WO2017057387A1 - Display device - Google Patents
Display device Download PDFInfo
- Publication number
- WO2017057387A1 WO2017057387A1 PCT/JP2016/078506 JP2016078506W WO2017057387A1 WO 2017057387 A1 WO2017057387 A1 WO 2017057387A1 JP 2016078506 W JP2016078506 W JP 2016078506W WO 2017057387 A1 WO2017057387 A1 WO 2017057387A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- display device
- black matrix
- adjacent
- pixels
- arrangement interval
- Prior art date
Links
- 239000011159 matrix material Substances 0.000 claims abstract description 126
- 239000003086 colorant Substances 0.000 claims abstract description 16
- 238000010586 diagram Methods 0.000 description 17
- 230000003287 optical effect Effects 0.000 description 13
- 239000004973 liquid crystal related substance Substances 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 239000011521 glass Substances 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 7
- 230000007547 defect Effects 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/02—Viewing or reading apparatus
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
Definitions
- the present invention relates to a display device.
- a head-mounted display that is attached to a head and can visually recognize an image displayed on a display panel arranged in front of an eye via an eyepiece is known (see Patent Document 1).
- color crosstalk in which light from an adjacent sub-pixel passes through a color filter arranged corresponding to a certain sub-pixel at the periphery of the display panel and reaches the user's eyes. (Inconvenient color mixture) may occur.
- the color crosstalk described above may occur because the display is viewed from an oblique direction.
- a display device is a display device that includes a plurality of pixels and displays an image, and includes a color filter that includes a plurality of colors and is provided corresponding to each of the plurality of pixels.
- a light-shielding member disposed between adjacent pixels and having a matrix shape extending in a first direction and a second direction different from the first direction, and the first direction and the second direction In at least one direction, there is a position where the arrangement interval between the adjacent light shielding members is narrower than the arrangement interval between the adjacent pixels.
- the arrangement interval between adjacent light shielding members is narrower than the arrangement interval between adjacent pixels.
- FIG. 1 is a cross-sectional view illustrating a schematic configuration of a display device according to the first embodiment.
- FIG. 2 is an enlarged view of the eyepiece.
- FIG. 3 is a diagram for explaining the arrangement position of the black matrix in the display device according to the first embodiment.
- FIG. 4 is a diagram illustrating the relationship between the position of the black matrix in the display device of the first embodiment and the position of the black matrix in the conventional display device.
- FIG. 5 is a diagram illustrating the angle of light entering the eyepiece from the outermost peripheral pixel of the display panel.
- FIG. 6 is a diagram showing the arrangement position of the black matrix at the position of the outermost peripheral pixel of the display panel.
- FIG. 7 is a diagram for explaining the difference in the position and line width between the black matrix of the display device according to the first embodiment and the black matrix of the conventional display device.
- FIG. 8 is a diagram for explaining a difference in position and line width between the black matrix of the display device according to the second embodiment and the black matrix of the conventional display device.
- FIG. 9 is a diagram for explaining a difference in position and line width between the black matrix of the display device according to the third embodiment and the black matrix of the conventional display device.
- FIG. 10 is a diagram for explaining a difference in position and line width between the black matrix of the display device according to the fourth embodiment and the black matrix of the conventional display device.
- FIG. 11 is a diagram showing a display device according to a fifth embodiment used as an in-vehicle display device.
- a display device is a display device that includes a plurality of pixels and displays an image, and includes a color filter that includes a plurality of colors and is provided corresponding to each of the plurality of pixels.
- a light-shielding member disposed between adjacent pixels and having a matrix shape extending in a first direction and a second direction different from the first direction, and the first direction and the second direction In at least one direction, there is a position where the arrangement interval of the adjacent light shielding members is narrower than the arrangement interval of the adjacent pixels (first configuration).
- the arrangement interval between adjacent light shielding members is narrower than the arrangement interval between adjacent pixels.
- the arrangement is adjacent at a position where color crosstalk is likely to occur.
- the occurrence of color crosstalk can be suppressed by making the arrangement interval of the light shielding members narrower than the arrangement interval of adjacent pixels.
- it is possible to suppress the influence of display defects caused by the abnormal alignment of liquid crystal that occurs between adjacent pixels. Thereby, a high quality image can be displayed.
- one of the first direction and the second direction is a horizontal direction, and the other is a vertical direction, and the light shielding members adjacent to each other in both the horizontal direction and the vertical direction.
- the arrangement interval may be configured to have a position narrower than the arrangement interval between adjacent pixels (second configuration).
- the second configuration it is possible to suppress the occurrence of color crosstalk in both the horizontal direction and the vertical direction and the influence of display defects due to the abnormal alignment of the liquid crystal, thereby displaying a high-quality image. Can do.
- the width of the light shielding member at a wide arrangement distance is an arrangement distance. It is good also as a structure wider than the width
- the aperture ratios of all the pixels can be made equal, a higher quality image can be displayed.
- one of the first direction and the second direction is a horizontal direction, and the other is a vertical direction, and is adjacent in any one of the horizontal direction and the vertical direction.
- the arrangement interval of the light shielding members to be arranged may be narrower than the arrangement interval of the adjacent pixels (fourth arrangement).
- the fourth configuration in any one of the horizontal direction and the vertical direction, it is possible to suppress the occurrence of color crosstalk and the influence of display defects due to the abnormal alignment of the liquid crystal.
- the arrangement interval between the adjacent light shielding members may be narrower than the arrangement interval between the adjacent pixels (fifth). Configuration).
- the occurrence of color crosstalk can be effectively suppressed.
- the width of the light-shielding member at a position where the spacing is wide is the width of the light-shielding member at a position where the placement distance is narrow.
- a wider configuration may be used (sixth configuration).
- the aperture ratios of all the pixels can be made equal, a higher quality image can be displayed.
- the display device is a head-mounted display further including an eyepiece (seventh configuration).
- the seventh configuration in the head mounted display, it is possible to suppress the occurrence of color crosstalk and the influence of display defects due to the abnormal alignment of the liquid crystal, so that a high quality image can be displayed.
- the arrangement interval between the adjacent light shielding members may be narrower as the position is farther from the center line of the eyepiece lens in the at least one direction (eighth configuration).
- Color crosstalk is more likely to occur at positions farther from the center line of the eyepiece, but according to the eighth configuration, the occurrence of color crosstalk can be effectively suppressed.
- FIG. 1 is a cross-sectional view illustrating a schematic configuration of a display device 10 according to the first embodiment.
- FIG. 1 shows a cross-sectional view of the display device 10 taken along a horizontal plane.
- the display device 10 is a head mounted display that is used by being mounted on the head.
- the display device 10 includes a display panel 1 and an eyepiece lens 2.
- the display panel 1 is, for example, a liquid crystal panel, and the resolution thereof is, for example, 800 ppi.
- the display panel 1 is described as a liquid crystal panel.
- the display panel 1 is not limited to a liquid crystal panel, and may be any panel having a function of displaying an image, such as an organic EL (Electro Luminescence) panel. good.
- the display panel 1 includes a glass substrate (active matrix substrate) 11, a plurality of pixel electrodes 12 arranged in a matrix on the glass substrate 11, and a plurality of bus lines (scanning lines and data) arranged on the glass substrate 11.
- Line) 13 a glass substrate (color filter substrate) 14 facing the glass substrate 11, color filters 15R, 15G, and 15B provided on the glass substrate 13, a black matrix 16 disposed between adjacent pixels, and a backlight 17 At least.
- the color filters 15R, 15G, and 15B are provided corresponding to the pixel electrodes 12 (corresponding to the pixels), for example, the color filter 15R is red, the color filter 15G is green, and the color filter 15B is blue. .
- one display pixel is constituted by three pixels, and color filters 15R, 15G, and 15B are provided corresponding to the three pixels constituting the display pixel.
- color filters 15R, 15G, and 15B are provided in this order.
- the arrangement order of the color filters 15R, 15G, and 15B is not limited to this order.
- the color of the color filter is not limited to three colors, and may be four colors of red, green, blue, and yellow, for example.
- the black matrix 16 is a light blocking member that blocks light, and has a lattice shape as a whole. That is, a plurality of black matrices 16 extending in the horizontal direction of the display panel 1 are arranged in the vertical direction, and a plurality of black matrices 16 extending in the vertical direction are arranged in the horizontal direction.
- the black matrix 16 is disposed between adjacent pixels, in the present embodiment, between adjacent pixels is not only a region between adjacent pixel electrodes 12 but also a pixel electrode 12 is disposed. Part areas are also included.
- the arrangement interval (pitch) between adjacent black matrices 16 is narrower than the arrangement interval (pitch) between adjacent pixels (adjacent pixel electrodes 12).
- the arrangement interval between the adjacent black matrices 16 is an interval between the center line of the black matrix 16 and the center line of the adjacent black matrix 16.
- the arrangement interval of adjacent pixels is a distance between the center line of a certain pixel and the center line of the adjacent pixel.
- FIG. 2 is an enlarged view of the eyepiece 2.
- the eyepiece 2 has a function of enlarging an image displayed on the display panel 1.
- the width H1 is 50 mm
- the thickness H2 is 15 mm
- the focal length (the focal length from the principal point to the focal point) is 45 mm
- the radius of curvature of the lens on the display panel 1 side is 25 mm
- the opposite side to the display panel 1 A biconvex lens having a curvature radius of 200 mm can be used.
- the user views the right eye image displayed on the display panel 1 through the eyepiece lens 2 with the right eye and the left eye image with the left eye (views a side-by-side image) through the eyepiece 2 while wearing the head mounted display.
- An image can be visually recognized.
- FIG. 3 is a diagram for explaining the arrangement position of the black matrix 16 in the display device 10 according to the present embodiment.
- FIG. 3 shows only the eyepiece 2 corresponding to the right eye among the two eyepieces 2.
- the black matrix 16 is arranged so that light from the backlight 17 is not input to the user's eyes through the adjacent color filter for a certain pixel.
- the light emitted from the backlight 17 and transmitted through a certain target pixel (pixel electrode 12) to reach the user's eyes (viewpoint) is provided corresponding to the pixel adjacent to the target pixel.
- a black matrix 16 is disposed on the optical path of light passing through the color filter.
- the black matrix 16 is arranged such that the arrangement interval between adjacent black matrices 16 is narrower than the arrangement interval between adjacent pixels (adjacent pixel electrodes 12).
- Color crosstalk is a phenomenon in which light from adjacent pixels passes through a color filter arranged corresponding to a certain pixel and reaches the user's eyes.
- an optical path connecting the observation point and the end of the bus line 13 is specified as an optical path to which the light from the backlight 17 is input to the user's eyes through the adjacent color filter, and a black matrix is formed on the optical path.
- the black matrix 16 is arranged so that 16 is located.
- the end of the bus line 13 is an end on the opposite side (adjacent pixel side) to the target pixel among both ends (both ends) of the bus line 13 adjacent to the target pixel.
- a pixel corresponding to the color filter 15Ga is a pixel of interest
- a pixel corresponding to the color filter 15Ra is an adjacent pixel.
- the optical path 31 in FIG. 3 is an optical path that reaches the one end of the observation point from the adjacent pixel through the color filter 15Ga, and the optical path 32 passes from the adjacent pixel through the color filter 15Ga to the other end of the observation point. Is the optical path to reach
- the black matrix 16a provided between the target pixel and the adjacent pixel is disposed so as to be positioned on the optical path 31 and the optical path 32.
- the black matrix 16 is arranged at a position shifted in a direction toward the center line of the eyepiece 2 with respect to the center line between adjacent pixels. That is, it can be said that the black matrix 16 is arranged at a position shifted in the direction of the viewpoint with respect to the center line between adjacent pixels. The amount of deviation with respect to the center line between adjacent pixels increases as the position is farther from the viewpoint.
