  • a protrusion in which the material of the negative electrode 1 protrudes from the surface of the negative electrode active material layer 3 tends to occur at the current collector end 1e of the negative electrode 1.
  • the current collector end portion 1 e is an end portion of a laminate of the negative electrode current collector 2 and the negative electrode active material layer 3 generated on each of the upper and lower surfaces of the negative electrode current collector 2.
  • the positive electrode 10 includes a positive electrode current collector (current collector) 11 made of, for example, an aluminum foil, and positive electrode active material layers (active material layers) 12 respectively formed on the upper and lower surfaces of the positive electrode current collector 11. It is configured.
  • the positive electrode active material layer 12 is mainly composed of a positive electrode active material and a binder, and a conductive additive is added as necessary.
  • the positive electrode active material various active material materials that reversibly advance and absorb lithium ions can be used.
  • lithium composite metal oxides such as lithium cobaltate, lithium manganate, lithium nickelate, and lithium titanate can be used.
  • metal lithium is used for the negative electrode active material layer 3 of the negative electrode 1
  • a positive electrode active material such as FeOOH or NiOOH that does not contain lithium is used.
  • the positive electrode current collector 11 is provided with a terminal 13 that protrudes from a part of one side (right side in the illustrated example).
  • the surface of the positive electrode active material layer 12 is provided with an insulating coating film 14 formed by applying an electrically insulating paint.
  • This paint is composed of inorganic particles such as alumina (aluminum oxide (Al 2 O 3 )) and silica (silicon dioxide (SiO 2 )), and the mechanical strength of the coating film is increased.
  • the insulating coating 14 is provided in at least a portion 10 e of the positive electrode 10 that faces the current collector end 1 e of the negative electrode 1.
  • the positive electrode current collector 11 is provided in a predetermined range facing the current collector end portion 1 e of the negative electrode 1 on the upper and lower surfaces of the positive electrode current collector 11, and is connected to the positive electrode active material layer 12.
  • the thickness of the insulating coating film 14 may be 1 ⁇ m or more and 30 ⁇ m or less. preferable.
  • the insulating coating film 14 satisfies the above conditions, even when the negative electrode 1 and the positive electrode 10 are laminated via the separator 20, even if the protrusion formed on the current collector end 1 e passes through the separator 20.
  • the tip of the protruding portion is disposed on the surface of the insulating coating film 14 or in the insulating coating film 14, so that a short circuit between the negative electrode 1 and the positive electrode 10 can be more reliably prevented.
  • the thickness and mechanical strength of the insulating coating film 14 should be appropriately set in consideration of the materials of the negative electrode current collector 2, the negative electrode active material layer 3, the positive electrode current collector 11 and the positive electrode active material layer 12. Is preferred. In FIG.
  • the insulating coating 14 is also applied to the peripheral portion of the positive electrode active material layer 12 provided on the positive electrode 10.
  • the insulating coating film 14 is porous, that is, when the coating film formed by applying an electrically insulating paint is porous, the insulating coating film 14 is applied to the entire surface of the positive electrode 10. It can also be formed.
  • the separator 20 can be used as long as it functions as an ion permeable membrane.
  • a polyethylene porous film, a polypropylene porous film, or a nonwoven fabric can be used.
  • the electrolyte layer 22 may be a gel electrolyte that is made of a known electrolytic solution or the like and gels in the exterior body 24.
  • the planar shapes of the negative electrode 1, the positive electrode 10, and the separator 20 are similar to each other having a rectangular shape, and are formed in substantially the same area.
  • the area of the separator 20 is the largest, the next is the negative electrode 1, and the positive electrode 10 is the smallest.
  • the length of the long side of the separator 20 is 56.8 mm, the length of the short side is 42.6 mm, those of the negative electrode 1 are 54.8 mm, 41.6 mm, and those of the positive electrode 10 are 53. 8 mm and 40.6 mm.
  • An electrolyte layer 22 is provided between the negative electrode 1 and the positive electrode 10 with the separator 20 interposed therebetween.
  • a well-known electrolyte or electrolytic solution can be used for the electrolyte layer 22 .
  • an electrolytic solution of a lithium salt such as LiPF 6 , LiBF 4 , or LiClO 4 and a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) can be used.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the negative electrode 1, the positive electrode 10, the separator 20, and the electrolyte layer 22 are formed in an exterior body 24 in which these laminates (that is, the electrode portion P) are made of a laminated aluminum film or the like, as in a known lithium ion secondary battery.
  • the lithium ion secondary battery LB is manufactured by sealing.
  • the electrolyte layer 22 is filled not only between the negative electrode 1 and the positive electrode 10 but also around the electrode part P.
  • a negative electrode material containing a negative electrode active material is applied to the upper and lower surfaces of the negative electrode current collector 2 with a thickness of about 5 ⁇ m to 100 ⁇ m, and then the solvent contained in the negative electrode material Is removed by drying to form the negative electrode active material layer 3, thereby forming the negative electrode 1.
  • a positive electrode material containing a positive electrode active material is applied to the upper and lower surfaces of the positive electrode current collector 11 with a thickness of about 5 ⁇ m to 100 ⁇ m, the solvent contained in the positive electrode material is removed by drying, and the positive electrode active material layer 12 is removed.
  • the positive electrode 10 is formed.
  • the negative electrode 1 and the positive electrode 10 can be manufactured by the RtoR method.
  • the negative electrode 1 is cut from each large-area electrode part to a desired size as described above with a cutter or the like.
  • the positive electrode 10 At that time, for example, a protrusion may be formed on the current collector end 1 e of the negative electrode 1.
  • an electrically insulating coating liquid is applied to at least the current collector end 1e of the negative electrode 1 as shown in FIG. 1 by using a known coating method such as a die method or a gravure method.
  • coating to the opposing part and forming the insulating coating film 14 is performed.
  • the negative electrode 1 and the positive electrode 10 are laminated
  • the terminals 4 and 13 are protruded from the exterior body 24, respectively.
  • the temporary sealing of the laminate cell is partially unwound, and after the electrolyte layer 22 is formed, it is completely sealed.
  • the lithium ion secondary battery LB shown in FIG. 1 is obtained.
  • the lithium ion secondary battery LB having the above-described configuration, and the manufacturing method thereof, since the insulating coating 14 is provided on the positive electrode 10, provisional portions such as burrs are temporarily formed on the current collector end 1 e of the negative electrode 1. Even if it is formed and the separator 20 is broken, the short circuit between the negative electrode 1 and the positive electrode 10 can be effectively prevented. Moreover, the performance of the lithium ion secondary battery LB can be maintained by improving the adhesion of the insulating coating film 14 between the electrodes. In addition, since the insulating coating film 14 can be formed simply by applying a coating film having electrical insulating properties, it is easier to apply than the conventional insulating tape, and the electrode portion P and the lithium ion secondary battery LB.
  • the thickness of the insulating coating film 14 can be about 10 micrometers, it is thinner than 35 micrometers of the conventional insulation tape thickness, and can suppress the fall of battery performance. Moreover, when the insulating coating film 14 is porous, the fall of the contact area of the positive electrode active material layer 12 of the positive electrode 10 can be suppressed.
  • the insulating coating film 14 (that is, the paint having electrical insulation) is configured to include inorganic particles such as alumina and silica.
  • the insulating coating film 14 having excellent strength can be formed.
  • the insulating coating film is porous, it is possible to suppress a decrease in the contact area between the positive electrode active material layer 12 and the negative electrode active material layer 3. .
  • the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.
  • the separator 20 is omitted and only the insulating coating film 14 whose thickness is appropriately adjusted is the positive electrode. It may be provided on the active material layer 12.
  • the positive electrode active material layer 12 is formed on the upper and lower surfaces of the positive electrode current collector 11 with the insulating coating 14 facing the current collector end 1 e of the negative electrode 1 in the positive electrode 10.
  • the present invention is not limited to such a form.
  • the insulating coating film 14 may be provided on the surface of the positive electrode active material layer 12 on the side opposite to the positive electrode current collector 11.
  • the insulating coating film 14 covers the end portion from the surface of the positive electrode active material layer 12 from the end portion, and faces the current collector end portion 1 e of the negative electrode 1. It may be provided over the upper and lower surfaces. As shown in FIG.
  • the insulating coating film 14 may be provided so as to directly cover the protrusion 6. Furthermore, the negative electrode 1 and the positive electrode 10 of the above-described embodiment may be reversed. That is, the current collector end portion of the positive electrode 10 and the portion of the negative electrode facing the current collector end portion of the positive electrode may be covered with the insulating coating film 14.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

