WO2017056977A1 - Touch panel sensor manufacturing method and touch panel sensor - Google Patents
Touch panel sensor manufacturing method and touch panel sensor Download PDFInfo
- Publication number
- WO2017056977A1 WO2017056977A1 PCT/JP2016/077023 JP2016077023W WO2017056977A1 WO 2017056977 A1 WO2017056977 A1 WO 2017056977A1 JP 2016077023 W JP2016077023 W JP 2016077023W WO 2017056977 A1 WO2017056977 A1 WO 2017056977A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive thin
- electrode
- touch panel
- panel sensor
- thin wire
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 36
- 239000007788 liquid Substances 0.000 claims abstract description 68
- 239000000758 substrate Substances 0.000 claims abstract description 65
- 238000000034 method Methods 0.000 claims abstract description 29
- 239000004020 conductor Substances 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims description 38
- 238000007747 plating Methods 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002356 single layer Substances 0.000 claims description 8
- 238000000151 deposition Methods 0.000 abstract description 5
- 210000000988 bone and bone Anatomy 0.000 description 26
- 230000002265 prevention Effects 0.000 description 24
- 239000010408 film Substances 0.000 description 21
- 230000000694 effects Effects 0.000 description 18
- 238000011156 evaluation Methods 0.000 description 12
- 229920001940 conductive polymer Polymers 0.000 description 11
- 239000010419 fine particle Substances 0.000 description 9
- -1 polyindoles Polymers 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 239000004033 plastic Substances 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000001788 irregular Effects 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229920000767 polyaniline Polymers 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000002313 adhesive film Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920000447 polyanionic polymer Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229940015975 1,2-hexanediol Drugs 0.000 description 1
- QWOZZTWBWQMEPD-UHFFFAOYSA-N 1-(2-ethoxypropoxy)propan-2-ol Chemical compound CCOC(C)COCC(C)O QWOZZTWBWQMEPD-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920002377 Polythiazyl Polymers 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- FHKSXSQHXQEMOK-UHFFFAOYSA-N hexane-1,2-diol Chemical compound CCCCC(O)CO FHKSXSQHXQEMOK-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000323 polyazulene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920001088 polycarbazole Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000414 polyfuran Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/26—Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/12—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
Definitions
- the present invention relates to a method for manufacturing a touch panel sensor and a touch panel sensor, and more particularly to a method for manufacturing a touch panel sensor and a touch panel sensor capable of both preventing bone appearance and preventing moire.
- Display devices equipped with a touch panel that inputs information by bringing a user's finger or pen into contact with the display screen are used in mobile electronic devices such as portable terminals, various home appliances, automatic teller machines, etc. Yes.
- a resistance film method for detecting a change in resistance value of a touched part As such a touch panel, a capacitance method for detecting a change in capacitance, a photosensor method for detecting a change in light amount, or the like is known.
- the capacitance method is rapidly spreading in mobile electronic devices and the like because multi-input is relatively easy.
- a capacitive touch panel includes a plurality of X electrodes arranged in parallel on one surface of a transparent substrate and a plurality of Y electrodes arranged in parallel on the other surface of the transparent substrate.
- the position coordinates on the touch panel can be detected by using the induced current generated in accordance with the change in capacitance based on electrostatic coupling between the X electrode and the Y electrode and the human finger.
- Patent Document 1 uses a straight conductive thin wire as the conductive thin wire constituting the transparent conductive film. Since the electrical resistance of the conductive thin wire is proportional to the length, considering the conductivity of the transparent conductive film, it is not possible to use a straight line connecting the one end to the other end of the conductive thin wire, that is, a straight conductive thin wire. It is advantageous.
- Bone appearance means that streaks derived from the conductive thin wires constituting the X electrode and the Y electrode are visually recognized. Bone appearance may occur due to optical interference between the conductive thin wires constituting the X electrode and the Y electrode, even when the conductive thin wires themselves have a thinness that is difficult to visually recognize.
- Moire is a streak resulting from the combination of conductive thin wires constituting the X and Y electrodes and other elements in the device when a transparent substrate provided with X and Y electrodes is incorporated into the device. Is to be visually recognized. Moire can be caused by, for example, optical interference between the conductive thin wires forming the X electrode and the Y electrode and the pixel array included in the image display element in the device.
- Preventing bone appearance and moire brings about an effect such that, for example, when an image display element is disposed on the back surface of the touch panel sensor, the image on the back surface can be recognized more clearly.
- an object of the present invention is to provide a method for manufacturing a touch panel sensor and a touch panel sensor that can achieve both bone-blocking prevention and moire prevention.
- the touch panel sensor manufacturing method 2, wherein the zigzag element is formed such that a zigzag meandering width is smaller than a half cycle length of the zigzag. 4).
- the conductive thin wire is formed of a thin wire made of a wavy element. 5).
- the wavy element is formed such that a wavy line meandering width is smaller than a half cycle length of the wavy line. 6). 6.
- the X electrode composed of the conductive thin wire is formed on one surface of the transparent substrate having a single layer structure, and the Y electrode composed of the conductive thin wire is formed on the other surface of the transparent substrate.
- the X electrode constituted by the conductive thin wires is formed on the surface of the transparent base material arranged on the surface side, and among the transparent base materials of the laminated structure, On the back surface of the transparent substrate disposed on the back surface side, the Y electrode composed of the conductive thin wires is formed, and the transparent substrate on which the X electrode is formed and the transparent on which the Y electrode is formed 8.
- the conductive thin wire is a touch panel sensor that is a non-linear conductive thin wire. 12 12.
- the touch panel sensor according to 11, wherein the non-linear conductive thin wire is a thin wire made of a zigzag element. 13.
- the touch panel sensor according to 12, wherein the zigzag element has a zigzag meandering width smaller than a 1/2 cycle length of the zigzag. 14 12.
- the touch panel sensor according to 11, wherein the non-linear conductive thin wire is a thin wire made of a wavy element. 15.
- the transparent base material has a single-layer structure, and includes the X electrode constituted by the conductive thin wire on one surface of the transparent base material, and the previous period Y constituted by the conductive thin wire on the other surface of the transparent base material. 18.
- the transparent base material has a laminated structure, and the surface of the transparent base material located on the surface side of the transparent base material is provided with the X electrode constituted by the conductive thin wires, and on the back side of the transparent base material. On the back surface of the transparent base material positioned, the transparent electrode provided with the X electrode and the transparent base material provided with the X electrode is adhered to the back surface of the transparent base material. 18.
- the figure explaining the non-linear conductive thin wire which consists of a zigzag-like element The figure explaining an example of the touch panel sensor obtained by the manufacturing method of the touch panel sensor which concerns on a 2nd aspect.
- the figure explaining the non-linear conductive thin wire which consists of wavy elements
- the figure explaining the regularity and irregularity of the shape of a non-linear conductive thin wire The figure explaining a conductive bridge line
- the perspective view which shows an example of the pair of electroconductive fine wire formed from one line-shaped liquid
- the figure explaining the layer composition of a transparent substrate The figure explaining the pattern of an Example (sample 1)
- the figure explaining the pattern of a comparative example (sample 2)
- an X electrode composed of conductive thin wires is formed on one surface of a transparent substrate, and a Y electrode composed of conductive thin wires is formed on the other surface of the transparent substrate.
- a conductive thin wire a line-shaped liquid is applied to the transparent base material by an ink jet method using an ink containing a conductive material, and as the line-shaped liquid is dried, the conductive material in the ink is removed.
- the non-linear conductive thin wire is formed by selectively depositing on both edges of the line liquid.
- the non-linear conductive thin wire includes an inclined line element that is inclined with respect to the direction connecting the one end to the other end of the non-linear conductive thin wire in the shortest distance.
- the inclined line element can be constituted by a straight line or a curved line. Further, by combining a plurality of inclined line elements, for example, an element such as a zigzag element or a wavy line element that repeatedly meanders to the left and right with respect to the longitudinal direction of the conductive thin line can be configured.
- the non-linear conductive thin wire is formed of a zigzag-like element in the first embodiment and a case where the non-linear conductive thin wire is formed of a wavy-line element will be described in the second embodiment.
- the touch panel sensor has a plurality of strip-shaped X electrodes 2 arranged in parallel in the X-axis direction at a predetermined interval on one surface of a sheet-like transparent substrate 1, and a strip-shaped Y electrode 3 on the other surface at a predetermined interval in the Y-axis. A plurality are arranged in parallel in the direction.
- the X-axis direction and the Y-axis direction are in a crossing relationship with each other.
- the X electrode 2 and the Y electrode 3 intersect each other with an interval corresponding to the thickness of the transparent substrate 1.
- the X electrode 2 and the Y electrode 3 are insulated from each other by the transparent substrate 1.
- X electrode 2 and Y electrode 3 can be connected to a control circuit, respectively, and can be suitably used as, for example, a capacitive touch panel sensor.
- a capacitive touch panel during operation, an induced current based on a change in capacitance that occurs when a user's finger or conductor approaches or comes into contact with the X electrode 2 and the Y electrode 3 is used. The position coordinates of a finger or a conductor can be detected.
- One X electrode 2 is composed of an assembly of conductive thin wires 21.
- a plurality of conductive thin wires 21 constituting one X electrode 2 are connected to a control circuit (not shown) via a collecting wire 22.
- One Y electrode 3 is also constituted by an assembly of conductive thin wires 31.
- a plurality of conductive thin wires 31 constituting one Y electrode 3 are connected to a control circuit (not shown) via a collector line 32.
- the conductive thin wires 21 and 31 included in the X electrode 2 and the Y electrode 3 are respectively formed into the line shape as the line liquid containing the conductive material applied to the transparent substrate 1 is dried. It is composed of non-linear conductive thin wires formed by selectively depositing on both edges of the liquid. In this embodiment, the non-linear conductive thin wire is composed of a zigzag element.
- the non-linear conductive thin wire 21 constituting the X electrode 2 is formed in the forming direction of the non-linear conductive thin wire 21 as a whole (or the direction connecting the one end to the other end of the non-linear conductive thin wire 21 in the shortest direction. ) Are formed along the longitudinal direction of the X electrode 2.
- the non-linear conductive thin wire 31 constituting the Y electrode 3 is formed in the shortest direction from one end to the other end of the non-linear conductive thin wire 31 as a whole (or from one end to the other end of the non-linear conductive thin wire 31). Is formed along the longitudinal direction of the Y electrode 3.
- the manufacturing method of the touch panel sensor will be described in detail with reference to FIG.
- the electroconductive fine wire 21 which mainly comprises the X electrode 2
- the electroconductive fine wire 31 which comprises a Y electrode can also be used.
- a plurality of line-like liquids 4 containing a conductive material are applied on the transparent substrate 1.
- the line-like liquid 4 is applied in a zigzag shape.
- a thin wire pair 23 composed of a pair of conductive thin wires 21 and 21 as shown in FIG.
- the edge of the liquid can be fixed at an early stage, and the difference in evaporation amount between the liquid central portion and the edge can be increased. This can facilitate the formation of a flow that carries the conductive material to the edge.
- the application of the line-like liquid 4 on the transparent substrate 1 can be performed by an ink jet method. Specifically, while moving an inkjet head provided in a droplet ejection device (not shown) relative to the substrate, ink containing a conductive material is ejected from the nozzle of the inkjet head, and the ejected ink droplet is placed on the substrate. , The line-shaped liquid 4 having a desired shape can be applied.
- the droplet discharge method of the inkjet head is not particularly limited, and for example, a piezo method or a thermal method can be used.
- the plurality of conductive thin wires 21 constituting the X electrode 2 are arranged side by side without crossing each other, and the plurality of conductive thin wires 31 constituting the Y electrode 3 are also spaced without crossing each other. Are placed side by side.
- the aperture ratio (the ratio of the region where the conductive fine lines are not formed) can be increased as compared with the electrode formed by intersecting the conductive thin lines in a lattice shape. Since it is excellent in performance, it has the effect of preventing the appearance of bones. Further, from the viewpoint of the resistance value, the conductive thin wire formed by using the coffee stain phenomenon is less likely to cause disconnection, so that variation in resistance between terminals can be reduced.
- the zigzag element preferably has a zigzag meandering width smaller than a 1/2 cycle length of the zigzag.
- ⁇ is a half cycle length of the zigzag, and is half the length of one cycle connecting the peaks and peaks or the valleys and valleys of the zigzag along the entire zigzag formation direction.
- ⁇ is the zigzag meandering width, and is the zigzag meandering width in a direction perpendicular to the forming direction of the zigzag as a whole.
- the zigzag 1 ⁇ 2 period length ⁇ is preferably in the range of 100 ⁇ m to 2 mm, and more preferably in the range of 100 to 500 ⁇ m.
- the meandering width ⁇ of the zigzag is preferably in the range of 100 ⁇ m to 1 mm, and more preferably in the range of 100 to 500 ⁇ m.
- the fine wire interval ⁇ when a plurality of conductive thin wires 21 made of zigzag elements are arranged side by side is not particularly limited, but ⁇ / ⁇ is preferably 3 or more in relation to the zigzag 1 ⁇ 2 period length ⁇ . Thereby, the effect of the present invention is more remarkably exhibited.
- ⁇ / ⁇ is particularly preferably 3 or more and less than 20.
- the thin wire interval ⁇ is a space between the conductive thin wires 21 in a direction orthogonal to the forming direction of the entire zigzag.
- a touch panel sensor is manufactured in which the conductive thin wires 21 and 31 included in the X electrode 2 and the Y electrode 3 are composed of non-linear conductive thin wires made of wavy elements.
- the non-linear conductive thin wires 21 and 31 made of a wavy element can be formed by applying the line-like liquid described in the first embodiment in a wavy line.
- the conductive thin wires 21 and 31 having the wavy element are rounded and meandering.
- a curved line like a sine wave or a combination of a straight line and a curved line like a wavy line with rounded corners of a zigzag can be preferably used.
- the wavy element has a wavy line meandering width smaller than a half cycle length of the wavy line.
- ⁇ ′ is a half cycle length of the wavy line, and is half the length of one cycle connecting the peaks and peaks of the wavy lines or the valleys and valleys along the forming direction of the entire wavy line. is there.
- ⁇ ′ is the meandering width of the wavy line, and is the width of the meandering of the wavy line in the direction perpendicular to the forming direction of the entire wavy line.
- the meandering width ⁇ ′ of the wavy line is smaller than the half period length ⁇ ′ of the wavy line, the resistance of the obtained pattern can be reduced, and the effect of further preventing the appearance of bone can be obtained. This effect is more prominent when the ⁇ ′ / ⁇ ′ ratio is in the range of 1.1 to 4.
- the half cycle length ⁇ ′ of the wavy line is preferably in the range of 100 ⁇ m to 2 mm, and more preferably in the range of 100 to 500 ⁇ m.
- the meandering width ⁇ ′ of the wavy line is preferably in the range of 100 ⁇ m to 1 mm, and more preferably in the range of 100 to 500 ⁇ m.
- ⁇ ′ is 3 or more in relation to the half period length ⁇ ′ of the wavy wire. It is preferable. Thereby, the effect of the present invention is more remarkably exhibited.
- ⁇ ′ / ⁇ ′ is particularly preferably 3 or more and less than 20.
- the thin wire interval ⁇ ′ is a space between the conductive thin wires 21 in a direction orthogonal to the forming direction of the entire wavy line.
- the non-linear conductive thin wire As described above, as the non-linear conductive thin wire, the first embodiment is exemplified by the zigzag-like element, and the second embodiment is constituted by the wavy-line element.
- the non-linear conductive thin wire is constituted by the zig-zag-like element. Is particularly preferred.
- the non-linear conductive thin wire composed of zigzag-shaped elements formed from zigzag line-shaped liquid is compared with the non-linear conductive thin wire composed of wavy-line elements formed from wavy line-shaped liquid. And become more stable. Therefore, when the non-linear conductive thin wire is formed of zigzag-like elements, the effect of reducing the resistance of the pattern, preventing the appearance of bones, and preventing moire becomes remarkable.
- the shape of the non-linear conductive thin wire may or may not have regularity.
- regularity and irregularity of the shape of the non-linear conductive thin wire will be described with reference to FIGS. 6 (a) to (c).
- the zigzag elements in one conductive thin wire 21 have regularity, and the zigzag elements in the plurality of conductive thin wires 21 also have regularity. That is, in one conductive thin wire 21, the zigzag half cycle length ⁇ and the zigzag meandering width ⁇ are kept constant. This regularity is maintained in common between the adjacent conductive thin wires 21. That is, the adjacent conductive thin wires 21 have shapes that can be overlapped with each other by parallel movement. The interval between adjacent conductive thin wires 21 is constant.
- the zigzag element in one conductive thin wire 21 does not have regularity, but the zigzag element between the plurality of conductive thin wires 21 has regularity. That is, in one conductive thin wire 21, the zigzag meandering width is constant, but the zigzag 1 ⁇ 2 period length varies and is irregular. On the other hand, when viewed between adjacent conductive thin wires 21, this irregularity is maintained in common and has regularity. That is, the adjacent conductive thin wires 21 have shapes that can be overlapped with each other by parallel movement. The interval between adjacent conductive thin wires 21 is constant.
- the zigzag element in one conductive thin wire 21 does not have regularity, and the zigzag element in the plurality of conductive thin wires 21 does not have regularity. . That is, in one conductive thin wire 21, the zigzag meandering width is constant, but the zigzag 1 ⁇ 2 period length varies and is irregular. On the other hand, there is regularity between adjacent pairs of conductive thin wires 21 formed from one line-shaped liquid between adjacent conductive thin wires 21, but conductivity formed from other line-shaped liquids. There is no regularity with respect to the thin wire 21. That is, the adjacent conductive fine wires 21 and 21 have a shape that cannot be overlapped with each other by parallel movement.
- the spacing between adjacent conductive thin wires 21 is not uniform.
- interval between adjacent electroconductive thin wires 21 and 21 becomes non-uniform
- interval ⁇ is in the direction orthogonal to the formation direction as the whole zigzag line. A value at a portion where the interval between the conductive thin wires 21 is the smallest is taken.
- FIGS. 6A to 6C are all preferable, but from the viewpoint of further improving the moire prevention, the example of FIG. 6C is the best, and then FIG. 6B. This is the order of the example of FIG. 6A. In other words, the more the conductive thin wires are irregular, the easier it is to obtain moiré prevention.
- each conductive thin wire 21 it is preferable to have regularity between adjacent conductive thin wires 21. That is, having regularity between adjacent conductive thin wires 21 also means having regularity between adjacent line-like liquids provided on the transparent substrate 1 in order to form these.
- regularity has been described by giving an example of a zigzag element, but it can also be used in the case of a wavy element.
- the meandering width may be varied, but it is preferable that the meandering width is constant and the 1 ⁇ 2 period length is varied to impart irregularity. Furthermore, it is also preferable to provide irregularity within the range of preferable conditions described for ⁇ and ⁇ (or ⁇ ′ and ⁇ ′).
- the Y electrode 3 is arranged via the transparent base material 1 with respect to the X electrode 2 provided on the user side during use, the visibility of the X electrode 2 is caused by, for example, a difference in optical path length. Tends to be higher than the visibility of the Y electrode 3. Therefore, it is preferable to make the shapes of the conductive thin wires 21 and 31 different between the X electrode 2 and the Y electrode 3 so as to reduce the difference in visibility.
- the conductive fine wire 31 constituting the Y electrode 3 is formed so as to be longer than a half cycle length. Thereby, since the area occupied by the formation region of the conductive thin wire 21 constituting the X electrode 2 is smaller than that of the conductive thin wire 31 constituting the Y electrode 3, the visibility of the X electrode 2 is lowered and the Y electrode is reduced. 3 visibility can be approached. From the same point of view, it is preferable that the meandering width of the conductive fine wire 21 constituting the X electrode 2 is smaller than the meandering width of the conductive fine wire 31 constituting the Y electrode 3.
- the conductive thin wire 21 constituting the X electrode 2 is more easily recognized by the edge than the conductive thin wire 31 constituting the Y electrode 3, a wavy element is provided on the conductive thin wire 21 constituting the X electrode 2. It is also preferable to provide a zigzag element to the conductive thin wire 31 constituting the Y electrode 3 to reduce the difference in edge visibility.
