WO2017056846A1 - Filler tube and method for manufacturing same - Google Patents
Filler tube and method for manufacturing same Download PDFInfo
- Publication number
- WO2017056846A1 WO2017056846A1 PCT/JP2016/075783 JP2016075783W WO2017056846A1 WO 2017056846 A1 WO2017056846 A1 WO 2017056846A1 JP 2016075783 W JP2016075783 W JP 2016075783W WO 2017056846 A1 WO2017056846 A1 WO 2017056846A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filler tube
- basic
- outer peripheral
- molded body
- fuel tank
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C53/00—Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
- B29C53/02—Bending or folding
- B29C53/08—Bending or folding of tubes or other profiled members
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C57/00—Shaping of tube ends, e.g. flanging, belling or closing; Apparatus therefor, e.g. collapsible mandrels
- B29C57/02—Belling or enlarging, e.g. combined with forming a groove
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C69/00—Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
- B29C69/02—Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore of moulding techniques only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D23/00—Producing tubular articles
- B29D23/18—Pleated or corrugated hoses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K15/00—Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
- B60K15/03—Fuel tanks
- B60K15/04—Tank inlets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/08—Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
Definitions
- the present invention relates to a filler tube and a manufacturing method thereof.
- Japanese Patent Application Laid-Open No. 2014-231286 describes that an end face of a filler tube made of thermoplastic resin is welded to an opening of a resin fuel tank.
- the filler tube includes a flange portion at an end portion welded to the fuel tank.
- Japanese Patent Laid-Open No. 2003-194280 also describes that the end face of the filler tube is welded to the opening of the fuel tank.
- the welded portion of the filler tube is formed thicker than other portions. Moreover, it is said that this filler tube can be thickened by corrugated molding.
- a high-density polyethylene resin (HDPE) is used for a joining part welded to a resin fuel tank in order to improve weldability. Furthermore, it is described that the joint component uses a special material including HDPE without using a conventional ethylene-vinyl alcohol copolymer (EVOH) in order to obtain fuel permeation resistance. Thereby, it is said that the said joining member can make a fuel permeation-resistant characteristic and welding property favorable.
- HDPE high-density polyethylene resin
- EVOH ethylene-vinyl alcohol copolymer
- Japanese Patent No. 3575754 discloses a structure which is applied to tubes and tanks, and includes a first layer of HDPE, a second layer mainly composed of EVOH, and a third layer of polyamide or a mixture of polyamide and polyolefin. Things are listed.
- JP-A-2015-55261 describes a method for producing a resin filler tube.
- a tube having a bellows portion and a non-belly bellows cylindrical basic portion is formed by performing corrugation molding in which a cylindrical material extruded by an extruder is pressed by a corrugation mold. Further, the non-bellows cylindrical basic portion is bent and formed by press working.
- the welding strength is an important factor.
- the welding strength varies depending on the area of the planar portion of the welding surface of the filler tube, the material of the welding surface, and the thickness of the material.
- HDPE is known to be suitable as described in Japanese Patent No. 5243904.
- the filler tube needs to have fuel permeation resistance as described in Japanese Patent No. 5243904 and Japanese Patent No. 3575754. Therefore, using a special material described in Japanese Patent No. 5243904 leads to an increase in cost.
- non-special HDPE is used for the welding surface, for example, as described in Japanese Patent No. 3575754, it is necessary to provide a layer having fuel permeation resistance properties such as EVOH.
- the welded surface is formed in a flange shape to secure the area, and this causes a decrease in fuel permeation resistance by the thickness of the HDPE layer forming the welded layer.
- the filler tube includes a bellows portion and a non-bellows tube-shaped basic portion in addition to the welding surface.
- the bellows part and the basic part also have required functions.
- the bellows portion is necessary for easy arrangement.
- the non-bellows tube-shaped basic portion needs to have impact resistance, for example.
- the present invention provides a filler tube capable of suitably satisfying the required function according to the bellows portion and the non-bellowed tube-shaped basic portion while ensuring the welding strength and fuel permeation characteristics on the weld surface, and a method for manufacturing the filler tube. For the purpose.
- the filler tube which concerns on this invention is a filler tube made from a thermoplastic resin welded to the opening part of a fuel tank.
- the filler tube before being welded has a non-belly cylindrical basic portion having a total thickness of 2 to 4 mm, a bellows portion having a total thickness of 0.5 to 3 mm, and a total thickness of 3.5 to 5 mm. And a flange portion having an end surface welded to the fuel tank.
- the basic part, the bellows part and the flange part are formed to a thickness of 40 to 60% of the total thickness, and are arranged on the outer layer side of the inner layer formed mainly of high-density polyethylene (HDPE). And an intermediate layer having fuel permeation resistance and an outer layer disposed on the outer peripheral side of the intermediate layer and protecting the intermediate layer.
- HDPE high-density polyethylene
- HDPE has good welding performance with a resin fuel tank.
- the flange portion has a total thickness of 3.5 to 5 mm, and an inner layer having a thickness of 40% or more of the total thickness is mainly formed of HDPE.
- the inner layer of the flange portion is located on the end face and is a part that contacts the fuel tank. That is, the inner layer of the flange portion has a thickness that can ensure the necessary welding strength.
- the inner layer existing between the surface of the fuel tank and the intermediate layer of the flange portion has lower fuel permeation resistance than the intermediate layer.
- the inner layer of the flange portion has a thickness of 60% or less of the total thickness of the inner layer. Therefore, in the state where the inner layer of the flange portion is welded to the fuel tank, the thickness of the inner layer of the flange portion is sufficiently small. Therefore, sufficient fuel permeation resistance can be secured at the inner layer portion of the flange portion.
- the basic part is formed with a total thickness of 2 to 4 mm. Therefore, the basic part surely has the required impact resistance.
- the bellows portion is formed with a total thickness of 0.5 to 3 mm. That is, the bellows part is thinner than the basic part. Therefore, since the bellows portion has good bendability, the filler tube can be easily arranged.
- the bellows part has a low impact resistance because the total thickness is thinner than the basic part. However, it is sufficient to arrange the bellows part at a position where the impact resistance is not required so much and a bending arrangement is required.
- the filler tube that is the object of the manufacturing method further includes a non-accordion-like thick cylindrical portion having a total thickness of 4 to 6 mm, and the flange portion is on the fuel tank side of the thick cylindrical portion. Protrudes radially outward from the end of the.
- a method of manufacturing the filler tube wherein a primary molding step of forming a primary molded body by corrugated molding using a corrugated mold, and pressing the primary molded body using an outer peripheral mold and an inner peripheral mold.
- a secondary molding step of molding the filler tube wherein a primary molding step of forming a primary molded body by corrugated molding using a corrugated mold, and pressing the primary molded body using an outer peripheral mold and an inner peripheral mold.
- the primary molded body includes the basic part, the bellows part, a cylindrical molded part as a part before the flange part is flared, and the thick-walled cylindrical part.
- the primary molded body is disposed on the outer peripheral mold so that the outer peripheral mold set at a predetermined temperature supports the outer peripheral surface of the thick tube portion of the primary molded body.
- the inner peripheral mold having a temperature higher than the predetermined temperature of the outer peripheral mold is inserted into the inner peripheral side of the molded part, and the outer peripheral mold and the inner peripheral And a flare molding step in which the flange portion is flared by causing the end surface of the outer peripheral die and the inner peripheral die to sandwich the molding target portion in the axial direction by relatively moving the die in the axial direction.
- the flange part is formed by flaring the cylindrical part to be formed in the primary molded body.
- an outer peripheral type that supports the outer peripheral side of the filler tube and an inner peripheral type that supports the inner peripheral side are used.
- the inner peripheral mold is heated to a higher temperature than the outer peripheral mold. That is, the molded part of the primary molded body is heated by the inner peripheral mold, and the flare molding is easily performed.
- the outer peripheral mold has a lower temperature than the inner peripheral mold in the flare molding process.
- This outer peripheral mold is a mold in which the primary molded body is disposed prior to the flare molding process. That is, in the flare molding process, even if the inner peripheral mold is relatively heated, the outer peripheral mold is at a low temperature, so that the portion of the primary molded body that is in contact with the outer peripheral mold is not easily deformed. The relative position between the outer peripheral mold and the primary molded body is less likely to be displaced. Accordingly, the flange portion is flared at a desired position.
- the flange portion is continuously provided from the end on the fuel tank side of the thick-walled cylinder portion.
- the thick tube portion has a total thickness of 4 to 6 mm and is thicker than the basic portion. Therefore, even if the flange portion is flared, the boundary portion between the flange portion and the thick tube portion can maintain a sufficient strength.
- FIG. 2 is an enlarged axial direction sectional view of a basic part of FIG. 1. It is an expanded axial direction sectional view of the bellows part of FIG.
- FIG. 2 is an enlarged axial direction cross-sectional view of the thick-walled cylinder portion of FIG. It is an expanded axial direction sectional view of the flange part of FIG.
- It is a flowchart which shows the manufacturing method of a filler tube. It is an expanded axial direction sectional view of the primary molded object before carrying out flare molding of the filler tube shown in FIG. It is a figure which shows the primary molded object arrangement
- the configuration of the fuel line 1 will be described with reference to FIG.
- the fuel line 1 is a line from a fuel filler port to an internal combustion engine (not shown) in an automobile. However, in this embodiment, the fuel tank 20 to the fuel tank 10 will be described.
- the fuel line 1 includes a fuel tank 10, a fuel filler 20, a filler tube 30, and a breather line 40.
- the fuel tank 10 is formed of a thermoplastic resin and stores liquid fuel such as gasoline.
- the liquid fuel stored in the fuel tank 10 is supplied to an internal combustion engine (not shown) and used to drive the internal combustion engine.
- the fuel filler port 20 is provided in the vicinity of the outer surface of the automobile into which a fuel nozzle (not shown) can be inserted.
- a fuel cap (not shown) is attached to the fuel filler 20.
- a fuel supply opening 11 is formed on the side surface of the fuel tank 10.
- the filler tube 30 is formed of a thermoplastic resin and connects between the fuel filler opening 20 and the fuel tank 10. One end of the filler tube 30 is welded to the opening 11 of the fuel tank 10. The other end of the filler tube 30 is press-fitted with the insertion portion 21 of the fuel filler port 20.
- the liquid fuel passes through the filler tube 30 and is stored in the fuel tank 10.
- the liquid fuel is stored in the filler tube 30, and the supply of the liquid fuel from the fuel nozzle is automatically stopped by touching the liquid fuel to the tip of the fuel nozzle.
- the filler tube 30 is integrally formed over the entire length.
- the breather line 40 connects the fuel tank 10 and the fuel filler opening 20.
- the breather line 40 is a line for discharging the fuel vapor in the fuel tank 10 to the outside of the fuel tank 10 when liquid fuel is supplied to the fuel tank 10 via the filler tube 30.
- the breather line 40 includes a cut valve device 41, a connector 42, and a breather tube 43.
- the cut valve device 41 is disposed at the upper part of the fuel tank 10, and the vapor of the fuel in the fuel tank 10 is discharged to the fuel filler opening 20 side in the open state.
- the cut valve device 41 includes a metal connection pipe 41a.
- the connector 42 is coupled to the connection pipe 41a.
- the connector 42 is configured by removing the flow control valve from the connector described in, for example, Japanese Patent No. 3775656. That is, the connector 42 is detachably provided from the connection pipe 41a.
- the breather tube 43 connects the connector 42 and the fuel filler 20.
- the filler tube 30 includes a non-bellows cylindrical basic portion 31, a bellows portion 32, a taper locking portion 33, a non-bellows-like thick cylindrical portion 34, and a flange portion 35.
- the total thicknesses T1, T2, T4, and T5 of the basic portion 31, the bellows portion 32, the taper locking portion 33, the thick tube portion 34, and the flange portion 35 are as shown in FIGS.
- the total wall thickness decreases in the order of the thick tube portion 34, the flange portion 35, the basic portion 31, and the bellows portion 32.
- the filler tube 30 has a multilayer structure made of different types of thermoplastic resins.
- the basic part 31 is formed in a non-accordion cylinder shape. That is, the basic part 31 is formed in a cylindrical shape or an elliptical cylindrical shape.
- the basic portion 31 includes a press-fit basic portion 61, a non-press-fit basic portion 62, and a tank side basic portion 63.
- the press-fitting basic portion 61 is provided at the end of the filler tube 30 on the oil filler 20 side (the end opposite to the fuel tank 10).
- the press-fit basic portion 61 is formed in a cylindrical shape.
- the press-fit basic part 61 is a part into which the insertion part 21 of the fuel filler opening 20 is press-fitted. In other words, the press-fit basic portion 61 is expanded in diameter compared to the state before the insertion portion 21 of the fuel filler opening 20 is press-fitted.
- the non-press-fit basic portion 62 is connected to the end of the press-fit basic portion 61 on the tank side.
- the non-press-fit basic portion 62 can be distinguished from the press-fit basic portion 61 by expanding the press-fit basic portion 61 by press-fitting into the insertion portion 21.
- the press-fit basic portion 61 and the non-press-fit basic portion 62 have the same diameter. There is no boundary.
- the non-press-fit basic portion 62 includes a first straight portion 62a, a bent portion 62b, and a second straight portion 62c in order from the press-fit basic portion 61 side.
- the first straight part 62a is connected to the end of the press-fitting basic part 61 on the fuel tank 10 side, and its central axis is formed in a straight line and is formed in a cylindrical shape.
- the bent portion 62b is connected to the end of the first straight portion 62a on the fuel tank 10 side, has a center axis that is curved, and has an elliptical cylindrical shape.
- the second straight portion 62c is connected to the end of the bent portion 62b on the fuel tank 10 side, and its central axis is formed in a straight line and is formed in a cylindrical shape. That is, the inner peripheral surface of the non-press-fit basic portion 62 is formed in a shape having no step in the central axis direction. Accordingly, the liquid fuel immediately after being supplied from the fuel supply nozzle flows smoothly.
- the tank side basic portion 63 is disposed on the fuel tank 10 side of the non-press-fit basic portion 62 via the bellows portion 32. That is, the tank side basic portion 63 is connected to the end of the bellows portion 32 on the fuel tank 10 side, and its central axis is formed in a straight line and is formed in a cylindrical shape.
- the tank side basic portion 63 includes a rib 63a that protrudes annularly outward in the radial direction.
- the tank side basic portion 63 has a role of connecting the bellows portion 32 and the thick tube portion 34. That is, the tank side basic portion 63 has a role of mitigating a sudden change in thickness between the bellows portion 32 and the thick tube portion 34.
- the tank side basic portion 63 has the rib 63a, even if the axial length of the tank side basic portion 63 is short, an abrupt change in thickness can be reliably mitigated.
- the axial section of the basic part 31 is as shown in FIG.
- the total thickness T1 of the basic part 31 is 2 to 4 mm.
- the basic portion 31 includes an inner layer 31a, an intermediate layer 31b, an outer layer 31c, an inner adhesive layer 31d that bonds the inner layer 31a and the intermediate layer 31b, and an outer adhesive layer 31e that bonds the intermediate layer 31b and the outer layer 31c.
- the inner layer 31a is a surface that comes into contact with the liquid fuel, a material having gasoline resistance is used. Furthermore, in a state where the press-fit basic portion 61 is press-fitted into the insertion portion 21 of the fuel filler port 20, the inner layer 31 a of the press-fit basic portion 61 needs to have a catching force (prevention force) with respect to the insert portion 21. Therefore, a material having a sealing property is used for the inner layer 31a of the basic portion 31. Therefore, the inner layer 31a is formed mainly of high density polyethylene (HDPE). The inner layer 31a is formed to a thickness of 40 to 60% of the total thickness T1 of the basic portion 31.
- HDPE high density polyethylene
- the intermediate layer 31b is disposed on the outer peripheral side of the inner layer 31a and has fuel permeation resistance.
- the intermediate layer 31b is formed mainly of either an ethylene-vinyl alcohol copolymer (EVOH) or a polyamide (PA) as a material having fuel permeation resistance.
- EVOH ethylene-vinyl alcohol copolymer
- PA polyamide
- the intermediate layer 31b is formed to a thickness of 1 to 10% of the total thickness T1.
- the outer layer 31c is disposed on the outer peripheral side of the intermediate layer 31b and protects the intermediate layer 31b.
- the outer layer 31 c forms the outermost surface of the filler tube 30. Therefore, a material having impact resistance, weather resistance, and chemical resistance is used for the outer layer 31c. Therefore, the outer layer 31c is formed mainly of either high density polyethylene (HDPE) or polyamide (PA).
- the outer layer 31c is formed to a thickness of 20 to 40% of the total thickness T1.
- the inner adhesive layer 31d is a layer that adheres the outer peripheral surface of the inner layer 31a and the inner peripheral surface of the intermediate layer 31b.
- the outer adhesive layer 31e is a layer that adheres the outer peripheral surface of the intermediate layer 31b and the inner peripheral surface of the outer layer 31c.
- the inner adhesive layer 31d and the outer adhesive layer 31e are formed mainly of modified polyethylene (modified PE).
- modified PE modified polyethylene
- the inner adhesive layer 31d and the outer adhesive layer 31e are formed to a thickness of 1 to 10% of the total thickness T1.
- the inner adhesive layer 31d is unnecessary.
- the outer adhesive layer 31e is not necessary.
- the bellows portion 32 is formed in a bellows tube shape.
- the bellows portion 32 is provided between the second straight portion 62 c of the non-press-fit basic portion 62 and the tank side basic portion 63. That is, the bellows portion 32 is connected to the end of the second straight portion 62c (end on the fuel tank 10 side), and is connected to the end of the tank side basic portion 63 (end opposite to the fuel tank 10).
- the bellows portion 32 is a portion that can be easily bent and deformed by an operator.
- the axial cross section of the bellows portion 32 is as shown in FIG.
- the total thickness T2 of the bellows part 32 is set to 0.5 to 3 mm.
- the total thickness T2 of the bellows portion 32 is equal to or less than the total thickness T1 of the basic portion 31. That is, the total thickness changes at the boundary between the second straight portion 62 c and the bellows portion 32 and at the boundary between the tank side basic portion 63 and the bellows portion 32.
- the bellows portion 32 includes an inner layer 32a, an intermediate layer 32b, an outer layer 32c, an inner adhesive layer 32d, and an outer adhesive layer 32e, like the basic portion 31.
- Each layer 32a to 32e of the bellows portion 32 is formed of the same material as each of the layers 31a to 31e of the basic portion 31, and the ratio of each layer 32a to 32e with respect to the total thickness T2 is also the same as that in the basic portion 31. That is, the thickness of the inner layer 32a is 40 to 60% of the total thickness T2, the thickness of the intermediate layer 32b is 1 to 10% of the total thickness T2, and the thickness of the outer layer 32c is equal to the total thickness T2. 20 to 40%.
- the bellows part 32 is the thinnest part. Therefore, in order to ensure fuel permeation resistance over the entire length of the filler tube 30, the thickness ratio of the intermediate layer 32b is set according to the total thickness T2 of the bellows portion 32.
- the taper locking portion 33 is formed in a tapered cylindrical shape whose diameter increases toward the fuel tank 10 side.
- the taper locking portion 33 is a portion that exhibits a locking function with respect to the outer peripheral die 80 for forming the flange portion 35, which will be described later.
- the taper locking portion 33 is connected to the end of the tank side basic portion 63 on the fuel tank 10 side.
