[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017057099A1 - サスペンション装置 - Google Patents

サスペンション装置 Download PDF

Info

Publication number
WO2017057099A1
WO2017057099A1 PCT/JP2016/077706 JP2016077706W WO2017057099A1 WO 2017057099 A1 WO2017057099 A1 WO 2017057099A1 JP 2016077706 W JP2016077706 W JP 2016077706W WO 2017057099 A1 WO2017057099 A1 WO 2017057099A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
passage
differential pressure
control valve
damper
Prior art date
Application number
PCT/JP2016/077706
Other languages
English (en)
French (fr)
Inventor
政村 辰也
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to CN201680056717.5A priority Critical patent/CN108136869A/zh
Priority to KR1020187008980A priority patent/KR20180048881A/ko
Priority to US15/764,611 priority patent/US20180281550A1/en
Priority to EP16851273.9A priority patent/EP3357722A1/en
Publication of WO2017057099A1 publication Critical patent/WO2017057099A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/466Throttling control, i.e. regulation of flow passage geometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/056Regulating distributors or valves for hydropneumatic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/0408Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics details, e.g. antifreeze for suspension fluid, pumps, retarding means per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/466Throttling control, i.e. regulation of flow passage geometry
    • F16F9/469Valves incorporated in the piston
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/15Fluid spring
    • B60G2202/154Fluid spring with an accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/413Hydraulic actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/416Fluid actuator using a pump, e.g. in the line connecting the lower chamber to the upper chamber of the actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/11Damping valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/20Spring action or springs
    • B60G2500/203Distributor valve units comprising several elements, e.g. valves, pump or accumulators