- the conductive thin wire 21 is connected by a conductive bridge wire 24 in one X electrode 2.
- the conductive thin wire 21 constituting the X electrode 2 will be described, but this description can also be applied to the conductive thin wire 31 constituting the Y electrode 3.
- the conductivity of the X electrode 2 can be ensured more reliably, and the detection sensitivity of the touch panel sensor can be further improved.
- the method for forming the conductive cross-linking line 24 is not particularly limited, but after forming the conductive thin line 21, the ink containing the conductive material is formed in dots or lines by, for example, an inkjet method so as to straddle the plurality of conductive thin lines 21. It is preferable to form it by giving it to the shape and drying it. Furthermore, it is particularly preferable to form the conductive cross-linked line 24 formed by the coffee stain phenomenon from the viewpoint of preventing the conductive cross-linked line 24 from being visually recognized. In the illustrated example, a pair of conductive thin wires formed by the coffee stain phenomenon is used as the conductive bridging wires 24 and 24.
- one conductive bridge line 24 connects two adjacent conductive thin lines 21 and 21, but three or more conductive thin lines are connected by one conductive bridge line. You may connect between.
- a plurality of conductive thin wires constituting one X electrode 2 are electrically connected to each other at the other end opposite to one end of the conductive thin wires 21 connected to the collector line 22.
- a membrane 25 is provided. Thereby, the conductivity of the X electrode 2 can be ensured more reliably.
- the conductive film 25 is preferably disposed outside the image display frame when the touch panel sensor is incorporated into the device.
- the conductive thin wires 21 and 31 constituting one or both of the X electrode 2 and the Y electrode 3 include a metal film formed by plating.
- the plating method is not particularly limited, but electroless plating and electrolytic plating can be preferably exemplified, and electrolytic plating is particularly preferable. Suitable electroplating can be performed using the conductivity of the conductive thin wire.
- the plating metal is not particularly limited, for example, silver, copper, nickel and the like can be preferably exemplified. It is also preferable to apply a plurality of plating processes with different plating metals to the conductive thin wires. That is, it is preferable to laminate a plurality of metal layers on the conductive thin wire. For example, a conductive thin wire made of silver is first subjected to electrolytic copper plating to form a copper film, and then subjected to electrolytic nickel plating to form a nickel layer, so that the conductive thin wire has high conductivity and durability. Can be granted.
- the non-linear conductive thin wire is mainly composed of the zigzag element or the wavy line element
- the present invention is not limited to this, and the other end of the non-linear conductive thin wire is changed to the other.
- Any material can be preferably used as long as it is composed of inclined line elements that are inclined with respect to the direction connecting the ends to the shortest.
- the inclined line element can be constituted by a straight line or a curved line. Further, by combining a plurality of inclined line elements, for example, an element that repeatedly meanders to the left and right with respect to the longitudinal direction of the conductive thin line, such as a zigzag element or a wavy line element, can be configured.
- the ratio of the length of the inclined line element to the length of the line constituting one non-linear conductive thin wire is larger, preferably 50% or more, more preferably 80% or more. , Most preferably 100% is constituted by inclined line elements. As in the examples of zigzag elements and wavy line elements illustrated above, it is particularly preferable that the entire length of the non-linear conductive thin wire is constituted by the inclined line element.
- the non-linear conductive fine wire constituting the X electrode is formed in the formation direction of the non-linear conductive thin wire (or the non-linear conductive wire).
- the direction in which the other end of the thin thin wire is linearly connected to the other end is preferably formed along the longitudinal direction of the X electrode.
- the inclined line element included in the non-linear conductive thin wire is preferably inclined with respect to the longitudinal direction of the X electrode, and further inclined with respect to the longitudinal direction of the Y electrode. preferable. Thereby, the effect of preventing moire becomes remarkable.
- the non-linear conductive fine wire constituting the Y electrode is formed as the whole non-linear conductive thin wire (or the direction in which one end of the non-linear conductive thin wire is linearly connected). Is preferably formed along the longitudinal direction of the Y electrode.
- the inclined line element included in the non-linear conductive thin wire is preferably inclined with respect to the longitudinal direction of the Y electrode, and further inclined with respect to the longitudinal direction of the X electrode. preferable. Thereby, the effect of preventing moire becomes remarkable.
- non-linear conductive thin wire slant line element constituting the X electrode and the non-linear thin conductive wire slant line element constituting the Y electrode may be formed in a direction crossing each other. preferable. Thereby, the effect of preventing the appearance of bone becomes remarkable.
- the conductive thin wires constituting the X electrode and the Y electrode are non-linear conductive thin wires.
- the effect of the present invention is obtained when all the conductive thin wires are non-linear conductive thin wires. Becomes more prominent.
- Linear liquid containing conductive material Preferred examples of the conductive material contained in the line liquid include conductive fine particles and conductive polymers.
- the conductive fine particles are not particularly limited, but Au, Pt, Ag, Cu, Ni, Cr, Rh, Pd, Zn, Co, Mo, Ru, W, Os, Ir, Fe, Mn, Ge, Sn, Ga, Fine particles such as In can be preferably exemplified, and among them, it is preferable to use fine metal particles such as Au, Ag, and Cu because they can form thin wires having low electric resistance and strong against corrosion. From the viewpoint of cost and stability, metal fine particles containing Ag are most preferable.
- the average particle diameter of these metal fine particles is preferably in the range of 1 to 100 nm, more preferably in the range of 3 to 50 nm.
- carbon fine particles are used as the conductive fine particles.
- the carbon fine particles include graphite fine particles, carbon nanotubes, fullerenes and the like.
- the conductive polymer is not particularly limited, but a ⁇ -conjugated conductive polymer can be preferably exemplified.
- Examples of the ⁇ -conjugated conductive polymer include polythiophenes, polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans, polyparaphenylenes, polyparaphenylene vinylenes, polyparaphenylene sulfide.
- Chain conductive polymers such as polyazenes, polyazulenes, polyisothianaphthenes, and polythiazyl compounds can be used.
- polythiophenes and polyanilines are preferable in that high conductivity can be obtained. Most preferred is polyethylene dioxythiophene.
- the conductive polymer more preferably comprises the above-described ⁇ -conjugated conductive polymer and polyanion.
- a conductive polymer can be easily produced by chemical oxidative polymerization of a precursor monomer that forms a ⁇ -conjugated conductive polymer in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a polyanion.
- a commercially available material can be preferably used as the conductive polymer.
- a conductive polymer (abbreviated as PEDOT / PSS) made of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid is used in H.264. C. It is commercially available from Starck as the “CLEVIOS series”, from Aldrich as “PEDOT-PASS 483095, 560598” and from Nagase Chemtex as the “Dentron series”. Polyaniline is also commercially available from Nissan Chemical Company as “ORMECON series”.
- the content of the conductive material in the line liquid provided on the transparent substrate is preferably in the range of 0.01% by weight to 1% by weight with respect to the total amount of the line liquid.
- the content rate is a value before being dried immediately after the linear liquid is applied on the transparent substrate.
- the liquid (ink) containing the conductive material for example, one kind or a combination of two or more kinds such as water and an organic solvent can be used.
- the organic solvent is not particularly limited.
- alcohols such as 1,2-hexanediol, 2-methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol, propylene glycol
- ethers such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, and dipropylene glycol monoethyl ether.
- the liquid (ink) containing the conductive material may contain various additives such as a surfactant as long as the effects of the present invention are not impaired.
- a surfactant By using a surfactant, it is possible to stabilize the discharge by adjusting the surface tension etc. when forming a line liquid on a transparent substrate using a droplet discharge device. Become.
- the surfactant is not particularly limited, but a silicon surfactant or the like can be used.
- Silicon-based surfactants are those in which the side chain or terminal of dimethylpolysiloxane is polyether-modified, such as “KF-351A”, “KF-642” manufactured by Shin-Etsu Chemical Co., “BYK347” manufactured by Big Chemie, “BYK348” and the like are commercially available.
- the content of the surfactant is preferably 1% by weight or less with respect to the total amount of the liquid.
- FIG. 8 is a perspective view schematically showing a thin wire pair 23 composed of conductive thin wires 21 and 21 formed from one line-shaped liquid.
- the conductive thin wire 21 constituting the X electrode 2 will be mainly described, but this description can also be applied to the conductive thin wire 31 constituting the Y electrode 3.
- FIG. 8 shows a part of the thin wire pair 23 of the non-linear conductive thin wires 21 and 21 and is merely shown in a straight line for convenience.
- the range of the arrangement interval I of the conductive thin wires 21 and 21 is not particularly limited, and is preferably in the range of 10 ⁇ m to 1000 ⁇ m, more preferably in the range of 10 ⁇ m to 500 ⁇ m, and more preferably in the range of 10 ⁇ m to 300 ⁇ m. The following range is most preferable.
- interval I of the electroconductive fine wires 21 and 21 is a distance between each largest protrusion part of the electroconductive thin wires 21 and 21, and is decided corresponding to the line
- the arrangement interval I may be, for example, a large arrangement interval of 50 ⁇ m or more, 100 ⁇ m or more, 200 ⁇ m or more, 300 ⁇ m or more, 400 ⁇ m or more, 500 ⁇ m or more, or even 1 mm or more.
- interval I is not specifically limited, It is preferable that it is 5 mm or less, and it is preferable that it is 1 mm or less.
- the conductive thin wires 21 may be arranged in parallel at an interval larger than the arrangement interval I of the thin wire pairs 23 formed by the coffee stain phenomenon. This is preferable.
- the conductive fine wires 21 and 21 constituting the fine wire pair 23 do not necessarily have to be islands completely independent from each other. As shown in the drawing, the conductive thin wires 21 and 21 are connected by the thin film portion 20 formed between the conductive thin wires 21 and 21 at a height lower than the height of the conductive thin wires 21 and 21. It is also preferable that it is formed as a continuous body. From the viewpoint of further improving the thinning of the thin wire pair 23, the height Z of the thinnest portion where the thickness of the functional material is the thinnest between the conductive thin wires 21, 21, specifically, the thinnest portion of the thin film portion 20 The height Z is preferably in the range of 10 nm or less. Most preferably, in order to achieve a balance between transparency and stability, the thin film portion 20 is provided in the range of 0 ⁇ Z ⁇ 10 nm.
- the line widths W1 and W2 of the conductive thin wires 21 and 21 of the fine wire pair 23 are preferably 10 ⁇ m or less, respectively. If it is 10 micrometers or less, since it will be a level which cannot be visually recognized normally, it is more preferable from a viewpoint of improving transparency. Considering the stability of each conductive thin wire 21, 21, 21, the width W1, W2 of each conductive thin wire 21, 21 is preferably in the range of 2 ⁇ m or more and 10 ⁇ m or less.
- the widths W1 and W2 of the thin conductive wires 21 and 21 are defined as Z, which is the height of the thinnest portion where the thickness of the functional material is the thinnest between the thin conductive wires 21 and 21.
- the width of the conductive thin wires 21 and 21 at half the height of Y1 and Y2 is set.
- the height of the thinnest portion in the thin film portion 20 can be set to Z.
- the line widths W1 and W2 of the conductive thin wires 21 and 21 are conductive from the surface of the transparent substrate 1. The widths of the conductive thin wires 21 and 21 at half the heights H1 and H2 of the thin conductive wires 21 and 21 are used.
- the line widths W1 and W2 of the conductive thin wires 21 and 21 constituting the thin wire pair 23 are extremely thin as described above, from the viewpoint of securing a cross-sectional area and reducing resistance, from the surface of the transparent substrate 1 It is desirable that the heights H1 and H2 of the conductive thin wires 21 and 21 be higher. Specifically, the heights H1 and H2 of the conductive thin wires 21 and 21 are preferably in the range of 50 nm to 5 ⁇ m. Furthermore, from the viewpoint of improving the stability of the thin wire pair 23, the H1 / W1 ratio and the H2 / W2 ratio are preferably in the range of 0.01 or more and 1 or less, respectively.
- the H1 / Z ratio and the H2 / Z ratio are each preferably 5 or more, more preferably 10 or more, and preferably 20 or more. Particularly preferred.
- the transparent substrate 1 is not particularly limited, and examples thereof include glass and plastic. Among these, plastic is preferable. As the plastic, polyethylene terephthalate (abbreviated as PET), polybutylene terephthalate, polyethylene, polypropylene, acrylic, polyester, polyamide, polycarbonate, and the like are preferable.
- PET polyethylene terephthalate
- PET polybutylene terephthalate
- polyethylene polyethylene
- polypropylene polyethylene
- acrylic acrylic
- polyester polyamide
- polycarbonate polycarbonate
- the present invention has high versatility of the base material, and can form a transparent conductive film suitably for a base material made of plastic. Therefore, the touch panel sensor which has flexibility can be manufactured suitably using the flexibility of plastic.
- the touch panel sensor having flexibility can be used by being curved in accordance with a three-dimensional shape such as a three-dimensional structure, a human body, or an animal body. Moreover, since it can be rounded and made compact, it is advantageous for storage. Therefore, for example, it can be suitably used as a touch panel sensor mounted on a portable terminal, particularly a wearable terminal.
- the transparent substrate 1 may have a single layer structure or a laminated structure.
- the layer structure of the transparent substrate 1 will be described with reference to FIG.
- FIG. 9A shows an example in which the transparent substrate 1 has a single layer structure.
- the X electrode 2 is formed on one surface of the transparent substrate 1 and then the Y electrode 3 is formed on the other surface, or the Y electrode 3 is formed on one surface of the transparent substrate 1 and then the other surface.
- a touch panel sensor is obtained. That is, a touch panel sensor in which the X electrode 2 and the Y electrode 3 are formed on both surfaces of a single transparent substrate is obtained.
- FIG. 9B shows an example when the transparent substrate 2 has a laminated structure.
- a laminated structure is composed of two transparent substrates 11 and 11 and an adhesive film 12 disposed between the transparent substrates 11 and 11.
- the X electrode 2 is formed on the first transparent base material 11 and the Y electrode 3 is formed on the second transparent base material 11.
- a touch panel sensor is obtained by bonding the transparent base material 11 together. At the time of bonding, as shown in the drawing, it is preferable to bond them by interposing a transparent adhesive film 12 or the like.
- Example 1 Production of touch panel sensor (1) Production of sample 1 Using an inkjet head (Konica Minolta, piezo head (standard droplet volume 42 pl)), silver nanoparticle-containing ink is ejected onto a PET film (thickness 50 ⁇ m). A plurality of zigzag line-shaped liquids were formed on the film. The line-shaped liquid is dried, silver nanoparticles are selectively deposited on both edges of the line-shaped liquid, and a non-linear conductive thin line consisting of zigzag-like elements with a line width of 5 ⁇ m and a fine line interval ( ⁇ ) of 200 ⁇ m. A plurality of was formed. The pattern of the formed conductive fine wire is shown in FIG.
- Sample 1 was obtained by stacking and bonding the two films so that the conductive fine wire forming surface was arranged on the front side so that the formation direction of the conductive fine wires intersected at 90 °.
- the conductive pattern after bonding is shown in FIG.
- Bone visibility prevention 10 samples were prepared for each of samples 1 to 3, and the bone visibility prevention was evaluated according to the following evaluation criteria, and an average of 10 samples was obtained.
- the conductive thin wire constituting the conductive pattern dries the line-shaped liquid containing the conductive material applied to the transparent substrate, and the conductive material is placed on both edges of the line-shaped liquid. It can be seen that by comprising non-linear conductive fine wires formed by selective deposition, it is possible to suitably achieve both bone-viewing prevention and moire prevention.
- Example 2 Fabrication of Touch Panel Sensor
- the zigzag half cycle length ⁇ and the zigzag meandering width ⁇ are as shown in Table 2. Samples 4 to 7 which were changed to were prepared.
- ⁇ is the zigzag 1 ⁇ 2 period length
- ⁇ is the zigzag meandering width
- ⁇ is the fine line interval
- Evaluation Table 2 shows that the zigzag meandering width ⁇ is smaller than the zigzag 1 ⁇ 2 period length ⁇ , so that the resistance between terminals can be reduced and the effect of preventing the appearance of bones is also increased.
- Example 3 In the preparation of Sample 1 of Example 1, the regularity of the conductive thin wires was varied to obtain Samples 8 to 10 corresponding to FIGS. 6 (a) to 6 (c).
- Sample 8 corresponds to FIG. 6 (a), has regularity in the zigzag-like element in one non-linear conductive thin wire, and between a plurality of non-linear conductive thin wires. Zigzag elements also have regularity.
- the sample 9 corresponds to FIG. 6B, and the zigzag element in one non-linear conductive thin wire does not have regularity, but between a plurality of non-linear conductive thin wires. There is regularity in the zigzag-like element in.
- the sample 10 corresponds to FIG. 6C, and the zigzag in one non-linear conductive thin wire does not have regularity, and the zigzag between a plurality of non-linear conductive thin wires. Has no regularity.
- Sample 8 to 10 were evaluated for moiré prevention in the same manner as in Example 1. Sample 10 was the best, followed by Sample 9 and Sample 8. From this result, it can be seen that the more the non-linear conductive fine wires are irregular, the easier it is to obtain moiré prevention.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Position Input By Displaying (AREA)
Abstract
The present invention addresses the problem of providing a manufacturing method of a touch panel sensor that can prevent both pattern visibility and moiré patterns and providing the touch panel sensor. The problem is solved, when X electrodes 2 comprising conductive wires 21 are formed on one surface of a transparent substrate 1 and Y electrodes 3 comprising conductive wires 31 are formed on the other surface of the transparent substrate 1, by applying a line-shaped liquid on the transparent substrate 1 by using an ink containing a conductive material with an ink jet method, and selectively depositing the conductive material in the ink at both edges of the line-shaped liquid while the line-shaped liquid is being dried, thereby forming the non-linear conductive wires 21, 31.
Description
本発明は、タッチパネルセンサーの製造方法及びタッチパネルセンサーに関し、より詳しくは、骨見え防止性とモアレ防止性を両立できるタッチパネルセンサーの製造方法及びタッチパネルセンサーに関する。
The present invention relates to a method for manufacturing a touch panel sensor and a touch panel sensor, and more particularly to a method for manufacturing a touch panel sensor and a touch panel sensor capable of both preventing bone appearance and preventing moire.
表示画面に使用者の指又はペン等を接触させて情報を入力するタッチパネルを備えた表示装置は、携帯端末などのモバイル用電子機器、各種の家電製品、現金自動預け払い機等に用いられている。
Display devices equipped with a touch panel that inputs information by bringing a user's finger or pen into contact with the display screen are used in mobile electronic devices such as portable terminals, various home appliances, automatic teller machines, etc. Yes.
このようなタッチパネルとして、タッチされた部分の抵抗値変化を検出する抵抗膜方式、あるいは静電容量変化を検出する静電容量方式、または光量変化を検出する光センサー方式等が知られている。特に静電容量方式は、マルチ入力が比較的容易であることから、モバイル用電子機器等において急速に普及している。
As such a touch panel, a resistance film method for detecting a change in resistance value of a touched part, a capacitance method for detecting a change in capacitance, a photosensor method for detecting a change in light amount, or the like is known. In particular, the capacitance method is rapidly spreading in mobile electronic devices and the like because multi-input is relatively easy.
例えば、静電容量方式のタッチパネルは、透明基材の一面に複数並列されたX電極を備え、透明基材の他面に複数並列されたY電極を備える。これらX電極及びY電極と人間の指との間での静電気結合に基づく静電容量の変化に伴って発生する誘導電流を利用して、タッチパネル上の位置座標を検知できる。
For example, a capacitive touch panel includes a plurality of X electrodes arranged in parallel on one surface of a transparent substrate and a plurality of Y electrodes arranged in parallel on the other surface of the transparent substrate. The position coordinates on the touch panel can be detected by using the induced current generated in accordance with the change in capacitance based on electrostatic coupling between the X electrode and the Y electrode and the human finger.