- the taper locking portion 33 changes from the tank side basic portion 63 to the thick tube portion 34 so that the thickness gradually increases.
- the axial section of the taper locking portion 33 is not described in detail, it is substantially the same as the basic portion 31.
- the thick tube portion 34 is formed in a non-bellows tube shape.
- the thick cylindrical portion 34 is formed in a cylindrical shape or an elliptical cylindrical shape.
- the thick cylindrical portion 34 is connected to the end of the taper locking portion 33 on the fuel tank 10 side.
- the thick-walled cylinder portion 34 is formed in a cylindrical shape and is connected to the tank side basic portion 63.
- the thick-walled cylinder portion 34 has a larger inner diameter and outer diameter than the tank-side basic portion 63.
- the axial section of the thick-walled cylinder portion 34 is as shown in FIG.
- the thick-walled cylinder portion 34 has a total thickness T4 of the thick-walled cylinder portion 34 in order to ensure axial force (to prevent buckling). 4 to 6 mm. That is, the thick tube portion 34 is thicker than the tank side basic portion 63.
- the thick-walled cylinder portion 34 includes an inner layer 34 a, an intermediate layer 34 b, an outer layer 34 c, an inner adhesive layer 34 d, and an outer adhesive layer 34 e, similar to the basic portion 31.
- the respective layers 34a to 34e of the thick-walled cylinder portion 34 are formed of the same material as the respective layers 31a to 31e of the basic portion 31, and the ratios of the respective layers 34a to 34e with respect to the total thickness T4 are the same as the respective proportions of the basic portion 31. is there. That is, the thickness of the inner layer 34a is 40 to 60% of the total thickness T4, the thickness of the intermediate layer 34b is 1 to 10% of the total thickness T4, and the thickness of the outer layer 34c is equal to the total thickness T4. 20 to 40%.
- the flange portion 35 projects radially outward from the end of the thick tube portion 34 on the fuel tank 10 side.
- the radially outward direction here does not mean only the outward direction orthogonal to the central axis of the thick-walled cylindrical portion 34, but means the direction having the orthogonal outward component.
- the flange portion 35 includes a tapered portion 71 and an annular plate portion 72.
- the taper portion 71 increases in diameter toward the fuel tank 10 from the end of the thick tube portion 34 on the fuel tank 10 side. That is, the taper portion 71 extends radially outward from the end of the thick tube portion 34.
- the annular plate portion 72 extends radially outward from the end of the tapered portion 71 on the fuel tank 10 side.
- the annular plate portion 72 abuts on the fuel tank 10 and has an end surface welded to the fuel tank 10.
- the axial section of the flange portion 35 is as shown in FIG.
- the total thickness T5 of the flange portion 35 is set to 3.5 to 5 mm.
- the total thickness T5 of the flange portion 35 is thinner than the total thickness T4 of the thick tube portion 34.
- the flange portion 35 includes the tapered portion 71 and the annular plate portion 72 as described above. That is, the total thickness T51 of the tapered portion 71 and the total thickness T52 of the annular plate portion 72 are thinner than the total thickness T4 of the thick cylindrical portion 34. Further, the total thickness T52 of the annular plate portion 72 is thinner than the total thickness T51 of the tapered portion 71. That is, the thickness is reduced in the order of the thick cylindrical portion 34, the tapered portion 71, and the annular plate portion 72.
- the flange part 35 (the taper part 71 and the annular plate part 72) includes an inner layer 35a, an intermediate layer 35b, an outer layer 35c, an inner adhesive layer 35d, and an outer adhesive layer 35e, like the basic part 31.
- the layers 35a to 35e of the flange portion 35 are formed of the same material as the layers 31a to 31e of the basic portion 31, and the ratio of the layers 35a to 35e with respect to the total thickness T5 (T51, T52) is also the proportion of the basic portion 31. Is the same. That is, the thickness of the inner layer 35a is 40 to 60% of the total thickness T5 (T51, T52), and the thickness of the intermediate layer 35b is 1 to 10% of the total thickness T5 (T51, T52). The thickness of 35c is 20 to 40% of the total thickness T5 (T51, T52).
- the annular plate portion 72 of the flange portion 35 needs to ensure the welding strength with the fuel tank 10. Therefore, the inner layer 35a of the flange portion 35 is made of a material suitable for welding. That is, in consideration of welding performance, the inner layer 35a is formed mainly of high-density polyethylene (HDPE).
- HDPE high-density polyethylene
- the welding strength depends on the thickness of the inner layer 35a. Therefore, in order to set the thickness of the inner layer 35a to a thickness having a necessary welding strength, the total thickness T5 of the flange portion 35 is set to 3.5 to 5 mm, and the inner layer 35a is set to 40% or more of the total thickness T5. did. In particular, the total thickness T52 of the annular plate portion 72 is set to 3.5 to 5 mm, and the inner layer 35a is set to 40% or more of the total thickness T52.
- the inner layer 35a made of a material suitable for welding is inferior to the intermediate layer 35b in terms of fuel permeation resistance.
- the inner layer 35 a exists between the surface of the fuel tank 10 and the intermediate layer 35 b of the flange portion 35. That is, the inner layer 35 a partitions the liquid fuel circulation region and the outer region in the filler tube 30. Therefore, the thinner the inner layer 35a is, the higher the fuel permeation resistance in the annular plate portion 72 of the flange portion 35 is. Therefore, by setting the thickness of the inner layer 35a to 60% or less of the total thickness T5 (T52), the fuel permeation resistance after welding can be ensured.
- the primary molded body 130 includes a basic part 31, a bellows part 32, and a taper locking part 33 shown in FIG. Further, the primary molded body 130 includes a thick cylindrical portion 34 and a flange portion 35, and includes a cylindrical molded portion 130 a as a portion before the flange portion 35 is flared.
- the thick cylindrical portion 34 of the primary molded body 130 is the same as the thick cylindrical portion 34 of the filler tube 30 shown in FIG.
- the to-be-molded part 130a has the same thickness as the thick-walled cylinder part 34 and is formed in the same cylindrical shape. However, since the flange portion 35 is formed by flaring the molded portion 130a of the primary molded body 130, the thickness of the flange portion 35 is thinner than the thickness of the molded portion 130a (equal to the thickness of the thick tube portion 34). .
- the total thickness of the primary molded body 130 varies depending on the part. And the thickness of each layer of the primary molded object 130 also changes with parts.
- the ratio of each layer of the primary molded body 130 to the total thickness is almost the same in any part of the primary molded body 130.
- the ratio of the basic portion 31 to the total thickness T1 of the inner layer 31a and the ratio of the bellows portion 32 to the total thickness T2 of the inner layer 32a are substantially the same.
- an outer peripheral die 80 and an inner peripheral die 90 for flaring the flange portion 35 are attached to a press apparatus main body (not shown) (S ⁇ b> 2 in FIG. 7: “die setting step”).
- the outer peripheral mold 80 is used as a lower mold
- the inner peripheral mold 90 is used as an upper mold. Further, the outer peripheral mold 80 and the inner peripheral mold 90 are separated in the vertical direction.
- the outer peripheral mold 80 is composed of a plurality of divided molds, and is formed in a cylindrical shape as a whole.
- the inner peripheral surface of the outer peripheral mold 80 is a first taper surface that is continuously formed below the cylindrical inner peripheral surface 81 and below the cylindrical inner peripheral surface 81 (on the side away from the inner peripheral mold 90) and is reduced in diameter as it goes downward.
- 82 and a second tapered surface 83 formed continuously above the cylindrical inner peripheral surface 81 (on the side closer to the inner peripheral mold 90) and having a diameter increasing toward the upper side.
- the cylindrical inner peripheral surface 81 corresponds to the thick cylindrical portion 34 of the primary molded body 130 and contacts the outer peripheral surface of the thick cylindrical portion 34.
- the first taper surface 82 corresponds to the taper locking portion 33 of the primary molded body 130 and contacts the outer peripheral surface of the taper locking portion 33. That is, the first tapered surface 82 functions as a locked portion that restricts the primary molded body 130 from moving downward in FIG. 9 in a state where the first tapered surface 82 is in contact with the taper locking portion 33 of the primary molded body 130. Therefore, the first tapered surface 82 as the locked portion is locked in the axial direction with respect to the taper locking portion 33 as the locking portion.
- the second taper surface 83 is located at an axial position corresponding to the molded part 130a of the primary molded body 130, and is separated from the outer peripheral surface of the molded part 130a.
- the 2nd taper surface 83 is a site
- An upper end surface of the outer peripheral mold 80 (a surface facing the inner peripheral mold 90) is formed in a circular concave shape over the entire circumference on the inner peripheral side of the stopper plane 84 and a stopper plane 84 positioned on the outer peripheral side.
- the anti-welding surface forming portion 85 is provided.
- the anti-welding surface forming portion 85 is formed continuously with the second tapered surface 83. Further, the bottom surface of the anti-welding surface forming portion 85 is formed in a planar shape parallel to the stopper plane 84.
- the anti-welding surface forming portion 85 is a portion for forming the anti-welding surface of the annular plate portion 72 of the flange portion 35 after the flare molding.
- the inner peripheral mold 90 includes a main body 91, a first tapered surface 92 projecting with a reduced diameter from the center of the main body 91 (on the outer peripheral mold 80 side), and a cylinder extending coaxially from the tip of the first tapered surface 92. And a second tapered surface 94 that is coaxially extended from the tip of the cylindrical surface 93 and is reduced in diameter.
- the main body portion 91 includes a welding surface forming portion 91a that is a surface facing the stopper flat surface 84 and the anti-welding surface forming portion 85 of the outer peripheral mold 80 and forms the welding surface of the flange portion 35.
- the welding surface forming portion 91 a has a function of restricting relative movement between the outer peripheral die 80 and the inner peripheral die 90 by contacting the stopper flat surface 84.
- the welding surface forming portion 91 a is formed so as to be vertically separated from the anti-welding surface forming portion 85 while being in contact with the stopper flat surface 84.
- the 1st taper surface 92 is a site
- the cylindrical surface 93 corresponds to the thick cylindrical portion 34 of the primary molded body 130 and can contact the inner peripheral surface of the thick cylindrical portion 34.
- the second taper surface 94 corresponds to the taper locking portion 33 of the primary molded body 130 and can contact the inner peripheral surface of the taper locking portion 33.
- the primary molded body 130 is placed on the outer peripheral die 80 (S3 in FIG. 7: “Primary molded body placement step”).
- the taper locking portion 33 of the primary molded body 130 contacts the first tapered surface 82 of the outer peripheral mold 80, and the primary molded body 130 is restricted from moving axially downward with respect to the outer peripheral mold 80.
- the thick cylindrical portion 34 of the primary molded body 130 contacts the cylindrical inner peripheral surface 81 of the outer peripheral mold 80.
- the outer peripheral die 80 has the first tapered surface 82 of the outer peripheral die 80 axially engaged with the taper engaging portion 33 of the primary molded body 130, and the taper engaging portion 33 of the primary molded body 130 and the thick tube.
- the outer peripheral surface of the part 34 is supported.
- the outer peripheral die 80 is set to a predetermined temperature.
- the predetermined temperature is room temperature (room temperature), for example, about 25 ° C. That is, the outer peripheral mold 80 is not heated at this point.
- the inner peripheral mold 90 is set to a temperature higher than the temperature of the outer peripheral mold 80 after the primary molded body arranging step.
- the temperature of the inner peripheral mold 90 is a temperature at which at least the corresponding portion of the inner layer 35a of the flange portion 35 can be made soft enough to be flared when the inner peripheral mold 90 is in contact with the primary molded body 130.
- this is a temperature at which the multilayer structure of the corresponding portions of the layers 35a to 35e constituting the flange portion 35 is maintained.
- the temperature of the inner peripheral mold 90 is sufficiently lower than the softening point of the intermediate layer 35b.
- the high temperature inner peripheral mold 90 is brought close to the outer peripheral mold 80, and the second tapered surface 94 of the inner peripheral mold 90 is inserted from the opening of the molded part 130a of the primary molded body 130. Further, the inner peripheral mold 90 is brought close to the outer peripheral mold 80, and the cylindrical surface 93 of the inner peripheral mold 90 is brought into contact with the entire length of the molded part 130a of the primary molded body 130 as shown in FIG.
- the molding target portion 130a of the primary molded body 130 is heated (S4 in FIG. 7: “warming process”). At this time, the corresponding portions of all the layers 35a to 35e constituting the flange portion 35 are not softened and mixed, and the corresponding portion of the inner layer 35a is particularly soft while maintaining the multilayer structure.
- the outer peripheral die 80 is located at a position not in contact with the molding part 130a. Further, the outer peripheral mold 80 remains at room temperature even at this point. Therefore, the primary molded body 130 is heated by the inner peripheral mold 90, but is not heated by the outer peripheral mold 80.
- the inner peripheral mold 90 is further brought closer to the outer peripheral mold 80, so that the stopper plane 84 of the outer peripheral mold 80 and the welding surface forming portion of the main body 91 of the inner peripheral mold 90.
- the inner peripheral mold 90 is moved downward until the state 91a comes into contact.
- the inner peripheral mold 90 moves from the position of the heating process to a position in contact with the outer peripheral mold 80. Further, the inner peripheral mold 90 is maintained for a predetermined time at a position in contact with the outer peripheral mold 80.
- the molded part 130 a of the primary molded body 130 is deformed along the first tapered surface 92 and the welding surface forming part 91 a of the inner peripheral mold 90, and the first tapered surface 92 and the welding surface forming part of the inner peripheral mold 90.
- the flange portion 35 is flare-molded by 91a, the second tapered surface 83 of the outer peripheral die 80, and the anti-weld surface forming portion 85 (S5 in FIG. 7: “flare molding step”).
- the first tapered surface 92 of the inner peripheral mold 90 is in contact with the inner peripheral surface of the molded portion 130a of the primary molded body 130, and the molded portion 130a of the primary molded body 130 is moved to the second tapered surface.
- the diameter is expanded along the line 83.
- the welding surface forming portion 91 a of the inner peripheral mold 90 comes into contact with the end of the molded portion 130 a of the primary molded body 130, the welding surface forming portion 91 a of the inner peripheral mold 90 is changed to the molded portion 130 a of the primary molded body 130. Is further expanded and deformed along the welding surface forming portion 91a.
- a part of the molded part 130a of the primary molded body 130 is sandwiched in the radial direction between the second tapered surface 83 of the outer peripheral mold 80 and the first tapered surface 92 of the inner peripheral mold 90, whereby the flange part. 35 taper portions 71 are formed. Further, another part of the molded part 130a of the primary molded body 130 is sandwiched in the axial direction between the anti-welding surface forming part 85 of the outer peripheral mold 80 and the welding surface forming part 91a of the inner peripheral mold 90. The annular plate portion 72 of the flange portion 35 is formed.
- the inner layer side of the molded part 130a is heated by the inner peripheral mold 90, so that the inner layer side of the molded part 130a is soft and the outer layer side is less likely to be softer than the inner layer. For this reason, the inner layer side of the molded part 130a is in a state of being easy to flow, but the outer layer side is in a state of being relatively difficult to flow.
- the inner layer that tends to flow tends to flow downward in the weight direction.
- the portion corresponding to the annular plate portion 72 of the flange portion 35 is flared, the inner layer of the primary molded body 130 is positioned above the gravity direction. It does not become so much that it flows toward the bottom. Therefore, the flange part 35 is formed reliably.
- the inner peripheral die 90 presses the molding target portion 130a of the primary molded body 130 downward in the axial direction. Is generated. This force is also transmitted between the outer peripheral die 80 and the primary molded body 130. If the primary molded body 130 is displaced in the axial direction with respect to the outer peripheral mold 80, the flange portion 35 cannot be formed at a desired position. Therefore, when the inner peripheral mold 90 performs flare molding of the molding target portion 130a of the primary molded body 130, the outer peripheral mold 80 needs to maintain the axial position of the primary molded body 130.
- the outer peripheral mold 80 maintains the axial position of the primary molded body 130 by the taper locking portion 33 of the primary molded body 130 and the first tapered surface 82 of the outer peripheral mold 80 engaging with each other.
- the locking force between the outer peripheral die 80 and the primary molded body 130 depends on the frictional force between them. Therefore, the higher the temperature of both, the lower the frictional force.
- the outer peripheral die 80 is still not actively heated. As the inner peripheral mold 90 approaches the outer peripheral mold 80, the heat of the inner peripheral mold 90 is transmitted through the primary molded body 130. However, even when heat is transmitted to the outer peripheral mold 80, the outer peripheral mold 80 is sufficiently cooler than the temperature of the inner peripheral mold 90. Therefore, the frictional force between the two becomes sufficiently high, and the relative position in the axial direction between the outer peripheral die 80 and the primary molded body 130 is unlikely to occur. Accordingly, the flange portion 35 is flared at a desired position.
- the primary molded body 130 is removed from the press apparatus main body (not shown) while being sandwiched between the outer peripheral mold 80 and the inner peripheral mold 90.
- the removed units 130, 80, and 90 are placed in a tank at a predetermined temperature for a predetermined time to perform the entire heat treatment of the primary molded body 130 (S 6 in FIG. 7: “Whole Heat Treatment Step”).
- the entire primary molded body 130 is heated. By this whole heat treatment, the internal stress of the primary molded body 130 is removed.
- the primary molded body 130 is cooled while being sandwiched between the outer peripheral mold 80 and the inner peripheral mold 90 (S7 in FIG. 7: “cooling step”), and the outer peripheral mold 80 and the inner peripheral mold 90 are then molded into the primary molded body. It removes from 130 (S8 of FIG. 7: “mold release process”). In this way, the secondary molded body is completed (S2 to S8 in FIG. 7: “secondary molding step”).
- the bent portion 62b is bent with respect to the secondary molded body by a bending machine (not shown) (S9 in FIG. 7: “bending step”).
- the bent portion 62b is formed by pressing the outer peripheral surface of the non-press-fit basic portion 62 against a pressing member (not shown) with a mandrel (not shown) inserted into the filler tube 30.
- the filler tube 30 is completed.
- the press-fit basic portion 61 has the same shape as the first straight portion 62a of the non-press-fit basic portion 62 at this time. As described above, the press-fit basic portion 61 is expanded in diameter by inserting the insertion portion 21 of the fuel filler opening 20.
- the “bending process” of S9 is performed after the “flare molding process” of S5, and during the overall heat treatment of the primary molded body 130 in the “overall heat treatment process” of S6, It is acceptable to bend the bent portion 62b at the same time.
- the bent portion 62b may be bent in a state where the primary molded body 130 is sandwiched between the outer peripheral mold 80 and the inner peripheral mold 90 in a tank at a predetermined temperature.
- the filler tube 30 described above is made of a thermoplastic resin and is welded to the opening 11 of the fuel tank 10.
- the filler tube 30 before being welded has a non-accordion cylindrical basic portion 31 having a total thickness of 2 to 4 mm, a bellows portion 32 having a total thickness of 0.5 to 3 mm, and a total thickness of 3.5 to 5 mm. And a flange portion 35 having an end surface welded to the fuel tank 10.
- the base portion 31, the bellows portion 32, and the flange portion 35 are formed to a thickness of 40 to 60% of the total thickness, and are formed of inner layers 31a, 32a, 35a mainly composed of high-density polyethylene (HDPE), and inner layers 31a,
- the intermediate layers 31b, 32b, 35b disposed on the outer peripheral side of the 32a, 35a and having fuel permeation resistance and the outer layers disposed on the outer peripheral side of the intermediate layers 31b, 32b, 35b and protecting the intermediate layers 31b, 32b, 35b 31c, 32c, and 35c.