Definitions

  • the present invention relates to a suspension device.
  • the suspension device includes a damper including a cylinder and a piston that is movably inserted into the cylinder and defines an extension side chamber and a compression side chamber in the cylinder, a pump, a reservoir, an extension side chamber, and a compression side.
  • An electromagnetic switching valve that selectively connects the chamber to the pump and the reservoir, and an electromagnetic pressure control valve that can adjust the pressure of the expansion side chamber and the pressure side chamber that is connected to the pump according to the supply current.
  • the direction in which the damper exerts thrust can be selected by switching the electromagnetic switching valve, and the magnitude of the thrust can be controlled by adjusting the pressure of the electromagnetic pressure control valve.
  • the object of the present invention is to provide a suspension device that is inexpensive and can simplify the handling of piping.
  • a suspension device includes a cylinder, a damper that is movably inserted into the cylinder, and includes a piston that divides the inside of the cylinder into an extension side chamber and a pressure side chamber, a pump, and a pump A reservoir connected to the suction side, and a fluid pressure circuit provided between the damper, the pump, and the reservoir.
  • the fluid pressure circuit is connected to the supply path connected to the discharge side of the pump and the reservoir A discharge passage, an extension passage connected to the extension chamber, a pressure passage connected to the compression chamber, an extension damping valve provided in the extension passage, a compression damping valve provided in the compression passage, a supply passage, A differential pressure control valve that is provided between the discharge passage, the expansion side passage, and the pressure side passage to control the differential pressure between the expansion side passage and the pressure side passage, and is provided between the differential pressure control valve and the pump in the supply passage.
  • a supply-side check valve that allows the suction
  • a suction passage that connects between the differential pressure control valve in the supply passage and the supply-side check valve, and a discharge passage, and a fluid that is provided in the suction passage and flows from the discharge passage toward the supply passage.
  • a suction check valve that allows only flow.
  • FIG. 1 is a view showing a suspension device in the first embodiment.
  • FIG. 2 is a diagram in which the suspension device according to the first embodiment is interposed between the vehicle body and the wheels of the vehicle.
  • FIG. 3 is a view showing a specific example of the differential pressure control valve in the suspension device of the first embodiment.
  • FIG. 4 is a diagram showing the relationship between the amount of current supplied to the differential pressure control valve and the differential pressure in the suspension device of the first embodiment.
  • FIG. 5 is a graph showing thrust characteristics when the suspension device according to the first embodiment functions as an active suspension.
  • FIG. 6 is a diagram illustrating thrust characteristics when the suspension device according to the first embodiment functions as a semi-active suspension.
  • FIG. 7 is a diagram showing the thrust characteristics when the suspension device according to the first embodiment fails.
  • FIG. 8 is a view showing a suspension device in the second embodiment.
  • FIG. 9 is a view showing a suspension device in the third embodiment.
  • the suspension device S includes a cylinder 1 and a piston 2 that is movably inserted into the cylinder 1 and divides the cylinder 1 into an extension side chamber R1 and a compression side chamber R2.
  • the damper D, the pump 4, the reservoir R connected to the suction side of the pump 4, and the fluid pressure circuit FC provided between the damper D, the pump 4, and the reservoir R are provided.
  • the fluid pressure circuit FC is connected to the supply passage 5 connected to the discharge side of the pump 4, the discharge passage 6 connected to the reservoir R, the extension side passage 7 connected to the extension side chamber R1, and the pressure side chamber R2.
  • the pressure side passage 8 to be connected, the extension side damping valve 15 provided in the extension side passage 7, the pressure side damping valve 17 provided in the pressure side passage 8, the supply passage 5, the discharge passage 6, the extension side passage 7, and the pressure side 4 port 3 position differential pressure control valve 9 provided between the passages 8, and provided between the differential pressure control valve 9 and the pump 4 in the supply path 5, from the pump 4 side to the differential pressure control valve 9 side.
  • the supply-side check valve 12 that allows only the flow that flows in
  • the suction passage 10 that connects between the differential pressure control valve 9 and the supply-side check valve 12 in the supply passage 5
  • Suction check valve 11 that allows only fluid flow from the discharge path 6 to the supply path 5 , Comprising a.
  • the damper D includes a rod 3 that is movably inserted into the cylinder 1 and connected to the piston 2.
  • the rod 3 is inserted only into the extension side chamber R1, and the damper D is a so-called single rod type damper.
  • the reservoir R is provided independently of the damper D.
  • the reservoir R is provided with an outer cylinder disposed on the outer peripheral side of the cylinder 1 in the damper D. Alternatively, it may be formed by an annular gap between the cylinder 1 and the outer cylinder.
  • the cylinder 1 When the suspension device S is applied to a vehicle, as shown in FIG. 2, the cylinder 1 is connected to one of the sprung member BO and the unsprung member W of the vehicle, and the rod 3 is connected to the sprung member BO and the unsprung member W. What is necessary is just to interpose between the other among them and to interpose between the sprung member BO and the unsprung member W.
  • the extension side chamber R1 and the pressure side chamber R2 are filled with, for example, liquid such as hydraulic oil as a fluid, and the reservoir R is also filled with liquid and gas.
  • a liquid such as water or an aqueous solution can be used in addition to the hydraulic oil.
  • the chamber compressed during the expansion stroke is referred to as an expansion side chamber R1
  • the chamber compressed during the contraction stroke is referred to as a compression side chamber R2.
  • the pump 4 is set to a one-way discharge type that sucks fluid from the suction side and discharges fluid from the discharge side.
  • the pump 4 is driven by a motor 13.
  • Various types of motors such as brushless motors, induction motors, synchronous motors and the like can be adopted as the motor 13 regardless of whether they are direct current or alternating current.
  • the suction side of the pump 4 is connected to the reservoir R by the pump passage 14, and the discharge side is connected to the supply path 5. Therefore, when driven by the motor 13, the pump 4 sucks liquid from the reservoir R and discharges the liquid to the supply path 5.
  • the discharge path 6 communicates with the reservoir R as described above.
  • the expansion side passage 7 is provided in parallel with the expansion side damping valve 15 which gives resistance to the flow of liquid from the expansion side chamber R1 to the differential pressure control valve 9 and is extended in parallel with the expansion side attenuation valve 15 from the differential pressure control valve 9. And an extension check valve 16 that allows only the flow of liquid toward the side chamber R1.
  • the expansion side check valve 16 is kept closed with respect to the flow of the liquid moving from the expansion side chamber R1 toward the differential pressure control valve 9, so that the liquid flows only through the expansion side damping valve 15. It passes and flows toward the differential pressure control valve 9 side.
  • the extension side check valve 16 is opened with respect to the flow of the liquid moving from the differential pressure control valve 9 toward the extension side chamber R1, the liquid is supplied to the extension side damping valve 15 and the extension side check. It flows through the valve 16 toward the expansion side chamber R1. Since the extension side check valve 16 has a smaller resistance to the liquid flow than the extension side damping valve 15, the liquid preferentially passes through the extension side check valve 16 and flows toward the extension side chamber R1.
  • the expansion side damping valve 15 may be a throttle valve that allows bidirectional flow, or may be a damping valve such as a leaf valve or a poppet valve that only allows flow from the expansion side chamber R1 toward the differential pressure control valve 9. Good.
  • a pressure side damping valve 17 that provides resistance to the flow from the pressure side chamber R 2 toward the differential pressure control valve 9, and a liquid that is provided in parallel to the pressure side damping valve 17 and that flows from the differential pressure control valve 9 toward the pressure side chamber R 2.
  • a pressure side check valve 18 that allows only the flow of.
  • the pressure side damping valve 17 may be a throttle valve that allows bidirectional flow, or may be a damping valve such as a leaf valve or a poppet valve that allows only the flow from the pressure side chamber R2 toward the differential pressure control valve 9. .
  • the fluid pressure circuit FC further includes a suction passage 10 that connects the supply passage 5 and the discharge passage 6.
  • the suction passage 10 is provided with a suction check valve 11 that allows only a liquid flow from the discharge passage 6 to the supply passage 5.
  • the suction passage 10 is set as a one-way passage that allows only the flow of liquid from the discharge passage 6 toward the supply passage 5.
  • a supply side check valve 12 is provided between the differential pressure control valve 9 and the pump 4 in the supply path 5. More specifically, the supply side check valve 12 is provided closer to the pump 4 than the connection point of the suction passage 10 in the supply path 5.
  • the supply side check valve 12 allows only the flow from the pump 4 side to the differential pressure control valve 9 side, and blocks the opposite flow. Therefore, even if the pressure on the differential pressure control valve 9 side becomes higher than the discharge pressure of the pump 4, the supply side check valve 12 is closed and the liquid is prevented from flowing back to the pump 4 side.
  • the differential pressure control valve 9 is connected to the A port a connected to the expansion side passage 7, the B port b connected to the pressure side passage 8, the P port p connected to the supply passage 5, and the discharge passage 6.
  • T port t which is a four-port, three-position electromagnetic differential pressure control valve that controls the differential pressure between the expansion side passage 7 and the pressure side passage 8.
  • the differential pressure control valve 9 communicates the expansion-side supply position X that communicates the expansion-side passage 7 and the supply passage 5 and communicates the pressure-side passage 8 and the discharge passage 6, and all ports a, b, p, and t.
  • a neutral position N that connects the supply path 5, the discharge path 6, the expansion side path 7, and the pressure side path 8 to each other, and the pressure side that connects the expansion side path 7 and the discharge path 6 and also connects the pressure side path 8 and the supply path 5. It is switched to the supply position Y.
  • the differential pressure control valve 9 includes a pair of springs Cs1 and Cs2 that urge the spool SP from both sides, and a push-pull solenoid Sol that drives the spool SP.
  • the spool SP When the spool SP does not receive thrust from the solenoid Sol, the spool SP is positioned at the neutral position N by the urging force of the springs Cs1 and Cs2. Note that the extension side supply position X, the neutral position N, and the pressure side supply position Y are continuously switched by the movement of the spool SP.
  • the pressure from the extension side passage 7 is guided to one end side of the spool SP as a pilot pressure, and the spool SP can be urged downward in FIG. 1 by the pressure of the extension side passage 7.
  • the pressure from the pressure side passage 8 is guided to the other end side of the spool SP as a pilot pressure, and the spool SP can be biased upward in FIG.
  • the force that pushes the spool SP downward in FIG. 1 by the pressure of the extension side passage 7 and the force that pushes the spool SP upward in FIG. 1 by the pressure of the compression side passage 8 are forces that push the spool SP in the opposite direction. These resultant forces are used as fluid pressure feedback force.
  • the spool SP When the solenoid Sol is energized, the spool SP, among the positions X and Y, the thrust from the solenoid Sol, the fluid pressure feedback force due to the pressure of the expansion side passage 7 and the pressure side passage 8, and the biasing force of the springs Cs1, Cs2, Switches to a balanced position.
  • the position of the spool SP in which the thrust, the fluid pressure feedback force, and the urging forces of the springs Cs1 and Cs2 balance is changed according to the magnitude of the thrust of the solenoid Sol. That is, the differential pressure between the expansion side passage 7 and the pressure side passage 8 can be controlled by adjusting the thrust of the solenoid Sol.
  • the spool SP when no power is supplied to the solenoid Sol, the spool SP is biased by the springs Cs1 and Cs2 to take the neutral position N.
  • the differential pressure control valve 9 is opposed to each other with the spool SP, the housing H into which the spool SP is axially movable, the reaction force pin P accommodated in the housing H, and the spool SP from both ends.
  • Springs Cs1 and Cs2 that are energized in this manner, and a push-pull type solenoid Sol that can exert a thrust to push the spool SP toward the left and right sides in FIG.
  • the spool SP is cylindrical, and has three lands 40, 41, and 42 provided on the outer periphery in an axial direction, two grooves 43 and 44 provided between the lands, and the center of the left end in FIG. And a horizontal hole 46 that extends in the radial direction from the tip of the vertical hole 45 and opens in the groove 44 on the right side in FIG. 3.
  • the outer diameters of the lands 40, 41, and 42 are set to the same diameter.
  • the reaction force pin P includes a disc-shaped base 50 and a shaft 51 that extends from the center of the right end of the base 50 and is slidably inserted into the vertical hole 45 of the spool SP.
  • the shaft portion 51 is set to such a length that does not obstruct the stroke in the left-right direction in FIG. 3, which is the axial direction of the spool SP, and does not come out of the vertical hole 45 during the stroke of the spool SP.
  • the shaft portion 51 is inserted into the vertical hole 45 and closes the outlet end of the vertical hole 45. Thereby, the vertical hole 45 functions as the pressure chamber Pr3.
  • the housing H has a bottomed cylindrical shape, and an inner peripheral diameter is set to a diameter capable of sliding contact with the outer periphery of the lands 40, 41, 42.
  • a spool SP is slidably inserted into the housing H, and the spool SP can move in the horizontal direction in FIG.
  • pressure chambers Pr1 and Pr2 are formed on both sides of the spool SP in the housing H.
  • a base 50 of the reaction force pin P is fitted to the bottom of the housing H at the inner left end in FIG.
  • a spring Cs1 is interposed between the base 50 of the reaction force pin P and the spool SP, and the spool SP is urged to the right in FIG. 3 by the spring Cs1.
  • the solenoid Sol is attached to the right end opening end of the housing H.
  • the plunger pin 70 of the solenoid Sol is in contact with the right end of the spool SP in FIG.
  • the solenoid Sol is connected to the bottomed cylindrical case 71, coils 72 and 73 accommodated in the case 71 side by side in the axial direction, a plunger 74 inserted through the inner periphery of the coils 72 and 73, and the plunger 74.
  • a plunger pin 70 is attached to the right end opening end of the housing H.
  • the plunger pin 70 of the solenoid Sol is in contact with the right end of the spool SP in FIG.
  • the solenoid Sol is connected to the bottomed cylindrical case 71, coils 72 and 73 accommodated in the case 71 side by side in the axial direction, a plunger 74 inserted through the inner periphery of the coils 72 and 73, and the plunger 74.
  • a plunger pin 70 is attached to the right end opening
  • a spring Cs2 is interposed between the bottom of the case 71 of the solenoid Sol and the plunger 74.
  • the spring Cs2 biases the spool SP toward the left in FIG.
  • the spool SP is urged from both ends by the springs Cs1 and Cs2 to be positioned at the neutral position.
  • the plunger 74 when a current is supplied to the coil 72, the plunger 74 is attracted to the left side in FIG. Thereby, the spool SP is pressed and moved to the left in FIG. 3 against the urging force of the spring Cs1 by the attraction force by the coil 72 and the urging force by the spring Cs2.
  • the plunger 74 when a current is supplied to the coil 73, the plunger 74 is attracted to the right side in FIG. 3, whereby the spool SP is attached to the spring Cs2 by the attraction force by the coil 73 and the urging force by the spring Cs1. It is pushed to the right in FIG. 3 against the force and moves.
  • the spool SP can be pressed in either the left or right direction by supplying current to the solenoid Sol.
  • the housing H includes a port 63 connected to the expansion side passage 7 and corresponding to the A port, a port 64 connected to the compression side passage 8 and corresponding to the B port, and a port 65 connected to the supply passage 5 and corresponding to the P port. Ports 66 and 67 connected to the discharge passage 6 and corresponding to the T port, and a communication passage 68 connected to the port 63 and connecting the expansion side passage 7 to the pressure chambers Pr1 and Pr2 on both sides of the spool SP are provided. .
  • the port 63 has one end opened to the outer peripheral surface of the housing H, and the other end is the inner periphery of the housing H, and communicates between the left and center recesses 60 and 61 in FIG.
  • One end of the port 64 opens to the outer peripheral surface of the housing H, and the other end is the inner periphery of the housing H, and communicates between the center and right recesses 61 and 62 in FIG.
  • One end of the port 65 opens to the outer peripheral surface of the housing H, and the other end communicates with the central recess 61.
  • One end of the port 66 opens to the outer peripheral surface of the housing H, and the other end communicates with the recess 60 on the left side in FIG.
  • the port 67 branches from the port 66 and communicates with the recess 62 on the right side in FIG.
  • FIG. 3 shows a state in which the spool SP is arranged at the neutral position N.
  • the spool SP is formed so that the land 40 and the land 42 are in sliding contact with the inner periphery of the housing H even if the spool SP strokes at the maximum width, so that the pressure chambers Pr1, Pr2 do not communicate with the recesses 60, 61, 62. It has become.
  • the pressure in the extension side passage 7 is guided to the pressure chamber Pr1 and the pressure chamber Pr2 through the communication passage 68.
  • the pressure in the pressure chamber Pr1 acts on the left end of the spool SP in FIG.
  • the land 41 faces the central recess 61.
  • the recess 61 communicates with the left recess 60 through the groove 43 and also communicates with the right recess 62 through the groove 44. Therefore, the supply path 5 connected to the recess 61 via the port 65, the discharge path 6 connected to the recesses 60 and 62 via the ports 66 and 67, and the extension side path connected to the port 63 facing the groove 43. 7.
  • the pressure side passage 8 connected to the port 64 facing the groove 44 communicates with each other.
  • the spool SP When the coil 73 is energized, the spool SP is pressed by the solenoid Sol and moves from the position shown in FIG. 3 to the right side in FIG. When the spool SP moves to the right side, the land 40 faces the inner periphery between the recesses 60 and 61 of the housing H, disconnecting the recess 60 and the recess 61, and the land 41 reaches the inner periphery between the recesses 61 and 62 of the housing H. Oppositely, the recess 61 and the recess 62 are disconnected, the port 63 and the port 65 are connected, and the port 64 and the port 67 are connected.
  • the spool SP is pressed by the solenoid Sol and moves from the position shown in FIG. 3 to the left side in FIG.
  • the land 41 opposes the inner circumference between the recesses 60 and 61 of the housing H, disconnecting the recess 60 and the recess 61, and the land 42 is the inner circumference between the recesses 61 and 62 of the housing H.
  • the recess 61 and the recess 62 are disconnected from each other, the port 63 and the port 66 are connected, and the port 64 and the port 65 are connected.
  • the spool SP is positioned at the neutral position N shown in FIG. 3 by the springs Cs1 and Cs2 when the coils 72 and 73 of the solenoid Sol are not energized.
  • the flow rate supplied from the pump 4 to the supply path 5 and the port 65 is a flow returning from the recess 61 to the reservoir R through the groove 43, the recess 60, the port 66 and the discharge path 6, and from the recess 61 to the groove 44.
  • the flow returns to the reservoir R through the recess 62, the port 67 and the discharge path 6.
  • the flow path areas in the flow path formed by the recess 60 and the land 41, the recess 61 and the land 41, and the recess 62 and the land 42 are equal, and the pressure loss generated there is also equal. For this reason, when no current is supplied to the coils 72 and 73 of the solenoid Sol, the pressure of the port 63 corresponding to the A port facing the groove 43 and the port 64 corresponding to the B port facing the groove 44 are reduced. The pressure will be equal. That is, the pressures at the connection ends of the expansion side passage 7 and the pressure side passage 8 to the differential pressure control valve 9 are equal. Therefore, at the neutral position N, the fluid pressure feedback force acting on the spool SP is 0, and is balanced only by the urging forces of the springs Cs1 and Cs2.
  • the differential pressure between the pressure in the extension side passage 7 and the pressure in the pressure side passage 8 can be controlled by adjusting the amount of current supplied to the solenoid Sol.
  • the damper D when the damper D is expanded and contracted due to a disturbance, the liquid enters and exits the expansion side chamber R1 and the pressure side chamber R2 of the damper D. Therefore, the flow rate passing through the differential pressure control valve 9 is equal to the flow rate due to expansion and contraction of the damper D from the pump flow rate. Increase or decrease.
  • the spool SP automatically moves due to the fluid pressure feedback force. Therefore, the differential pressure is a difference uniquely determined by the amount of current supplied to the solenoid Sol. Controlled by pressure.
  • the differential pressure control valve 9 is arranged in three recesses 60, 61, 62 arranged in the axial direction on the inner periphery of the cylindrical housing H, and in the recesses 60, 61, 62 arranged in the axial direction on the outer periphery. And three opposing lands 40, 41, 42.
  • the central recess 61 is connected to the supply path 5, the recesses 60 and 62 on both sides of the recess 61 are connected to the discharge path 6, and the extension side passage 7 is the inner periphery of the housing H and adjacent to the central recess 61.
  • the pressure side passage 8 communicates with the inner periphery 61 of the housing H and between the central recess 61 and the other recess 62 adjacent thereto.
  • the differential pressure control valve 9 configured in this way, the differential pressure between the expansion side passage 7 and the pressure side passage 8 can be controlled with a small stroke, the processing of the housing H and the spool SP is easy, and the stroke length of the solenoid Sol is also increased. There is an advantage of being short.
  • the differential pressure between the pressure in the extension side passage 7 and the pressure in the pressure side passage 8 can be appropriately controlled when the pressure on the high pressure side is kept higher than the reservoir pressure. In a state where the pump flow rate is insufficient or the pump 4 is stopped and the liquid must be supplied from the reservoir R via the suction check valve 11, the differential pressure becomes zero.
  • the damper D can function as an actuator that actively expands or contracts.
  • the differential pressure control valve 9 is set to the pressure side supply position Y, the pressure side chamber R2 is connected to the supply path 5, and the extension side chamber R1 is connected to the reservoir R.
  • the differential pressure control valve 9 is set to the expansion side supply position X, the expansion side chamber R1 is connected to the supply path 5, and the pressure side chamber R2 is connected to the reservoir R. Connect to. If the differential pressure between the expansion chamber R1 and the compression chamber R2 is adjusted by the differential pressure control valve 9, the magnitude of thrust in the extension direction or contraction direction of the damper D can be controlled.
  • a controller C that determines the amount of current to be supplied to the differential pressure control valve 9 and the amount of current to be supplied to the motor 13 that drives the pump 4, and commands from the controller C are given.
  • a driver Dr that supplies current to the differential pressure control valve 9 and the motor 13 as received by the controller C may be provided.
  • the controller C is capable of grasping vehicle vibration conditions necessary for a control law suitable for vehicle vibration suppression, for example, information such as vertical acceleration and speed of the sprung member B and unsprung member W, Then, vehicle information such as information such as the expansion / contraction speed and expansion / contraction acceleration of the damper D is obtained, and a target thrust to be generated in the damper D is determined according to the control law.
  • the controller C determines the amount of current to be applied to the differential pressure control valve 9 and the amount of current to be applied to the motor 13 that drives the pump 4, which are necessary for generating the thrust in the damper D according to the target thrust.
  • the driver Dr includes, for example, a drive circuit that PWM drives the solenoid Sol in the differential pressure control valve 9 and a drive circuit that PWM drives the motor 13.