- FIG. 4 is a diagram showing the relationship between the position of the black matrix 16 in the display device 10 of the present embodiment and the position of the black matrix 16p in the conventional display device.
- the black matrix 16p is provided between adjacent pixels so that the center line between the pixels matches the center line of the black matrix 16p.
- the arrangement interval S3 of the adjacent black matrix 16p is equal to the arrangement interval S2 of the adjacent pixels of the display panel 1. Further, in order to suppress the occurrence of color crosstalk, it is necessary to make the black matrix 16p thick to some extent.
- the black matrix 16 is arranged at a position shifted in a direction toward the center line of the eyepiece 2 (direction indicated by a thick arrow in FIG. 4). Since color crosstalk is more likely to occur in pixels farther from the center line of the eyepiece lens 2, when the arrangement position of the conventional black matrix 16 p is used as a reference, the farther from the centerline of the eyepiece lens 2, The amount of deviation increases.
- the disposition interval S1 between the adjacent black matrices 16 at a position far from the center line of the eyepiece 2 is narrower than the disposition interval S2 between adjacent pixels.
- the display panel 1 is provided in the housing, the display panel 1 is not exposed to external light. Therefore, even if the position of the black matrix 16 is shifted, a malfunction of a TFT (Thin Film Transistor) due to photoconduction caused by external light or color mixture due to reflection of the external light on the bus line does not occur.
- TFT Thin Film Transistor
- the aperture ratio for each pixel differs by disposing the black matrix 16 in a position different from the position of the black matrix 16p of the conventional display device.
- the difference in aperture ratio between adjacent pixels is minute, there is almost no effect on white balance and the luminance difference is also slight.
- the gradation values of the pixels corresponding to the color filters 15R, 15G, and 15B are adjusted according to the aperture ratio. You may make it do.
- FIG. 5 is a diagram showing the angle of light entering the eyepiece 2 from the outermost peripheral pixel of the display panel 1.
- the angle ⁇ 1 is 45 degrees, for example, and the angle ⁇ 2 is 80 degrees, for example.
- FIG. 6 is a diagram showing the arrangement position of the black matrix 16 at the position of the outermost peripheral pixel of the display panel 1.
- the color filter of the outermost peripheral pixel of the display panel 1 is the color filter 15B
- the color filter of the pixel adjacent to the outermost peripheral pixel is the color filter 15G. If the black matrix 16 is present on the optical path of the angle ⁇ 1 passing through the color filter 15B of the adjacent pixel in the outermost peripheral pixel having the shallowest angle among the light entering the eyepiece 2, color crosstalk is suppressed. can do.
- the line width of the black matrix 15 is set to 7 ⁇ m, for example, and is shifted by 1.5 ⁇ m in the direction of the center line of the eyepiece 2.
- the occurrence of color crosstalk can be prevented.
- the black matrix has a line width of 10 ⁇ m in order to prevent the occurrence of color crosstalk at all viewing angles.
- the line width of the black matrix 16 can be reduced by 30%, and the aperture ratio can be significantly improved. Thereby, the image quality of the display image can be improved.
- FIG. 7 is a diagram for explaining a difference in position and line width between the black matrix 16 of the display device 10 in the present embodiment and the black matrix 16p of the conventional display device.
- the X-axis direction (horizontal direction) is the direction in which the scanning line extends
- the Y-axis direction (vertical direction) is the direction in which the data line extends.
- the X-axis direction may be the direction in which the data line extends
- the Y-axis direction may be the direction in which the scanning line extends.
- the black matrix 16p is arranged at equal intervals.
- the black matrix is located at a position shifted in the direction toward the center line of the eyepiece 2 with reference to the position of the black matrix 16p of the conventional display device. 16 is arranged.
- the position is shifted in the direction toward the center line of the eyepiece lens 2.
- a black matrix 16 is arranged. The amount of displacement increases as the distance from the center line of the eyepiece 2 increases in both the X-axis direction and the Y-axis direction.
- the line width of the black matrix 16 is narrower in the display device 10 of the present embodiment than in the black matrix of the conventional display device.
- the occurrence of color crosstalk can be suppressed. Further, by disposing the position of the black matrix 16 with respect to the position of the conventional black matrix 16p, it is possible to suppress the influence of display defects caused by abnormal alignment of liquid crystals that occur between adjacent pixels. Thereby, a high quality image can be displayed.
- the black matrix 16 is arranged at a position shifted in the direction toward the center line of the eyepiece 2 with reference to the position of the black matrix 16p of the conventional display device.
- the aperture ratio of the pixel far from the center line of the eyepiece lens 2 is lower than that of the pixel near the centerline of the eyepiece lens 2.
- FIG. 8 is a diagram for explaining a difference in position and line width between the black matrix 16 of the display device 10A in the second embodiment and the black matrix 16p of the conventional display device.
- the position of the black matrix 16p of the conventional display device is used as a reference, and both the X-axis direction and the Y-axis direction are shifted in the direction toward the center line of the eyepiece lens 2.
- the black matrix 16 is arranged at the position. In both the X-axis direction and the Y-axis direction, as the distance from the center line of the eyepiece 2 increases, the amount of deviation of the black matrix 16 from the position of the black matrix 16p of the conventional display device increases.
- the line width of the black matrix 16 of this embodiment is thicker as it is closer to the center line of the eyepiece lens 2 in both the X-axis direction and the Y-axis direction, and is thinner as it is farther from the centerline of the eyepiece lens 2. That is, as the distance from the center line of the eyepiece lens 2 becomes closer to the line width of the black matrix 16 positioned on the outermost side of the liquid crystal panel 1, the line width of the black matrix 16 gradually increases.
- the line width of the black matrix 16 located on the outermost side of the display panel 1, that is, the line width of the thinnest black matrix 16 is equal to the line width of the black matrix 16 in the first embodiment.
- the aperture ratios of all the pixels can be made equal, so that a higher quality image can be displayed.
- the aperture ratio of the pixel 21 close to the horizontal centerline and the vertical centerline of the eyepiece 2, and the position away from the horizontal centerline and the vertical centerline of the eyepiece 2.
- the aperture ratios of the pixels 22 are equal.
- the black matrix 16 adjacent to each other in the horizontal direction (X-axis direction) and the vertical direction (Y-axis direction) of the display panel 1 is larger than the arrangement interval of adjacent pixels.
- the arrangement interval is narrow.
- the arrangement interval of adjacent black matrices 16 is narrower than the arrangement interval of adjacent pixels in one of the horizontal direction and the vertical direction of the display panel 1.
- the arrangement interval of the adjacent black matrix 16 is narrower than the arrangement interval of the adjacent pixels.
- FIG. 9 is a diagram for explaining a difference in position and line width between the black matrix 16 of the display device 10B in the third embodiment and the black matrix 16p of the conventional display device.
- the position of the black matrix 16p of the conventional display device is used as a reference, in the display device 10B according to the present embodiment, in the horizontal direction (X-axis direction), the horizontal center line of the eyepiece lens 2 is displayed.
- the black matrix 16 is arranged at a position shifted in the direction of heading. With the position of the black matrix 16p of the conventional display device as a reference, the shift amount of the black matrix 16 increases as the distance from the center line of the eyepiece 2 in the horizontal direction increases.
- the line width of the black matrix 16 adjacent in the horizontal direction is narrower than the line width of the black matrix 16p of the conventional display device.
- the vertical direction it is the same as the position of the black matrix 16p of the conventional display device. That is, in the vertical direction, the arrangement interval between the pixels of the display panel 1 and the arrangement interval of the black matrix 16 are the same.
- the line width of the black matrix 16 adjacent in the vertical direction is the same as the line width of the black matrix 16p of the conventional display device.
- the arrangement interval of the black matrix 16 is made shorter than the arrangement interval between the pixels of the display panel 1. Crosstalk can be suppressed.
- the color filters 15R, 15G, and 15B having different colors are arranged, it is possible to suppress the influence of display defects caused by the abnormal alignment of the liquid crystal that occurs between adjacent pixels. Thereby, a high quality image can be displayed.
- the arrangement of the adjacent black matrix 16 is larger than the arrangement interval of the adjacent pixels.
- the interval was narrow.
- the adjacent black matrix 16 has a larger interval than the arrangement interval of adjacent pixels.
- a configuration in which the arrangement interval is narrow may be employed. In this case, in the vertical direction, it is possible to suppress the influence of display defects caused by the abnormal alignment of the liquid crystal that occurs between adjacent pixels.
- the arrangement interval of the adjacent black matrix 16 is narrower than the arrangement interval of the adjacent pixels in one of the horizontal direction and the vertical direction of the display panel 1.
- the line widths of the black matrix 16 are all equal in the same direction in both the horizontal direction and the vertical direction.
- the displacement amount of the black matrix 16 increases as the distance from the center line of the eyepiece 2 increases.
- the aperture ratio of the pixels far from the center line of the eyepiece 2 is low.
- the arrangement interval of the black matrix 16 is shorter than the interval between the pixels of the display panel 1 in one of the horizontal direction and the vertical direction of the display panel 1, and In one direction, the closer the distance from the center line of the eyepiece lens 2 is, the wider the line width of the black matrix 16 and the equal the aperture ratio of each pixel.
- the arrangement interval of the adjacent black matrix 16 is narrower than the arrangement interval of the adjacent pixels.
- FIG. 10 is a diagram for explaining a difference in position and line width between the black matrix 16 of the display device 10C in the fourth embodiment and the black matrix 16p of the conventional display device.
- the black matrix 16 is arranged at a position shifted in the direction toward the center line of the eyepiece lens 2 in the horizontal direction with reference to the position of the black matrix 16p of the conventional display device. The farther from the center line of the eyepiece lens 2 in the horizontal direction, the more the black matrix 16 is displaced from the position of the black matrix 16p of the conventional display device.
- the line width of the black matrix 16 of this embodiment is thicker as it is closer to the center line of the eyepiece lens 2 and is thinner as it is farther from the centerline of the eyepiece lens 2. That is, in the horizontal direction, the line width of the black matrix 16 is gradually increased as the distance from the center line of the eyepiece lens 2 becomes shorter than the line width of the black matrix 16 positioned on the outermost side of the liquid crystal panel 1. Become. Here, it is assumed that the line width of the black matrix 16 located on the outermost side of the display panel 1, that is, the thinnest line width of the black matrix 16 is equal to the line width of the black matrix 16 in the first embodiment.
- the aperture ratios of all the pixels can be made equal.
- the aperture ratios of the pixels 102 are equal.
- the arrangement of the adjacent black matrix 16 is larger than the arrangement interval of the adjacent pixels.
- the interval was narrow.
- the adjacent black matrix 16 has a larger interval than the arrangement interval of adjacent pixels.
- a configuration in which the arrangement interval is narrow may be employed. In this case, the line width of the black matrix 16 may be narrower as it is closer to the center line of the eyepiece lens 2 in the vertical direction and thinner as it is farther from the center line of the eyepiece lens 2.
- the display device 10D in the fifth embodiment is an in-vehicle display device.
- the in-vehicle display device is a display device used for a car navigation system, for example.
- the display device 10D the display panel 1 described in the first to fourth embodiments can be used.
- the in-vehicle display device is attached, for example, at a position between the driver seat and the passenger seat in the dashboard. For this reason, as shown in FIG. 11, the positional relationship between the driver and the display device 10D is fixed to some extent, and the driver views the display device 10D from an oblique direction. In this case, the color crosstalk described above may occur.
- the use of the display panel 1 of any of the display devices 10, 10A, 10B, and 10C of the first to fourth embodiments described above as the display device 10D can suppress the occurrence of color crosstalk. it can. That is, the black matrix 16 is on the optical path of light that passes through a color filter provided corresponding to an adjacent pixel adjacent to the pixel of interest among light transmitted through a certain pixel of interest and reaches the eyes of the user (driver). Is arranged.