An electrode portion of a lithium ion secondary battery comprising a positive electrode, a negative electrode, and an electrolytic layer between the positive electrode and the negative electrode, wherein the positive electrode and the negative electrode comprise a current collector and an active material layer laminated on the surface of the current collector, wherein current collector end portions of the positive electrode and the negative electrode; and sections of another negative electrode and positive electrode laminated respectively on the positive electrode and the negative electrode, which are facing the current collector end portions, are coated by an insulation coating.

Description

リチウムイオン二次電池の電極部、リチウムイオン二次電池及びリチウムイオン二次電池の製造方法Electrode part of lithium ion secondary battery, lithium ion secondary battery, and method for producing lithium ion secondary battery
 本発明は、リチウムイオン二次電池の電極部、リチウムイオン二次電池及びリチウムイオン二次電池の製造方法に関する。
 本願は、2015年9月30日に日本に出願された特願2015-195345号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an electrode part of a lithium ion secondary battery, a lithium ion secondary battery, and a method of manufacturing a lithium ion secondary battery.
This application claims priority based on Japanese Patent Application No. 2015-195345 for which it applied to Japan on September 30, 2015, and uses the content here.
 リチウムイオン二次電池は、鉛蓄電池やニッケル水素電池に比べてエネルギー密度及び起電力が高いという特長を有しているため、小型化・軽量化が要求される各種の機器用電源として広く利用されている。このリチウムイオン二次電池は、特許文献1に示されるように、正極活物質が正極集電体に塗工された正極部と、負極活物質が負正極集電体に塗工された負極部とを有している。そして、これら両極部間にセパレータ及び電解質を介在させて積層させるとともに、その積層体をケース内に密封させて構成されている。 Lithium ion secondary batteries are characterized by higher energy density and electromotive force than lead-acid batteries and nickel metal hydride batteries. Therefore, they are widely used as power sources for various devices that require miniaturization and weight reduction. ing. As shown in Patent Document 1, the lithium ion secondary battery includes a positive electrode part in which a positive electrode active material is applied to a positive electrode current collector, and a negative electrode part in which a negative electrode active material is applied to a negative positive electrode current collector. And have. And while laminating | stacking a separator and electrolyte between these both pole parts, it is comprised by sealing the laminated body in a case.
 このリチウムイオン二次電池の製造においては、両電極間に所定の圧力が加えられる。なぜならば、電極と電解質とを十分に密着させないと電池の内部抵抗が大きくなって損失電力が増してしまうとともに、電解質と電極とが十分な接触面積を有していないと、所定の電池容量が得られなくなるからである。 In manufacturing the lithium ion secondary battery, a predetermined pressure is applied between both electrodes. This is because if the electrode and the electrolyte are not sufficiently adhered, the internal resistance of the battery increases and the power loss increases, and if the electrolyte and the electrode do not have a sufficient contact area, a predetermined battery capacity is obtained. This is because it cannot be obtained.
 ところで、このようなリチウムイオン二次電池の製造時における加圧作用は、両電極間に短絡を生じさせ、製品の歩留まりを低下させてしまうおそれがあった。特に、負極部の製造時に行われるカッターによる切断の際に、その負極部の切断面に突起(所謂、バリ)が生じると、その突起がセパレータを破ってしまい、両電極間に短絡を生じさせるからである。このような不都合を防止するために、電極の短絡の生じやすい箇所に、予め、ポリイミドあるいはポプロピレン製等の電気絶縁材(絶縁テープ)を貼着することが行われている(例えば、特許文献2参照)。 By the way, the pressurizing action at the time of manufacturing such a lithium ion secondary battery may cause a short circuit between both electrodes, which may reduce the yield of the product. In particular, when a projection (so-called burr) is generated on the cut surface of the negative electrode portion during cutting with a cutter performed at the time of manufacturing the negative electrode portion, the protrusion breaks the separator, causing a short circuit between both electrodes. Because. In order to prevent such an inconvenience, an electrical insulating material (insulating tape) made of polyimide or polypropylene is preliminarily attached to a place where an electrode short-circuit is likely to occur (for example, Patent Documents). 2).
特開2013-30376号公報JP 2013-30376 A 特開2001-266946号公報JP 2001-266946 A
 しかしながら、従来の絶縁テープを用いて両電極間の絶縁を図るリチウムイオン二次電池の場合、絶縁テープは、常時、電解質と接しているために絶縁テープの粘着剤の粘着力が弱まり、絶縁テープが剥がれてしまうおそれがあるとともに、絶縁テープの厚さが厚くなると、電池性能に悪影響を与えるおそれがあった。また、絶縁テープを用いて絶縁を図るリチウムイオン二次電池の場合は、絶縁テープを張り付けなければならないという面倒な工程を必要とし、生産性に劣るという欠点があった。 However, in the case of a lithium ion secondary battery that uses a conventional insulating tape to insulate between both electrodes, the insulating tape is always in contact with the electrolyte, so the adhesive strength of the adhesive of the insulating tape is weakened, and the insulating tape May peel off, and when the thickness of the insulating tape is increased, battery performance may be adversely affected. In addition, in the case of a lithium ion secondary battery that uses an insulating tape to insulate, there is a drawback in that the laborious process of attaching the insulating tape is required, resulting in poor productivity.
 本発明は、上記課題を解決するためになされたものであって、その目的は、電極間の絶縁層の密着性を向上させることで、両電極間の短絡を防止でき、電池性能を維持できるリチウムイオン二次電池の電極部、その電極部を用いたリチウムイオン二次電池及びその製造方法を提供することにある。 The present invention has been made to solve the above-mentioned problems, and its object is to improve the adhesion of the insulating layer between the electrodes, thereby preventing a short circuit between the two electrodes and maintaining the battery performance. It is providing the electrode part of a lithium ion secondary battery, the lithium ion secondary battery using the electrode part, and its manufacturing method.
 上記目的を達成するために、本発明に係るリチウムイオン二次電池の電極部は、正極と負極とその間に電解質層を有するリチウムイオン二次電池の電極部であって、前記正極と前記負極は、集電体とその表面に積層された活物質層からなり、前記正極と前記負極の集電体端部と、前記正極と前記負極のそれぞれに積層される別の前記負極と前記正極の前記集電体端部に対向する部分と、が絶縁塗膜によって被膜されていることを特徴としている。なお、絶縁塗膜とは、電気絶縁性を有する塗料を塗布して構成される塗膜を示す。また、この電極部は、正極と負極とその間に電解質層を有するリチウムイオン二次電池の電極部であって、前記正極と前記負極は、集電体とその表面に積層された活物質層からなり、前記正極及び前記負極の何れか一方の、前記正極と前記負極とが対向する面の端部において電解質層が形成されていない集電体露呈部が設けられ、前記集電体露呈部が絶縁塗膜によって被膜されているリチウムイオン二次電池の電極部であることが好ましい。
 また、本発明に係るリチウムイオン二次電池の電極部は、正極と負極とその間に電解質層を有するリチウムイオン二次電池の電極部であって、前記正極と前記負極の端部に形成される突起部と、前記突起部が形成された前記正極と前記負極のそれぞれに積層される別の前記負極と前記正極の前記突起部に対向する部分と、が絶縁塗膜によって被膜されていることを特徴としている。また、この電極部は、正極と負極とその間に電解質層を有するリチウムイオン二次電池の電極部であって、前記正極及び前記負極の何れか一方の電極の端部に突起部が形成され、
 他の一方の電極の、前記突起部に対向する端部において電解質層が形成されていない集電体露呈部が設けられ、前記突起部と前記集電体露呈部の少なくとも一方が絶縁塗膜によって被膜されているリチウムイオン二次電池の電極部であることが好ましい。
 また、上記目的を達成するために、本発明に係るリチウムイオン二次電池は、上述の電極部を備えたことを特徴としている。
 そして、上記目的を達成するために、本発明に係るリチウムイオン二次電池の製造方法は、上述の電極部を備えたリチウムイオン二次電池の製造方法であって、前記正極と前記負極の集電体端部と、前記正極と前記負極のそれぞれに積層される別の前記負極と前記正極の前記集電体端部に対向する部分と、を絶縁塗膜によって被膜する工程を有することを特徴としている。また、この方法は、前記正極及び前記負極の何れか一方の、前記正極と前記負極とが対向する面の端部において電解質層が形成されていない集電体露呈部を設け、前記集電体露呈部を絶縁塗膜によって被膜する工程を有するリチウムイオン二次電池の製造方法であることが好ましい。