  • the driver Dr receives a command from the controller C, the driver Dr supplies current to the solenoid Sol and the motor 13 as determined by the controller C. Since the thrust of the damper D is controlled by the differential pressure control valve 9, when the pump 4 is driven by the motor 13, it is only necessary that the pump 4 can be rotationally driven at a constant rotational speed.
  • Each drive circuit in the driver Dr may be a drive circuit other than the drive circuit that performs PWM driving.
  • the driver Dr supplies current to the coil 72 in the solenoid Sol of the differential pressure control valve 9 according to the thrust of the damper D.
  • the driver Dr supplies current to the coil 73 in the solenoid Sol of the differential pressure control valve 9 according to the thrust of the damper D.
  • a control law used for thrust control in the suspension device S a control law suitable for the vehicle may be selected. For example, a control law excellent in vehicle vibration suppression such as skyhook control may be employed.
  • the controller C and the driver Dr are described as separate units, but the suspension device S may be controlled by a single control device having the functions of the controller C and the driver Dr.
  • the information input to the controller C may be information suitable for the control law adopted by the controller C.
  • the information may be detected by a sensor or the like and input to the controller C.
  • the liquid is also supplied from the reservoir R via the suction check valve 11. Since the differential pressure between the pressure Pa of the A port a and the pressure Pb of the B port b is kept constant by the differential pressure control valve 9, the pressure in the expansion side chamber R 1 is equal to the pressure loss caused by the expansion side damping valve 15. It becomes higher than the pressure of a.
  • the pressure in the expansion side chamber R1 becomes higher than the pressure side chamber R2 by a value obtained by adding the pressure corresponding to the pressure loss generated in the expansion side damping valve 15 to the differential pressure adjusted by the differential pressure control valve 9, and the damper D is Demonstrate thrust to suppress elongation.
  • the characteristics of the expansion / contraction speed of the damper and the thrust exerted at this time are the characteristics indicated by the line (1) in FIG. In the graph shown in FIG. 5, the vertical axis represents the thrust of the damper D, and the horizontal axis represents the expansion / contraction speed of the damper D.
  • the differential pressure is controlled so that Pa> Pb, and the suspension device S exerts a thrust force that pushes the piston 2 downward, and the damper D is contracted by an external force.
  • the volume of the pressure side chamber R2 is reduced by the contraction of the damper D, and the liquid discharged from the pressure side chamber R2 flows through the pressure side damping valve 17 to the B port b of the differential pressure control valve 9.
  • the volume of the extension side chamber R1 expands due to the contraction of the damper D, and the extension side chamber R1 is replenished with liquid from the pump 4 through the A port a and the extension side check valve 16.
  • the pressure in the pressure side chamber R 2 is equal to the pressure loss caused by the pressure side damping valve 17. It becomes higher than the pressure of b. Therefore, the pressure in the expansion side chamber R1 becomes higher than the pressure side chamber R2 by a value obtained by subtracting the pressure loss generated in the pressure side damping valve 17 from the differential pressure adjusted by the differential pressure control valve 9, and the damper D contracts. Demonstrate thrust to subsidize.
  • the characteristics of the expansion / contraction speed of the damper and the thrust exerted at this time are the characteristics indicated by the line (2) in FIG.
  • the liquid flow rate to be replenished to the expansion side chamber R1 exceeds the discharge flow rate of the pump 4
  • the liquid is also supplied from the reservoir R through the suction check valve 11.
  • the A port a cannot be pressurized at the discharge flow rate of the pump 4, and the pressure Pa of the A port a becomes slightly lower than the pressure of the reservoir R.
  • the differential pressure control valve 9 cannot control the differential pressure between the pressure Pa of the A port a and the pressure Pb of the B port b, and the differential pressure between them becomes zero.
  • the damper D exerts thrust by the differential pressure between the expansion side chamber R1 and the pressure side chamber R2 caused by the pressure loss generated when the liquid discharged from the pressure side chamber R2 passes through the pressure side damping valve 17.
  • the characteristics of the expansion / contraction speed of the damper and the thrust exerted at this time are the characteristics indicated by the line (3) in FIG.
  • the characteristic indicated by the line (3) is discontinuous with the characteristic indicated by the line (2).
  • the differential pressure is controlled so that Pb> Pa, and the suspension device S exerts a thrust force that pushes the piston 2 upward, and the damper D is contracted by an external force.
  • the volume of the pressure side chamber R2 is reduced by the contraction of the damper D, and the liquid discharged from the pressure side chamber R2 flows through the pressure side damping valve 17 to the B port b of the differential pressure control valve 9.
  • the volume of the extension side chamber R1 expands due to the contraction of the damper D, and the extension side chamber R1 is replenished with liquid from the pump 4 through the A port a and the extension side check valve 16.
  • the pressure in the expansion side chamber R 1 is equal to the pressure loss caused by the expansion side damping valve 15. It becomes higher than the pressure of port a. Therefore, the pressure in the compression side chamber R2 becomes higher than the expansion side chamber R1 by the value obtained by subtracting the pressure loss generated in the expansion side damping valve 15 from the differential pressure adjusted by the differential pressure control valve 9, and the damper D is Demonstrate the thrust to support elongation.
  • the characteristics of the expansion / contraction speed of the damper and the thrust exerted at this time are the characteristics indicated by the line (5) in FIG.
  • the liquid is also supplied from the reservoir R via the suction check valve 11.
  • the B port b cannot be pressurized with the discharge flow rate of the pump 4, and the pressure Pb of the B port b becomes slightly lower than the pressure of the reservoir R.
  • the differential pressure control valve 9 cannot control the differential pressure between the pressure Pa of the A port a and the pressure Pb of the B port b, and the differential pressure between them becomes zero.
  • the damper D exerts thrust by the differential pressure between the expansion side chamber R1 and the compression side chamber R2 caused by the pressure loss generated when the liquid discharged from the expansion side chamber R1 passes through the expansion side damping valve 15.
  • the characteristics of the expansion / contraction speed of the damper and the thrust exerted at this time are the characteristics indicated by the line (6) in FIG.
  • the characteristic indicated by the line (6) is discontinuous with the characteristic indicated by the line (5).
  • the damper D exhibits a characteristic that the thrust changes from the line (2) in FIG. 5 to the line (3) on the contraction side, and the thrust changes from the line (5) to the line (6) in FIG. Although the characteristic is shown, the change in the characteristic occurs very instantaneously, and the influence on the ride comfort is slight.
  • the line connecting the line (1) to the line (3) to the line (4) to the line (6) was connected.
  • the thrust of the damper D can be varied in the range up to the line.
  • the discharge flow rate of the pump 4 is supplied to the expansion side chamber R1 and the compression side chamber R2, and the discharge flow rate of the pump 4 is larger than the volume increase amount of the chamber in which the discharge flow rate increases.
  • the thrust can be exerted in the same direction as the expansion / contraction direction of the damper D.
  • the pressure in the expansion side chamber R 1 is equal to the pressure loss caused by the expansion side damping valve 15. It becomes higher than the pressure of a. Therefore, the pressure in the expansion side chamber R1 becomes higher than the pressure side chamber R2 by a value obtained by adding the pressure corresponding to the pressure loss generated in the expansion side damping valve 15 to the differential pressure adjusted by the differential pressure control valve 9, and the damper D is Demonstrate thrust to suppress elongation.
  • the characteristic of the expansion / contraction speed of the damper and the thrust exerted at this time is the characteristic indicated by the line (1) in FIG. In the graph shown in FIG. 6, the vertical axis represents the thrust of the damper D, and the horizontal axis represents the expansion / contraction speed of the damper D.
  • the differential pressure is controlled so that Pa> Pb, and the suspension device S exerts a thrust force that pushes the piston 2 downward, and the damper D is contracted by an external force.
  • the volume of the pressure side chamber R2 is reduced by the contraction of the damper D, and the liquid discharged from the pressure side chamber R2 flows through the pressure side damping valve 17 to the B port b of the differential pressure control valve 9.
  • the volume of the extension side chamber R1 expands due to the contraction of the damper D, and the extension side chamber R1 is replenished with liquid from the reservoir R through the suction check valve 11, the A port a, and the extension side check valve 16.
  • the pressure Pa of the A port a is slightly lower than the pressure of the reservoir R.
  • the differential pressure control valve 9 cannot control the differential pressure between the pressure Pa of the A port a and the pressure Pb of the B port b, and the differential pressure between them becomes zero.
  • the damper D exerts a thrust by the differential pressure between the expansion side chamber R1 and the pressure side chamber R2 caused by the pressure loss generated when the liquid discharged from the pressure side chamber R2 passes through the pressure side damping valve 17.
  • the characteristics of the expansion / contraction speed of the damper and the thrust exerted at this time are the characteristics indicated by the line (2) in FIG.
  • the differential pressure is controlled so that Pb> Pa, and the suspension device S exerts a thrust force that pushes the piston 2 upward, and the damper D is contracted by an external force.
  • the volume of the pressure side chamber R2 decreases due to the contraction of the damper D, and the liquid discharged from the pressure side chamber R2 flows through the pressure side damping valve 17 to the B port b of the differential pressure control valve 9.
  • the volume of the expansion side chamber R1 expands due to the contraction of the damper D, and the expansion side chamber R1 is replenished with liquid from the reservoir R through the A port a and the expansion side check valve 16.
  • the pressure in the pressure side chamber R2 is equal to the B port b by the pressure loss generated in the pressure side damping valve 17. Higher than the pressure. Therefore, the pressure in the pressure side chamber R2 becomes higher than the expansion side chamber R1 by a value obtained by adding the pressure corresponding to the pressure loss generated in the pressure side damping valve 17 to the differential pressure adjusted by the differential pressure control valve 9, and the damper D contracts.
  • Demonstrate thrust to suppress The characteristics of the expansion / contraction speed of the damper and the thrust exerted at this time are the characteristics indicated by the line (3) in FIG.
  • the pressure Pb of the B port b is slightly lower than the pressure of the reservoir R, and the differential pressure control valve 9 cannot control the differential pressure between the pressure Pa of the A port a and the pressure Pb of the B port b. 0. Therefore, the damper D exerts a thrust by the differential pressure between the expansion side chamber R1 and the compression side chamber R2 caused by the pressure loss generated when the liquid discharged from the expansion side chamber R1 passes through the expansion side damping valve 15.
  • the characteristics of the expansion / contraction speed of the damper and the thrust exerted at this time are the characteristics indicated by the line (4) in FIG.
  • the differential pressure is controlled by the differential pressure control valve 9, so that the range from the line (1) to the line (4) in the first quadrant in FIG.
  • the thrust of the damper D can be varied in the range from the line (3) to the line (2).
  • the differential pressure control valve 9 does not depend on the differential pressure control.
  • the thrust of the damper D has the characteristic indicated by the line (2) in FIG. This brings about an effect equivalent to controlling the compression side damping force to the lowest damping force in the damping force variable damper.
  • the pump 4 when the suspension device S tries to exert a thrust force that pushes the piston 2 upward, when the damper D is extended by an external force, the differential pressure control valve 9 does not depend on the differential pressure control,
  • the thrust of the damper D has a characteristic indicated by a line (4) in FIG. This brings about an effect equivalent to controlling the extension side damping force to the lowest damping force in the damping force variable damper.
  • the damping force of the damping force variable damper is controlled to the damping force that can obtain the target thrust during extension operation, and the extension side damping force is obtained during contraction operation. It is controlled so that the lowest damping force is exerted on the compression side.
  • the damping force of the damping force variable damper is controlled to a damping force that can obtain the target thrust during the contraction operation, and a compression side damping force is obtained during the extension operation. It is controlled so as to exhibit the lowest damping force toward the extension side.
  • the damper D exerts a thrust force that pushes down the piston 2 while the pump 4 is stopped, the thrust force of the damper D is controlled within the output possible range by the differential pressure control valve 9 at the time of expansion, and at the time of contraction, the damper D D exhibits the lowest thrust.
  • the suspension device S when the damper D exerts a thrust force that pushes up the piston 2 while the pump 4 is stopped, the thrust force of the damper D is controlled within the output possible range by the differential pressure control valve 9 at the time of contraction. Sometimes the damper D exhibits the lowest thrust. Therefore, in the suspension device S of the present embodiment, when the pump 4 is stopped, the same function as the semi-active suspension can be automatically exhibited. Therefore, even if the pump 4 is being driven, the suspension device S can automatically function as a semi-active suspension if the discharge flow rate of the pump 4 becomes less than the volume increase amount of the expansion side chamber R1 or the compression side chamber R2.
  • the pressure in the expansion side chamber R1 is higher than the pressure in the compression side chamber R2 by the amount of pressure loss that occurs when the fluid discharged from the expansion side chamber R1 passes through the expansion side damping valve 15, and the damper D is in the expansion side chamber R1.
  • the thrust is exerted by the differential pressure between the pressure side chamber R2.
  • the characteristics of the expansion / contraction speed of the damper and the thrust exerted at this time are the characteristics indicated by the line (1) in FIG.
  • the volume of the compression side chamber R2 is reduced, so that the reduced fluid is discharged from the compression side chamber R2 through the compression side damping valve 17.
  • the expansion side chamber R1 whose volume is expanded is replenished with liquid from the pressure side chamber R2 and the reservoir R.
  • the pressure in the pressure side chamber R2 becomes higher than the pressure in the expansion side chamber R1 by the pressure loss generated when the fluid discharged from the pressure side chamber R2 passes through the pressure side damping valve 17, and the damper D is connected to the expansion side chamber R1. Thrust is exerted by the differential pressure in the compression side chamber R2.
  • the characteristics of the expansion / contraction speed of the damper and the thrust exerted at this time are the characteristics indicated by the line (2) in FIG.
  • the damper D functions as a passive damper and suppresses the vibration of the sprung member BO and the unsprung member W, so that fail-safe operation is reliably performed in the event of a failure. Is called.
  • the suspension device S of the present embodiment can function as an active suspension by actively expanding and contracting the damper D.
  • the drive of the pump 4 is not essential, and it is only necessary to drive the pump 4, so that energy consumption is achieved. Less. Therefore, according to the suspension device S of the present embodiment, it can function as an active suspension and energy consumption is reduced.
  • the thrust of the damper D can be controlled only by the differential pressure control valve 9, compared to the conventional suspension device in which two electromagnetic valves are required, the device Not only is the overall cost low, but the piping of the fluid pressure circuit can be simplified.
  • this suspension device S not only can it function as an active suspension, but a fail-safe operation in the event of a failure can be performed by providing only one differential pressure control valve 9 equipped with a solenoid Sol.
  • the suspension device S of the present embodiment is provided in parallel with the expansion side damping valve 15 that provides resistance to the flow from the expansion side chamber R1 toward the differential pressure control valve 9, and the differential pressure control valve 9 provided in parallel with the expansion side damping valve 15.
  • the expansion side check valve 16 that allows only the flow from the pressure side chamber R1 to the expansion side chamber R1
  • the pressure side damping valve 17 that provides resistance to the flow from the pressure side chamber R2 to the differential pressure control valve 9, and the pressure side damping valve 17.
  • a pressure-side check valve 18 that allows only a flow from the differential pressure control valve 9 toward the pressure-side chamber R2.
  • the fluid when supplying the fluid from the pump 4 to the expansion side chamber R1 or the pressure side chamber R2, the fluid can be supplied to the expansion side chamber R1 or the pressure side chamber R2 through the expansion side check valve 16 or the pressure side check valve 18 with almost no resistance. . Therefore, the load on the pump 4 can be reduced when the expansion / contraction direction of the damper D coincides with the direction of the generated thrust. Further, when the fluid is discharged from the expansion side chamber R1 or the pressure side chamber R2, resistance is given to the flow of the fluid that passes through the expansion side damping valve 15 or the pressure side attenuation valve 17, so that the expansion side chamber R1 and the pressure side chamber R2 have a resistance.
  • a large thrust can be obtained by making the differential pressure equal to or higher than the differential pressure that can be set by the differential pressure control valve 9, and a large thrust can be generated in the suspension device S even if the thrust of the solenoid Sol in the differential pressure control valve 9 is reduced. Therefore, the differential pressure control valve 9 can be downsized and the cost can be further reduced.
  • the expansion side damping valve 15 or the pressure side damping valve 17 may provide resistance to the fluid flow regardless of the fluid flow direction, and the expansion side damping valve 15 and the pressure side damping valve 17 allow bidirectional flow. If so, the extension side check valve 16 and the pressure side check valve 18 can be omitted.
  • one damper 4 is driven by one pump 4, but as shown in FIGS. 8 and 9, fluid pressure circuits are provided between the plurality of dampers D and the pump 4 and the reservoir R, respectively.
  • FC By providing FC, the thrust of a plurality of dampers D can be generated by one pump 4.
  • a shunt valve is provided between the pump 4 and each fluid pressure circuit FC. 80 is provided, and the fluid discharged from the pump 4 is distributed to each fluid pressure circuit FC by the flow dividing valve 80.
  • the flow dividing valve 80 equally divides the discharge flow rate of the pump 4 and distributes it to the two fluid pressure circuits FC. However, it may be distributed at a different ratio.
  • three flow dividing valves 90 are provided between the pump 4 and the four fluid pressure circuits FC.
  • 91, 92 are provided, and the fluid discharged from the pump 4 is distributed to the four fluid pressure circuits FC by the diversion valves 90, 91, 92.
  • the diverter valves 90, 91, and 92 are configured to equally divide the discharge flow rate of the pump 4 and distribute it to the four fluid pressure circuits FC.
  • each damper D can be driven by one pump 4. It is possible to supply the flow rate necessary to generate the thrust. Therefore, only one motor is required for generating the thrust of the plurality of dampers D, and only one drive circuit for driving the motor 13 in the driver Dr is required. Therefore, the cost of the entire system can be reduced even if the number of dampers D increases. .
  • the suspension devices S, S1, and S2 include a damper D including a cylinder 1 and a piston 2 that is movably inserted into the cylinder 1 and divides the cylinder 1 into an extension side chamber R1 and a pressure side chamber R2, and a pump. 4, a reservoir R connected to the suction side of the pump 4, and a fluid pressure circuit FC provided between the damper D and the pump 4 and the reservoir R.
  • the fluid pressure circuit FC is connected to the discharge side of the pump 4.
  • the extension side damping valve 15, the pressure side damping valve 17 provided in the pressure side passage 8, and the supply passage 5, the discharge passage 6, the extension side passage 7 and the pressure side passage 8 are provided.
  • a differential pressure control valve 9 for controlling the differential pressure in the passage 8 and a supply passage 5 A supply side check valve 12 provided between the differential pressure control valve 9 and the pump 4 and allowing only a flow from the pump 4 side to the differential pressure control valve 9 side, and the differential pressure control valve 9 and the supply in the supply path 5
  • a suction passage 10 that connects between the side check valves 12 and the discharge passage 6, and a suction check valve 11 that is provided in the suction passage 10 and allows only the flow of fluid from the discharge passage 6 toward the supply passage 5. .
  • the damper D can function as an active suspension or a semi-active suspension with only one differential pressure control valve 9. Further, in a scene where the thrust is expected to be exhibited, the driving of the pump 4 is not essential, and it is only necessary to drive the pump 4 when it is necessary, so that energy consumption is reduced. In addition, since the thrust of the damper D can be controlled only by the differential pressure control valve 9, not only the total suspension cost is reduced compared with the conventional suspension device that requires two electromagnetic valves, but also the fluid. The piping of the pressure circuit can also be simplified.
  • the suspension devices S1 and S2 include a plurality of dampers D, a plurality of fluid pressure circuits FC provided for each of the dampers D, and diversion valves 80, 90, 91 for distributing the fluid discharged from the pump 4 to the fluid pressure circuits FC. , 92.
  • each pump 4 can A flow rate required for generating the thrust of the damper D can be supplied. Therefore, when the thrust of the plurality of dampers D is generated, the number of motors that drive the pump 4 and the drive circuit that drives the motor 13 are only one, and even if the number of dampers increases, the cost of the entire system can be reduced.
  • the differential pressure control valve 9 includes an extension side supply position X that connects the extension side passage 7 to the supply passage 5 and connects the pressure side passage 8 to the discharge passage 6, and the extension side passage 7, A neutral position N that connects the pressure side passage 8, the supply passage 5, and the discharge passage 6 to each other, and a pressure side supply position Y that connects the pressure side passage 8 to the supply passage 5 and connects the extension side passage 7 to the discharge passage 6.
  • the spool SP is switched to a position, a push-pull solenoid Sol that drives the spool SP, and a pair of springs Cs1 and Cs2 that bias the spool SP to a neutral position N.
  • the differential pressure control valve 9 includes the spool SP that is switched to the three positions of the expansion side supply position X, the neutral position N, and the pressure side supply position Y, and the push-pull type solenoid Sol that drives the spool SP.
  • the suspension devices S, S1, and S2 are provided in parallel with the expansion side damping valve 15 in the expansion side passage 7, and the expansion side check valve 16 that allows only the flow from the differential pressure control valve 9 toward the expansion side chamber R1.
  • the pressure side check valve 18 is provided in parallel with the pressure side damping valve 17 in the pressure side passage 8 and permits only the flow from the differential pressure control valve 9 toward the pressure side chamber R2.
  • the differential pressure control valve 9 has a cylindrical shape, and a housing H having recesses 60, 61, 62 formed by three annular grooves arranged in the axial direction on the inner periphery.
  • a spool SP that is arranged in the axial direction on the outer periphery and has three lands 40, 41, 42 facing the recesses 60, 61, 62, respectively, and is slidably inserted into the housing H;
  • a pair of springs Cs1 and Cs2 that urge the spool SP from both sides, and a solenoid Sol that is connected to the spool SP and can exert thrust thrust in the axial direction of the spool SP.
  • the recesses 60 and 62 on both sides of the central recess 61 are connected to the discharge path 6, and the extension-side passage 7 is the inner periphery of the housing H and is between the central recess 61 and one of the adjacent recesses 60.
  • pressure side passage 8 communicating between the other of the recess 62 next to the central recess 61 there in the inner periphery of the housing H.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