- the display device according to the present invention is applied to a head mounted display
- the display device according to the present invention can be applied to display devices other than the head mounted display and the in-vehicle display device.
- the present invention is highly effective when applied to a display device that is used in a situation where the positional relationship between the display device and the user is determined to some extent (used in a situation where the user is visually recognized from a specific direction).
- the display device used in a situation where the positional relationship between the display device and the user is determined to some extent is, for example, a display device in a pachinko machine or a predetermined direction (for example, obliquely upward) with respect to a standing position.
- SYMBOLS 1 ... Display panel, 2 ... Eyepiece, 10, 10A, 10B, 10C, 10D ... Display apparatus, 11 ... Glass substrate (active matrix substrate), 12 ... Pixel electrode, 13 ... Bus line, 14 ... Glass substrate (color filter) Substrate), 15R, 15G, 15B ... color filter, 16 ... black matrix, 17 ... backlight
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Liquid Crystal (AREA)
Abstract
The present invention provides a display device with which it is possible to suppress the occurrence of a color crosstalk and display a high quality image. The display device for displaying an image and having a plurality of pixels is provided with color filters 15R, 15G, 15B comprising a plurality of colors and provided corresponding to each of the plurality of pixels; and a black matrix 16 as a light-shielding member placed between adjacent pixels and having a matrix-like shape extending in a first direction and a second direction that is different from the first direction. There is a position in at least one of the first direction and the second direction at which the placement interval of adjacent black matrices 16 is narrower than the placement interval of adjacent pixels.
Description
本発明は、表示装置に関する。
The present invention relates to a display device.
頭部に装着して、眼前に配置された表示パネルに表示される画像を、接眼レンズを介して視認可能なヘッドマウントディスプレイが知られている(特許文献1参照)。
2. Description of the Related Art A head-mounted display that is attached to a head and can visually recognize an image displayed on a display panel arranged in front of an eye via an eyepiece is known (see Patent Document 1).
従来のヘッドマウントディスプレイでは、表示パネルの周辺部において、あるサブ画素に対応して配置されているカラーフィルタを、隣接するサブ画素からの光が通過してユーザの目に届く、いわゆるカラークロストーク(不都合な混色)が発生する場合がある。
In a conventional head mounted display, so-called color crosstalk, in which light from an adjacent sub-pixel passes through a color filter arranged corresponding to a certain sub-pixel at the periphery of the display panel and reaches the user's eyes. (Inconvenient color mixture) may occur.
また、ドライバがカーナビゲーションのディスプレイを見る場合、ディスプレイを斜め方向から見るために、上述したカラークロストークが発生する可能性がある。
Also, when the driver looks at the car navigation display, the color crosstalk described above may occur because the display is viewed from an oblique direction.
本発明は、カラークロストークの発生を抑制して、品質の高い画像を表示することができる表示装置を提供することを目的とする。
It is an object of the present invention to provide a display device that can suppress the occurrence of color crosstalk and display a high-quality image.
本発明の一実施形態における表示装置は、複数の画素を有し、画像を表示する表示装置であって、複数の色からなり、前記複数の画素それぞれに対応して設けられているカラーフィルタと、隣接する前記画素間に配置され、第1方向、及び前記第1方向とは異なる第2方向に延びるマトリクス状の形状を有する遮光部材と、を備え、前記第1方向及び前記第2方向のうちの少なくとも一方向において、隣接する前記遮光部材の配置間隔が隣接する前記画素の配置間隔よりも狭い位置がある。
A display device according to an embodiment of the present invention is a display device that includes a plurality of pixels and displays an image, and includes a color filter that includes a plurality of colors and is provided corresponding to each of the plurality of pixels. A light-shielding member disposed between adjacent pixels and having a matrix shape extending in a first direction and a second direction different from the first direction, and the first direction and the second direction In at least one direction, there is a position where the arrangement interval between the adjacent light shielding members is narrower than the arrangement interval between the adjacent pixels.
本実施形態の開示によれば、少なくとも一方向において、隣接する遮光部材の配置間隔は、隣接する画素の配置間隔よりも狭い位置があるので、例えば、カラークロストークの発生しやすい位置において、隣接する遮光部材の配置間隔を隣接する画素の配置間隔よりも狭くすることにより、カラークロストークの発生を抑制して、品質の高い画像を表示することができる。
According to the disclosure of the present embodiment, in at least one direction, the arrangement interval between adjacent light shielding members is narrower than the arrangement interval between adjacent pixels. By making the arrangement interval of the light shielding members to be narrower than the arrangement interval of the adjacent pixels, occurrence of color crosstalk can be suppressed and a high quality image can be displayed.
本発明の一実施形態における表示装置は、複数の画素を有し、画像を表示する表示装置であって、複数の色からなり、前記複数の画素それぞれに対応して設けられているカラーフィルタと、隣接する前記画素間に配置され、第1方向、及び前記第1方向とは異なる第2方向に延びるマトリクス状の形状を有する遮光部材と、を備え、前記第1方向及び前記第2方向のうちの少なくとも一方向において、隣接する前記遮光部材の配置間隔が隣接する前記画素の配置間隔よりも狭い位置がある(第1の構成)。
A display device according to an embodiment of the present invention is a display device that includes a plurality of pixels and displays an image, and includes a color filter that includes a plurality of colors and is provided corresponding to each of the plurality of pixels. A light-shielding member disposed between adjacent pixels and having a matrix shape extending in a first direction and a second direction different from the first direction, and the first direction and the second direction In at least one direction, there is a position where the arrangement interval of the adjacent light shielding members is narrower than the arrangement interval of the adjacent pixels (first configuration).
第1の構成によれば、少なくとも一方向において、隣接する遮光部材の配置間隔は、隣接する画素の配置間隔よりも狭い位置があるので、例えば、カラークロストークの発生しやすい位置において、隣接する遮光部材の配置間隔を隣接する画素の配置間隔よりも狭くすることにより、カラークロストークの発生を抑制することができる。また、隣接する画素間において生じる、液晶の異常配向による表示不良の影響も抑制することができる。これにより、高品質の画像を表示することができる。
According to the first configuration, in at least one direction, the arrangement interval between adjacent light shielding members is narrower than the arrangement interval between adjacent pixels. For example, the arrangement is adjacent at a position where color crosstalk is likely to occur. The occurrence of color crosstalk can be suppressed by making the arrangement interval of the light shielding members narrower than the arrangement interval of adjacent pixels. In addition, it is possible to suppress the influence of display defects caused by the abnormal alignment of liquid crystal that occurs between adjacent pixels. Thereby, a high quality image can be displayed.
第1の構成において、前記第1方向及び前記第2方向のうちの一方は水平方向であり、他方は鉛直方向であって、前記水平方向及び前記鉛直方向の両方向において、隣接する前記遮光部材の配置間隔は、隣接する画素間の配置間隔よりも狭い位置がある構成としても良い(第2の構成)。
In the first configuration, one of the first direction and the second direction is a horizontal direction, and the other is a vertical direction, and the light shielding members adjacent to each other in both the horizontal direction and the vertical direction. The arrangement interval may be configured to have a position narrower than the arrangement interval between adjacent pixels (second configuration).
第2の構成によれば、水平方向及び鉛直方向の両方向において、カラークロストークの発生、及び、液晶の異常配向による表示不良の影響を抑制することができるので、高品質の画像を表示することができる。
According to the second configuration, it is possible to suppress the occurrence of color crosstalk in both the horizontal direction and the vertical direction and the influence of display defects due to the abnormal alignment of the liquid crystal, thereby displaying a high-quality image. Can do.
第2の構成において、前記水平方向及び前記鉛直方向の両方向において、隣接する前記遮光部材の配置間隔が広い位置と狭い位置があり、配置間隔が広い位置における前記遮光部材の幅は、配置間隔が狭い位置における前記遮光部材の幅よりも広い構成としても良い(第3の構成)。
In the second configuration, in both the horizontal direction and the vertical direction, there are a wide position and a narrow position of the adjacent light shielding members, and the width of the light shielding member at a wide arrangement distance is an arrangement distance. It is good also as a structure wider than the width | variety of the said light-shielding member in a narrow position (3rd structure).
第3の構成によれば、全ての画素の開口率を等しくすることができるので、より高品質の画像を表示することができる。
According to the third configuration, since the aperture ratios of all the pixels can be made equal, a higher quality image can be displayed.
第1の構成において、前記第1方向及び前記第2方向のうちの一方は水平方向であり、他方は鉛直方向であって、前記水平方向及び前記鉛直方向のうちのいずれかの方向において、隣接する前記遮光部材の配置間隔は、隣接する前記画素の配置間隔よりも狭い位置がある構成としても良い(第4の構成)。
In the first configuration, one of the first direction and the second direction is a horizontal direction, and the other is a vertical direction, and is adjacent in any one of the horizontal direction and the vertical direction. The arrangement interval of the light shielding members to be arranged may be narrower than the arrangement interval of the adjacent pixels (fourth arrangement).
第4の構成によれば、水平方向及び鉛直方向のうちのいずれかの方向において、カラークロストークの発生、及び、液晶の異常配向による表示不良の影響を抑制することができる。
According to the fourth configuration, in any one of the horizontal direction and the vertical direction, it is possible to suppress the occurrence of color crosstalk and the influence of display defects due to the abnormal alignment of the liquid crystal.
第1の構成において、色の異なる前記カラーフィルタが配列されている方向において、隣接する前記遮光部材の配置間隔は、隣接する前記画素の配置間隔よりも狭い位置がある構成としても良い(第5の構成)。
In the first configuration, in the direction in which the color filters of different colors are arranged, the arrangement interval between the adjacent light shielding members may be narrower than the arrangement interval between the adjacent pixels (fifth). Configuration).
第5の構成によれば、カラークロストークの発生を効果的に抑制することができる。
According to the fifth configuration, the occurrence of color crosstalk can be effectively suppressed.
第4または第5の構成において、隣接する前記遮光部材の配置間隔が広い位置と狭い位置があり、配置間隔が広い位置における前記遮光部材の幅は、配置間隔が狭い位置における前記遮光部材の幅よりも広い構成としても良い(第6の構成)。
In the fourth or fifth configuration, there are a wide position and a narrow position between adjacent light-shielding members, and the width of the light-shielding member at a position where the spacing is wide is the width of the light-shielding member at a position where the placement distance is narrow. A wider configuration may be used (sixth configuration).
第6の構成によれば、全ての画素の開口率を等しくすることができるので、より高品質の画像を表示することができる。
According to the sixth configuration, since the aperture ratios of all the pixels can be made equal, a higher quality image can be displayed.
第1から第6のいずれかの構成において、前記表示装置は、接眼レンズをさらに有するヘッドマウントディスプレイである(第7の構成)。
In any one of the first to sixth configurations, the display device is a head-mounted display further including an eyepiece (seventh configuration).
第7の構成によれば、ヘッドマウントディスプレイにおいて、カラークロストークの発生、及び、液晶の異常配向による表示不良の影響を抑制することができるので、高品質の画像を表示することができる。
According to the seventh configuration, in the head mounted display, it is possible to suppress the occurrence of color crosstalk and the influence of display defects due to the abnormal alignment of the liquid crystal, so that a high quality image can be displayed.
第7の構成において、前記少なくとも一方向において、前記接眼レンズの中心線から遠い位置ほど、前記隣接する遮光部材の配置間隔は狭い構成としても良い(第8の構成)。
In the seventh configuration, the arrangement interval between the adjacent light shielding members may be narrower as the position is farther from the center line of the eyepiece lens in the at least one direction (eighth configuration).