In order to achieve the above object, an electrode part of a lithium ion secondary battery according to the present invention is an electrode part of a lithium ion secondary battery having a positive electrode, a negative electrode, and an electrolyte layer between the positive electrode and the negative electrode, A current collector and an active material layer laminated on the surface of the current collector, the current collector end of the positive electrode and the negative electrode, and the other negative electrode and the positive electrode laminated on each of the positive electrode and the negative electrode. The portion facing the end of the current collector is coated with an insulating coating film. In addition, an insulation coating film shows the coating film comprised by apply | coating the coating material which has electrical insulation. The electrode part is an electrode part of a lithium ion secondary battery having a positive electrode, a negative electrode, and an electrolyte layer between the positive electrode and the negative electrode. The positive electrode and the negative electrode are formed from a current collector and an active material layer laminated on the surface thereof. A current collector exposing portion in which no electrolyte layer is formed at an end portion of the surface of the positive electrode and the negative electrode facing each of the positive electrode and the negative electrode, and the current collector exposing portion is It is preferable that it is an electrode part of the lithium ion secondary battery coat | covered with the insulating coating film.
Moreover, the electrode part of the lithium ion secondary battery according to the present invention is an electrode part of a lithium ion secondary battery having a positive electrode, a negative electrode, and an electrolyte layer therebetween, and is formed at end portions of the positive electrode and the negative electrode. The protrusion, the other negative electrode laminated on each of the positive electrode and the negative electrode on which the protrusion is formed, and the portion facing the protrusion of the positive electrode are coated with an insulating coating film. It is a feature. Further, this electrode part is an electrode part of a lithium ion secondary battery having a positive electrode, a negative electrode, and an electrolyte layer therebetween, and a protrusion is formed at an end of one of the positive electrode and the negative electrode,
A current collector exposed portion in which an electrolyte layer is not formed at the end of the other electrode facing the protruding portion is provided, and at least one of the protruding portion and the current collector exposed portion is formed of an insulating coating film. The electrode part of the lithium ion secondary battery that is coated is preferable.
In order to achieve the above object, a lithium ion secondary battery according to the present invention includes the above-described electrode portion.
In order to achieve the above object, a method of manufacturing a lithium ion secondary battery according to the present invention is a method of manufacturing a lithium ion secondary battery including the above-described electrode unit, and includes a collection of the positive electrode and the negative electrode. And a step of coating an end portion of the electric conductor, another negative electrode laminated on each of the positive electrode and the negative electrode, and a portion facing the current collector end portion of the positive electrode with an insulating coating film. It is said. Further, in this method, a current collector exposing portion in which an electrolyte layer is not formed is provided at an end portion of the surface of the positive electrode and the negative electrode where the positive electrode and the negative electrode face each other. It is preferable that it is a manufacturing method of a lithium ion secondary battery which has the process of coating an exposed part with an insulating coating film.
 本発明におけるリチウムイオン二次電池の電極部、リチウムイオン二次電池及びリチウムイオン二次電池の製造方法では、正極、負極に突起部(所謂、バリ)が形成される場合であっても、突起部近傍の正極と負極との間に絶縁塗膜が介在されているので、正極と負極との短絡を効果的に防止することができる。また、電極間の絶縁塗膜の密着性を向上させることで、リチウムイオン二次電池の性能を維持することができる。しかも、絶縁塗膜は電気絶縁性を有する塗料を塗布することによって形成することができるので、従来の絶縁テープを張着するよりも厚みを抑え、且つ簡単に行うことができるから、電極部の生産性を高めることができる。 In the lithium ion secondary battery electrode part, the lithium ion secondary battery, and the lithium ion secondary battery manufacturing method of the present invention, the protrusions (so-called burrs) are formed even on the positive electrode and the negative electrode. Since the insulating coating film is interposed between the positive electrode and the negative electrode in the vicinity of the portion, a short circuit between the positive electrode and the negative electrode can be effectively prevented. Moreover, the performance of a lithium ion secondary battery can be maintained by improving the adhesiveness of the insulating coating film between electrodes. In addition, since the insulating coating can be formed by applying a paint having electrical insulation properties, the thickness can be reduced and simpler than when a conventional insulating tape is applied. Productivity can be increased.
 本発明に係るリチウムイオン二次電池の電極部において、絶縁塗膜(即ち、電気絶縁性を有する塗料)は、電気的絶縁性を有する絶縁粒子を含んで構成されていることを特徴としている。前記粒子は、アルミナやシリカ等の無機粒子や、フェノール樹脂、エポキシ樹脂、シリコン樹脂等の有機材料からなる有機粒子であることが好ましい。 The electrode part of the lithium ion secondary battery according to the present invention is characterized in that the insulating coating (that is, the paint having electrical insulation) includes insulating particles having electrical insulation. The particles are preferably organic particles made of inorganic particles such as alumina and silica, or organic materials such as phenol resin, epoxy resin, and silicon resin.
 本発明におけるリチウムイオン二次電池の電極部では、絶縁塗膜がアルミナ等の絶縁粒子を含んで構成されるので、機械的強度に優れた絶縁塗膜を形成することができる。 In the electrode part of the lithium ion secondary battery according to the present invention, since the insulating coating film is configured to include insulating particles such as alumina, an insulating coating film having excellent mechanical strength can be formed.
 本発明に係るリチウムイオン二次電池の電極部において、絶縁塗膜は多孔質であることを特徴としている。 In the electrode part of the lithium ion secondary battery according to the present invention, the insulating coating film is porous.
 本発明におけるリチウムイオン二次電池の電極部では、絶縁塗膜が多孔質であるから、正極の正極活物質層及び負極の負極活物質層の接触面積の低下を抑制することができる。 In the electrode part of the lithium ion secondary battery in the present invention, since the insulating coating film is porous, it is possible to suppress a decrease in the contact area between the positive electrode active material layer of the positive electrode and the negative electrode active material layer of the negative electrode.
 本発明に係るリチウムイオン二次電池の電極部、その電極部を用いるリチウムイオン二次電池及びそのリチウムイオン二次電池の製造方法は、正極又は/及び負極に絶縁塗膜が設けられているので、正極や負極に突起部が生じていてセパレータが破損しても、電極間の絶縁層(つまり、絶縁塗膜)の密着性を向上させることで、正極と負極との間の短絡を効果的に防止でき、電池性能を維持できる。しかも、絶縁塗膜は電気絶縁性を有する塗料を塗布することで形成されるので、従来の絶縁テープを張着するよりも厚みを抑え、簡単に行うことができ、電極部及びリチウムイオン二次電池の生産性を高めることができる。 The electrode part of the lithium ion secondary battery according to the present invention, the lithium ion secondary battery using the electrode part, and the method for producing the lithium ion secondary battery are provided with an insulating coating film on the positive electrode or / and the negative electrode. Even if the positive electrode and negative electrode have protrusions and the separator breaks, the short circuit between the positive electrode and the negative electrode is effectively achieved by improving the adhesion of the insulating layer (that is, the insulating coating film) between the electrodes. Battery performance can be maintained. Moreover, since the insulating coating is formed by applying a paint having electrical insulation properties, the thickness can be reduced more easily than when a conventional insulating tape is applied, and the electrode portion and the lithium ion secondary Battery productivity can be increased.
本発明の一実施形態に係るリチウムイオン二次電池の断面図である。It is sectional drawing of the lithium ion secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池の第一変形例の断面図である。It is sectional drawing of the 1st modification of the lithium ion secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池の第二変形例の断面図である。It is sectional drawing of the 2nd modification of the lithium ion secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池の第三変形例の断面図である。It is sectional drawing of the 3rd modification of the lithium ion secondary battery which concerns on one Embodiment of this invention.
 以下、本発明に係る電極部、リチウムイオン二次電池及びリチウムイオン二次電池の製造方法について、図面を用いて説明する。 Hereinafter, an electrode part, a lithium ion secondary battery, and a method for manufacturing a lithium ion secondary battery according to the present invention will be described with reference to the drawings.
 図1は、本発明の一実施の形態に係るリチウムイオン二次電池LBの断面図であり、ここでは、上側に負極1が設けられ、下側に正極10が設けられている。そして、負極1と正極10との間にセパレータ20及び電解質層22が介在している。電極部Pは、正極10と負極1とそれらの間に電解質層22を有し、リチウムイオン二次電池を構成する。 FIG. 1 is a cross-sectional view of a lithium ion secondary battery LB according to an embodiment of the present invention, in which a negative electrode 1 is provided on the upper side and a positive electrode 10 is provided on the lower side. A separator 20 and an electrolyte layer 22 are interposed between the negative electrode 1 and the positive electrode 10. The electrode part P has the positive electrode 10, the negative electrode 1, and the electrolyte layer 22 between them, and comprises a lithium ion secondary battery.
 負極1は、例えば銅箔で構成される負極集電体(集電体)2と、その負極集電体2の上下面にそれぞれ生成された負極活物質層(活物質層)3とを有して構成されている。負極活物質層3としては、アルミニウム、黒鉛、金属シリコンあるいは金属リチウム箔等の周知の負極活物質が使用される。そして、この負極集電体2には、一方の一辺側(図1では左側)の一部から突出する端子4が設けられている。 The negative electrode 1 has a negative electrode current collector (current collector) 2 made of, for example, copper foil, and negative electrode active material layers (active material layers) 3 respectively formed on the upper and lower surfaces of the negative electrode current collector 2. Configured. As the negative electrode active material layer 3, a known negative electrode active material such as aluminum, graphite, metal silicon, or metal lithium foil is used. The negative electrode current collector 2 is provided with a terminal 4 protruding from a part of one side (left side in FIG. 1).
 負極1の集電体端部1eは、この負極1が例えばロール・ツー・ロール法(RtoR法)等によって大面積で製造された後に所望の大きさに切り出される際にカッターで切断された部分を示している。カッターの性能状態によっては、負極1の集電体端部1eにおいて、負極活物質層3の表面からその負極1の材料が突出する突起部(所謂、バリであり、図4参照)が生じ易い。ここで、集電体端部1eは、負極集電体2と負極集電体2の上下面にそれぞれ生成された負極活物質層3との積層体の端部のことである。 The current collector end 1e of the negative electrode 1 is a portion that is cut by a cutter when the negative electrode 1 is manufactured in a large area by, for example, a roll-to-roll method (RtoR method) or the like and cut into a desired size. Is shown. Depending on the performance state of the cutter, a protrusion (so-called burr, see FIG. 4) in which the material of the negative electrode 1 protrudes from the surface of the negative electrode active material layer 3 tends to occur at the current collector end 1e of the negative electrode 1. . Here, the current collector end portion 1 e is an end portion of a laminate of the negative electrode current collector 2 and the negative electrode active material layer 3 generated on each of the upper and lower surfaces of the negative electrode current collector 2.
 正極10は、例えばアルミニウム箔から成る正極集電体(集電体)11と、その正極集電体11の上下面にそれぞれ生成された正極活物質層(活物質層)12とを有して構成されている。この正極活物質層12は、主として正極活物質とバインダーとにより構成され、必要に応じて導電助剤が添加される。 The positive electrode 10 includes a positive electrode current collector (current collector) 11 made of, for example, an aluminum foil, and positive electrode active material layers (active material layers) 12 respectively formed on the upper and lower surfaces of the positive electrode current collector 11. It is configured. The positive electrode active material layer 12 is mainly composed of a positive electrode active material and a binder, and a conductive additive is added as necessary.
 正極活物質としては、リチウムイオンを吸蔵及び放出を可逆的に進行する種々の活物質材料を用いることができる。例えば、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、チタン酸リチウム等のリチウム複合金属酸化物を用いることができる。また、負極1の負極活物質層3に金属リチウムが用いられたときは、リチウムを含まないFeOOHやNiOOH等の正極活物質が用いられる。そして、この正極集電体11には、一方の一辺側(図示の例では右側)の一部から突出して設けられている端子13が設けられている。 As the positive electrode active material, various active material materials that reversibly advance and absorb lithium ions can be used. For example, lithium composite metal oxides such as lithium cobaltate, lithium manganate, lithium nickelate, and lithium titanate can be used. When metal lithium is used for the negative electrode active material layer 3 of the negative electrode 1, a positive electrode active material such as FeOOH or NiOOH that does not contain lithium is used. The positive electrode current collector 11 is provided with a terminal 13 that protrudes from a part of one side (right side in the illustrated example).
 正極活物質層12の表面には、電気絶縁性を有する塗料を塗布して構成される絶縁塗膜14が設けられている。この塗料には、このアルミナ(酸化アルミニウム(Al))やシリカ(二酸化ケイ素(SiO))等の無機粒子を含んで構成され、塗膜の機械強度が増加されている。 The surface of the positive electrode active material layer 12 is provided with an insulating coating film 14 formed by applying an electrically insulating paint. This paint is composed of inorganic particles such as alumina (aluminum oxide (Al 2 O 3 )) and silica (silicon dioxide (SiO 2 )), and the mechanical strength of the coating film is increased.
 図1に示すように、絶縁塗膜14は、正極10のうち、少なくとも、負極1の集電体端部1eに対向する部分10eに設けられる。具体的には、正極集電体11の上下面のうち、負極1の集電体端部1eに対向する所定の範囲に、正極活物質層12と連ねて設けられている。例えば、負極集電体2が銅から構成され、負極活物質層3が、活物質として酸化硅素を含む構成で構成されている場合、絶縁塗膜14の厚みは1μm以上30μm以下であることが好ましい。絶縁塗膜14が上記条件を満たすと、負極1と正極10とをセパレータ20を介して積層した際に、仮に集電体端部1eに形成された突起部がセパレータ20を貫通していても、その突起部の先端が絶縁塗膜14の表面或いは絶縁塗膜14内に配され、負極1と正極10との間の短絡をより確実に防止することができる。但し、絶縁塗膜14の厚み及び機械強度は、負極集電体2、負極活物質層3、正極集電体11及び正極活物質層12の材質等を考慮して、適切に設定されることが好ましい。
 なお、図1では、負極1の集電体端部1e以外に、正極10に設けられている正極活物質層12の周囲部分にも絶縁塗膜14が塗布されている。