サスペンション装置(S)は、ダンパ(D)とポンプ(4)とリザーバ(R)との間に設けられる流体圧回路(FC)を備え、流体圧回路(FC)は、伸側通路(7)に設けた伸側減衰弁(15)と、圧側通路(8)に設けた圧側減衰弁(17)と、伸側通路(7)と圧側通路(8)の差圧を制御する差圧制御弁(9)と、供給路(5)における差圧制御弁(9)と供給側チェック弁(12)の間と排出路(6)とを接続する吸込通路(10)と、吸込通路(10)に設けられて排出路(6)から供給路(5)へ向かう流体の流れのみを許容する吸込チェック弁(11)と、を備える。

Description

サスペンション装置
 本発明は、サスペンション装置に関する。
 サスペンション装置として、たとえば、車両の車体と車軸との間に介装されるアクティブサスペンションとして機能するものがある。具体的には、サスペンション装置は、シリンダとシリンダ内に移動自在に挿入されてシリンダ内に伸側室と圧側室とを区画するピストンとを備えたダンパと、ポンプと、リザーバと、伸側室と圧側室をポンプとリザーバに選択的に接続する電磁切換弁と、供給電流に応じて伸側室と圧側室のうちポンプに接続される方の圧力を調整可能な電磁圧力制御弁と、を備えている(たとえば、JP2016-88358A参照)。
 このサスペンション装置によれば、電磁切換弁の切換えによりダンパが推力を発揮する向きを選択し、電磁圧力制御弁の圧力調整により推力の大きさをコントロールできる。
 このサスペンション装置にあっては、前述したように、ダンパの推力を制御するために、ソレノイドを備えた電磁弁が二つ必要となる。このため、装置全体のコストが嵩むとともに、流体圧回路の配管の取り回しが複雑となるという問題があった。
 本発明は、安価で配管の取り回しを簡素化できるサスペンション装置を提供することを目的とする。
 本発明のある態様によれば、サスペンション装置は、シリンダと、シリンダ内に移動自在に挿入されてシリンダ内を伸側室と圧側室とに区画するピストンとを備えたダンパと、ポンプと、ポンプの吸込側に接続されるリザーバと、ダンパとポンプとリザーバとの間に設けられる流体圧回路と、を備え、流体圧回路は、 ポンプの吐出側に接続される供給路と、リザーバに接続される排出路と、伸側室に接続される伸側通路と、圧側室に接続される圧側通路と、伸側通路に設けた伸側減衰弁と、圧側通路に設けた圧側減衰弁と、供給路、排出路、伸側通路および圧側通路の間に設けられて、伸側通路と圧側通路の差圧を制御する差圧制御弁と、供給路における差圧制御弁とポンプとの間に設けられてポンプ側から差圧制御弁側へ向かう流れのみを許容する供給側チェック弁と、供給路における差圧制御弁と供給側チェック弁の間と排出路とを接続する吸込通路と、吸込通路に設けられて排出路から前記供給路へ向かう流体の流れのみを許容する吸込チェック弁と、を備える。
図1は、第1実施形態におけるサスペンション装置を示した図である。 図2は、第1実施形態におけるサスペンション装置を車両の車体と車輪との間に介装した図である。 図3は、第1実施形態のサスペンション装置における差圧制御弁の一具体例を示した図である。 図4は、第1実施形態のサスペンション装置における差圧制御弁へ供給する電流量と差圧の関係を示した図である。 図5は、第1実施形態におけるサスペンション装置をアクティブサスペンションとして機能させた場合の推力の特性を示した図である。 図6は、第1実施形態におけるサスペンション装置をセミアクティブサスペンションとして機能させた場合の推力の特性を示した図である。 図7は、第1実施形態におけるサスペンション装置の失陥時における推力の特性を示した図である。 図8は、第2実施形態におけるサスペンション装置を示した図である。 図9は、第3実施形態におけるサスペンション装置を示した図である。
 以下、図面を参照して、本発明の実施形態に係るサスペンション装置Sについて説明する。
 第1実施形態におけるサスペンション装置Sは、図1に示すように、シリンダ1と、シリンダ1内に移動自在に挿入されてシリンダ1内を伸側室R1と圧側室R2とに区画するピストン2とを備えたダンパDと、ポンプ4と、ポンプ4の吸込側に接続されるリザーバRと、ダンパDとポンプ4およびリザーバRとの間に設けられる流体圧回路FCと、を備える。
 また、流体圧回路FCは、ポンプ4の吐出側に接続される供給路5と、リザーバRに接続される排出路6と、伸側室R1に接続される伸側通路7と、圧側室R2に接続される圧側通路8と、伸側通路7に設けられた伸側減衰弁15と、圧側通路8に設けられた圧側減衰弁17と、供給路5、排出路6、伸側通路7および圧側通路8の間に設けられた4ポート3位置の差圧制御弁9と、供給路5における差圧制御弁9とポンプ4との間に設けられてポンプ4側から差圧制御弁9側へ向かう流れのみを許容する供給側チェック弁12と、供給路5における差圧制御弁9と供給側チェック弁12の間と排出路6とを接続する吸込通路10と、吸込通路10に設けられて排出路6から供給路5へ向かう流体の流れのみを許容する吸込チェック弁11と、を備える。
 ダンパDは、シリンダ1内に移動自在に挿入されてピストン2に連結されるロッド3を備える。サスペンション装置Sにあっては、ロッド3は伸側室R1内のみに挿通されており、ダンパDは、所謂、片ロッド型のダンパとされている。なお、リザーバRは、図1に示したところでは、ダンパDとは独立して設けられているが、詳しくは図示しないが、ダンパDにおけるシリンダ1の外周側に配置される外筒を設けて、シリンダ1と外筒との間の環状隙間によって形成されてもよい。
 サスペンション装置Sを車両に適用する場合、図2に示すように、シリンダ1を車両のばね上部材BOおよびばね下部材Wのうち一方に連結し、ロッド3をばね上部材BOおよびばね下部材Wのうち他方に連結して、ばね上部材BOとばね下部材Wとの間に介装すればよい。
 伸側室R1および圧側室R2には、流体として、たとえば、作動油等の液体が充填され、リザーバR内にも液体と気体が充填される。伸側室R1、圧側室R2およびリザーバR内に充填される液体は、作動油以外にも、たとえば、水、水溶液といった液体を使用できる。また、本実施形態では、伸長行程時に圧縮される室を伸側室R1とし、収縮行程時に圧縮される室を圧側室R2とする。
 ポンプ4は、吸込側から流体を吸い込んで吐出側から流体を吐出する一方向吐出型に設定される。ポンプ4は、モータ13によって駆動される。モータ13には、直流、交流を問わず、種々の形式のモータ、たとえば、ブラシレスモータ、誘導モータ、同期モータ等を採用できる。
 ポンプ4の吸込側は、ポンプ通路14によってリザーバRに接続され、吐出側は供給路5に接続される。したがって、ポンプ4は、モータ13によって駆動されると、リザーバRから液体を吸い込んで供給路5へ液体を吐出する。排出路6は、前述の通り、リザーバRに連通されている。
 伸側通路7には、伸側室R1から差圧制御弁9に向かう液体の流れに対し抵抗を与える伸側減衰弁15と、伸側減衰弁15に並列に設けられ差圧制御弁9から伸側室R1へ向かう液体の流れのみを許容する伸側チェック弁16と、が設けられる。これにより、伸側室R1から差圧制御弁9へ向けて移動する液体の流れに対しては、伸側チェック弁16は閉じた状態に維持されるため、液体は、伸側減衰弁15のみを通過して差圧制御弁9側へ向かって流れる。これに対して、差圧制御弁9から伸側室R1へ向けて移動する液体の流れに対しては、伸側チェック弁16が開放されるため、液体は、伸側減衰弁15及び伸側チェック弁16を通過して伸側室R1側へ向かって流れる。伸側チェック弁16は伸側減衰弁15に比較して液体の流れに与える抵抗が小さいので、液体は、伸側チェック弁16を優先的に通過して伸側室R1側へ向かって流れる。伸側減衰弁15は、双方向流れを許容する絞り弁とされてもよいし、伸側室R1から差圧制御弁9に向かう流れのみを許容するリーフバルブやポペット弁といった減衰弁とされてもよい。
 圧側通路8には、圧側室R2から差圧制御弁9に向かう流れに対し抵抗を与える圧側減衰弁17と、圧側減衰弁17に並列に設けられ差圧制御弁9から圧側室R2へ向かう液体の流れのみを許容する圧側チェック弁18と、が設けられる。これにより、圧側室R2から差圧制御弁9へ向けて移動する液体の流れに対しては、圧側チェック弁18は閉じた状態に維持されるため、液体は、圧側減衰弁17のみを通過して差圧制御弁9側へ向かって流れる。これに対して、差圧制御弁9から圧側室R2へ向けて移動する液体の流れに対しては、圧側チェック弁18が開放されるため、液体は、圧側減衰弁17及び圧側チェック弁18を通過して圧側室R2側へ向かって流れる。圧側チェック弁18は圧側減衰弁17に比較して液体の流れに与える抵抗が小さいので、液体は、圧側チェック弁18を優先的に通過して圧側室R2側へ向かって流れる。圧側減衰弁17は、双方向流れを許容する絞り弁とされてもよいし、圧側室R2から差圧制御弁9に向かう流れのみを許容するリーフバルブやポペット弁といった減衰弁とされてもよい。
 流体圧回路FCは、供給路5と排出路6とを接続する吸込通路10をさらに備える。吸込通路10には、排出路6から供給路5へ向かう液体の流れのみを許容する吸込チェック弁11が設けられる。これにより、吸込通路10は排出路6から供給路5へ向かう液体の流れのみを許容する一方通行の通路に設定される。
 供給路5における差圧制御弁9とポンプ4との間には供給側チェック弁12が設けられている。より詳しくは、供給側チェック弁12は、供給路5における吸込通路10の接続点よりもポンプ4側に設けられる。供給側チェック弁12は、ポンプ4側から差圧制御弁9側へ向かう流れのみを許容し、その反対の流れを阻止するようになっている。よって、ポンプ4の吐出圧より差圧制御弁9側の圧力が高圧となっても、供給側チェック弁12が閉じてポンプ4側へ液体が逆流することが阻止される。
 差圧制御弁9は、伸側通路7に接続されるAポートaと、圧側通路8に接続されるBポートbと、供給路5に接続されるPポートpと、排出路6に接続されるTポートtと、の4つのポートを有し、伸側通路7と圧側通路8の差圧を制御する4ポート3位置の電磁差圧制御弁とされている。
 差圧制御弁9は、伸側通路7と供給路5とを連通するとともに圧側通路8と排出路6を連通する伸側供給ポジションXと、全ポートa,b,p,tを連通して供給路5、排出路6、伸側通路7および圧側通路8を相互に連通させるニュートラルポジションNと、伸側通路7と排出路6とを連通するとともに圧側通路8と供給路5を連通する圧側供給ポジションYと、に切り換えられる。また、差圧制御弁9は、スプールSPを両側から挟んで附勢する一対のばねCs1,Cs2と、スプールSPを駆動するプッシュプル型のソレノイドSolと、を備える。スプールSPは、ソレノイドSolから推力を受けないときには、ばねCs1,Cs2の附勢力により、ニュートラルポジションNに位置決めされる。なお、伸側供給ポジションX、ニュートラルポジションNおよび圧側供給ポジションYは、スプールSPの移動により、連続的に切り換わるようになっている。
 また、伸側通路7からの圧力をパイロット圧としてスプールSPの一端側へ導いており、伸側通路7の圧力でスプールSPを図1中下方へ附勢できるようになっている。さらに、圧側通路8からの圧力をパイロット圧としてスプールSPの他端側へ導いており、圧側通路8の圧力でスプールSPを図1中上方へ附勢できるようになっている。伸側通路7の圧力によってスプールSPを図1中下方へ押す力と、圧側通路8の圧力によってスプールSPを図1中上方へ押す力は、互いにスプールSPを反対に向けて押す力であり、これらの合力を流体圧フィードバック力として利用している。ソレノイドSolへ通電すると、スプールSPは、ポジションX,Yのうち、ソレノイドSolからの推力と、伸側通路7および圧側通路8の圧力による流体圧フィードバック力と、ばねCs1,Cs2の附勢力と、が釣り合うポジションに切り換わる。ソレノイドSolの推力の大小によって、この推力と流体圧フィードバック力とばねCs1,Cs2の附勢力とが釣り合うスプールSPの位置が変化する。つまり、ソレノイドSolの推力を調整することによって、伸側通路7と圧側通路8の差圧を制御できる。他方、ソレノイドSolへ電力供給しない非通電時には、スプールSPは、ばねCs1,Cs2によって附勢されてニュートラルポジションNを採る。
 次に、図3を参照しながら差圧制御弁9の具体的な構成について説明する。
 差圧制御弁9は、スプールSPと、スプールSPが軸方向移動自在に挿入されるハウジングHと、ハウジングH内に収容される反力ピンPと、スプールSPを両端側から挟んで互いに対向して附勢するばねCs1,Cs2と、スプールSPを図3中左右両側へ向けて押す推力を発揮可能なプッシュプル型のソレノイドSolと、を備える。
 スプールSPは、円筒状であって、外周に軸方向に並んで設けられた三つのランド40,41,42と、ランド間に設けられた二つの溝43,44と、図3における左端の中央に開口し軸方向に延びる縦孔45と、縦孔45の先端から径方向へ延びて図3中右側の溝44に開口する横孔46と、を備える。ランド40,41,42の外径は、同一径に設定されている。
 反力ピンPは、円盤状の基部50と、基部50の右端中央から延びてスプールSPの縦孔45に摺動自在に挿入される軸部51と、を備える。軸部51は、スプールSPの軸方向である図3における左右方向へのストロークを妨げず、かつ、スプールSPのストローク中に縦孔45から抜け出ないような長さに設定される。軸部51は縦孔45内に挿入されて、縦孔45の出口端を閉塞する。これにより、縦孔45が圧力室Pr3として機能する。
 ハウジングHは、有底筒状であって、内周径がランド40,41,42の外周に摺接できる径に設定される。ハウジングH内には、スプールSPが摺動自在に挿入され、スプールSPは、ハウジングH内を軸方向となる図3中左右方向へ移動してストロークできるようになっている。スプールSPがハウジングHへ挿入されることにより、ハウジングH内のスプールSPの両側に圧力室Pr1,Pr2が形成される。また、ハウジングHの内周には、軸方向に並ぶ環状溝で形成された、三つのリセス60,61,62が設けられる。ハウジングHの図3中左端内方の底部には、反力ピンPの基部50が嵌合される。
 反力ピンPの基部50とスプールSPとの間には、ばねCs1が介装されており、スプールSPは、ばねCs1によって図3中右方向へ附勢される。
 ハウジングHの右端開口端には、ソレノイドSolが取り付けられる。ソレノイドSolのプランジャピン70はスプールSPの図3中右端に当接している。ソレノイドSolは、有底筒状のケース71と、ケース71内に軸方向に並べて収容されたコイル72,73と、コイル72,73の内周に挿通されるプランジャ74と、プランジャ74に連結されるプランジャピン70と、を備える。
 また、ソレノイドSolのケース71の底部とプランジャ74との間には、ばねCs2が介装される。ばねCs2は、スプールSPを図3中左方へ向けて附勢する。このように構成された差圧制御弁9では、コイル72,73へ電力供給しない非通電時には、スプールSPは、ばねCs1,Cs2によって両端から附勢されて中立位置に位置決めされる。
 ソレノイドSolでは、コイル72に電流が供給されると、プランジャ74は図3中左側へ吸引される。これにより、スプールSPは、コイル72による吸引力とばねCs2による附勢力とによって、ばねCs1の附勢力に抗して図3中左側に押圧され、移動する。反対に、コイル73に電流が供給されると、プランジャ74は図3中右側へ吸引される、これにより、スプールSPは、コイル73による吸引力とばねCs1による附勢力とによって、ばねCs2の附勢力に抗して図3中右側に押圧され、移動する。このように、ソレノイドSolへの電流供給によって、スプールSPを左右いずれの方向へも押圧できるようになっている。
 ハウジングHには、伸側通路7に接続されAポートに対応するポート63と、圧側通路8に接続されBポートに対応するポート64と、供給路5に接続されPポートに対応するポート65と、排出路6に接続されてTポートに対応するポート66,67と、ポート63に接続され伸側通路7をスプールSPの両側の圧力室Pr1,Pr2に連通する連通路68と、が設けられる。
 ポート63は、一端がハウジングHの外周面に開口し、他端がハウジングHの内周であって図3中左側と中央のリセス60,61間に通じている。ポート64は、一端がハウジングHの外周面に開口し、他端がハウジングHの内周であって図3中中央と右側のリセス61,62間に通じている。ポート65は、一端がハウジングHの外周面に開口し、他端が中央のリセス61に通じている。ポート66は、一端がハウジングHの外周面に開口し、他端が図3中左側のリセス60に通じている。ポート67は、ポート66から分岐して図3中右側のリセス62に通じている。
 図3に示した差圧制御弁9は、以上のように、構成される。図3では、スプールSPがニュートラルポジションNに配置されている状態を示している。スプールSPは、最大幅でストロークしても、ランド40およびランド42がハウジングHの内周に摺接するように形成されているので、圧力室Pr1,Pr2がリセス60,61,62に通じないようになっている。圧力室Pr1および圧力室Pr2には、連通路68を通じて伸側通路7の圧力が導かれる。圧力室Pr1内の圧力は、スプールSPの断面積から反力ピンPの軸部51の断面積を除いた面積を受圧面積としてスプールSPの図3中左端に作用する。反対に、圧力室Pr2の圧力は、スプールSPの断面積を受圧面積としてスプールSPの図3中右端に作用する。よって、スプールSPは、伸側通路7の圧力に軸部51の断面積を乗じた力によって図3中左方へ附勢される。また、圧側通路8の圧力は、ポート64を通じて、スプールSPの縦孔45でなる圧力室Pr3内に導かれる。よって、スプールSPは、圧側通路8の圧力に軸部51の断面積を乗じた力によって図3中右方へ附勢される。つまり、軸部51の断面積を受圧面積として伸側通路7の圧力と圧側通路8の圧力が互いにスプールSPを反対向きに押すように作用している。
 そして、ニュートラルポジションNでは、ランド41が中央のリセス61に対向する。この状態では、リセス61は、溝43を介して左側のリセス60に通じるとともに、溝44を介して右側のリセス62に通じる。よって、リセス61にポート65を介して接続される供給路5、リセス60,62にポート66,67を介して接続される排出路6、溝43に対向するポート63に接続される伸側通路7、溝44に対向するポート64に接続される圧側通路8が相互に連通する。