- the HDPE has good welding performance with the resin fuel tank 10.
- the flange portion 35 is formed with a total thickness T5 of 3.5 to 5 mm, and an inner layer 35a having a thickness of 40% or more of the total thickness T5 is mainly formed of HDPE.
- the inner layer 35 a of the flange portion 35 is a portion that is located on the end face and contacts the fuel tank 10. That is, the inner layer 35a of the flange portion 35 has a thickness that can ensure the necessary welding strength.
- the inner layer 35a existing between the surface of the fuel tank 10 and the intermediate layer 35b of the flange portion 35 has lower fuel permeation resistance than the intermediate layer 35b.
- the inner layer 35a of the flange portion 35 has a thickness of 60% or less of the total thickness T5. Therefore, in the state where the inner layer 35a of the flange portion 35 is welded to the fuel tank 10, the thickness of the inner layer 35a of the flange portion 35 is sufficiently small. Therefore, sufficient fuel permeation resistance can be ensured at the portion of the inner layer 35a of the flange portion 35.
- the basic part 31 is formed with a total thickness T1 of 2 to 4 mm. Therefore, the basic portion 31 surely has the required impact resistance.
- the bellows portion 32 has a total thickness T2 of 0.5 to 3 mm. The bellows portion 32 is thinner than the basic portion 31. Therefore, since the bellows part 32 has favorable bendability, the arrangement of the filler tube 30 can be facilitated. However, the bellows portion 32 has a low impact resistance because the total thickness T2 is thinner than the basic portion 31. However, it is sufficient to arrange the bellows portion 32 at a position where the impact resistance is not so required and a position where bending arrangement is required.
- the intermediate layers 31b, 32b, 34b, and 35b are formed mainly of any one of an ethylene-vinyl alcohol copolymer (EVOH) and a polyamide (PA), and the outer layers 31c, 32c, 34c, and 35c are high-density. It is formed mainly of either polyethylene (HDPE) or polyamide (PA). This ensures the fuel permeation resistance required for the intermediate layers 31b, 32b, 34b, and 35b and the impact resistance required for the outer layers 31c, 32c, 34c, and 35c.
- EVOH ethylene-vinyl alcohol copolymer
- PA polyamide
- the filler tube 30 includes a non-accordion-shaped thick cylindrical portion 34 having a total thickness T4 of 4 to 6 mm, and the flange portion 35 is radially outward from the end of the thick cylindrical portion 34 on the fuel tank 10 side. Protrudes towards.
- part of the flange part 35 and the thick-walled cylinder part 34 can maintain the state which has sufficient intensity
- the flange portion 35 is welded to the fuel tank 10
- the flange portion 35 is reliably welded to the fuel tank 10 by applying an axial force to the thick tube portion 34. Even if an axial force is applied to the thick cylindrical portion 34, the thick cylindrical portion 34 is sufficiently thick so that the axial force is reliably transmitted to the flange portion 35 without buckling the thick cylindrical portion 34. it can.
- the flange portion 35 is formed thinner than the thick-walled cylinder portion 34.
- the thickness of the inner layer 35a of the flange portion 35 can be made sufficiently small as long as the welding strength can be secured, and the axial force can be transmitted to the flange portion 35 without buckling the thick-walled cylindrical portion 34. That is, it is possible to reliably weld the fuel tank 10 while improving the fuel permeation resistance.
- the flange portion 35 has a tapered portion 71 whose diameter is increased from the end on the fuel tank 10 side of the thick-walled cylindrical portion 34, and an annular plate that extends radially outward from the end on the fuel tank 10 side of the tapered portion 71. Part 72.
- the annular plate portion 72 is a portion welded to the fuel tank 10.
- a tapered portion 71 exists between the thick tube portion 34 and the annular plate portion 72. Therefore, the difference in thickness between the thick tube portion 34 and the annular plate portion 72 can be absorbed. That is, since there is no abrupt thickness difference between the thick tube portion 34 and the annular plate portion 72, a high welding strength can be ensured.
- the tapered portion 71 and the annular plate portion 72 are formed thinner than the thick tube portion 34, and the annular plate portion 72 is formed thinner than the tapered portion 71. Thereby, it is possible to reliably prevent a sudden difference in thickness between the thick-walled cylinder portion 34 and the annular plate portion 72. Therefore, it is possible to ensure a high welding strength.
- the filler tube 30 is connected to the end of the bellows portion 32 on the fuel tank 10 side, is provided on the opposite side of the thick-walled cylinder portion 34 from the fuel tank 10, and is a tank as a part of the basic portion 31.
- a side basic portion 63 is provided.
- the tank side basic portion 63 has a role of connecting the bellows portion 32 and the thick tube portion 34. That is, the tank side basic portion 63 has a role of mitigating a sudden change in thickness between the bellows portion 32 and the thick tube portion 34.
- the tank side basic portion 63 is provided with a rib 63a that protrudes annularly outward in the radial direction.
- the tank side basic portion 63 has the rib 63a, even if the axial length of the tank side basic portion 63 is short, an abrupt change in thickness can be reliably mitigated.
- the filler tube 30 is provided at the end of the filler tube 30 opposite to the fuel tank 10, and is a part into which the insertion portion 21 of the fuel filler port 20 as a counterpart member is press-fitted.
- the end position of the filler tube 30 can be adjusted. That is, even if the end portion of the filler tube 30 on the fuel filler port 20 side is slightly cut, a length sufficient to insert the insertion portion 21 of the filler port 20 can be secured on the end side of the filler tube 30. Therefore, the length of the press-fit basic portion 61 can be sufficiently secured. In this case, the length of the non-press-fit basic portion 62 is only slightly shortened. Thus, in the arrangement of the filler tube 30, the end position adjustment is facilitated.
- the non-press-fit basic part 62 includes a bent part 62b whose central axis is curved.
- the filler tube 30 has a portion where the central axis is curved. A part thereof is a bellows portion 32.
- the side close to the fuel filler port 20 is not the bellows portion 32 but the non-bellows tube-shaped basic portion 31, thereby improving the flow of the liquid fuel. .
- the manufacturing method of the filler tube 30 in the said embodiment uses the primary shaping
- the primary molded body 130 is turned into the outer peripheral mold 80 so that the outer peripheral mold 80 set to a predetermined temperature supports the outer peripheral surface of the thick cylindrical portion 34 of the primary molded body 130.
- the inner peripheral mold 90 that is higher than the predetermined temperature of the outer peripheral mold 80 is inserted into the inner peripheral side of the molding part 130a. Further, the outer peripheral mold 80 and the inner peripheral mold 90 are relatively moved in the axial direction, and the end surface of the outer peripheral mold 80 and the inner peripheral mold 90 sandwich the molding part 130a in the axial direction, so that the flange 35 is flare-molded. And a step (S5).
- the flange part 35 is shape
- FIG. At this time, an outer peripheral mold 80 that supports the outer peripheral side of the filler tube 30 and an inner peripheral mold 90 that supports the inner peripheral side are used.
- the inner peripheral mold 90 is heated to a higher temperature than the outer peripheral mold 80. That is, the molding target portion 130a of the primary molded body 130 is heated by the inner peripheral mold 90, and the flare molding is easily performed.
- the outer peripheral die 80 is at a lower temperature than the inner peripheral die 90 in the flare molding step (S5).
- type 80 is a type
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Manufacturing & Machinery (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
Abstract
Provided is a filler tube that is capable of favorably complying with a request function that corresponds to a bellows section and a non-bellows cylindrical base section, while ensuring fuel-permeability resistance properties and weld strength and at the welding surface. A filler tube (30) is provided with a non-bellows cylindrical base section (31) measuring 2–4 mm in total wall thickness, a bellows section (32) measuring 0.5–3 mm in total wall thickness, and a flange part (35) measuring 3.5–5 mm in total wall thickness and having an end surface that is welded to a fuel tank (10). The base part (31), the bellows part (32), and the flange part (35) are provided with inner layers (31a, 32a, 35a) formed to a thickness that is 40–60% of the total wall thickness and principally formed of high-density polyethylene (HDPE), intermediate layers (31b, 32b, 35b) having fuel-permeability resistance properties, and outer layers (31c, 32c, 35c) for protecting the intermediate layers (31b, 32b, 35b).
Description
本発明は、フィラーチューブ及びその製造方法に関するものである。
The present invention relates to a filler tube and a manufacturing method thereof.
特開2014-231286号公報には、熱可塑性樹脂のフィラーチューブの端面を樹脂製の燃料タンクの開口部に溶着することが記載されている。このフィラーチューブは、燃料タンクに溶着される端部にフランジ部を備える。また、特開2003-194280号公報にも、燃料タンクの開口部にフィラーチューブの端面を溶着することが記載されている。このフィラーチューブの溶着部位は、他の部位に比べて厚肉に形成される。また、このフィラーチューブは、コルゲート成形により、厚肉にすることができるとされている。
Japanese Patent Application Laid-Open No. 2014-231286 describes that an end face of a filler tube made of thermoplastic resin is welded to an opening of a resin fuel tank. The filler tube includes a flange portion at an end portion welded to the fuel tank. Japanese Patent Laid-Open No. 2003-194280 also describes that the end face of the filler tube is welded to the opening of the fuel tank. The welded portion of the filler tube is formed thicker than other portions. Moreover, it is said that this filler tube can be thickened by corrugated molding.
特許第5243904号公報には、樹脂製の燃料タンクに溶着する接合部品は、溶着性を高めるために、高密度ポリエチレン樹脂(HDPE)を用いることが記載されている。さらに、当該接合部品は、耐燃料透過特性を得るために、従来エチレン-ビニルアルコール共重合体(EVOH)を用いずに、HDPEを含む特殊な材料を用いることが記載されている。これにより、当該接合部材は、耐燃料透過特性及び溶着性を良好にすることができるとされている。
In Japanese Patent No. 5243904, it is described that a high-density polyethylene resin (HDPE) is used for a joining part welded to a resin fuel tank in order to improve weldability. Furthermore, it is described that the joint component uses a special material including HDPE without using a conventional ethylene-vinyl alcohol copolymer (EVOH) in order to obtain fuel permeation resistance. Thereby, it is said that the said joining member can make a fuel permeation-resistant characteristic and welding property favorable.
また、特許第3575754号公報には、チューブやタンクなどに適用され、HDPEの第一層、EVOHを主体とする第二層、及び、ポリアミドまたはポリアミドとポリオレフィンとの混合物の第三層を備える構造物が記載されている。
Japanese Patent No. 3575754 discloses a structure which is applied to tubes and tanks, and includes a first layer of HDPE, a second layer mainly composed of EVOH, and a third layer of polyamide or a mixture of polyamide and polyolefin. Things are listed.
また、特開2015-55261号公報には、樹脂製のフィラーチューブの製造方法が記載されている。当該製造方法は、押出成形機により押し出された筒状の素材をコルゲート金型により押し当てるコルゲート成形を行うことで、蛇腹部及び非蛇腹筒状の基本部を備えるチューブが成形される。さらに、プレス加工により、非蛇腹筒状の基本部を曲げ成形する。
JP-A-2015-55261 describes a method for producing a resin filler tube. In the manufacturing method, a tube having a bellows portion and a non-belly bellows cylindrical basic portion is formed by performing corrugation molding in which a cylindrical material extruded by an extruder is pressed by a corrugation mold. Further, the non-bellows cylindrical basic portion is bent and formed by press working.
フィラーチューブの端面を燃料タンクに溶着する場合において、溶着強度は重要な要素となる。溶着強度は、フィラーチューブの溶着面の平面状部分の面積、溶着面の材質及び当該材質の厚みに応じて異なる。溶着面の材質としては、特許第5243904号公報に記載されているように、HDPEが好適であることが知られている。
When welding the end face of the filler tube to the fuel tank, the welding strength is an important factor. The welding strength varies depending on the area of the planar portion of the welding surface of the filler tube, the material of the welding surface, and the thickness of the material. As a material of the welding surface, HDPE is known to be suitable as described in Japanese Patent No. 5243904.
また、フィラーチューブは、特許第5243904号公報,及び特許第3575754号公報に記載されているように、耐燃料透過特性を有する必要がある。そこで、特許第5243904号公報に記載されている特殊な材質を用いるのは、高コスト化を招来する。一方、溶着面に特殊でないHDPEを用いるのであれば、例えば、特許第3575754号公報に記載されているように、EVOHなどの耐燃料透過特性を担う層を設ける必要がある。しかし、溶着面は、面積確保のためフランジ状に形成されることにより、溶着層を形成するHDPEの層の厚み分だけ耐燃料透過特性を低下させる要因となる。
Moreover, the filler tube needs to have fuel permeation resistance as described in Japanese Patent No. 5243904 and Japanese Patent No. 3575754. Therefore, using a special material described in Japanese Patent No. 5243904 leads to an increase in cost. On the other hand, if non-special HDPE is used for the welding surface, for example, as described in Japanese Patent No. 3575754, it is necessary to provide a layer having fuel permeation resistance properties such as EVOH. However, the welded surface is formed in a flange shape to secure the area, and this causes a decrease in fuel permeation resistance by the thickness of the HDPE layer forming the welded layer.
また、例えば、特開2015-55261号公報に記載のように、フィラーチューブは、溶着面の他に、蛇腹部及び非蛇腹筒状の基本部を備える。溶着面の溶着性能の他に、蛇腹部、基本部についても、それぞれ要求される機能がある。例えば、蛇腹部は、配策容易化のために必要である。非蛇腹筒状の基本部は、例えば耐衝撃性を有する必要がある。
Further, for example, as described in JP-A-2015-55261, the filler tube includes a bellows portion and a non-bellows tube-shaped basic portion in addition to the welding surface. In addition to the welding performance of the welding surface, the bellows part and the basic part also have required functions. For example, the bellows portion is necessary for easy arrangement. The non-bellows tube-shaped basic portion needs to have impact resistance, for example.
本発明は、溶着面における溶着強度及び耐燃料透過特性を確保しつつ、蛇腹部及び非蛇腹筒状の基本部に応じた要求機能を好適に満たすことができるフィラーチューブ及びその製造方法を提供することを目的とする。
The present invention provides a filler tube capable of suitably satisfying the required function according to the bellows portion and the non-bellowed tube-shaped basic portion while ensuring the welding strength and fuel permeation characteristics on the weld surface, and a method for manufacturing the filler tube. For the purpose.
(1.フィラーチューブ)
本発明に係るフィラーチューブは、燃料タンクの開口部に溶着される熱可塑性樹脂製のフィラーチューブである。溶着される前の前記フィラーチューブは、総肉厚2~4mmの非蛇腹筒状の基本部と、総肉厚0.5~3mmの蛇腹部と、総肉厚3.5~5mmであって、前記燃料タンクに溶着される端面を有するフランジ部と、を備える。 (1. Filler tube)
The filler tube which concerns on this invention is a filler tube made from a thermoplastic resin welded to the opening part of a fuel tank. The filler tube before being welded has a non-belly cylindrical basic portion having a total thickness of 2 to 4 mm, a bellows portion having a total thickness of 0.5 to 3 mm, and a total thickness of 3.5 to 5 mm. And a flange portion having an end surface welded to the fuel tank.
本発明に係るフィラーチューブは、燃料タンクの開口部に溶着される熱可塑性樹脂製のフィラーチューブである。溶着される前の前記フィラーチューブは、総肉厚2~4mmの非蛇腹筒状の基本部と、総肉厚0.5~3mmの蛇腹部と、総肉厚3.5~5mmであって、前記燃料タンクに溶着される端面を有するフランジ部と、を備える。 (1. Filler tube)
The filler tube which concerns on this invention is a filler tube made from a thermoplastic resin welded to the opening part of a fuel tank. The filler tube before being welded has a non-belly cylindrical basic portion having a total thickness of 2 to 4 mm, a bellows portion having a total thickness of 0.5 to 3 mm, and a total thickness of 3.5 to 5 mm. And a flange portion having an end surface welded to the fuel tank.
前記基本部、前記蛇腹部及び前記フランジ部は、総肉厚の40~60%の厚みに形成され、高密度ポリエチレン(HDPE)を主体として形成される内層と、前記内層の外周側に配置され、耐燃料透過特性を有する中間層と、前記中間層の外周側に配置され、前記中間層を保護する外層と、を備える。
The basic part, the bellows part and the flange part are formed to a thickness of 40 to 60% of the total thickness, and are arranged on the outer layer side of the inner layer formed mainly of high-density polyethylene (HDPE). And an intermediate layer having fuel permeation resistance and an outer layer disposed on the outer peripheral side of the intermediate layer and protecting the intermediate layer.
HDPEは樹脂製の燃料タンクとの溶着性能は良好である。そして、フランジ部は、総肉厚3.5~5mmであって、総肉厚の40%以上の厚みを有する内層が、HDPEを主体として形成される。フランジ部の内層は、端面に位置し、燃料タンクに接触する部位である。つまり、フランジ部の内層が、必要な溶着強度を確保できる程度の厚みを有する。
HDPE has good welding performance with a resin fuel tank. The flange portion has a total thickness of 3.5 to 5 mm, and an inner layer having a thickness of 40% or more of the total thickness is mainly formed of HDPE. The inner layer of the flange portion is located on the end face and is a part that contacts the fuel tank. That is, the inner layer of the flange portion has a thickness that can ensure the necessary welding strength.
また、フランジ部においては、燃料タンクの表面とフランジ部の中間層との間に存在する内層は、中間層に比べて、耐燃料透過特性が低い。しかし、フランジ部の内層は、内層の総肉厚の60%以下の厚みである。従って、フランジ部の内層が燃料タンクに溶着した状態において、フランジ部の内層の厚みは十分に小さい。そのため、フランジ部の内層の部位において、耐燃料透過特性を十分に確保することができる。
Also, in the flange portion, the inner layer existing between the surface of the fuel tank and the intermediate layer of the flange portion has lower fuel permeation resistance than the intermediate layer. However, the inner layer of the flange portion has a thickness of 60% or less of the total thickness of the inner layer. Therefore, in the state where the inner layer of the flange portion is welded to the fuel tank, the thickness of the inner layer of the flange portion is sufficiently small. Therefore, sufficient fuel permeation resistance can be secured at the inner layer portion of the flange portion.
また、基本部は、総肉厚を2~4mmに形成されている。従って、基本部は、要求される耐衝撃性を確実に有する。一方、蛇腹部は、総肉厚を0.5~3mmに形成されている。つまり、蛇腹部は、基本部よりも薄い。そのため、蛇腹部は良好な曲げ性を有するため、フィラーチューブの配策の容易化が可能となる。ただし、蛇腹部は、総肉厚が基本部に比べて薄いため、耐衝撃性能は低い。ただし、耐衝撃性をそれほど必要としない位置であって、曲げ配置が要求される位置に蛇腹部を配置することで足りる。
Also, the basic part is formed with a total thickness of 2 to 4 mm. Therefore, the basic part surely has the required impact resistance. On the other hand, the bellows portion is formed with a total thickness of 0.5 to 3 mm. That is, the bellows part is thinner than the basic part. Therefore, since the bellows portion has good bendability, the filler tube can be easily arranged. However, the bellows part has a low impact resistance because the total thickness is thinner than the basic part. However, it is sufficient to arrange the bellows part at a position where the impact resistance is not required so much and a bending arrangement is required.