 また、絶縁塗膜14が多孔質である場合は、即ち、電気絶縁性を有する塗料が塗布されて形成された塗膜が多孔質である場合は、正極10の表面全体に絶縁塗膜14を形成することもできる。
As shown in FIG. 1, the insulating coating 14 is provided in at least a portion 10 e of the positive electrode 10 that faces the current collector end 1 e of the negative electrode 1. Specifically, the positive electrode current collector 11 is provided in a predetermined range facing the current collector end portion 1 e of the negative electrode 1 on the upper and lower surfaces of the positive electrode current collector 11, and is connected to the positive electrode active material layer 12. For example, when the negative electrode current collector 2 is composed of copper and the negative electrode active material layer 3 is composed of silicon oxide as an active material, the thickness of the insulating coating film 14 may be 1 μm or more and 30 μm or less. preferable. When the insulating coating film 14 satisfies the above conditions, even when the negative electrode 1 and the positive electrode 10 are laminated via the separator 20, even if the protrusion formed on the current collector end 1 e passes through the separator 20. The tip of the protruding portion is disposed on the surface of the insulating coating film 14 or in the insulating coating film 14, so that a short circuit between the negative electrode 1 and the positive electrode 10 can be more reliably prevented. However, the thickness and mechanical strength of the insulating coating film 14 should be appropriately set in consideration of the materials of the negative electrode current collector 2, the negative electrode active material layer 3, the positive electrode current collector 11 and the positive electrode active material layer 12. Is preferred.
In FIG. 1, in addition to the current collector end 1 e of the negative electrode 1, the insulating coating 14 is also applied to the peripheral portion of the positive electrode active material layer 12 provided on the positive electrode 10.
In addition, when the insulating coating film 14 is porous, that is, when the coating film formed by applying an electrically insulating paint is porous, the insulating coating film 14 is applied to the entire surface of the positive electrode 10. It can also be formed.
 セパレータ20は、イオン透過性膜として機能するものであれば使用することができる。例えば、ポリエチレン多孔質フィルムやポリプロピレンの多孔質フィルムや不織布を用いることができる。
 電解質層22は、公知の電解液等で構成され、外装体24内でゲル化するゲル電解質であってもよい。
The separator 20 can be used as long as it functions as an ion permeable membrane. For example, a polyethylene porous film, a polypropylene porous film, or a nonwoven fabric can be used.
The electrolyte layer 22 may be a gel electrolyte that is made of a known electrolytic solution or the like and gels in the exterior body 24.
 負極1、正極10及びセパレータ20の平面形状は、それぞれ矩形を呈した相似関係を有していて、略同一の面積に形成されている。因みに、セパレータ20の面積が一番大きく、次ぎが負極1で、正極10が最も小さく形成されている。例えば、一例としては、セパレータ20の長辺の長さが56.8mm、短辺の長さが42.6mm、負極1のそれらが54.8mm、41.6mm、及び正極10のそれらが53.8mm、40.6mmとされている。 The planar shapes of the negative electrode 1, the positive electrode 10, and the separator 20 are similar to each other having a rectangular shape, and are formed in substantially the same area. Incidentally, the area of the separator 20 is the largest, the next is the negative electrode 1, and the positive electrode 10 is the smallest. For example, as an example, the length of the long side of the separator 20 is 56.8 mm, the length of the short side is 42.6 mm, those of the negative electrode 1 are 54.8 mm, 41.6 mm, and those of the positive electrode 10 are 53. 8 mm and 40.6 mm.
 セパレータ20を介在させた負極1及び正極10の間には、電解質層22が設けられている。電解質層22には、周知の電解質、電解液を用いることができる。例えば、LiPF、LiBF、LiClOのようなリチウム塩と、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)の混合溶媒との電解液等を用いることができる。 An electrolyte layer 22 is provided between the negative electrode 1 and the positive electrode 10 with the separator 20 interposed therebetween. For the electrolyte layer 22, a well-known electrolyte or electrolytic solution can be used. For example, an electrolytic solution of a lithium salt such as LiPF 6 , LiBF 4 , or LiClO 4 and a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) can be used.
 上述の負極1、正極10、セパレータ20及び電解質層22は、周知のリチウムイオン二次電池と同様に、これらの積層体(即ち、電極部P)がラミネートアルミフィルム等からなる外装体24内に密封させてリチウムイオン二次電池LBが製造される。電解質層22は、負極1と正極10との間以外に、電極部Pの周囲にも充填されている。 The negative electrode 1, the positive electrode 10, the separator 20, and the electrolyte layer 22 are formed in an exterior body 24 in which these laminates (that is, the electrode portion P) are made of a laminated aluminum film or the like, as in a known lithium ion secondary battery. The lithium ion secondary battery LB is manufactured by sealing. The electrolyte layer 22 is filled not only between the negative electrode 1 and the positive electrode 10 but also around the electrode part P.
 リチウムイオン二次電池LBを製造する際は、例えば、先ず、負極集電体2の上下面に負極活物質を含む負極材を5μmから100μm程度の厚みで塗布した後、負極材に含まれる溶媒を乾燥除去し、負極活物質層3を形成し、負極1とする。
 次に、例えば、正極集電体11の上下面に正極活物質を含む正極材を5μmから100μm程度の厚みで塗布した後、正極材に含まれる溶媒を乾燥除去し、正極活物質層12を形成し、正極10とする。
 負極1及び正極10は、生産性を高めるために、RtoR法によって製造することができ、その場合は大面積の各電極部からカッター等で上述したような所望の大きさに切断し、負極1及び正極10とする。その際に、例えば負極1の集電体端部1eに突起部が形成されることがある。
When manufacturing the lithium ion secondary battery LB, for example, first, a negative electrode material containing a negative electrode active material is applied to the upper and lower surfaces of the negative electrode current collector 2 with a thickness of about 5 μm to 100 μm, and then the solvent contained in the negative electrode material Is removed by drying to form the negative electrode active material layer 3, thereby forming the negative electrode 1.
Next, for example, after a positive electrode material containing a positive electrode active material is applied to the upper and lower surfaces of the positive electrode current collector 11 with a thickness of about 5 μm to 100 μm, the solvent contained in the positive electrode material is removed by drying, and the positive electrode active material layer 12 is removed. The positive electrode 10 is formed.
In order to increase productivity, the negative electrode 1 and the positive electrode 10 can be manufactured by the RtoR method. In this case, the negative electrode 1 is cut from each large-area electrode part to a desired size as described above with a cutter or the like. And the positive electrode 10. At that time, for example, a protrusion may be formed on the current collector end 1 e of the negative electrode 1.
 次に、電気絶縁性を有する塗液を、例えばダイ方式、グラビア方式等の公知の塗工方法で、正極10のうち、少なくとも、図1に示すように負極1の集電体端部1eに対向する部分に、塗布し、絶縁塗膜14を形成する工程を行う。
 その後、突起部6を絶縁塗膜14に対向させる形で、セパレータ20を介して負極1と正極10とを積層し、これらを外装体24で仮封止したラミネートセルを得る。セルを仮封止する際、端子4,13をそれぞれ外装体24の外部に突出させる。続いて、ラミネートセルの仮封止を部分的に解いて、電解質層22を形成した後で完全に封止する。以上の工程により、図1に示すリチウムイオン二次電池LBが得られる。
Next, an electrically insulating coating liquid is applied to at least the current collector end 1e of the negative electrode 1 as shown in FIG. 1 by using a known coating method such as a die method or a gravure method. The process of apply | coating to the opposing part and forming the insulating coating film 14 is performed.