接眼レンズの中心線から遠い位置ほど、カラークロストークは発生しやすくなるが、第8の構成によれば、カラークロストークの発生を効果的に抑制することができる。
Color crosstalk is more likely to occur at positions farther from the center line of the eyepiece, but according to the eighth configuration, the occurrence of color crosstalk can be effectively suppressed.
[実施の形態]
以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。 [Embodiment]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. In addition, in order to make the explanation easy to understand, in the drawings referred to below, the configuration is shown in a simplified or schematic manner, or some components are omitted. Further, the dimensional ratio between the constituent members shown in each drawing does not necessarily indicate an actual dimensional ratio.
以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。 [Embodiment]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. In addition, in order to make the explanation easy to understand, in the drawings referred to below, the configuration is shown in a simplified or schematic manner, or some components are omitted. Further, the dimensional ratio between the constituent members shown in each drawing does not necessarily indicate an actual dimensional ratio.
[第1の実施形態]
図1は、第1の実施形態における表示装置10の概略構成を示す断面図である。図1は、表示装置10を水平方向の平面で切断した場合の断面図を示している。表示装置10は、頭部に装着して使用するヘッドマウントディスプレイである。表示装置10は、表示パネル1と、接眼レンズ2とを備える。 [First Embodiment]
FIG. 1 is a cross-sectional view illustrating a schematic configuration of adisplay device 10 according to the first embodiment. FIG. 1 shows a cross-sectional view of the display device 10 taken along a horizontal plane. The display device 10 is a head mounted display that is used by being mounted on the head. The display device 10 includes a display panel 1 and an eyepiece lens 2.
図1は、第1の実施形態における表示装置10の概略構成を示す断面図である。図1は、表示装置10を水平方向の平面で切断した場合の断面図を示している。表示装置10は、頭部に装着して使用するヘッドマウントディスプレイである。表示装置10は、表示パネル1と、接眼レンズ2とを備える。 [First Embodiment]
FIG. 1 is a cross-sectional view illustrating a schematic configuration of a
表示パネル1は、例えば液晶パネルであり、その解像度は、例えば800ppiである。本実施形態では、表示パネル1を液晶パネルとして説明するが、表示パネル1が液晶パネルに限定されることはなく、有機EL(Electro Luminescence)パネル等、画像を表示する機能を有するパネルであれば良い。
The display panel 1 is, for example, a liquid crystal panel, and the resolution thereof is, for example, 800 ppi. In the present embodiment, the display panel 1 is described as a liquid crystal panel. However, the display panel 1 is not limited to a liquid crystal panel, and may be any panel having a function of displaying an image, such as an organic EL (Electro Luminescence) panel. good.
表示パネル1は、ガラス基板(アクティブマトリクス基板)11、ガラス基板11上にマトリクス状に配置されている複数の画素電極12、ガラス基板11上に配置されている複数のバスライン(走査ライン及びデータライン)13、ガラス基板11と対向するガラス基板(カラーフィルタ基板)14、ガラス基板13に設けられたカラーフィルタ15R、15G、15B、隣接する画素間に配置されたブラックマトリクス16、及びバックライト17を少なくとも備えている。
The display panel 1 includes a glass substrate (active matrix substrate) 11, a plurality of pixel electrodes 12 arranged in a matrix on the glass substrate 11, and a plurality of bus lines (scanning lines and data) arranged on the glass substrate 11. Line) 13, a glass substrate (color filter substrate) 14 facing the glass substrate 11, color filters 15R, 15G, and 15B provided on the glass substrate 13, a black matrix 16 disposed between adjacent pixels, and a backlight 17 At least.
カラーフィルタ15R、15G、15Bはそれぞれ、画素電極12と対応して(画素と対応して)設けられており、例えば、カラーフィルタ15Rは赤色、カラーフィルタ15Gは緑色、カラーフィルタ15Bは青色である。本実施形態では、3つの画素によって1つの表示画素が構成されており、表示画素を構成する3つの画素に対応してカラーフィルタ15R、15G、15Bが設けられている。表示パネル1の水平方向において、カラーフィルタ15R、15G、15Bがこの順に設けられている。ただし、カラーフィルタ15R、15G、15Bの配列順序がこの順序に限定されることはない。また、カラーフィルタの色が3色に限定されることはなく、例えば、赤色、緑色、青色、黄色の4色であっても良い。
The color filters 15R, 15G, and 15B are provided corresponding to the pixel electrodes 12 (corresponding to the pixels), for example, the color filter 15R is red, the color filter 15G is green, and the color filter 15B is blue. . In the present embodiment, one display pixel is constituted by three pixels, and color filters 15R, 15G, and 15B are provided corresponding to the three pixels constituting the display pixel. In the horizontal direction of the display panel 1, color filters 15R, 15G, and 15B are provided in this order. However, the arrangement order of the color filters 15R, 15G, and 15B is not limited to this order. Further, the color of the color filter is not limited to three colors, and may be four colors of red, green, blue, and yellow, for example.
ブラックマトリクス16は、光を遮光する遮光部材であり、全体として格子状の形状である。すなわち、表示パネル1の水平方向に延びるブラックマトリクス16は、鉛直方向に複数配置されており、鉛直方向に延びるブラックマトリクス16は、水平方向に複数配置されている。ブラックマトリクス16は、隣接する画素間に配置されているが、本実施形態において、隣接する画素間とは、隣接する画素電極12の間の領域だけでなく、画素電極12が配置されている一部の領域も含まれる。後述するように、水平方向及び鉛直方向の両方向において、隣接するブラックマトリクス16の配置間隔(ピッチ)は、隣接する画素(隣接する画素電極12)の配置間隔(ピッチ)よりも狭い。隣接するブラックマトリクス16の配置間隔とは、ブラックマトリクス16の中心線と、隣接するブラックマトリクス16の中心線との間の間隔である。また、隣接する画素の配置間隔とは、ある画素の中心線と、隣接する画素の中心線との間の距離である。
The black matrix 16 is a light blocking member that blocks light, and has a lattice shape as a whole. That is, a plurality of black matrices 16 extending in the horizontal direction of the display panel 1 are arranged in the vertical direction, and a plurality of black matrices 16 extending in the vertical direction are arranged in the horizontal direction. Although the black matrix 16 is disposed between adjacent pixels, in the present embodiment, between adjacent pixels is not only a region between adjacent pixel electrodes 12 but also a pixel electrode 12 is disposed. Part areas are also included. As will be described later, in both the horizontal direction and the vertical direction, the arrangement interval (pitch) between adjacent black matrices 16 is narrower than the arrangement interval (pitch) between adjacent pixels (adjacent pixel electrodes 12). The arrangement interval between the adjacent black matrices 16 is an interval between the center line of the black matrix 16 and the center line of the adjacent black matrix 16. The arrangement interval of adjacent pixels is a distance between the center line of a certain pixel and the center line of the adjacent pixel.
図2は、接眼レンズ2の拡大図である。接眼レンズ2は、表示パネル1に表示される画像を拡大する機能を有する。接眼レンズ2として、例えば、幅H1が50mm、厚みH2が15mm、焦点距離(主点から焦点の焦点距離)が45mm、表示パネル1側のレンズの曲率半径が25mm、表示パネル1とは反対側のレンズの曲率半径が200mmの両凸レンズを用いることができる。
FIG. 2 is an enlarged view of the eyepiece 2. The eyepiece 2 has a function of enlarging an image displayed on the display panel 1. As the eyepiece 2, for example, the width H1 is 50 mm, the thickness H2 is 15 mm, the focal length (the focal length from the principal point to the focal point) is 45 mm, the radius of curvature of the lens on the display panel 1 side is 25 mm, and the opposite side to the display panel 1 A biconvex lens having a curvature radius of 200 mm can be used.
接眼レンズ2は、右目及び左目に対応して、合計で2つ設けられている。ユーザは、ヘッドマウントディスプレイを装着した状態で、接眼レンズ2を通して、表示パネル1に表示される右目用画像を右目で、左目用画像を左目で見る(サイドバイサイド方式の画像を見る)ことにより、3D画像を視認することができる。
There are a total of two eyepieces 2 corresponding to the right eye and the left eye. The user views the right eye image displayed on the display panel 1 through the eyepiece lens 2 with the right eye and the left eye image with the left eye (views a side-by-side image) through the eyepiece 2 while wearing the head mounted display. An image can be visually recognized.
図3は、本実施形態における表示装置10において、ブラックマトリクス16の配置位置を説明するための図である。図3では、2つの接眼レンズ2のうち、右目に対応する接眼レンズ2のみを示している。
FIG. 3 is a diagram for explaining the arrangement position of the black matrix 16 in the display device 10 according to the present embodiment. FIG. 3 shows only the eyepiece 2 corresponding to the right eye among the two eyepieces 2.
本実施形態では、カラークロストークを防ぐために、ある画素について、バックライト17からの光が隣接するカラーフィルタを介してユーザの目に入力されないように、ブラックマトリクス16が配置されている。換言すると、バックライト17から出射されて、ある注目画素(画素電極12)を透過してユーザの目(視点)に届く光のうち、その注目画素と隣接する画素に対応して設けられているカラーフィルタを通過する光の光路上に、ブラックマトリクス16が配置されている。このような配置とするため、隣接するブラックマトリクス16の配置間隔が、隣接する画素(隣接する画素電極12)の配置間隔よりも狭い位置があるように、ブラックマトリクス16を配置する。なお、カラークロストークとは、ある画素に対応して配置されているカラーフィルタを、隣接する画素からの光が通過してユーザの目に届く現象のことである。
In this embodiment, in order to prevent color crosstalk, the black matrix 16 is arranged so that light from the backlight 17 is not input to the user's eyes through the adjacent color filter for a certain pixel. In other words, the light emitted from the backlight 17 and transmitted through a certain target pixel (pixel electrode 12) to reach the user's eyes (viewpoint) is provided corresponding to the pixel adjacent to the target pixel. A black matrix 16 is disposed on the optical path of light passing through the color filter. In order to achieve such an arrangement, the black matrix 16 is arranged such that the arrangement interval between adjacent black matrices 16 is narrower than the arrangement interval between adjacent pixels (adjacent pixel electrodes 12). Color crosstalk is a phenomenon in which light from adjacent pixels passes through a color filter arranged corresponding to a certain pixel and reaches the user's eyes.
本実施形態では、バックライト17からの光が隣接するカラーフィルタを介してユーザの目に入力される光路として、観察点とバスライン13の端を結ぶ光路を特定し、その光路上にブラックマトリクス16が位置するように、ブラックマトリクス16を配置している。バスライン13の端とは、対象とする画素に隣接するバスライン13の両端(両側端)のうち、対象とする画素とは反対側(隣接する画素側)の端である。
In the present embodiment, an optical path connecting the observation point and the end of the bus line 13 is specified as an optical path to which the light from the backlight 17 is input to the user's eyes through the adjacent color filter, and a black matrix is formed on the optical path. The black matrix 16 is arranged so that 16 is located. The end of the bus line 13 is an end on the opposite side (adjacent pixel side) to the target pixel among both ends (both ends) of the bus line 13 adjacent to the target pixel.
ヘッドマウントディスプレイでは、観察点の位置はほぼ決まっている。図3では、観察点の幅H3も示している。観察点の幅H3は、例えば10mmである。
In the head mounted display, the position of the observation point is almost fixed. In FIG. 3, the width H3 of the observation point is also shown. The observation point width H3 is, for example, 10 mm.