特許文献1は、透明導電膜を構成する導電性細線として、一直線状の導電性細線を用いている。導電性細線の電気抵抗は長さに比例するため、透明導電膜の導電性を考慮すると、導電性細線の一端から他端までを最短で結ぶ直線、即ち一直線状の導電性細線を用いることは有利である。
Patent Document 1 uses a straight conductive thin wire as the conductive thin wire constituting the transparent conductive film. Since the electrical resistance of the conductive thin wire is proportional to the length, considering the conductivity of the transparent conductive film, it is not possible to use a straight line connecting the one end to the other end of the conductive thin wire, that is, a straight conductive thin wire. It is advantageous.
しかし、本発明者がタッチパネルセンサーのX電極及びY電極とする透明導電膜を構成する導電性細線として、一直線状の導電性細線を用いることについて研究したところ、骨見えやモアレを防止する観点で更なる改善の余地が見出された。
However, when the present inventor researched the use of a straight conductive thin wire as the conductive thin wire constituting the transparent conductive film as the X electrode and the Y electrode of the touch panel sensor, from the viewpoint of preventing bone appearance and moire. There is room for further improvement.
骨見えというのは、X電極及びY電極を構成する導電性細線に由来するスジが視認されてしまうことである。骨見えは、例えば、導電性細線自体が視認困難な細さを有している場合においても、X電極及びY電極を構成する導電性細線同士が光学干渉すること等により生じ得る。
Bone appearance means that streaks derived from the conductive thin wires constituting the X electrode and the Y electrode are visually recognized. Bone appearance may occur due to optical interference between the conductive thin wires constituting the X electrode and the Y electrode, even when the conductive thin wires themselves have a thinness that is difficult to visually recognize.
モアレというのは、X電極及びY電極が設けられた透明基材をデバイスに組み込んだ際に、X電極及びY電極を構成する導電性細線とデバイス中の他の要素との組み合わせに由来するスジが視認されてしまうことである。モアレは、例えば、X電極及びY電極を構成する導電性細線と、デバイス中の画像表示素子が備える画素アレイとが光学干渉すること等により生じ得る。
Moire is a streak resulting from the combination of conductive thin wires constituting the X and Y electrodes and other elements in the device when a transparent substrate provided with X and Y electrodes is incorporated into the device. Is to be visually recognized. Moire can be caused by, for example, optical interference between the conductive thin wires forming the X electrode and the Y electrode and the pixel array included in the image display element in the device.
骨見えやモアレを防止することは、例えばタッチパネルセンサーの背面に画像表示素子を配置して用いる場合などにおいて、背面の画像をより鮮明に認識可能とする等の効果をもたらす。
Preventing bone appearance and moire brings about an effect such that, for example, when an image display element is disposed on the back surface of the touch panel sensor, the image on the back surface can be recognized more clearly.
そこで本発明の課題は、骨見え防止性とモアレ防止性を両立できるタッチパネルセンサーの製造方法及びタッチパネルセンサーを提供することにある。
Therefore, an object of the present invention is to provide a method for manufacturing a touch panel sensor and a touch panel sensor that can achieve both bone-blocking prevention and moire prevention.
また本発明の他の課題は、以下の記載によって明らかとなる。
Further, other problems of the present invention will become apparent from the following description.
上記課題は、以下の各発明によって解決される。
The above problems are solved by the following inventions.
1.
透明基材の一面に導電性細線により構成されるX電極を形成すると共に該透明基材の他面に導電性細線により構成されるY電極を形成する際に、
前記透明基材上に、導電性材料を含有するインクを用いてインクジェット法によりライン状液体を付与し、
前記ライン状液体の乾燥に伴い、該インク中の前記導電性材料を前記ライン状液体の両縁に選択的に堆積させ、非直線性の導電性細線を形成するタッチパネルセンサーの製造方法。
2.
前記非直線性の導電性細線を形成する際、ジグザグ状要素からなる細線で該導電性細線を形成する前記1記載のタッチパネルセンサーの製造方法。
3.
前記ジグザグ状要素は、ジグザグの蛇行幅が、ジグザグの1/2周期長よりも小さくなるように形成する前記2記載のタッチパネルセンサーの製造方法。
4.
前記非直線性の導電性細線を形成する際、波線状要素からなる細線で該導電性細線を形成する前記1記載のタッチパネルセンサーの製造方法。
5.
前記波線状要素は、波線の蛇行幅が、波線の1/2周期長よりも小さくなるように形成する前記4記載のタッチパネルセンサーの製造方法。
6.
前記X電極を構成する前記非直線性の導電性細線の形状と、前記Y電極を構成する前記非直線性の導電性細線の形状とを異ならせる前記1~5の何れかに記載のタッチパネルセンサーの製造方法。
7.
前記導電性細線間の少なくとも一部を、導電性架橋線で結線する前記1~6の何れかに記載のタッチパネルセンサーの製造方法。
8.
単層構造の前記透明基材の一面に、前記導電性細線により構成される前記X電極を形成し、該透明基材の他面に、前記導電性細線により構成される前記Y電極を形成する前記1~7の何れかに記載のタッチパネルセンサーの製造方法。
9.
積層構造の前記透明基材のうち、表面側に配置される該透明基材の表面に、前記導電性細線により構成される前記X電極を形成し、前記積層構造の前記透明基材のうち、裏面側に配置される該透明基材の裏面に、前記導電性細線により構成される前記Y電極を形成し、前記X電極が形成された前記透明基材と前記Y電極が形成された前記透明基材とを貼り合わせる前記1~7の何れかに記載のタッチパネルセンサーの製造方法。
10.
前記X電極及び前記Y電極の一方又は両方を構成する前記導電性細線に、メッキにより金属膜を形成する前記1~9の何れかに記載のタッチパネルセンサーの製造方法。
11.
透明基材の一面に導電性細線により構成されるX電極を備え、該透明基材の他面に導電性細線により構成されるY電極を備え、
前記導電性細線は、非直線性の導電性細線であるタッチパネルセンサー。
12.
前記非直線性の導電性細線は、ジグザグ状要素からなる細線である前記11記載のタッチパネルセンサー。
13.
前記ジグザグ状要素は、ジグザグの蛇行幅が、ジグザグの1/2周期長よりも小さい前記12記載のタッチパネルセンサー。
14.
前記非直線性の導電性細線は、波線状要素からなる細線である前記11記載のタッチパネルセンサー。
15.
前記波線状要素は、波線の蛇行幅が、波線の1/2周期長よりも小さい前記14記載のタッチパネルセンサー。
16.
前記X電極と前記Y電極は、形状が異なる前記非直線性の導電性細線により構成される前記11~15の何れかに記載のタッチパネルセンサー。
17.
前記導電性細線間の少なくとも一部が、導電性架橋線で結線されている前記11~16の何れかに記載のタッチパネルセンサー。
18.
前記透明基材は単層構造であり、該透明基材の一面に前記導電性細線により構成される前記X電極を備え、該透明基材の他面に前記導電性細線により構成される前期Y電極を備える前記11~17の何れかに記載のタッチパネルセンサー。
19.
前記透明基材は積層構造であり、該透明基材の表面側に位置する該透明基材の表面に、前記導電性細線により構成される前記X電極を備え、該透明基材の裏面側に位置する該透明基材の裏面に、前記導電性細線により構成される前期Y電極を備え、前記X電極を備えた前記透明電極と前記Y電極を備えた前記透明基材とが接着されている前記11~17の何れかに記載のタッチパネルセンサー。
20.
前記X電極及び前記Y電極の一方又は両方を構成する前記導電性細線は、メッキにより形成された金属膜を備える前記11~19の何れかに記載のタッチパネルセンサー。 1.
When forming the X electrode composed of conductive thin wires on one surface of the transparent substrate and forming the Y electrode composed of conductive thin wires on the other surface of the transparent substrate,
On the transparent substrate, a linear liquid is applied by an ink jet method using an ink containing a conductive material,
A method of manufacturing a touch panel sensor, wherein the conductive material in the ink is selectively deposited on both edges of the line-shaped liquid as the line-shaped liquid is dried to form a non-linear conductive thin line.
2.
2. The method of manufacturing a touch panel sensor according to 1 above, wherein when forming the non-linear conductive thin wire, the conductive thin wire is formed by a thin wire made of a zigzag element.
3.
3. The touch panel sensor manufacturing method according to 2, wherein the zigzag element is formed such that a zigzag meandering width is smaller than a half cycle length of the zigzag.
4).
2. The method of manufacturing a touch panel sensor according to 1, wherein when forming the non-linear conductive thin wire, the conductive thin wire is formed of a thin wire made of a wavy element.
5).
5. The method of manufacturing a touch panel sensor according to 4, wherein the wavy element is formed such that a wavy line meandering width is smaller than a half cycle length of the wavy line.
6).
6. The touch panel sensor according to any one of 1 to 5, wherein a shape of the non-linear conductive fine wire constituting the X electrode is different from a shape of the non-linear conductive fine wire constituting the Y electrode. Manufacturing method.
7).
7. The method for manufacturing a touch panel sensor according to any one of 1 to 6, wherein at least a part between the conductive thin wires is connected by a conductive bridge wire.
8).
The X electrode composed of the conductive thin wire is formed on one surface of the transparent substrate having a single layer structure, and the Y electrode composed of the conductive thin wire is formed on the other surface of the transparent substrate. 8. The method for manufacturing a touch panel sensor according to any one of 1 to 7 above.
9.
Among the transparent base materials of the laminated structure, the X electrode constituted by the conductive thin wires is formed on the surface of the transparent base material arranged on the surface side, and among the transparent base materials of the laminated structure, On the back surface of the transparent substrate disposed on the back surface side, the Y electrode composed of the conductive thin wires is formed, and the transparent substrate on which the X electrode is formed and the transparent on which the Y electrode is formed 8. The method for producing a touch panel sensor according to any one of 1 to 7, wherein the substrate is bonded to the substrate.
10.
10. The method of manufacturing a touch panel sensor according to any one of 1 to 9, wherein a metal film is formed on the conductive thin wire constituting one or both of the X electrode and the Y electrode by plating.
11.
Provided with an X electrode composed of conductive thin wires on one surface of the transparent substrate, and provided with a Y electrode composed of conductive thin wires on the other surface of the transparent substrate,
The conductive thin wire is a touch panel sensor that is a non-linear conductive thin wire.
12
12. The touch panel sensor according to 11, wherein the non-linear conductive thin wire is a thin wire made of a zigzag element.
13.
13. The touch panel sensor according to 12, wherein the zigzag element has a zigzag meandering width smaller than a 1/2 cycle length of the zigzag.
14
12. The touch panel sensor according to 11, wherein the non-linear conductive thin wire is a thin wire made of a wavy element.
15.
15. The touch panel sensor according to 14, wherein the wavy element has a wavy line meandering width smaller than a half cycle length of the wavy line.
16.
16. The touch panel sensor according to any one of 11 to 15, wherein the X electrode and the Y electrode are configured by the non-linear conductive thin wires having different shapes.
17.
17. The touch panel sensor according to any one of 11 to 16, wherein at least a part between the conductive thin wires is connected with a conductive bridge wire.
18.
The transparent base material has a single-layer structure, and includes the X electrode constituted by the conductive thin wire on one surface of the transparent base material, and the previous period Y constituted by the conductive thin wire on the other surface of the transparent base material. 18. The touch panel sensor according to any one of 11 to 17, which includes an electrode.
19.
The transparent base material has a laminated structure, and the surface of the transparent base material located on the surface side of the transparent base material is provided with the X electrode constituted by the conductive thin wires, and on the back side of the transparent base material. On the back surface of the transparent base material positioned, the transparent electrode provided with the X electrode and the transparent base material provided with the X electrode is adhered to the back surface of the transparent base material. 18. The touch panel sensor according to any one of 11 to 17 above.
20.
20. The touch panel sensor according to any one of 11 to 19, wherein the conductive thin wire constituting one or both of the X electrode and the Y electrode includes a metal film formed by plating.
透明基材の一面に導電性細線により構成されるX電極を形成すると共に該透明基材の他面に導電性細線により構成されるY電極を形成する際に、
前記透明基材上に、導電性材料を含有するインクを用いてインクジェット法によりライン状液体を付与し、
前記ライン状液体の乾燥に伴い、該インク中の前記導電性材料を前記ライン状液体の両縁に選択的に堆積させ、非直線性の導電性細線を形成するタッチパネルセンサーの製造方法。
2.
前記非直線性の導電性細線を形成する際、ジグザグ状要素からなる細線で該導電性細線を形成する前記1記載のタッチパネルセンサーの製造方法。
3.
前記ジグザグ状要素は、ジグザグの蛇行幅が、ジグザグの1/2周期長よりも小さくなるように形成する前記2記載のタッチパネルセンサーの製造方法。
4.
前記非直線性の導電性細線を形成する際、波線状要素からなる細線で該導電性細線を形成する前記1記載のタッチパネルセンサーの製造方法。
5.
前記波線状要素は、波線の蛇行幅が、波線の1/2周期長よりも小さくなるように形成する前記4記載のタッチパネルセンサーの製造方法。
6.
前記X電極を構成する前記非直線性の導電性細線の形状と、前記Y電極を構成する前記非直線性の導電性細線の形状とを異ならせる前記1~5の何れかに記載のタッチパネルセンサーの製造方法。
7.
前記導電性細線間の少なくとも一部を、導電性架橋線で結線する前記1~6の何れかに記載のタッチパネルセンサーの製造方法。
8.
単層構造の前記透明基材の一面に、前記導電性細線により構成される前記X電極を形成し、該透明基材の他面に、前記導電性細線により構成される前記Y電極を形成する前記1~7の何れかに記載のタッチパネルセンサーの製造方法。
9.
積層構造の前記透明基材のうち、表面側に配置される該透明基材の表面に、前記導電性細線により構成される前記X電極を形成し、前記積層構造の前記透明基材のうち、裏面側に配置される該透明基材の裏面に、前記導電性細線により構成される前記Y電極を形成し、前記X電極が形成された前記透明基材と前記Y電極が形成された前記透明基材とを貼り合わせる前記1~7の何れかに記載のタッチパネルセンサーの製造方法。
10.
前記X電極及び前記Y電極の一方又は両方を構成する前記導電性細線に、メッキにより金属膜を形成する前記1~9の何れかに記載のタッチパネルセンサーの製造方法。
11.
透明基材の一面に導電性細線により構成されるX電極を備え、該透明基材の他面に導電性細線により構成されるY電極を備え、
前記導電性細線は、非直線性の導電性細線であるタッチパネルセンサー。
12.
前記非直線性の導電性細線は、ジグザグ状要素からなる細線である前記11記載のタッチパネルセンサー。
13.
前記ジグザグ状要素は、ジグザグの蛇行幅が、ジグザグの1/2周期長よりも小さい前記12記載のタッチパネルセンサー。
14.
前記非直線性の導電性細線は、波線状要素からなる細線である前記11記載のタッチパネルセンサー。
15.
前記波線状要素は、波線の蛇行幅が、波線の1/2周期長よりも小さい前記14記載のタッチパネルセンサー。
16.
前記X電極と前記Y電極は、形状が異なる前記非直線性の導電性細線により構成される前記11~15の何れかに記載のタッチパネルセンサー。
17.
前記導電性細線間の少なくとも一部が、導電性架橋線で結線されている前記11~16の何れかに記載のタッチパネルセンサー。
18.
前記透明基材は単層構造であり、該透明基材の一面に前記導電性細線により構成される前記X電極を備え、該透明基材の他面に前記導電性細線により構成される前期Y電極を備える前記11~17の何れかに記載のタッチパネルセンサー。
19.
前記透明基材は積層構造であり、該透明基材の表面側に位置する該透明基材の表面に、前記導電性細線により構成される前記X電極を備え、該透明基材の裏面側に位置する該透明基材の裏面に、前記導電性細線により構成される前期Y電極を備え、前記X電極を備えた前記透明電極と前記Y電極を備えた前記透明基材とが接着されている前記11~17の何れかに記載のタッチパネルセンサー。
20.
前記X電極及び前記Y電極の一方又は両方を構成する前記導電性細線は、メッキにより形成された金属膜を備える前記11~19の何れかに記載のタッチパネルセンサー。 1.
When forming the X electrode composed of conductive thin wires on one surface of the transparent substrate and forming the Y electrode composed of conductive thin wires on the other surface of the transparent substrate,
On the transparent substrate, a linear liquid is applied by an ink jet method using an ink containing a conductive material,
A method of manufacturing a touch panel sensor, wherein the conductive material in the ink is selectively deposited on both edges of the line-shaped liquid as the line-shaped liquid is dried to form a non-linear conductive thin line.
2.
2. The method of manufacturing a touch panel sensor according to 1 above, wherein when forming the non-linear conductive thin wire, the conductive thin wire is formed by a thin wire made of a zigzag element.
3.
3. The touch panel sensor manufacturing method according to 2, wherein the zigzag element is formed such that a zigzag meandering width is smaller than a half cycle length of the zigzag.
4).
2. The method of manufacturing a touch panel sensor according to 1, wherein when forming the non-linear conductive thin wire, the conductive thin wire is formed of a thin wire made of a wavy element.
5).
5. The method of manufacturing a touch panel sensor according to 4, wherein the wavy element is formed such that a wavy line meandering width is smaller than a half cycle length of the wavy line.
6).
6. The touch panel sensor according to any one of 1 to 5, wherein a shape of the non-linear conductive fine wire constituting the X electrode is different from a shape of the non-linear conductive fine wire constituting the Y electrode. Manufacturing method.
7).
7. The method for manufacturing a touch panel sensor according to any one of 1 to 6, wherein at least a part between the conductive thin wires is connected by a conductive bridge wire.
8).
The X electrode composed of the conductive thin wire is formed on one surface of the transparent substrate having a single layer structure, and the Y electrode composed of the conductive thin wire is formed on the other surface of the transparent substrate. 8. The method for manufacturing a touch panel sensor according to any one of 1 to 7 above.
9.
Among the transparent base materials of the laminated structure, the X electrode constituted by the conductive thin wires is formed on the surface of the transparent base material arranged on the surface side, and among the transparent base materials of the laminated structure, On the back surface of the transparent substrate disposed on the back surface side, the Y electrode composed of the conductive thin wires is formed, and the transparent substrate on which the X electrode is formed and the transparent on which the Y electrode is formed 8. The method for producing a touch panel sensor according to any one of 1 to 7, wherein the substrate is bonded to the substrate.
10.
10. The method of manufacturing a touch panel sensor according to any one of 1 to 9, wherein a metal film is formed on the conductive thin wire constituting one or both of the X electrode and the Y electrode by plating.
11.
Provided with an X electrode composed of conductive thin wires on one surface of the transparent substrate, and provided with a Y electrode composed of conductive thin wires on the other surface of the transparent substrate,
The conductive thin wire is a touch panel sensor that is a non-linear conductive thin wire.
12
12. The touch panel sensor according to 11, wherein the non-linear conductive thin wire is a thin wire made of a zigzag element.
13.
13. The touch panel sensor according to 12, wherein the zigzag element has a zigzag meandering width smaller than a 1/2 cycle length of the zigzag.
14
12. The touch panel sensor according to 11, wherein the non-linear conductive thin wire is a thin wire made of a wavy element.
15.
15. The touch panel sensor according to 14, wherein the wavy element has a wavy line meandering width smaller than a half cycle length of the wavy line.
16.
16. The touch panel sensor according to any one of 11 to 15, wherein the X electrode and the Y electrode are configured by the non-linear conductive thin wires having different shapes.
17.
17. The touch panel sensor according to any one of 11 to 16, wherein at least a part between the conductive thin wires is connected with a conductive bridge wire.
18.
The transparent base material has a single-layer structure, and includes the X electrode constituted by the conductive thin wire on one surface of the transparent base material, and the previous period Y constituted by the conductive thin wire on the other surface of the transparent base material. 18. The touch panel sensor according to any one of 11 to 17, which includes an electrode.
19.
The transparent base material has a laminated structure, and the surface of the transparent base material located on the surface side of the transparent base material is provided with the X electrode constituted by the conductive thin wires, and on the back side of the transparent base material. On the back surface of the transparent base material positioned, the transparent electrode provided with the X electrode and the transparent base material provided with the X electrode is adhered to the back surface of the transparent base material. 18. The touch panel sensor according to any one of 11 to 17 above.
20.
20. The touch panel sensor according to any one of 11 to 19, wherein the conductive thin wire constituting one or both of the X electrode and the Y electrode includes a metal film formed by plating.
本発明によれば、骨見え防止性とモアレ防止性を両立できるタッチパネルセンサーの製造方法及びタッチパネルセンサーを提供することができる。
According to the present invention, it is possible to provide a method for manufacturing a touch panel sensor and a touch panel sensor that can achieve both bone-blocking prevention and moire prevention.
以下に、本発明を実施するための形態について詳しく説明する。
Hereinafter, embodiments for carrying out the present invention will be described in detail.
本発明のタッチパネルセンサーの製造方法は、透明基材の一面に導電性細線により構成されるX電極を形成すると共に、該透明基材の他面に導電性細線により構成されるY電極を形成する。かかる導電性細線として、前記透明基材上に、導電性材料を含有するインクを用いてインクジェット法によりライン状液体を付与し、前記ライン状液体の乾燥に伴い、該インク中の導電性材料を前記ライン状液体の両縁に選択的に堆積させ、非直線性の前記導電性細線を形成する。これにより、骨見え防止性とモアレ防止性を両立できるタッチパネルセンサーを製造できる効果が得られる。
In the method for manufacturing a touch panel sensor of the present invention, an X electrode composed of conductive thin wires is formed on one surface of a transparent substrate, and a Y electrode composed of conductive thin wires is formed on the other surface of the transparent substrate. . As such a conductive thin wire, a line-shaped liquid is applied to the transparent base material by an ink jet method using an ink containing a conductive material, and as the line-shaped liquid is dried, the conductive material in the ink is removed. The non-linear conductive thin wire is formed by selectively depositing on both edges of the line liquid. Thereby, the effect which can manufacture the touchscreen sensor which can achieve both bone-viewing prevention property and moire prevention property is acquired.
非直線性の導電性細線は、該非直線性の導電性細線の一端から他端までを最短で結ぶ方向に対して傾斜する傾斜線要素を含む。傾斜線要素は直線又は曲線により構成することができる。更に複数の傾斜線要素を組み合わせることで、例えばジグザク状要素や波線状要素のような、該導電性細線の長手方向に対して左右に繰り返し蛇行する要素を構成することができる。
The non-linear conductive thin wire includes an inclined line element that is inclined with respect to the direction connecting the one end to the other end of the non-linear conductive thin wire in the shortest distance. The inclined line element can be constituted by a straight line or a curved line. Further, by combining a plurality of inclined line elements, for example, an element such as a zigzag element or a wavy line element that repeatedly meanders to the left and right with respect to the longitudinal direction of the conductive thin line can be configured.
以下、第1態様では非直線性導電性細線がジグザク状要素からなる場合を、第2態様では非直線性導電性細線が波線状要素からなる場合を説明する。
Hereinafter, a case where the non-linear conductive thin wire is formed of a zigzag-like element in the first embodiment and a case where the non-linear conductive thin wire is formed of a wavy-line element will be described in the second embodiment.
[第1態様]
まず、図1を参照して、第1態様に係るタッチパネルセンサーの製造方法により得られるタッチパネルセンサーの一例について説明する。 [First aspect]
First, an example of a touch panel sensor obtained by the method for manufacturing a touch panel sensor according to the first aspect will be described with reference to FIG.
まず、図1を参照して、第1態様に係るタッチパネルセンサーの製造方法により得られるタッチパネルセンサーの一例について説明する。 [First aspect]
First, an example of a touch panel sensor obtained by the method for manufacturing a touch panel sensor according to the first aspect will be described with reference to FIG.
タッチパネルセンサーは、シート状の透明基材1の一面に、帯状のX電極2を所定間隔でX軸方向に複数本並設すると共に、他面に、帯状のY電極3を所定間隔でY軸方向に複数本並設してなる。
The touch panel sensor has a plurality of strip-shaped X electrodes 2 arranged in parallel in the X-axis direction at a predetermined interval on one surface of a sheet-like transparent substrate 1, and a strip-shaped Y electrode 3 on the other surface at a predetermined interval in the Y-axis. A plurality are arranged in parallel in the direction.
X軸方向とY軸方向は互いに交差する関係にある。X電極2とY電極3とは、透明基材1の厚みに対応する間隔を隔てて互いに交差している。X電極2及びY電極3は透明基材1により互いに絶縁されている。
The X-axis direction and the Y-axis direction are in a crossing relationship with each other. The X electrode 2 and the Y electrode 3 intersect each other with an interval corresponding to the thickness of the transparent substrate 1. The X electrode 2 and the Y electrode 3 are insulated from each other by the transparent substrate 1.
これらX電極2及びY電極3を、各々制御回路に接続して、例えば、静電容量方式等のタッチパネルのセンサーとして好適に用いることができる。静電容量方式のタッチパネルであれば、操作時において、これらX電極2及びY電極3に、ユーザーの指や導体等が接近、接触した際に生じる静電容量変化に基づく誘導電流を利用して、指や導体等の位置座標を検知することができる。
These X electrode 2 and Y electrode 3 can be connected to a control circuit, respectively, and can be suitably used as, for example, a capacitive touch panel sensor. In the case of a capacitive touch panel, during operation, an induced current based on a change in capacitance that occurs when a user's finger or conductor approaches or comes into contact with the X electrode 2 and the Y electrode 3 is used. The position coordinates of a finger or a conductor can be detected.
1本のX電極2は、導電性細線21の集合体により構成されている。1本のX電極2を構成する複数本の導電性細線21は、集電線22を介して図示しない制御回路に接続されている。1本のY電極3もまた、導電性細線31の集合体により構成されている。1本のY電極3を構成する複数本の導電性細線31は、集電線32を介して図示しない制御回路に接続されている。
One X electrode 2 is composed of an assembly of conductive thin wires 21. A plurality of conductive thin wires 21 constituting one X electrode 2 are connected to a control circuit (not shown) via a collecting wire 22. One Y electrode 3 is also constituted by an assembly of conductive thin wires 31. A plurality of conductive thin wires 31 constituting one Y electrode 3 are connected to a control circuit (not shown) via a collector line 32.
X電極2及びY電極3に含まれる導電性細線21、31は、それぞれ、透明基材1に付与された導電性材料を含有するライン状液体の乾燥に伴い、該導電性材料を該ライン状液体の両縁に選択的に堆積させて形成された非直線性の導電性細線により構成されている。本態様において、非直線性の導電性細線は、ジグザグ状要素からなる。
The conductive thin wires 21 and 31 included in the X electrode 2 and the Y electrode 3 are respectively formed into the line shape as the line liquid containing the conductive material applied to the transparent substrate 1 is dried. It is composed of non-linear conductive thin wires formed by selectively depositing on both edges of the liquid. In this embodiment, the non-linear conductive thin wire is composed of a zigzag element.
X電極2を構成する非直線性の導電性細線21は、該非直線性の導電性細線21全体としての形成方向(あるいは該非直線性の導電性細線21の一端から他端までを最短で結ぶ方向)が、該X電極2の長手方向に沿うように形成されている。同様に、Y電極3を構成する非直線性の導電性細線31は、該非直線性の導電性細線31全体としての形成方向(あるいは該非直線性の導電性細線31の一端から他端までを最短で結ぶ方向)が、該Y電極3の長手方向に沿うように形成されている。
The non-linear conductive thin wire 21 constituting the X electrode 2 is formed in the forming direction of the non-linear conductive thin wire 21 as a whole (or the direction connecting the one end to the other end of the non-linear conductive thin wire 21 in the shortest direction. ) Are formed along the longitudinal direction of the X electrode 2. Similarly, the non-linear conductive thin wire 31 constituting the Y electrode 3 is formed in the shortest direction from one end to the other end of the non-linear conductive thin wire 31 as a whole (or from one end to the other end of the non-linear conductive thin wire 31). Is formed along the longitudinal direction of the Y electrode 3.
タッチパネルセンサーの製造方法について図2を参照して詳しく説明する。なお、以下の説明では、主にX電極2を構成する導電性細線21について説明するが、Y電極を構成する導電性細線31についても援用することができる。
The manufacturing method of the touch panel sensor will be described in detail with reference to FIG. In addition, although the following description demonstrates the electroconductive fine wire 21 which mainly comprises the X electrode 2, the electroconductive fine wire 31 which comprises a Y electrode can also be used.
まず、図2(a)に示すように、透明基材1上に導電性材料を含有するライン状液体4を複数付与する。本態様では、ライン状液体4をジグザグ状に付与している。
First, as shown in FIG. 2A, a plurality of line-like liquids 4 containing a conductive material are applied on the transparent substrate 1. In this embodiment, the line-like liquid 4 is applied in a zigzag shape.
次いで、ライン状液体4の乾燥に伴い、コーヒーステイン現象により、導電性材料を該ライン状液体4の両縁に選択的に堆積させることによって、1本のライン状液体4から、図2(b)に示すような2本1組の導電性細線21、21からなる細線ペア23が形成される。
Next, as the line-shaped liquid 4 is dried, a conductive material is selectively deposited on both edges of the line-shaped liquid 4 by the coffee stain phenomenon, so that the line-shaped liquid 4 can be removed from the line-shaped liquid 4 as shown in FIG. A thin wire pair 23 composed of a pair of conductive thin wires 21 and 21 as shown in FIG.
即ち、透明基材1上に付与されたライン状液体4の乾燥は中央部に比べて縁において速いため、まず縁に導電性材料の局所的な堆積が起こる。堆積した導電性材料により液体の縁が固定化された状態となり、それ以降の乾燥に伴うライン状液体4の幅方向の収縮が抑制される。ライン状液体4中では、縁で蒸発により失った分の液体を補う様に中央部から縁に向かう流動が形成される。この流動によって更なる導電性材料が縁に運ばれて堆積し、1本のライン状液体4の両縁に2本1組の導電性細線21、21が形成される。
That is, since the drying of the line-shaped liquid 4 applied on the transparent substrate 1 is faster at the edge than at the center, first, a local deposition of a conductive material occurs at the edge. The edge of the liquid is fixed by the deposited conductive material, and the shrinkage in the width direction of the line-shaped liquid 4 accompanying the subsequent drying is suppressed. In the line-shaped liquid 4, a flow from the center to the edge is formed so as to supplement the liquid lost by evaporation at the edge. Due to this flow, further conductive material is carried to the edge and deposited, and a pair of conductive thin wires 21 and 21 are formed on both edges of the single line-like liquid 4.
導電性材料を縁に運ぶ流動の形成を促進することは好ましいことである。例えば、固形分濃度、液体と基材の接触角、液体の量、基材の加熱温度、液体の配置密度、または温度、湿度、気圧といった環境因子などの条件を調整することによって、液体の縁を早期に固定化することができ、また液体中央部と縁の蒸発量の差を大きくすることができる。これにより、導電性材料を縁に運ぶ流動の形成を促進することができる。
It is preferable to promote the formation of a flow that carries the conductive material to the edge. For example, by adjusting conditions such as solids concentration, contact angle between liquid and substrate, amount of liquid, substrate heating temperature, liquid arrangement density, or environmental factors such as temperature, humidity, and pressure, the edge of the liquid Can be fixed at an early stage, and the difference in evaporation amount between the liquid central portion and the edge can be increased. This can facilitate the formation of a flow that carries the conductive material to the edge.
透明基材1上へのライン状液体4の付与は、インクジェット法により行うことができる。具体的には、図示しない液滴吐出装置が備えるインクジェットヘッドを基材に対して相対移動させながら、インクジェットヘッドのノズルから導電性材料を含むインクを吐出し、吐出されたインク滴を基材上で合一することで、所望の形状を有するライン状液体4を付与することができる。インクジェットヘッドの液滴吐出方式は格別限定されず、例えば、ピエゾ方式やサーマル方式などを用いることができる。
The application of the line-like liquid 4 on the transparent substrate 1 can be performed by an ink jet method. Specifically, while moving an inkjet head provided in a droplet ejection device (not shown) relative to the substrate, ink containing a conductive material is ejected from the nozzle of the inkjet head, and the ejected ink droplet is placed on the substrate. , The line-shaped liquid 4 having a desired shape can be applied. The droplet discharge method of the inkjet head is not particularly limited, and for example, a piezo method or a thermal method can be used.
本態様では、X電極2を構成する複数の導電性細線21が互いに交差することなく間隔をおいて並設され、Y電極3を構成する複数の導電性細線31もまた互いに交差することなく間隔をおいて並設されている。このような配置にすることで、例えば導電性細線を格子状に交差させて形成した電極と比較して開口率(導電性細線が形成されていない領域の割合)を高くすることができ光透過性に優れるため、より骨見えを防止できる効果を奏する。また、抵抗値の観点では、コーヒーステイン現象を用いて形成された導電性細線は、断線が発生し難いため、端子間抵抗のばらつきを少なくすることができる。
In this embodiment, the plurality of conductive thin wires 21 constituting the X electrode 2 are arranged side by side without crossing each other, and the plurality of conductive thin wires 31 constituting the Y electrode 3 are also spaced without crossing each other. Are placed side by side. With such an arrangement, for example, the aperture ratio (the ratio of the region where the conductive fine lines are not formed) can be increased as compared with the electrode formed by intersecting the conductive thin lines in a lattice shape. Since it is excellent in performance, it has the effect of preventing the appearance of bones. Further, from the viewpoint of the resistance value, the conductive thin wire formed by using the coffee stain phenomenon is less likely to cause disconnection, so that variation in resistance between terminals can be reduced.
ジグザグ状要素は、ジグザグの蛇行幅が、ジグザグの1/2周期長よりも小さいことが好ましい。図3において、αはジグザグの1/2周期長であり、ジグザグ全体としての形成方向に沿って該ジグザグの山と山、あるいは谷と谷を結ぶ1周期の長さの半分の長さである。βはジグザグの蛇行幅であり、ジグザグ全体としての形成方向と直交する方向における該ジグザグの蛇行の幅である。ジグザグの蛇行幅βが、ジグザグの1/2周期長αよりも小さいことにより、得られるパターンの低抵抗化を実現でき、骨見えを更に防止できる効果が得られる。この効果は、α/βの比が1.1~4の範囲であると、より顕著に奏される。
The zigzag element preferably has a zigzag meandering width smaller than a 1/2 cycle length of the zigzag. In FIG. 3, α is a half cycle length of the zigzag, and is half the length of one cycle connecting the peaks and peaks or the valleys and valleys of the zigzag along the entire zigzag formation direction. . β is the zigzag meandering width, and is the zigzag meandering width in a direction perpendicular to the forming direction of the zigzag as a whole. When the zigzag meandering width β is smaller than the zigzag ½ period length α, it is possible to reduce the resistance of the resulting pattern and to further prevent the appearance of bone. This effect is more prominent when the α / β ratio is in the range of 1.1 to 4.
また、ジグザグの1/2周期長αは、100μm~2mmの範囲であることが好ましく、100~500μmの範囲であることが更に好ましい。一方、ジグザグの蛇行幅βは、100μm~1mmの範囲であることが好ましく、100~500μmの範囲であることが更に好ましい。α及び又はβがこれらの範囲内である場合に、上述したα>βの関係を満たし、好ましくはα/βの比が1.1~4の範囲であることにより、パターンの低抵抗化と骨見え防止の効果がより顕著に奏される。
In addition, the zigzag ½ period length α is preferably in the range of 100 μm to 2 mm, and more preferably in the range of 100 to 500 μm. On the other hand, the meandering width β of the zigzag is preferably in the range of 100 μm to 1 mm, and more preferably in the range of 100 to 500 μm. When α and / or β are within these ranges, the above relationship of α> β is satisfied, and preferably the ratio of α / β is in the range of 1.1 to 4, thereby reducing the resistance of the pattern. The effect of preventing the appearance of bones is more remarkable.
ジグザグ状要素からなる導電性細線21を複数並設する際の細線間隔γは格別限定されないが、ジグザクの1/2周期長αとの関係で、α/γが3以上であることが好ましい。これにより、本発明の効果がより顕著に奏される。α/γは、3以上20未満であることが特に好ましい。ここで、細線間隔γは、ジグザグ全体としての形成方向と直交する方向における導電性細線21間の間隔である。
The fine wire interval γ when a plurality of conductive thin wires 21 made of zigzag elements are arranged side by side is not particularly limited, but α / γ is preferably 3 or more in relation to the zigzag ½ period length α. Thereby, the effect of the present invention is more remarkably exhibited. α / γ is particularly preferably 3 or more and less than 20. Here, the thin wire interval γ is a space between the conductive thin wires 21 in a direction orthogonal to the forming direction of the entire zigzag.
[第2態様]
次に、第2態様について説明する。第2態様では、図4に示すように、X電極2及びY電極3に含まれる導電性細線21、31が波線状要素からなる非直線性の導電性細線により構成されたタッチパネルセンサーを製造する。波線状要素からなる非直線性の導電性細線21、31は、第1態様で説明したライン状液体を波線状に付与することにより形成することができる。 [Second embodiment]
Next, a 2nd aspect is demonstrated. In the second embodiment, as shown in FIG. 4, a touch panel sensor is manufactured in which the conductive thin wires 21 and 31 included in the X electrode 2 and the Y electrode 3 are composed of non-linear conductive thin wires made of wavy elements. . The non-linear conductive thin wires 21 and 31 made of a wavy element can be formed by applying the line-like liquid described in the first embodiment in a wavy line.
次に、第2態様について説明する。第2態様では、図4に示すように、X電極2及びY電極3に含まれる導電性細線21、31が波線状要素からなる非直線性の導電性細線により構成されたタッチパネルセンサーを製造する。波線状要素からなる非直線性の導電性細線21、31は、第1態様で説明したライン状液体を波線状に付与することにより形成することができる。 [Second embodiment]
Next, a 2nd aspect is demonstrated. In the second embodiment, as shown in FIG. 4, a touch panel sensor is manufactured in which the conductive
波線状要素を有する導電性細線21、31は、丸みを帯びて蛇行している。波線状要素は、正弦波のように全体が曲線であるものや、ジグザグの角部に丸みを付与した波線のような直線と曲線を組み合わせたものを好ましく用いることができる。
The conductive thin wires 21 and 31 having the wavy element are rounded and meandering. As the wavy element, a curved line like a sine wave or a combination of a straight line and a curved line like a wavy line with rounded corners of a zigzag can be preferably used.
波線状要素は、波線の蛇行幅が、波線の1/2周期長よりも小さいことが好ましい。図5において、α’は波線の1/2周期長であり、波線全体としての形成方向に沿って該波線の山と山、あるいは谷と谷を結ぶ1周期の長さの半分の長さである。β’は波線の蛇行幅であり、波線全体としての形成方向と直交する方向における該波線の蛇行の幅である。波線の蛇行幅β’が、波線の1/2周期長α’よりも小さいことにより、得られるパターンの低抵抗化を実現でき、骨見えを更に防止できる効果が得られる。この効果は、α’/β’の比が1.1~4の範囲であると、より顕著に奏される。
It is preferable that the wavy element has a wavy line meandering width smaller than a half cycle length of the wavy line. In FIG. 5, α ′ is a half cycle length of the wavy line, and is half the length of one cycle connecting the peaks and peaks of the wavy lines or the valleys and valleys along the forming direction of the entire wavy line. is there. β ′ is the meandering width of the wavy line, and is the width of the meandering of the wavy line in the direction perpendicular to the forming direction of the entire wavy line. Since the meandering width β ′ of the wavy line is smaller than the half period length α ′ of the wavy line, the resistance of the obtained pattern can be reduced, and the effect of further preventing the appearance of bone can be obtained. This effect is more prominent when the α ′ / β ′ ratio is in the range of 1.1 to 4.
また、波線の1/2周期長α’は、100μm~2mmの範囲であることが好ましく、100~500μmの範囲であることが更に好ましい。一方、波線の蛇行幅β’は、100μm~1mmの範囲であることが好ましく、100~500μmの範囲であることが更に好ましい。α’及び又はβ’がこれらの範囲内である場合に、上述したα’>β’の関係を満たし、好ましくはα’/β’の比が1.1~4の範囲であることにより、パターンの低抵抗化と骨見え防止の効果がより顕著に奏される。
Further, the half cycle length α ′ of the wavy line is preferably in the range of 100 μm to 2 mm, and more preferably in the range of 100 to 500 μm. On the other hand, the meandering width β ′ of the wavy line is preferably in the range of 100 μm to 1 mm, and more preferably in the range of 100 to 500 μm. When α ′ and / or β ′ are within these ranges, the above-described relationship of α ′> β ′ is satisfied, and preferably the ratio of α ′ / β ′ is in the range of 1.1 to 4, The effect of lowering the resistance of the pattern and preventing the appearance of bone is more remarkable.
波線状要素からなる導電性細線21を複数並設する際の細線間隔γ’は格別限定されないが、波線の1/2周期長α’との関係で、α’/γ’が3以上であることが好ましい。これにより、本発明の効果がより顕著に奏される。α’/γ’は、3以上20未満であることが特に好ましい。ここで、細線間隔γ’は、波線全体としての形成方向と直交する方向における導電性細線21間の間隔である。
There is no particular limitation on the fine wire interval γ ′ when a plurality of conductive thin wires 21 made of wavy elements are juxtaposed, but α ′ / γ ′ is 3 or more in relation to the half period length α ′ of the wavy wire. It is preferable. Thereby, the effect of the present invention is more remarkably exhibited. α ′ / γ ′ is particularly preferably 3 or more and less than 20. Here, the thin wire interval γ ′ is a space between the conductive thin wires 21 in a direction orthogonal to the forming direction of the entire wavy line.
以上、非直線性導電性細線として、第1態様ではジグザク状要素からなるものを、第2態様では波線状要素からなるものを例示したが、非直線性導電性細線がジグザク状要素からなることが特に好ましい。インクジェット法を用いてライン状液体によりジグザクを形成する場合は、波線を形成する場合と比較して、より滑らかに形成することができる。これにより、ジグザク状のライン状液体から形成されたジグザク状要素からなる非直線性導電性細線は、波線状のライン状液体から形成された波線状要素からなる非直線性導電性細線と比較して、より安定になる。そのため、非直線性導電性細線がジグザク状要素からなることにより、パターンの低抵抗化、骨見え防止及びモアレ防止の効果が顕著になる。
As described above, as the non-linear conductive thin wire, the first embodiment is exemplified by the zigzag-like element, and the second embodiment is constituted by the wavy-line element. However, the non-linear conductive thin wire is constituted by the zig-zag-like element. Is particularly preferred. When forming a zigzag with a line-shaped liquid using an inkjet method, it can form more smoothly compared with the case where a wavy line is formed. As a result, the non-linear conductive thin wire composed of zigzag-shaped elements formed from zigzag line-shaped liquid is compared with the non-linear conductive thin wire composed of wavy-line elements formed from wavy line-shaped liquid. And become more stable. Therefore, when the non-linear conductive thin wire is formed of zigzag-like elements, the effect of reducing the resistance of the pattern, preventing the appearance of bones, and preventing moire becomes remarkable.
[その他の態様]
非直線性の導電性細線の形状は規則性を有しても有しなくてもよい。以下に、図6(a)~(c)を参照して、非直線性の導電性細線の形状における規則性及び不規則性について説明する。 [Other aspects]
The shape of the non-linear conductive thin wire may or may not have regularity. Hereinafter, the regularity and irregularity of the shape of the non-linear conductive thin wire will be described with reference to FIGS. 6 (a) to (c).
非直線性の導電性細線の形状は規則性を有しても有しなくてもよい。以下に、図6(a)~(c)を参照して、非直線性の導電性細線の形状における規則性及び不規則性について説明する。 [Other aspects]
The shape of the non-linear conductive thin wire may or may not have regularity. Hereinafter, the regularity and irregularity of the shape of the non-linear conductive thin wire will be described with reference to FIGS. 6 (a) to (c).
図6(a)に示す例では、1本の導電性細線21内におけるジグザグ状要素に規則性を有し、複数本の導電性細線21間におけるジグザグ状要素にも規則性を有する。即ち、1本の導電性細線21内において、ジグザグの1/2周期長αと、ジグザグの蛇行幅βとが一定に保たれている。この規則性が、隣接する導電性細線21間においても共通に保持されている。即ち、隣接する導電性細線21同士は、平行移動によって互いに重ね合わせることが可能な形状である。隣接する導電性細線21間の間隔は一定である。
In the example shown in FIG. 6A, the zigzag elements in one conductive thin wire 21 have regularity, and the zigzag elements in the plurality of conductive thin wires 21 also have regularity. That is, in one conductive thin wire 21, the zigzag half cycle length α and the zigzag meandering width β are kept constant. This regularity is maintained in common between the adjacent conductive thin wires 21. That is, the adjacent conductive thin wires 21 have shapes that can be overlapped with each other by parallel movement. The interval between adjacent conductive thin wires 21 is constant.
図6(b)に示す例では、1本の導電性細線21内におけるジグザグ状要素に規則性を有さないが、複数本の導電性細線21間におけるジグザグ状要素に規則性を有する。即ち、1本の導電性細線21内において、ジグザグの蛇行幅は一定であるが、ジグザグの1/2周期長が変動しており、不規則になっている。一方、隣接する導電性細線21間でみると、この不規則性が共通に保持されており、規則性を有している。即ち、隣接する導電性細線21同士は、平行移動によって互いに重ね合わせることが可能な形状である。隣接する導電性細線21間の間隔は一定である。
In the example shown in FIG. 6B, the zigzag element in one conductive thin wire 21 does not have regularity, but the zigzag element between the plurality of conductive thin wires 21 has regularity. That is, in one conductive thin wire 21, the zigzag meandering width is constant, but the zigzag ½ period length varies and is irregular. On the other hand, when viewed between adjacent conductive thin wires 21, this irregularity is maintained in common and has regularity. That is, the adjacent conductive thin wires 21 have shapes that can be overlapped with each other by parallel movement. The interval between adjacent conductive thin wires 21 is constant.
図6(c)に示す例では、1本の導電性細線21内におけるジグザグ状要素に規則性を有さず、複数本の導電性細線21間におけるジグザグ状要素にも規則性を有さない。即ち、1本の導電性細線21内において、ジグザグの蛇行幅は一定であるが、ジグザグの1/2周期長が変動しており、不規則になっている。一方、隣接する導電性細線21間においては、1本のライン状液体から形成された隣接する導電性細線21のペア23間において規則性を有するが、他のライン状液体から形成された導電性細線21に対して規則性を有しない。即ち、隣接する導電性細線21、21同士は、平行移動によって互いに重ね合わせることができない形状である。隣接する導電性細線21間の間隔は不均一である。なお、図6(c)の例のように、隣接する導電性細線21、21間の間隔が不均一となる場合、上述した細線間隔γは、ジグザグ線全体としての形成方向と直交する方向における導電性細線21間の間隔が最も小さくなる部位における値とする。
In the example shown in FIG. 6C, the zigzag element in one conductive thin wire 21 does not have regularity, and the zigzag element in the plurality of conductive thin wires 21 does not have regularity. . That is, in one conductive thin wire 21, the zigzag meandering width is constant, but the zigzag ½ period length varies and is irregular. On the other hand, there is regularity between adjacent pairs of conductive thin wires 21 formed from one line-shaped liquid between adjacent conductive thin wires 21, but conductivity formed from other line-shaped liquids. There is no regularity with respect to the thin wire 21. That is, the adjacent conductive fine wires 21 and 21 have a shape that cannot be overlapped with each other by parallel movement. The spacing between adjacent conductive thin wires 21 is not uniform. In addition, when the space | interval between adjacent electroconductive thin wires 21 and 21 becomes non-uniform | heterogenous like the example of FIG.6 (c), the above-mentioned thin wire | line space | interval γ is in the direction orthogonal to the formation direction as the whole zigzag line. A value at a portion where the interval between the conductive thin wires 21 is the smallest is taken.
図6(a)~(c)の例は、何れも好ましいものであるが、モアレ防止性を更に向上する観点では、図6(c)の例が最も良好であり、次いで図6(b)の例、図6(a)の例の順である。即ち、導電性細線が不規則であるほどモアレ防止性が得られ易い。
The examples of FIGS. 6A to 6C are all preferable, but from the viewpoint of further improving the moire prevention, the example of FIG. 6C is the best, and then FIG. 6B. This is the order of the example of FIG. 6A. In other words, the more the conductive thin wires are irregular, the easier it is to obtain moiré prevention.
一方、各導電性細線21をより安定に形成する観点では、隣接する導電性細線21間に規則性を有することが好ましい。即ち、隣接する導電性細線21間に規則性を有するということは、これらを形成するために透明基材1上に付与される、隣接するライン状液体間に規則性を有することでもある。複数隣接されたライン状液体を乾燥させる際には、隣接するライン状液体の乾燥に伴う基材温度変動や蒸気の影響を受け易いが、隣接するライン状液体間に規則性を有することにより、ライン状液体間の間隔が一定になり、複数のライン状液体の全体に亘って上述した影響を均質化でき、各導電性細線21をより安定に形成することができる。ここでは、ジグザグ状要素の例を挙げて規則性について説明したが、波線状要素の場合にも援用できる。
On the other hand, in order to form each conductive thin wire 21 more stably, it is preferable to have regularity between adjacent conductive thin wires 21. That is, having regularity between adjacent conductive thin wires 21 also means having regularity between adjacent line-like liquids provided on the transparent substrate 1 in order to form these. When drying a plurality of adjacent line-shaped liquids, it is susceptible to substrate temperature fluctuations and vapors accompanying the drying of adjacent line-shaped liquids, but by having regularity between adjacent line-shaped liquids, The interval between the line-shaped liquids is constant, the above-described influence can be homogenized over the plurality of line-shaped liquids, and each conductive thin wire 21 can be formed more stably. Here, the regularity has been described by giving an example of a zigzag element, but it can also be used in the case of a wavy element.
導電性細線がジグザグ状要素又は波線状要素を維持する範囲内で不規則性を付与することは好ましいことである。このとき、蛇行幅を変動させてもよいが、蛇行幅は一定とし、1/2周期長を変動させて不規則性を付与することが好ましい。更に、上述したα、β(あるいはα’、β’)について説明した好ましい条件の範囲内で不規則性を付与することも好ましい。
It is preferable to impart irregularity within a range in which the conductive thin wire maintains the zigzag element or the wavy element. At this time, the meandering width may be varied, but it is preferable that the meandering width is constant and the ½ period length is varied to impart irregularity. Furthermore, it is also preferable to provide irregularity within the range of preferable conditions described for α and β (or α ′ and β ′).
以上の説明では、X電極2とY電極3とで導電性細線21、31の形状が同一である場合について主に示したが、これらを異ならせることも好ましいことである。例えば、使用時においてユーザー側に設けられるX電極2に対して、Y電極3は透明基材1を介して配置されるため、例えば光路長の差などに起因して、X電極2の視認性は、Y電極3の視認性よりも高くなる傾向がある。そのため、かかる視認性の差を減じるように、X電極2とY電極3とで導電性細線21、31の形状を異ならせることは好ましいことである。X電極2とY電極3とで導電性細線21、31の形状を異ならせる場合の例として、ジグザグ状要素や波線状要素といった傾斜線要素を異ならせたり、上述した蛇行幅及び又は1/2周期長を異ならせたりすることができる。
In the above description, the case where the shape of the conductive thin wires 21 and 31 is the same between the X electrode 2 and the Y electrode 3 has been mainly shown, but it is also preferable to make them different. For example, since the Y electrode 3 is arranged via the transparent base material 1 with respect to the X electrode 2 provided on the user side during use, the visibility of the X electrode 2 is caused by, for example, a difference in optical path length. Tends to be higher than the visibility of the Y electrode 3. Therefore, it is preferable to make the shapes of the conductive thin wires 21 and 31 different between the X electrode 2 and the Y electrode 3 so as to reduce the difference in visibility. As an example in the case where the shapes of the conductive thin wires 21 and 31 are different between the X electrode 2 and the Y electrode 3, inclined line elements such as zigzag elements and wavy line elements are made different, the meandering width and / or 1/2 The cycle length can be varied.
例えば、X電極2とY電極3を構成する導電性細線21、31にジグザグ状要素又は波線状要素を付与しておき、X電極2を構成する導電性細線21の1/2周期長が、Y電極3を構成する導電性細線31の1/2周期長よりも大きくなるように形成することは好ましいことである。これにより、X電極2を構成する導電性細線21の形成領域が占める面積が、Y電極3を構成する導電性細線31と比べて小さくなるため、X電極2の視認性を低めて、Y電極3の視認性に近づけることができる。同様の観点で、X電極2を構成する導電性細線21の蛇行幅が、Y電極3を構成する導電性細線31の蛇行幅よりも小さくなるように形成することは好ましいことである。
For example, zigzag elements or wavy elements are added to the conductive thin wires 21 and 31 constituting the X electrode 2 and the Y electrode 3, and the 1/2 cycle length of the conductive thin wires 21 constituting the X electrode 2 is It is preferable that the conductive fine wire 31 constituting the Y electrode 3 is formed so as to be longer than a half cycle length. Thereby, since the area occupied by the formation region of the conductive thin wire 21 constituting the X electrode 2 is smaller than that of the conductive thin wire 31 constituting the Y electrode 3, the visibility of the X electrode 2 is lowered and the Y electrode is reduced. 3 visibility can be approached. From the same point of view, it is preferable that the meandering width of the conductive fine wire 21 constituting the X electrode 2 is smaller than the meandering width of the conductive fine wire 31 constituting the Y electrode 3.
また、X電極2を構成する導電性細線21は、Y電極3を構成する導電性細線31よりもエッジが鮮明に認識され易いため、X電極2を構成する導電性細線21に波線状要素を付与して、Y電極3を構成する導電性細線31にジグザグ状要素を付与してエッジの視認性の差を減じることも好ましいことである。
In addition, since the conductive thin wire 21 constituting the X electrode 2 is more easily recognized by the edge than the conductive thin wire 31 constituting the Y electrode 3, a wavy element is provided on the conductive thin wire 21 constituting the X electrode 2. It is also preferable to provide a zigzag element to the conductive thin wire 31 constituting the Y electrode 3 to reduce the difference in edge visibility.
図7に示すように、1つのX電極2内において、導電性細線21間の少なくとも一部が導電性架橋線24で結線されていることは好ましいことである。ここでは、X電極2を構成する導電性細線21について説明するが、この説明はY電極3を構成する導電性細線31についても援用できる。
As shown in FIG. 7, it is preferable that at least a part between the conductive thin wires 21 is connected by a conductive bridge wire 24 in one X electrode 2. Here, the conductive thin wire 21 constituting the X electrode 2 will be described, but this description can also be applied to the conductive thin wire 31 constituting the Y electrode 3.
1つのX電極2を構成する導電性細線21間を導電性架橋線24で結線することにより、X電極2の導電性をより確実に確保し、タッチパネルセンサーの検出感度を更に向上できる。
By connecting the conductive thin wires 21 constituting one X electrode 2 with the conductive bridging wire 24, the conductivity of the X electrode 2 can be ensured more reliably, and the detection sensitivity of the touch panel sensor can be further improved.
導電性架橋線24の形成方法は格別限定されないが、導電性細線21を形成した後に、複数の導電性細線21に跨るように、例えばインクジェット法により導電性材料を含有するインクをドット状あるいは線状に付与して、これを乾燥させることにより形成することが好ましい。更に、導電性架橋線24が視認されることを防止する観点で、コーヒーステイン現象によって形成された導電性架橋線24を形成することは特に好ましい。図示の例では、コーヒーステイン現象によって形成された導電性細線のペアを導電性架橋線24、24として用いている。
The method for forming the conductive cross-linking line 24 is not particularly limited, but after forming the conductive thin line 21, the ink containing the conductive material is formed in dots or lines by, for example, an inkjet method so as to straddle the plurality of conductive thin lines 21. It is preferable to form it by giving it to the shape and drying it. Furthermore, it is particularly preferable to form the conductive cross-linked line 24 formed by the coffee stain phenomenon from the viewpoint of preventing the conductive cross-linked line 24 from being visually recognized. In the illustrated example, a pair of conductive thin wires formed by the coffee stain phenomenon is used as the conductive bridging wires 24 and 24.
図示の例では、1本の導電性架橋線24が、互いに隣接する2本の導電性細線21、21間を接続しているが、1本の導電性架橋線によって3本以上の導電性細線間を接続してもよい。
In the illustrated example, one conductive bridge line 24 connects two adjacent conductive thin lines 21 and 21, but three or more conductive thin lines are connected by one conductive bridge line. You may connect between.
更に図示の例では、集電線22に接続される導電性細線21の一端とは反対の他端に、1つのX電極2を構成する複数の導電性細線を互いに電気的に接続するように導電膜25が設けられている。これにより、X電極2の導電性をより確実に確保できる。導電膜25は、タッチパネルセンサーをデバイスに組み込んだ際に、画像表示枠の外に配置されることが好ましい。
Further, in the illustrated example, a plurality of conductive thin wires constituting one X electrode 2 are electrically connected to each other at the other end opposite to one end of the conductive thin wires 21 connected to the collector line 22. A membrane 25 is provided. Thereby, the conductivity of the X electrode 2 can be ensured more reliably. The conductive film 25 is preferably disposed outside the image display frame when the touch panel sensor is incorporated into the device.
X電極2及びY電極3の一方又は両方を構成する導電性細線21、31は、メッキにより形成された金属膜を備えることが好ましい。
It is preferable that the conductive thin wires 21 and 31 constituting one or both of the X electrode 2 and the Y electrode 3 include a metal film formed by plating.
メッキ方法は格別限定されないが、無電解メッキや電解メッキを好ましく例示でき、特に電解メッキであることが好ましい。導電性細線の導電性を利用して好適な電解メッキを施すことができる。
The plating method is not particularly limited, but electroless plating and electrolytic plating can be preferably exemplified, and electrolytic plating is particularly preferable. Suitable electroplating can be performed using the conductivity of the conductive thin wire.
メッキ金属は格別限定されないが、例えば銀、銅、ニッケル等を好ましく例示できる。導電性細線に対して、メッキ金属が異なる複数のメッキ処理を施すことも好ましい。即ち、導電性細線に複数の金属層を積層することは好ましいことである。例えば、銀からなる導電性細線に対して、先ず電解銅メッキを施して銅膜を形成し、次いで電解ニッケルメッキを施してニッケル層を形成することにより、導電性細線に高い導電性と耐久性を付与できる。
Although the plating metal is not particularly limited, for example, silver, copper, nickel and the like can be preferably exemplified. It is also preferable to apply a plurality of plating processes with different plating metals to the conductive thin wires. That is, it is preferable to laminate a plurality of metal layers on the conductive thin wire. For example, a conductive thin wire made of silver is first subjected to electrolytic copper plating to form a copper film, and then subjected to electrolytic nickel plating to form a nickel layer, so that the conductive thin wire has high conductivity and durability. Can be granted.
以上の説明では、非直線性の導電性細線がジグザグ状要素又は波線状要素からなる場合について主に示したが、これらに限定されるものではなく、非直線性の導電性細線の一端から他端までを最短で結ぶ方向に対して傾斜する傾斜線要素からなるものであれば好ましく用いることができる。上述したように、傾斜線要素は、直線又は曲線により構成することができる。更に複数の傾斜線要素を組み合わせることで、例えばジグザク状要素や波線状要素のような該導電性細線の長手方向に対して左右に繰り返し蛇行する要素を構成することができる。
In the above description, the case where the non-linear conductive thin wire is mainly composed of the zigzag element or the wavy line element has been mainly shown, but the present invention is not limited to this, and the other end of the non-linear conductive thin wire is changed to the other. Any material can be preferably used as long as it is composed of inclined line elements that are inclined with respect to the direction connecting the ends to the shortest. As described above, the inclined line element can be constituted by a straight line or a curved line. Further, by combining a plurality of inclined line elements, for example, an element that repeatedly meanders to the left and right with respect to the longitudinal direction of the conductive thin line, such as a zigzag element or a wavy line element, can be configured.
モアレ防止の観点で、1本の非直線性の導電性細線を構成する線の長さに占める傾斜線要素の長さの割合が大きいほど好ましく、好ましくは50%以上、より好ましくは80%以上、最も好ましくは100%が傾斜線要素によって構成されることが好ましい。以上に図示したジグザグ状要素や波線状要素の例のように、非直線性の導電性細線の全長が傾斜線要素によって構成されることは特に好ましい。
From the viewpoint of preventing moire, it is preferable that the ratio of the length of the inclined line element to the length of the line constituting one non-linear conductive thin wire is larger, preferably 50% or more, more preferably 80% or more. , Most preferably 100% is constituted by inclined line elements. As in the examples of zigzag elements and wavy line elements illustrated above, it is particularly preferable that the entire length of the non-linear conductive thin wire is constituted by the inclined line element.
以上に図示したジグザグ状要素や波線状要素の例のように、X電極を構成する非直線性の導電性細線は、該非直線性の導電性細線全体としての形成方向(あるいは該非直線性の導電性細線の一端から他端を直線的に結ぶ方向)が、該X電極の長手方向に沿うように形成されることが好ましい。このとき、該非直線性の導電性細線に含まれる傾斜線要素は、X電極の長手方向に対して傾斜していることが好ましく、更にY電極の長手方向に対しても傾斜していることが好ましい。これによりモアレ防止の効果が顕著になる。
As in the examples of the zigzag element and the wavy element illustrated above, the non-linear conductive fine wire constituting the X electrode is formed in the formation direction of the non-linear conductive thin wire (or the non-linear conductive wire). The direction in which the other end of the thin thin wire is linearly connected to the other end is preferably formed along the longitudinal direction of the X electrode. At this time, the inclined line element included in the non-linear conductive thin wire is preferably inclined with respect to the longitudinal direction of the X electrode, and further inclined with respect to the longitudinal direction of the Y electrode. preferable. Thereby, the effect of preventing moire becomes remarkable.
同様に、Y電極を構成する非直線性の導電性細線は、該非直線性の導電性細線全体としての形成方向(あるいは該非直線性の導電性細線の一端から他端を直線的に結ぶ方向)が、該Y電極の長手方向に沿うように形成されることが好ましい。このとき、該非直線性の導電性細線に含まれる傾斜線要素は、Y電極の長手方向に対して傾斜していることが好ましく、更にX電極の長手方向に対しても傾斜していることが好ましい。これによりモアレ防止の効果が顕著になる。
Similarly, the non-linear conductive fine wire constituting the Y electrode is formed as the whole non-linear conductive thin wire (or the direction in which one end of the non-linear conductive thin wire is linearly connected). Is preferably formed along the longitudinal direction of the Y electrode. At this time, the inclined line element included in the non-linear conductive thin wire is preferably inclined with respect to the longitudinal direction of the Y electrode, and further inclined with respect to the longitudinal direction of the X electrode. preferable. Thereby, the effect of preventing moire becomes remarkable.
更に、X電極を構成する非直線性の導電性細線の傾斜線要素と、Y電極を構成する非直線性の導電性細線の傾斜線要素とは、互いに交差する方向に形成されていることが好ましい。これにより骨見え防止の効果が顕著になる。
Further, the non-linear conductive thin wire slant line element constituting the X electrode and the non-linear thin conductive wire slant line element constituting the Y electrode may be formed in a direction crossing each other. preferable. Thereby, the effect of preventing the appearance of bone becomes remarkable.
X電極及びY電極を構成する導電性細線の少なくとも一部が非直線性の導電性細線であればよいが、導電性細線の全部が非直線性の導電性細線であることにより本発明の効果がより顕著になる。
It is sufficient that at least a part of the conductive thin wires constituting the X electrode and the Y electrode are non-linear conductive thin wires. However, the effect of the present invention is obtained when all the conductive thin wires are non-linear conductive thin wires. Becomes more prominent.
<導電性材料を含むライン状液体>
ライン状液体に含有される導電性材料としては、例えば、導電性微粒子、導電性ポリマー等を好ましく例示できる。 <Linear liquid containing conductive material>
Preferred examples of the conductive material contained in the line liquid include conductive fine particles and conductive polymers.
ライン状液体に含有される導電性材料としては、例えば、導電性微粒子、導電性ポリマー等を好ましく例示できる。 <Linear liquid containing conductive material>
Preferred examples of the conductive material contained in the line liquid include conductive fine particles and conductive polymers.
導電性微粒子としては格別限定されないが、Au、Pt、Ag、Cu、Ni、Cr、Rh、Pd、Zn、Co、Mo、Ru、W、Os、Ir、Fe、Mn、Ge、Sn、Ga、In等の微粒子を好ましく例示でき、中でも、Au、Ag、Cuのような金属微粒子を用いると、電気抵抗が低く、且つ腐食に強い細線を形成することができるので好ましい。コスト及び安定性の観点から、Agを含む金属微粒子が最も好ましい。これらの金属微粒子の平均粒子径は、好ましくは1~100nmの範囲、より好ましくは3~50nmの範囲である。
The conductive fine particles are not particularly limited, but Au, Pt, Ag, Cu, Ni, Cr, Rh, Pd, Zn, Co, Mo, Ru, W, Os, Ir, Fe, Mn, Ge, Sn, Ga, Fine particles such as In can be preferably exemplified, and among them, it is preferable to use fine metal particles such as Au, Ag, and Cu because they can form thin wires having low electric resistance and strong against corrosion. From the viewpoint of cost and stability, metal fine particles containing Ag are most preferable. The average particle diameter of these metal fine particles is preferably in the range of 1 to 100 nm, more preferably in the range of 3 to 50 nm.
また、導電性微粒子として、カーボン微粒子を用いることも好ましい。カーボン微粒子としては、グラファイト微粒子、カーボンナノチューブ、フラーレン等を好ましく例示できる。
It is also preferable to use carbon fine particles as the conductive fine particles. Preferable examples of the carbon fine particles include graphite fine particles, carbon nanotubes, fullerenes and the like.
導電性ポリマーとしては格別限定されないが、π共役系導電性高分子を好ましく挙げることができる。
The conductive polymer is not particularly limited, but a π-conjugated conductive polymer can be preferably exemplified.
π共役系導電性高分子としては、例えば、ポリチオフェン類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレン類、ポリパラフェニレンビニレン類、ポリパラフェニレンサルファイド類、ポリアズレン類、ポリイソチアナフテン類、ポリチアジル類等の鎖状導電性ポリマーを利用することができる。中でも、高い導電性が得られる点で、ポリチオフェン類やポリアニリン類が好ましい。ポリエチレンジオキシチオフェンであることが最も好ましい。
Examples of the π-conjugated conductive polymer include polythiophenes, polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans, polyparaphenylenes, polyparaphenylene vinylenes, polyparaphenylene sulfide. Chain conductive polymers such as polyazenes, polyazulenes, polyisothianaphthenes, and polythiazyl compounds can be used. Among these, polythiophenes and polyanilines are preferable in that high conductivity can be obtained. Most preferred is polyethylene dioxythiophene.
導電性ポリマーは、より好ましくは、上述したπ共役系導電性高分子とポリアニオンとを含んで成ることである。こうした導電性ポリマーは、π共役系導電性高分子を形成する前駆体モノマーを、適切な酸化剤と酸化触媒と、ポリアニオンの存在下で化学酸化重合することによって容易に製造できる。
The conductive polymer more preferably comprises the above-described π-conjugated conductive polymer and polyanion. Such a conductive polymer can be easily produced by chemical oxidative polymerization of a precursor monomer that forms a π-conjugated conductive polymer in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a polyanion.
導電性ポリマーは市販の材料も好ましく利用できる。例えば、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸からなる導電性ポリマー(PEDOT/PSSと略す)が、H.C.Starck社から「CLEVIOSシリーズ」として、Aldrich社から「PEDOT-PASS483095、560598」として、Nagase Chemtex社から「Denatronシリーズ」として市販されている。また、ポリアニリンが、日産化学社から「ORMECONシリーズ」として市販されている。
A commercially available material can be preferably used as the conductive polymer. For example, a conductive polymer (abbreviated as PEDOT / PSS) made of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid is used in H.264. C. It is commercially available from Starck as the “CLEVIOS series”, from Aldrich as “PEDOT-PASS 483095, 560598” and from Nagase Chemtex as the “Dentron series”. Polyaniline is also commercially available from Nissan Chemical Company as “ORMECON series”.
透明基材上に付与されるライン状液体中における導電性材料の含有率は、ライン状液体の全量に対して0.01重量%以上1重量%以下の範囲であることが好ましい。含有率は、ライン状液体が透明基材上に付与された直後の乾燥される前の値である。導電性材料の含有率が、0.01重量%以上1重量%以下の範囲であることにより、コーヒーステイン現象による細線形成が更に安定化される。
The content of the conductive material in the line liquid provided on the transparent substrate is preferably in the range of 0.01% by weight to 1% by weight with respect to the total amount of the line liquid. The content rate is a value before being dried immediately after the linear liquid is applied on the transparent substrate. When the content of the conductive material is in the range of 0.01% by weight to 1% by weight, the formation of fine lines due to the coffee stain phenomenon is further stabilized.
導電性材料を含有させる液体(インク)としては、例えば水や有機溶剤等の1種又は2種以上を組み合わせて用いることができる。有機溶剤は、格別限定されないが、例えば、1,2-ヘキサンジオール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコールなどのアルコール類、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテルなどのエーテル類等を例示できる。
As the liquid (ink) containing the conductive material, for example, one kind or a combination of two or more kinds such as water and an organic solvent can be used. The organic solvent is not particularly limited. For example, alcohols such as 1,2-hexanediol, 2-methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol, propylene glycol, Examples include ethers such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, and dipropylene glycol monoethyl ether.
また、導電性材料を含有させる液体(インク)は、本発明の効果を損なわない範囲で、界面活性剤など種々の添加剤を含んでもよい。界面活性剤を用いることで、液滴吐出装置を用いて透明基材上にライン状液体を形成するような場合などに、表面張力等を調整して吐出の安定化を図ること等が可能になる。界面活性剤としては、格別限定されないが、シリコン系界面活性剤等を用いることができる。シリコン系界面活性剤とはジメチルポリシロキサンの側鎖または末端をポリエーテル変性したものであり、例えば、信越化学工業製の「KF-351A」、「KF-642」やビッグケミー製の「BYK347」、「BYK348」などが市販されている。界面活性剤の含有率は、液体の全量に対して1重量%以下であることが好ましい。
In addition, the liquid (ink) containing the conductive material may contain various additives such as a surfactant as long as the effects of the present invention are not impaired. By using a surfactant, it is possible to stabilize the discharge by adjusting the surface tension etc. when forming a line liquid on a transparent substrate using a droplet discharge device. Become. The surfactant is not particularly limited, but a silicon surfactant or the like can be used. Silicon-based surfactants are those in which the side chain or terminal of dimethylpolysiloxane is polyether-modified, such as “KF-351A”, “KF-642” manufactured by Shin-Etsu Chemical Co., “BYK347” manufactured by Big Chemie, “BYK348” and the like are commercially available. The content of the surfactant is preferably 1% by weight or less with respect to the total amount of the liquid.
<細線ペアの形状>
図8は、1本のライン状液体から形成された導電性細線21、21からなる細線ペア23を模式的に示した斜視図である。なお、以下の説明では主にX電極2を構成する導電性細線21について説明するが、この説明はY電極3を構成する導電性細線31にも援用することができる。図8は、非直線性の導電性細線21、21の細線ペア23の一部を示すもので、便宜上直線状に示されているにすぎない。 <Shape of fine wire pair>
FIG. 8 is a perspective view schematically showing athin wire pair 23 composed of conductive thin wires 21 and 21 formed from one line-shaped liquid. In the following description, the conductive thin wire 21 constituting the X electrode 2 will be mainly described, but this description can also be applied to the conductive thin wire 31 constituting the Y electrode 3. FIG. 8 shows a part of the thin wire pair 23 of the non-linear conductive thin wires 21 and 21 and is merely shown in a straight line for convenience.
図8は、1本のライン状液体から形成された導電性細線21、21からなる細線ペア23を模式的に示した斜視図である。なお、以下の説明では主にX電極2を構成する導電性細線21について説明するが、この説明はY電極3を構成する導電性細線31にも援用することができる。図8は、非直線性の導電性細線21、21の細線ペア23の一部を示すもので、便宜上直線状に示されているにすぎない。 <Shape of fine wire pair>
FIG. 8 is a perspective view schematically showing a
導電性細線21、21の配置間隔Iの範囲は格別限定されず、例えば、10μm以上~1000μm以下の範囲とすることが好ましく、10μm以上~500μm以下の範囲とすることが更に好ましく、10μm以上300μm以下の範囲とすることが最も好ましい。なお、導電性細線21、21の配置間隔Iとは、導電性細線21、21の各最大突出部間の距離であり、ライン状液体の線幅に対応して定まる。配置間隔Iは、例えば、50μm以上、100μm以上、200μm以上、300μm以上、400μm以上、500μm以上、更には1mm以上という大きい配置間隔であってもよい。配置間隔Iの上限は格別限定されないが、5mm以下であることが好ましく、1mm以下であることが好ましい。なお、並設された複数の導電性細線21の一部を除去することによって、コーヒーステイン現象によって形成される細線ペア23の配置間隔Iよりも大きい間隔で導電性細線21を並設することも好ましいことである。
The range of the arrangement interval I of the conductive thin wires 21 and 21 is not particularly limited, and is preferably in the range of 10 μm to 1000 μm, more preferably in the range of 10 μm to 500 μm, and more preferably in the range of 10 μm to 300 μm. The following range is most preferable. In addition, the arrangement | positioning space | interval I of the electroconductive fine wires 21 and 21 is a distance between each largest protrusion part of the electroconductive thin wires 21 and 21, and is decided corresponding to the line | wire width of a line-shaped liquid. The arrangement interval I may be, for example, a large arrangement interval of 50 μm or more, 100 μm or more, 200 μm or more, 300 μm or more, 400 μm or more, 500 μm or more, or even 1 mm or more. Although the upper limit of the arrangement | positioning space | interval I is not specifically limited, It is preferable that it is 5 mm or less, and it is preferable that it is 1 mm or less. In addition, by removing a part of the plurality of conductive thin wires 21 arranged in parallel, the conductive thin wires 21 may be arranged in parallel at an interval larger than the arrangement interval I of the thin wire pairs 23 formed by the coffee stain phenomenon. This is preferable.
細線ペア23を構成する導電性細線21、21は、必ずしも互いに完全に独立した島状である必要はない。図示したように、導電性細線21、21は、該導電性細線21、21間に亘って、該導電性細線21、21の高さよりも低い高さで形成された薄膜部20によって接続された連続体として形成されることも好ましいことである。細線ペア23の細線化を更に向上する観点から、導電性細線21、21間において機能性材料の厚みが最薄となる最薄部分の高さZ、具体的には薄膜部20の最薄部分の高さZが10nm以下の範囲であることが好ましい。最も好ましいのは、透明性と安定性のバランスの両立を図るために、0<Z≦10nmの範囲で、薄膜部20を備えることである。
The conductive fine wires 21 and 21 constituting the fine wire pair 23 do not necessarily have to be islands completely independent from each other. As shown in the drawing, the conductive thin wires 21 and 21 are connected by the thin film portion 20 formed between the conductive thin wires 21 and 21 at a height lower than the height of the conductive thin wires 21 and 21. It is also preferable that it is formed as a continuous body. From the viewpoint of further improving the thinning of the thin wire pair 23, the height Z of the thinnest portion where the thickness of the functional material is the thinnest between the conductive thin wires 21, 21, specifically, the thinnest portion of the thin film portion 20 The height Z is preferably in the range of 10 nm or less. Most preferably, in order to achieve a balance between transparency and stability, the thin film portion 20 is provided in the range of 0 <Z ≦ 10 nm.
細線ペア23の導電性細線21、21の線幅W1、W2は、各々10μm以下であることが好ましい。10μm以下であれば、通常視認できないレベルとなるので、透明性を向上する観点からより好ましい。各導電性細線21、21の安定性も考慮すると、各導電性細線21、21の線幅W1、W2は、各々2μm以上10μm以下の範囲であることが好ましい。なお、導電性細線21、21の幅W1、W2とは、該導電性細線21、21間において機能性材料の厚みが最薄となる最薄部分の高さをZとし、更に該Zからの導電性細線21、21の突出高さをY1、Y2としたときに、Y1、Y2の半分の高さにおける導電性細線21、21の幅とする。例えば、細線ペア23が上述した薄膜部20を有する場合は、該薄膜部20における最薄部分の高さをZとすることができる。なお、各導電性細線21、21間における機能性材料の最薄部分の高さが0であるときは、導電性細線21、21の線幅W1、W2は、透明基材1表面からの導電性細線21、21の高さH1、H2の半分の高さにおける導電性細線21、21の幅とする。
The line widths W1 and W2 of the conductive thin wires 21 and 21 of the fine wire pair 23 are preferably 10 μm or less, respectively. If it is 10 micrometers or less, since it will be a level which cannot be visually recognized normally, it is more preferable from a viewpoint of improving transparency. Considering the stability of each conductive thin wire 21, 21, the width W1, W2 of each conductive thin wire 21, 21 is preferably in the range of 2 μm or more and 10 μm or less. The widths W1 and W2 of the thin conductive wires 21 and 21 are defined as Z, which is the height of the thinnest portion where the thickness of the functional material is the thinnest between the thin conductive wires 21 and 21. When the projecting heights of the conductive thin wires 21 and 21 are Y1 and Y2, the width of the conductive thin wires 21 and 21 at half the height of Y1 and Y2 is set. For example, when the thin wire pair 23 has the thin film portion 20 described above, the height of the thinnest portion in the thin film portion 20 can be set to Z. In addition, when the height of the thinnest part of the functional material between the conductive thin wires 21 and 21 is 0, the line widths W1 and W2 of the conductive thin wires 21 and 21 are conductive from the surface of the transparent substrate 1. The widths of the conductive thin wires 21 and 21 at half the heights H1 and H2 of the thin conductive wires 21 and 21 are used.
細線ペア23を構成する導電性細線21、21の線幅W1、W2は、上述した通り極めて細いものであるため、断面積を確保して低抵抗化を図る観点で、透明基材1表面からの導電性細線21、21の高さH1、H2は高い方が望ましい。具体的には、導電性細線21、21の高さH1、H2は、50nm以上5μm以下の範囲であることが好ましい。更に、細線ペア23の安定性を向上する観点から、H1/W1比、H2/W2比は、各々0.01以上1以下の範囲であることが好ましい。
Since the line widths W1 and W2 of the conductive thin wires 21 and 21 constituting the thin wire pair 23 are extremely thin as described above, from the viewpoint of securing a cross-sectional area and reducing resistance, from the surface of the transparent substrate 1 It is desirable that the heights H1 and H2 of the conductive thin wires 21 and 21 be higher. Specifically, the heights H1 and H2 of the conductive thin wires 21 and 21 are preferably in the range of 50 nm to 5 μm. Furthermore, from the viewpoint of improving the stability of the thin wire pair 23, the H1 / W1 ratio and the H2 / W2 ratio are preferably in the range of 0.01 or more and 1 or less, respectively.
更に、細線ペア23の更なる細線化向上のために、H1/Z比、H2/Z比は、各々5以上であることが好ましく、10以上であることがより好ましく、20以上であることが特に好ましい。
Furthermore, in order to further improve the thinning of the thin wire pair 23, the H1 / Z ratio and the H2 / Z ratio are each preferably 5 or more, more preferably 10 or more, and preferably 20 or more. Particularly preferred.
<透明基材>
透明基材1は格別限定されないが、例えばガラス、プラスチックなどを挙げることができ、中でもプラスチックが好ましい。プラスチックとしては、ポリエチレンテレフタレート(略称PET)、ポリブチレンテレフタレート、ポリエチレン、ポリプロピレン、アクリル、ポリエステル、ポリアミド、ポリカーボネート等が好適である。 <Transparent substrate>
Thetransparent substrate 1 is not particularly limited, and examples thereof include glass and plastic. Among these, plastic is preferable. As the plastic, polyethylene terephthalate (abbreviated as PET), polybutylene terephthalate, polyethylene, polypropylene, acrylic, polyester, polyamide, polycarbonate, and the like are preferable.
透明基材1は格別限定されないが、例えばガラス、プラスチックなどを挙げることができ、中でもプラスチックが好ましい。プラスチックとしては、ポリエチレンテレフタレート(略称PET)、ポリブチレンテレフタレート、ポリエチレン、ポリプロピレン、アクリル、ポリエステル、ポリアミド、ポリカーボネート等が好適である。 <Transparent substrate>
The
従来、タッチパネルセンサーのX電極及びY電極として、スパッタリング法で製膜されたインジウム-スズの複合酸化物(ITO)からなる透明導電膜が用いられてきたが、結晶性の高い膜を得るためには高温処理が必要であるため、基材の汎用性が低く、特にプラスチックを用いることは困難であった。これに対して、本発明は、基材の汎用性が高く、プラスチックからなる基材に対しても好適に透明導電膜を形成できる。そのため、プラスチックの可撓性を生かして、可撓性を有するタッチパネルセンサーを好適に製造できる。可撓性を有するタッチパネルセンサーは、立体的な構造物、人体、動物体などの立体形状に合わせて湾曲させて用いることができる。また丸めてコンパクト化できるため収納にも有利である。そのため、例えば、携帯端末、特にウェアラブル端末などに搭載されるタッチパネルセンサーとしても好適に用いることができる。
Conventionally, a transparent conductive film made of an indium-tin composite oxide (ITO) formed by a sputtering method has been used as the X electrode and the Y electrode of the touch panel sensor. In order to obtain a film having high crystallinity. Since a high temperature treatment is required, the versatility of the base material is low, and it was particularly difficult to use plastic. On the other hand, the present invention has high versatility of the base material, and can form a transparent conductive film suitably for a base material made of plastic. Therefore, the touch panel sensor which has flexibility can be manufactured suitably using the flexibility of plastic. The touch panel sensor having flexibility can be used by being curved in accordance with a three-dimensional shape such as a three-dimensional structure, a human body, or an animal body. Moreover, since it can be rounded and made compact, it is advantageous for storage. Therefore, for example, it can be suitably used as a touch panel sensor mounted on a portable terminal, particularly a wearable terminal.
透明基材1は単層構造であっても積層構造であってもよい。透明基材1の層構成について図9を参照して説明する。
The transparent substrate 1 may have a single layer structure or a laminated structure. The layer structure of the transparent substrate 1 will be described with reference to FIG.
図9(a)は透明基材1が単層構造である場合の一例を示している。この場合、当該透明基材1の一面にX電極2を形成し、次いで他面にY電極3を形成するか、あるいは、当該透明基材1の一面にY電極3を形成し、次いで他面にX電極2を形成することにより、タッチパネルセンサーが得られる。即ち、一層の透明基材の両面に、X電極2とY電極3が各々形成されたタッチパネルセンサーが得られる。
FIG. 9A shows an example in which the transparent substrate 1 has a single layer structure. In this case, the X electrode 2 is formed on one surface of the transparent substrate 1 and then the Y electrode 3 is formed on the other surface, or the Y electrode 3 is formed on one surface of the transparent substrate 1 and then the other surface. By forming the X electrode 2 on the touch panel sensor, a touch panel sensor is obtained. That is, a touch panel sensor in which the X electrode 2 and the Y electrode 3 are formed on both surfaces of a single transparent substrate is obtained.
図9(b)は透明基材2が積層構造である場合の一例を示している。かかる積層構造は、2枚の透明基材11、11と、該透明基材11、11間に配された接着フィルム12とから構成されている。かかる積層構造を形成する際には、X電極2を第1透明基材11上に形成し、Y電極3を第2透明基材11上に形成した後、これら第1透明基材11及び第2透明基材11を貼り合わせることによりタッチパネルセンサーが得られる。貼り合わせに際しては、図示するように、透明な接着フィルム12を介在させる等により、接着することが好ましい。
FIG. 9B shows an example when the transparent substrate 2 has a laminated structure. Such a laminated structure is composed of two transparent substrates 11 and 11 and an adhesive film 12 disposed between the transparent substrates 11 and 11. In forming such a laminated structure, the X electrode 2 is formed on the first transparent base material 11 and the Y electrode 3 is formed on the second transparent base material 11. 2 A touch panel sensor is obtained by bonding the transparent base material 11 together. At the time of bonding, as shown in the drawing, it is preferable to bond them by interposing a transparent adhesive film 12 or the like.
積層構造を用いる場合は、同一基材の両面に電極形成する必要が生じる単層構造の場合と比較して、比較的容易に製造できる利点がある。単層構造を用いる場合も、積層構造を用いる場合も、非直線性の導電性細線を用いることにより骨見えが好適に防止されるため、両面間で導電性細線を精密に位置合わせする必要がなく、容易に製造できる効果が得られる。
When using a laminated structure, there is an advantage that it can be manufactured relatively easily as compared with a single-layer structure in which electrodes need to be formed on both sides of the same substrate. In both cases of using a single layer structure or a laminated structure, the use of non-linear conductive fine wires can prevent the appearance of bones appropriately. Therefore, it is necessary to precisely align the conductive thin wires between both surfaces. The effect that it can be manufactured easily is obtained.
以上の説明において、一つの態様について説明された構成は、他の態様に適宜適用することができる。
In the above description, the configuration described for one aspect can be appropriately applied to other aspects.
以下に、本発明の実施例について説明するが、本発明はかかる実施例により限定されない。
Hereinafter, examples of the present invention will be described, but the present invention is not limited to the examples.
(実施例1)
1.タッチパネルセンサーの作製
(1)試料1の作製
インクジェットヘッド(コニカミノルタ社製、ピエゾヘッド(標準液滴量42pl))を用いて、PETフィルム(厚さ50μm)上に、銀ナノ粒子含有インクを吐出して、該フィルム上にジグザグ状のライン状液体を複数形成した。ライン状液体を乾燥して、銀ナノ粒子を該ライン状液体の両縁に選択的に堆積させ、線幅5μm、細線間隔(γ)200μmで、ジグザグ状要素からなる非直線性の導電性細線を複数形成した。形成された導電性細線のパターンを図10(a)に示した。 Example 1
1. Production of touch panel sensor (1) Production ofsample 1 Using an inkjet head (Konica Minolta, piezo head (standard droplet volume 42 pl)), silver nanoparticle-containing ink is ejected onto a PET film (thickness 50 μm). A plurality of zigzag line-shaped liquids were formed on the film. The line-shaped liquid is dried, silver nanoparticles are selectively deposited on both edges of the line-shaped liquid, and a non-linear conductive thin line consisting of zigzag-like elements with a line width of 5 μm and a fine line interval (γ) of 200 μm. A plurality of was formed. The pattern of the formed conductive fine wire is shown in FIG.
1.タッチパネルセンサーの作製
(1)試料1の作製
インクジェットヘッド(コニカミノルタ社製、ピエゾヘッド(標準液滴量42pl))を用いて、PETフィルム(厚さ50μm)上に、銀ナノ粒子含有インクを吐出して、該フィルム上にジグザグ状のライン状液体を複数形成した。ライン状液体を乾燥して、銀ナノ粒子を該ライン状液体の両縁に選択的に堆積させ、線幅5μm、細線間隔(γ)200μmで、ジグザグ状要素からなる非直線性の導電性細線を複数形成した。形成された導電性細線のパターンを図10(a)に示した。 Example 1
1. Production of touch panel sensor (1) Production of
上記と同様にして、別のPETフィルム上に、線幅5μm、細線間隔(γ)200μmで、ジグザグ状要素からなる非直線性の導電性細線を複数形成した。形成された導電性細線のパターンを図10(b)に示した。
In the same manner as described above, a plurality of non-linear conductive thin wires composed of zigzag elements with a line width of 5 μm and a fine wire interval (γ) of 200 μm were formed on another PET film. The pattern of the formed conductive fine wire is shown in FIG.
導電性細線の形成方向が90°で交差するように、2枚のフィルムを導電性細線形成面が表側に配置されるように重ねて貼り合わせて試料1とした。貼り合わせ後の導電性パターンを図10(c)に示した。
Sample 1 was obtained by stacking and bonding the two films so that the conductive fine wire forming surface was arranged on the front side so that the formation direction of the conductive fine wires intersected at 90 °. The conductive pattern after bonding is shown in FIG.
(2)試料2の作製
試料1の作製において、各フィルムに、ライン状液体を一直線状に付与して、一直線状の導電性細線からなるストライプ状のパターンを形成して試料2を得た。貼り合わせ前の各フィルムに形成された導電性細線のパターンを図11(a)及び図11(b)に示した。貼り合わせ後の導電性パターンを図11(c)に示した。ここで、導電性細線の線幅は、5μm、細線間隔γは200μmであり、試料1と同様である。 (2) Preparation ofSample 2 In preparation of Sample 1, a line-like liquid was applied to each film in a straight line to form a stripe-shaped pattern composed of straight conductive thin wires, thereby obtaining Sample 2. The pattern of the electroconductive fine wire formed in each film before bonding is shown in Fig.11 (a) and FIG.11 (b). The conductive pattern after pasting is shown in FIG. Here, the line width of the conductive thin wire is 5 μm, and the thin wire interval γ is 200 μm, which is the same as that of the sample 1.
試料1の作製において、各フィルムに、ライン状液体を一直線状に付与して、一直線状の導電性細線からなるストライプ状のパターンを形成して試料2を得た。貼り合わせ前の各フィルムに形成された導電性細線のパターンを図11(a)及び図11(b)に示した。貼り合わせ後の導電性パターンを図11(c)に示した。ここで、導電性細線の線幅は、5μm、細線間隔γは200μmであり、試料1と同様である。 (2) Preparation of
(3)試料3の作製
試料1の作製において、各フィルムに、ライン状液体を一直線状に付与して、一直線状の導電性細線からなるストライプ状のパターンを形成した後、これと交差するように更なるライン状液体を一直線状に付与して、一直線状の導電性細線からなるストライプ状のパターンを形成し、全体として格子状のパターンを形成して試料3を得た。貼り合わせ前の各フィルムに形成された導電性細線のパターンを図12(a)及び図12(b)に示した。貼り合わせ後の導電性パターンを図12(c)に示した。ここで、導電性細線の線幅は、5μm、細線間隔γは200μmであり、試料1と同様である。 (3) Preparation ofSample 3 In the preparation of Sample 1, a linear liquid was applied to each film in a straight line to form a stripe pattern composed of straight conductive thin wires, and then crossed with this. Further, a line-like liquid was applied in a straight line to form a stripe-like pattern composed of straight conductive thin wires, and a lattice-like pattern was formed as a whole to obtain Sample 3. The pattern of the electroconductive fine wire formed in each film before bonding is shown to Fig.12 (a) and FIG.12 (b). The conductive pattern after pasting is shown in FIG. Here, the line width of the conductive thin wire is 5 μm, and the thin wire interval γ is 200 μm, which is the same as that of the sample 1.
試料1の作製において、各フィルムに、ライン状液体を一直線状に付与して、一直線状の導電性細線からなるストライプ状のパターンを形成した後、これと交差するように更なるライン状液体を一直線状に付与して、一直線状の導電性細線からなるストライプ状のパターンを形成し、全体として格子状のパターンを形成して試料3を得た。貼り合わせ前の各フィルムに形成された導電性細線のパターンを図12(a)及び図12(b)に示した。貼り合わせ後の導電性パターンを図12(c)に示した。ここで、導電性細線の線幅は、5μm、細線間隔γは200μmであり、試料1と同様である。 (3) Preparation of
2.評価方法
(1)透過率
試料1~3について透過率を測定した。透過率は、東京電色社製「AUTOMATIC
HAZEMETER(MODEL TC-HIIIDP)」を用いて測定した全光線透過率(%)である。なお、パターンのない基材(フィルム)を用いて補正を行い、作成したパターンの全光線透過率として測定した。 2. Evaluation Method (1) Transmittance The transmittance ofsamples 1 to 3 was measured. The transmittance is “AUTOMATIC” manufactured by Tokyo Denshoku Co., Ltd.
It is the total light transmittance (%) measured using “HAZEMETER (MODEL TC-HIIIDP)”. In addition, it corrected using the base material (film) without a pattern, and measured it as the total light transmittance of the created pattern.
(1)透過率
試料1~3について透過率を測定した。透過率は、東京電色社製「AUTOMATIC
HAZEMETER(MODEL TC-HIIIDP)」を用いて測定した全光線透過率(%)である。なお、パターンのない基材(フィルム)を用いて補正を行い、作成したパターンの全光線透過率として測定した。 2. Evaluation Method (1) Transmittance The transmittance of
It is the total light transmittance (%) measured using “HAZEMETER (MODEL TC-HIIIDP)”. In addition, it corrected using the base material (film) without a pattern, and measured it as the total light transmittance of the created pattern.
(2)骨見え防止性
試料1~3として各々10個の試料を作製し、下記評価基準で骨見え防止性を評価し、10個の平均値を得た。
<評価基準>
5:骨見えがない
4:観察角度によりごく僅かに骨見えする
3:僅かに骨見えする
2:骨見えが多い
1:骨見えが非常に多い
上記の評価基準において数字が大きいほど骨見え防止性が良好である。 (2) Bone visibility prevention 10 samples were prepared for each ofsamples 1 to 3, and the bone visibility prevention was evaluated according to the following evaluation criteria, and an average of 10 samples was obtained.
<Evaluation criteria>
5: Bone is not visible 4: Bone is slightly visible depending on the observation angle 3: Bone is slightly visible 2: Bone is visible 1: Bone is very visible In the above evaluation criteria, the larger the number, the more the bone is visible Good properties.
試料1~3として各々10個の試料を作製し、下記評価基準で骨見え防止性を評価し、10個の平均値を得た。
<評価基準>
5:骨見えがない
4:観察角度によりごく僅かに骨見えする
3:僅かに骨見えする
2:骨見えが多い
1:骨見えが非常に多い
上記の評価基準において数字が大きいほど骨見え防止性が良好である。 (2) Bone visibility prevention 10 samples were prepared for each of
<Evaluation criteria>
5: Bone is not visible 4: Bone is slightly visible depending on the observation angle 3: Bone is slightly visible 2: Bone is visible 1: Bone is very visible In the above evaluation criteria, the larger the number, the more the bone is visible Good properties.
(3)モアレ防止性
上記「(2)骨見え防止性」の評価において試料1~3として作製された各々10個の試料のうち上位評価が得られた試料を選抜し、該試料を3種の液晶ディスプレイ(LCD)パネル上に重ね、下記評価基準でモアレ防止性を評価した。
<評価基準>
5:モアレの発生がない
4:モアレがごく僅かに発生する
3:1~2種のパネルでモアレが発生する
2:全種のパネルでモアレが発生している
1:全種のパネルでモアレが激しく発生している
上記の評価基準において数字が大きいほどモアレ防止性が良好である。 (3) Moire prevention property In the evaluation of the above “(2) Bone visibility prevention”, samples having a higher evaluation were selected from 10 samples prepared assamples 1 to 3, and three types of the samples were selected. The liquid crystal display (LCD) panel was stacked and the moire prevention property was evaluated according to the following evaluation criteria.
<Evaluation criteria>
5: No moiré occurs 4: Very little moiré occurs 3: Moire occurs in 1 to 2 types of panels 2: Moire occurs in all types of panels 1: Moire occurs in all types of panels In the above evaluation criteria, the larger the number, the better the moire prevention.
上記「(2)骨見え防止性」の評価において試料1~3として作製された各々10個の試料のうち上位評価が得られた試料を選抜し、該試料を3種の液晶ディスプレイ(LCD)パネル上に重ね、下記評価基準でモアレ防止性を評価した。
<評価基準>
5:モアレの発生がない
4:モアレがごく僅かに発生する
3:1~2種のパネルでモアレが発生する
2:全種のパネルでモアレが発生している
1:全種のパネルでモアレが激しく発生している
上記の評価基準において数字が大きいほどモアレ防止性が良好である。 (3) Moire prevention property In the evaluation of the above “(2) Bone visibility prevention”, samples having a higher evaluation were selected from 10 samples prepared as
<Evaluation criteria>
5: No moiré occurs 4: Very little moiré occurs 3: Moire occurs in 1 to 2 types of panels 2: Moire occurs in all types of panels 1: Moire occurs in all types of panels In the above evaluation criteria, the larger the number, the better the moire prevention.
以上の結果を表1に示す。
The results are shown in Table 1.
3.評価
表1より、導電性パターンを構成する導電性細線が、透明基材に付与された導電性材料を含有するライン状液体を乾燥して、該導電性材料を該ライン状液体の両縁に選択的に堆積させて形成された非直線性の導電性細線からなることにより、骨見え防止性とモアレ防止性を好適に両立できることがわかる。 3. Evaluation From Table 1, the conductive thin wire constituting the conductive pattern dries the line-shaped liquid containing the conductive material applied to the transparent substrate, and the conductive material is placed on both edges of the line-shaped liquid. It can be seen that by comprising non-linear conductive fine wires formed by selective deposition, it is possible to suitably achieve both bone-viewing prevention and moire prevention.
表1より、導電性パターンを構成する導電性細線が、透明基材に付与された導電性材料を含有するライン状液体を乾燥して、該導電性材料を該ライン状液体の両縁に選択的に堆積させて形成された非直線性の導電性細線からなることにより、骨見え防止性とモアレ防止性を好適に両立できることがわかる。 3. Evaluation From Table 1, the conductive thin wire constituting the conductive pattern dries the line-shaped liquid containing the conductive material applied to the transparent substrate, and the conductive material is placed on both edges of the line-shaped liquid. It can be seen that by comprising non-linear conductive fine wires formed by selective deposition, it is possible to suitably achieve both bone-viewing prevention and moire prevention.
(実施例2)
1.タッチパネルセンサーの作製
実施例1と同様にして線幅5μm,細線間隔(γ)200μmのジグザグパターンを形成する際に、ジグザグの1/2周期長α、ジグザグの蛇行幅βを表2に示すように変更した試料4~7を作製した。 (Example 2)
1. Fabrication of Touch Panel Sensor When forming a zigzag pattern with a line width of 5 μm and a fine line interval (γ) of 200 μm in the same manner as in Example 1, the zigzag half cycle length α and the zigzag meandering width β are as shown in Table 2.Samples 4 to 7 which were changed to were prepared.
1.タッチパネルセンサーの作製
実施例1と同様にして線幅5μm,細線間隔(γ)200μmのジグザグパターンを形成する際に、ジグザグの1/2周期長α、ジグザグの蛇行幅βを表2に示すように変更した試料4~7を作製した。 (Example 2)
1. Fabrication of Touch Panel Sensor When forming a zigzag pattern with a line width of 5 μm and a fine line interval (γ) of 200 μm in the same manner as in Example 1, the zigzag half cycle length α and the zigzag meandering width β are as shown in Table 2.
2.評価方法
試料4~7について、端子間抵抗、骨見え防止性及びモアレ防止性について評価した。結果を表2に示す。 2.Evaluation Method Samples 4 to 7 were evaluated for resistance between terminals, prevention of bone appearance, and prevention of moire. The results are shown in Table 2.
試料4~7について、端子間抵抗、骨見え防止性及びモアレ防止性について評価した。結果を表2に示す。 2.
(1)端子間抵抗
試料4~7において張り合わせ前のX電極が形成されたフィルムを、長辺が導電性細線の形成方向に沿うように100mm×10mmの短冊状に切り出し、端子間(即ち、短冊状領域の長手方向の両端間)の抵抗値(Ω)を測定した。測定の前に、120℃で1時間、ホットプレート上で加熱することによって、パターンに加熱焼成処理を施している。 (1) Resistance between terminals The film on which the X electrodes before bonding inSamples 4 to 7 were formed was cut into a strip of 100 mm × 10 mm so that the long side was along the direction of forming the conductive thin wires, and the terminals (that is, The resistance value (Ω) at the both ends in the longitudinal direction of the strip-shaped region was measured. Prior to the measurement, the pattern is heated and fired by heating on a hot plate at 120 ° C. for 1 hour.
試料4~7において張り合わせ前のX電極が形成されたフィルムを、長辺が導電性細線の形成方向に沿うように100mm×10mmの短冊状に切り出し、端子間(即ち、短冊状領域の長手方向の両端間)の抵抗値(Ω)を測定した。測定の前に、120℃で1時間、ホットプレート上で加熱することによって、パターンに加熱焼成処理を施している。 (1) Resistance between terminals The film on which the X electrodes before bonding in
(2)骨見え防止性及びモアレ防止性
骨見え防止性及びモアレ防止性については、実施例1と同様にして評価した。 (2) Bone visibility prevention and moire prevention properties Bone visibility prevention and moire prevention were evaluated in the same manner as in Example 1.
骨見え防止性及びモアレ防止性については、実施例1と同様にして評価した。 (2) Bone visibility prevention and moire prevention properties Bone visibility prevention and moire prevention were evaluated in the same manner as in Example 1.
以上の結果を表2に示す。表2中、αはジグザグの1/2周期長、βはジグザグの蛇行幅、γは細線間隔である。
The results are shown in Table 2. In Table 2, α is the zigzag ½ period length, β is the zigzag meandering width, and γ is the fine line interval.
3.評価
表2より、ジグザグの蛇行幅βが、ジグザグの1/2周期長αよりも小さいことにより、端子間抵抗を小さくでき、且つ骨見え防止の効果も大きくなることがわかる。 3. Evaluation Table 2 shows that the zigzag meandering width β is smaller than the zigzag ½ period length α, so that the resistance between terminals can be reduced and the effect of preventing the appearance of bones is also increased.
表2より、ジグザグの蛇行幅βが、ジグザグの1/2周期長αよりも小さいことにより、端子間抵抗を小さくでき、且つ骨見え防止の効果も大きくなることがわかる。 3. Evaluation Table 2 shows that the zigzag meandering width β is smaller than the zigzag ½ period length α, so that the resistance between terminals can be reduced and the effect of preventing the appearance of bones is also increased.
(実施例3)
実施例1の試料1の作製において、導電性細線の規則性を異ならせて、図6(a)~(c)に対応する試料8~10を得た。 (Example 3)
In the preparation ofSample 1 of Example 1, the regularity of the conductive thin wires was varied to obtain Samples 8 to 10 corresponding to FIGS. 6 (a) to 6 (c).
実施例1の試料1の作製において、導電性細線の規則性を異ならせて、図6(a)~(c)に対応する試料8~10を得た。 (Example 3)
In the preparation of
試料8は、図6(a)に対応するものであり、1本の非直線性の導電性細線内におけるジグザグ状要素に規則性を有し、複数本の非直線性の導電性細線間におけるジグザグ状要素にも規則性を有する。
Sample 8 corresponds to FIG. 6 (a), has regularity in the zigzag-like element in one non-linear conductive thin wire, and between a plurality of non-linear conductive thin wires. Zigzag elements also have regularity.
試料9は、図6(b)に対応するものであり、1本の非直線性の導電性細線内におけるジグザグ状要素に規則性を有さないが、複数の非直線性の導電性細線間におけるジグザグ状要素に規則性を有する。
The sample 9 corresponds to FIG. 6B, and the zigzag element in one non-linear conductive thin wire does not have regularity, but between a plurality of non-linear conductive thin wires. There is regularity in the zigzag-like element in.
試料10は、図6(c)に対応するものであり、1本の非直線性の導電性細線内におけるジグザグに規則性を有さず、複数本の非直線性の導電性細線間におけるジグザグにも規則性を有さない。ここで、1本のライン状液体から形成された隣接する導電性細線ペア間において規則性を有し、他のライン状液体から形成された導電性細線に対して規則性を有しない。
The sample 10 corresponds to FIG. 6C, and the zigzag in one non-linear conductive thin wire does not have regularity, and the zigzag between a plurality of non-linear conductive thin wires. Has no regularity. Here, there is regularity between adjacent thin conductive wire pairs formed from one line-shaped liquid, and no regularity to conductive thin lines formed from other line-shaped liquids.
試料8~10について実施例1と同様にしてモアレ防止性を評価したところ、試料10が最も良好であり、次いで試料9、試料8の順であった。この結果から、非直線性の導電性細線が不規則であるほどモアレ防止性が得られ易いことがわかる。
Sample 8 to 10 were evaluated for moiré prevention in the same manner as in Example 1. Sample 10 was the best, followed by Sample 9 and Sample 8. From this result, it can be seen that the more the non-linear conductive fine wires are irregular, the easier it is to obtain moiré prevention.
また、試料8~10について実施例2と同様にして端子間抵抗を評価したところ、有意な差は見られず、何れも良好(低抵抗)であった。
Further, when the resistance between the terminals of Samples 8 to 10 was evaluated in the same manner as in Example 2, no significant difference was observed, and all were good (low resistance).
1:透明基材
2:X電極
21:導電性細線
22:集電線
23:(導電性細線の)細線ペア
24:導電性架橋線
25:導電膜
3:Y電極
31:導電性細線
32:集電線
33:(導電性細線の)細線ペア
34:導電性架橋線
35:導電膜
4:ライン状液体 1: Transparent base material 2: X electrode 21: Conductive thin wire 22: Current collecting wire 23: Fine wire pair (of conductive thin wire) 24: Conductive bridge wire 25: Conductive wire 3: Y electrode 31: Conductive thin wire 32: Collection Electric wire 33: Fine wire pair (of conductive thin wire) 34: Conductive bridge wire 35: Conductive film 4: Line-shaped liquid
2:X電極
21:導電性細線
22:集電線
23:(導電性細線の)細線ペア
24:導電性架橋線
25:導電膜
3:Y電極
31:導電性細線
32:集電線
33:(導電性細線の)細線ペア
34:導電性架橋線
35:導電膜
4:ライン状液体 1: Transparent base material 2: X electrode 21: Conductive thin wire 22: Current collecting wire 23: Fine wire pair (of conductive thin wire) 24: Conductive bridge wire 25: Conductive wire 3: Y electrode 31: Conductive thin wire 32: Collection Electric wire 33: Fine wire pair (of conductive thin wire) 34: Conductive bridge wire 35: Conductive film 4: Line-shaped liquid
Claims (20)
- 透明基材の一面に導電性細線により構成されるX電極を形成すると共に該透明基材の他面に導電性細線により構成されるY電極を形成する際に、
前記透明基材上に、導電性材料を含有するインクを用いてインクジェット法によりライン状液体を付与し、
前記ライン状液体の乾燥に伴い、該インク中の前記導電性材料を前記ライン状液体の両縁に選択的に堆積させ、非直線性の導電性細線を形成するタッチパネルセンサーの製造方法。 When forming the X electrode composed of conductive thin wires on one surface of the transparent substrate and forming the Y electrode composed of conductive thin wires on the other surface of the transparent substrate,
On the transparent substrate, a linear liquid is applied by an ink jet method using an ink containing a conductive material,
A method of manufacturing a touch panel sensor, wherein the conductive material in the ink is selectively deposited on both edges of the line-shaped liquid as the line-shaped liquid is dried to form a non-linear conductive thin line. - 前記非直線性の導電性細線を形成する際、ジグザグ状要素からなる細線で該導電性細線を形成する請求項1記載のタッチパネルセンサーの製造方法。 The method for manufacturing a touch panel sensor according to claim 1, wherein when forming the non-linear conductive thin wire, the conductive thin wire is formed by a thin wire made of a zigzag element.
- 前記ジグザグ状要素は、ジグザグの蛇行幅が、ジグザグの1/2周期長よりも小さくなるように形成する請求項2記載のタッチパネルセンサーの製造方法。 3. The method of manufacturing a touch panel sensor according to claim 2, wherein the zigzag element is formed so that a zigzag meandering width is smaller than a half cycle length of the zigzag.
- 前記非直線性の導電性細線を形成する際、波線状要素からなる細線で該導電性細線を形成する請求項1記載のタッチパネルセンサーの製造方法。 The method for manufacturing a touch panel sensor according to claim 1, wherein when forming the non-linear conductive thin wire, the conductive thin wire is formed by a thin wire made of a wavy element.
- 前記波線状要素は、波線の蛇行幅が、波線の1/2周期長よりも小さくなるように形成する請求項4記載のタッチパネルセンサーの製造方法。 5. The method of manufacturing a touch panel sensor according to claim 4, wherein the wavy line element is formed such that a wavy line meandering width is smaller than a half cycle length of the wavy line.
- 前記X電極を構成する前記非直線性の導電性細線の形状と、前記Y電極を構成する前記非直線性の導電性細線の形状とを異ならせる請求項1~5の何れかに記載のタッチパネルセンサーの製造方法。 6. The touch panel according to claim 1, wherein the shape of the non-linear conductive fine wire constituting the X electrode is different from the shape of the non-linear conductive fine wire constituting the Y electrode. Sensor manufacturing method.
- 前記導電性細線間の少なくとも一部を、導電性架橋線で結線する請求項1~6の何れかに記載のタッチパネルセンサーの製造方法。 The method for manufacturing a touch panel sensor according to any one of claims 1 to 6, wherein at least a part between the conductive thin wires is connected by a conductive bridge wire.
- 単層構造の前記透明基材の一面に、前記導電性細線により構成される前記X電極を形成し、該透明基材の他面に、前記導電性細線により構成される前記Y電極を形成する請求項1~7の何れかに記載のタッチパネルセンサーの製造方法。 The X electrode composed of the conductive thin wire is formed on one surface of the transparent substrate having a single layer structure, and the Y electrode composed of the conductive thin wire is formed on the other surface of the transparent substrate. The method for manufacturing a touch panel sensor according to any one of claims 1 to 7.
- 積層構造の前記透明基材のうち、表面側に配置される該透明基材の表面に、前記導電性細線により構成される前記X電極を形成し、前記積層構造の前記透明基材のうち、裏面側に配置される該透明基材の裏面に、前記導電性細線により構成される前記Y電極を形成し、前記X電極が形成された前記透明基材と前記Y電極が形成された前記透明基材とを貼り合わせる請求項1~7の何れかに記載のタッチパネルセンサーの製造方法。 Among the transparent base materials of the laminated structure, the X electrode constituted by the conductive thin wires is formed on the surface of the transparent base material arranged on the surface side, and among the transparent base materials of the laminated structure, On the back surface of the transparent substrate disposed on the back surface side, the Y electrode composed of the conductive thin wires is formed, and the transparent substrate on which the X electrode is formed and the transparent on which the Y electrode is formed The method for producing a touch panel sensor according to any one of claims 1 to 7, wherein the substrate is bonded to the substrate.
- 前記X電極及び前記Y電極の一方又は両方を構成する前記導電性細線に、メッキにより金属膜を形成する請求項1~9の何れかに記載のタッチパネルセンサーの製造方法。 10. The method of manufacturing a touch panel sensor according to claim 1, wherein a metal film is formed by plating on the conductive thin wire constituting one or both of the X electrode and the Y electrode.
- 透明基材の一面に導電性細線により構成されるX電極を備え、該透明基材の他面に導電性細線により構成されるY電極を備え、
前記導電性細線は、非直線性の導電性細線であるタッチパネルセンサー。 Provided with an X electrode composed of conductive thin wires on one surface of the transparent substrate, and provided with a Y electrode composed of conductive thin wires on the other surface of the transparent substrate,
The conductive thin wire is a touch panel sensor that is a non-linear conductive thin wire. - 前記非直線性の導電性細線は、ジグザグ状要素からなる細線である請求項11記載のタッチパネルセンサー。 The touch panel sensor according to claim 11, wherein the non-linear conductive thin wire is a thin wire made of a zigzag element.
- 前記ジグザグ状要素は、ジグザグの蛇行幅が、ジグザグの1/2周期長よりも小さい請求項12記載のタッチパネルセンサー。 The touch panel sensor according to claim 12, wherein the zigzag element has a zigzag meandering width smaller than a 1/2 cycle length of the zigzag.
- 前記非直線性の導電性細線は、波線状要素からなる細線である請求項11記載のタッチパネルセンサー。 The touch panel sensor according to claim 11, wherein the non-linear conductive thin wire is a thin wire made of a wavy element.
- 前記波線状要素は、波線の蛇行幅が、波線の1/2周期長よりも小さい請求項14記載のタッチパネルセンサー。 The touch panel sensor according to claim 14, wherein the wavy line element has a wavy line meandering width smaller than a half cycle length of the wavy line.
- 前記X電極と前記Y電極は、形状が異なる前記非直線性の導電性細線により構成される請求項11~15の何れかに記載のタッチパネルセンサー。 The touch panel sensor according to any one of claims 11 to 15, wherein the X electrode and the Y electrode are configured by the non-linear conductive thin wires having different shapes.
- 前記導電性細線間の少なくとも一部が、導電性架橋線で結線されている請求項11~16の何れかに記載のタッチパネルセンサー。 The touch panel sensor according to any one of claims 11 to 16, wherein at least a part between the conductive thin wires is connected by a conductive bridge wire.
- 前記透明基材は単層構造であり、該透明基材の一面に前記導電性細線により構成される前記X電極を備え、該透明基材の他面に前記導電性細線により構成される前記Y電極を備える請求項11~17の何れかに記載のタッチパネルセンサー。 The transparent substrate has a single-layer structure, the X electrode configured by the conductive thin wire on one surface of the transparent substrate, and the Y configured by the conductive thin wire on the other surface of the transparent substrate. The touch panel sensor according to any one of claims 11 to 17, further comprising an electrode.
- 前記透明基材は積層構造であり、該透明基材の表面側に位置する該透明基材の表面に、前記導電性細線により構成される前記X電極を備え、該透明基材の裏面側に位置する該透明基材の裏面に、前記導電性細線により構成される前期Y電極を備え、前記X電極を備えた前記透明電極と前記Y電極を備えた前記透明基材とが接着されている請求項11~17の何れかに記載のタッチパネルセンサー。 The transparent base material has a laminated structure, and the surface of the transparent base material located on the surface side of the transparent base material is provided with the X electrode constituted by the conductive thin wires, and on the back side of the transparent base material. On the back surface of the transparent base material positioned, the transparent electrode provided with the X electrode and the transparent base material provided with the X electrode is adhered to the back surface of the transparent base material. The touch panel sensor according to any one of claims 11 to 17.
- 前記X電極及び前記Y電極の一方又は両方を構成する前記導電性細線は、メッキにより形成された金属膜を備える請求項11~19の何れかに記載のタッチパネルセンサー。 The touch panel sensor according to any one of claims 11 to 19, wherein the conductive thin wire constituting one or both of the X electrode and the Y electrode includes a metal film formed by plating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017543097A JPWO2017056977A1 (en) | 2015-09-29 | 2016-09-13 | Method for manufacturing touch panel sensor and touch panel sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-192170 | 2015-09-29 | ||
JP2015192170 | 2015-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017056977A1 true WO2017056977A1 (en) | 2017-04-06 |
Family
ID=58423738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/077023 WO2017056977A1 (en) | 2015-09-29 | 2016-09-13 | Touch panel sensor manufacturing method and touch panel sensor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2017056977A1 (en) |
WO (1) | WO2017056977A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3477448A1 (en) * | 2017-10-30 | 2019-05-01 | VTS-Touchsensor Co., Ltd. | Touch panel, and display device |
CN110869896A (en) * | 2017-07-05 | 2020-03-06 | 积水保力马科技株式会社 | Electrostatic capacitance type touch panel |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013039050A1 (en) * | 2011-09-13 | 2013-03-21 | グンゼ株式会社 | Touch panel |
JP2013058180A (en) * | 2011-09-08 | 2013-03-28 | Samsung Electro-Mechanics Co Ltd | Touch panel |
US20140209355A1 (en) * | 2013-01-28 | 2014-07-31 | John Andrew Lebens | Large-current micro-wire pattern |
JP2014164733A (en) * | 2013-02-28 | 2014-09-08 | Mitsubishi Electric Corp | Touch screen, touch panel, and display device equipped with the same |
JP3197225U (en) * | 2014-12-04 | 2015-04-30 | 介面光電股▲ふん▼有限公司JTOUCH Corporation | Touch panel and its detection electrode |
JP2015115021A (en) * | 2013-12-16 | 2015-06-22 | 株式会社ジャパンディスプレイ | Display device with touch detection function, and electronic apparatus |
-
2016
- 2016-09-13 WO PCT/JP2016/077023 patent/WO2017056977A1/en active Application Filing
- 2016-09-13 JP JP2017543097A patent/JPWO2017056977A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013058180A (en) * | 2011-09-08 | 2013-03-28 | Samsung Electro-Mechanics Co Ltd | Touch panel |
WO2013039050A1 (en) * | 2011-09-13 | 2013-03-21 | グンゼ株式会社 | Touch panel |
US20140209355A1 (en) * | 2013-01-28 | 2014-07-31 | John Andrew Lebens | Large-current micro-wire pattern |
JP2014164733A (en) * | 2013-02-28 | 2014-09-08 | Mitsubishi Electric Corp | Touch screen, touch panel, and display device equipped with the same |
JP2015115021A (en) * | 2013-12-16 | 2015-06-22 | 株式会社ジャパンディスプレイ | Display device with touch detection function, and electronic apparatus |
JP3197225U (en) * | 2014-12-04 | 2015-04-30 | 介面光電股▲ふん▼有限公司JTOUCH Corporation | Touch panel and its detection electrode |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110869896A (en) * | 2017-07-05 | 2020-03-06 | 积水保力马科技株式会社 | Electrostatic capacitance type touch panel |
CN110869896B (en) * | 2017-07-05 | 2023-08-11 | 积水保力马科技株式会社 | Electrostatic capacitive touch panel |
EP3477448A1 (en) * | 2017-10-30 | 2019-05-01 | VTS-Touchsensor Co., Ltd. | Touch panel, and display device |
US10551963B2 (en) | 2017-10-30 | 2020-02-04 | Vts-Touchsensor Co., Ltd. | Touch panel with mesh electrodes to mitigate moire, and display device comprising same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017056977A1 (en) | 2018-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101792585B1 (en) | Parallel line pattern containing conductive material, parallel line pattern formation method, substrate with transparent conductive film, device and electronic apparatus | |
JP6007776B2 (en) | Parallel line pattern forming method, manufacturing method of substrate with transparent conductive film, device and manufacturing method of electronic apparatus | |
CN103389843B (en) | Electrode member and the touch-screen comprising the electrode member | |
TWI612452B (en) | Wiring body combination, structure having a conductor layer, and touch detector | |
JP6331457B2 (en) | Coating film forming method, substrate with transparent conductive film, device and electronic device | |
JP6733586B2 (en) | Transparent conductor and method for producing transparent conductor | |
KR101853193B1 (en) | Method of forming functional thin line pattern precursor, method of forming functional thin line pattern, method of forming transparent electroconductive film, method for manufacturing device and method for manufacturing electronic apparatus, and functional thin line pattern, substrate with transparent electroconductive film, device and electronic apparatus | |
WO2017056977A1 (en) | Touch panel sensor manufacturing method and touch panel sensor | |
JP6717316B2 (en) | Method for forming functional thin line pattern and functional thin line pattern | |
JP2017162739A (en) | Transparent planar device and manufacturing method of transparent planar device | |
KR20140041138A (en) | Electrode member and method for manufacturing electrode member | |
KR102282834B1 (en) | Pattern, patterned base material, and touch panel | |
JP6922735B2 (en) | Touch panel sensor and manufacturing method of touch panel sensor | |
JP6665699B2 (en) | Transparent planar device and method for manufacturing transparent planar device | |
JP2019008361A (en) | Sensor film and image display device with sensor film | |
WO2019064595A1 (en) | Touch panel sensor and method of manufacture of touch panel sensor | |
JP6658800B2 (en) | Functional fine wire pattern, substrate with transparent conductive film, device and electronic equipment | |
JP6418210B2 (en) | Parallel line pattern forming method, substrate with transparent conductive film, device and electronic apparatus | |
JP2018180741A (en) | Fine wire pattern and fine wire pattern forming method | |
JP2019181730A (en) | Manufacturing method of substrate with functional thin wire, and set of ink and substrate | |
WO2018146963A1 (en) | Touch screen and method for manufacturing touch screen | |
WO2017110580A1 (en) | Functional fine-wire pattern and method for manufacturing functional fine-wire pattern | |
WO2019234841A1 (en) | Flexible circuit with cable, manufacturing method therefor, and intermediate for flexible circuit with cable | |
WO2020161876A1 (en) | Method for forming functional thin-line pattern precursor and method for forming functional thin-line pattern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16851151 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017543097 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16851151 Country of ref document: EP Kind code of ref document: A1 |