Then, the negative electrode 1 and the positive electrode 10 are laminated | stacked through the separator 20 in the form which makes the protrusion part 6 oppose the insulating coating film 14, and the laminate cell which sealed these temporarily with the exterior body 24 is obtained. When temporarily sealing the cell, the terminals 4 and 13 are protruded from the exterior body 24, respectively. Subsequently, the temporary sealing of the laminate cell is partially unwound, and after the electrolyte layer 22 is formed, it is completely sealed. Through the above steps, the lithium ion secondary battery LB shown in FIG. 1 is obtained.
 上記構成からなる正極10、リチウムイオン二次電池LB及びその製造方法では、正極10に絶縁塗膜14が設けられているので、仮に負極1の集電体端部1eにバリ等の突起部が形成されていてセパレータ20が破損しても、負極1と正極10との短絡を効果的に防止することができる。また、電極間の絶縁塗膜14の密着性を向上させることで、リチウムイオン二次電池LBの性能を維持することができる。しかも、絶縁塗膜14は電気絶縁性を有する塗膜を塗布するだけで形成することができるので、従来の絶縁テープを張着するよりも簡単に行い、電極部P及びリチウムイオン二次電池LBの生産性を高めることができる。しかも、絶縁塗膜14の厚みは10μm程度とすることができるので、従来の絶縁テープ厚の35μmより薄く、電池性能の低下を抑制することができる。また、絶縁塗膜14が多孔質である場合は、正極10の正極活物質層12の接触面積の低下を抑制することができる。 In the positive electrode 10, the lithium ion secondary battery LB having the above-described configuration, and the manufacturing method thereof, since the insulating coating 14 is provided on the positive electrode 10, provisional portions such as burrs are temporarily formed on the current collector end 1 e of the negative electrode 1. Even if it is formed and the separator 20 is broken, the short circuit between the negative electrode 1 and the positive electrode 10 can be effectively prevented. Moreover, the performance of the lithium ion secondary battery LB can be maintained by improving the adhesion of the insulating coating film 14 between the electrodes. In addition, since the insulating coating film 14 can be formed simply by applying a coating film having electrical insulating properties, it is easier to apply than the conventional insulating tape, and the electrode portion P and the lithium ion secondary battery LB. Can increase productivity. And since the thickness of the insulating coating film 14 can be about 10 micrometers, it is thinner than 35 micrometers of the conventional insulation tape thickness, and can suppress the fall of battery performance. Moreover, when the insulating coating film 14 is porous, the fall of the contact area of the positive electrode active material layer 12 of the positive electrode 10 can be suppressed.
 また、上記構成からなる電極部P及びリチウムイオン二次電池LBでは、絶縁塗膜14(即ち、電気絶縁性を有する塗料)がアルミナやシリカ等の無機粒子を含んで構成されるので、機械的強度に優れた絶縁塗膜14を形成することができる。 In addition, in the electrode part P and the lithium ion secondary battery LB having the above-described configuration, the insulating coating film 14 (that is, the paint having electrical insulation) is configured to include inorganic particles such as alumina and silica. The insulating coating film 14 having excellent strength can be formed.
 また、上記構成からなる電極部P及びリチウムイオン二次電池LBでは、絶縁塗膜が多孔質であるので、正極活物質層12及び負極活物質層3の接触面積の低下を抑制することができる。 Moreover, in the electrode part P and the lithium ion secondary battery LB having the above-described configuration, since the insulating coating film is porous, it is possible to suppress a decrease in the contact area between the positive electrode active material layer 12 and the negative electrode active material layer 3. .
 以上、本発明によるその実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
 例えば、絶縁塗膜14を多孔質とし、絶縁塗膜14の小孔でセパレータ20のイオン透過機能を達成する場合は、セパレータ20を省略し、厚みを適切に調節した絶縁塗膜14のみを正極活物質層12上に設けてもよい。
The embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.
For example, when the insulating coating film 14 is porous and the ion permeation function of the separator 20 is achieved by the small holes of the insulating coating film 14, the separator 20 is omitted and only the insulating coating film 14 whose thickness is appropriately adjusted is the positive electrode. It may be provided on the active material layer 12.
 また、上記実施形態では、図1に示すように、絶縁塗膜14が正極10のうち負極1の集電体端部1eに対向する正極集電体11の上下面に、正極活物質層12と連ねて設けられている例について説明したが、このような形態に限定されることはない。例えば、図2に示すように、絶縁塗膜14は正極集電体11とは反対側の正極活物質層12の表面上に設けられていてもよい。また、図3に示すように、絶縁塗膜14は、正極活物質層12の端部よりの表面から端部を覆うと共に、負極1の集電体端部1eに対向する正極集電体11の上下面に亘って設けられていてもよい。また、図4に示すように、負極1の集電体端部1eに突起部6が形成された場合に、絶縁塗膜14は突起部6を直接被覆するように設けられていてもよい。
 さらに、上述した実施形態の負極1と正極10とが逆であってもよい。つまり、正極10の集電体端部と、負極のうち正極の集電体端部に対向する部分とが絶縁塗膜14によって被覆されていてもよい。
Further, in the above embodiment, as shown in FIG. 1, the positive electrode active material layer 12 is formed on the upper and lower surfaces of the positive electrode current collector 11 with the insulating coating 14 facing the current collector end 1 e of the negative electrode 1 in the positive electrode 10. However, the present invention is not limited to such a form. For example, as shown in FIG. 2, the insulating coating film 14 may be provided on the surface of the positive electrode active material layer 12 on the side opposite to the positive electrode current collector 11. Further, as shown in FIG. 3, the insulating coating film 14 covers the end portion from the surface of the positive electrode active material layer 12 from the end portion, and faces the current collector end portion 1 e of the negative electrode 1. It may be provided over the upper and lower surfaces. As shown in FIG. 4, when the protrusion 6 is formed on the current collector end 1 e of the negative electrode 1, the insulating coating film 14 may be provided so as to directly cover the protrusion 6.
Furthermore, the negative electrode 1 and the positive electrode 10 of the above-described embodiment may be reversed. That is, the current collector end portion of the positive electrode 10 and the portion of the negative electrode facing the current collector end portion of the positive electrode may be covered with the insulating coating film 14.
 また、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 Moreover, it is possible to appropriately replace the constituent elements in the above-described embodiments with known constituent elements without departing from the gist of the present invention.
 1 負極
 1e 集電体端部
 2 負極集電体(集電体)
 3 負極活物質層(活物質層)
10 正極
10e 集電体端部に対向する部分
11 正極集電体(集電体)
12 正極活物質層(活物質層)
14 絶縁塗膜
20 セパレータ
22 電解質
LB リチウムイオン二次電池
P 電極部
DESCRIPTION OF SYMBOLS 1 Negative electrode 1e Current collector edge part 2 Negative electrode current collector (current collector)
3 Negative electrode active material layer (active material layer)
DESCRIPTION OF SYMBOLS 10 Positive electrode 10e The part 11 which opposes an electrical power collector edge part Positive electrode electrical power collector (current collector)
12 Positive electrode active material layer (active material layer)
14 Insulating coating film 20 Separator 22 Electrolyte LB Lithium ion secondary battery P Electrode part

Claims (6)

  1.  正極と負極とその間に電解質層を有するリチウムイオン二次電池の電極部であって、
     前記正極と前記負極は、集電体とその表面に積層された活物質層からなり、
     前記正極と前記負極の集電体端部と、前記正極と前記負極のそれぞれに積層される別の前記負極と前記正極の前記集電体端部に対向する部分と、が絶縁塗膜によって被膜されているリチウムイオン二次電池の電極部。
    An electrode portion of a lithium ion secondary battery having a positive electrode, a negative electrode, and an electrolyte layer therebetween,
    The positive electrode and the negative electrode are each composed of a current collector and an active material layer laminated on the surface thereof.
    A current collector end portion of the positive electrode and the negative electrode, another negative electrode laminated on each of the positive electrode and the negative electrode, and a portion facing the current collector end portion of the positive electrode are coated with an insulating coating film. The electrode part of the lithium ion secondary battery which is made.
  2.  正極と負極とその間に電解質層を有するリチウムイオン二次電池の電極部であって、
     前記正極と前記負極の端部に形成される突起部と、前記突起部が形成された前記正極と前記負極のそれぞれに積層される別の前記負極と前記正極の前記突起部に対向する部分と、が絶縁塗膜によって被膜されているリチウムイオン二次電池の電極部。
    An electrode portion of a lithium ion secondary battery having a positive electrode, a negative electrode, and an electrolyte layer therebetween,
    A protrusion formed at an end of the positive electrode and the negative electrode; another negative electrode stacked on each of the positive electrode and the negative electrode on which the protrusion is formed; and a portion facing the protrusion of the positive electrode; , Is an electrode part of a lithium ion secondary battery coated with an insulating coating film.
  3.  前記絶縁塗膜は、アルミナやシリカ等の無機粒子を含んで構成されている請求項1又は請求項2に記載のリチウムイオン二次電池の電極部。 The electrode part of the lithium ion secondary battery according to claim 1 or 2, wherein the insulating coating film is configured to include inorganic particles such as alumina and silica.
  4.  前記絶縁塗膜は多孔質である請求項1から請求項3の何れか一項に記載のリチウムイオン二次電池の電極部。 The electrode part of the lithium ion secondary battery according to any one of claims 1 to 3, wherein the insulating coating film is porous.
  5.  請求項1から請求項4の何れか一項に記載のリチウムイオン二次電池の電極部を備えたリチウムイオン二次電池。 The lithium ion secondary battery provided with the electrode part of the lithium ion secondary battery as described in any one of Claims 1-4.
  6.  請求項1から請求項4の何れか一項に記載のリチウムイオン二次電池の電極部を備えたリチウムイオン二次電池の製造方法であって、
     前記正極と前記負極の集電体端部と、前記正極と前記負極のそれぞれに積層される別の前記負極と前記正極の前記集電体端部に対向する部分と、を絶縁塗膜によって被膜する工程を有するリチウムイオン二次電池の製造方法。
    It is a manufacturing method of the lithium ion secondary battery provided with the electrode part of the lithium ion secondary battery as described in any one of Claims 1-4,
    A current collector end portion of the positive electrode and the negative electrode, another negative electrode laminated on each of the positive electrode and the negative electrode, and a portion facing the current collector end portion of the positive electrode are coated with an insulating coating film The manufacturing method of the lithium ion secondary battery which has the process to carry out.
PCT/JP2016/079180 2015-09-30 2016-09-30 Electrode portion of lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery WO2017057762A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017543664A JPWO2017057762A1 (en) 2015-09-30 2016-09-30 Electrode part of lithium ion secondary battery, lithium ion secondary battery, and method for producing lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015195345 2015-09-30
JP2015-195345 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057762A1 true WO2017057762A1 (en) 2017-04-06

Family

ID=58427694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079180 WO2017057762A1 (en) 2015-09-30 2016-09-30 Electrode portion of lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery

Country Status (3)

Country Link
JP (1) JPWO2017057762A1 (en)
TW (1) TW201729451A (en)
WO (1) WO2017057762A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019053917A (en) * 2017-09-15 2019-04-04 マクセルホールディングス株式会社 Electrochemical element
WO2020129998A1 (en) * 2018-12-19 2020-06-25 三洋電機株式会社 Secondary battery electrode plate and secondary battery using same
WO2020130001A1 (en) * 2018-12-19 2020-06-25 三洋電機株式会社 Electrode plate for secondary batteries, and secondary battery using same
WO2020179669A1 (en) * 2019-03-01 2020-09-10 積水化学工業株式会社 Electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN111699585A (en) * 2018-08-13 2020-09-22 株式会社Lg化学 Stack-folding type electrode assembly and lithium metal battery including the same
CN112868114A (en) * 2018-12-19 2021-05-28 三洋电机株式会社 Electrode plate for secondary battery and secondary battery using same
JP2021086681A (en) * 2019-11-26 2021-06-03 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2021186716A1 (en) * 2020-03-19 2021-09-23 株式会社 東芝 Electrode, multilayer body and secondary battery
CN114203960A (en) * 2021-12-15 2022-03-18 珠海冠宇电池股份有限公司 Positive plate and battery
CN115066766A (en) * 2019-12-03 2022-09-16 远景Aesc日本有限公司 Positive electrode, lithium ion secondary battery, and method for manufacturing positive electrode tab
JP2023527676A (en) * 2020-12-31 2023-06-30 寧徳時代新能源科技股▲分▼有限公司 Electrode components, battery cells, batteries and power consumers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211606B2 (en) * 2017-12-28 2021-12-28 The Hong Kong Polytechnic University Electrode for battery and fabrication method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095382A (en) * 2002-08-30 2004-03-25 Toshiba Corp Lithium-ion secondary battery
JP2006210002A (en) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd Electrode for battery
WO2008035499A1 (en) * 2006-09-19 2008-03-27 Panasonic Corporation Method of producing electrode for secondary battery, and secondary battery
JP2009037833A (en) * 2007-08-01 2009-02-19 Hitachi Vehicle Energy Ltd Lithium-ion secondary battery
JP2011150819A (en) * 2010-01-20 2011-08-04 Hitachi Vehicle Energy Ltd Lithium secondary battery and method for manufacturing electrode thereof
JP2012074359A (en) * 2010-09-03 2012-04-12 Gs Yuasa Corp Battery
WO2012128160A1 (en) * 2011-03-23 2012-09-27 三洋電機株式会社 Positive electrode plate for anhydrous electrolyte secondary cell, method for manufacturing positive electrode plate, and anhydrous electrolyte secondary cell and method for manufacturing same
JP2014120448A (en) * 2012-12-19 2014-06-30 Hitachi Maxell Ltd Sealed battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095382A (en) * 2002-08-30 2004-03-25 Toshiba Corp Lithium-ion secondary battery
JP2006210002A (en) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd Electrode for battery
WO2008035499A1 (en) * 2006-09-19 2008-03-27 Panasonic Corporation Method of producing electrode for secondary battery, and secondary battery
JP2009037833A (en) * 2007-08-01 2009-02-19 Hitachi Vehicle Energy Ltd Lithium-ion secondary battery
JP2011150819A (en) * 2010-01-20 2011-08-04 Hitachi Vehicle Energy Ltd Lithium secondary battery and method for manufacturing electrode thereof
JP2012074359A (en) * 2010-09-03 2012-04-12 Gs Yuasa Corp Battery
WO2012128160A1 (en) * 2011-03-23 2012-09-27 三洋電機株式会社 Positive electrode plate for anhydrous electrolyte secondary cell, method for manufacturing positive electrode plate, and anhydrous electrolyte secondary cell and method for manufacturing same
JP2014120448A (en) * 2012-12-19 2014-06-30 Hitachi Maxell Ltd Sealed battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019053917A (en) * 2017-09-15 2019-04-04 マクセルホールディングス株式会社 Electrochemical element
CN111699585A (en) * 2018-08-13 2020-09-22 株式会社Lg化学 Stack-folding type electrode assembly and lithium metal battery including the same
US11942603B2 (en) 2018-08-13 2024-03-26 Lg Energy Solution, Ltd. Stack-folding type electrode assembly and lithium metal battery including the same
CN111699585B (en) * 2018-08-13 2023-08-22 株式会社Lg新能源 Stacked-folded electrode assembly and lithium metal battery including the same
EP3902031A4 (en) * 2018-12-19 2022-01-26 SANYO Electric Co., Ltd. Electrode plate for secondary batteries, and secondary battery using same
CN112868114A (en) * 2018-12-19 2021-05-28 三洋电机株式会社 Electrode plate for secondary battery and secondary battery using same
CN112997337A (en) * 2018-12-19 2021-06-18 三洋电机株式会社 Electrode plate for secondary battery and secondary battery using the same
JP7545898B2 (en) 2018-12-19 2024-09-05 三洋電機株式会社 Electrode plate for secondary battery and secondary battery using same
JPWO2020129998A1 (en) * 2018-12-19 2021-11-04 三洋電機株式会社 Electrode plate for secondary battery and secondary battery using it
JPWO2020130001A1 (en) * 2018-12-19 2021-11-04 三洋電機株式会社 Electrode plate for secondary battery and secondary battery using it
WO2020130001A1 (en) * 2018-12-19 2020-06-25 三洋電機株式会社 Electrode plate for secondary batteries, and secondary battery using same
JP7518767B2 (en) 2018-12-19 2024-07-18 三洋電機株式会社 Electrode plate for secondary battery and secondary battery using same
US11978895B2 (en) 2018-12-19 2024-05-07 Sanyo Electric Co., Ltd. Secondary battery electrode plate comprising a protrusion and secondary battery using the same
WO2020129998A1 (en) * 2018-12-19 2020-06-25 三洋電機株式会社 Secondary battery electrode plate and secondary battery using same
WO2020179669A1 (en) * 2019-03-01 2020-09-10 積水化学工業株式会社 Electrode for lithium ion secondary batteries, and lithium ion secondary battery
JPWO2020179669A1 (en) * 2019-03-01 2021-09-13 積水化学工業株式会社 Electrodes for lithium-ion secondary batteries and lithium-ion secondary batteries
JP2021086681A (en) * 2019-11-26 2021-06-03 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP7253147B2 (en) 2019-11-26 2023-04-06 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
EP4071844A4 (en) * 2019-12-03 2023-10-04 Envision AESC Japan Ltd. Positive electrode, lithium ion secondary battery and method for producing positive electrode sheet
CN115066766A (en) * 2019-12-03 2022-09-16 远景Aesc日本有限公司 Positive electrode, lithium ion secondary battery, and method for manufacturing positive electrode tab
WO2021186716A1 (en) * 2020-03-19 2021-09-23 株式会社 東芝 Electrode, multilayer body and secondary battery
JP2023527676A (en) * 2020-12-31 2023-06-30 寧徳時代新能源科技股▲分▼有限公司 Electrode components, battery cells, batteries and power consumers
JP7497461B2 (en) 2020-12-31 2024-06-10 寧徳時代新能源科技股▲分▼有限公司 Electrode components, battery cells, batteries and power consuming devices
CN114203960A (en) * 2021-12-15 2022-03-18 珠海冠宇电池股份有限公司 Positive plate and battery

Also Published As

Publication number Publication date
JPWO2017057762A1 (en) 2018-07-19
TW201729451A (en) 2017-08-16

Similar Documents

Publication Publication Date Title
WO2017057762A1 (en) Electrode portion of lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery
JP5720779B2 (en) Bipolar all-solid battery
CN110429320B (en) Winding type battery
KR101182071B1 (en) Prismatic battery of spiral type electrode
JP5610057B2 (en) Solid battery
JP6505859B2 (en) Nonaqueous electrolyte secondary battery
EP2365562B1 (en) Electrode assembly and secondary battery using the same
CN113261151A (en) Separator for electrochemical device, and electronic device
KR20180082491A (en) Lithium batteries utilizing nanoporous separator layers
KR102440683B1 (en) All-solid battery and method for manufacturing the same
JP2017183539A (en) Electrochemical device
CN115552706A (en) Separator for electrochemical device, and electronic device
JP2017174998A (en) Electrochemical device
JP5334109B2 (en) Laminated battery
JP2011129446A (en) Laminated type battery
JP2010244865A (en) Laminated battery
CN111868966A (en) Secondary battery
JP2020102311A (en) Wound type battery and manufacturing method of wound type battery
CN112909219A (en) Electrode assembly and lithium ion battery
JP2000138057A (en) Solid electrolyte battery its manufacture
US10622164B2 (en) Electrochemical device
JP2019145709A (en) Power storage device and manufacturing method of the same
CN111755663B (en) Pole piece and battery cell applying same
JP2016131056A (en) Power storage device
JP2011108538A (en) Laminate battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851931

Country of ref document: EP

Kind code of ref document: A1