例えば、図3において、カラーフィルタ15Gaに対応する画素を注目画素とし、カラーフィルタ15Raに対応する画素を隣接画素とする。図3の光路31は、隣接画素からカラーフィルタ15Gaを通って、観察点の一方の端に到達する光路であり、光路32は、隣接画素からカラーフィルタ15Gaを通って、観察点の他方の端に到達する光路である。注目画素と隣接画素との間に設けられているブラックマトリクス16aは、光路31及び光路32の光路上に位置するように、配置されている。光路31及び光路32の光路上にブラックマトリクス16aが設けられていることにより、隣接画素からの光が注目画素に対応するカラーフィルタ15Gaを通って、ユーザの目に届くことを防ぐことができる。
For example, in FIG. 3, a pixel corresponding to the color filter 15Ga is a pixel of interest, and a pixel corresponding to the color filter 15Ra is an adjacent pixel. The optical path 31 in FIG. 3 is an optical path that reaches the one end of the observation point from the adjacent pixel through the color filter 15Ga, and the optical path 32 passes from the adjacent pixel through the color filter 15Ga to the other end of the observation point. Is the optical path to reach The black matrix 16a provided between the target pixel and the adjacent pixel is disposed so as to be positioned on the optical path 31 and the optical path 32. By providing the black matrix 16a on the optical paths 31 and 32, it is possible to prevent light from adjacent pixels from reaching the user's eyes through the color filter 15Ga corresponding to the target pixel.
ただし、本実施形態では、ブラックマトリクス16の幅を単純に広くすることによってカラークロストークの発生を防ぐ構成とはしていない。図4で説明するように、隣接する画素間の中心線に対して、接眼レンズ2の中心線に向かう方向にずらした位置に、ブラックマトリクス16が配置されている。すなわち、ブラックマトリクス16は、隣接する画素間の中心線に対して、視点の方向にずれた位置に配置されているとも言える。隣接する画素間の中心線に対するずれ量は、視点から遠い位置ほど多い。
However, in the present embodiment, it is not configured to prevent the occurrence of color crosstalk by simply increasing the width of the black matrix 16. As illustrated in FIG. 4, the black matrix 16 is arranged at a position shifted in a direction toward the center line of the eyepiece 2 with respect to the center line between adjacent pixels. That is, it can be said that the black matrix 16 is arranged at a position shifted in the direction of the viewpoint with respect to the center line between adjacent pixels. The amount of deviation with respect to the center line between adjacent pixels increases as the position is farther from the viewpoint.
図4は、本実施形態の表示装置10におけるブラックマトリクス16の位置と、従来の表示装置におけるブラックマトリクス16pの位置との関係を示す図である。従来の表示装置では、隣接する画素の間に、画素間の中心線とブラックマトリクス16pの中心線が一致するように、ブラックマトリクス16pが設けられている。この場合、従来の表示装置では、隣接するブラックマトリクス16pの配置間隔S3は、表示パネル1の隣接する画素の配置間隔S2と等しい。また、カラークロストークの発生を抑制するために、ブラックマトリクス16pをある程度太くする必要があった。
FIG. 4 is a diagram showing the relationship between the position of the black matrix 16 in the display device 10 of the present embodiment and the position of the black matrix 16p in the conventional display device. In the conventional display device, the black matrix 16p is provided between adjacent pixels so that the center line between the pixels matches the center line of the black matrix 16p. In this case, in the conventional display device, the arrangement interval S3 of the adjacent black matrix 16p is equal to the arrangement interval S2 of the adjacent pixels of the display panel 1. Further, in order to suppress the occurrence of color crosstalk, it is necessary to make the black matrix 16p thick to some extent.
これに対して、本実施形態の表示装置10では、カラークロストークの発生を抑制するために、従来のブラックマトリクス16pの配置位置(隣接する画素間の中心線を基準とする位置)に対して、左右の接眼レンズ2それぞれについて、接眼レンズ2の中心線に向かう方向(図4の太い矢印で示す方向)にずれた位置に、ブラックマトリクス16が配置されている。カラークロストークは、接眼レンズ2の中心線から遠い位置の画素ほど発生しやすくなるため、従来のブラックマトリクス16pの配置位置を基準とすると、接眼レンズ2の中心線から遠くなるほど、ブラックマトリクス16のずれ量は多くなる。換言すると、接眼レンズ2の中心線から近い位置ほど、隣接するブラックマトリクス16の配置間隔は広く、接眼レンズ2の中心線から遠い位置ほど、隣接するブラックマトリクス16の配置間隔は狭い。図4において、接眼レンズ2の中心線から遠い位置における、隣接するブラックマトリクス16の配置間隔S1は、隣接する画素の配置間隔S2よりも狭い。
On the other hand, in the display device 10 of the present embodiment, in order to suppress the occurrence of color crosstalk, with respect to the arrangement position of the conventional black matrix 16p (position based on the center line between adjacent pixels). For each of the left and right eyepieces 2, the black matrix 16 is arranged at a position shifted in a direction toward the center line of the eyepiece 2 (direction indicated by a thick arrow in FIG. 4). Since color crosstalk is more likely to occur in pixels farther from the center line of the eyepiece lens 2, when the arrangement position of the conventional black matrix 16 p is used as a reference, the farther from the centerline of the eyepiece lens 2, The amount of deviation increases. In other words, the closer the distance from the center line of the eyepiece lens 2 is, the wider the distance between adjacent black matrices 16 is. The farther the distance from the center line of the eyepiece lens 2 is, the narrower the distance between adjacent black matrices 16 is. In FIG. 4, the disposition interval S1 between the adjacent black matrices 16 at a position far from the center line of the eyepiece 2 is narrower than the disposition interval S2 between adjacent pixels.
ヘッドマウントディスプレイでは、筐体内に表示パネル1が設けられているため、表示パネル1が外光にさらされることはない。従って、ブラックマトリクス16の位置をずらしても、外光に起因するフォトコンダクションによるTFT(Thin Film Transistor:薄膜トランジスタ)の誤動作や、外光のバスライン反射による混色が生じることはない。
In the head mounted display, since the display panel 1 is provided in the housing, the display panel 1 is not exposed to external light. Therefore, even if the position of the black matrix 16 is shifted, a malfunction of a TFT (Thin Film Transistor) due to photoconduction caused by external light or color mixture due to reflection of the external light on the bus line does not occur.
従来の表示装置のブラックマトリクス16pの位置に対して、ブラックマトリクス16の位置をずらして配置することによって、画素毎の開口率が異なることになる。しかしながら、隣接する画素では、開口率の差が微小であるため、ホワイトバランスにはほとんど影響が無く、輝度差も軽微である。なお、カラーフィルタ15R、15G、15Bにそれぞれ対応する画素間の開口率の差を補償するために、開口率に応じて、カラーフィルタ15R、15G、15Bにそれぞれ対応する画素の階調値を調整するようにしても良い。
The aperture ratio for each pixel differs by disposing the black matrix 16 in a position different from the position of the black matrix 16p of the conventional display device. However, since the difference in aperture ratio between adjacent pixels is minute, there is almost no effect on white balance and the luminance difference is also slight. In order to compensate for the difference in aperture ratio between the pixels corresponding to the color filters 15R, 15G, and 15B, the gradation values of the pixels corresponding to the color filters 15R, 15G, and 15B are adjusted according to the aperture ratio. You may make it do.
図5は、表示パネル1の最外周の画素から接眼レンズ2に入光する光の角度を示す図である。本実施形態では、角度θ1は、例えば45度であり、角度θ2は、例えば80度である。
FIG. 5 is a diagram showing the angle of light entering the eyepiece 2 from the outermost peripheral pixel of the display panel 1. In the present embodiment, the angle θ1 is 45 degrees, for example, and the angle θ2 is 80 degrees, for example.
図6は、表示パネル1の最外周の画素の位置におけるブラックマトリクス16の配置位置を示す図である。図6において、表示パネル1の最外周の画素のカラーフィルタは、カラーフィルタ15Bであり、最外周の画素に隣接する画素のカラーフィルタは、カラーフィルタ15Gである。接眼レンズ2に入光する光のうち、最も角度が浅くなる最外周の画素において、隣接する画素のカラーフィルタ15Bを通る角度θ1の光路上にブラックマトリクス16が存在すれば、カラークロストークを抑制することができる。
FIG. 6 is a diagram showing the arrangement position of the black matrix 16 at the position of the outermost peripheral pixel of the display panel 1. In FIG. 6, the color filter of the outermost peripheral pixel of the display panel 1 is the color filter 15B, and the color filter of the pixel adjacent to the outermost peripheral pixel is the color filter 15G. If the black matrix 16 is present on the optical path of the angle θ1 passing through the color filter 15B of the adjacent pixel in the outermost peripheral pixel having the shallowest angle among the light entering the eyepiece 2, color crosstalk is suppressed. can do.
本実施形態では、バスライン13の線幅が3μm、角度θ1が45度の場合、ブラックマトリクス15の線幅を、例えば7μmとして、1.5μmだけ接眼レンズ2の中心線の方向にずらすことにより、カラークロストークの発生を防止することができる。なお、従来の直視型の表示装置では、例えばバスライン13の線幅が3μmの場合、全方位の視野角において、カラークロストークの発生を防止するために、ブラックマトリクスの線幅を10μmとする必要があった。すなわち、本実施形態の表示装置10によれば、ブラックマトリクス16の線幅を30%細線化することができ、開口率を大幅に向上させることができる。これにより、表示画像の画質を向上させることができる。
In this embodiment, when the line width of the bus line 13 is 3 μm and the angle θ1 is 45 degrees, the line width of the black matrix 15 is set to 7 μm, for example, and is shifted by 1.5 μm in the direction of the center line of the eyepiece 2. The occurrence of color crosstalk can be prevented. In the conventional direct-view display device, for example, when the bus line 13 has a line width of 3 μm, the black matrix has a line width of 10 μm in order to prevent the occurrence of color crosstalk at all viewing angles. There was a need. That is, according to the display device 10 of this embodiment, the line width of the black matrix 16 can be reduced by 30%, and the aperture ratio can be significantly improved. Thereby, the image quality of the display image can be improved.
図7は、本実施形態における表示装置10のブラックマトリクス16と、従来の表示装置のブラックマトリクス16pの位置及び線幅の違いを説明するための図である。図7において、X軸方向(水平方向)は走査ラインの延びる方向であり、Y軸方向(鉛直方向)はデータラインの延びる方向である。ただし、X軸方向がデータラインの延びる方向であり、Y軸方向が走査ラインの延びる方向であっても良い。
FIG. 7 is a diagram for explaining a difference in position and line width between the black matrix 16 of the display device 10 in the present embodiment and the black matrix 16p of the conventional display device. In FIG. 7, the X-axis direction (horizontal direction) is the direction in which the scanning line extends, and the Y-axis direction (vertical direction) is the direction in which the data line extends. However, the X-axis direction may be the direction in which the data line extends, and the Y-axis direction may be the direction in which the scanning line extends.
従来の表示装置では、ブラックマトリクス16pが等間隔に配置されている。これに対して、本実施形態における表示装置10では、上述したように、従来の表示装置のブラックマトリクス16pの位置を基準として、接眼レンズ2の中心線に向かう方向にずれた位置に、ブラックマトリクス16が配置されている。本実施形態では、図7に示すように、従来のブラックマトリクス16pの位置を基準とすると、X軸方向及びY軸方向の両方向において、接眼レンズ2の中心線に向かう方向にずれた位置に、ブラックマトリクス16が配置されている。位置ずれ量は、X軸方向及びY軸方向ともに、接眼レンズ2の中心線から遠くなるほど大きい。また、従来の表示装置のブラックマトリクスと比べて、本実施形態の表示装置10では、ブラックマトリクス16の線幅が細い。
In the conventional display device, the black matrix 16p is arranged at equal intervals. On the other hand, in the display device 10 according to the present embodiment, as described above, the black matrix is located at a position shifted in the direction toward the center line of the eyepiece 2 with reference to the position of the black matrix 16p of the conventional display device. 16 is arranged. In the present embodiment, as shown in FIG. 7, with reference to the position of the conventional black matrix 16p, in both the X-axis direction and the Y-axis direction, the position is shifted in the direction toward the center line of the eyepiece lens 2. A black matrix 16 is arranged. The amount of displacement increases as the distance from the center line of the eyepiece 2 increases in both the X-axis direction and the Y-axis direction. In addition, the line width of the black matrix 16 is narrower in the display device 10 of the present embodiment than in the black matrix of the conventional display device.