 コイル73に通電すると、スプールSPは、ソレノイドSolによって押圧されて図3に示した位置から図3中右側へ移動する。スプールSPが右側へ移動すると、ランド40がハウジングHのリセス60,61間の内周に対向しリセス60とリセス61の連通を絶ち、ランド41がハウジングHのリセス61,62間の内周に対向しリセス61とリセス62の連通を絶つとともに、ポート63とポート65が連通し、ポート64とポート67とが連通する。この状態では、供給路5と伸側通路7が連通され、排出路6と圧側通路8とが連通されるので、差圧制御弁9は、伸側供給ポジションXを採る。このとき、Aポートaの圧力をPaとし、Bポートbの圧力をPbとすると、Pa>Pbとなる。
 他方、コイル72に通電すると、スプールSPは、ソレノイドSolによって押圧されて図3に示した位置から図3中左側へ移動する。スプールSPが左方へ移動すると、ランド41がハウジングHのリセス60,61間の内周に対向しリセス60とリセス61の連通を絶ち、ランド42がハウジングHのリセス61,62間の内周に対向しリセス61とリセス62の連通を絶つとともに、ポート63とポート66が連通し、ポート64とポート65とが連通する。この状態では、供給路5と圧側通路8が連通され、排出路6と伸側通路7とが連通されるので、差圧制御弁9は、圧側供給ポジションYを採る。このとき、Aポートaの圧力をPaとし、Bポートbの圧力をPbとすると、Pb>Paとなる。
 図4に示すように、ソレノイドSolのコイル72,73に通電しない非通電時には、スプールSPがばねCs1,Cs2によって図3に示すニュートラルポジションNの位置に位置決められる。この状態では、ポンプ4から供給路5およびポート65へ供給される流量は、リセス61から溝43、リセス60、ポート66および排出路6を通ってリザーバRへ戻る流れと、リセス61から溝44、リセス62、ポート67および排出路6を通ってリザーバRへ戻る流れと、に分流される。リセス60とランド41、リセス61とランド41、リセス62とランド42で形成される流路における流路面積は等しく、そこで発生する圧力損失も等しい。このため、ソレノイドSolのコイル72,73に通電しない非通電時には、溝43に対向しているAポートに対応するポート63の圧力と、溝44に対向しているBポートに対応するポート64の圧力は、等しくなる。つまり、伸側通路7と圧側通路8の差圧制御弁9への接続端の圧力は、共に等しくなる。したがって、ニュートラルポジションNでは、スプールSPに作用する流体圧フィードバック力は0となり、ばねCs1,Cs2の附勢力のみで釣り合った状態にある。
 ソレノイドSolのコイル73へ電流を供給すると力の釣り合いが崩れ、スプールSPは図3に示した位置から一時的に右方へ移動する。すると、ランド42とリセス62で形成される流路面積が増加して圧側通路8から排出路6へ向かうルートにおける圧力損失が小さくなり、ランド40とリセス60で形成される流路面積が減少して伸側通路7から排出路6へ向かうルートにおける圧力損失が大きくなる。その結果、伸側通路7の圧力は上昇し、圧側通路8の圧力は低下し、図3中左方向に流体圧フィードバック力が作用して、最終的に、ソレノイドSolの推力とばねCs1,Cs2の附勢力と流体圧フィードバック力とが釣り合う位置にスプールSPが停止する。
 ソレノイドSolのコイル72へ電流を供給すると力の釣り合いが崩れ、スプールSPは図3に示した位置から一時的に左方へ移動する。すると、ランド42とリセス62で形成される流路面積が減少して圧側通路8から排出路6へ向かうルートにおける圧力損失が大きくなり、ランド40とリセス60で形成される流路面積が増加して伸側通路7から排出路6へ向かうルートにおける圧力損失が小さくなる。その結果、圧側通路8の圧力は上昇し、伸側通路7の圧力は低下し、図3中右方向に流体圧フィードバック力が作用して、最終的に、ソレノイドSolの推力とばねCs1,Cs2の附勢力と流体圧フィードバック力とが釣り合う位置にスプールSPが停止する。
 よって、ソレノイドSolへ供給する電流量を調整することによって、伸側通路7の圧力と圧側通路8の圧力の差圧を制御できる。なお、ダンパDが外乱を受けて伸縮するとダンパDの伸側室R1と圧側室R2へ液体が出入りするため、差圧制御弁9を通過する流量は、ポンプ流量からダンパDの伸縮による流量分だけ増減する。このようにダンパDの伸縮によって流量が増減しても、流体圧フィードバック力によってスプールSPが自動的に移動するので、前記差圧は、ソレノイドSolへ供給する電流量によって一意的に決められた差圧に制御される。
 差圧制御弁9は、筒状のハウジングHの内周に軸方向に並べて配置される三つのリセス60,61,62と、外周に軸方向に並べて配置されてそれぞれリセス60,61,62に対向する三つのランド40,41,42と、を有する。そして、中央のリセス61は供給路5に接続され、リセス61の両側のリセス60,62は排出路6に接続され、伸側通路7はハウジングHの内周であって中央のリセス61と隣の一方のリセス60との間に連通し、圧側通路8はハウジングHの内周であって中央のリセス61と隣の他方のリセス62との間に連通する。このように構成される差圧制御弁9では、少ないストロークで伸側通路7と圧側通路8の差圧を制御でき、ハウジングHとスプールSPの加工が容易で、さらに、ソレノイドSolのストローク長も短くて済むという利点がある。
 なお、伸側通路7の圧力と圧側通路8の圧力の差圧を適切に制御できるのは、高圧側の圧力がリザーバ圧より高く保たれる場合である。ポンプ流量が不足、或いは、ポンプ4が停止状態でリザーバRから吸込チェック弁11を介して液体の供給を受けなければならない状態では、差圧は0となる。
 以上のように構成されたサスペンション装置Sの作動について説明する。まず、モータ13、ポンプ4、差圧制御弁9が正常に動作する通常時における作動を説明する。
 ポンプ4をモータ13によって駆動し、差圧制御弁9によって伸側室R1と圧側室R2との差圧を制御することで、ダンパDが積極的に伸長或いは収縮するアクチュエータとして機能できる。ダンパDに発生させる推力がダンパDの伸長方向である場合には、差圧制御弁9を圧側供給ポジションYとして、圧側室R2を供給路5へ接続し伸側室R1をリザーバRへ接続する。反対に、ダンパDに発生させる推力がダンパDの収縮方向である場合には、差圧制御弁9を伸側供給ポジションXとして、伸側室R1を供給路5へ接続し圧側室R2をリザーバRへ接続する。そして、差圧制御弁9によって伸側室R1と圧側室R2の差圧を調節すれば、ダンパDの伸長方向或いは収縮方向の推力の大きさを制御できる。
 推力の制御にあたっては、たとえば、図2に示すように、差圧制御弁9に与える電流量、およびポンプ4を駆動するモータ13へ与える電流量を決定するコントローラCと、コントローラCからの指令を受けてコントローラCで決定した通りに差圧制御弁9およびモータ13へ電流を供給するドライバDrと、を設ければよい。コントローラCは、具体的には、車両の振動抑制に適する制御則に必要な車両の振動状況を把握できる情報、たとえば、ばね上部材Bやばね下部材Wの上下方向の加速度、速度といった情報や、ダンパDの伸縮速度や伸縮加速度といった情報等の車両情報を得て、前記制御則に則ってダンパDに発生させるべき目標推力を求める。そして、コントローラCは、目標推力通りにダンパDに推力を発生させるために必要な差圧制御弁9に与える電流量、およびポンプ4を駆動するモータ13へ与える電流量を決定する。ドライバDrは、たとえば、差圧制御弁9におけるソレノイドSolをPWM駆動する駆動回路と、モータ13をPWM駆動する駆動回路と、を備えている。そして、ドライバDrは、コントローラCからの指令を受けると、コントローラCで決定した通りにソレノイドSolおよびモータ13へ電流を供給する。ダンパDの推力の制御は、差圧制御弁9によって行うため、モータ13でポンプ4を駆動する場合、ポンプ4を一定回転数で回転駆動できればよい。なお、ドライバDrにおける各駆動回路は、PWM駆動を行う駆動回路以外の駆動回路であってもよい。そして、ダンパDに発生させる目標推力がダンパDの伸長方向であるときは、ドライバDrは、ダンパDの推力に応じて差圧制御弁9のソレノイドSolにおけるコイル72へ電流を供給する。反対に、ダンパDに発生させる目標推力がダンパDの収縮方向であるときは、ドライバDrは、ダンパDの推力に応じて差圧制御弁9のソレノイドSolにおけるコイル73へ電流を供給する。サスペンション装置Sにおける推力の制御に用いる制御則については、車両に適するものを選択すればよく、たとえば、スカイフック制御等といった車両の振動抑制に優れる制御則を採用するとよい。また、この場合、コントローラCとドライバDrを別体として説明しているが、コントローラCとドライバDrの機能を有する一つの制御装置でサスペンション装置Sを制御するようにしてもよい。また、コントローラCに入力する情報は、コントローラCで採用する制御則に適した情報であればよく、図示はしないが、当該情報についてはセンサ等で検知してコントローラCに入力すればよい。
 以上、ダンパDを積極的に伸縮させる場合の作動について説明したが、車両走行中には、ダンパDが路面の凹凸により外乱を受けて伸縮するので、以下に、ダンパDが外乱を受けて伸縮する点を踏まえた作動について説明する。
 ダンパDが外乱を受けて伸縮する場合、ダンパDが推力を発生する方向とダンパDの伸縮方向で場合分けすると、四つのケースが考えられる。
 Aポートaの圧力をPaとし、Bポートbの圧力をPbとすると、第一のケースとして、Pa>Pbとなるように制御し、ピストン2を下方に押し下げる推力をサスペンション装置Sに発揮させる場合であって、ダンパDが外力によって伸長作動する場合について説明する。この場合、ダンパDの伸長により伸側室R1の容積が減少し、伸側室R1から排出された液体は伸側減衰弁15を通って、差圧制御弁9のAポートaに流れる。他方、ダンパDの伸長により圧側室R2の容積が膨張し、圧側室R2には、ポンプ4からBポートb及び圧側チェック弁18を通って、液体が補充される。
 伸長速度が速くなり、圧側室R2に補充されるべき液体流量がポンプ4の吐出流量を上回ると、吸込チェック弁11を介してリザーバRからも液体が供給される。Aポートaの圧力PaとBポートbの圧力Pbの差圧は、差圧制御弁9により一定に保たれるので、伸側室R1の圧力は伸側減衰弁15で生じる圧力損失分だけAポートaの圧力よりも高くなる。よって、伸側室R1の圧力は、差圧制御弁9によって調節される差圧に伸側減衰弁15で生じる圧力損失分の圧力を加えた値だけ圧側室R2よりも高くなり、ダンパDは、伸長を抑制する推力を発揮する。この時のダンパの伸縮速度と発揮される推力の特性は、図5中の線(1)で示す特性となる。なお、図5に示すグラフでは、縦軸にダンパDの推力を採り、横軸にダンパDの伸縮速度を採る。
 第二のケースとして、Pa>Pbとなるように差圧を制御し、ピストン2を下方に押し下げる推力をサスペンション装置Sに発揮させる場合であって、ダンパDが外力によって収縮作動している場合について説明する。この場合、ダンパDの収縮により圧側室R2の容積が減少し、圧側室R2から排出された液体は圧側減衰弁17を通って、差圧制御弁9のBポートbに流れる。他方、ダンパDの収縮により伸側室R1の容積が膨張し、伸側室R1には、ポンプ4からAポートa及び伸側チェック弁16を通じて、液体が補充される。Aポートaの圧力PaとBポートbの圧力Pbの差圧は、差圧制御弁9により一定に保たれるので、圧側室R2の圧力は、圧側減衰弁17で生じる圧力損失分だけBポートbの圧力よりも高くなる。よって、伸側室R1の圧力は、差圧制御弁9によって調節される差圧から圧側減衰弁17で生じる圧力損失分の圧力を差し引いた値だけ圧側室R2よりも高くなり、ダンパDは、収縮を助成する推力を発揮する。この時のダンパの伸縮速度と発揮される推力の特性は、図5中の線(2)で示す特性となる。
 さらに、収縮速度が速くなり、伸側室R1に補充されるべき液体流量がポンプ4の吐出流量を上回ると、吸込チェック弁11を通じてリザーバRからも液体が供給される。このような状態となると、ポンプ4の吐出流量ではAポートaを加圧できず、Aポートaの圧力Paは、リザーバRの圧力よりも若干低くなる。このため、差圧制御弁9によってAポートaの圧力PaとBポートbの圧力Pbの差圧を制御できなくなって両者の差圧は0となる。よって、ダンパDは、圧側室R2から排出される液体が圧側減衰弁17を通過する際に生じる圧力損失によって生じる伸側室R1と圧側室R2の差圧で推力を発揮する。この時のダンパの伸縮速度と発揮される推力の特性は、図5中の線(3)で示す特性となる。なお、線(3)で示した特性は、線(2)で示した特性とは不連続となる。このように、伸側室R1に補充されるべき液体流量がポンプ4の吐出流量を上回るとダンパDがパッシブなダンパとして機能し、収縮速度に依存して推力が変化する特性となる。
 次に、第三のケースとして、Pb>Paとなるように差圧を制御し、ピストン2を上方に押し上げる推力をサスペンション装置Sに発揮させる場合であって、ダンパDが外力によって収縮作動している場合について説明する。この場合、ダンパDの収縮により圧側室R2の容積が減少し、圧側室R2から排出された液体は圧側減衰弁17を通って、差圧制御弁9のBポートbに流れる。他方、ダンパDの収縮により伸側室R1の容積が膨張し、伸側室R1には、ポンプ4からAポートa及び伸側チェック弁16を通じて、液体が補充される。
 収縮速度が速くなり、伸側室R1に補充されるべき液体流量がポンプ4の吐出流量を上回ると、吸込チェック弁11を介してリザーバRからも液体が供給される。Aポートaの圧力PaとBポートbの圧力Pbの差圧は、差圧制御弁9により一定に保たれるので、圧側室R2の圧力は圧側減衰弁17で生じる圧力損失分だけBポートbの圧力よりも高くなる。よって、圧側室R2の圧力は、差圧制御弁9によって調節される差圧に圧側減衰弁17で生じる圧力損失分の圧力を加えた値だけ伸側室R1よりも高くなり、ダンパDは、収縮を抑制する推力を発揮する。この時のダンパの伸縮速度と発揮される推力の特性は、図5中の線(4)で示す特性となる。
 第四のケースとして、Pb>Paとなるように差圧を制御し、ピストン2を上方に押し上げる推力をサスペンション装置Sに発揮させる場合であって、ダンパDが外力によって伸長作動している場合について説明する。この場合、ダンパDの伸長により伸側室R1の容積が減少し、伸側室R1から排出された液体は伸側減衰弁15を通り、差圧制御弁9のAポートaに流れる。他方、ダンパDの伸長により圧側室R2の容積が膨張し、圧側室R2には、ポンプ4からBポートb及び圧側チェック弁18を通じて、液体が補充される。Aポートaの圧力PaとBポートbの圧力Pbの差圧は、差圧制御弁9により一定に保たれるので、伸側室R1の圧力は、伸側減衰弁15で生じる圧力損失分だけAポートaの圧力よりも高くなる。よって、圧側室R2の圧力は、差圧制御弁9によって調節される差圧から伸側減衰弁15で生じる圧力損失分の圧力を差し引いた値だけ伸側室R1よりも高くなり、ダンパDは、伸長を助成する推力を発揮する。この時のダンパの伸縮速度と発揮される推力の特性は、図5中の線(5)で示す特性となる。
 さらに、伸長速度が速くなり、圧側室R2に補充されるべき液体流量がポンプ4の吐出流量を上回ると、吸込チェック弁11を介してリザーバRからも液体が供給される。このような状態となると、ポンプ4の吐出流量ではBポートbを加圧できず、Bポートbの圧力Pbは、リザーバRの圧力よりも若干低くなる。このため、差圧制御弁9によってAポートaの圧力PaとBポートbの圧力Pbの差圧を制御できなくなって両者の差圧は0となる。すると、ダンパDは、伸側室R1から排出される液体が伸側減衰弁15を通過する際に生じる圧力損失によって生じる伸側室R1と圧側室R2の差圧で推力を発揮する。この時のダンパの伸縮速度と発揮される推力の特性は、図5中の線(6)で示す特性となる。なお、線(6)で示した特性は、線(5)で示した特性とは不連続となる。このように、圧側室R2に補充されるべき液体流量がポンプ4の吐出流量を上回るとダンパDがパッシブなダンパとして機能し、伸長速度に依存して推力が変化する特性となる。
 なお、ダンパDは、収縮側では図5中線(2)から線(3)へ推力が変化する特性を示し、伸長側では図5中線(5)から線(6)へ推力が変化する特性を示すが、特性の変化はごく瞬間的に生じるものであり、乗り心地に与える影響は軽微である。
 以上のように、差圧制御弁9によって差圧を制御することにより、図5中、線(1)から線(3)をつなげたラインから線(4)から線(6)までをつなげたラインまでの間の範囲でダンパDの推力を可変にできる。また、ポンプ4の駆動によって、ポンプ4の吐出流量を伸側室R1と圧側室R2のうち拡大する側の室へ供給する場合であって、ポンプ4の吐出流量が拡大する室の容積増大量以上である場合には、ダンパDの伸縮方向と同方向に推力を発揮させられる。
 次に、ポンプ4を駆動しない(停止状態にした)場合のサスペンション装置Sの作動を説明する。この場合についても、ダンパDが外乱を受けて伸縮する方向とダンパDが推力を発生する方向とで場合分けすると、四つのケースが考えられる。
 第一のケースとして、Pa>Pbとなるように差圧を制御し、ピストン2を下方に押し下げる推力をサスペンション装置Sに発揮させる場合であって、ダンパDが外力によって伸長作動する場合について説明する。この場合、ダンパDの伸長により伸側室R1の容積が減少し、伸側室R1から排出された液体は伸側減衰弁15を通って、差圧制御弁9のAポートaに流れる。他方、ダンパDの伸長により圧側室R2の容積が膨張し、圧側室R2には、リザーバRからBポートb及び圧側チェック弁18を通じて、液体が補充される。
 Aポートaの圧力PaとBポートbの圧力Pbの差圧は、差圧制御弁9により一定に保たれるので、伸側室R1の圧力は伸側減衰弁15で生じる圧力損失分だけAポートaの圧力よりも高くなる。よって、伸側室R1の圧力は、差圧制御弁9によって調節される差圧に伸側減衰弁15で生じる圧力損失分の圧力を加えた値だけ圧側室R2よりも高くなり、ダンパDは、伸長を抑制する推力を発揮する。この時のダンパの伸縮速度と発揮される推力の特性は、図6中の線(1)で示す特性となる。なお、図6に示すグラフでは、縦軸にダンパDの推力を採り、横軸にダンパDの伸縮速度を採る。