(2.フィラーチューブの製造方法)
製造方法の対象となるフィラーチューブは、上記に加えて、さらに、総肉厚4~6mmの非蛇腹状の厚肉筒部を備え、前記フランジ部は、前記厚肉筒部の前記燃料タンク側の端から径方向外方に突出する。 (2. Filler tube manufacturing method)
In addition to the above, the filler tube that is the object of the manufacturing method further includes a non-accordion-like thick cylindrical portion having a total thickness of 4 to 6 mm, and the flange portion is on the fuel tank side of the thick cylindrical portion. Protrudes radially outward from the end of the.
製造方法の対象となるフィラーチューブは、上記に加えて、さらに、総肉厚4~6mmの非蛇腹状の厚肉筒部を備え、前記フランジ部は、前記厚肉筒部の前記燃料タンク側の端から径方向外方に突出する。 (2. Filler tube manufacturing method)
In addition to the above, the filler tube that is the object of the manufacturing method further includes a non-accordion-like thick cylindrical portion having a total thickness of 4 to 6 mm, and the flange portion is on the fuel tank side of the thick cylindrical portion. Protrudes radially outward from the end of the.
当該フィラーチューブの製造方法であって、コルゲート金型を用いて、コルゲート成形により一次成形体を成形する一次成形工程と、外周型及び内周型を用いて、前記一次成形体にプレス加工を施すことにより前記フィラーチューブを成形する二次成形工程と、を備える。
A method of manufacturing the filler tube, wherein a primary molding step of forming a primary molded body by corrugated molding using a corrugated mold, and pressing the primary molded body using an outer peripheral mold and an inner peripheral mold. A secondary molding step of molding the filler tube.
前記一次成形体は、前記基本部、前記蛇腹部、前記フランジ部がフレア成形される前の部位としての筒状の被成形部、及び、前記厚肉筒部を備える。
前記二次成形工程は、所定温度とされた前記外周型が前記一次成形体の前記厚肉筒部の外周面を支持するように、前記一次成形体を前記外周型に配置する一次成形体配置工程と、前記一次成形体配置工程の後に、前記外周型の前記所定温度より高温とされた前記内周型を前記被成形部の内周側に挿入し、且つ、前記外周型及び前記内周型を軸方向に相対移動させて前記外周型の端面及び前記内周型が前記被成形部を軸方向に挟み込むことで前記フランジ部をフレア成形するフレア成形工程と、を備える。 The primary molded body includes the basic part, the bellows part, a cylindrical molded part as a part before the flange part is flared, and the thick-walled cylindrical part.
In the secondary molding step, the primary molded body is disposed on the outer peripheral mold so that the outer peripheral mold set at a predetermined temperature supports the outer peripheral surface of the thick tube portion of the primary molded body. After the step and the primary molded body arranging step, the inner peripheral mold having a temperature higher than the predetermined temperature of the outer peripheral mold is inserted into the inner peripheral side of the molded part, and the outer peripheral mold and the inner peripheral And a flare molding step in which the flange portion is flared by causing the end surface of the outer peripheral die and the inner peripheral die to sandwich the molding target portion in the axial direction by relatively moving the die in the axial direction.
前記二次成形工程は、所定温度とされた前記外周型が前記一次成形体の前記厚肉筒部の外周面を支持するように、前記一次成形体を前記外周型に配置する一次成形体配置工程と、前記一次成形体配置工程の後に、前記外周型の前記所定温度より高温とされた前記内周型を前記被成形部の内周側に挿入し、且つ、前記外周型及び前記内周型を軸方向に相対移動させて前記外周型の端面及び前記内周型が前記被成形部を軸方向に挟み込むことで前記フランジ部をフレア成形するフレア成形工程と、を備える。 The primary molded body includes the basic part, the bellows part, a cylindrical molded part as a part before the flange part is flared, and the thick-walled cylindrical part.
In the secondary molding step, the primary molded body is disposed on the outer peripheral mold so that the outer peripheral mold set at a predetermined temperature supports the outer peripheral surface of the thick tube portion of the primary molded body. After the step and the primary molded body arranging step, the inner peripheral mold having a temperature higher than the predetermined temperature of the outer peripheral mold is inserted into the inner peripheral side of the molded part, and the outer peripheral mold and the inner peripheral And a flare molding step in which the flange portion is flared by causing the end surface of the outer peripheral die and the inner peripheral die to sandwich the molding target portion in the axial direction by relatively moving the die in the axial direction.
上記製造方法によれば、一次成形体における筒状の被成形部がフレア成形されることにより、フランジ部が成形される。このとき、フィラーチューブの外周側を支持する外周型と、内周側を支持する内周型とが用いられる。ここで、フレア成形工程において、内周型は、外周型より高温にされる。つまり、内周型によって一次成形体の被成形部は加温され、フレア成形しやすい状態となる。
According to the above manufacturing method, the flange part is formed by flaring the cylindrical part to be formed in the primary molded body. At this time, an outer peripheral type that supports the outer peripheral side of the filler tube and an inner peripheral type that supports the inner peripheral side are used. Here, in the flare molding process, the inner peripheral mold is heated to a higher temperature than the outer peripheral mold. That is, the molded part of the primary molded body is heated by the inner peripheral mold, and the flare molding is easily performed.
一方、外周型は、フレア成形工程において、内周型に比べて低温である。この外周型は、フレア成形工程に先立って、一次成形体が配置される型である。つまり、フレア成形工程において、内周型が相対的に高温にされたとしても、外周型は低温であるため、外周型に接触している一次成形体の部位が変形しやすい状態にはならず、外周型と一次成形体との相対位置にずれが生じにくい。従って、所望の位置にフランジ部がフレア成形される。
On the other hand, the outer peripheral mold has a lower temperature than the inner peripheral mold in the flare molding process. This outer peripheral mold is a mold in which the primary molded body is disposed prior to the flare molding process. That is, in the flare molding process, even if the inner peripheral mold is relatively heated, the outer peripheral mold is at a low temperature, so that the portion of the primary molded body that is in contact with the outer peripheral mold is not easily deformed. The relative position between the outer peripheral mold and the primary molded body is less likely to be displaced. Accordingly, the flange portion is flared at a desired position.
さらに、フランジ部は厚肉筒部の燃料タンク側の端から連続して設けられる。そして、厚肉筒部は、総肉厚が4~6mmであり、基本部より厚い。そのため、フランジ部がフレア成形されるとしても、フランジ部と厚肉筒部との境界部位は、十分な強度を有する状態を維持できる。
Furthermore, the flange portion is continuously provided from the end on the fuel tank side of the thick-walled cylinder portion. The thick tube portion has a total thickness of 4 to 6 mm and is thicker than the basic portion. Therefore, even if the flange portion is flared, the boundary portion between the flange portion and the thick tube portion can maintain a sufficient strength.
(1.燃料ライン1の構成)
燃料ライン1の構成について図1を参照して説明する。燃料ライン1とは、自動車において、給油口から内燃機関(図示せず)までのラインである。ただし、本実施形態においては、給油口20から燃料タンク10までを説明する。 (1. Configuration of fuel line 1)
The configuration of the fuel line 1 will be described with reference to FIG. The fuel line 1 is a line from a fuel filler port to an internal combustion engine (not shown) in an automobile. However, in this embodiment, thefuel tank 20 to the fuel tank 10 will be described.
燃料ライン1の構成について図1を参照して説明する。燃料ライン1とは、自動車において、給油口から内燃機関(図示せず)までのラインである。ただし、本実施形態においては、給油口20から燃料タンク10までを説明する。 (1. Configuration of fuel line 1)
The configuration of the fuel line 1 will be described with reference to FIG. The fuel line 1 is a line from a fuel filler port to an internal combustion engine (not shown) in an automobile. However, in this embodiment, the
燃料ライン1は、燃料タンク10、給油口20、フィラーチューブ30、ブリーザライン40を備える。燃料タンク10は、熱可塑性樹脂により成形され、ガソリンなどの液体燃料を貯留する。燃料タンク10に貯留された液体燃料は、図示しない内燃機関へ供給され、内燃機関を駆動するために用いられる。給油口20は、給油ノズル(図示せず)を挿入可能な自動車の外表面付近に設けられる。給油口20には、図示しない給油キャップが装着される。燃料タンク10の側面には、燃料供給用の開口部11が形成される。
The fuel line 1 includes a fuel tank 10, a fuel filler 20, a filler tube 30, and a breather line 40. The fuel tank 10 is formed of a thermoplastic resin and stores liquid fuel such as gasoline. The liquid fuel stored in the fuel tank 10 is supplied to an internal combustion engine (not shown) and used to drive the internal combustion engine. The fuel filler port 20 is provided in the vicinity of the outer surface of the automobile into which a fuel nozzle (not shown) can be inserted. A fuel cap (not shown) is attached to the fuel filler 20. A fuel supply opening 11 is formed on the side surface of the fuel tank 10.
フィラーチューブ30は、熱可塑性樹脂により成形され、給油口20と燃料タンク10との間を接続する。フィラーチューブ30の一端は、燃料タンク10の開口部11に溶着される。フィラーチューブ30の他端は、給油口20の挿入部21が圧入される。給油口20に給油ノズルが挿入されて、給油ノズルから液体燃料が供給されることにより、液体燃料がフィラーチューブ30を通過して燃料タンク10に貯留される。ここで、燃料タンク10に液体燃料が満タンになると、フィラーチューブ30に液体燃料が貯留され、給油ノズルの先端に液体燃料が触れることにより、給油ノズルによる液体燃料の供給が自動的に停止される。なお、フィラーチューブ30は、全長に亘って一体に成形される。
The filler tube 30 is formed of a thermoplastic resin and connects between the fuel filler opening 20 and the fuel tank 10. One end of the filler tube 30 is welded to the opening 11 of the fuel tank 10. The other end of the filler tube 30 is press-fitted with the insertion portion 21 of the fuel filler port 20. When the fuel nozzle is inserted into the fuel filler port 20 and liquid fuel is supplied from the fuel nozzle, the liquid fuel passes through the filler tube 30 and is stored in the fuel tank 10. Here, when the liquid fuel is full in the fuel tank 10, the liquid fuel is stored in the filler tube 30, and the supply of the liquid fuel from the fuel nozzle is automatically stopped by touching the liquid fuel to the tip of the fuel nozzle. The The filler tube 30 is integrally formed over the entire length.
ブリーザライン40は、燃料タンク10と給油口20とを接続する。ブリーザライン40は、液体燃料がフィラーチューブ30を介して燃料タンク10に供給される際に、燃料タンク10内の燃料の蒸気を燃料タンク10の外に排出するためのラインである。
The breather line 40 connects the fuel tank 10 and the fuel filler opening 20. The breather line 40 is a line for discharging the fuel vapor in the fuel tank 10 to the outside of the fuel tank 10 when liquid fuel is supplied to the fuel tank 10 via the filler tube 30.
ブリーザライン40は、カットバルブ装置41と、コネクタ42と、ブリーザチューブ43とを備える。カットバルブ装置41は、燃料タンク10の上部に配置され、開放状態のときに燃料タンク10内の燃料の蒸気が給油口20側へ排出される。カットバルブ装置41は、金属製の接続パイプ41aを備える。コネクタ42は、接続パイプ41aに連結される。このコネクタ42は、例えば、特許第3775656号公報などに記載のコネクタから流量制御弁を除いた構成からなる。つまり、コネクタ42は、接続パイプ41aから着脱可能に設けられる。ブリーザチューブ43は、コネクタ42と給油口20とを接続する。
The breather line 40 includes a cut valve device 41, a connector 42, and a breather tube 43. The cut valve device 41 is disposed at the upper part of the fuel tank 10, and the vapor of the fuel in the fuel tank 10 is discharged to the fuel filler opening 20 side in the open state. The cut valve device 41 includes a metal connection pipe 41a. The connector 42 is coupled to the connection pipe 41a. The connector 42 is configured by removing the flow control valve from the connector described in, for example, Japanese Patent No. 3775656. That is, the connector 42 is detachably provided from the connection pipe 41a. The breather tube 43 connects the connector 42 and the fuel filler 20.
(2.フィラーチューブ30の構成)
フィラーチューブ30の構成について、図1~図6を参照して説明する。フィラーチューブ30は、図1及び図2に示すように、非蛇腹筒状の基本部31、蛇腹部32、テーパ係止部33、非蛇腹状の厚肉筒部34、及び、フランジ部35を備える。基本部31、蛇腹部32、テーパ係止部33、厚肉筒部34及びフランジ部35の総肉厚T1,T2,T4,T5は、図3~図6に示すとおりである。総肉厚は、厚肉筒部34、フランジ部35、基本部31、蛇腹部32の順に薄くなっていく。また、フィラーチューブ30は、図3~図6に示すように、異種の熱可塑性樹脂による多層構造である。 (2. Configuration of filler tube 30)
The configuration of thefiller tube 30 will be described with reference to FIGS. As shown in FIGS. 1 and 2, the filler tube 30 includes a non-bellows cylindrical basic portion 31, a bellows portion 32, a taper locking portion 33, a non-bellows-like thick cylindrical portion 34, and a flange portion 35. Prepare. The total thicknesses T1, T2, T4, and T5 of the basic portion 31, the bellows portion 32, the taper locking portion 33, the thick tube portion 34, and the flange portion 35 are as shown in FIGS. The total wall thickness decreases in the order of the thick tube portion 34, the flange portion 35, the basic portion 31, and the bellows portion 32. Further, as shown in FIGS. 3 to 6, the filler tube 30 has a multilayer structure made of different types of thermoplastic resins.
フィラーチューブ30の構成について、図1~図6を参照して説明する。フィラーチューブ30は、図1及び図2に示すように、非蛇腹筒状の基本部31、蛇腹部32、テーパ係止部33、非蛇腹状の厚肉筒部34、及び、フランジ部35を備える。基本部31、蛇腹部32、テーパ係止部33、厚肉筒部34及びフランジ部35の総肉厚T1,T2,T4,T5は、図3~図6に示すとおりである。総肉厚は、厚肉筒部34、フランジ部35、基本部31、蛇腹部32の順に薄くなっていく。また、フィラーチューブ30は、図3~図6に示すように、異種の熱可塑性樹脂による多層構造である。 (2. Configuration of filler tube 30)
The configuration of the
基本部31は、非蛇腹筒状に形成される。すなわち、基本部31は、円筒状、又は、楕円筒状に形成される。基本部31は、圧入基本部61、非圧入基本部62、及び、タンク側基本部63を備える。
The basic part 31 is formed in a non-accordion cylinder shape. That is, the basic part 31 is formed in a cylindrical shape or an elliptical cylindrical shape. The basic portion 31 includes a press-fit basic portion 61, a non-press-fit basic portion 62, and a tank side basic portion 63.
圧入基本部61は、フィラーチューブ30において給油口20側の端(燃料タンク10とは反対側の端)に設けられる。圧入基本部61は、円筒状に形成される。圧入基本部61は、給油口20の挿入部21が内部に圧入される部位である。つまり、圧入基本部61は、給油口20の挿入部21が圧入される前の状態に比べて拡径されている。
The press-fitting basic portion 61 is provided at the end of the filler tube 30 on the oil filler 20 side (the end opposite to the fuel tank 10). The press-fit basic portion 61 is formed in a cylindrical shape. The press-fit basic part 61 is a part into which the insertion part 21 of the fuel filler opening 20 is press-fitted. In other words, the press-fit basic portion 61 is expanded in diameter compared to the state before the insertion portion 21 of the fuel filler opening 20 is press-fitted.
非圧入基本部62は、圧入基本部61のタンク側の端に連設される。非圧入基本部62は、圧入基本部61が挿入部21への圧入によって拡開されることにより、圧入基本部61と区別できる。ただし、圧入基本部61が挿入部21への圧入により拡開される前の状態においては、圧入基本部61と非圧入基本部62とは同径であるため、両者を区別できず、両者の境界が存在するわけではない。
The non-press-fit basic portion 62 is connected to the end of the press-fit basic portion 61 on the tank side. The non-press-fit basic portion 62 can be distinguished from the press-fit basic portion 61 by expanding the press-fit basic portion 61 by press-fitting into the insertion portion 21. However, in the state before the press-fit basic portion 61 is expanded by press-fitting into the insertion portion 21, the press-fit basic portion 61 and the non-press-fit basic portion 62 have the same diameter. There is no boundary.
非圧入基本部62は、圧入基本部61側から順に、第一直線部62a、曲がり部62b、第二直線部62cを備える。第一直線部62aは、圧入基本部61の燃料タンク10側の端に連設され、その中心軸線が直線状に形成され、且つ、円筒状に形成される。曲がり部62bは、第一直線部62aの燃料タンク10側の端に連設され、その中心軸線が湾曲した形状に形成され、且つ、楕円筒状に形成される。第二直線部62cは、曲がり部62bの燃料タンク10側の端に連設され、その中心軸線が直線状に形成され、且つ、円筒状に形成される。つまり、非圧入基本部62の内周面が、中心軸線方向に段差を有しない形状に形成される。従って、給油ノズルからの供給直後の液体燃料が、スムースに流通する。
The non-press-fit basic portion 62 includes a first straight portion 62a, a bent portion 62b, and a second straight portion 62c in order from the press-fit basic portion 61 side. The first straight part 62a is connected to the end of the press-fitting basic part 61 on the fuel tank 10 side, and its central axis is formed in a straight line and is formed in a cylindrical shape. The bent portion 62b is connected to the end of the first straight portion 62a on the fuel tank 10 side, has a center axis that is curved, and has an elliptical cylindrical shape. The second straight portion 62c is connected to the end of the bent portion 62b on the fuel tank 10 side, and its central axis is formed in a straight line and is formed in a cylindrical shape. That is, the inner peripheral surface of the non-press-fit basic portion 62 is formed in a shape having no step in the central axis direction. Accordingly, the liquid fuel immediately after being supplied from the fuel supply nozzle flows smoothly.
タンク側基本部63は、非圧入基本部62の燃料タンク10側に、蛇腹部32を介して配置される。つまり、タンク側基本部63は、蛇腹部32の燃料タンク10側の端に連設され、その中心軸線が直線状に形成され、且つ、円筒状に形成される。タンク側基本部63は、径方向外方に環状に突出するリブ63aを備える。タンク側基本部63は、蛇腹部32と厚肉筒部34との繋ぎの役割を有している。つまり、タンク側基本部63は、蛇腹部32と厚肉筒部34との厚みの急激な変化を緩和する役割を有する。特に、タンク側基本部63がリブ63aを有することにより、タンク側基本部63の軸方向長さが短くても、厚みの急激な変化を確実に緩和できる。
The tank side basic portion 63 is disposed on the fuel tank 10 side of the non-press-fit basic portion 62 via the bellows portion 32. That is, the tank side basic portion 63 is connected to the end of the bellows portion 32 on the fuel tank 10 side, and its central axis is formed in a straight line and is formed in a cylindrical shape. The tank side basic portion 63 includes a rib 63a that protrudes annularly outward in the radial direction. The tank side basic portion 63 has a role of connecting the bellows portion 32 and the thick tube portion 34. That is, the tank side basic portion 63 has a role of mitigating a sudden change in thickness between the bellows portion 32 and the thick tube portion 34. In particular, since the tank side basic portion 63 has the rib 63a, even if the axial length of the tank side basic portion 63 is short, an abrupt change in thickness can be reliably mitigated.
基本部31の軸方向断面は、図3に示すとおりである。基本部31の耐衝撃性を満たすために、基本部31の総肉厚T1は、2~4mmとされる。基本部31は、内層31a、中間層31b、外層31c、内層31aと中間層31bとを接着する内接着層31d、及び、中間層31bと外層31cとを接着する外接着層31eを備える。
The axial section of the basic part 31 is as shown in FIG. In order to satisfy the impact resistance of the basic part 31, the total thickness T1 of the basic part 31 is 2 to 4 mm. The basic portion 31 includes an inner layer 31a, an intermediate layer 31b, an outer layer 31c, an inner adhesive layer 31d that bonds the inner layer 31a and the intermediate layer 31b, and an outer adhesive layer 31e that bonds the intermediate layer 31b and the outer layer 31c.
内層31aは、液体燃料に触れる面であるため、耐ガソリン性を有する材料が用いられる。さらに、圧入基本部61が給油口20の挿入部21に圧入された状態において、圧入基本部61の内層31aは、挿入部21に対して引っ掛かり力(抜け防止力)を有する必要がある。そのため、基本部31の内層31aは、シール性を有する材料が用いられる。そこで、内層31aは、高密度ポリエチレン(HDPE)を主体として形成される。内層31aは、基本部31の総肉厚T1の40~60%の厚みに形成される。
Since the inner layer 31a is a surface that comes into contact with the liquid fuel, a material having gasoline resistance is used. Furthermore, in a state where the press-fit basic portion 61 is press-fitted into the insertion portion 21 of the fuel filler port 20, the inner layer 31 a of the press-fit basic portion 61 needs to have a catching force (prevention force) with respect to the insert portion 21. Therefore, a material having a sealing property is used for the inner layer 31a of the basic portion 31. Therefore, the inner layer 31a is formed mainly of high density polyethylene (HDPE). The inner layer 31a is formed to a thickness of 40 to 60% of the total thickness T1 of the basic portion 31.
中間層31bは、内層31aの外周側に配置され、耐燃料透過特性を有する。中間層31bは、耐燃料透過特性を有する材料として、エチレン-ビニルアルコール共重合体(EVOH)及びポリアミド(PA)系の何れかを主体として形成される。中間層31bは、総肉厚T1の1~10%の厚みに形成される。
The intermediate layer 31b is disposed on the outer peripheral side of the inner layer 31a and has fuel permeation resistance. The intermediate layer 31b is formed mainly of either an ethylene-vinyl alcohol copolymer (EVOH) or a polyamide (PA) as a material having fuel permeation resistance. The intermediate layer 31b is formed to a thickness of 1 to 10% of the total thickness T1.
外層31cは、中間層31bの外周側に配置され、中間層31bを保護する。外層31cは、フィラーチューブ30の最外面を形成する。そのため、外層31cには、耐衝撃性、耐候性、耐薬品性を有する材料が用いられる。そこで、外層31cは、高密度ポリエチレン(HDPE)及びポリアミド(PA)系の何れかを主体として形成される。外層31cは、総肉厚T1の20~40%の厚みに形成される。
The outer layer 31c is disposed on the outer peripheral side of the intermediate layer 31b and protects the intermediate layer 31b. The outer layer 31 c forms the outermost surface of the filler tube 30. Therefore, a material having impact resistance, weather resistance, and chemical resistance is used for the outer layer 31c. Therefore, the outer layer 31c is formed mainly of either high density polyethylene (HDPE) or polyamide (PA). The outer layer 31c is formed to a thickness of 20 to 40% of the total thickness T1.
内接着層31dは、内層31aの外周面と中間層31bの内周面とを接着する層である。外接着層31eは、中間層31bの外周面と外層31cの内周面とを接着する層である。内接着層31d及び外接着層31eは、変性ポリエチレン(変性PE)を主体として形成される。内接着層31d及び外接着層31eは、総肉厚T1の1~10%の厚みに形成される。ただし、内層31a及び中間層31bの一方が、他方に対する接着性能を有する場合には、内接着層31dは不要となる。また、中間層31b及び外層31cの一方が、他方に対する接着性能を有する場合には、外接着層31eは不要となる。
The inner adhesive layer 31d is a layer that adheres the outer peripheral surface of the inner layer 31a and the inner peripheral surface of the intermediate layer 31b. The outer adhesive layer 31e is a layer that adheres the outer peripheral surface of the intermediate layer 31b and the inner peripheral surface of the outer layer 31c. The inner adhesive layer 31d and the outer adhesive layer 31e are formed mainly of modified polyethylene (modified PE). The inner adhesive layer 31d and the outer adhesive layer 31e are formed to a thickness of 1 to 10% of the total thickness T1. However, when one of the inner layer 31a and the intermediate layer 31b has an adhesive performance with respect to the other, the inner adhesive layer 31d is unnecessary. In addition, when one of the intermediate layer 31b and the outer layer 31c has adhesion performance to the other, the outer adhesive layer 31e is not necessary.
蛇腹部32は、基本部31とは異なり、蛇腹筒状に形成される。蛇腹部32は、非圧入基本部62のうちの第二直線部62cとタンク側基本部63との間に設けられる。すなわち、蛇腹部32は、第二直線部62cの端(燃料タンク10側の端)に連設され、且つ、タンク側基本部63の端(燃料タンク10と反対側の端)に連設される。蛇腹部32は、作業者によって容易に曲げ変形できる部位である。
Unlike the basic portion 31, the bellows portion 32 is formed in a bellows tube shape. The bellows portion 32 is provided between the second straight portion 62 c of the non-press-fit basic portion 62 and the tank side basic portion 63. That is, the bellows portion 32 is connected to the end of the second straight portion 62c (end on the fuel tank 10 side), and is connected to the end of the tank side basic portion 63 (end opposite to the fuel tank 10). The The bellows portion 32 is a portion that can be easily bent and deformed by an operator.
蛇腹部32の軸方向断面は、図4に示すとおりである。蛇腹部32の良好な曲げ性(柔軟性)を有するようにするために、蛇腹部32の総肉厚T2は、0.5~3mmとされる。そして、蛇腹部32の総肉厚T2は、基本部31の総肉厚T1以下である。つまり、第二直線部62cと蛇腹部32との境界、及び、タンク側基本部63と蛇腹部32との境界にて、総肉厚が変化する。
The axial cross section of the bellows portion 32 is as shown in FIG. In order to have good bendability (flexibility) of the bellows part 32, the total thickness T2 of the bellows part 32 is set to 0.5 to 3 mm. The total thickness T2 of the bellows portion 32 is equal to or less than the total thickness T1 of the basic portion 31. That is, the total thickness changes at the boundary between the second straight portion 62 c and the bellows portion 32 and at the boundary between the tank side basic portion 63 and the bellows portion 32.
蛇腹部32は、基本部31と同様に、内層32a、中間層32b、外層32c、内接着層32d、及び、外接着層32eを備える。蛇腹部32の各層32a~32eは、基本部31の各層31a~31eのそれぞれと同一材料により形成され、各層32a~32eの総肉厚T2に対する割合も基本部31におけるその割合と同一である。つまり、内層32aの厚みは、総肉厚T2の40~60%であり、中間層32bの厚みは、総肉厚T2の1~10%であり、外層32cの厚みは、総肉厚T2の20~40%である。ここで、フィラーチューブ30において、蛇腹部32が最も薄い部位である。そのため、フィラーチューブ30全長に亘って耐燃料透過特性を確保するために、蛇腹部32の総肉厚T2に応じて、中間層32bの厚み割合が設定される。
The bellows portion 32 includes an inner layer 32a, an intermediate layer 32b, an outer layer 32c, an inner adhesive layer 32d, and an outer adhesive layer 32e, like the basic portion 31. Each layer 32a to 32e of the bellows portion 32 is formed of the same material as each of the layers 31a to 31e of the basic portion 31, and the ratio of each layer 32a to 32e with respect to the total thickness T2 is also the same as that in the basic portion 31. That is, the thickness of the inner layer 32a is 40 to 60% of the total thickness T2, the thickness of the intermediate layer 32b is 1 to 10% of the total thickness T2, and the thickness of the outer layer 32c is equal to the total thickness T2. 20 to 40%. Here, in the filler tube 30, the bellows part 32 is the thinnest part. Therefore, in order to ensure fuel permeation resistance over the entire length of the filler tube 30, the thickness ratio of the intermediate layer 32b is set according to the total thickness T2 of the bellows portion 32.
テーパ係止部33は、燃料タンク10側に向かって拡径するテーパ筒状に形成される。テーパ係止部33は、後述する、フランジ部35の成形のための外周型80に対する係止機能を発揮する部位である。テーパ係止部33は、タンク側基本部63の燃料タンク10側の端に連設される。テーパ係止部33は、タンク側基本部63から厚肉筒部34に至って、厚みが徐々に厚くなるように変化する。なお、テーパ係止部33の軸方向断面については、詳細に説明しないが、基本部31と実質同様である。
The taper locking portion 33 is formed in a tapered cylindrical shape whose diameter increases toward the fuel tank 10 side. The taper locking portion 33 is a portion that exhibits a locking function with respect to the outer peripheral die 80 for forming the flange portion 35, which will be described later. The taper locking portion 33 is connected to the end of the tank side basic portion 63 on the fuel tank 10 side. The taper locking portion 33 changes from the tank side basic portion 63 to the thick tube portion 34 so that the thickness gradually increases. Although the axial section of the taper locking portion 33 is not described in detail, it is substantially the same as the basic portion 31.
厚肉筒部34は、非蛇腹筒状に形成される。本実施形態においては、厚肉筒部34は、円筒状、又は、楕円筒状に形成される。厚肉筒部34は、テーパ係止部33の燃料タンク10側の端に連設される。厚肉筒部34は、円筒状に形成され、タンク側基本部63に連設される。本実施形態においては、厚肉筒部34は、タンク側基本部63に対して、内径及び外径ともに大きい。
The thick tube portion 34 is formed in a non-bellows tube shape. In the present embodiment, the thick cylindrical portion 34 is formed in a cylindrical shape or an elliptical cylindrical shape. The thick cylindrical portion 34 is connected to the end of the taper locking portion 33 on the fuel tank 10 side. The thick-walled cylinder portion 34 is formed in a cylindrical shape and is connected to the tank side basic portion 63. In the present embodiment, the thick-walled cylinder portion 34 has a larger inner diameter and outer diameter than the tank-side basic portion 63.
厚肉筒部34の軸方向断面は、図5に示すとおりである。厚肉筒部34は、フランジ部35を燃料タンク10に溶着する際に、軸力を確保するために(座屈しないようにするために)、厚肉筒部34の総肉厚T4は、4~6mmとされる。つまり、厚肉筒部34は、タンク側基本部63よりも厚い。
The axial section of the thick-walled cylinder portion 34 is as shown in FIG. When the flange portion 35 is welded to the fuel tank 10, the thick-walled cylinder portion 34 has a total thickness T4 of the thick-walled cylinder portion 34 in order to ensure axial force (to prevent buckling). 4 to 6 mm. That is, the thick tube portion 34 is thicker than the tank side basic portion 63.
厚肉筒部34は、基本部31と同様に、内層34a、中間層34b、外層34c、内接着層34d、及び、外接着層34eを備える。厚肉筒部34の各層34a~34eは、基本部31の各層31a~31eのそれぞれと同一材料により形成され、各層34a~34eの総肉厚T4に対する割合も基本部31における各割合と同一である。つまり、内層34aの厚みは、総肉厚T4の40~60%であり、中間層34bの厚みは、総肉厚T4の1~10%であり、外層34cの厚みは、総肉厚T4の20~40%である。
The thick-walled cylinder portion 34 includes an inner layer 34 a, an intermediate layer 34 b, an outer layer 34 c, an inner adhesive layer 34 d, and an outer adhesive layer 34 e, similar to the basic portion 31. The respective layers 34a to 34e of the thick-walled cylinder portion 34 are formed of the same material as the respective layers 31a to 31e of the basic portion 31, and the ratios of the respective layers 34a to 34e with respect to the total thickness T4 are the same as the respective proportions of the basic portion 31. is there. That is, the thickness of the inner layer 34a is 40 to 60% of the total thickness T4, the thickness of the intermediate layer 34b is 1 to 10% of the total thickness T4, and the thickness of the outer layer 34c is equal to the total thickness T4. 20 to 40%.
フランジ部35は、厚肉筒部34の燃料タンク10側の端から、径方向外方に突出する。ここでいう径方向外方とは、厚肉筒部34の中心軸線に直交する外方向のみを意味するのではなく、当該直交する外方向の成分を有する方向を意味する。フランジ部35は、テーパ部71及び円環板部72を備える。テーパ部71は、厚肉筒部34の燃料タンク10側の端から、燃料タンク10に向かって拡径する。つまり、テーパ部71は、厚肉筒部34の端から径方向外方に広がる。円環板部72は、テーパ部71の燃料タンク10側の端から、径方向外方に延在する。円環板部72が、燃料タンク10に当接し、燃料タンク10に溶着される端面を有する。
The flange portion 35 projects radially outward from the end of the thick tube portion 34 on the fuel tank 10 side. The radially outward direction here does not mean only the outward direction orthogonal to the central axis of the thick-walled cylindrical portion 34, but means the direction having the orthogonal outward component. The flange portion 35 includes a tapered portion 71 and an annular plate portion 72. The taper portion 71 increases in diameter toward the fuel tank 10 from the end of the thick tube portion 34 on the fuel tank 10 side. That is, the taper portion 71 extends radially outward from the end of the thick tube portion 34. The annular plate portion 72 extends radially outward from the end of the tapered portion 71 on the fuel tank 10 side. The annular plate portion 72 abuts on the fuel tank 10 and has an end surface welded to the fuel tank 10.
フランジ部35の軸方向断面は、図6に示すとおりである。フランジ部35の総肉厚T5は、3.5~5mmとされる。ただし、フランジ部35の総肉厚T5は、厚肉筒部34の総肉厚T4より薄い。ここで、フランジ部35は、上述したように、テーパ部71と円環板部72とを備える。つまり、テーパ部71の総肉厚T51及び円環板部72の総肉厚T52は、厚肉筒部34の総肉厚T4より薄い。さらに、円環板部72の総肉厚T52は、テーパ部71の総肉厚T51より薄い。つまり、厚肉筒部34、テーパ部71、円環板部72の順に、薄くなる。
The axial section of the flange portion 35 is as shown in FIG. The total thickness T5 of the flange portion 35 is set to 3.5 to 5 mm. However, the total thickness T5 of the flange portion 35 is thinner than the total thickness T4 of the thick tube portion 34. Here, the flange portion 35 includes the tapered portion 71 and the annular plate portion 72 as described above. That is, the total thickness T51 of the tapered portion 71 and the total thickness T52 of the annular plate portion 72 are thinner than the total thickness T4 of the thick cylindrical portion 34. Further, the total thickness T52 of the annular plate portion 72 is thinner than the total thickness T51 of the tapered portion 71. That is, the thickness is reduced in the order of the thick cylindrical portion 34, the tapered portion 71, and the annular plate portion 72.
フランジ部35(テーパ部71及び円環板部72)は、基本部31と同様に、内層35a、中間層35b、外層35c、内接着層35d、及び、外接着層35eを備える。フランジ部35の各層35a~35eは、基本部31の各層31a~31eのそれぞれと同一材料により形成され、各層35a~35eの総肉厚T5(T51,T52)に対する割合も基本部31におけるその割合と同一である。つまり、内層35aの厚みは、総肉厚T5(T51,T52)の40~60%であり、中間層35bの厚みは、総肉厚T5(T51,T52)の1~10%であり、外層35cの厚みは、総肉厚T5(T51,T52)の20~40%である。
The flange part 35 (the taper part 71 and the annular plate part 72) includes an inner layer 35a, an intermediate layer 35b, an outer layer 35c, an inner adhesive layer 35d, and an outer adhesive layer 35e, like the basic part 31. The layers 35a to 35e of the flange portion 35 are formed of the same material as the layers 31a to 31e of the basic portion 31, and the ratio of the layers 35a to 35e with respect to the total thickness T5 (T51, T52) is also the proportion of the basic portion 31. Is the same. That is, the thickness of the inner layer 35a is 40 to 60% of the total thickness T5 (T51, T52), and the thickness of the intermediate layer 35b is 1 to 10% of the total thickness T5 (T51, T52). The thickness of 35c is 20 to 40% of the total thickness T5 (T51, T52).
ここで、フランジ部35の円環板部72は、燃料タンク10との溶着強度を確保する必要がある。そこで、フランジ部35の内層35aは、溶着に適した材料とされる。つまり、溶着性能を考慮して、内層35aは、高密度ポリエチレン(HDPE)を主体として形成される。
Here, the annular plate portion 72 of the flange portion 35 needs to ensure the welding strength with the fuel tank 10. Therefore, the inner layer 35a of the flange portion 35 is made of a material suitable for welding. That is, in consideration of welding performance, the inner layer 35a is formed mainly of high-density polyethylene (HDPE).
そして、溶着強度は、内層35aの厚みに依存する。そこで、内層35aの厚みを、必要な溶着強度を有する厚みとするために、フランジ部35の総肉厚T5を3.5~5mmとし、且つ、内層35aを総肉厚T5の40%以上とした。特に、円環板部72の総肉厚T52を3.5~5mmとし、且つ、内層35aを総肉厚T52の40%以上とした。
The welding strength depends on the thickness of the inner layer 35a. Therefore, in order to set the thickness of the inner layer 35a to a thickness having a necessary welding strength, the total thickness T5 of the flange portion 35 is set to 3.5 to 5 mm, and the inner layer 35a is set to 40% or more of the total thickness T5. did. In particular, the total thickness T52 of the annular plate portion 72 is set to 3.5 to 5 mm, and the inner layer 35a is set to 40% or more of the total thickness T52.
ただし、溶着に適した材料からなる内層35aは、耐燃料透過特性としては、中間層35bより劣る。そして、フランジ部35の円環板部72においては、内層35aが、燃料タンク10の表面とフランジ部35の中間層35bとの間に存在する。つまり、内層35aが、フィラーチューブ30における液体燃料の流通領域と外部領域とを区画する。そのため、内層35aの厚みが薄いほど、フランジ部35の円環板部72における耐燃料透過特性が高くなる。そこで、内層35aの厚みは、総肉厚T5(T52)の60%以下とすることで、溶着後における耐燃料透過特性を確保することができる。
However, the inner layer 35a made of a material suitable for welding is inferior to the intermediate layer 35b in terms of fuel permeation resistance. In the annular plate portion 72 of the flange portion 35, the inner layer 35 a exists between the surface of the fuel tank 10 and the intermediate layer 35 b of the flange portion 35. That is, the inner layer 35 a partitions the liquid fuel circulation region and the outer region in the filler tube 30. Therefore, the thinner the inner layer 35a is, the higher the fuel permeation resistance in the annular plate portion 72 of the flange portion 35 is. Therefore, by setting the thickness of the inner layer 35a to 60% or less of the total thickness T5 (T52), the fuel permeation resistance after welding can be ensured.
(3.フィラーチューブ30の製造方法)
フィラーチューブ30の製造方法について、図7のフローチャート、及び、図8~図11を参照して説明する。まず、コルゲート金型を用いた押出しブロー成形(コルゲート成形)を行うことにより、図8に示す一次成形体130が成形される(S1:「一次成形工程」)。 (3. Manufacturing method of filler tube 30)
A method for manufacturing thefiller tube 30 will be described with reference to the flowchart of FIG. 7 and FIGS. First, by performing extrusion blow molding (corrugated molding) using a corrugated mold, a primary molded body 130 shown in FIG. 8 is molded (S1: “primary molding process”).
フィラーチューブ30の製造方法について、図7のフローチャート、及び、図8~図11を参照して説明する。まず、コルゲート金型を用いた押出しブロー成形(コルゲート成形)を行うことにより、図8に示す一次成形体130が成形される(S1:「一次成形工程」)。 (3. Manufacturing method of filler tube 30)
A method for manufacturing the
一次成形体130は、図2に示す基本部31、蛇腹部32、テーパ係止部33を備える。さらに、一次成形体130は、厚肉筒部34及びフランジ部35を含む部分であって、フランジ部35がフレア成形される前の部位としての、筒状の被成形部130aを備える。ここで、一次成形体130の厚肉筒部34は、図2に示すフィラーチューブ30の厚肉筒部34と同一である。
The primary molded body 130 includes a basic part 31, a bellows part 32, and a taper locking part 33 shown in FIG. Further, the primary molded body 130 includes a thick cylindrical portion 34 and a flange portion 35, and includes a cylindrical molded portion 130 a as a portion before the flange portion 35 is flared. Here, the thick cylindrical portion 34 of the primary molded body 130 is the same as the thick cylindrical portion 34 of the filler tube 30 shown in FIG.
被成形部130aは、厚肉筒部34と同一厚みであって、同一形状の円筒状に形成される。ただし、フランジ部35は、一次成形体130の被成形部130aをフレア成形されることから、フランジ部35の厚みは、被成形部130aの厚み(厚肉筒部34の厚みに等しい)より薄い。
The to-be-molded part 130a has the same thickness as the thick-walled cylinder part 34 and is formed in the same cylindrical shape. However, since the flange portion 35 is formed by flaring the molded portion 130a of the primary molded body 130, the thickness of the flange portion 35 is thinner than the thickness of the molded portion 130a (equal to the thickness of the thick tube portion 34). .
ここで、一次成形体130の総肉厚は、部位によって異なる。そして、一次成形体130の各層の厚みも、部位によって異なる。ただし、一次成形体130は押出しブロー成形により成形されるため、一次成形体130の各層の総肉厚に対する割合は、一次成形体130のどの部位であっても、ほぼ同一割合である。例えば、基本部31の内層31aの総肉厚T1に対する割合と、蛇腹部32の内層32aの総肉厚T2に対する割合とは、ほぼ同一である。
Here, the total thickness of the primary molded body 130 varies depending on the part. And the thickness of each layer of the primary molded object 130 also changes with parts. However, since the primary molded body 130 is molded by extrusion blow molding, the ratio of each layer of the primary molded body 130 to the total thickness is almost the same in any part of the primary molded body 130. For example, the ratio of the basic portion 31 to the total thickness T1 of the inner layer 31a and the ratio of the bellows portion 32 to the total thickness T2 of the inner layer 32a are substantially the same.
続いて、図9に示すように、フランジ部35をフレア成形するための外周型80と内周型90がプレス装置本体(図示せず)に取り付けられる(図7のS2:「型設置工程」)。ここで、外周型80は、下型として用い、内周型90は、上型として用いる。さらに、外周型80と内周型90とは、上下方向に離間している。
Subsequently, as shown in FIG. 9, an outer peripheral die 80 and an inner peripheral die 90 for flaring the flange portion 35 are attached to a press apparatus main body (not shown) (S <b> 2 in FIG. 7: “die setting step”). ). Here, the outer peripheral mold 80 is used as a lower mold, and the inner peripheral mold 90 is used as an upper mold. Further, the outer peripheral mold 80 and the inner peripheral mold 90 are separated in the vertical direction.
外周型80は、複数の分割型により構成され、全体として筒状に形成される。外周型80の内周面は、円筒内周面81、円筒内周面81の下方(内周型90から遠ざかる側)に連続して形成され且つ下方に行くほど縮径される第一テーパ面82、及び、円筒内周面81の上方(内周型90に近づく側)に連続して形成され且つ上方に行くほど拡径される第二テーパ面83を備える。
The outer peripheral mold 80 is composed of a plurality of divided molds, and is formed in a cylindrical shape as a whole. The inner peripheral surface of the outer peripheral mold 80 is a first taper surface that is continuously formed below the cylindrical inner peripheral surface 81 and below the cylindrical inner peripheral surface 81 (on the side away from the inner peripheral mold 90) and is reduced in diameter as it goes downward. 82 and a second tapered surface 83 formed continuously above the cylindrical inner peripheral surface 81 (on the side closer to the inner peripheral mold 90) and having a diameter increasing toward the upper side.
ここで、円筒内周面81は、一次成形体130の厚肉筒部34に対応し、厚肉筒部34の外周面に接触する。第一テーパ面82は、一次成形体130のテーパ係止部33に対応し、テーパ係止部33の外周面に接触する。つまり、第一テーパ面82は、一次成形体130のテーパ係止部33に接触した状態において、一次成形体130を図9の下方に移動させることを規制する被係止部として機能する。従って、被係止部としての第一テーパ面82は、係止部としてのテーパ係止部33に対して、軸方向に係止する。
Here, the cylindrical inner peripheral surface 81 corresponds to the thick cylindrical portion 34 of the primary molded body 130 and contacts the outer peripheral surface of the thick cylindrical portion 34. The first taper surface 82 corresponds to the taper locking portion 33 of the primary molded body 130 and contacts the outer peripheral surface of the taper locking portion 33. That is, the first tapered surface 82 functions as a locked portion that restricts the primary molded body 130 from moving downward in FIG. 9 in a state where the first tapered surface 82 is in contact with the taper locking portion 33 of the primary molded body 130. Therefore, the first tapered surface 82 as the locked portion is locked in the axial direction with respect to the taper locking portion 33 as the locking portion.
第二テーパ面83は、一次成形体130の被成形部130aに対応する軸方向位置に位置しており、被成形部130aの外周面からは離れている。第二テーパ面83は、フレア成形後におけるフランジ部35のテーパ部71を成形するための部位である。
The second taper surface 83 is located at an axial position corresponding to the molded part 130a of the primary molded body 130, and is separated from the outer peripheral surface of the molded part 130a. The 2nd taper surface 83 is a site | part for shape | molding the taper part 71 of the flange part 35 after flare shaping | molding.
外周型80の上端面(内周型90に対向する面)は、外周側に全周状に位置するストッパ平面84と、ストッパ平面84の内周側に全周に亘って円形の凹状に形成される反溶着面形成部85とを備える。反溶着面形成部85は、第二テーパ面83に連続して形成される。また、反溶着面形成部85の底面は、ストッパ平面84に平行な平面状に形成される。反溶着面形成部85は、フレア成形後におけるフランジ部35の円環板部72の反溶着面を成形するための部位である。
An upper end surface of the outer peripheral mold 80 (a surface facing the inner peripheral mold 90) is formed in a circular concave shape over the entire circumference on the inner peripheral side of the stopper plane 84 and a stopper plane 84 positioned on the outer peripheral side. The anti-welding surface forming portion 85 is provided. The anti-welding surface forming portion 85 is formed continuously with the second tapered surface 83. Further, the bottom surface of the anti-welding surface forming portion 85 is formed in a planar shape parallel to the stopper plane 84. The anti-welding surface forming portion 85 is a portion for forming the anti-welding surface of the annular plate portion 72 of the flange portion 35 after the flare molding.
内周型90は、本体部91、本体部91の中心から下方(外周型80側)に縮径して突出する第一テーパ面92、第一テーパ面92の先端から同軸状に延びて円筒状に形成される円筒面93、円筒面93の先端から同軸状に延びて縮径される第二テーパ面94を備える。
The inner peripheral mold 90 includes a main body 91, a first tapered surface 92 projecting with a reduced diameter from the center of the main body 91 (on the outer peripheral mold 80 side), and a cylinder extending coaxially from the tip of the first tapered surface 92. And a second tapered surface 94 that is coaxially extended from the tip of the cylindrical surface 93 and is reduced in diameter.
ここで、本体部91は、外周型80のストッパ平面84及び反溶着面形成部85に対向する面であって、フランジ部35の溶着面を形成する溶着面形成部91aを備える。溶着面形成部91aは、ストッパ平面84に接触することで、外周型80と内周型90との相対移動を規制する機能を有する。また、溶着面形成部91aは、ストッパ平面84に接触した状態で、反溶着面形成部85に対して上下方向に離間するように形成される。
Here, the main body portion 91 includes a welding surface forming portion 91a that is a surface facing the stopper flat surface 84 and the anti-welding surface forming portion 85 of the outer peripheral mold 80 and forms the welding surface of the flange portion 35. The welding surface forming portion 91 a has a function of restricting relative movement between the outer peripheral die 80 and the inner peripheral die 90 by contacting the stopper flat surface 84. In addition, the welding surface forming portion 91 a is formed so as to be vertically separated from the anti-welding surface forming portion 85 while being in contact with the stopper flat surface 84.
第一テーパ面92は、フレア成形後におけるフランジ部35のテーパ部71を形成するための部位である。円筒面93は、一次成形体130の厚肉筒部34に対応し、厚肉筒部34の内周面に接触し得る。第二テーパ面94は、一次成形体130のテーパ係止部33に対応し、テーパ係止部33の内周面に接触し得る。
The 1st taper surface 92 is a site | part for forming the taper part 71 of the flange part 35 after flare molding. The cylindrical surface 93 corresponds to the thick cylindrical portion 34 of the primary molded body 130 and can contact the inner peripheral surface of the thick cylindrical portion 34. The second taper surface 94 corresponds to the taper locking portion 33 of the primary molded body 130 and can contact the inner peripheral surface of the taper locking portion 33.
続いて、図9に示すように、型配置工程の後に、一次成形体130が外周型80に設置される(図7のS3:「一次成形体配置工程」)。一次成形体130のテーパ係止部33が、外周型80の第一テーパ面82に接触し、一次成形体130は、外周型80に対して軸方向下方へ移動することを規制される。このとき、一次成形体130の厚肉筒部34は、外周型80の円筒内周面81に接触する。つまり、外周型80は、外周型80の第一テーパ面82を一次成形体130のテーパ係止部33に軸方向に係止させると共に、一次成形体130のテーパ係止部33及び厚肉筒部34の外周面を支持する。
Subsequently, as shown in FIG. 9, after the mold placement step, the primary molded body 130 is placed on the outer peripheral die 80 (S3 in FIG. 7: “Primary molded body placement step”). The taper locking portion 33 of the primary molded body 130 contacts the first tapered surface 82 of the outer peripheral mold 80, and the primary molded body 130 is restricted from moving axially downward with respect to the outer peripheral mold 80. At this time, the thick cylindrical portion 34 of the primary molded body 130 contacts the cylindrical inner peripheral surface 81 of the outer peripheral mold 80. That is, the outer peripheral die 80 has the first tapered surface 82 of the outer peripheral die 80 axially engaged with the taper engaging portion 33 of the primary molded body 130, and the taper engaging portion 33 of the primary molded body 130 and the thick tube. The outer peripheral surface of the part 34 is supported.
このとき、外周型80の第二テーパ面83及び反溶着面形成部85は、一次成形体130の被成形部130aに非接触となる。さらに、一次成形体130が配置されるときには、外周型80は、所定温度とされる。本実施形態においては、所定温度は、常温(室温)、例えば25℃程度である。つまり、外周型80は、この時点において加温されない。
At this time, the second tapered surface 83 and the anti-welding surface forming portion 85 of the outer peripheral die 80 are not in contact with the molding target portion 130a of the primary molded body 130. Further, when the primary molded body 130 is disposed, the outer peripheral die 80 is set to a predetermined temperature. In the present embodiment, the predetermined temperature is room temperature (room temperature), for example, about 25 ° C. That is, the outer peripheral mold 80 is not heated at this point.
続いて、図10に示すように、一次成形体配置工程の後に、内周型90を外周型80の温度より高温とする。内周型90の温度は、内周型90を一次成形体130に接触させた状態において、フランジ部35の少なくとも内層35aの対応部位をフレア成形することができる程度に柔らかくすることができる温度であると共に、フランジ部35を構成する各層35a~35eの対応部位の多層構造が維持される温度である。本実施形態においては、内周型90の温度は、中間層35bの軟化点より十分に低い温度である。
Subsequently, as shown in FIG. 10, the inner peripheral mold 90 is set to a temperature higher than the temperature of the outer peripheral mold 80 after the primary molded body arranging step. The temperature of the inner peripheral mold 90 is a temperature at which at least the corresponding portion of the inner layer 35a of the flange portion 35 can be made soft enough to be flared when the inner peripheral mold 90 is in contact with the primary molded body 130. In addition, this is a temperature at which the multilayer structure of the corresponding portions of the layers 35a to 35e constituting the flange portion 35 is maintained. In the present embodiment, the temperature of the inner peripheral mold 90 is sufficiently lower than the softening point of the intermediate layer 35b.
そして、高温の内周型90を外周型80に近づけて、内周型90の第二テーパ面94を一次成形体130の被成形部130aの開口から挿入させる。さらに、内周型90を外周型80に近づけて、図10に示すように、内周型90の円筒面93を、一次成形体130の被成形部130aの全長に亘って接触させる。この状態を所定時間維持することで、一次成形体130の被成形部130aが加温される(図7のS4:「加温工程」)。このとき、フランジ部35を構成する全ての層35a~35eの対応部位が軟化して混合されることはなく、多層構造を維持しつつも、特に内層35aの対応部位が柔らかくなる。
Then, the high temperature inner peripheral mold 90 is brought close to the outer peripheral mold 80, and the second tapered surface 94 of the inner peripheral mold 90 is inserted from the opening of the molded part 130a of the primary molded body 130. Further, the inner peripheral mold 90 is brought close to the outer peripheral mold 80, and the cylindrical surface 93 of the inner peripheral mold 90 is brought into contact with the entire length of the molded part 130a of the primary molded body 130 as shown in FIG. By maintaining this state for a predetermined time, the molding target portion 130a of the primary molded body 130 is heated (S4 in FIG. 7: “warming process”). At this time, the corresponding portions of all the layers 35a to 35e constituting the flange portion 35 are not softened and mixed, and the corresponding portion of the inner layer 35a is particularly soft while maintaining the multilayer structure.
このとき、外周型80は、被成形部130aに接触していない位置に位置する。さらに、外周型80は、この時点においても常温のままである。そのため、一次成形体130は、内周型90によって加温されるが、外周型80によっては加温されることはない。
At this time, the outer peripheral die 80 is located at a position not in contact with the molding part 130a. Further, the outer peripheral mold 80 remains at room temperature even at this point. Therefore, the primary molded body 130 is heated by the inner peripheral mold 90, but is not heated by the outer peripheral mold 80.
続いて、図11に示すように、加温工程の後に、内周型90を外周型80にさらに近づけて、外周型80のストッパ平面84と内周型90の本体部91の溶着面形成部91aが接触する状態まで、内周型90を下方へ移動する。内周型90は、加温工程の位置から外周型80に接触する位置へ移動する。さらに、内周型90は、外周型80に接触した位置にて、所定時間維持する。
Next, as shown in FIG. 11, after the heating step, the inner peripheral mold 90 is further brought closer to the outer peripheral mold 80, so that the stopper plane 84 of the outer peripheral mold 80 and the welding surface forming portion of the main body 91 of the inner peripheral mold 90. The inner peripheral mold 90 is moved downward until the state 91a comes into contact. The inner peripheral mold 90 moves from the position of the heating process to a position in contact with the outer peripheral mold 80. Further, the inner peripheral mold 90 is maintained for a predetermined time at a position in contact with the outer peripheral mold 80.
つまり、一次成形体130の被成形部130aは、内周型90の第一テーパ面92及び溶着面形成部91aに沿って変形し、内周型90の第一テーパ面92及び溶着面形成部91aと外周型80の第二テーパ面83及び反溶着面形成部85によりフランジ部35がフレア成形される(図7のS5:「フレア成形工程」)。
That is, the molded part 130 a of the primary molded body 130 is deformed along the first tapered surface 92 and the welding surface forming part 91 a of the inner peripheral mold 90, and the first tapered surface 92 and the welding surface forming part of the inner peripheral mold 90. The flange portion 35 is flare-molded by 91a, the second tapered surface 83 of the outer peripheral die 80, and the anti-weld surface forming portion 85 (S5 in FIG. 7: “flare molding step”).
詳細には、まず、内周型90の第一テーパ面92が、一次成形体130の被成形部130aの内周面に接触しつつ、一次成形体130の被成形部130aを第二テーパ面83に沿って拡径変形させる。さらに、内周型90の溶着面形成部91aが一次成形体130の被成形部130aの端部に接触すると、内周型90の溶着面形成部91aが、一次成形体130の被成形部130aを溶着面形成部91aに沿ってさらに拡径変形させる。
Specifically, first, the first tapered surface 92 of the inner peripheral mold 90 is in contact with the inner peripheral surface of the molded portion 130a of the primary molded body 130, and the molded portion 130a of the primary molded body 130 is moved to the second tapered surface. The diameter is expanded along the line 83. Further, when the welding surface forming portion 91 a of the inner peripheral mold 90 comes into contact with the end of the molded portion 130 a of the primary molded body 130, the welding surface forming portion 91 a of the inner peripheral mold 90 is changed to the molded portion 130 a of the primary molded body 130. Is further expanded and deformed along the welding surface forming portion 91a.
そうすると、一次成形体130の被成形部130aの一部は、外周型80の第二テーパ面83と内周型90の第一テーパ面92との間に径方向に挟まれることにより、フランジ部35のテーパ部71を形成する。また、一次成形体130の被成形部130aの他の一部は、外周型80の反溶着面形成部85と内周型90の溶着面形成部91aとの間に軸方向に挟まれることにより、フランジ部35の円環板部72を形成する。
Then, a part of the molded part 130a of the primary molded body 130 is sandwiched in the radial direction between the second tapered surface 83 of the outer peripheral mold 80 and the first tapered surface 92 of the inner peripheral mold 90, whereby the flange part. 35 taper portions 71 are formed. Further, another part of the molded part 130a of the primary molded body 130 is sandwiched in the axial direction between the anti-welding surface forming part 85 of the outer peripheral mold 80 and the welding surface forming part 91a of the inner peripheral mold 90. The annular plate portion 72 of the flange portion 35 is formed.
そして、加温工程にて、内周型90により被成形部130aの内層側が加温されるため、被成形部130aの内層側は柔らかくなり、外層側は内層に比べると柔らかくなりにくい。そのため、被成形部130aの内層側は、流動しやすい状態であるが、外層側は、比較的流動しにくい状態となる。
In the heating step, the inner layer side of the molded part 130a is heated by the inner peripheral mold 90, so that the inner layer side of the molded part 130a is soft and the outer layer side is less likely to be softer than the inner layer. For this reason, the inner layer side of the molded part 130a is in a state of being easy to flow, but the outer layer side is in a state of being relatively difficult to flow.
従って、一次成形体130の被成形部130aがフレア成形される際に、流動しやすい内層は、重量方向下方へ流動しようとする。しかし、フランジ部35の円環板部72に相当する部位がフレア成形される時には、一次成形体130の内層が重力方向上方に位置するため、例えば、外周型80の反溶着面形成部85の底面に向かって流動するほどまでならない。従って、フランジ部35が確実に形成される。
Therefore, when the molded part 130a of the primary molded body 130 is flared, the inner layer that tends to flow tends to flow downward in the weight direction. However, when the portion corresponding to the annular plate portion 72 of the flange portion 35 is flared, the inner layer of the primary molded body 130 is positioned above the gravity direction. It does not become so much that it flows toward the bottom. Therefore, the flange part 35 is formed reliably.
ここで、上記のように、外周型80と内周型90とによりフランジ部35をフレア成形する際に、内周型90は、一次成形体130の被成形部130aを軸方向下方に押し付ける力を発生する。この力は、外周型80と一次成形体130との間にも伝達される。仮に、一次成形体130が外周型80に対して軸方向に位置ずれを生じると、所望位置にフランジ部35を形成することはできない。そのため、内周型90が一次成形体130の被成形部130aをフレア成形する際において、外周型80が一次成形体130の軸方向位置を保持する必要がある。
Here, as described above, when the flange portion 35 is flared by the outer peripheral die 80 and the inner peripheral die 90, the inner peripheral die 90 presses the molding target portion 130a of the primary molded body 130 downward in the axial direction. Is generated. This force is also transmitted between the outer peripheral die 80 and the primary molded body 130. If the primary molded body 130 is displaced in the axial direction with respect to the outer peripheral mold 80, the flange portion 35 cannot be formed at a desired position. Therefore, when the inner peripheral mold 90 performs flare molding of the molding target portion 130a of the primary molded body 130, the outer peripheral mold 80 needs to maintain the axial position of the primary molded body 130.
そこで、一次成形体130のテーパ係止部33と、外周型80の第一テーパ面82とが係止し合うことによって、外周型80は、一次成形体130の軸方向位置を保持する。ここで、外周型80と一次成形体130との係止力は、両者の摩擦力に依存する。そのため、両者の温度が高いほど、摩擦力が低下する。
Therefore, the outer peripheral mold 80 maintains the axial position of the primary molded body 130 by the taper locking portion 33 of the primary molded body 130 and the first tapered surface 82 of the outer peripheral mold 80 engaging with each other. Here, the locking force between the outer peripheral die 80 and the primary molded body 130 depends on the frictional force between them. Therefore, the higher the temperature of both, the lower the frictional force.
しかし、フレア成形工程において、外周型80は、やはり積極的に加温されるものではない。内周型90が外周型80に近づくことによって、内周型90の熱が一次成形体130を介して伝達される。しかし、外周型80に熱が伝達された状態であっても、外周型80は、内周型90の温度より十分に低温である。そのため、両者の間の摩擦力は、十分に高くなり、外周型80と一次成形体130との軸方向の相対位置にずれが生じにくい。従って、所望の位置にフランジ部35がフレア成形される。
However, in the flare molding process, the outer peripheral die 80 is still not actively heated. As the inner peripheral mold 90 approaches the outer peripheral mold 80, the heat of the inner peripheral mold 90 is transmitted through the primary molded body 130. However, even when heat is transmitted to the outer peripheral mold 80, the outer peripheral mold 80 is sufficiently cooler than the temperature of the inner peripheral mold 90. Therefore, the frictional force between the two becomes sufficiently high, and the relative position in the axial direction between the outer peripheral die 80 and the primary molded body 130 is unlikely to occur. Accordingly, the flange portion 35 is flared at a desired position.
続いて、図11に示すように、一次成形体130が外周型80及び内周型90に挟まれた状態のままで、プレス装置本体(図示せず)から取り外す。取り外されたユニット130,80,90は、所定温度の槽に、所定時間入れることで、一次成形体130の全体加熱処理を行う(図7のS6:「全体加熱処理工程」)。この場合、上述した加温工程及びフレア成形工程のときとは異なり、一次成形体130全体が加熱される。この全体加熱処理により、一次成形体130の内部応力が除去される。
Subsequently, as shown in FIG. 11, the primary molded body 130 is removed from the press apparatus main body (not shown) while being sandwiched between the outer peripheral mold 80 and the inner peripheral mold 90. The removed units 130, 80, and 90 are placed in a tank at a predetermined temperature for a predetermined time to perform the entire heat treatment of the primary molded body 130 (S 6 in FIG. 7: “Whole Heat Treatment Step”). In this case, unlike the above-described heating process and flare molding process, the entire primary molded body 130 is heated. By this whole heat treatment, the internal stress of the primary molded body 130 is removed.
続いて、一次成形体130が外周型80及び内周型90に挟まれた状態のままで冷却し(図7のS7:「冷却工程」)、外周型80及び内周型90を一次成形体130から取り外す(図7のS8:「離型工程」)。このようにして、二次成形体が完成する(図7のS2~S8:「二次成形工程」)。
Subsequently, the primary molded body 130 is cooled while being sandwiched between the outer peripheral mold 80 and the inner peripheral mold 90 (S7 in FIG. 7: “cooling step”), and the outer peripheral mold 80 and the inner peripheral mold 90 are then molded into the primary molded body. It removes from 130 (S8 of FIG. 7: "mold release process"). In this way, the secondary molded body is completed (S2 to S8 in FIG. 7: “secondary molding step”).
続いて、二次成形体に対して、曲げ成形機(図示せず)により、曲がり部62bの曲げ成形を行う(図7のS9:「曲げ工程」)。曲げ工程では、フィラーチューブ30の内部にマンドレル(図示せず)を挿入した状態で、非圧入基本部62の外周面を押付部材(図示せず)に押し付けることにより、曲がり部62bを成形する。そうすると、フィラーチューブ30が完成する。なお、圧入基本部61は、この時点では、非圧入基本部62の第一直線部62aと同一形状である。上述したように、圧入基本部61は、給油口20の挿入部21が挿入されることにより、拡径される。
Subsequently, the bent portion 62b is bent with respect to the secondary molded body by a bending machine (not shown) (S9 in FIG. 7: “bending step”). In the bending step, the bent portion 62b is formed by pressing the outer peripheral surface of the non-press-fit basic portion 62 against a pressing member (not shown) with a mandrel (not shown) inserted into the filler tube 30. Then, the filler tube 30 is completed. The press-fit basic portion 61 has the same shape as the first straight portion 62a of the non-press-fit basic portion 62 at this time. As described above, the press-fit basic portion 61 is expanded in diameter by inserting the insertion portion 21 of the fuel filler opening 20.
また、上記の工程順序に限らず、S9の「曲げ工程」を、S5の「フレア成形工程」の後に行うこととし、S6の「全体加熱処理工程」における一次成形体130の全体加熱処理時に、曲がり部62bの曲げ成形を同時に行っても可とする。この場合、所定温度の槽内において、一次成形体130が端部を外周型80及び内周型90に挟まれたままの状態で、曲がり部62bの曲げ成形を行えばよい。
In addition to the above-described process order, the “bending process” of S9 is performed after the “flare molding process” of S5, and during the overall heat treatment of the primary molded body 130 in the “overall heat treatment process” of S6, It is acceptable to bend the bent portion 62b at the same time. In this case, the bent portion 62b may be bent in a state where the primary molded body 130 is sandwiched between the outer peripheral mold 80 and the inner peripheral mold 90 in a tank at a predetermined temperature.
(4.実施形態の効果)
上述したフィラーチューブ30は、熱可塑性樹脂製であって、燃料タンク10の開口部11に溶着される。溶着される前のフィラーチューブ30は、総肉厚2~4mmの非蛇腹筒状の基本部31と、総肉厚0.5~3mmの蛇腹部32と、総肉厚3.5~5mmであって燃料タンク10に溶着される端面を有するフランジ部35とを備える。 (4. Effects of the embodiment)
Thefiller tube 30 described above is made of a thermoplastic resin and is welded to the opening 11 of the fuel tank 10. The filler tube 30 before being welded has a non-accordion cylindrical basic portion 31 having a total thickness of 2 to 4 mm, a bellows portion 32 having a total thickness of 0.5 to 3 mm, and a total thickness of 3.5 to 5 mm. And a flange portion 35 having an end surface welded to the fuel tank 10.
上述したフィラーチューブ30は、熱可塑性樹脂製であって、燃料タンク10の開口部11に溶着される。溶着される前のフィラーチューブ30は、総肉厚2~4mmの非蛇腹筒状の基本部31と、総肉厚0.5~3mmの蛇腹部32と、総肉厚3.5~5mmであって燃料タンク10に溶着される端面を有するフランジ部35とを備える。 (4. Effects of the embodiment)
The
基本部31、蛇腹部32及びフランジ部35は、総肉厚の40~60%の厚みに形成され、高密度ポリエチレン(HDPE)を主体として形成される内層31a,32a,35aと、内層31a,32a,35aの外周側に配置され、耐燃料透過特性を有する中間層31b,32b,35bと、中間層31b,32b,35bの外周側に配置され、中間層31b,32b,35bを保護する外層31c,32c,35cとを備える。
The base portion 31, the bellows portion 32, and the flange portion 35 are formed to a thickness of 40 to 60% of the total thickness, and are formed of inner layers 31a, 32a, 35a mainly composed of high-density polyethylene (HDPE), and inner layers 31a, The intermediate layers 31b, 32b, 35b disposed on the outer peripheral side of the 32a, 35a and having fuel permeation resistance and the outer layers disposed on the outer peripheral side of the intermediate layers 31b, 32b, 35b and protecting the intermediate layers 31b, 32b, 35b 31c, 32c, and 35c.
HDPEは樹脂製の燃料タンク10との溶着性能は良好である。そして、フランジ部35は、総肉厚T5を3.5~5mmに形成され、総肉厚T5の40%以上の厚みを有する内層35aが、HDPEを主体として形成される。フランジ部35の内層35aは、端面に位置し、燃料タンク10に接触する部位である。つまり、フランジ部35の内層35aが、必要な溶着強度を確保できる程度の厚みを有する。
HDPE has good welding performance with the resin fuel tank 10. The flange portion 35 is formed with a total thickness T5 of 3.5 to 5 mm, and an inner layer 35a having a thickness of 40% or more of the total thickness T5 is mainly formed of HDPE. The inner layer 35 a of the flange portion 35 is a portion that is located on the end face and contacts the fuel tank 10. That is, the inner layer 35a of the flange portion 35 has a thickness that can ensure the necessary welding strength.
また、フランジ部35においては、燃料タンク10の表面とフランジ部35の中間層35bとの間に存在する内層35aは、中間層35bに比べて、耐燃料透過特性が低い。しかし、フランジ部35の内層35aは、総肉厚T5の60%以下の厚みである。従って、フランジ部35の内層35aが燃料タンク10に溶着した状態において、フランジ部35の内層35aの厚みは十分に小さい。そのため、フランジ部35の内層35aの部位において、耐燃料透過特性を十分に確保することができる。
Also, in the flange portion 35, the inner layer 35a existing between the surface of the fuel tank 10 and the intermediate layer 35b of the flange portion 35 has lower fuel permeation resistance than the intermediate layer 35b. However, the inner layer 35a of the flange portion 35 has a thickness of 60% or less of the total thickness T5. Therefore, in the state where the inner layer 35a of the flange portion 35 is welded to the fuel tank 10, the thickness of the inner layer 35a of the flange portion 35 is sufficiently small. Therefore, sufficient fuel permeation resistance can be ensured at the portion of the inner layer 35a of the flange portion 35.
また、基本部31は、総肉厚T1を2~4mmに形成されている。従って、基本部31は、要求される耐衝撃性を確実に有する。一方、蛇腹部32は、総肉厚T2を0.5~3mmに形成されている。そして、蛇腹部32は、基本部31よりも薄い。そのため、蛇腹部32は良好な曲げ性を有するため、フィラーチューブ30の配策の容易化が可能となる。ただし、蛇腹部32は、総肉厚T2が基本部31に比べて薄いため、耐衝撃性能は低い。ただし、耐衝撃性をそれほど必要としない位置であって、曲げ配置が要求される位置に蛇腹部32を配置することで足りる。
Further, the basic part 31 is formed with a total thickness T1 of 2 to 4 mm. Therefore, the basic portion 31 surely has the required impact resistance. On the other hand, the bellows portion 32 has a total thickness T2 of 0.5 to 3 mm. The bellows portion 32 is thinner than the basic portion 31. Therefore, since the bellows part 32 has favorable bendability, the arrangement of the filler tube 30 can be facilitated. However, the bellows portion 32 has a low impact resistance because the total thickness T2 is thinner than the basic portion 31. However, it is sufficient to arrange the bellows portion 32 at a position where the impact resistance is not so required and a position where bending arrangement is required.
また、中間層31b,32b,34b,35bは、エチレン-ビニルアルコール共重合体(EVOH)及びポリアミド(PA)系の何れかを主体として形成され、外層31c,32c,34c,35cは、高密度ポリエチレン(HDPE)及びポリアミド(PA)系の何れかを主体として形成される。これにより、中間層31b,32b,34b,35bに要求される耐燃料透過特性、及び、外層31c,32c,34c,35cに要求される耐衝撃性などを確実に有する。
Further, the intermediate layers 31b, 32b, 34b, and 35b are formed mainly of any one of an ethylene-vinyl alcohol copolymer (EVOH) and a polyamide (PA), and the outer layers 31c, 32c, 34c, and 35c are high-density. It is formed mainly of either polyethylene (HDPE) or polyamide (PA). This ensures the fuel permeation resistance required for the intermediate layers 31b, 32b, 34b, and 35b and the impact resistance required for the outer layers 31c, 32c, 34c, and 35c.
また、フィラーチューブ30は、総肉厚T4が4~6mmである非蛇腹状の厚肉筒部34を備え、フランジ部35は、厚肉筒部34の燃料タンク10側の端から径方向外方に突出する。これにより、フランジ部35がフレア成形される場合において、フランジ部35と厚肉筒部34との境界部位は、十分な強度を有する状態を維持できる。また、フランジ部35を燃料タンク10に溶着する際において、厚肉筒部34に軸力が付与されることによって、フランジ部35が燃料タンク10に確実に溶着される。そして、厚肉筒部34に軸力が付与されるとしても、厚肉筒部34が十分に厚いため、厚肉筒部34が座屈することなく、確実に、フランジ部35に軸力を伝達できる。
The filler tube 30 includes a non-accordion-shaped thick cylindrical portion 34 having a total thickness T4 of 4 to 6 mm, and the flange portion 35 is radially outward from the end of the thick cylindrical portion 34 on the fuel tank 10 side. Protrudes towards. Thereby, when the flange part 35 is flare-molded, the boundary site | part of the flange part 35 and the thick-walled cylinder part 34 can maintain the state which has sufficient intensity | strength. Further, when the flange portion 35 is welded to the fuel tank 10, the flange portion 35 is reliably welded to the fuel tank 10 by applying an axial force to the thick tube portion 34. Even if an axial force is applied to the thick cylindrical portion 34, the thick cylindrical portion 34 is sufficiently thick so that the axial force is reliably transmitted to the flange portion 35 without buckling the thick cylindrical portion 34. it can.
また、フランジ部35は、厚肉筒部34より薄く形成されている。これにより、フランジ部35の内層35aの厚みを溶着強度を確保できる範囲で十分に小さくできると共に、厚肉筒部34が座屈することなくフランジ部35に軸力を伝達できる。つまり、耐燃料透過特性を良好にしつつ、燃料タンク10と確実に溶着できる。
Further, the flange portion 35 is formed thinner than the thick-walled cylinder portion 34. Thereby, the thickness of the inner layer 35a of the flange portion 35 can be made sufficiently small as long as the welding strength can be secured, and the axial force can be transmitted to the flange portion 35 without buckling the thick-walled cylindrical portion 34. That is, it is possible to reliably weld the fuel tank 10 while improving the fuel permeation resistance.
また、フランジ部35は、厚肉筒部34の燃料タンク10側の端から拡径するテーパ部71と、テーパ部71の燃料タンク10側の端から径方向外方に延在する円環板部72とを備える。この場合、円環板部72が、燃料タンク10に溶着される部位となる。そして、テーパ部71が、厚肉筒部34と円環板部72との間に存在する。従って、厚肉筒部34と円環板部72との厚みの差を吸収することができる。つまり、厚肉筒部34と円環板部72との間で、急激な厚みの差が生じることがないため、高い溶着強度を確保できる。
The flange portion 35 has a tapered portion 71 whose diameter is increased from the end on the fuel tank 10 side of the thick-walled cylindrical portion 34, and an annular plate that extends radially outward from the end on the fuel tank 10 side of the tapered portion 71. Part 72. In this case, the annular plate portion 72 is a portion welded to the fuel tank 10. A tapered portion 71 exists between the thick tube portion 34 and the annular plate portion 72. Therefore, the difference in thickness between the thick tube portion 34 and the annular plate portion 72 can be absorbed. That is, since there is no abrupt thickness difference between the thick tube portion 34 and the annular plate portion 72, a high welding strength can be ensured.
また、テーパ部71及び円環板部72は、厚肉筒部34より薄く形成されており、円環板部72は、テーパ部71より薄く形成されている。これにより、厚肉筒部34と円環板部72との間において、急激な厚みの差が生じることを確実に防止できる。従って、確実に高い溶着強度を確保できる。
Further, the tapered portion 71 and the annular plate portion 72 are formed thinner than the thick tube portion 34, and the annular plate portion 72 is formed thinner than the tapered portion 71. Thereby, it is possible to reliably prevent a sudden difference in thickness between the thick-walled cylinder portion 34 and the annular plate portion 72. Therefore, it is possible to ensure a high welding strength.
また、フィラーチューブ30は、蛇腹部32の燃料タンク10側の端に連設され、且つ、厚肉筒部34の燃料タンク10とは反対側に設けられ、基本部31の一部としてのタンク側基本部63を備える。タンク側基本部63は、蛇腹部32と厚肉筒部34との繋ぎの役割を有している。つまり、タンク側基本部63は、蛇腹部32と厚肉筒部34との厚みの急激な変化を緩和する役割を有する。
The filler tube 30 is connected to the end of the bellows portion 32 on the fuel tank 10 side, is provided on the opposite side of the thick-walled cylinder portion 34 from the fuel tank 10, and is a tank as a part of the basic portion 31. A side basic portion 63 is provided. The tank side basic portion 63 has a role of connecting the bellows portion 32 and the thick tube portion 34. That is, the tank side basic portion 63 has a role of mitigating a sudden change in thickness between the bellows portion 32 and the thick tube portion 34.
また、タンク側基本部63は、径方向外方に環状に突出するリブ63aを備える。特に、タンク側基本部63がリブ63aを有することにより、タンク側基本部63の軸方向長さが短くても、厚みの急激な変化を確実に緩和できる。
Further, the tank side basic portion 63 is provided with a rib 63a that protrudes annularly outward in the radial direction. In particular, since the tank side basic portion 63 has the rib 63a, even if the axial length of the tank side basic portion 63 is short, an abrupt change in thickness can be reliably mitigated.
また、フィラーチューブ30は、フィラーチューブ30の燃料タンク10とは反対側の端に設けられ、相手部材としての給油口20の挿入部21が内部に圧入される部位であり、基本部31の一部としての圧入基本部61と、圧入基本部61に連設され、基本部31の一部としての非圧入基本部62とを備える。
The filler tube 30 is provided at the end of the filler tube 30 opposite to the fuel tank 10, and is a part into which the insertion portion 21 of the fuel filler port 20 as a counterpart member is press-fitted. A press-fit basic part 61 as a part, and a non-press-fit basic part 62 as a part of the basic part 31 provided continuously with the press-fit basic part 61.
挿入部21が圧入基本部61に挿入されていない状態において、上述したように、圧入基本部61と非圧入基本部62との明確な境界は存在しない。そこで、フィラーチューブ30を自動車に配策する際に、フィラーチューブ30の端部位置の調整が可能となる。つまり、フィラーチューブ30の給油口20側の端部を僅かに切断したとしても、フィラーチューブ30の端側には、給油口20の挿入部21を挿入するだけの長さを確保できる。従って、圧入基本部61の長さは十分に確保できる。この場合、非圧入基本部62の長さが僅かに短くなるだけである。このように、フィラーチューブ30の配策において、端部位置調整が容易となる。
In the state where the insertion portion 21 is not inserted into the press-fit basic portion 61, there is no clear boundary between the press-fit basic portion 61 and the non-press-fit basic portion 62 as described above. Therefore, when arranging the filler tube 30 in an automobile, the end position of the filler tube 30 can be adjusted. That is, even if the end portion of the filler tube 30 on the fuel filler port 20 side is slightly cut, a length sufficient to insert the insertion portion 21 of the filler port 20 can be secured on the end side of the filler tube 30. Therefore, the length of the press-fit basic portion 61 can be sufficiently secured. In this case, the length of the non-press-fit basic portion 62 is only slightly shortened. Thus, in the arrangement of the filler tube 30, the end position adjustment is facilitated.
また、非圧入基本部62は、中心軸線が湾曲した曲がり部62bを備える。フィラーチューブ30は、中心軸線が湾曲した部位を有する。その一部は、蛇腹部32である。しかし、全ての湾曲した部位を蛇腹部32とするのではなく、給油口20に近い側を蛇腹部32ではなく非蛇腹筒状の基本部31とすることで、液体燃料の流通が良好となる。
Moreover, the non-press-fit basic part 62 includes a bent part 62b whose central axis is curved. The filler tube 30 has a portion where the central axis is curved. A part thereof is a bellows portion 32. However, not all the curved portions are the bellows portion 32, but the side close to the fuel filler port 20 is not the bellows portion 32 but the non-bellows tube-shaped basic portion 31, thereby improving the flow of the liquid fuel. .
また、上記実施形態におけるフィラーチューブ30の製造方法は、コルゲート金型を用いて、コルゲート成形により一次成形体130を成形する一次成形工程(S1)と、外周型80及び内周型90を用いて、一次成形体130にプレス加工を施すことによりフィラーチューブ30を成形する二次成形工程(S2~S8)とを備える。
Moreover, the manufacturing method of the filler tube 30 in the said embodiment uses the primary shaping | molding process (S1) which shape | molds the primary molded object 130 by corrugation shaping | molding using a corrugated metal mold | die, and the outer periphery type | mold 80 and the inner periphery type | mold 90. And a secondary molding step (S2 to S8) for molding the filler tube 30 by pressing the primary molded body 130.
そして、二次成形工程(S2~S8)は、所定温度とされた外周型80が一次成形体130の厚肉筒部34の外周面を支持するように、一次成形体130を外周型80に配置する一次成形体配置工程(S3)と、一次成形体配置工程(S3)の後に、外周型80の所定温度より高温とされた内周型90を被成形部130aの内周側に挿入し、且つ、外周型80及び内周型90を軸方向に相対移動させて外周型80の端面及び内周型90が被成形部130aを軸方向に挟み込むことでフランジ部35をフレア成形するフレア成形工程(S5)とを備える。
In the secondary molding step (S2 to S8), the primary molded body 130 is turned into the outer peripheral mold 80 so that the outer peripheral mold 80 set to a predetermined temperature supports the outer peripheral surface of the thick cylindrical portion 34 of the primary molded body 130. After the primary molded body arranging step (S3) and the primary molded body arranging step (S3) to be arranged, the inner peripheral mold 90 that is higher than the predetermined temperature of the outer peripheral mold 80 is inserted into the inner peripheral side of the molding part 130a. Further, the outer peripheral mold 80 and the inner peripheral mold 90 are relatively moved in the axial direction, and the end surface of the outer peripheral mold 80 and the inner peripheral mold 90 sandwich the molding part 130a in the axial direction, so that the flange 35 is flare-molded. And a step (S5).
一次成形体130における筒状の被成形部130aがフレア成形されることにより、フランジ部35が成形される。このとき、フィラーチューブ30の外周側を支持する外周型80と、内周側を支持する内周型90とが用いられる。ここで、フレア成形工程(S5)において、内周型90は、外周型80より高温にされる。つまり、内周型90によって一次成形体130の被成形部130aは加温され、フレア成形しやすい状態となる。
The flange part 35 is shape | molded by flare-molding the cylindrical to-be-shaped part 130a in the primary molded object 130. FIG. At this time, an outer peripheral mold 80 that supports the outer peripheral side of the filler tube 30 and an inner peripheral mold 90 that supports the inner peripheral side are used. Here, in the flare molding step (S5), the inner peripheral mold 90 is heated to a higher temperature than the outer peripheral mold 80. That is, the molding target portion 130a of the primary molded body 130 is heated by the inner peripheral mold 90, and the flare molding is easily performed.
一方、外周型80は、フレア成形工程(S5)において、内周型90に比べて低温である。この外周型80は、フレア成形工程(S5)に先立って、一次成形体130が配置される型である。つまり、フレア成形工程(S5)において、内周型90が相対的に高温にされたとしても、外周型80は低温であるため、外周型80に接触している一次成形体130の部位が変形しやすい状態にはならず、外周型80と一次成形体130との相対位置にずれが生じにくい。従って、所望の位置にフランジ部35がフレア成形される。
On the other hand, the outer peripheral die 80 is at a lower temperature than the inner peripheral die 90 in the flare molding step (S5). This outer periphery mold | type 80 is a type | mold by which the primary molded object 130 is arrange | positioned prior to a flare shaping | molding process (S5). That is, in the flare molding step (S5), even if the inner peripheral mold 90 is relatively heated, the outer peripheral mold 80 is at a low temperature, and therefore the portion of the primary molded body 130 that is in contact with the outer peripheral mold 80 is deformed. It is not easy to do so, and the relative position between the outer peripheral die 80 and the primary molded body 130 is not easily displaced. Accordingly, the flange portion 35 is flared at a desired position.
1:燃料ライン、 10:燃料タンク、 11:開口部、 20:給油口、 21:挿入部、 30:フィラーチューブ、 31:基本部、 31a,32a,34a,35a:内層、 31b,32b,34b,35b:中間層、 31c,32c,34c,35c:外層、 32:蛇腹部、 33:テーパ係止部、 34:厚肉筒部、 35:フランジ部、 61:圧入基本部、 62:非圧入基本部、 62b:曲がり部、 63:タンク側基本部、 63a:リブ、 71:テーパ部、 72:円環板部、 80:外周型、 90:内周型、 130:一次成形体、 130a:被成形部
1: Fuel line, 10: Fuel tank, 11: Opening part, 20: Refueling port, 21: Insertion part, 30: Filler tube, 31: Basic part, 31a, 32a, 34a, 35a: Inner layer, 31b, 32b, 34b 35b: intermediate layer, 31c, 32c, 34c, 35c: outer layer, 32: bellows part, 33: taper locking part, 34: thick-walled cylinder part, 35: flange part, 61: press-fit basic part, 62: non-press-fit Basic part, 62b: bent part, 63: tank side basic part, 63a: rib, 71: taper part, 72: annular plate part, 80: outer periphery type, 90: inner peripheral type, 130: primary molded body, 130a: Molded part
Claims (11)
- 燃料タンクの開口部に溶着される熱可塑性樹脂製のフィラーチューブであって、
溶着される前の前記フィラーチューブは、
総肉厚2~4mmの非蛇腹筒状の基本部と、
総肉厚0.5~3mmの蛇腹部と、
総肉厚3.5~5mmであって、前記燃料タンクに溶着される端面を有するフランジ部と、
を備え、
前記基本部、前記蛇腹部及び前記フランジ部は、
総肉厚の40~60%の厚みに形成され、高密度ポリエチレン(HDPE)を主体として形成される内層と、
前記内層の外周側に配置され、耐燃料透過特性を有する中間層と、
前記中間層の外周側に配置され、前記中間層を保護する外層と、
を備える、フィラーチューブ。 A filler tube made of thermoplastic resin welded to the opening of the fuel tank,
The filler tube before welding is
A basic part of a non-accordion tube shape with a total thickness of 2 to 4 mm,
A bellows portion having a total thickness of 0.5 to 3 mm;
A flange portion having a total thickness of 3.5 to 5 mm and having an end face welded to the fuel tank;
With
The basic part, the bellows part and the flange part are:
An inner layer formed mainly of high-density polyethylene (HDPE) and having a thickness of 40-60% of the total wall thickness;
An intermediate layer disposed on the outer peripheral side of the inner layer and having fuel permeation resistance;
An outer layer disposed on the outer peripheral side of the intermediate layer and protecting the intermediate layer;
A filler tube. - 前記中間層は、エチレン-ビニルアルコール共重合体(EVOH)及びポリアミド(PA)系の何れかを主体として形成され、
前記外層は、高密度ポリエチレン(HDPE)及びポリアミド(PA)系の何れかを主体として形成される、請求項1に記載のフィラーチューブ。 The intermediate layer is formed mainly of any of ethylene-vinyl alcohol copolymer (EVOH) and polyamide (PA),
2. The filler tube according to claim 1, wherein the outer layer is formed mainly of either high-density polyethylene (HDPE) or polyamide (PA). - 前記フィラーチューブは、総肉厚4~6mmの非蛇腹状の厚肉筒部を備え、
前記フランジ部は、前記厚肉筒部の前記燃料タンク側の端から径方向外方に突出する、請求項1又は2に記載のフィラーチューブ。 The filler tube comprises a non-accordion-like thick cylindrical portion having a total thickness of 4 to 6 mm,
The filler tube according to claim 1, wherein the flange portion protrudes radially outward from an end of the thick-walled cylinder portion on the fuel tank side. - 前記フランジ部は、前記厚肉筒部より薄く形成されている、請求項3に記載のフィラーチューブ。 The filler tube according to claim 3, wherein the flange portion is formed thinner than the thick-walled cylinder portion.
- 前記フランジ部は、
前記厚肉筒部の前記燃料タンク側の端から拡径するテーパ部と、
前記テーパ部の前記燃料タンク側の端から径方向外方に延在する円環板部と、
を備える、請求項4に記載のフィラーチューブ。 The flange portion is
A tapered portion that expands from the end on the fuel tank side of the thick tube portion;
An annular plate portion extending radially outward from the end of the taper portion on the fuel tank side;
The filler tube according to claim 4, comprising: - 前記テーパ部及び前記円環板部は、前記厚肉筒部より薄く形成されており、
前記円環板部は、前記テーパ部より薄く形成されている、請求項5に記載のフィラーチューブ。 The tapered portion and the annular plate portion are formed thinner than the thick tube portion,
The filler tube according to claim 5, wherein the annular plate portion is formed thinner than the tapered portion. - 前記フィラーチューブは、前記蛇腹部の前記燃料タンク側の端に連設され、且つ、前記厚肉筒部の前記燃料タンクとは反対側に設けられ、前記基本部の一部としてのタンク側基本部を備える、請求項3-6の何れか一項に記載のフィラーチューブ。 The filler tube is connected to an end of the bellows portion on the fuel tank side, and is provided on the opposite side of the thick-walled cylinder portion from the fuel tank, and serves as a tank side basic as a part of the basic portion. The filler tube according to any one of claims 3 to 6, further comprising a portion.
- 前記タンク側基本部は、径方向外方に環状に突出するリブを備える、請求項7に記載のフィラーチューブ。 The filler tube according to claim 7, wherein the tank side basic portion includes a rib projecting in a radially outward direction.
- 前記フィラーチューブは、
前記フィラーチューブの前記燃料タンクとは反対側の端に設けられ、相手部材が内部に圧入される部位であり、前記基本部の一部としての圧入基本部と、
前記圧入基本部に連設され、前記基本部の一部としての非圧入基本部と、
を備える、請求項1-8の何れか一項に記載のフィラーチューブ。 The filler tube is
The filler tube is provided at the end opposite to the fuel tank, and is a portion into which the mating member is press-fitted, a press-fit basic portion as a part of the basic portion,
A non-press-fit basic part as a part of the basic part, connected to the press-fit basic part;
The filler tube according to any one of claims 1 to 8, further comprising: - 前記非圧入基本部は、中心軸線が湾曲した曲がり部を備える、請求項9に記載のフィラーチューブ。 The filler tube according to claim 9, wherein the non-press-fit basic portion includes a bent portion having a curved central axis.
- 請求項3-8の何れか一項に記載のフィラーチューブの製造方法であって、
コルゲート金型を用いて、コルゲート成形により一次成形体を成形する一次成形工程と、
外周型及び内周型を用いて、前記一次成形体にプレス加工を施すことにより前記フィラーチューブを成形する二次成形工程と、
を備え、
前記一次成形体は、前記基本部、前記蛇腹部、前記フランジ部がフレア成形される前の部位としての筒状の被成形部、及び、前記厚肉筒部を備え、
前記二次成形工程は、
所定温度とされた前記外周型が前記一次成形体の前記厚肉筒部の外周面を支持するように、前記一次成形体を前記外周型に配置する一次成形体配置工程と、
前記一次成形体配置工程の後に、前記外周型の前記所定温度より高温とされた前記内周型を前記被成形部の内周側に挿入し、且つ、前記外周型及び前記内周型を軸方向に相対移動させて前記外周型の端面及び前記内周型が前記被成形部を軸方向に挟み込むことで前記フランジ部をフレア成形するフレア成形工程と、
を備える、フィラーチューブの製造方法。 A method for producing a filler tube according to any one of claims 3-8,
A primary molding step of molding a primary molded body by corrugation molding using a corrugated mold;
A secondary molding step of molding the filler tube by pressing the primary molded body using an outer peripheral mold and an inner peripheral mold;
With
The primary molded body includes the basic part, the bellows part, a cylindrical molded part as a part before the flange part is flared, and the thick-walled cylindrical part,
The secondary molding step is
A primary molded body arrangement step of arranging the primary molded body on the outer circumferential mold such that the outer circumferential mold set at a predetermined temperature supports the outer peripheral surface of the thick tube portion of the primary molded body;
After the primary molded body arranging step, the inner peripheral mold having a temperature higher than the predetermined temperature of the outer peripheral mold is inserted into the inner peripheral side of the molded part, and the outer peripheral mold and the inner peripheral mold are pivoted. A flare molding step in which the flange portion is flare molded by causing the end surface of the outer peripheral mold and the inner peripheral mold to sandwich the molding target portion in the axial direction by relatively moving in the direction;
A method for manufacturing a filler tube.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112016001416.3T DE112016001416T5 (en) | 2015-09-29 | 2016-09-02 | Filler pipe and method of manufacture therefor |
CN201680004022.2A CN107000583B (en) | 2015-09-29 | 2016-09-02 | Charge pipe and its manufacturing method |
US15/584,994 US10195936B2 (en) | 2015-09-29 | 2017-05-02 | Filler tube and manufacturing process for the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015191495 | 2015-09-29 | ||
JP2015-191495 | 2015-09-29 | ||
JP2016-032624 | 2016-02-24 | ||
JP2016032624A JP6710058B2 (en) | 2015-09-29 | 2016-02-24 | Filler tube and manufacturing method thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/584,994 Continuation US10195936B2 (en) | 2015-09-29 | 2017-05-02 | Filler tube and manufacturing process for the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017056846A1 true WO2017056846A1 (en) | 2017-04-06 |
Family
ID=58423385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/075783 WO2017056846A1 (en) | 2015-09-29 | 2016-09-02 | Filler tube and method for manufacturing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017056846A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113085539A (en) * | 2019-12-23 | 2021-07-09 | 住友理工株式会社 | Resin fuel filler pipe and method for manufacturing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009255891A (en) * | 2008-03-28 | 2009-11-05 | Tokai Rubber Ind Ltd | Fuel hose for resin fuel tank and method of manufacturing the same |
JP2010116094A (en) * | 2008-11-14 | 2010-05-27 | Toyoda Gosei Co Ltd | Plastic-made fuel pipe and fuel injection pipe |
WO2012115224A1 (en) * | 2011-02-25 | 2012-08-30 | 東海ゴム工業株式会社 | Fuel inlet pipe made of resin, and method for producing same |
JP2014231286A (en) * | 2013-05-29 | 2014-12-11 | 八千代工業株式会社 | Attachment method of filler pipe and attachment structure of filler pipe |
-
2016
- 2016-09-02 WO PCT/JP2016/075783 patent/WO2017056846A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009255891A (en) * | 2008-03-28 | 2009-11-05 | Tokai Rubber Ind Ltd | Fuel hose for resin fuel tank and method of manufacturing the same |
JP2010116094A (en) * | 2008-11-14 | 2010-05-27 | Toyoda Gosei Co Ltd | Plastic-made fuel pipe and fuel injection pipe |
WO2012115224A1 (en) * | 2011-02-25 | 2012-08-30 | 東海ゴム工業株式会社 | Fuel inlet pipe made of resin, and method for producing same |
JP2014231286A (en) * | 2013-05-29 | 2014-12-11 | 八千代工業株式会社 | Attachment method of filler pipe and attachment structure of filler pipe |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113085539A (en) * | 2019-12-23 | 2021-07-09 | 住友理工株式会社 | Resin fuel filler pipe and method for manufacturing the same |
CN113085539B (en) * | 2019-12-23 | 2024-04-26 | 住友理工株式会社 | Resin filler tube and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6710058B2 (en) | Filler tube and manufacturing method thereof | |
US10596742B2 (en) | Manufacturing process for filler tube | |
US9074685B2 (en) | Extruded tube welded vessel liner with injection molded end caps | |
US6726967B2 (en) | Adapter for welding objects to plastic | |
TWI472421B (en) | Pvc/cpvc composite pipe with metal interlayer and process for making it | |
US20070012374A1 (en) | Resin pipe and resin molded component | |
US9718347B2 (en) | Fueling device | |
US11318683B2 (en) | Connection structure of resin tube and resin joint and connection method thereof | |
JP2008155587A (en) | Manufacturing method of hollow resin molded product | |
JP2015104976A (en) | Fuel feeding device and method for producing the fuel feeding device | |
WO2017056846A1 (en) | Filler tube and method for manufacturing same | |
JP6850139B2 (en) | Filler tube manufacturing method and filler tube | |
JP2014046676A (en) | Attachment structure for insert member of blow molding item | |
US20200001544A1 (en) | Method for installing filler tube and installation structure for filler tube | |
US11897325B2 (en) | Filler tube for a fuel tank | |
JP3750016B2 (en) | Resin fuel tank structure and manufacturing method thereof | |
JP2018118497A (en) | Method for manufacturing filler tube | |
US11919384B2 (en) | Resin filler tube and manufacturing method for the same | |
JP2016117259A (en) | Fitting structure and fitting method of insert member of blow molding article | |
JP4905005B2 (en) | Member joining structure to fuel tank, fuel tank manufacturing method, and member joining method to fuel tank | |
JP7226373B2 (en) | connection structure | |
US20210188081A1 (en) | Resin filler tube and manufacturing method for the same | |
JP2018100720A (en) | Manufacturing method for hose with core piece, and hose with core piece | |
JP2008267597A (en) | Filler hose | |
JP2007064250A (en) | Joining structure of resin pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16851022 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016001416 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16851022 Country of ref document: EP Kind code of ref document: A1 |