上述したように、本実施形態の表示装置10によれば、カラークロストークの発生を抑制することができる。また、従来のブラックマトリクス16pの位置に対して、ブラックマトリクス16の位置をずらして配置することにより、隣接する画素間において生じる、液晶の異常配向による表示不良の影響も抑制することができる。これにより、高品質の画像を表示することができる。
As described above, according to the display device 10 of the present embodiment, the occurrence of color crosstalk can be suppressed. Further, by disposing the position of the black matrix 16 with respect to the position of the conventional black matrix 16p, it is possible to suppress the influence of display defects caused by abnormal alignment of liquid crystals that occur between adjacent pixels. Thereby, a high quality image can be displayed.
[第2の実施形態]
第1の実施形態における表示装置10では、従来の表示装置のブラックマトリクス16pの位置を基準として、接眼レンズ2の中心線に向かう方向にずれた位置に、ブラックマトリクス16が配置されている。上述したように、接眼レンズ2の中心線から遠くなるほど、従来の表示装置のブラックマトリクス16pの位置に対するブラックマトリクス16のずれ量は多い。このため、接眼レンズ2の中心線付近の画素と比べると、接眼レンズ2の中心線から遠い位置の画素の開口率は低くなる。 [Second Embodiment]
In thedisplay device 10 according to the first embodiment, the black matrix 16 is arranged at a position shifted in the direction toward the center line of the eyepiece 2 with reference to the position of the black matrix 16p of the conventional display device. As described above, as the distance from the center line of the eyepiece 2 increases, the amount of deviation of the black matrix 16 from the position of the black matrix 16p of the conventional display device increases. For this reason, the aperture ratio of the pixel far from the center line of the eyepiece lens 2 is lower than that of the pixel near the centerline of the eyepiece lens 2.
第1の実施形態における表示装置10では、従来の表示装置のブラックマトリクス16pの位置を基準として、接眼レンズ2の中心線に向かう方向にずれた位置に、ブラックマトリクス16が配置されている。上述したように、接眼レンズ2の中心線から遠くなるほど、従来の表示装置のブラックマトリクス16pの位置に対するブラックマトリクス16のずれ量は多い。このため、接眼レンズ2の中心線付近の画素と比べると、接眼レンズ2の中心線から遠い位置の画素の開口率は低くなる。 [Second Embodiment]
In the
第2の実施形態における表示装置10Aでは、接眼レンズ2の中心線からの距離が近いほど、ブラックマトリクス16の線幅を広くして、各画素の開口率を等しくする。すなわち、隣接するブラックマトリクス16の配置間隔は、接眼レンズ2の中心線に近いほど広いので、隣接するブラックマトリクス16の配置間隔が広い位置におけるブラックマトリクス16の線幅を、隣接するブラックマトリクス16の配置間隔が狭い位置におけるブラックマトリクス16の線幅よりも広くする。
In the display device 10A according to the second embodiment, the closer the distance from the center line of the eyepiece lens 2 is, the wider the line width of the black matrix 16 and the equal the aperture ratio of each pixel. That is, since the arrangement interval of the adjacent black matrix 16 is wider as it is closer to the center line of the eyepiece lens 2, the line width of the black matrix 16 at the position where the arrangement interval of the adjacent black matrix 16 is wide is set to be equal to that of the adjacent black matrix 16. It is made wider than the line width of the black matrix 16 at a position where the arrangement interval is narrow.
図8は、第2の実施形態における表示装置10Aのブラックマトリクス16と、従来の表示装置のブラックマトリクス16pの位置及び線幅の違いを説明するための図である。本実施形態でも、第1の実施形態と同様に、従来の表示装置のブラックマトリクス16pの位置を基準として、X軸方向及びY軸方向の両方向において、接眼レンズ2の中心線に向かう方向にずれた位置に、ブラックマトリクス16が配置されている。X軸方向及びY軸方向の両方向において、接眼レンズ2の中心線から遠くなるほど、従来の表示装置のブラックマトリクス16pの位置に対するブラックマトリクス16のずれ量は多い。
FIG. 8 is a diagram for explaining a difference in position and line width between the black matrix 16 of the display device 10A in the second embodiment and the black matrix 16p of the conventional display device. Also in the present embodiment, as in the first embodiment, the position of the black matrix 16p of the conventional display device is used as a reference, and both the X-axis direction and the Y-axis direction are shifted in the direction toward the center line of the eyepiece lens 2. The black matrix 16 is arranged at the position. In both the X-axis direction and the Y-axis direction, as the distance from the center line of the eyepiece 2 increases, the amount of deviation of the black matrix 16 from the position of the black matrix 16p of the conventional display device increases.
本実施形態のブラックマトリクス16の線幅は、X軸方向及びY軸方向ともに、接眼レンズ2の中心線に近いほど太く、接眼レンズ2の中心線から遠いほど細い。すなわち、液晶パネル1の最も外側に位置するブラックマトリクス16の線幅に対して、接眼レンズ2の中心線からの距離が近くなるにしたがって、ブラックマトリクス16の線幅は少しずつ太くなる。ここでは、表示パネル1の最も外側に位置するブラックマトリクス16の線幅、すなわち、最も細いブラックマトリクス16の線幅は、第1の実施形態におけるブラックマトリクス16の線幅と等しいものとする。
The line width of the black matrix 16 of this embodiment is thicker as it is closer to the center line of the eyepiece lens 2 in both the X-axis direction and the Y-axis direction, and is thinner as it is farther from the centerline of the eyepiece lens 2. That is, as the distance from the center line of the eyepiece lens 2 becomes closer to the line width of the black matrix 16 positioned on the outermost side of the liquid crystal panel 1, the line width of the black matrix 16 gradually increases. Here, it is assumed that the line width of the black matrix 16 located on the outermost side of the display panel 1, that is, the line width of the thinnest black matrix 16 is equal to the line width of the black matrix 16 in the first embodiment.
このような構成により、全ての画素の開口率を等しくすることができるので、さらに高品質の画像を表示することができる。図8に示す例では、接眼レンズ2の水平方向の中心線及び鉛直方向の中心線に近い画素21の開口率と、接眼レンズ2の水平方向の中心線及び鉛直方向の中心線から離れた位置の画素22の開口率は等しい。
With such a configuration, the aperture ratios of all the pixels can be made equal, so that a higher quality image can be displayed. In the example shown in FIG. 8, the aperture ratio of the pixel 21 close to the horizontal centerline and the vertical centerline of the eyepiece 2, and the position away from the horizontal centerline and the vertical centerline of the eyepiece 2. The aperture ratios of the pixels 22 are equal.
[第3の実施形態]
第1の実施形態における表示装置10では、表示パネル1の水平方向(X軸方向)、及び、鉛直方向(Y軸方向)の両方向において、隣接する画素の配置間隔よりも、隣接するブラックマトリクス16の配置間隔が狭い。第3の実施形態における表示装置10Bでは、表示パネル1の水平方向及び鉛直方向のうちの一方向において、隣接する画素の配置間隔よりも、隣接するブラックマトリクス16の配置間隔が狭い。 [Third Embodiment]
In thedisplay device 10 according to the first embodiment, the black matrix 16 adjacent to each other in the horizontal direction (X-axis direction) and the vertical direction (Y-axis direction) of the display panel 1 is larger than the arrangement interval of adjacent pixels. The arrangement interval is narrow. In the display device 10B according to the third embodiment, the arrangement interval of adjacent black matrices 16 is narrower than the arrangement interval of adjacent pixels in one of the horizontal direction and the vertical direction of the display panel 1.
第1の実施形態における表示装置10では、表示パネル1の水平方向(X軸方向)、及び、鉛直方向(Y軸方向)の両方向において、隣接する画素の配置間隔よりも、隣接するブラックマトリクス16の配置間隔が狭い。第3の実施形態における表示装置10Bでは、表示パネル1の水平方向及び鉛直方向のうちの一方向において、隣接する画素の配置間隔よりも、隣接するブラックマトリクス16の配置間隔が狭い。 [Third Embodiment]
In the
ここでは、色の異なるカラーフィルタ15R、15G、15Bが配列されている方向、すなわち、表示パネル1の水平方向において、隣接する画素の配置間隔よりも、隣接するブラックマトリクス16の配置間隔が狭いものとして説明する。
Here, in the direction in which the color filters 15R, 15G, and 15B of different colors are arranged, that is, in the horizontal direction of the display panel 1, the arrangement interval of the adjacent black matrix 16 is narrower than the arrangement interval of the adjacent pixels. Will be described.
図9は、第3の実施形態における表示装置10Bのブラックマトリクス16と、従来の表示装置のブラックマトリクス16pの位置及び線幅の違いを説明するための図である。図9に示すように、従来の表示装置のブラックマトリクス16pの位置を基準とすると、本実施形態における表示装置10Bでは、水平方向(X軸方向)において、接眼レンズ2の水平方向の中心線に向かう方向にずれた位置に、ブラックマトリクス16が配置されている。従来の表示装置のブラックマトリクス16pの位置を基準として、水平方向における接眼レンズ2の中心線から遠くなるほど、ブラックマトリクス16のずれ量は多くなる。水平方向に隣接する(鉛直方向に延びる)ブラックマトリクス16の線幅は、従来の表示装置のブラックマトリクス16pの線幅よりも細い。
FIG. 9 is a diagram for explaining a difference in position and line width between the black matrix 16 of the display device 10B in the third embodiment and the black matrix 16p of the conventional display device. As shown in FIG. 9, when the position of the black matrix 16p of the conventional display device is used as a reference, in the display device 10B according to the present embodiment, in the horizontal direction (X-axis direction), the horizontal center line of the eyepiece lens 2 is displayed. The black matrix 16 is arranged at a position shifted in the direction of heading. With the position of the black matrix 16p of the conventional display device as a reference, the shift amount of the black matrix 16 increases as the distance from the center line of the eyepiece 2 in the horizontal direction increases. The line width of the black matrix 16 adjacent in the horizontal direction (extending in the vertical direction) is narrower than the line width of the black matrix 16p of the conventional display device.
一方、鉛直方向においては、従来の表示装置のブラックマトリクス16pの位置と同じである。すなわち、鉛直方向においては、表示パネル1の画素間の配置間隔と、ブラックマトリクス16の配置間隔は同じである。鉛直方向に隣接する(水平方向に延びる)ブラックマトリクス16の線幅は、従来の表示装置のブラックマトリクス16pの線幅と同じである。
On the other hand, in the vertical direction, it is the same as the position of the black matrix 16p of the conventional display device. That is, in the vertical direction, the arrangement interval between the pixels of the display panel 1 and the arrangement interval of the black matrix 16 are the same. The line width of the black matrix 16 adjacent in the vertical direction (extending in the horizontal direction) is the same as the line width of the black matrix 16p of the conventional display device.
本実施形態のように、色の異なるカラーフィルタ15R、15G、15Bが配列されている方向において、表示パネル1の画素間の配置間隔よりも、ブラックマトリクス16の配置間隔を短くすることにより、カラークロストークを抑制することができる。また、色の異なるカラーフィルタ15R、15G、15Bが配列されている方向において、隣接する画素間において生じる、液晶の異常配向による表示不良の影響も抑制することができる。これにより、高品質の画像を表示することができる。
As in the present embodiment, in the direction in which the color filters 15R, 15G, and 15B having different colors are arranged, the arrangement interval of the black matrix 16 is made shorter than the arrangement interval between the pixels of the display panel 1. Crosstalk can be suppressed. In addition, in the direction in which the color filters 15R, 15G, and 15B having different colors are arranged, it is possible to suppress the influence of display defects caused by the abnormal alignment of the liquid crystal that occurs between adjacent pixels. Thereby, a high quality image can be displayed.