 第二のケースとして、Pa>Pbとなるように差圧を制御し、ピストン2を下方に押し下げる推力をサスペンション装置Sに発揮させる場合であって、ダンパDが外力によって収縮作動している場合について説明する。この場合、ダンパDの収縮により圧側室R2の容積が減少し、圧側室R2から排出された液体は圧側減衰弁17を通って、差圧制御弁9のBポートbに流れる。他方、ダンパDの収縮により伸側室R1の容積が膨張し、伸側室R1には、リザーバRから吸込チェック弁11、Aポートa及び伸側チェック弁16を通じて、液体が補充される。Aポートaの圧力Paは、リザーバRの圧力よりも若干低くなる。このため、差圧制御弁9によってAポートaの圧力PaとBポートbの圧力Pbの差圧を制御できなくなって両者の差圧は0となる。すると、ダンパDは、圧側室R2から排出される液体が圧側減衰弁17を通過する際に生じる圧力損失によって生じる伸側室R1と圧側室R2の差圧で推力を発揮する。この時のダンパの伸縮速度と発揮される推力の特性は、図6中の線(2)で示す特性となる。
 次に、第三のケースとして、Pb>Paとなるように差圧を制御し、ピストン2を上方に押し上げる推力をサスペンション装置Sに発揮させる場合であって、ダンパDが外力によって収縮作動している場合について説明する。この場合、ダンパDの収縮により圧側室R2の容積が減少し、圧側室R2から排出された液体は圧側減衰弁17を通り、差圧制御弁9のBポートbに流れる。他方、ダンパDの収縮により伸側室R1の容積が膨張し、伸側室R1には、リザーバRからAポートa及び伸側チェック弁16を通じて、液体が補充される。
 Aポートaの圧力PaとBポートbの圧力Pbの差圧は、差圧制御弁9により一定に保たれるので、圧側室R2の圧力は圧側減衰弁17で生じる圧力損失分だけBポートbの圧力よりも高くなる。よって、圧側室R2の圧力は、差圧制御弁9によって調節される差圧に圧側減衰弁17で生じる圧力損失分の圧力を加えた値だけ伸側室R1よりも高くなり、ダンパDは、収縮を抑制する推力を発揮する。この時のダンパの伸縮速度と発揮される推力の特性は、図6中の線(3)で示す特性となる。
 第四のケースとして、Pb>Paとなるように差圧を制御し、ピストン2を上方に押し上げる推力をサスペンション装置Sに発揮させる場合であって、ダンパDが外力によって伸長作動している場合について説明する。この場合、ダンパDの伸長により伸側室R1の容積が減少し、伸側室R1から排出された液体は伸側減衰弁15を通って、差圧制御弁9のAポートaに流れる。他方、ダンパDの伸長により圧側室R2の容積が膨張し、圧側室R2には、リザーバRから吸込チェック弁11、Bポートb及び圧側チェック弁18を通じて、液体が補充される。Bポートbの圧力Pbは、リザーバRの圧力よりも若干低くなり、差圧制御弁9によってAポートaの圧力PaとBポートbの圧力Pbの差圧を制御できなくなって両者の差圧は0となる。よって、ダンパDは、伸側室R1から排出される液体が伸側減衰弁15を通過する際に生じる圧力損失によって生じる伸側室R1と圧側室R2の差圧で推力を発揮する。この時のダンパの伸縮速度と発揮される推力の特性は、図6中の線(4)で示す特性となる。
 以上のように、ポンプ4を停止した状態では、差圧制御弁9によって差圧を制御することにより、図6中において、第一象限内では、線(1)から線(4)までの範囲で、第三象限内では、線(3)から線(2)までの範囲でダンパDの推力を可変にできる。
 また、ポンプ4が停止した状態で、ピストン2を下方に押し下げる推力をサスペンション装置Sに発揮させようとする場合、ダンパDが外力によって収縮作動すると、差圧制御弁9の差圧制御によらず、ダンパDの推力は、図6中の線(2)で示す特性となる。これは、減衰力可変ダンパにおいて、圧側減衰力を最も低い減衰力に制御しているのと同等の効果をもたらしている。さらに、ポンプ4が停止状態では、ピストン2を上方に押し上げる推力をサスペンション装置Sに発揮させようとする場合、ダンパDが外力によって伸長作動すると、差圧制御弁9の差圧制御によらず、ダンパDの推力は、図6中の線(4)で示す特性となる。これは、減衰力可変ダンパにおいて、伸側減衰力を最も低い減衰力に制御しているのと同等の効果をもたらしている。
 ここで、セミアクティブサスペンションにあっては、減衰力可変ダンパを用いてカルノップ則に従ってスカイフック制御を実行する場合を考える。伸側減衰力(ピストンを押し下げる方向の力)が必要である場合、伸長作動時には減衰力可変ダンパの減衰力が目標推力を得られる減衰力に制御され、収縮作動時には、伸側減衰力が得られないから圧側へ最も低い減衰力を発揮するように制御される。他方、圧側減衰力(ピストンを押し上げる方向の力)が必要な場合、収縮作動時には減衰力可変ダンパの減衰力が目標推力を得られる減衰力に制御され、伸長作動時には、圧側減衰力が得られないから伸側へ最も低い減衰力を発揮するように制御される。サスペンション装置Sでは、ポンプ4を停止した状態でダンパDにピストン2を押し下げる推力を発揮させる場合、伸長時にはダンパDの推力が差圧制御弁9によって出力可能範囲内で制御され、収縮時には、ダンパDは最も低い推力を発揮する。反対に、サスペンション装置Sでは、ポンプ4を停止した状態でダンパDにピストン2を押し上げる推力を発揮させる場合、収縮時にはダンパDの推力が差圧制御弁9によって出力可能範囲内で制御され、伸長時には、ダンパDは最も低い推力を発揮する。したがって、本実施形態のサスペンション装置Sでは、ポンプ4が停止中である場合、自動的に、セミアクティブサスペンションと同じ機能を発揮ができる。よって、ポンプ4が駆動中であってもポンプ4の吐出流量が拡大する伸側室R1或いは圧側室R2の容積増大量未満となると、自動的に、サスペンション装置Sがセミアクティブサスペンションとして機能できる。
 最後に、サスペンション装置Sのモータ13および差圧制御弁9への通電が何らかの異常により通電不能な失陥時におけるサスペンション装置Sの作動について説明する。こうした失陥には、たとえば、モータ13および差圧制御弁9への通電ができない場合のほか、コントローラCやドライバDrの異常によってモータ13および差圧制御弁9への通電が停止する場合も含まれる。
 失陥時には、モータ13および差圧制御弁9への通電が停止されるか、或いは通電不能な状態である。このとき、ポンプ4は停止し、差圧制御弁9は、ばねCs1,Cs2に附勢されてニュートラルポジションNを採る状態となる。
 この状態で、ダンパDが外力によって伸長作動する場合、伸側室R1の容積が減少するため、減少分の流体は、伸側減衰弁15を通じて伸側室R1から排出される。容積が膨張する圧側室R2に対しては、伸側室R1およびリザーバRから液体が補充される。
 よって、伸側室R1の圧力は、伸側室R1から排出される流体が伸側減衰弁15を通過する際に生じる圧力損失分だけ圧側室R2の圧力よりも高くなり、ダンパDは、伸側室R1と圧側室R2の差圧で推力を発揮する。この時のダンパの伸縮速度と発揮される推力の特性は、図7中の線(1)で示す特性となる。
 反対に、ダンパDが外力によって収縮作動する場合、圧側室R2の容積が減少するため、減少分の流体は、圧側減衰弁17を通じて圧側室R2から排出される。容積が膨張する伸側室R1に対しては、圧側室R2およびリザーバRから液体が補充される。
 よって、圧側室R2の圧力は、圧側室R2から排出される流体が圧側減衰弁17を通過する際に生じる圧力損失分だけ伸側室R1の圧力よりも高くなり、ダンパDは、伸側室R1と圧側室R2の差圧で推力を発揮する。この時のダンパの伸縮速度と発揮される推力の特性は、図7中の線(2)で示す特性となる。
 このようにサスペンション装置Sが失陥した状態では、ダンパDはパッシブなダンパとして機能して、ばね上部材BOおよびばね下部材Wの振動を抑制するので、失陥時にはフェールセーフ動作が確実に行われる。
 以上のように、本実施形態のサスペンション装置Sでは、ダンパDを積極的に伸縮させてアクティブサスペンションとして機能できる。加えて、サスペンション装置Sでは、セミアクティブサスペンションとしての推力の発揮が期待される場面では、ポンプ4の駆動が必須ではなく、ポンプ4の駆動が必要なときにのみ駆動すればよいので、エネルギ消費が少なくなる。よって、本実施形態のサスペンション装置Sによれば、アクティブサスペンションとして機能できるとともに、エネルギ消費が少なくなる。
 そして、本実施形態のサスペンション装置Sにあっては、ダンパDの推力の制御を差圧制御弁9のみで行えるので、電磁弁が二つ必要であった従来のサスペンション装置に比較して、装置全体のコストが安価となるだけでなく、流体圧回路の配管の取り回しも簡素化できる。
 さらに、このサスペンション装置Sにあっては、アクティブサスペンションとして機能できるだけでなく、ソレノイドSolを搭載した差圧制御弁9を一つ設けるだけで、失陥時におけるフェールセーフ動作を行える。
 また、本実施形態のサスペンション装置Sは、伸側室R1から差圧制御弁9に向かう流れに対し抵抗を与える伸側減衰弁15と、伸側減衰弁15に並列に設けられ差圧制御弁9から伸側室R1へ向かう流れのみを許容する伸側チェック弁16と、圧側室R2から差圧制御弁9に向かう流れに対し抵抗を与える圧側減衰弁17と、圧側減衰弁17に並列に設けられ差圧制御弁9から圧側室R2へ向かう流れのみを許容する圧側チェック弁18と、を有している。これにより、ポンプ4から伸側室R1或いは圧側室R2へ流体を供給する際には、伸側チェック弁16或いは圧側チェック弁18を介してほとんど抵抗なく流体を伸側室R1或いは圧側室R2へ供給できる。したがって、ダンパDの伸縮方向と発生させる推力の方向とが一致する際にポンプ4の負荷を軽減できる。また、伸側室R1或いは圧側室R2から流体が排出される場合には、伸側減衰弁15或いは圧側減衰弁17が通過する流体の流れに抵抗が与えられるので、伸側室R1と圧側室R2の差圧を差圧制御弁9で設定可能な差圧以上にして大きな推力を得られ、差圧制御弁9におけるソレノイドSolの推力を小さくしてもサスペンション装置Sに大きな推力を発生させられる。よって、差圧制御弁9を小型化できるとともにコストをより安価にできる。なお、伸側減衰弁15或いは圧側減衰弁17が流体の流れる方向にかかわりなく流体の流れに抵抗を与えるものであってもよく、伸側減衰弁15および圧側減衰弁17が双方向流れを許容するものであれば伸側チェック弁16および圧側チェック弁18を省略できる。
 サスペンション装置Sでは、一つのポンプ4で一つのダンパDを駆動するようにしているが、図8、9に示すように、複数のダンパDとポンプ4およびリザーバRとの間にそれぞれ流体圧回路FCを設けることにより、一つのポンプ4で複数のダンパDの推力を発生させることができる。具体的には、図8に示す第2実施形態におけるサスペンション装置S1では、一つのポンプ4に対して二つのダンパDを駆動するために、ポンプ4と各流体圧回路FCとの間に分流弁80が設けられており、ポンプ4が吐出する流体を分流弁80で各流体圧回路FCへ分配するようにしている。分流弁80は、ポンプ4の吐出流量を等分して二つの流体圧回路FCへ分配するようにしているが、比率を変えて分配するようにしてもよい。
 図9に示す第3実施の形態におけるサスペンション装置S2では、一つのポンプ4に対して四つのダンパDを駆動するために、ポンプ4と四つの流体圧回路FCとの間に三つの分流弁90,91,92が設けられており、ポンプ4が吐出する流体を分流弁90,91,92で四つの流体圧回路FCへ分配するようにしている。分流弁90,91,92は、ポンプ4の吐出流量を等分して四つの流体圧回路FCへ分配するようにしているが、比率を変えて分配するようにしてもよい。
 このように、分流弁80,90,91,92を用いて、ポンプ4からの吐出流量をダンパDごとに設けた流体圧回路FCへ分配すれば、一つのポンプ4の駆動で、各ダンパDの推力の発生に必要な流量を供給できる。よって、複数のダンパDの推力の発生にあたりモータ数が一つで済み、ドライバDrにおけるモータ13を駆動する駆動回路も一つで済むため、ダンパDが増加してもシステム全体としてコストを低減できる。
 以上のように構成された本発明の実施形態の構成、作用、及び効果をまとめて説明する。
 サスペンション装置S,S1,S2は、シリンダ1と、シリンダ1内に移動自在に挿入されてシリンダ1内を伸側室R1と圧側室R2とに区画するピストン2と、を備えたダンパDと、ポンプ4と、ポンプ4の吸込側に接続されるリザーバRと、ダンパDとポンプ4とリザーバRとの間に設けられる流体圧回路FCと、を備え、流体圧回路FCは、 ポンプ4の吐出側に接続される供給路5と、リザーバRに接続される排出路6と、伸側室R1に接続される伸側通路7と、圧側室R2に接続される圧側通路8と、伸側通路7に設けた伸側減衰弁15と、圧側通路8に設けた圧側減衰弁17と、供給路5、排出路6、伸側通路7および圧側通路8の間に設けられて、伸側通路7と圧側通路8の差圧を制御する差圧制御弁9と、供給路5における差圧制御弁9とポンプ4との間に設けられてポンプ4側から差圧制御弁9側へ向かう流れのみを許容する供給側チェック弁12と、供給路5における差圧制御弁9と供給側チェック弁12の間と排出路6とを接続する吸込通路10と、吸込通路10に設けられて排出路6から供給路5へ向かう流体の流れのみを許容する吸込チェック弁11と、を備える。
 この構成では、一つの差圧制御弁9のみで、ダンパDをアクティブサスペンションとしても、セミアクティブサスペンションとしても機能させることができる。さらに、推力の発揮が期待される場面では、ポンプ4の駆動が必須ではなく、ポンプ4の駆動が必要なときにのみ駆動すればよいので、エネルギ消費が少なくなる。また、ダンパDの推力の制御を差圧制御弁9のみで行えるので、電磁弁が二つ必要であった従来のサスペンション装置に比較して、装置全体のコストが安価となるだけでなく、流体圧回路の配管の取り回しも簡素化できる。
 サスペンション装置S1,S2は、複数のダンパDと、ダンパD毎に設けた複数の流体圧回路FCと、ポンプ4から吐出される流体を各流体圧回路FCへ分配する分流弁80,90,91,92と、を備える。
 この構成によれば、分流弁80,90,91,92を用いて、ポンプ4からの吐出流量をダンパDごとに設けた流体圧回路FCへ分配するようにしたので、一つのポンプ4で各ダンパDの推力の発生に必要な流量を供給できる。よって、複数のダンパDの推力の発生にあたりポンプ4を駆動するモータ数及びモータ13を駆動する駆動回路が一つで済み、ダンパが増加してもシステム全体としてコストを低減できる。
 サスペンション装置S,S1,S2では、差圧制御弁9は、伸側通路7を供給路5に接続するとともに圧側通路8を排出路6に接続する伸側供給ポジションXと、伸側通路7、圧側通路8、供給路5および排出路6を互いに連通するニュートラルポジションNと、圧側通路8を供給路5に接続するとともに伸側通路7を排出路6に接続する圧側供給ポジションYと、の3位置に切り換えられるスプールSPと、スプールSPを駆動するプッシュプル型のソレノイドSolと、スプールSPを附勢してニュートラルポジションNに位置決める一対のばねCs1,Cs2と、を有する。
 この構成によれば、差圧制御弁9は、伸側供給ポジションXとニュートラルポジションNと圧側供給ポジションYとの3位置に切り換えられるスプールSPと、スプールSPを駆動するプッシュプル型のソレノイドSolと、スプールSPを附勢してニュートラルポジションNに位置決めるばねCs1,Cs2と、を有しているので、ニュートラルポジションNでは、供給路5、排出路6、伸側通路7および圧側通路8が互いに連通されるため、失陥時にフェールセーフ動作が確実に行われる。
 また、サスペンション装置S,S1,S2は、伸側通路7に伸側減衰弁15に並列に設けられて、差圧制御弁9から伸側室R1に向かう流れのみを許容する伸側チェック弁16と、圧側通路8に圧側減衰弁17に並列に設けられて、差圧制御弁9から圧側室R2に向かう流れのみを許容する圧側チェック弁18と、を備える。
 この構成によれば、ポンプ4から伸側室R1或いは圧側室R2へ流体を供給する際には、伸側チェック弁16或いは圧側チェック弁18を介してほとんど抵抗なく流体を伸側室R1或いは圧側室R2へ供給できる。これにより、ダンパDの伸縮方向と発生させる推力の方向とが一致する際にポンプ4の負荷を軽減できる。また、伸側室R1或いは圧側室R2から流体が排出される場合には、伸側減衰弁15或いは圧側減衰弁17が通過する流体の流れに抵抗を与えるので、伸側室R1と圧側室R2の差圧を差圧制御弁9で設定可能な差圧以上にして大きな推力を得られ、差圧制御弁9におけるソレノイドSolの推力を小さくしてもサスペンション装置S,S1,S2に大きな推力を発生させられる。よって、差圧制御弁9を小型化できるとともにコストをより安価にできる。
 サスペンション装置S,S1,S2では、差圧制御弁9は、筒状であって、内周に軸方向に並べて配置される三つの環状溝で形成されるリセス60,61,62を有するハウジングHと、外周に軸方向に並べて配置されて各リセス60,61,62のそれぞれに対向する三つのランド40,41,42を有し、ハウジングH内に摺動自在に挿入されるスプールSPと、スプールSPを両側から附勢する一対のばねCs1,Cs2と、スプールSPに連結されスプールSPに軸方向へ推す推力を発揮可能なソレノイドSolと、を有し、中央のリセス61が供給路5に接続され、中央のリセス61の両側のリセス60,62が排出路6に接続され、伸側通路7がハウジングHの内周であって中央のリセス61と隣の一方のリセス60との間に連通し、圧側通路8がハウジングHの内周であって中央のリセス61と隣の他方のリセス62との間に連通する。
 この構成によれば、少ないストロークで伸側通路7と圧側通路8の差圧を制御でき、ハウジングHとスプールSPの加工が容易になるとともに、ソレノイドSolのストローク長も短くて済むという利点がある。
 本願は、2015年9月30日に日本国特許庁に出願された特願2015-193146号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (5)

  1.  サスペンション装置であって、
     シリンダと、前記シリンダ内に移動自在に挿入されて前記シリンダ内を伸側室と圧側室とに区画するピストンと、を備えたダンパと、
     ポンプと、
     前記ポンプの吸込側に接続されるリザーバと、
     前記ダンパと前記ポンプと前記リザーバとの間に設けられる流体圧回路と、を備え、
     前記流体圧回路は、
     前記ポンプの吐出側に接続される供給路と、
     前記リザーバに接続される排出路と、
     前記伸側室に接続される伸側通路と、
     前記圧側室に接続される圧側通路と、
     前記伸側通路に設けた伸側減衰弁と、
     前記圧側通路に設けた圧側減衰弁と、
     前記供給路、前記排出路、前記伸側通路および前記圧側通路の間に設けられて、前記伸側通路と前記圧側通路の差圧を制御する差圧制御弁と、
     前記供給路における前記差圧制御弁と前記ポンプとの間に設けられて前記ポンプ側から前記差圧制御弁側へ向かう流れのみを許容する供給側チェック弁と、
     前記供給路における前記差圧制御弁と前記供給側チェック弁の間と前記排出路とを接続する吸込通路と、
     前記吸込通路に設けられて前記排出路から前記供給路へ向かう流体の流れのみを許容する吸込チェック弁と、
     を備えたサスペンション装置。
  2.  請求項1に記載のサスペンション装置であって、
     複数の前記ダンパと、
     前記ダンパ毎に設けた複数の前記流体圧回路と、
     前記ポンプから吐出される流体を前記各流体圧回路へ分配する分流弁と、を備えたサスペンション装置。
  3.  請求項1に記載のサスペンション装置であって、
     前記差圧制御弁は、
     前記伸側通路を前記供給路に接続するとともに前記圧側通路を前記排出路に接続する伸側供給ポジションと、前記伸側通路、前記圧側通路、前記供給路および前記排出路を互いに連通するニュートラルポジションと、前記圧側通路を前記供給路に接続するとともに前記伸側通路を前記排出路に接続する圧側供給ポジションと、の3位置に切り換えられるスプールと、
     前記スプールを駆動するプッシュプル型のソレノイドと、
     前記スプールを附勢してニュートラルポジションに位置決める一対のばねと、を有するサスペンション装置。
  4.  請求項1に記載のサスペンション装置であって、
     前記伸側通路に前記伸側減衰弁に並列に設けられて、前記差圧制御弁から前記伸側室に向かう流れのみを許容する伸側チェック弁と、
     前記圧側通路に前記圧側減衰弁に並列に設けられて、前記差圧制御弁から前記圧側室に向かう流れのみを許容する圧側チェック弁と、を備えたサスペンション装置。
  5.  請求項3に記載のサスペンション装置であって、
     前記差圧制御弁は、
     筒状であって、内周に軸方向に並べて配置される三つの環状溝で形成されるリセスを有するハウジングと、
     外周に軸方向に並べて配置されて前記各リセスのそれぞれに対向する三つのランドを有し、前記ハウジング内に摺動自在に挿入される前記スプールと、
     前記スプールを両側から附勢する一対の前記ばねと、
     前記スプールに連結され前記スプールに軸方向へ推す推力を発揮可能な前記ソレノイドと、を有し、
     中央の前記リセスが前記供給路に接続され、
     中央の前記リセスの両側の前記リセスが前記排出路に接続され、
     前記伸側通路が前記ハウジングの内周であって中央の前記リセスと隣の一方の前記リセスとの間に連通し、
     前記圧側通路が前記ハウジングの内周であって中央の前記リセスと隣の他方の前記リセスとの間に連通するサスペンション装置。
PCT/JP2016/077706 2015-09-30 2016-09-20 サスペンション装置 WO2017057099A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680056717.5A CN108136869A (zh) 2015-09-30 2016-09-20 悬架装置
KR1020187008980A KR20180048881A (ko) 2015-09-30 2016-09-20 서스펜션 장치
US15/764,611 US20180281550A1 (en) 2015-09-30 2016-09-20 Suspension device
EP16851273.9A EP3357722A1 (en) 2015-09-30 2016-09-20 Suspension device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015193146A JP6663197B2 (ja) 2015-09-30 2015-09-30 サスペンション装置
JP2015-193146 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057099A1 true WO2017057099A1 (ja) 2017-04-06

Family

ID=58427558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077706 WO2017057099A1 (ja) 2015-09-30 2016-09-20 サスペンション装置

Country Status (6)

Country Link
US (1) US20180281550A1 (ja)
EP (1) EP3357722A1 (ja)
JP (1) JP6663197B2 (ja)
KR (1) KR20180048881A (ja)
CN (1) CN108136869A (ja)
WO (1) WO2017057099A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016002019B4 (de) * 2015-05-29 2021-07-29 Hitachi Astemo, Ltd. Schwingungsdämpferanordnung
DE102018118911A1 (de) * 2018-08-03 2020-02-06 Thyssenkrupp Ag Schwingungsdämpfer, Fahrzeug, Verwendung eines Absperrventils und Verfahren zum Befüllen
CN110039994B (zh) * 2019-03-27 2020-11-20 江苏大学 一种充气式液电馈能悬架
CN110360260B (zh) 2019-06-20 2021-08-31 中车青岛四方机车车辆股份有限公司 一种主动控制抗蛇形减振器及减振系统、车辆
CN115871405B (zh) * 2021-09-29 2024-09-10 比亚迪股份有限公司 一种液压式主动悬架及具有其的车辆
CN114274722B (zh) * 2021-11-12 2023-09-26 盐城工学院 一种矿车悬架平衡结构
DE102021213085B4 (de) * 2021-11-22 2023-08-31 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Dämpfen eines beweglich gelagerten Anbauteils einer Maschine und Maschine
DE102023107020B3 (de) 2023-03-21 2023-12-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Dämpfungssystem und Kraftfahrzeug

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565012A (ja) * 1991-09-06 1993-03-19 Kayaba Ind Co Ltd アクテイブサスペンシヨンの油圧回路
JP2011530451A (ja) * 2008-08-12 2011-12-22 ネーデルランツ オルガニサティー フォール トゥーゲパストナトゥールヴェテンシャッペリーク オンデルズーク テーエンオー 陸上車用多点油圧懸架システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233746A (ja) * 1998-12-16 2000-08-29 Nippon Sharyo Seizo Kaisha Ltd 鉄道車両の振動抑制装置
US6405750B1 (en) * 2000-12-07 2002-06-18 Husco International, Inc. Disk pack valve assembly for a hydraulic circuit
JP4898326B2 (ja) * 2006-07-07 2012-03-14 カヤバ工業株式会社 ロール制御装置
JP5402731B2 (ja) * 2010-03-08 2014-01-29 トヨタ自動車株式会社 アクチュエータの作動制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565012A (ja) * 1991-09-06 1993-03-19 Kayaba Ind Co Ltd アクテイブサスペンシヨンの油圧回路
JP2011530451A (ja) * 2008-08-12 2011-12-22 ネーデルランツ オルガニサティー フォール トゥーゲパストナトゥールヴェテンシャッペリーク オンデルズーク テーエンオー 陸上車用多点油圧懸架システム

Also Published As

Publication number Publication date
JP6663197B2 (ja) 2020-03-11
EP3357722A1 (en) 2018-08-08
KR20180048881A (ko) 2018-05-10
JP2017065470A (ja) 2017-04-06
CN108136869A (zh) 2018-06-08
US20180281550A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2017057099A1 (ja) サスペンション装置
JP6663196B2 (ja) サスペンション装置
JP6463948B2 (ja) サスペンション装置
US8678033B2 (en) Proportional valve employing simultaneous and hybrid actuation
JP6714336B2 (ja) サスペンション装置
WO2016072512A1 (ja) サスペンション装置およびサスペンション制御装置
WO2017086014A1 (ja) サスペンション装置
JP2014037850A (ja) アクチュエータ
JP6243205B2 (ja) サスペンション装置
JP6484152B2 (ja) サスペンション装置
JP6700736B2 (ja) サスペンション装置
JP2018501450A (ja) 弁装置
JP2017196919A (ja) サスペンション装置
WO2019102941A1 (ja) サスペンション装置
US7121187B2 (en) Fluid powered control system with a load pressure feedback
JP2019124312A (ja) 液圧緩衝器
JP6916591B2 (ja) サスペンション装置
JPH0719853Y2 (ja) 能動型サスペンション
JP2019183978A (ja) 鉄道車両用ダンパ
JP2017196920A (ja) サスペンション装置
JP2017196921A (ja) サスペンション装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187008980

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15764611

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016851273

Country of ref document: EP