なお、上述した説明では、色の異なるカラーフィルタ15R、15G、15Bが配列されている方向、すなわち、表示パネル1の水平方向において、隣接する画素の配置間隔よりも、隣接するブラックマトリクス16の配置間隔が狭いものとした。しかし、色の異なるカラーフィルタ15R、15G、15Bが配列されている方向(X軸方向)と直交する鉛直方向(Y軸方向)において、隣接する画素の配置間隔よりも、隣接するブラックマトリクス16の配置間隔が狭い構成としても良い。この場合には、鉛直方向において、隣接する画素間において生じる、液晶の異常配向による表示不良の影響も抑制することができる。
In the above description, in the direction in which the color filters 15R, 15G, and 15B having different colors are arranged, that is, in the horizontal direction of the display panel 1, the arrangement of the adjacent black matrix 16 is larger than the arrangement interval of the adjacent pixels. The interval was narrow. However, in the vertical direction (Y-axis direction) orthogonal to the direction in which the color filters 15R, 15G, and 15B of different colors are arranged (X-axis direction), the adjacent black matrix 16 has a larger interval than the arrangement interval of adjacent pixels. A configuration in which the arrangement interval is narrow may be employed. In this case, in the vertical direction, it is possible to suppress the influence of display defects caused by the abnormal alignment of the liquid crystal that occurs between adjacent pixels.
[第4の実施形態]
第3の実施形態における表示装置10Bでは、表示パネル1の水平方向及び鉛直方向のうちの一方向において、隣接する画素の配置間隔よりも、隣接するブラックマトリクス16の配置間隔が狭い構成としているが、ブラックマトリクス16の線幅は、水平方向及び鉛直方向の両方向において、同一方向では全て等しい。上述したように、ブラックマトリクス16の配置間隔を表示パネル1の画素間の配置間隔よりも狭くする方向では、接眼レンズ2の中心線から遠くなるほど、ブラックマトリクス16のずれ量は多いので、接眼レンズ2の中心線付近の画素と比べると、接眼レンズ2の中心線から遠い位置の画素の開口率は低くなる。 [Fourth Embodiment]
In the display device 10B according to the third embodiment, the arrangement interval of the adjacentblack matrix 16 is narrower than the arrangement interval of the adjacent pixels in one of the horizontal direction and the vertical direction of the display panel 1. The line widths of the black matrix 16 are all equal in the same direction in both the horizontal direction and the vertical direction. As described above, in the direction in which the arrangement interval of the black matrix 16 is narrower than the arrangement interval between the pixels of the display panel 1, the displacement amount of the black matrix 16 increases as the distance from the center line of the eyepiece 2 increases. Compared with the pixels near the center line of 2, the aperture ratio of the pixels far from the center line of the eyepiece 2 is low.
第3の実施形態における表示装置10Bでは、表示パネル1の水平方向及び鉛直方向のうちの一方向において、隣接する画素の配置間隔よりも、隣接するブラックマトリクス16の配置間隔が狭い構成としているが、ブラックマトリクス16の線幅は、水平方向及び鉛直方向の両方向において、同一方向では全て等しい。上述したように、ブラックマトリクス16の配置間隔を表示パネル1の画素間の配置間隔よりも狭くする方向では、接眼レンズ2の中心線から遠くなるほど、ブラックマトリクス16のずれ量は多いので、接眼レンズ2の中心線付近の画素と比べると、接眼レンズ2の中心線から遠い位置の画素の開口率は低くなる。 [Fourth Embodiment]
In the display device 10B according to the third embodiment, the arrangement interval of the adjacent
第4の実施形態における表示装置10Cでは、表示パネル1の水平方向及び鉛直方向のうちの一方向において、表示パネル1の画素間の間隔よりも、ブラックマトリクス16の配置間隔が短く、かつ、当該一方向において、接眼レンズ2の中心線からの距離が近いほど、ブラックマトリクス16の線幅を広くして、各画素の開口率を等しくする。
In the display device 10C according to the fourth embodiment, the arrangement interval of the black matrix 16 is shorter than the interval between the pixels of the display panel 1 in one of the horizontal direction and the vertical direction of the display panel 1, and In one direction, the closer the distance from the center line of the eyepiece lens 2 is, the wider the line width of the black matrix 16 and the equal the aperture ratio of each pixel.
ここでは、色の異なるカラーフィルタ15R、15G、15Bが配列されている方向、すなわち、表示パネル1の水平方向において、隣接する画素の配置間隔よりも、隣接するブラックマトリクス16の配置間隔が狭いものとして説明する。
Here, in the direction in which the color filters 15R, 15G, and 15B of different colors are arranged, that is, in the horizontal direction of the display panel 1, the arrangement interval of the adjacent black matrix 16 is narrower than the arrangement interval of the adjacent pixels. Will be described.
図10は、第4の実施形態における表示装置10Cのブラックマトリクス16と、従来の表示装置のブラックマトリクス16pの位置及び線幅の違いを説明するための図である。本実施形態では、従来の表示装置のブラックマトリクス16pの位置を基準として、水平方向において、接眼レンズ2の中心線に向かう方向にずれた位置に、ブラックマトリクス16が配置されている。水平方向において、接眼レンズ2の中心線から遠くなるほど、従来の表示装置のブラックマトリクス16pの位置に対するブラックマトリクス16のずれ量は多い。
FIG. 10 is a diagram for explaining a difference in position and line width between the black matrix 16 of the display device 10C in the fourth embodiment and the black matrix 16p of the conventional display device. In the present embodiment, the black matrix 16 is arranged at a position shifted in the direction toward the center line of the eyepiece lens 2 in the horizontal direction with reference to the position of the black matrix 16p of the conventional display device. The farther from the center line of the eyepiece lens 2 in the horizontal direction, the more the black matrix 16 is displaced from the position of the black matrix 16p of the conventional display device.
本実施形態のブラックマトリクス16の線幅は、水平方向において、接眼レンズ2の中心線に近いほど太く、接眼レンズ2の中心線から遠いほど細い。すなわち、水平方向において、液晶パネル1の最も外側に位置するブラックマトリクス16の線幅に対して、接眼レンズ2の中心線からの距離が近くなるにしたがって、ブラックマトリクス16の線幅は少しずつ太くなる。ここでは、表示パネル1の最も外側に位置するブラックマトリクス16の線幅、すなわち、ブラックマトリクス16の最も細い線幅は、第1の実施形態におけるブラックマトリクス16の線幅と等しいものとする。
In the horizontal direction, the line width of the black matrix 16 of this embodiment is thicker as it is closer to the center line of the eyepiece lens 2 and is thinner as it is farther from the centerline of the eyepiece lens 2. That is, in the horizontal direction, the line width of the black matrix 16 is gradually increased as the distance from the center line of the eyepiece lens 2 becomes shorter than the line width of the black matrix 16 positioned on the outermost side of the liquid crystal panel 1. Become. Here, it is assumed that the line width of the black matrix 16 located on the outermost side of the display panel 1, that is, the thinnest line width of the black matrix 16 is equal to the line width of the black matrix 16 in the first embodiment.
このような構成により、全ての画素の開口率を等しくすることができる。図10に示す例では、接眼レンズ2の水平方向の中心線及び鉛直方向の中心線に近い画素101の開口率と、接眼レンズ2の水平方向の中心線及び鉛直方向の中心線から離れた位置の画素102の開口率は等しい。
With this configuration, the aperture ratios of all the pixels can be made equal. In the example shown in FIG. 10, the aperture ratio of the pixel 101 close to the horizontal centerline and the vertical centerline of the eyepiece 2, and the position away from the horizontal centerline and the vertical centerline of the eyepiece 2. The aperture ratios of the pixels 102 are equal.
なお、上述した説明では、色の異なるカラーフィルタ15R、15G、15Bが配列されている方向、すなわち、表示パネル1の水平方向において、隣接する画素の配置間隔よりも、隣接するブラックマトリクス16の配置間隔が狭いものとした。しかし、色の異なるカラーフィルタ15R、15G、15Bが配列されている方向(X軸方向)と直交する鉛直方向(Y軸方向)において、隣接する画素の配置間隔よりも、隣接するブラックマトリクス16の配置間隔が狭い構成としても良い。この場合には、ブラックマトリクス16の線幅を、鉛直方向において、接眼レンズ2の中心線に近いほど太く、接眼レンズ2の中心線から遠いほど細くすれば良い。
In the above description, in the direction in which the color filters 15R, 15G, and 15B having different colors are arranged, that is, in the horizontal direction of the display panel 1, the arrangement of the adjacent black matrix 16 is larger than the arrangement interval of the adjacent pixels. The interval was narrow. However, in the vertical direction (Y-axis direction) orthogonal to the direction in which the color filters 15R, 15G, and 15B of different colors are arranged (X-axis direction), the adjacent black matrix 16 has a larger interval than the arrangement interval of adjacent pixels. A configuration in which the arrangement interval is narrow may be employed. In this case, the line width of the black matrix 16 may be narrower as it is closer to the center line of the eyepiece lens 2 in the vertical direction and thinner as it is farther from the center line of the eyepiece lens 2.
[第5の実施形態]
第5の実施形態における表示装置10Dは、車載表示装置である。車載表示装置は、例えば、カーナビゲーションシステムに用いられる表示装置である。表示装置10Dとして、上述した第1~第4の実施形態で説明した表示パネル1を用いることができる。 [Fifth Embodiment]
Thedisplay device 10D in the fifth embodiment is an in-vehicle display device. The in-vehicle display device is a display device used for a car navigation system, for example. As the display device 10D, the display panel 1 described in the first to fourth embodiments can be used.
第5の実施形態における表示装置10Dは、車載表示装置である。車載表示装置は、例えば、カーナビゲーションシステムに用いられる表示装置である。表示装置10Dとして、上述した第1~第4の実施形態で説明した表示パネル1を用いることができる。 [Fifth Embodiment]
The
車載表示装置は、例えば、ダッシュボード内の運転席と助手席との間の位置に取り付けられる。このため、図11に示すように、ドライバと表示装置10Dとの位置関係はある程度固定されており、ドライバは、表示装置10Dを斜め方向から見ることになる。この場合、上述したカラークロストークが発生する場合がある。
The in-vehicle display device is attached, for example, at a position between the driver seat and the passenger seat in the dashboard. For this reason, as shown in FIG. 11, the positional relationship between the driver and the display device 10D is fixed to some extent, and the driver views the display device 10D from an oblique direction. In this case, the color crosstalk described above may occur.
このため、表示装置10Dとして、上述した第1~第4の実施形態の表示装置10、10A、10B、10Cのいずれかの表示パネル1を用いることにより、カラークロストークの発生を抑制することができる。すなわち、ブラックマトリクス16は、ある注目画素を透過する光のうち、注目画素と隣接する隣接画素に対応して設けられているカラーフィルタを透過してユーザ(ドライバ)の目に届く光の光路上に配置されている。
Therefore, the use of the display panel 1 of any of the display devices 10, 10A, 10B, and 10C of the first to fourth embodiments described above as the display device 10D can suppress the occurrence of color crosstalk. it can. That is, the black matrix 16 is on the optical path of light that passes through a color filter provided corresponding to an adjacent pixel adjacent to the pixel of interest among light transmitted through a certain pixel of interest and reaches the eyes of the user (driver). Is arranged.
以上、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
The above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.
例えば、上述した第1~第4の実施形態では、本発明による表示装置をヘッドマウントディスプレイに適用した例について説明し、第5の実施形態では、車載表示装置に適用した例について説明した。しかし、本発明による表示装置は、ヘッドマウントディスプレイ及び車載表示装置以外の表示装置に適用することができる。特に、表示装置とユーザとの位置関係がある程度決まっている状況下で使用される(特定の方向から視認される状況下で使用される)表示装置に適用すると効果が高い。表示装置とユーザとの位置関係がある程度決まっている状況下で使用される表示装置とは、例えば、パチンコ台の中にある表示装置や、立ち位置に対して所定の方向(例えば、斜め上方)の位置に配置されている工場内の操作パネル等がある。
For example, in the first to fourth embodiments described above, an example in which the display device according to the present invention is applied to a head mounted display has been described, and in the fifth embodiment, an example in which the display device is applied to an in-vehicle display device has been described. However, the display device according to the present invention can be applied to display devices other than the head mounted display and the in-vehicle display device. In particular, the present invention is highly effective when applied to a display device that is used in a situation where the positional relationship between the display device and the user is determined to some extent (used in a situation where the user is visually recognized from a specific direction). The display device used in a situation where the positional relationship between the display device and the user is determined to some extent is, for example, a display device in a pachinko machine or a predetermined direction (for example, obliquely upward) with respect to a standing position. There is an operation panel in the factory located at the position.
1…表示パネル、2…接眼レンズ、10、10A、10B、10C、10D…表示装置、11…ガラス基板(アクティブマトリクス基板)、12…画素電極、13…バスライン、14…ガラス基板(カラーフィルタ基板)、15R、15G、15B…カラーフィルタ、16…ブラックマトリクス、17…バックライト
DESCRIPTION OF SYMBOLS 1 ... Display panel, 2 ... Eyepiece, 10, 10A, 10B, 10C, 10D ... Display apparatus, 11 ... Glass substrate (active matrix substrate), 12 ... Pixel electrode, 13 ... Bus line, 14 ... Glass substrate (color filter) Substrate), 15R, 15G, 15B ... color filter, 16 ... black matrix, 17 ... backlight
Claims (8)
- 複数の画素を有し、画像を表示する表示装置であって、
複数の色からなり、前記複数の画素それぞれに対応して設けられているカラーフィルタと、
隣接する前記画素間に配置され、第1方向、及び前記第1方向とは異なる第2方向に延びるマトリクス状の形状を有する遮光部材と、
を備え、
前記第1方向及び前記第2方向のうちの少なくとも一方向において、隣接する前記遮光部材の配置間隔が隣接する前記画素の配置間隔よりも狭い位置がある、表示装置。 A display device having a plurality of pixels and displaying an image,
A color filter comprising a plurality of colors and provided corresponding to each of the plurality of pixels;
A light-shielding member disposed between adjacent pixels and having a matrix shape extending in a first direction and a second direction different from the first direction;
With
The display device, wherein in at least one of the first direction and the second direction, there is a position where an arrangement interval of the adjacent light shielding members is narrower than an arrangement interval of the adjacent pixels. - 前記第1方向及び前記第2方向のうちの一方は水平方向であり、他方は鉛直方向であって、前記水平方向及び前記鉛直方向の両方向において、隣接する前記遮光部材の配置間隔は、隣接する画素間の配置間隔よりも狭い位置がある、請求項1に記載の表示装置。 One of the first direction and the second direction is a horizontal direction, and the other is a vertical direction. In both the horizontal direction and the vertical direction, the arrangement intervals of the adjacent light shielding members are adjacent to each other. The display device according to claim 1, wherein there is a position narrower than an arrangement interval between pixels.
- 前記水平方向及び前記鉛直方向の両方向において、隣接する前記遮光部材の配置間隔が広い位置と狭い位置があり、配置間隔が広い位置における前記遮光部材の幅は、配置間隔が狭い位置における前記遮光部材の幅よりも広い、請求項2に記載の表示装置。 In both the horizontal direction and the vertical direction, there are a wide position and a narrow position of adjacent light shielding members, and the width of the light shielding member at a wide position is the light shielding member at a narrow position. The display device according to claim 2, wherein the display device is wider than the width of the display device.
- 前記第1方向及び前記第2方向のうちの一方は水平方向であり、他方は鉛直方向であって、前記水平方向及び前記鉛直方向のうちのいずれかの方向において、隣接する前記遮光部材の配置間隔は、隣接する前記画素の配置間隔よりも狭い位置がある、請求項1に記載の表示装置。 One of the first direction and the second direction is a horizontal direction, and the other is a vertical direction, and the arrangement of the adjacent light shielding members in any one of the horizontal direction and the vertical direction The display device according to claim 1, wherein the interval is narrower than the arrangement interval of the adjacent pixels.
- 色の異なる前記カラーフィルタが配列されている方向において、隣接する前記遮光部材の配置間隔は、隣接する前記画素の配置間隔よりも狭い位置がある、請求項1に記載の表示装置。 2. The display device according to claim 1, wherein in a direction in which the color filters having different colors are arranged, an arrangement interval between the adjacent light shielding members is narrower than an arrangement interval between the adjacent pixels.
- 隣接する前記遮光部材の配置間隔が広い位置と狭い位置があり、配置間隔が広い位置における前記遮光部材の幅は、配置間隔が狭い位置における前記遮光部材の幅よりも広い、請求項4または5に記載の表示装置。 The adjacent light-shielding member has a wide arrangement position and a narrow position, and the width of the light-shielding member at a position where the arrangement interval is wide is wider than the width of the light-shielding member at a position where the arrangement interval is narrow. The display device described in 1.
- 前記表示装置は、接眼レンズをさらに有するヘッドマウントディスプレイである、請求項1から6のいずれかに記載の表示装置。 The display device according to any one of claims 1 to 6, wherein the display device is a head mounted display further including an eyepiece.
- 前記少なくとも一方向において、前記接眼レンズの中心線から遠い位置ほど、前記隣接する遮光部材の配置間隔は狭い、請求項7に記載の表示装置。 The display device according to claim 7, wherein in the at least one direction, the disposition distance between the adjacent light shielding members is narrower as the position is farther from the center line of the eyepiece.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-194406 | 2015-09-30 | ||
JP2015194406 | 2015-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017057387A1 true WO2017057387A1 (en) | 2017-04-06 |
Family
ID=58423807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/078506 WO2017057387A1 (en) | 2015-09-30 | 2016-09-27 | Display device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017057387A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017169563A1 (en) * | 2016-03-31 | 2019-02-14 | ソニー株式会社 | Display device and electronic device |
EP3627209A3 (en) * | 2018-09-21 | 2020-07-29 | Samsung Display Co., Ltd. | Display device and method of manufacturing the same |
CN114387936A (en) * | 2022-02-17 | 2022-04-22 | 深圳市华星光电半导体显示技术有限公司 | Pixel structure and display panel |
US20230011408A1 (en) * | 2021-07-09 | 2023-01-12 | Meta Platforms Technologies, Llc | Off-axis pixel design for liquid crystal display devices |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1138426A (en) * | 1997-07-17 | 1999-02-12 | Mitsubishi Electric Corp | Liquid crystal display device |
JP2000152126A (en) * | 1998-11-12 | 2000-05-30 | Canon Inc | Head mount display device |
JP2000155286A (en) * | 1998-11-24 | 2000-06-06 | Olympus Optical Co Ltd | Video display device |
JP2008145778A (en) * | 2006-12-11 | 2008-06-26 | Infovision Optoelectronics Holdings Ltd | Curved liquid crystal panel and liquid crystal display device |
JP2009014996A (en) * | 2007-07-04 | 2009-01-22 | Seiko Epson Corp | Image display device |
JP2009258346A (en) * | 2008-04-16 | 2009-11-05 | Epson Imaging Devices Corp | Electro-optical device and projection type display device |
JP2014106428A (en) * | 2012-11-28 | 2014-06-09 | Japan Display Inc | Display device and electronic device |
JP2015138217A (en) * | 2014-01-24 | 2015-07-30 | セイコーエプソン株式会社 | Electro-optical device and electronic apparatus |
-
2016
- 2016-09-27 WO PCT/JP2016/078506 patent/WO2017057387A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1138426A (en) * | 1997-07-17 | 1999-02-12 | Mitsubishi Electric Corp | Liquid crystal display device |
JP2000152126A (en) * | 1998-11-12 | 2000-05-30 | Canon Inc | Head mount display device |
JP2000155286A (en) * | 1998-11-24 | 2000-06-06 | Olympus Optical Co Ltd | Video display device |
JP2008145778A (en) * | 2006-12-11 | 2008-06-26 | Infovision Optoelectronics Holdings Ltd | Curved liquid crystal panel and liquid crystal display device |
JP2009014996A (en) * | 2007-07-04 | 2009-01-22 | Seiko Epson Corp | Image display device |
JP2009258346A (en) * | 2008-04-16 | 2009-11-05 | Epson Imaging Devices Corp | Electro-optical device and projection type display device |
JP2014106428A (en) * | 2012-11-28 | 2014-06-09 | Japan Display Inc | Display device and electronic device |
JP2015138217A (en) * | 2014-01-24 | 2015-07-30 | セイコーエプソン株式会社 | Electro-optical device and electronic apparatus |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017169563A1 (en) * | 2016-03-31 | 2019-02-14 | ソニー株式会社 | Display device and electronic device |
JP2021056527A (en) * | 2016-03-31 | 2021-04-08 | ソニー株式会社 | Display device and electronic apparatus |
JP7047889B2 (en) | 2016-03-31 | 2022-04-05 | ソニーグループ株式会社 | Display devices and electronic devices |
EP3627209A3 (en) * | 2018-09-21 | 2020-07-29 | Samsung Display Co., Ltd. | Display device and method of manufacturing the same |
US11353631B2 (en) | 2018-09-21 | 2022-06-07 | Samsung Display Co., Ltd. | Display device and method of manufacturing the same |
US20230011408A1 (en) * | 2021-07-09 | 2023-01-12 | Meta Platforms Technologies, Llc | Off-axis pixel design for liquid crystal display devices |
US11573445B2 (en) * | 2021-07-09 | 2023-02-07 | Meta Platforms Technologies, Llc | Off-axis pixel design for liquid crystal display devices |
CN114387936A (en) * | 2022-02-17 | 2022-04-22 | 深圳市华星光电半导体显示技术有限公司 | Pixel structure and display panel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101391479B1 (en) | Electrooptical device and electronic apparatus | |
TWI459033B (en) | Stereoscopic display device | |
WO2017057387A1 (en) | Display device | |
US10311809B2 (en) | Dual view-field display and fabricating method and driving method thereof | |
WO2015056792A1 (en) | Liquid-crystal display device and head-up display | |
KR20140115487A (en) | Stereoscopic image display device of non glasses type | |
CN106575044B (en) | Display devices and electronic equipment | |
US10228569B2 (en) | Display device | |
US9880394B2 (en) | Display apparatus with improved viewing angles | |
KR20220040441A (en) | Head mounted display device | |
JP6231246B2 (en) | Liquid crystal panel and liquid crystal display device | |
CN110178171B (en) | Multi-display | |
US11194172B2 (en) | Display device and display method | |
JP5449238B2 (en) | 3D image display device | |
US20170285418A1 (en) | Liquid crystal display device | |
WO2017057386A1 (en) | Head mounted display | |
JP2019204075A (en) | Display device | |
JP5512158B2 (en) | Display device | |
US20200292874A1 (en) | Display panel and display device | |
JP2010088087A (en) | Electro-optical device, and electronic apparatus | |
CN103364960B (en) | Image display device | |
JP5381423B2 (en) | Electro-optical device and electronic apparatus | |
CN111796421B (en) | Display device for head-mounted display and head-mounted display | |
JP2011186373A (en) | Parallax barrier, image display apparatus, and method for manufacturing the parallax barrier | |
US20250123514A1 (en) | Image pickup apparatus equipped with display function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16851558 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16851558 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |