WO2017056141A1 - Crosslinked coating film having scratch resistance and flexibility, and resin composition - Google Patents
Crosslinked coating film having scratch resistance and flexibility, and resin composition Download PDFInfo
- Publication number
- WO2017056141A1 WO2017056141A1 PCT/JP2015/077232 JP2015077232W WO2017056141A1 WO 2017056141 A1 WO2017056141 A1 WO 2017056141A1 JP 2015077232 W JP2015077232 W JP 2015077232W WO 2017056141 A1 WO2017056141 A1 WO 2017056141A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating film
- crosslinked coating
- crosslinking
- polyol
- resin composition
- Prior art date
Links
- 239000011248 coating agent Substances 0.000 title claims abstract description 91
- 238000000576 coating method Methods 0.000 title claims abstract description 91
- 239000011342 resin composition Substances 0.000 title claims abstract description 18
- 238000004132 cross linking Methods 0.000 claims abstract description 42
- 238000012360 testing method Methods 0.000 claims abstract description 19
- 230000009477 glass transition Effects 0.000 claims abstract description 11
- 238000003860 storage Methods 0.000 claims abstract description 9
- 239000012298 atmosphere Substances 0.000 claims abstract description 7
- 229920005989 resin Polymers 0.000 claims description 27
- 239000011347 resin Substances 0.000 claims description 27
- 229920005862 polyol Polymers 0.000 claims description 25
- -1 polyethylene terephthalate Polymers 0.000 claims description 22
- 150000003077 polyols Chemical class 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 22
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 239000005056 polyisocyanate Substances 0.000 claims description 19
- 229920001228 polyisocyanate Polymers 0.000 claims description 19
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 12
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000011521 glass Substances 0.000 claims description 9
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 9
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims description 6
- 229920000877 Melamine resin Polymers 0.000 claims description 5
- 239000011247 coating layer Substances 0.000 claims description 5
- 150000003573 thiols Chemical class 0.000 claims description 5
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 125000002091 cationic group Chemical group 0.000 claims description 3
- 229920005668 polycarbonate resin Polymers 0.000 claims description 3
- 239000004431 polycarbonate resin Substances 0.000 claims description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 3
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 238000010526 radical polymerization reaction Methods 0.000 claims description 3
- 150000003949 imides Chemical class 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims 1
- 229920002554 vinyl polymer Polymers 0.000 claims 1
- 238000000465 moulding Methods 0.000 abstract description 9
- 238000007666 vacuum forming Methods 0.000 abstract description 2
- 239000011324 bead Substances 0.000 description 15
- 239000004417 polycarbonate Substances 0.000 description 12
- 229920000515 polycarbonate Polymers 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 230000000903 blocking effect Effects 0.000 description 10
- 229920003023 plastic Polymers 0.000 description 9
- 239000004033 plastic Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 6
- 150000002009 diols Chemical class 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000012948 isocyanate Substances 0.000 description 5
- 239000004677 Nylon Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 229910052753 mercury Inorganic materials 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 229920001610 polycaprolactone Polymers 0.000 description 4
- 239000004632 polycaprolactone Substances 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 3
- 239000004606 Fillers/Extenders Substances 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000002981 blocking agent Substances 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000006224 matting agent Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 239000002985 plastic film Substances 0.000 description 3
- 229920006255 plastic film Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- RTTZISZSHSCFRH-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC(CN=C=O)=C1 RTTZISZSHSCFRH-UHFFFAOYSA-N 0.000 description 2
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 2
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000005058 Isophorone diisocyanate Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- VEZUQRBDRNJBJY-UHFFFAOYSA-N cyclohexanone oxime Chemical compound ON=C1CCCCC1 VEZUQRBDRNJBJY-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- WHIVNJATOVLWBW-UHFFFAOYSA-N n-butan-2-ylidenehydroxylamine Chemical compound CCC(C)=NO WHIVNJATOVLWBW-UHFFFAOYSA-N 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 231100000241 scar Toxicity 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 1
- SDXAWLJRERMRKF-UHFFFAOYSA-N 3,5-dimethyl-1h-pyrazole Chemical compound CC=1C=C(C)NN=1 SDXAWLJRERMRKF-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 101000576320 Homo sapiens Max-binding protein MNT Proteins 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229920006121 Polyxylylene adipamide Polymers 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229940105570 ornex Drugs 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 230000003678 scratch resistant effect Effects 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- WSFQLUVWDKCYSW-UHFFFAOYSA-M sodium;2-hydroxy-3-morpholin-4-ylpropane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CC(O)CN1CCOCC1 WSFQLUVWDKCYSW-UHFFFAOYSA-M 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 229920001935 styrene-ethylene-butadiene-styrene Polymers 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
Definitions
- the present invention relates to a car interior / exterior board and a plastic molded article surface, and relates to a crosslinked coating useful for moldability and scratch resistance, and a resin composition for forming the crosslinked coating.
- plastic materials have excellent processability, they are molded into various shapes and widely used in many industrial fields as plastic molded products.
- plastic materials generally have a lower hardness than glass, metal, etc., and have a drawback that their surfaces are easily scratched.
- various techniques for improving the above-described drawbacks have been developed by forming a coating film having excellent scratch resistance on the surface of a plastic molded product.
- a coating film having excellent scratch resistance may be formed like a plastic molded product. is there.
- an active energy ray-curable resin mainly composed of a polyfunctional acrylate such as dipentaerythritol hexaacrylate.
- a method of forming a hard coat film by applying the composition onto the surface of a plastic film and curing it with an active energy ray such as an ultraviolet ray or an electron beam has been practiced. This method is to improve the surface hardness and scratch resistance by increasing the crosslink density, but the hard coat film has a characteristic that the volumetric shrinkage of the paint film during curing tends to increase the internal strain. have.
- the coating film having flexibility and extensibility is a so-called self-healing rubber that recovers scratches on the surface over time.
- An elastic coating film is known.
- a coating film that combines flexibility and toughness, has excellent substrate adhesion, and self-repairs even if the coating film surface is damaged has been proposed.
- a curable solvent-based paint containing a lipophilic polyrotaxane has been proposed as having a superior scratch resistance and chipping property and capable of forming a coating film in which cracks and the like are unlikely to occur.
- the coating material which improved the coating-film hardness in the polyurethane-type soft coat and the restoring property of a coating film is also proposed.
- the present invention has been made in view of the above problems, and an object thereof is to provide a crosslinked coating film having excellent scratch resistance, high extensibility, and suitability for compressed air / vacuum molding and in-mold molding. is there. Another object of the present invention is to provide a crosslinked coating film having a so-called self-repairing property, in which the scratch disappears in a short time at room temperature or slight heating even when the scratch is attached.
- a crosslinked coating film obtained by crosslinking a crosslinkable resin composition has a glass transition temperature of ⁇ 30 to 60 ° C .;
- the storage elastic modulus in the dynamic viscoelasticity test is 0.1 to 1,000 MPa in the range of ⁇ 30 to ⁇ 10 ° C., 0.01 to 5 MPa in the range of 80 to 150 ° C.,
- the crosslinking method in the crosslinked coating film is one or more selected from urethane crosslinking, ene / thiol reaction crosslinking, cation crosslinking, radical polymerization crosslinking, and melamine crosslinking
- the hydroxyl value is 50 to 250 (mmol / g), the number of moles of isocyanate groups in the polyisocyanate compound (B) / the number of moles of hydroxyl groups in the polyol (A) is 0.7 to 1.
- the glass transition temperature is ⁇ 30 to 60 ° C.
- the storage modulus in the dynamic viscoelasticity test is 0.1 to 1,000 MPa in the range of ⁇ 30 to ⁇ 10 ° C., and the range of 80 to 150 ° C.
- a crosslinkable resin composition that forms a cross-linked coating film having an elongation of 0.01 to 5 MPa and an elongation rate of 30% or more in an atmosphere of 25 ° C.
- the crosslinkable resin composition contains a polyol (A) and a polyisocyanate compound (B),
- the polyol (A) has a number average molecular weight (Mn) of 500 to 10,000, a hydroxyl value of 50 to 250 (mmol / g),
- a crosslinkable resin composition wherein the number of moles of isocyanate groups in the polyisocyanate compound (B) / number of moles of hydroxyl groups in the polyol (A) is 0.7 to 1.5.
- a crosslinked coating film having excellent scratch resistance and high extensibility which is suitable for vacuum forming or in-mold forming.
- it since it is characterized by suppressing shrinkage due to crosslinking and increasing the crosslinking density, it has surprisingly high pencil hardness, good solvent resistance, and blocking resistance, A positioned crosslinked coating is obtained.
- a crosslinked coating film having a so-called self-healing performance in which the scratch disappears in a short time at room temperature or a little heating is obtained.
- the glass transition temperature of the crosslinked coating film is preferably ⁇ 30 to 60 ° C., more preferably ⁇ 10 to 50 ° C.
- the glass transition temperature of the crosslinked coating is less than ⁇ 30 ° C.
- the contact portion of the plastic film is stuck on the crosslinked coating layer of the molded product. There is a possibility that it will be attached, and it tends to be inferior in terms of anti-blocking performance.
- the glass transition temperature of a coating film exceeds 60 degreeC, molecular motion performance falls and there exists a tendency for the damage
- the storage elastic modulus in the dynamic viscoelasticity test is 0.1 to 1,000 MPa in the range of ⁇ 30 to ⁇ 10 ° C.
- the pressure is preferably 0.01 to 5 MPa, more preferably 0.1 to 2 MPa. If it is less than 0.1 MPa in the range of ⁇ 30 to ⁇ 10 ° C., problems such as insufficient hardness and easy stickiness may occur.
- the value which a normal plastic can take is to about 1,000 MPa. When it is less than 0.01 MPa in the range of 80 to 150 ° C., the rubber elasticity is too low and the scratches tend not to be recovered. If it exceeds 5 MPa, the crosslink density is too high and the elongation tends to decrease.
- the elongation of the present invention is 30% or more, more preferably 100% or more in an atmosphere at 25 ° C. If it is less than 30%, it is close to the performance of a general hard coat treatment, and the characteristics as a crosslinked coating film of the present invention cannot be obtained. When a coating film is formed on a flexible sheet, there is a possibility of cracking during carrying. If the elongation is 30% or more, it is possible to obtain a crosslinked coating film that does not cause whitening and cracks in various molding processes such as compressed air / vacuum molding and injection molding.
- Examples of the method for crosslinking the crosslinkable resin composition include urethane crosslinking, ene / thiol reaction crosslinking, cation crosslinking, radical polymerization crosslinking, and melamine crosslinking.
- urethane crosslinking, ene / thiol reaction crosslinking, and cationic crosslinking are preferable from the viewpoint of volumetric shrinkage of the coating film during curing.
- the number average molecular weight (Mn) of the polyol (A) is preferably in the range of 500 to 10,000, more preferably 500 to 5,000.
- the number average molecular weight (Mn) is less than 500, there are problems of reaction rate and pot life. If it exceeds 10,000, the crosslink density tends to decrease and the scratch resistance tends to decrease.
- the hydroxyl value of the polyol (A) is preferably 50 mmol / g to 250 mmol / g, more preferably 100 mmol / g to 250 mmol / g. If it is less than 50 mmol / g, the crosslinking density tends to decrease and the scratch resistance tends to decrease. If it exceeds 250 mmol / g, there may be a problem in handling in terms of reaction rate and pot life.
- polystyrene resin examples include bifunctional or higher functional polyols such as acrylic polyol, polycaprolactone diol, polycaprolactone triol, polycaprolactone tetraol, polycarbonate diol, polyester polyol, polyvinyl alcohol, cellulose resin, and polyvinyl butyral.
- bifunctional or higher functional polyols such as acrylic polyol, polycaprolactone diol, polycaprolactone triol, polycaprolactone tetraol, polycarbonate diol, polyester polyol, polyvinyl alcohol, cellulose resin, and polyvinyl butyral.
- the number of moles of isocyanate groups in the polyisocyanate compound (B) / number of moles of hydroxyl groups in the diol polymer (A) (hereinafter referred to as NCO / OH ratio) is preferably 0.7 to 1.5, Preferably, it is 1.0 to 1.2.
- NCO / OH ratio is less than 0.7, the scratch resistance and solvent resistance tend to decrease.
- the NCO / OH ratio exceeds 1.5, the scratch resistance tends to decrease.
- polyisocyanates examples include hexamethylene diisocyanate, isophorone diisocyanate, toluene diisocyanate, xylene diisocyanate, and low molecular polyol adducts of diphenylmethane diisocyanate.
- Urethane crosslinking can be obtained by performing a thermosetting reaction of polyol and polyisocyanate compound in an atmosphere of 80 ° C. or more for 30 minutes or more.
- a polyol having a high hydroxyl value is used, the crosslinking reaction can be rapidly advanced by using a catalyst.
- a catalyst a normal curing catalyst such as a metal catalyst such as dibutyltin dilaurate or zinc naphthenate or an amine catalyst such as triethylenediamine or N-methylmorpholine can be used. By doing so, it becomes possible to improve the reaction rate, lower the reaction temperature, shorten the reaction time, and the like.
- the addition amount of the curing catalyst is preferably 0.005 to 0.10% by mass with respect to the isocyanate-terminated urethane prepolymer. If it is less than 0.005% by mass, the effect of promoting the crosslinking reaction cannot be obtained, and if it exceeds 0.10% by mass, the pot life is hindered. About the temperature in thermosetting reaction, a crosslinking reaction advances rapidly by setting reaction temperature higher than 80 degreeC.
- a blocked isocyanate obtained by modifying polyisocyanate with a blocking agent can also be used.
- the blocking agent blocks the isocyanate group of the polyisocyanate, thereby preventing reaction with active hydrogen groups such as moisture and hydroxyl groups and making it one-component.
- the blocked polyisocyanate is a latent curing agent that reacts with an active hydrogen group when the blocking agent is dissociated by heating and the isocyanate group is activated again.
- the blocked isocyanate compound is not particularly limited as long as it is an isocyanate compound whose isocyanate group is protected with ⁇ -caprolactam, MEK oxime, or the like.
- the isocyanate group of the isocyanate compound is blocked with ⁇ -caprolactam, MEK oxime, cyclohexanone oxime, pyrazole, 3,5-dimethylpyrazole, diisopropylamine, diethyl malonate, ethyl acetoacetate, phenol, etc. Is mentioned.
- the ene / thiol crosslinking is obtained by an ultraviolet curing reaction of a polymer diene compound and a trifunctional or higher functional low molecular thiol compound.
- a polymer diene compound can be obtained by (meth) acryloyl-modifying the end of a polyol used in urethane crosslinking.
- the elasticity and elongation specified in the present invention are also obtained. If it is obtained, it is preferably used.
- the cationic crosslinking is obtained by an ultraviolet curing reaction using a cationic polymerization initiator for an epoxy compound obtained by epoxidizing or oxetanylating the end of a polyol used in urethane crosslinking.
- a cationic polymerization initiator for an epoxy compound obtained by epoxidizing or oxetanylating the end of a polyol used in urethane crosslinking is preferably used as long as they can be cationically polymerized and can obtain the elasticity and elongation specified in the present invention.
- a haze value is 1.0% or less.
- the use application is limited, and there is a possibility that it cannot be used from the viewpoint of optical product use and design.
- the haze value may be adjusted to 1.0% or more using a coloring pigment, matting agent, extender pigment, brightening agent, or the like.
- the matting agent and extender pigment are provided with anti-glare properties or blocking resistance by forming irregularities on the surface.
- styrene beads acrylic beads, styrene-acrylic beads, melamine beads, benzoguanamine beads
- examples include polycarbonate beads, polyethylene beads, silicone beads, fluorine beads, vinylidene fluoride beads, polyvinyl chloride beads, epoxy beads, nylon beads, phenol beads, polyurethane beads, and the like.
- Inorganic particles include silica, talc, mica, kaolin, swellable fluoromica, montmorillonite, hectorite, calcium carbonate, magnesium carbonate, calcium oxide, zinc oxide, magnesium oxide, sodium silicate, aluminum hydroxide, iron oxide, oxidation
- examples include zirconium, barium sulfate, and titanium oxide.
- the amount of the matting agent and extender is 0.1 to 50 parts by mass with respect to 100 parts by mass of the crosslinkable composition.
- Examples of the substrate to which the crosslinked coating film of the present invention can be applied include polycarbonate resin, polyethylene terephthalate resin, ABS resin, polypropylene resin, polyimide resin, glass, sapphire glass, polyvinyl chloride resin, and other substrates.
- an appropriate crosslinking method selection of an organic solvent, combined use of a coupling agent, and the like.
- the crosslinked coating film obtained by the present invention is applied on the surface of the substrate by a known method such as spraying, brushing, dipping, printing, etc., and then heat-dried and / or active energy rays such as ultraviolet rays and electron beams.
- a crosslinked coating film is formed through the curing step.
- the film thickness of the formed cross-linked coating film is in the range of 1 ⁇ m to 300 ⁇ m.
- the film is once applied to the substrate and subjected to a curing process, and then further overlapped.
- Application can be performed to obtain a desired film thickness.
- a thermosetting reaction it may be performed at room temperature or may be heated. In the case of heating, it can be usually carried out at 40 to 200 ° C. for 1 to 300 minutes.
- infrared rays ultraviolet rays, X rays, ⁇ rays, ⁇ rays, ⁇ rays, electron beams, and the like can be used as the active energy rays to be irradiated.
- ultraviolet rays are most preferably used from the viewpoint of industrial properties such as safety and reaction efficiency.
- the wavelength of the ultraviolet rays used is preferably 200 to 400 nm, and preferable irradiation conditions are, for example, an illuminance of 1 to 1000 mW / cm 2 and an integrated light quantity of 0.1 to 10000 mJ / cm 2 .
- a lamp light source such as a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, or an excimer lamp, a pulse such as an argon ion laser or a helium neon laser, a continuous laser light source, or an LED light source is used. It is possible.
- the coating film of the present invention exhibits a self-repairing function is not known, but by controlling the degree of crosslinking at the glass transition temperature of the present invention within the elastic modulus range of the present invention, a sea-island structure is formed in the resin film. This is thought to be due to the formation of It is estimated that this island structure is formed larger than before by highly crosslinking the coating film. Thus, it is considered that the tackiness of the sea structure in the conventional coating film is greatly suppressed, the slip property is exhibited, and the excellent elongation performance is obtained by the existing sea structure.
- the coating film of the present invention has higher pencil hardness than the conventional self-repairing coating film, but the effect is presumed to be due to the above-described island structure.
- the excellent solvent resistance obtained by the present invention can be obtained by highly crosslinking the degree of crosslinking at the glass transition temperature of the present invention within the elastic modulus range of the present invention.
- the urethane cross-linking of the present invention also has an effect of low shrinkage at the time of curing, which could not be predicted by the prior art.
- Blocking resistance After the coating film prepared on the ABS base material is cut into 200 mm ⁇ 200 mm, a polycarbonate base material is overlaid on the coating film, and a load of 4 kg is further placed thereon, and after standing at 25 ° C. for 1 hour. The state when peeled was confirmed. 5: No blocking 4: Blocking slightly 3: Blocking to the extent that no force is required for peeling 2: Blocking to the extent that slightly force is required for peeling 1: Passing level of blocking to the extent that force is required for peeling 3 or more
- Elongation The 1 mm coating film created on the glass substrate was peeled, cut to 25 mm ⁇ 100 mm, and stretched using a universal tensile tester (Orientec STM-T-50BP). The elongation when it was torn was determined. 5: Elongation rate 100% or more 4: Elongation rate 50% or more and less than 100% 3: Elongation rate 30% or more and less than 50% 2: Elongation rate 5% or more and less than 30% 1: Elongation rate 5% or less Pass level 3 or more
- A-1 Polycarbonate diol (Duranol T-5650E manufactured by Asahi Kasei Chemicals Corporation: molecular weight 500, hydroxyl value 225)
- A-2 Polycarbonate diol (Duranol T-5562 manufactured by Asahi Kasei Chemicals Corporation: molecular weight 2000, hydroxyl value 56)
- A-3 polycaprolactone triol (Praccel 308: molecular weight 850, hydroxyl value 195 manufactured by Daicel Corporation)
- A-4 Acrylic polyol (varnish) (Excell PX41-11 made by Asia Chemical Industries, molecular weight 10,000, hydroxyl value 40)
- A-5 acrylic polyol (varnish) (Asia Chemical Industrial Excell 450: molecular weight 11,000, hydroxyl value 24)
- B-1 XDI polyisocyanate (Takenate D-110N manufactured by Mitsui Chemicals, Inc.)
- B-2 IPDI polyisocyanate (Duranate MHG-80B manufactured by Asahi Kasei Chemical Co., Ltd.)
- B-3 HDI polyisocyanate (Duranate E402-80B manufactured by Asahi Kasei Chemical Co., Ltd.)
- B-4 MDI-based polyisocyanate (BASF INOAC Polyuretan Corporation Lupranate M20S)
- C-1 Urethane acrylate (Daicel Ornex Co., Ltd. EB ECRYL8402)
- C-2 Acrylate monomer (Kyoeisha Chemical Co., Ltd. Light acrylate
- C-3 Urethane-modified polyester resin (Byron U manufactured by Toyobo Co., Ltd.) R-6100)
- C-4 Cellulose acetate butyrate (EASTMAN CHEMI CAB-381-0.5 manufactured by CAL)
- C-5 Silica (MIZUKASIL P-5 manufactured by Mizusawa Chemical Co., Ltd.) 26)
- D-1 Leveling agent (BYK-333 manufactured by BYK)
- D-2 Photopolymerization initiator (Irgacure 184 manufactured by BASF)
- Example 1 Manufacture of crosslinkable resin composition> 60 parts by mass of polycarbonate diol (Duranor T-5650E manufactured by Asahi Kasei Chemicals Corporation), 39.5 parts by mass of ethylene glycol monobutyl ether acetate (butyl cellosolve acetate manufactured by Daishin Chemical Co., Ltd.), leveling agent (BYK-333 manufactured by BYK) 5 parts by mass and XD 88 parts by mass of I-based polyisocyanate (Takenate D-110N manufactured by Mitsui Chemicals, Inc.) was stirred and mixed to obtain a crosslinkable resin composition.
- polycarbonate diol Duranor T-5650E manufactured by Asahi Kasei Chemicals Corporation
- 39.5 parts by mass of ethylene glycol monobutyl ether acetate butyl cellosolve acetate manufactured by Daishin Chemical Co., Ltd.
- leveling agent BYK-333 manufactured by BYK
- the crosslinkable resin composition was applied to various substrates with a bar coater so that the film thickness after drying was 10 ⁇ m, and dried at 100 ° C. for 60 minutes to form a coating film. It was. However, for the elongation test, a coating film having a thickness of 1 mm was formed. The obtained test pieces were evaluated as described above, and the test results are shown in Table 1.
- Example 2 In Example 1, the kind of crosslinkable resin composition and those contents were changed, and the crosslinked coating film was created. For Example 8, the drying was preliminarily dried at 60 ° C. for 5 minutes, and then irradiated with 800 mJ / cm 2 with a high-pressure mercury lamp to form a coating film. The obtained test pieces were evaluated as described above, and the test results are shown in Table 1.
- Example 3 In Example 1, the kind of crosslinkable resin composition and those contents were changed, and the crosslinked coating film was created.
- the coating was preliminarily dried at 60 ° C. for 5 minutes and then irradiated with 800 mJ / cm 2 with a high-pressure mercury lamp to form a coating film. About each obtained test piece, evaluation shown above was performed and the test result was shown in Table 1.
- the crosslinked coating films according to Examples 1 to 8 have both scratch resistance and elongation properties, and are excellent in various physical properties such as solvent resistance and curl resistance. Moreover, the anti-blocking property also has a relationship with the Tg of the coating film, and a tendency that the higher the Tg is, the better it is.
- the Tg of the crosslinked coating is lower than the test temperature for scratch resistance, the scratches disappear immediately after the test, but the Tg of the crosslinked coating is higher than the test temperature for scratch resistance. In the test, the scratches disappeared by heating to a temperature at which the Tg of the crosslinked coating film was reached after the test.
- Comparative Example 1 was inferior in scratch resistance and solvent resistance. In Comparative Example 2, although the scratch resistance was good, the decrease in blocking resistance was remarkable. In Comparative Example 3, although the scratch resistance was good, the elongation and curl resistance were significantly reduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Paints Or Removers (AREA)
- Laminated Bodies (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
[Problem] To provide a crosslinked coating film which has excellent scratch resistance, high elongation properties, and suitability for pressure/vacuum forming, in-mold molding, etc.
[Solution] A crosslinked coating film obtained by crosslinking a crosslinkable resin composition, characterized by having a glass transition temperature of -30 to 60°C,having storage moduli, as measured by a dynamic viscoelasticity test, of 0.1-1,000 MPa in the range of -30 to -10°C and of 0.01-5 MPa in the range of 80 to 150°C, and having a degree of elongation in a 25°C atmosphere of 30% or higher.
Description
本発明は、自動車内外装板やプラスチック成形品表面に関し、成形性と耐擦傷性に有用な架橋塗膜、及び当該架橋塗膜を形成するための樹脂組成物に関する。
The present invention relates to a car interior / exterior board and a plastic molded article surface, and relates to a crosslinked coating useful for moldability and scratch resistance, and a resin composition for forming the crosslinked coating.
プラスチック素材は優れた加工性を有するため、種々の形状に成形し、プラスチック成形品として多くの産業分野で広く使用されている。しかし、プラスチック素材は、ガラス、金属等に比べると一般に硬度が小さく、その表面に擦り傷がつき易い欠点がある。このため、プラスチック成形品表面に耐擦傷性に優れた塗膜を形成させることによって、上記の欠点を改善する技術が種々開発されている。また、ガラスや金属等の硬度の高い素材であっても、高度の意匠性が要求される分野においては、プラスチック成形品のように、耐擦傷性に優れた塗膜の形成が行われることがある。
Since plastic materials have excellent processability, they are molded into various shapes and widely used in many industrial fields as plastic molded products. However, plastic materials generally have a lower hardness than glass, metal, etc., and have a drawback that their surfaces are easily scratched. For this reason, various techniques for improving the above-described drawbacks have been developed by forming a coating film having excellent scratch resistance on the surface of a plastic molded product. In addition, even in a material having high hardness such as glass or metal, in a field where a high degree of design is required, a coating film having excellent scratch resistance may be formed like a plastic molded product. is there.
従来、プラスチック成形品における欠点の改善方法としては、該プラスチック成形品表面に、耐擦傷性を付与する方法として、ジペンタエリスリトールヘキサアクリレートなどの多官能アクリレートを主成分とした活性エネルギー線硬化型樹脂組成物をプラスチックフィルム表面に塗布し、紫外線や電子線などの活性エネルギー線で硬化させてハードコート膜を形成する方法が実施されている。この方法は、架橋密度を高くすることによって表面硬度や耐擦傷性を良好とするものであるが、該ハードコート膜は、硬化時に塗膜の体積収縮が大きく、内部の歪みが増大しやすい特性を有している。
その結果、塗膜に一度傷がつくと、その部位から剥げやクラックが発生し、場合によっては、そのクラックが成形体そのものにも及ぶという欠点があった。また、2次加工(フィルムインサートインジェクション成形、インモールド成形)を行う場合に、成形時の応力に耐えられずクラックが入りやすい欠点もある。
この問題から耐擦傷性に優れ、かつ柔軟な塗膜、すなわち、耐擦傷性と柔軟性(伸長性)の両立が要求されている。 Conventionally, as a method for improving defects in a plastic molded product, as a method for imparting scratch resistance to the surface of the plastic molded product, an active energy ray-curable resin mainly composed of a polyfunctional acrylate such as dipentaerythritol hexaacrylate. A method of forming a hard coat film by applying the composition onto the surface of a plastic film and curing it with an active energy ray such as an ultraviolet ray or an electron beam has been practiced. This method is to improve the surface hardness and scratch resistance by increasing the crosslink density, but the hard coat film has a characteristic that the volumetric shrinkage of the paint film during curing tends to increase the internal strain. have.
As a result, once the coating film is scratched, peeling or cracking occurs from the site, and in some cases, the crack extends to the molded body itself. In addition, when secondary processing (film insert injection molding, in-mold molding) is performed, there is also a defect that cracks tend to occur because the stress during molding cannot be withstood.
Because of this problem, a scratch-resistant and flexible coating film, that is, compatibility between scratch resistance and flexibility (extension) is required.
その結果、塗膜に一度傷がつくと、その部位から剥げやクラックが発生し、場合によっては、そのクラックが成形体そのものにも及ぶという欠点があった。また、2次加工(フィルムインサートインジェクション成形、インモールド成形)を行う場合に、成形時の応力に耐えられずクラックが入りやすい欠点もある。
この問題から耐擦傷性に優れ、かつ柔軟な塗膜、すなわち、耐擦傷性と柔軟性(伸長性)の両立が要求されている。 Conventionally, as a method for improving defects in a plastic molded product, as a method for imparting scratch resistance to the surface of the plastic molded product, an active energy ray-curable resin mainly composed of a polyfunctional acrylate such as dipentaerythritol hexaacrylate. A method of forming a hard coat film by applying the composition onto the surface of a plastic film and curing it with an active energy ray such as an ultraviolet ray or an electron beam has been practiced. This method is to improve the surface hardness and scratch resistance by increasing the crosslink density, but the hard coat film has a characteristic that the volumetric shrinkage of the paint film during curing tends to increase the internal strain. have.
As a result, once the coating film is scratched, peeling or cracking occurs from the site, and in some cases, the crack extends to the molded body itself. In addition, when secondary processing (film insert injection molding, in-mold molding) is performed, there is also a defect that cracks tend to occur because the stress during molding cannot be withstood.
Because of this problem, a scratch-resistant and flexible coating film, that is, compatibility between scratch resistance and flexibility (extension) is required.
この様な耐擦傷性と柔軟性を両立させるという課題に対し、柔軟性、伸長性を有する塗膜としては、表面に生じた傷が時間の経過と共に回復する、いわゆる、自己修復性を有するゴム弾性塗膜なるものが知られている。
In response to the problem of achieving both scratch resistance and flexibility, the coating film having flexibility and extensibility is a so-called self-healing rubber that recovers scratches on the surface over time. An elastic coating film is known.
例えば、柔軟性と靭性とを兼備し、基材密着性に優れると共に、塗膜表面に傷がついても自己修復する塗膜が提案されている。(特許文献1参照)また、優れた耐擦傷性、チッピング性を有するとともに、クラック等が発生しにくい塗膜を形成しうるとして親油性ポリロタキサンを含む硬化型溶剤系塗料が提案されている。(特許文献2参照)また、ポリウレタン系ソフトコートにおける塗膜硬度と塗膜の復元性を改善した塗料も提案されている。(特許文献3参照)
For example, a coating film that combines flexibility and toughness, has excellent substrate adhesion, and self-repairs even if the coating film surface is damaged has been proposed. (See Patent Document 1) Further, a curable solvent-based paint containing a lipophilic polyrotaxane has been proposed as having a superior scratch resistance and chipping property and capable of forming a coating film in which cracks and the like are unlikely to occur. (Refer patent document 2) Moreover, the coating material which improved the coating-film hardness in the polyurethane-type soft coat and the restoring property of a coating film is also proposed. (See Patent Document 3)
しかしながら、耐擦傷性、柔軟性、耐ブロッキング性などの物性バランスに優れるとともに、伸長性が高く、圧空・真空成形やインモールド成形に適性を有する架橋塗膜はこれまで存在しなかった。
However, there has been no cross-linked coating film that has an excellent balance of physical properties such as scratch resistance, flexibility, and blocking resistance, has high extensibility, and is suitable for compressed air / vacuum molding and in-mold molding.
本発明は、上記課題に鑑みなされたものであり、その目的は、耐擦傷性に優れ、かつ伸長性が高く、圧空・真空成形やインモールド成形に適性を有する架橋塗膜を提供することにある。さらに、傷がついても室温、あるいは少しの加温で短時間のうちにその傷が消えるという、いわゆる自己修復性を有する架橋塗膜を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to provide a crosslinked coating film having excellent scratch resistance, high extensibility, and suitability for compressed air / vacuum molding and in-mold molding. is there. Another object of the present invention is to provide a crosslinked coating film having a so-called self-repairing property, in which the scratch disappears in a short time at room temperature or slight heating even when the scratch is attached.
このような課題、目的を解決するために、本件発明者らによって開発された本発明は、以下の通りである。
(1)架橋性樹脂組成物を架橋することによって得られる架橋塗膜であって、
前記架橋塗膜のガラス転移温度が-30~60℃であり、
動的粘弾性試験における貯蔵弾性率が、-30~-10℃の範囲で0.1~1,000MPaであり、80~150℃の範囲で0.01~5MPaであり、
且つ伸び率が25℃の雰囲気で30%以上であることを特徴とする架橋塗膜。 In order to solve such problems and objects, the present invention developed by the present inventors is as follows.
(1) A crosslinked coating film obtained by crosslinking a crosslinkable resin composition,
The crosslinked coating film has a glass transition temperature of −30 to 60 ° C .;
The storage elastic modulus in the dynamic viscoelasticity test is 0.1 to 1,000 MPa in the range of −30 to −10 ° C., 0.01 to 5 MPa in the range of 80 to 150 ° C.,
A cross-linked coating film characterized by having an elongation of 30% or more in an atmosphere at 25 ° C.
(1)架橋性樹脂組成物を架橋することによって得られる架橋塗膜であって、
前記架橋塗膜のガラス転移温度が-30~60℃であり、
動的粘弾性試験における貯蔵弾性率が、-30~-10℃の範囲で0.1~1,000MPaであり、80~150℃の範囲で0.01~5MPaであり、
且つ伸び率が25℃の雰囲気で30%以上であることを特徴とする架橋塗膜。 In order to solve such problems and objects, the present invention developed by the present inventors is as follows.
(1) A crosslinked coating film obtained by crosslinking a crosslinkable resin composition,
The crosslinked coating film has a glass transition temperature of −30 to 60 ° C .;
The storage elastic modulus in the dynamic viscoelasticity test is 0.1 to 1,000 MPa in the range of −30 to −10 ° C., 0.01 to 5 MPa in the range of 80 to 150 ° C.,
A cross-linked coating film characterized by having an elongation of 30% or more in an atmosphere at 25 ° C.
(2)前記架橋塗膜での架橋方法が、ウレタン架橋、エン/チオール反応架橋、カチオン架橋、ラジカル重合架橋、メラミン架橋から選ばれる1種または2種以上であることを特徴とする(1)に記載の架橋塗膜。
(3)前記架橋塗膜がポリオール(A)とポリイソシアネート化合物(B)とを反応させて得られる架橋塗膜であって、ポリオール(A)の数平均分子量(Mn)が500~10,000の範囲であり、水酸基価が50~250(mmol/g)であり、ポリイソシアネート化合物(B)中のイソシアネート
基のモル数/ポリオール (A)中の水酸基のモル数が0.7~1.5であることを特徴とする(1)又は(2)に記載の架橋塗膜。 (2) The crosslinking method in the crosslinked coating film is one or more selected from urethane crosslinking, ene / thiol reaction crosslinking, cation crosslinking, radical polymerization crosslinking, and melamine crosslinking (1) The crosslinked coating film according to 1.
(3) The crosslinked coating film obtained by reacting the polyol (A) with the polyisocyanate compound (B), wherein the number average molecular weight (Mn) of the polyol (A) is 500 to 10,000. The hydroxyl value is 50 to 250 (mmol / g), the number of moles of isocyanate groups in the polyisocyanate compound (B) / the number of moles of hydroxyl groups in the polyol (A) is 0.7 to 1. The crosslinked coating film according to (1) or (2), wherein the crosslinked coating film is 5.
(3)前記架橋塗膜がポリオール(A)とポリイソシアネート化合物(B)とを反応させて得られる架橋塗膜であって、ポリオール(A)の数平均分子量(Mn)が500~10,000の範囲であり、水酸基価が50~250(mmol/g)であり、ポリイソシアネート化合物(B)中のイソシアネート
基のモル数/ポリオール (A)中の水酸基のモル数が0.7~1.5であることを特徴とする(1)又は(2)に記載の架橋塗膜。 (2) The crosslinking method in the crosslinked coating film is one or more selected from urethane crosslinking, ene / thiol reaction crosslinking, cation crosslinking, radical polymerization crosslinking, and melamine crosslinking (1) The crosslinked coating film according to 1.
(3) The crosslinked coating film obtained by reacting the polyol (A) with the polyisocyanate compound (B), wherein the number average molecular weight (Mn) of the polyol (A) is 500 to 10,000. The hydroxyl value is 50 to 250 (mmol / g), the number of moles of isocyanate groups in the polyisocyanate compound (B) / the number of moles of hydroxyl groups in the polyol (A) is 0.7 to 1. The crosslinked coating film according to (1) or (2), wherein the crosslinked coating film is 5.
(4)前記架橋塗膜のヘイズ値が1.0%以下であることを特徴とする(1)~(3)のいずれかに記載の架橋塗膜。
(5)(1)~(4)のいずれかに記載の架橋塗膜と基材とからなる積層体であって、前記基材がポリカーボネート樹脂、ポリエチレンテレフタラート樹脂、ABS樹脂、ポリプロピレン樹脂、イミド樹脂、ガラス、塩化ビニル樹脂のいずれかで形成され、前記架橋塗膜が前記基材に300μm以下の厚さ
で塗布されたものであることを特徴とする架橋塗膜層を有する積層体。 (4) The crosslinked coating film according to any one of (1) to (3), wherein the crosslinked coating film has a haze value of 1.0% or less.
(5) A laminate comprising the crosslinked coating film according to any one of (1) to (4) and a base material, wherein the base material is polycarbonate resin, polyethylene terephthalate resin, ABS resin, polypropylene resin, imide A laminate having a crosslinked coating layer, which is formed of any one of resin, glass, and vinyl chloride resin, and wherein the crosslinked coating is applied to the substrate with a thickness of 300 μm or less.
(5)(1)~(4)のいずれかに記載の架橋塗膜と基材とからなる積層体であって、前記基材がポリカーボネート樹脂、ポリエチレンテレフタラート樹脂、ABS樹脂、ポリプロピレン樹脂、イミド樹脂、ガラス、塩化ビニル樹脂のいずれかで形成され、前記架橋塗膜が前記基材に300μm以下の厚さ
で塗布されたものであることを特徴とする架橋塗膜層を有する積層体。 (4) The crosslinked coating film according to any one of (1) to (3), wherein the crosslinked coating film has a haze value of 1.0% or less.
(5) A laminate comprising the crosslinked coating film according to any one of (1) to (4) and a base material, wherein the base material is polycarbonate resin, polyethylene terephthalate resin, ABS resin, polypropylene resin, imide A laminate having a crosslinked coating layer, which is formed of any one of resin, glass, and vinyl chloride resin, and wherein the crosslinked coating is applied to the substrate with a thickness of 300 μm or less.
(6)ガラス転移温度が-30~60℃であり、動的粘弾性試験における貯蔵弾性率が-30~-10℃の範囲で0.1~1,000MPaであり、80~150℃の範囲で0.01~5MPaであり、且つ伸び率が25℃の雰囲気で30%以上である架橋塗膜を形成する架橋性樹脂組成物であって、
該架橋性樹脂組成物が、ポリオール(A)とポリイソシアネート化合物(B)とを含み、
前記ポリオール(A)は、数平均分子量(Mn)が500~10,000であり、水酸基価が50~250(mmol/g)であり、
ポリイソシアネート化合物(B)中のイソシアネート基のモル数/ポリオ
ール (A)中の水酸基のモル数が0.7~1.5であることを特徴とする架橋性樹脂組成物。 (6) The glass transition temperature is −30 to 60 ° C., and the storage modulus in the dynamic viscoelasticity test is 0.1 to 1,000 MPa in the range of −30 to −10 ° C., and the range of 80 to 150 ° C. A crosslinkable resin composition that forms a cross-linked coating film having an elongation of 0.01 to 5 MPa and an elongation rate of 30% or more in an atmosphere of 25 ° C.,
The crosslinkable resin composition contains a polyol (A) and a polyisocyanate compound (B),
The polyol (A) has a number average molecular weight (Mn) of 500 to 10,000, a hydroxyl value of 50 to 250 (mmol / g),
A crosslinkable resin composition wherein the number of moles of isocyanate groups in the polyisocyanate compound (B) / number of moles of hydroxyl groups in the polyol (A) is 0.7 to 1.5.
該架橋性樹脂組成物が、ポリオール(A)とポリイソシアネート化合物(B)とを含み、
前記ポリオール(A)は、数平均分子量(Mn)が500~10,000であり、水酸基価が50~250(mmol/g)であり、
ポリイソシアネート化合物(B)中のイソシアネート基のモル数/ポリオ
ール (A)中の水酸基のモル数が0.7~1.5であることを特徴とする架橋性樹脂組成物。 (6) The glass transition temperature is −30 to 60 ° C., and the storage modulus in the dynamic viscoelasticity test is 0.1 to 1,000 MPa in the range of −30 to −10 ° C., and the range of 80 to 150 ° C. A crosslinkable resin composition that forms a cross-linked coating film having an elongation of 0.01 to 5 MPa and an elongation rate of 30% or more in an atmosphere of 25 ° C.,
The crosslinkable resin composition contains a polyol (A) and a polyisocyanate compound (B),
The polyol (A) has a number average molecular weight (Mn) of 500 to 10,000, a hydroxyl value of 50 to 250 (mmol / g),
A crosslinkable resin composition wherein the number of moles of isocyanate groups in the polyisocyanate compound (B) / number of moles of hydroxyl groups in the polyol (A) is 0.7 to 1.5.
本発明によれば、耐擦傷性に優れ、かつ伸長性が高く真空成形やインモールド成形に適性を有する架橋塗膜を提供できる。また、架橋による収縮を抑
え、架橋密度を高くすることを特徴としているため、驚くべきことに高い鉛筆硬度、良好な耐溶剤性、耐ブロッキング性を有することから、成形加工可能なハードコート材と位置づけられる架橋塗膜が得られる。さらに、傷がついても、室温、あるいは少しの加温で短時間のうちにその傷が消えていくという、いわゆる自己修復性の性能を有する架橋塗膜が得られる。 According to the present invention, it is possible to provide a crosslinked coating film having excellent scratch resistance and high extensibility, which is suitable for vacuum forming or in-mold forming. In addition, since it is characterized by suppressing shrinkage due to crosslinking and increasing the crosslinking density, it has surprisingly high pencil hardness, good solvent resistance, and blocking resistance, A positioned crosslinked coating is obtained. Furthermore, even if a scratch is formed, a crosslinked coating film having a so-called self-healing performance in which the scratch disappears in a short time at room temperature or a little heating is obtained.
え、架橋密度を高くすることを特徴としているため、驚くべきことに高い鉛筆硬度、良好な耐溶剤性、耐ブロッキング性を有することから、成形加工可能なハードコート材と位置づけられる架橋塗膜が得られる。さらに、傷がついても、室温、あるいは少しの加温で短時間のうちにその傷が消えていくという、いわゆる自己修復性の性能を有する架橋塗膜が得られる。 According to the present invention, it is possible to provide a crosslinked coating film having excellent scratch resistance and high extensibility, which is suitable for vacuum forming or in-mold forming. In addition, since it is characterized by suppressing shrinkage due to crosslinking and increasing the crosslinking density, it has surprisingly high pencil hardness, good solvent resistance, and blocking resistance, A positioned crosslinked coating is obtained. Furthermore, even if a scratch is formed, a crosslinked coating film having a so-called self-healing performance in which the scratch disappears in a short time at room temperature or a little heating is obtained.
架橋塗膜のガラス転移温度は-30~60℃であることが好ましく、さらに好ましくは-10~50℃である。架橋塗膜のガラス転移温度が-30℃未満の場合には、架橋塗膜層を有する成形物をプラスチックフィルム等で包装した場合、該プラスチックフィルムの接触部分が成形品の架橋塗膜層に貼りついてしまう恐れがあり、耐ブロッキング性能の面で劣る傾向にある。また、塗膜のガラス転移温度が60℃を超える場合には、分子運動性能が低下し、架橋塗膜層表面に生じた傷が熱を加えても回復し難い傾向がある。
The glass transition temperature of the crosslinked coating film is preferably −30 to 60 ° C., more preferably −10 to 50 ° C. When the glass transition temperature of the crosslinked coating is less than −30 ° C., when the molded article having the crosslinked coating layer is packaged with a plastic film or the like, the contact portion of the plastic film is stuck on the crosslinked coating layer of the molded product. There is a possibility that it will be attached, and it tends to be inferior in terms of anti-blocking performance. Moreover, when the glass transition temperature of a coating film exceeds 60 degreeC, molecular motion performance falls and there exists a tendency for the damage | wound produced on the crosslinked coating-film layer surface to be hard to recover even if it applies heat.
また、動的粘弾性試験における貯蔵弾性率は、-30~-10℃の範囲で0.1~1,000MPaである。80~150℃の範囲では、0.01~5MPaであることが好ましく、さらに好ましくは0.1~2MPaである。
-30~-10℃の範囲で0.1MPa未満である場合には硬さが得られない、またベタつきやすい等の問題が生じる可能性がある。この温度範囲での貯蔵弾性率の上限については特に制限はないが、普通のプラスチックがとり得る値は1,000MPa程度までである。
80~150℃の範囲で0.01MPa未満である場合には、ゴム弾性が低すぎて傷が回復しない傾向がある。5MPaを超える場合には、架橋密度が高過ぎて伸び性が低下する傾向にある。 The storage elastic modulus in the dynamic viscoelasticity test is 0.1 to 1,000 MPa in the range of −30 to −10 ° C. In the range of 80 to 150 ° C., the pressure is preferably 0.01 to 5 MPa, more preferably 0.1 to 2 MPa.
If it is less than 0.1 MPa in the range of −30 to −10 ° C., problems such as insufficient hardness and easy stickiness may occur. Although there is no restriction | limiting in particular about the upper limit of the storage elastic modulus in this temperature range, The value which a normal plastic can take is to about 1,000 MPa.
When it is less than 0.01 MPa in the range of 80 to 150 ° C., the rubber elasticity is too low and the scratches tend not to be recovered. If it exceeds 5 MPa, the crosslink density is too high and the elongation tends to decrease.
-30~-10℃の範囲で0.1MPa未満である場合には硬さが得られない、またベタつきやすい等の問題が生じる可能性がある。この温度範囲での貯蔵弾性率の上限については特に制限はないが、普通のプラスチックがとり得る値は1,000MPa程度までである。
80~150℃の範囲で0.01MPa未満である場合には、ゴム弾性が低すぎて傷が回復しない傾向がある。5MPaを超える場合には、架橋密度が高過ぎて伸び性が低下する傾向にある。 The storage elastic modulus in the dynamic viscoelasticity test is 0.1 to 1,000 MPa in the range of −30 to −10 ° C. In the range of 80 to 150 ° C., the pressure is preferably 0.01 to 5 MPa, more preferably 0.1 to 2 MPa.
If it is less than 0.1 MPa in the range of −30 to −10 ° C., problems such as insufficient hardness and easy stickiness may occur. Although there is no restriction | limiting in particular about the upper limit of the storage elastic modulus in this temperature range, The value which a normal plastic can take is to about 1,000 MPa.
When it is less than 0.01 MPa in the range of 80 to 150 ° C., the rubber elasticity is too low and the scratches tend not to be recovered. If it exceeds 5 MPa, the crosslink density is too high and the elongation tends to decrease.
また、本発明の伸び率は、25℃の雰囲気で30%以上、より好ましくは100%以上である。30%未満である場合には、一般的なハードコート処理の性能に近くなり本発明の架橋塗膜としての特徴が得られない。柔軟性のあるシートに塗膜を形成した場合、持ち運びの際、割れる可能性もある。伸び率が30%以上あれば、圧空・真空成形、射出成形等によるさまざまな成形加工において白化、クラックの発生しない架橋塗膜とすることが可能である。
The elongation of the present invention is 30% or more, more preferably 100% or more in an atmosphere at 25 ° C. If it is less than 30%, it is close to the performance of a general hard coat treatment, and the characteristics as a crosslinked coating film of the present invention cannot be obtained. When a coating film is formed on a flexible sheet, there is a possibility of cracking during carrying. If the elongation is 30% or more, it is possible to obtain a crosslinked coating film that does not cause whitening and cracks in various molding processes such as compressed air / vacuum molding and injection molding.
架橋性樹脂組成物を架橋する方法としては、ウレタン架橋、エン/チオール反応架橋、カチオン架橋、ラジカル重合架橋、メラミン架橋が挙げられる。これらの中でも硬化時の塗膜の体積収縮の観点から、ウレタン架橋、エン/チオール反応架橋、カチオン架橋が好ましい。
Examples of the method for crosslinking the crosslinkable resin composition include urethane crosslinking, ene / thiol reaction crosslinking, cation crosslinking, radical polymerization crosslinking, and melamine crosslinking. Among these, urethane crosslinking, ene / thiol reaction crosslinking, and cationic crosslinking are preferable from the viewpoint of volumetric shrinkage of the coating film during curing.
ウレタン架橋を選択した場合には、ポリオール(A)の数平均分子量(Mn)が500~10,000の範囲であることが好ましく、さらに好ましくは500~5,000である。数平均分子量(Mn)が500未満である場合には、反応速度とポットライフの問題がある。10,000を超える場合は架橋密度が低下し、耐擦傷性が低下する傾向がある。
When urethane crosslinking is selected, the number average molecular weight (Mn) of the polyol (A) is preferably in the range of 500 to 10,000, more preferably 500 to 5,000. When the number average molecular weight (Mn) is less than 500, there are problems of reaction rate and pot life. If it exceeds 10,000, the crosslink density tends to decrease and the scratch resistance tends to decrease.
ポリオール(A)の水酸基価は、50mmol/g~250mmol/gであることが好ましく、さらに好ましくは100mmol/g~250mmol/gである。50mmol/g未満である場合には、架橋密度が低下し、耐擦傷性が低下する傾向がある。250mmol/gを超える場合には、反応速度とポットライフの面で取扱いに問題を生じる場合がある。
The hydroxyl value of the polyol (A) is preferably 50 mmol / g to 250 mmol / g, more preferably 100 mmol / g to 250 mmol / g. If it is less than 50 mmol / g, the crosslinking density tends to decrease and the scratch resistance tends to decrease. If it exceeds 250 mmol / g, there may be a problem in handling in terms of reaction rate and pot life.
これらのポリオールの例としては、アクリルポリオール、ポリカプロラク
トンジオール、ポリカプロラクトントリオール、ポリカプロラクトンテトラオール、ポリカーボネートジオール、ポリエステルポリオール、ポリビニルアルコール、セルロース系樹脂、ポリビニルブチラール等の2官能以上のポリオールが挙げられる。 Examples of these polyols include bifunctional or higher functional polyols such as acrylic polyol, polycaprolactone diol, polycaprolactone triol, polycaprolactone tetraol, polycarbonate diol, polyester polyol, polyvinyl alcohol, cellulose resin, and polyvinyl butyral.
トンジオール、ポリカプロラクトントリオール、ポリカプロラクトンテトラオール、ポリカーボネートジオール、ポリエステルポリオール、ポリビニルアルコール、セルロース系樹脂、ポリビニルブチラール等の2官能以上のポリオールが挙げられる。 Examples of these polyols include bifunctional or higher functional polyols such as acrylic polyol, polycaprolactone diol, polycaprolactone triol, polycaprolactone tetraol, polycarbonate diol, polyester polyol, polyvinyl alcohol, cellulose resin, and polyvinyl butyral.
ポリイソシアネート化合物(B)中のイソシアネート基のモル数/ジオー
ルポリマー(A)中の水酸基のモル数(以下、NCO/OH 比という。)が0.7~1.5であることが好ましく、さらに好ましくは1.0~1.2である。該NCO/OH 比が0.7未満である場合には、耐擦傷性、耐溶剤性が低下する傾向がある。また、NCO/OH 比が1.5を超える場合には、耐擦傷性が低下する傾向がある。 The number of moles of isocyanate groups in the polyisocyanate compound (B) / number of moles of hydroxyl groups in the diol polymer (A) (hereinafter referred to as NCO / OH ratio) is preferably 0.7 to 1.5, Preferably, it is 1.0 to 1.2. When the NCO / OH ratio is less than 0.7, the scratch resistance and solvent resistance tend to decrease. On the other hand, if the NCO / OH ratio exceeds 1.5, the scratch resistance tends to decrease.
ルポリマー(A)中の水酸基のモル数(以下、NCO/OH 比という。)が0.7~1.5であることが好ましく、さらに好ましくは1.0~1.2である。該NCO/OH 比が0.7未満である場合には、耐擦傷性、耐溶剤性が低下する傾向がある。また、NCO/OH 比が1.5を超える場合には、耐擦傷性が低下する傾向がある。 The number of moles of isocyanate groups in the polyisocyanate compound (B) / number of moles of hydroxyl groups in the diol polymer (A) (hereinafter referred to as NCO / OH ratio) is preferably 0.7 to 1.5, Preferably, it is 1.0 to 1.2. When the NCO / OH ratio is less than 0.7, the scratch resistance and solvent resistance tend to decrease. On the other hand, if the NCO / OH ratio exceeds 1.5, the scratch resistance tends to decrease.
これらのポリイソシアネートの例として、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トルエンジイソシアネート、キシレンジイソシアネート、ジフェニルメタンジイソシアネートの低分子ポリオールアダクトが挙げられる。
Examples of these polyisocyanates include hexamethylene diisocyanate, isophorone diisocyanate, toluene diisocyanate, xylene diisocyanate, and low molecular polyol adducts of diphenylmethane diisocyanate.
ウレタン架橋は、ポリオールとポリイソシアネート化合物を80℃以上の雰囲気下で30分以上の熱硬化反応を行うことにより得られる。
ポリオールの水酸基価が高いものを使用する場合は、触媒を用いることで架橋反応を速やかに進行させることができる。触媒の種類としては、ジブチルチンジラウレートやナフテン酸亜鉛のような金属系触媒或いはトリエチレンジアミンやN-メチルモルホリンのようなアミン系触媒などの通常の硬化触媒が用いることができ、これらの触媒を使用することで反応速度の向上、反応温度の低下、反応時間の短縮などが可能となる。
硬化触媒の添加量は、イソシアネート末端ウレタンプレポリマーに対して、固形分比で0.005~0.10質量% が好ましい。0.005質量%未
満であると架橋反応の促進効果が得られず、0.10質量%を超えるとポットライフに支障をきたす。
熱硬化反応における温度については、反応温度を80℃より高く設定することで架橋反応が速やかに進行する。 Urethane crosslinking can be obtained by performing a thermosetting reaction of polyol and polyisocyanate compound in an atmosphere of 80 ° C. or more for 30 minutes or more.
When a polyol having a high hydroxyl value is used, the crosslinking reaction can be rapidly advanced by using a catalyst. As the type of catalyst, a normal curing catalyst such as a metal catalyst such as dibutyltin dilaurate or zinc naphthenate or an amine catalyst such as triethylenediamine or N-methylmorpholine can be used. By doing so, it becomes possible to improve the reaction rate, lower the reaction temperature, shorten the reaction time, and the like.
The addition amount of the curing catalyst is preferably 0.005 to 0.10% by mass with respect to the isocyanate-terminated urethane prepolymer. If it is less than 0.005% by mass, the effect of promoting the crosslinking reaction cannot be obtained, and if it exceeds 0.10% by mass, the pot life is hindered.
About the temperature in thermosetting reaction, a crosslinking reaction advances rapidly by setting reaction temperature higher than 80 degreeC.
ポリオールの水酸基価が高いものを使用する場合は、触媒を用いることで架橋反応を速やかに進行させることができる。触媒の種類としては、ジブチルチンジラウレートやナフテン酸亜鉛のような金属系触媒或いはトリエチレンジアミンやN-メチルモルホリンのようなアミン系触媒などの通常の硬化触媒が用いることができ、これらの触媒を使用することで反応速度の向上、反応温度の低下、反応時間の短縮などが可能となる。
硬化触媒の添加量は、イソシアネート末端ウレタンプレポリマーに対して、固形分比で0.005~0.10質量% が好ましい。0.005質量%未
満であると架橋反応の促進効果が得られず、0.10質量%を超えるとポットライフに支障をきたす。
熱硬化反応における温度については、反応温度を80℃より高く設定することで架橋反応が速やかに進行する。 Urethane crosslinking can be obtained by performing a thermosetting reaction of polyol and polyisocyanate compound in an atmosphere of 80 ° C. or more for 30 minutes or more.
When a polyol having a high hydroxyl value is used, the crosslinking reaction can be rapidly advanced by using a catalyst. As the type of catalyst, a normal curing catalyst such as a metal catalyst such as dibutyltin dilaurate or zinc naphthenate or an amine catalyst such as triethylenediamine or N-methylmorpholine can be used. By doing so, it becomes possible to improve the reaction rate, lower the reaction temperature, shorten the reaction time, and the like.
The addition amount of the curing catalyst is preferably 0.005 to 0.10% by mass with respect to the isocyanate-terminated urethane prepolymer. If it is less than 0.005% by mass, the effect of promoting the crosslinking reaction cannot be obtained, and if it exceeds 0.10% by mass, the pot life is hindered.
About the temperature in thermosetting reaction, a crosslinking reaction advances rapidly by setting reaction temperature higher than 80 degreeC.
また、反応温度を100℃以上に設定する場合、ポリイソシアネートをブロック剤で変性して得られるブロックイソシアネートを使用することもできる。ブロック剤は、ポリイソシアネートのイソシアネート基をブロック化し、水分や水酸基などの活性水素基との反応を防ぎ一液化を可能とする。更に、ブロック化されたポリイソシアネートは、加熱することによってブロック剤が解離し、再びイソシアネート基が活性化することで、活性水素基と反応する潜在性の硬化剤である。ブロックイソシアネート化合物としては、イソシアネート基がε-カプロラクタムやMEKオキシム等で保護されたイソシアネート化合物であればよく、特に限定されるものではない。具体的には、上記イソシアネート化合物のイソシアネート基を、ε-カプロラクタム、MEKオキシム、シクロヘキサノンオキシム、ピラゾール、3,5-ジメチルピラゾール、ジイソプロピルアミン、マロン酸ジエチル、アセト酢酸エチル、フェノール等でブロックしたものなどが挙げられる。
Further, when the reaction temperature is set to 100 ° C. or higher, a blocked isocyanate obtained by modifying polyisocyanate with a blocking agent can also be used. The blocking agent blocks the isocyanate group of the polyisocyanate, thereby preventing reaction with active hydrogen groups such as moisture and hydroxyl groups and making it one-component. Further, the blocked polyisocyanate is a latent curing agent that reacts with an active hydrogen group when the blocking agent is dissociated by heating and the isocyanate group is activated again. The blocked isocyanate compound is not particularly limited as long as it is an isocyanate compound whose isocyanate group is protected with ε-caprolactam, MEK oxime, or the like. Specifically, the isocyanate group of the isocyanate compound is blocked with ε-caprolactam, MEK oxime, cyclohexanone oxime, pyrazole, 3,5-dimethylpyrazole, diisopropylamine, diethyl malonate, ethyl acetoacetate, phenol, etc. Is mentioned.
エン/チオール架橋は、ポリマージエン化合物と3官能以上の低分子チオー
ル化合物の紫外線硬化反応により得られる。このようなポリマージエン化合物は、一例として、ウレタン架橋で使用したポリオールの末端を(メタ)アクリロイル変性することで得られるが、他のジエン化合物であっても本発明で規定する弾性と伸び率が得られるものであれば好適に使用される。 The ene / thiol crosslinking is obtained by an ultraviolet curing reaction of a polymer diene compound and a trifunctional or higher functional low molecular thiol compound. As an example, such a polymer diene compound can be obtained by (meth) acryloyl-modifying the end of a polyol used in urethane crosslinking. However, even if it is another diene compound, the elasticity and elongation specified in the present invention are also obtained. If it is obtained, it is preferably used.
ル化合物の紫外線硬化反応により得られる。このようなポリマージエン化合物は、一例として、ウレタン架橋で使用したポリオールの末端を(メタ)アクリロイル変性することで得られるが、他のジエン化合物であっても本発明で規定する弾性と伸び率が得られるものであれば好適に使用される。 The ene / thiol crosslinking is obtained by an ultraviolet curing reaction of a polymer diene compound and a trifunctional or higher functional low molecular thiol compound. As an example, such a polymer diene compound can be obtained by (meth) acryloyl-modifying the end of a polyol used in urethane crosslinking. However, even if it is another diene compound, the elasticity and elongation specified in the present invention are also obtained. If it is obtained, it is preferably used.
カチオン架橋は、一例として、ウレタン架橋で使用したポリオールの末端をエポキシ化あるいは、オキセタニル化することで得られるエポキシ化合物を、カチオン重合開始剤を用いた紫外線硬化反応により得られる。また他の
化合物であっても、カチオン重合が可能で本発明で規定する弾性と伸び率が
得られるものであれば好適に使用される。 As an example, the cationic crosslinking is obtained by an ultraviolet curing reaction using a cationic polymerization initiator for an epoxy compound obtained by epoxidizing or oxetanylating the end of a polyol used in urethane crosslinking. Also, other compounds are preferably used as long as they can be cationically polymerized and can obtain the elasticity and elongation specified in the present invention.
化合物であっても、カチオン重合が可能で本発明で規定する弾性と伸び率が
得られるものであれば好適に使用される。 As an example, the cationic crosslinking is obtained by an ultraviolet curing reaction using a cationic polymerization initiator for an epoxy compound obtained by epoxidizing or oxetanylating the end of a polyol used in urethane crosslinking. Also, other compounds are preferably used as long as they can be cationically polymerized and can obtain the elasticity and elongation specified in the present invention.
架橋性樹脂組成物をクリアー塗膜として使用する場合にはヘイズ値が1.0%以下であることが好ましい。1.0%以上である場合には、使用用途が
限定されてしまい、光学製品用途、意匠性の観点で使用できない恐れがある。ただし、着色あるいはマット状の塗膜が必要な場合は、着色顔料、マット剤、体質顔料、光輝剤等を使用してヘイズ値を1.0%以上に調整して使用しても良い。
前記マット剤及び体質顔料は、表面に凸凹を形成して防眩性又は耐ブロッキング性を付与するものであり、有機粒子としてはスチレンビーズ、アクリルビーズ、スチレン-アクリルビーズ、メラミンビーズ、ベンゾグアナミンビーズ、ポリカーボネートビーズ、ポリエチレンビーズ、シリコーンビーズ、フッ素ビーズ、フッ化ビニリデンビーズ、塩ビビーズ、エポキシビーズ、ナイロンビーズ、フェノールビーズ、ポリウレタンビーズ等が挙げられる。無機粒子としては、シリカ、タルク、マイカ、カオリン、膨潤性フッ素雲母、モンモリロナイト、ヘクトライト、炭酸カルシウム、炭酸マグネシウム、酸化カルシウム、酸化亜鉛、酸化マグネシウム、ケイ酸ソーダ、水酸化アルミニウム、酸化鉄、酸化ジルコニウム、硫酸バリウム、酸化チタン等が挙げられる。
これらのマット剤および体質顔料の配合量は、架橋性組成物100質量部に対し、0.1~50質量部である。 When using a crosslinkable resin composition as a clear coating film, it is preferable that a haze value is 1.0% or less. When it is 1.0% or more, the use application is limited, and there is a possibility that it cannot be used from the viewpoint of optical product use and design. However, when a colored or matte coating film is required, the haze value may be adjusted to 1.0% or more using a coloring pigment, matting agent, extender pigment, brightening agent, or the like.
The matting agent and extender pigment are provided with anti-glare properties or blocking resistance by forming irregularities on the surface. As organic particles, styrene beads, acrylic beads, styrene-acrylic beads, melamine beads, benzoguanamine beads, Examples include polycarbonate beads, polyethylene beads, silicone beads, fluorine beads, vinylidene fluoride beads, polyvinyl chloride beads, epoxy beads, nylon beads, phenol beads, polyurethane beads, and the like. Inorganic particles include silica, talc, mica, kaolin, swellable fluoromica, montmorillonite, hectorite, calcium carbonate, magnesium carbonate, calcium oxide, zinc oxide, magnesium oxide, sodium silicate, aluminum hydroxide, iron oxide, oxidation Examples include zirconium, barium sulfate, and titanium oxide.
The amount of the matting agent and extender is 0.1 to 50 parts by mass with respect to 100 parts by mass of the crosslinkable composition.
限定されてしまい、光学製品用途、意匠性の観点で使用できない恐れがある。ただし、着色あるいはマット状の塗膜が必要な場合は、着色顔料、マット剤、体質顔料、光輝剤等を使用してヘイズ値を1.0%以上に調整して使用しても良い。
前記マット剤及び体質顔料は、表面に凸凹を形成して防眩性又は耐ブロッキング性を付与するものであり、有機粒子としてはスチレンビーズ、アクリルビーズ、スチレン-アクリルビーズ、メラミンビーズ、ベンゾグアナミンビーズ、ポリカーボネートビーズ、ポリエチレンビーズ、シリコーンビーズ、フッ素ビーズ、フッ化ビニリデンビーズ、塩ビビーズ、エポキシビーズ、ナイロンビーズ、フェノールビーズ、ポリウレタンビーズ等が挙げられる。無機粒子としては、シリカ、タルク、マイカ、カオリン、膨潤性フッ素雲母、モンモリロナイト、ヘクトライト、炭酸カルシウム、炭酸マグネシウム、酸化カルシウム、酸化亜鉛、酸化マグネシウム、ケイ酸ソーダ、水酸化アルミニウム、酸化鉄、酸化ジルコニウム、硫酸バリウム、酸化チタン等が挙げられる。
これらのマット剤および体質顔料の配合量は、架橋性組成物100質量部に対し、0.1~50質量部である。 When using a crosslinkable resin composition as a clear coating film, it is preferable that a haze value is 1.0% or less. When it is 1.0% or more, the use application is limited, and there is a possibility that it cannot be used from the viewpoint of optical product use and design. However, when a colored or matte coating film is required, the haze value may be adjusted to 1.0% or more using a coloring pigment, matting agent, extender pigment, brightening agent, or the like.
The matting agent and extender pigment are provided with anti-glare properties or blocking resistance by forming irregularities on the surface. As organic particles, styrene beads, acrylic beads, styrene-acrylic beads, melamine beads, benzoguanamine beads, Examples include polycarbonate beads, polyethylene beads, silicone beads, fluorine beads, vinylidene fluoride beads, polyvinyl chloride beads, epoxy beads, nylon beads, phenol beads, polyurethane beads, and the like. Inorganic particles include silica, talc, mica, kaolin, swellable fluoromica, montmorillonite, hectorite, calcium carbonate, magnesium carbonate, calcium oxide, zinc oxide, magnesium oxide, sodium silicate, aluminum hydroxide, iron oxide, oxidation Examples include zirconium, barium sulfate, and titanium oxide.
The amount of the matting agent and extender is 0.1 to 50 parts by mass with respect to 100 parts by mass of the crosslinkable composition.
本発明の架橋塗膜を適用可能な基材としては、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ABS樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ガラス、サファイアガラス、ポリ塩化ビニル樹脂などが挙げられるが、その他の基材として、ステンレス、リン酸処理鋼、亜鉛鋼、鉄、銅、アルミニウム、真鍮、ガラス、アクリル樹脂、ポリエチレンナフタレート樹脂、ポリブチレンフタレート樹脂、ポリスチレン樹脂、AS樹脂、6-ナイロン樹脂、6,6-ナイロン樹脂、MXD6ナイロン樹脂、ポリビニルアルコール樹脂、ポリウレタン樹脂、フェノール樹脂、メラミン樹脂、ポリアセタール樹脂、塩素化ポリオレフィン樹脂、ポリアミド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンスルフィド樹脂、NBR樹脂、クロロプレン樹脂、SBR樹脂、SEBS樹脂などの素材で成形された基材、それらの表面をコロナ放電処理や樹脂塗布処理を施されたもの等が挙げられる。それぞれへの接着性を得るためには、適切な架橋方法、有機溶剤の選択、カップリング剤の併用等により適宜選択して調整される。
Examples of the substrate to which the crosslinked coating film of the present invention can be applied include polycarbonate resin, polyethylene terephthalate resin, ABS resin, polypropylene resin, polyimide resin, glass, sapphire glass, polyvinyl chloride resin, and other substrates. Stainless steel, phosphate-treated steel, zinc steel, iron, copper, aluminum, brass, glass, acrylic resin, polyethylene naphthalate resin, polybutylene phthalate resin, polystyrene resin, AS resin, 6-nylon resin, 6,6- Nylon resin, MXD6 nylon resin, polyvinyl alcohol resin, polyurethane resin, phenol resin, melamine resin, polyacetal resin, chlorinated polyolefin resin, polyamide resin, polyether ether ketone resin, polyphenylene sulfide resin, NBR Fat, chloroprene resin, SBR resin, material in shaped substrates such as SEBS resins, such as those of their surface has been subjected to corona discharge treatment and resin coating treatment. In order to obtain adhesiveness to each, it is appropriately selected and adjusted by an appropriate crosslinking method, selection of an organic solvent, combined use of a coupling agent, and the like.
また、本発明によって得られる架橋塗膜は、スプレー、刷毛、浸漬、印刷などの公知の方法により基材の表面上に塗布された後、熱乾燥及び/または紫外線や電子線等の活性エネルギー線による硬化工程を経て架橋塗膜が形成される。
具体的には、形成される架橋塗膜の膜厚は1μm~300μmの範囲であり、100μm以上の塗膜を形成する場合には、一度基材に塗布、硬化行程を施した後、さらに重ね塗布を行い、所望の膜厚を得ることが出来る。熱硬化反応の場合には室温で行っても良く、加熱しても良い。加熱する場合には、通常、40~200℃で1~300分の条件で行うことが出来る。 In addition, the crosslinked coating film obtained by the present invention is applied on the surface of the substrate by a known method such as spraying, brushing, dipping, printing, etc., and then heat-dried and / or active energy rays such as ultraviolet rays and electron beams. A crosslinked coating film is formed through the curing step.
Specifically, the film thickness of the formed cross-linked coating film is in the range of 1 μm to 300 μm. When a coating film of 100 μm or more is formed, the film is once applied to the substrate and subjected to a curing process, and then further overlapped. Application can be performed to obtain a desired film thickness. In the case of a thermosetting reaction, it may be performed at room temperature or may be heated. In the case of heating, it can be usually carried out at 40 to 200 ° C. for 1 to 300 minutes.
具体的には、形成される架橋塗膜の膜厚は1μm~300μmの範囲であり、100μm以上の塗膜を形成する場合には、一度基材に塗布、硬化行程を施した後、さらに重ね塗布を行い、所望の膜厚を得ることが出来る。熱硬化反応の場合には室温で行っても良く、加熱しても良い。加熱する場合には、通常、40~200℃で1~300分の条件で行うことが出来る。 In addition, the crosslinked coating film obtained by the present invention is applied on the surface of the substrate by a known method such as spraying, brushing, dipping, printing, etc., and then heat-dried and / or active energy rays such as ultraviolet rays and electron beams. A crosslinked coating film is formed through the curing step.
Specifically, the film thickness of the formed cross-linked coating film is in the range of 1 μm to 300 μm. When a coating film of 100 μm or more is formed, the film is once applied to the substrate and subjected to a curing process, and then further overlapped. Application can be performed to obtain a desired film thickness. In the case of a thermosetting reaction, it may be performed at room temperature or may be heated. In the case of heating, it can be usually carried out at 40 to 200 ° C. for 1 to 300 minutes.
活性エネルギー線による硬化反応の場合には、照射する活性エネルギー線としては、赤外線、紫外線、X線、α線、β線、γ線、電子線などを用いることができる。中でも、安全性、反応効率などの工業性の観点などから紫外線が最も好ましく用いられる。用いられる紫外線の波長は200~400nmが好ましく、好ましい照射条件としては、例えば、照度1~1000mW/cm2、積算光量0.1~10000mJ/cm2である。活性エネルギー線の照射装置としては、例えば、高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、エキシマランプなどのランプ光源、アルゴンイオンレーザーやヘリウムネオンレーザーなどのパルス、連続のレーザー光源、LED光源などを用いることが可能である。
In the case of a curing reaction using active energy rays, infrared rays, ultraviolet rays, X rays, α rays, β rays, γ rays, electron beams, and the like can be used as the active energy rays to be irradiated. Among these, ultraviolet rays are most preferably used from the viewpoint of industrial properties such as safety and reaction efficiency. The wavelength of the ultraviolet rays used is preferably 200 to 400 nm, and preferable irradiation conditions are, for example, an illuminance of 1 to 1000 mW / cm 2 and an integrated light quantity of 0.1 to 10000 mJ / cm 2 . As an active energy ray irradiation device, for example, a lamp light source such as a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, or an excimer lamp, a pulse such as an argon ion laser or a helium neon laser, a continuous laser light source, or an LED light source is used. It is possible.
本発明の塗膜が自己修復性の機能を発揮する詳細な理由はわかっていないが、本発明のガラス転移温度における架橋度を本発明の弾性率範囲にコントロールすることにより樹脂膜中に海島構造が形成されることによると考えら
れる。この島構造は、塗膜を高度に架橋することで従来よりも大きく形成されていると推定している。このことにより、従来塗膜における海構造のタック性が大きく抑えられ、すべり性が発揮され、且つ存在する海構造により優れた伸び性能が得られたと考えられる。 The detailed reason why the coating film of the present invention exhibits a self-repairing function is not known, but by controlling the degree of crosslinking at the glass transition temperature of the present invention within the elastic modulus range of the present invention, a sea-island structure is formed in the resin film. This is thought to be due to the formation of It is estimated that this island structure is formed larger than before by highly crosslinking the coating film. Thus, it is considered that the tackiness of the sea structure in the conventional coating film is greatly suppressed, the slip property is exhibited, and the excellent elongation performance is obtained by the existing sea structure.
れる。この島構造は、塗膜を高度に架橋することで従来よりも大きく形成されていると推定している。このことにより、従来塗膜における海構造のタック性が大きく抑えられ、すべり性が発揮され、且つ存在する海構造により優れた伸び性能が得られたと考えられる。 The detailed reason why the coating film of the present invention exhibits a self-repairing function is not known, but by controlling the degree of crosslinking at the glass transition temperature of the present invention within the elastic modulus range of the present invention, a sea-island structure is formed in the resin film. This is thought to be due to the formation of It is estimated that this island structure is formed larger than before by highly crosslinking the coating film. Thus, it is considered that the tackiness of the sea structure in the conventional coating film is greatly suppressed, the slip property is exhibited, and the excellent elongation performance is obtained by the existing sea structure.
また、本発明の塗膜は、従来の自己修復性の塗膜よりも鉛筆硬度において高い硬度が得られるが、その効果は上述の島構造に起因すると推定される。
さらに、本発明で得られる優れた耐溶剤性は、本発明のガラス転移温度における架橋度を本発明の弾性率範囲までに高架橋することで得られる。
また、本発明のウレタン架橋は、従来技術では予想できなかった硬化時の収縮性が少ない効果をも併せ持つものである。 In addition, the coating film of the present invention has higher pencil hardness than the conventional self-repairing coating film, but the effect is presumed to be due to the above-described island structure.
Furthermore, the excellent solvent resistance obtained by the present invention can be obtained by highly crosslinking the degree of crosslinking at the glass transition temperature of the present invention within the elastic modulus range of the present invention.
Moreover, the urethane cross-linking of the present invention also has an effect of low shrinkage at the time of curing, which could not be predicted by the prior art.
さらに、本発明で得られる優れた耐溶剤性は、本発明のガラス転移温度における架橋度を本発明の弾性率範囲までに高架橋することで得られる。
また、本発明のウレタン架橋は、従来技術では予想できなかった硬化時の収縮性が少ない効果をも併せ持つものである。 In addition, the coating film of the present invention has higher pencil hardness than the conventional self-repairing coating film, but the effect is presumed to be due to the above-described island structure.
Furthermore, the excellent solvent resistance obtained by the present invention can be obtained by highly crosslinking the degree of crosslinking at the glass transition temperature of the present invention within the elastic modulus range of the present invention.
Moreover, the urethane cross-linking of the present invention also has an effect of low shrinkage at the time of curing, which could not be predicted by the prior art.
以下、本発明を実施例で具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
諸特性は以下のようにして測定した。
(ガラス転移温度:Tg)
示差走査熱量測定計(DSC)を用いて、-50℃から200℃まで昇温速度10℃/分の条件で測定し、JIS K7121の規定に準拠して求めた。
(貯蔵弾性率)
レオメーターを用いて、正弦振動数1Hz、-30℃から150℃まで昇温速度3℃/分の条件で動的粘弾性測定を行った際の貯蔵弾性率(G’)を求めた。 Various characteristics were measured as follows.
(Glass transition temperature: Tg)
Using a differential scanning calorimeter (DSC), the temperature was measured from −50 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min, and determined according to the provisions of JIS K7121.
(Storage modulus)
Using a rheometer, the storage elastic modulus (G ′) when dynamic viscoelasticity measurement was performed under the conditions of a sinusoidal frequency of 1 Hz and a temperature increase rate of 3 ° C./min from −30 ° C. to 150 ° C. was obtained.
(ガラス転移温度:Tg)
示差走査熱量測定計(DSC)を用いて、-50℃から200℃まで昇温速度10℃/分の条件で測定し、JIS K7121の規定に準拠して求めた。
(貯蔵弾性率)
レオメーターを用いて、正弦振動数1Hz、-30℃から150℃まで昇温速度3℃/分の条件で動的粘弾性測定を行った際の貯蔵弾性率(G’)を求めた。 Various characteristics were measured as follows.
(Glass transition temperature: Tg)
Using a differential scanning calorimeter (DSC), the temperature was measured from −50 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min, and determined according to the provisions of JIS K7121.
(Storage modulus)
Using a rheometer, the storage elastic modulus (G ′) when dynamic viscoelasticity measurement was performed under the conditions of a sinusoidal frequency of 1 Hz and a temperature increase rate of 3 ° C./min from −30 ° C. to 150 ° C. was obtained.
(接着性)
ABS基材上に作成した塗膜を、JIS K 5600-5-6付着性(クロスカット法)の方法に準拠し、1mm方眼25個、セロテープ剥離テストを行った。このときに塗膜がはく離せずに接着している碁盤目の数を評価した。
5:剥がれ無し
4:5%以内の剥がれ
3:5%以上15%未満の剥がれ
2:15%以35%未満の剥がれ
1:35%以上の剥がれ
合格水準 4以上 (Adhesiveness)
In accordance with JIS K 5600-5-6 adhesion (cross-cut method), a coating film prepared on an ABS substrate was subjected to a cellophane peeling test using 25 1 mm squares. At this time, the number of grids adhered without peeling off the coating film was evaluated.
5: No peeling 4: Peeling within 5% 3: Peeling between 5% and less than 15% 2: Peeling between 15% and less than 35% 1: Peeling at 35% or more Passing level: 4 or more
ABS基材上に作成した塗膜を、JIS K 5600-5-6付着性(クロスカット法)の方法に準拠し、1mm方眼25個、セロテープ剥離テストを行った。このときに塗膜がはく離せずに接着している碁盤目の数を評価した。
5:剥がれ無し
4:5%以内の剥がれ
3:5%以上15%未満の剥がれ
2:15%以35%未満の剥がれ
1:35%以上の剥がれ
合格水準 4以上 (Adhesiveness)
In accordance with JIS K 5600-5-6 adhesion (cross-cut method), a coating film prepared on an ABS substrate was subjected to a cellophane peeling test using 25 1 mm squares. At this time, the number of grids adhered without peeling off the coating film was evaluated.
5: No peeling 4: Peeling within 5% 3: Peeling between 5% and less than 15% 2: Peeling between 15% and less than 35% 1: Peeling at 35% or more Passing level: 4 or more
(透明性)
ガラス基材上に作成した10μmの塗膜を剥離し、該塗膜について紫外可視分光光度計(日本分光社製 V-570)を用いてヘイズ値を測定した。
5: 0.5%未満
4: 0.5%以上0.8%未満
3: 0.8%以上1.0%未満
2: 1.0%以上2.0%未満
1: 2.0%以上
合格水準 3以上 (transparency)
The 10 μm coating film prepared on the glass substrate was peeled, and the haze value of the coating film was measured using an ultraviolet-visible spectrophotometer (V-570, manufactured by JASCO Corporation).
5: Less than 0.5% 4: 0.5% or more and less than 0.8% 3: 0.8% or more and less than 1.0% 2: 1.0% or more and less than 2.0% 1: 2.0% or more Pass level 3 or higher
ガラス基材上に作成した10μmの塗膜を剥離し、該塗膜について紫外可視分光光度計(日本分光社製 V-570)を用いてヘイズ値を測定した。
5: 0.5%未満
4: 0.5%以上0.8%未満
3: 0.8%以上1.0%未満
2: 1.0%以上2.0%未満
1: 2.0%以上
合格水準 3以上 (transparency)
The 10 μm coating film prepared on the glass substrate was peeled, and the haze value of the coating film was measured using an ultraviolet-visible spectrophotometer (V-570, manufactured by JASCO Corporation).
5: Less than 0.5% 4: 0.5% or more and less than 0.8% 3: 0.8% or more and less than 1.0% 2: 1.0% or more and less than 2.0% 1: 2.0% or more Pass level 3 or higher
(耐溶剤性)
ABS基材上に作成した塗膜に対し、エタノールで浸透させたネルを用
いて、荷重500g重で200往復のラビング摩耗評価を行った。この時の塗膜の状態を評価した。
5:跡なし
4:若干の膨潤跡あり
3:若干の傷跡あり
2:傷跡大きい
1:基材露出
合格水準 4以上 (Solvent resistance)
A rubbing wear evaluation of 200 reciprocations with a load of 500 g was performed on a coating film prepared on an ABS base material using a nell that had been infiltrated with ethanol. The state of the coating film at this time was evaluated.
5: no trace 4: some swelling trace 3: some scar 2: large scar 1: substrate exposure pass level 4 or more
ABS基材上に作成した塗膜に対し、エタノールで浸透させたネルを用
いて、荷重500g重で200往復のラビング摩耗評価を行った。この時の塗膜の状態を評価した。
5:跡なし
4:若干の膨潤跡あり
3:若干の傷跡あり
2:傷跡大きい
1:基材露出
合格水準 4以上 (Solvent resistance)
A rubbing wear evaluation of 200 reciprocations with a load of 500 g was performed on a coating film prepared on an ABS base material using a nell that had been infiltrated with ethanol. The state of the coating film at this time was evaluated.
5: no trace 4: some swelling trace 3: some scar 2: large scar 1: substrate exposure pass level 4 or more
(耐カール性)
10cm×10cmのサイズの厚さ100μmのPETフィルム基材上に作成した塗膜に対し、水平面に置いた際の4隅のカール高さを測定し、下記の基準により判定した。
5:5mm未満
4:5mm以上10mm未満
3:10mm以上30mm未満
2:30mm以上50mm未満
1:50mm以上
合格水準 3以上 (Curl resistance)
The curl height at the four corners when placed on a horizontal surface was measured for a coating film prepared on a PET film substrate having a size of 10 cm × 10 cm and a thickness of 100 μm, and was determined according to the following criteria.
5: Less than 5 mm 4: 5 mm or more but less than 10 mm 3: 10 mm or more but less than 30 mm 2: 30 mm or more but less than 50 mm 1: 50 mm or more Passing level 3 or more
10cm×10cmのサイズの厚さ100μmのPETフィルム基材上に作成した塗膜に対し、水平面に置いた際の4隅のカール高さを測定し、下記の基準により判定した。
5:5mm未満
4:5mm以上10mm未満
3:10mm以上30mm未満
2:30mm以上50mm未満
1:50mm以上
合格水準 3以上 (Curl resistance)
The curl height at the four corners when placed on a horizontal surface was measured for a coating film prepared on a PET film substrate having a size of 10 cm × 10 cm and a thickness of 100 μm, and was determined according to the following criteria.
5: Less than 5 mm 4: 5 mm or more but less than 10 mm 3: 10 mm or more but less than 30 mm 2: 30 mm or more but less than 50 mm 1: 50 mm or more Passing level 3 or more
(耐ブロッキング性)
ABS基材上に作成した塗膜を200mm×200mmにカットし、その塗膜の上にポリカーボネート系基材を重ね合わせ、さらにその上に荷重4kg重を乗せ、25℃で1時間静置した後、剥離した時の状態を確認した。
5:ブロッキングなし
4:わずかにブロッキングする
3:剥離に力を要しない程度にブロッキングする
2:剥離にわずかに力を要する程度にブロッキングする
1:剥離に力を要する程度にブロッキングする
合格水準 3以上 (Blocking resistance)
After the coating film prepared on the ABS base material is cut into 200 mm × 200 mm, a polycarbonate base material is overlaid on the coating film, and a load of 4 kg is further placed thereon, and after standing at 25 ° C. for 1 hour. The state when peeled was confirmed.
5: No blocking 4: Blocking slightly 3: Blocking to the extent that no force is required for peeling 2: Blocking to the extent that slightly force is required for peeling 1: Passing level of blocking to the extent that force is required for peeling 3 or more
ABS基材上に作成した塗膜を200mm×200mmにカットし、その塗膜の上にポリカーボネート系基材を重ね合わせ、さらにその上に荷重4kg重を乗せ、25℃で1時間静置した後、剥離した時の状態を確認した。
5:ブロッキングなし
4:わずかにブロッキングする
3:剥離に力を要しない程度にブロッキングする
2:剥離にわずかに力を要する程度にブロッキングする
1:剥離に力を要する程度にブロッキングする
合格水準 3以上 (Blocking resistance)
After the coating film prepared on the ABS base material is cut into 200 mm × 200 mm, a polycarbonate base material is overlaid on the coating film, and a load of 4 kg is further placed thereon, and after standing at 25 ° C. for 1 hour. The state when peeled was confirmed.
5: No blocking 4: Blocking slightly 3: Blocking to the extent that no force is required for peeling 2: Blocking to the extent that slightly force is required for peeling 1: Passing level of blocking to the extent that force is required for peeling 3 or more
(伸び性)
ガラス基材上に作成した1mmの塗膜を剥離し、25mm×100mmにカットし、万能引張試験機(オリエンテック社製 STM-T-50BP)を用いて塗膜を伸長して、塗膜が破れた時の伸び率を求めた。
5:伸び率100%以上
4:伸び率50%以上100%未満
3:伸び率30%以上50%未満
2:伸び率5%以上30%未満
1:伸び率5%未満
合格水準 3以上 (Elongation)
The 1 mm coating film created on the glass substrate was peeled, cut to 25 mm × 100 mm, and stretched using a universal tensile tester (Orientec STM-T-50BP). The elongation when it was torn was determined.
5: Elongation rate 100% or more 4: Elongation rate 50% or more and less than 100% 3: Elongation rate 30% or more and less than 50% 2: Elongation rate 5% or more and less than 30% 1: Elongation rate 5% or less Pass level 3 or more
ガラス基材上に作成した1mmの塗膜を剥離し、25mm×100mmにカットし、万能引張試験機(オリエンテック社製 STM-T-50BP)を用いて塗膜を伸長して、塗膜が破れた時の伸び率を求めた。
5:伸び率100%以上
4:伸び率50%以上100%未満
3:伸び率30%以上50%未満
2:伸び率5%以上30%未満
1:伸び率5%未満
合格水準 3以上 (Elongation)
The 1 mm coating film created on the glass substrate was peeled, cut to 25 mm × 100 mm, and stretched using a universal tensile tester (Orientec STM-T-50BP). The elongation when it was torn was determined.
5: Elongation rate 100% or more 4: Elongation rate 50% or more and less than 100% 3: Elongation rate 30% or more and less than 50% 2: Elongation rate 5% or more and less than 30% 1: Elongation rate 5% or less Pass level 3 or more
(耐擦傷性)
ヘイズ値が1.0%であり透明で厚みが0.5mmであるポリカーボネート基材上に作成した塗膜に対し、#0000のスチールウールを用いて、荷重500g重で20往復のラビング摩耗評価を行った。このときの塗布物のヘイズ値を測定した。
5:当該ポリカーボネート基材のヘイズ値+0.2%以内
4:当該ポリカーボネート基材のヘイズ値+0.2%以上0.5%未満
3:当該ポリカーボネート基材のヘイズ値+0.5%以上1.0%未満
2:当該ポリカーボネート基材のヘイズ値+1.0%以上5.0%未満
1:当該ポリカーボネート基材のヘイズ値+5.0%以上
合格水準 3以上 (Abrasion resistance)
A rubbing wear evaluation of 20 reciprocations at a load of 500 g using a steel wool of # 0000 is applied to a coating film prepared on a polycarbonate substrate having a haze value of 1.0% and a thickness of 0.5 mm. went. The haze value of the coated material at this time was measured.
5: Haze value of the polycarbonate substrate + within 0.2% 4: Haze value of the polycarbonate substrate + 0.2% to less than 0.5% 3: Haze value of the polycarbonate substrate + 0.5% to 1.0 Less than% 2: Haze value of the polycarbonate substrate + 1.0% or more and less than 5.0% 1: Haze value of the polycarbonate substrate + 5.0% or more Pass level 3 or more
ヘイズ値が1.0%であり透明で厚みが0.5mmであるポリカーボネート基材上に作成した塗膜に対し、#0000のスチールウールを用いて、荷重500g重で20往復のラビング摩耗評価を行った。このときの塗布物のヘイズ値を測定した。
5:当該ポリカーボネート基材のヘイズ値+0.2%以内
4:当該ポリカーボネート基材のヘイズ値+0.2%以上0.5%未満
3:当該ポリカーボネート基材のヘイズ値+0.5%以上1.0%未満
2:当該ポリカーボネート基材のヘイズ値+1.0%以上5.0%未満
1:当該ポリカーボネート基材のヘイズ値+5.0%以上
合格水準 3以上 (Abrasion resistance)
A rubbing wear evaluation of 20 reciprocations at a load of 500 g using a steel wool of # 0000 is applied to a coating film prepared on a polycarbonate substrate having a haze value of 1.0% and a thickness of 0.5 mm. went. The haze value of the coated material at this time was measured.
5: Haze value of the polycarbonate substrate + within 0.2% 4: Haze value of the polycarbonate substrate + 0.2% to less than 0.5% 3: Haze value of the polycarbonate substrate + 0.5% to 1.0 Less than% 2: Haze value of the polycarbonate substrate + 1.0% or more and less than 5.0% 1: Haze value of the polycarbonate substrate + 5.0% or more Pass level 3 or more
<使用原料>
ポリオール(A)成分として、以下に示す組成物を用いた。
・a-1:ポリカーボネートジオール(旭化成ケミカルズ株式会社製 デュ
ラノール T-5650E:分子量500 水酸基価225)
・a-2:ポリカーボネートジオール(旭化成ケミカルズ株式会社製 デュ
ラノール T-5652:分子量2000 水酸基価56)
・a-3:ポリカプロラクトントリオール(株式会社ダイセル製 プラクセ
ル 308:分子量850 水酸基価195)
・a-4:アクリルポリオール(ワニス)(亜細亜化学工業製 エクセロー
ルPX41-11:分子量10,000 水酸基価40)
・a-5:アクリルポリオール(ワニス)(亜細亜化学工業性 エクセロー
ル450:分子量11,000 水酸基価24) <Raw materials>
The following composition was used as the polyol (A) component.
A-1: Polycarbonate diol (Duranol T-5650E manufactured by Asahi Kasei Chemicals Corporation: molecular weight 500, hydroxyl value 225)
A-2: Polycarbonate diol (Duranol T-5562 manufactured by Asahi Kasei Chemicals Corporation: molecular weight 2000, hydroxyl value 56)
A-3: polycaprolactone triol (Praccel 308: molecular weight 850, hydroxyl value 195 manufactured by Daicel Corporation)
A-4: Acrylic polyol (varnish) (Excell PX41-11 made by Asia Chemical Industries, molecular weight 10,000, hydroxyl value 40)
A-5: acrylic polyol (varnish) (Asia Chemical Industrial Excell 450: molecular weight 11,000, hydroxyl value 24)
ポリオール(A)成分として、以下に示す組成物を用いた。
・a-1:ポリカーボネートジオール(旭化成ケミカルズ株式会社製 デュ
ラノール T-5650E:分子量500 水酸基価225)
・a-2:ポリカーボネートジオール(旭化成ケミカルズ株式会社製 デュ
ラノール T-5652:分子量2000 水酸基価56)
・a-3:ポリカプロラクトントリオール(株式会社ダイセル製 プラクセ
ル 308:分子量850 水酸基価195)
・a-4:アクリルポリオール(ワニス)(亜細亜化学工業製 エクセロー
ルPX41-11:分子量10,000 水酸基価40)
・a-5:アクリルポリオール(ワニス)(亜細亜化学工業性 エクセロー
ル450:分子量11,000 水酸基価24) <Raw materials>
The following composition was used as the polyol (A) component.
A-1: Polycarbonate diol (Duranol T-5650E manufactured by Asahi Kasei Chemicals Corporation: molecular weight 500, hydroxyl value 225)
A-2: Polycarbonate diol (Duranol T-5562 manufactured by Asahi Kasei Chemicals Corporation: molecular weight 2000, hydroxyl value 56)
A-3: polycaprolactone triol (Praccel 308: molecular weight 850, hydroxyl value 195 manufactured by Daicel Corporation)
A-4: Acrylic polyol (varnish) (Excell PX41-11 made by Asia Chemical Industries, molecular weight 10,000, hydroxyl value 40)
A-5: acrylic polyol (varnish) (Asia Chemical Industrial Excell 450: molecular weight 11,000, hydroxyl value 24)
イソシアネート化合物(B)成分として、以下に示す組成物を用いた。
・b―1:XDI系ポリイソシアネート(三井化学株式会社製 タケネート
D-110N)
・b―2:IPDI系ポリイソリアネート(旭化成ケミカル株式会社製 デ
ュラネート MHG-80B)
・b―3:HDI系ポリイソリアネート(旭化成ケミカル株式会社製 デュ
ラネート E402-80B)
・b―4:MDI系ポリイソリアネート(BASF INOAC ポリウレ
タン株式会社 ルプラネート M20S) The composition shown below was used as an isocyanate compound (B) component.
B-1: XDI polyisocyanate (Takenate D-110N manufactured by Mitsui Chemicals, Inc.)
B-2: IPDI polyisocyanate (Duranate MHG-80B manufactured by Asahi Kasei Chemical Co., Ltd.)
B-3: HDI polyisocyanate (Duranate E402-80B manufactured by Asahi Kasei Chemical Co., Ltd.)
B-4: MDI-based polyisocyanate (BASF INOAC Polyuretan Corporation Lupranate M20S)
・b―1:XDI系ポリイソシアネート(三井化学株式会社製 タケネート
D-110N)
・b―2:IPDI系ポリイソリアネート(旭化成ケミカル株式会社製 デ
ュラネート MHG-80B)
・b―3:HDI系ポリイソリアネート(旭化成ケミカル株式会社製 デュ
ラネート E402-80B)
・b―4:MDI系ポリイソリアネート(BASF INOAC ポリウレ
タン株式会社 ルプラネート M20S) The composition shown below was used as an isocyanate compound (B) component.
B-1: XDI polyisocyanate (Takenate D-110N manufactured by Mitsui Chemicals, Inc.)
B-2: IPDI polyisocyanate (Duranate MHG-80B manufactured by Asahi Kasei Chemical Co., Ltd.)
B-3: HDI polyisocyanate (Duranate E402-80B manufactured by Asahi Kasei Chemical Co., Ltd.)
B-4: MDI-based polyisocyanate (BASF INOAC Polyuretan Corporation Lupranate M20S)
その他の成分(C)成分として、以下に示す組成物を用いた。
・c―1:ウレタンアクリレート(ダイセル・オルネクス株式会社製 EB
ECRYL8402)
・c―2:アクリレートモノマー(共栄社化学株式会社製 ライトアクリレ
ートDPE-6A)
・c―3:ウレタン変性ポリエステル樹脂(東洋紡株式会社製 バイロンU
R-6100)
・c―4:セルロールアセテートブチレート(EASTMAN CHEMI
CAL製 CAB-381-0.5)
・c-5:シリカ(水澤化学工業株式会社製 MIZUKASIL P-5
26)
添加剤(D)成分として、以下に示す組成物を用いた。
・d―1:レベリング剤(BYK社製 BYK-333)
・d―2:光重合開始剤(BASF社製 イルガキュア184) The following composition was used as the other component (C).
C-1: Urethane acrylate (Daicel Ornex Co., Ltd. EB
ECRYL8402)
C-2: Acrylate monomer (Kyoeisha Chemical Co., Ltd. Light acrylate DPE-6A)
C-3: Urethane-modified polyester resin (Byron U manufactured by Toyobo Co., Ltd.)
R-6100)
C-4: Cellulose acetate butyrate (EASTMAN CHEMI
CAB-381-0.5 manufactured by CAL)
C-5: Silica (MIZUKASIL P-5 manufactured by Mizusawa Chemical Co., Ltd.)
26)
The composition shown below was used as an additive (D) component.
D-1: Leveling agent (BYK-333 manufactured by BYK)
D-2: Photopolymerization initiator (Irgacure 184 manufactured by BASF)
・c―1:ウレタンアクリレート(ダイセル・オルネクス株式会社製 EB
ECRYL8402)
・c―2:アクリレートモノマー(共栄社化学株式会社製 ライトアクリレ
ートDPE-6A)
・c―3:ウレタン変性ポリエステル樹脂(東洋紡株式会社製 バイロンU
R-6100)
・c―4:セルロールアセテートブチレート(EASTMAN CHEMI
CAL製 CAB-381-0.5)
・c-5:シリカ(水澤化学工業株式会社製 MIZUKASIL P-5
26)
添加剤(D)成分として、以下に示す組成物を用いた。
・d―1:レベリング剤(BYK社製 BYK-333)
・d―2:光重合開始剤(BASF社製 イルガキュア184) The following composition was used as the other component (C).
C-1: Urethane acrylate (Daicel Ornex Co., Ltd. EB
ECRYL8402)
C-2: Acrylate monomer (Kyoeisha Chemical Co., Ltd. Light acrylate DPE-6A)
C-3: Urethane-modified polyester resin (Byron U manufactured by Toyobo Co., Ltd.)
R-6100)
C-4: Cellulose acetate butyrate (EASTMAN CHEMI
CAB-381-0.5 manufactured by CAL)
C-5: Silica (MIZUKASIL P-5 manufactured by Mizusawa Chemical Co., Ltd.)
26)
The composition shown below was used as an additive (D) component.
D-1: Leveling agent (BYK-333 manufactured by BYK)
D-2: Photopolymerization initiator (Irgacure 184 manufactured by BASF)
(実施例1)
<架橋性樹脂組成物の製造>
ポリカーボネートジオール(旭化成ケミカルズ株式会社製 デュラノール T-5650E)60質量部、エチレングリコールモノブチルエーテルアセテート(大伸化学株式会社製 ブチルセロソルブアセテート)39.5質量部、レベリング剤(BYK社製 BYK-333)0.5質量部、及びXD
I系ポリイソシアネート(三井化学株式会社製 タケネートD-110N)88質量部を撹拌混合して均一化し、架橋性樹脂組成物を得た。
次いで、各種基材に、乾燥後膜厚が10μmになるように上記架橋性樹脂
組成物をバーコーターで塗布し、100℃60分の条件で乾燥させて塗膜を形成し、これを試験片とした。
ただし、伸び性試験については、膜厚1mmの塗膜を形成した。
得られた試験片について上記に示す評価を行い、その試験結果を表1に示した。 Example 1
<Manufacture of crosslinkable resin composition>
60 parts by mass of polycarbonate diol (Duranor T-5650E manufactured by Asahi Kasei Chemicals Corporation), 39.5 parts by mass of ethylene glycol monobutyl ether acetate (butyl cellosolve acetate manufactured by Daishin Chemical Co., Ltd.), leveling agent (BYK-333 manufactured by BYK) 5 parts by mass and XD
88 parts by mass of I-based polyisocyanate (Takenate D-110N manufactured by Mitsui Chemicals, Inc.) was stirred and mixed to obtain a crosslinkable resin composition.
Next, the crosslinkable resin composition was applied to various substrates with a bar coater so that the film thickness after drying was 10 μm, and dried at 100 ° C. for 60 minutes to form a coating film. It was.
However, for the elongation test, a coating film having a thickness of 1 mm was formed.
The obtained test pieces were evaluated as described above, and the test results are shown in Table 1.
<架橋性樹脂組成物の製造>
ポリカーボネートジオール(旭化成ケミカルズ株式会社製 デュラノール T-5650E)60質量部、エチレングリコールモノブチルエーテルアセテート(大伸化学株式会社製 ブチルセロソルブアセテート)39.5質量部、レベリング剤(BYK社製 BYK-333)0.5質量部、及びXD
I系ポリイソシアネート(三井化学株式会社製 タケネートD-110N)88質量部を撹拌混合して均一化し、架橋性樹脂組成物を得た。
次いで、各種基材に、乾燥後膜厚が10μmになるように上記架橋性樹脂
組成物をバーコーターで塗布し、100℃60分の条件で乾燥させて塗膜を形成し、これを試験片とした。
ただし、伸び性試験については、膜厚1mmの塗膜を形成した。
得られた試験片について上記に示す評価を行い、その試験結果を表1に示した。 Example 1
<Manufacture of crosslinkable resin composition>
60 parts by mass of polycarbonate diol (Duranor T-5650E manufactured by Asahi Kasei Chemicals Corporation), 39.5 parts by mass of ethylene glycol monobutyl ether acetate (butyl cellosolve acetate manufactured by Daishin Chemical Co., Ltd.), leveling agent (BYK-333 manufactured by BYK) 5 parts by mass and XD
88 parts by mass of I-based polyisocyanate (Takenate D-110N manufactured by Mitsui Chemicals, Inc.) was stirred and mixed to obtain a crosslinkable resin composition.
Next, the crosslinkable resin composition was applied to various substrates with a bar coater so that the film thickness after drying was 10 μm, and dried at 100 ° C. for 60 minutes to form a coating film. It was.
However, for the elongation test, a coating film having a thickness of 1 mm was formed.
The obtained test pieces were evaluated as described above, and the test results are shown in Table 1.
(実施例2~8)
実施例1において、架橋性樹脂組成物の種類、及びそれらの含有量を変更して架橋塗膜を作成した。実施例8については、乾燥を60℃5分の条件で予備乾燥させた後、高圧水銀ランプで800mJ/cm2照射させ塗膜を形成した。得られた各試験片について上記に示す評価を行い、その試験結果を表1に示した。 (Examples 2 to 8)
In Example 1, the kind of crosslinkable resin composition and those contents were changed, and the crosslinked coating film was created. For Example 8, the drying was preliminarily dried at 60 ° C. for 5 minutes, and then irradiated with 800 mJ / cm 2 with a high-pressure mercury lamp to form a coating film. The obtained test pieces were evaluated as described above, and the test results are shown in Table 1.
実施例1において、架橋性樹脂組成物の種類、及びそれらの含有量を変更して架橋塗膜を作成した。実施例8については、乾燥を60℃5分の条件で予備乾燥させた後、高圧水銀ランプで800mJ/cm2照射させ塗膜を形成した。得られた各試験片について上記に示す評価を行い、その試験結果を表1に示した。 (Examples 2 to 8)
In Example 1, the kind of crosslinkable resin composition and those contents were changed, and the crosslinked coating film was created. For Example 8, the drying was preliminarily dried at 60 ° C. for 5 minutes, and then irradiated with 800 mJ / cm 2 with a high-pressure mercury lamp to form a coating film. The obtained test pieces were evaluated as described above, and the test results are shown in Table 1.
(比較例1~3)
実施例1において、架橋性樹脂組成物の種類、及びそれらの含有量を変更
して架橋塗膜を作成した。比較例3については、乾燥を60℃5分の条件で予備乾燥させた後、高圧水銀ランプで800mJ/cm2照射させ塗膜を形成した。得られた各試験片について、上記に示す評価を行い、その試験結果を表1に示した。 (Comparative Examples 1 to 3)
In Example 1, the kind of crosslinkable resin composition and those contents were changed, and the crosslinked coating film was created. For Comparative Example 3, the coating was preliminarily dried at 60 ° C. for 5 minutes and then irradiated with 800 mJ / cm 2 with a high-pressure mercury lamp to form a coating film. About each obtained test piece, evaluation shown above was performed and the test result was shown in Table 1.
実施例1において、架橋性樹脂組成物の種類、及びそれらの含有量を変更
して架橋塗膜を作成した。比較例3については、乾燥を60℃5分の条件で予備乾燥させた後、高圧水銀ランプで800mJ/cm2照射させ塗膜を形成した。得られた各試験片について、上記に示す評価を行い、その試験結果を表1に示した。 (Comparative Examples 1 to 3)
In Example 1, the kind of crosslinkable resin composition and those contents were changed, and the crosslinked coating film was created. For Comparative Example 3, the coating was preliminarily dried at 60 ° C. for 5 minutes and then irradiated with 800 mJ / cm 2 with a high-pressure mercury lamp to form a coating film. About each obtained test piece, evaluation shown above was performed and the test result was shown in Table 1.
下記表1に示すように、実施例1~8に係る架橋塗膜は耐擦傷性と伸び性を両立するとともに、耐溶剤性、耐カール性などの諸物性に優れている。また、耐ブロッキング性は塗膜のTgとの関連性も見られ、Tgが高い程良好となる傾向が見られる。耐擦傷性による自己修復性能については、架橋塗膜のTgが耐擦傷性の試験温度より低い場合は、試験直後に傷が消えるが、架橋塗膜のTgが耐擦傷性の試験温度より高い場合は、試験後に架橋塗膜のTgとなる温度まで加温することで傷が消えるものであった。
これに対して、比較例1は耐擦傷性、耐溶剤性が劣るものであった。比較例2は耐擦傷性が良好であるものの、耐ブロッキング性の低下が著しいものであった。比較例3は耐擦傷性が良好であるものの、伸び性、耐カール性の低下が著しいものであった。 As shown in Table 1 below, the crosslinked coating films according to Examples 1 to 8 have both scratch resistance and elongation properties, and are excellent in various physical properties such as solvent resistance and curl resistance. Moreover, the anti-blocking property also has a relationship with the Tg of the coating film, and a tendency that the higher the Tg is, the better it is. For self-healing performance due to scratch resistance, if the Tg of the crosslinked coating is lower than the test temperature for scratch resistance, the scratches disappear immediately after the test, but the Tg of the crosslinked coating is higher than the test temperature for scratch resistance. In the test, the scratches disappeared by heating to a temperature at which the Tg of the crosslinked coating film was reached after the test.
In contrast, Comparative Example 1 was inferior in scratch resistance and solvent resistance. In Comparative Example 2, although the scratch resistance was good, the decrease in blocking resistance was remarkable. In Comparative Example 3, although the scratch resistance was good, the elongation and curl resistance were significantly reduced.
これに対して、比較例1は耐擦傷性、耐溶剤性が劣るものであった。比較例2は耐擦傷性が良好であるものの、耐ブロッキング性の低下が著しいものであった。比較例3は耐擦傷性が良好であるものの、伸び性、耐カール性の低下が著しいものであった。 As shown in Table 1 below, the crosslinked coating films according to Examples 1 to 8 have both scratch resistance and elongation properties, and are excellent in various physical properties such as solvent resistance and curl resistance. Moreover, the anti-blocking property also has a relationship with the Tg of the coating film, and a tendency that the higher the Tg is, the better it is. For self-healing performance due to scratch resistance, if the Tg of the crosslinked coating is lower than the test temperature for scratch resistance, the scratches disappear immediately after the test, but the Tg of the crosslinked coating is higher than the test temperature for scratch resistance. In the test, the scratches disappeared by heating to a temperature at which the Tg of the crosslinked coating film was reached after the test.
In contrast, Comparative Example 1 was inferior in scratch resistance and solvent resistance. In Comparative Example 2, although the scratch resistance was good, the decrease in blocking resistance was remarkable. In Comparative Example 3, although the scratch resistance was good, the elongation and curl resistance were significantly reduced.
Claims (6)
- 架橋性樹脂組成物を架橋することによって得られる架橋塗膜であって、
前記架橋塗膜のガラス転移温度が-30~60℃であり、
動的粘弾性試験における貯蔵弾性率が、-30~-10℃の範囲で0.1~1,000MPaであり、80~150℃の範囲で0.01~5MPaであり、
且つ伸び率が25℃の雰囲気で30%以上であることを特徴とする架橋塗膜。 A crosslinked coating film obtained by crosslinking a crosslinkable resin composition,
The crosslinked coating film has a glass transition temperature of −30 to 60 ° C .;
The storage elastic modulus in the dynamic viscoelasticity test is 0.1 to 1,000 MPa in the range of −30 to −10 ° C., 0.01 to 5 MPa in the range of 80 to 150 ° C.,
A cross-linked coating film characterized by having an elongation of 30% or more in an atmosphere at 25 ° C. - 前記架橋塗膜での架橋方法が、ウレタン架橋、エン/チオール反応架橋、カチオン架橋、ラジカル重合架橋、メラミン架橋から選ばれる1種または2種以上でありことを特徴とする請求項1に記載の架橋塗膜。 The crosslinking method in the crosslinked coating film is one type or two or more types selected from urethane crosslinking, ene / thiol reaction crosslinking, cationic crosslinking, radical polymerization crosslinking, and melamine crosslinking. Cross-linked coating.
- 前記架橋塗膜がポリオール(A)とポリイソシアネート化合物(B)とを反応させて得られる架橋塗膜であって、ポリオール(A)の数平均分子量(Mn)が500~10,000の範囲であり、水酸基価が50~250(mmol/g)であり、ポリイソシアネート化合物(B)中のイソシアネート基のモル数/ポリオール (A)中の水酸基
のモル数が0.7~1.5であることを特徴とする請求項1又は2に記載の架橋塗膜。 The crosslinked coating film is a crosslinked coating film obtained by reacting the polyol (A) and the polyisocyanate compound (B), and the number average molecular weight (Mn) of the polyol (A) is in the range of 500 to 10,000. Yes, the hydroxyl value is 50 to 250 (mmol / g), the number of moles of isocyanate group in the polyisocyanate compound (B) / the number of moles of hydroxyl group in the polyol (A) is 0.7 to 1.5. The crosslinked coating film according to claim 1 or 2, wherein - 前記架橋塗膜がクリアー塗膜であり、ヘイズ値が1.0%以下であることを特徴とする請求項1~3のいずれかに記載の架橋塗膜。 The crosslinked coating film according to any one of claims 1 to 3, wherein the crosslinked coating film is a clear coating film and has a haze value of 1.0% or less.
- 請求項1~4のいずれかに記載の架橋塗膜と基材とからなる積層体であって、前記基材がポリカーボネート樹脂、ポリエチレンテレフタラート樹脂、ABS樹脂、ポリプロピレン樹脂、イミド樹脂、ガラス、塩化ビニル樹脂のいずれかで形成され、前記架橋塗膜が前記基材に300μm以下の厚さで塗布されたものであることを特徴とする架橋
塗膜層を有する積層体。 A laminate comprising the crosslinked coating film according to any one of claims 1 to 4 and a substrate, wherein the substrate is a polycarbonate resin, a polyethylene terephthalate resin, an ABS resin, a polypropylene resin, an imide resin, glass, chloride A laminate having a crosslinked coating layer, which is formed of any one of vinyl resins, and the crosslinked coating layer is applied to the substrate with a thickness of 300 μm or less. - ガラス転移温度が-30~60℃であり、動的粘弾性試験における貯蔵弾性率が-30~-10℃の範囲で0.1~1,000MPaであり、80~150℃の範囲で0.01~5MPaであり、且つ伸び率が25℃の雰囲気で30%以上である架橋塗膜を形成する架橋性樹脂組成物であって、
該架橋性樹脂組成物が、ポリオール(A)とポリイソシアネート化合物(B)とを含み、
前記ポリオール(A)は、数平均分子量(Mn)が500~10,000であり、水酸基価が50~250(mmol/g)であり、
ポリイソシアネート化合物(B)中のイソシアネート基のモル数/
ポリオール (A)中の水酸基のモル数が0.7~1.5であることを特徴とする架橋性樹脂組成物。 The glass transition temperature is −30 to 60 ° C., and the storage elastic modulus in the dynamic viscoelasticity test is 0.1 to 1,000 MPa in the range of −30 to −10 ° C., and is 0.00 in the range of 80 to 150 ° C. A crosslinkable resin composition that forms a crosslinked coating film having an elongation of from 30 to 30% in an atmosphere having an elongation of 25 ° C. of 01 to 5 MPa,
The crosslinkable resin composition contains a polyol (A) and a polyisocyanate compound (B),
The polyol (A) has a number average molecular weight (Mn) of 500 to 10,000, a hydroxyl value of 50 to 250 (mmol / g),
Number of moles of isocyanate group in the polyisocyanate compound (B) /
A crosslinkable resin composition wherein the number of moles of hydroxyl groups in the polyol (A) is 0.7 to 1.5.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/077232 WO2017056141A1 (en) | 2015-09-28 | 2015-09-28 | Crosslinked coating film having scratch resistance and flexibility, and resin composition |
CN201580001051.9A CN108291113A (en) | 2015-09-28 | 2015-09-28 | Crosslinking film and resin combination with marresistance and flexibility |
TW104136040A TW201712056A (en) | 2015-09-28 | 2015-11-02 | Crosslinked coating film having scratch resistance and flexibility, and resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/077232 WO2017056141A1 (en) | 2015-09-28 | 2015-09-28 | Crosslinked coating film having scratch resistance and flexibility, and resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017056141A1 true WO2017056141A1 (en) | 2017-04-06 |
Family
ID=58422890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/077232 WO2017056141A1 (en) | 2015-09-28 | 2015-09-28 | Crosslinked coating film having scratch resistance and flexibility, and resin composition |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN108291113A (en) |
TW (1) | TW201712056A (en) |
WO (1) | WO2017056141A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019043990A (en) * | 2017-08-30 | 2019-03-22 | ナトコ株式会社 | Coating composition, coated film, and article with the coated film |
WO2019188574A1 (en) * | 2018-03-30 | 2019-10-03 | 大日本塗料株式会社 | Coated body |
WO2021165381A1 (en) * | 2020-02-18 | 2021-08-26 | Röhm Gmbh | Acrylic multilayer foil with improved mechanical properties and a high weathering resistance |
WO2021165379A1 (en) * | 2020-02-18 | 2021-08-26 | Röhm Gmbh | Acrylic multilayer foil with improved mechanical properties and a high weathering resistance |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109536058A (en) * | 2017-08-08 | 2019-03-29 | 3M中国有限公司 | A kind of wear-resistant protection film and the article protected using the film |
CN110527410B (en) * | 2019-09-09 | 2021-05-07 | 上海昱彩包装材料有限公司 | High-scratch-resistance metal packaging coating and preparation process thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010173085A (en) * | 2009-01-27 | 2010-08-12 | Lintec Corp | Printing sheet |
JP2012121985A (en) * | 2010-12-08 | 2012-06-28 | Dic Corp | Coating resin composition excellent in scratch resistance |
WO2015111709A1 (en) * | 2014-01-24 | 2015-07-30 | 関西ペイント株式会社 | Coating composition for forming coating film having impact resistance |
JP2015164974A (en) * | 2014-02-28 | 2015-09-17 | 日本カーバイド工業株式会社 | Ink and resin film having ink layer |
-
2015
- 2015-09-28 WO PCT/JP2015/077232 patent/WO2017056141A1/en active Application Filing
- 2015-09-28 CN CN201580001051.9A patent/CN108291113A/en active Pending
- 2015-11-02 TW TW104136040A patent/TW201712056A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010173085A (en) * | 2009-01-27 | 2010-08-12 | Lintec Corp | Printing sheet |
JP2012121985A (en) * | 2010-12-08 | 2012-06-28 | Dic Corp | Coating resin composition excellent in scratch resistance |
WO2015111709A1 (en) * | 2014-01-24 | 2015-07-30 | 関西ペイント株式会社 | Coating composition for forming coating film having impact resistance |
JP2015164974A (en) * | 2014-02-28 | 2015-09-17 | 日本カーバイド工業株式会社 | Ink and resin film having ink layer |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019043990A (en) * | 2017-08-30 | 2019-03-22 | ナトコ株式会社 | Coating composition, coated film, and article with the coated film |
WO2019188574A1 (en) * | 2018-03-30 | 2019-10-03 | 大日本塗料株式会社 | Coated body |
JP2019178214A (en) * | 2018-03-30 | 2019-10-17 | 大日本塗料株式会社 | Coated body |
CN111936565A (en) * | 2018-03-30 | 2020-11-13 | 大日本涂料株式会社 | Coated body |
WO2021165381A1 (en) * | 2020-02-18 | 2021-08-26 | Röhm Gmbh | Acrylic multilayer foil with improved mechanical properties and a high weathering resistance |
WO2021165379A1 (en) * | 2020-02-18 | 2021-08-26 | Röhm Gmbh | Acrylic multilayer foil with improved mechanical properties and a high weathering resistance |
US12059872B2 (en) | 2020-02-18 | 2024-08-13 | Roehm Gmbh | Acrylic multilayer foil with improved mechanical properties and a high weathering resistance |
Also Published As
Publication number | Publication date |
---|---|
CN108291113A (en) | 2018-07-17 |
TW201712056A (en) | 2017-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017056141A1 (en) | Crosslinked coating film having scratch resistance and flexibility, and resin composition | |
JP4770971B2 (en) | Easy-adhesive polyester film for optics | |
JP6815984B2 (en) | Laminated film for decoration of 3D molded products for vacuum forming, its manufacturing method and decoration method for 3D molded products | |
CN104995028B (en) | Transfer film for decoration | |
JP7311582B2 (en) | Radiation curable composition | |
JP5434568B2 (en) | Hard coat film for molding | |
WO2016080423A1 (en) | Laminate film for three-dimensional molded article decoration, method for producing same, and three-dimensional decoration method | |
CN104379621A (en) | Energy ray-curable resin composition, cured product and laminate | |
JP2010053231A (en) | Resin composition and molded product | |
JP4771022B2 (en) | Easy-adhesive polyester film for optics | |
JP5880642B2 (en) | Optical laminated polyester film | |
JP6599654B2 (en) | 3D molded product decorative laminated film for vacuum forming, 3D molded product decoration method and decorative molded body | |
JP4771021B2 (en) | Easy-adhesive polyester film for optics | |
JP2022025616A (en) | Hardened film and laminate, and manufacturing method of these | |
JP5621642B2 (en) | Easy-adhesive polyester film | |
JP2008231163A (en) | Hard coat layer forming composition, hard coat film using the same, and method for producing the same | |
JP5773042B2 (en) | Easy-adhesive polyester film | |
JP2016033175A (en) | Crosslinked coating film with scratch resistance and flexibility, and resin composition | |
KR20220119028A (en) | Laminated film for decorating three-dimensional molded products, manufacturing method thereof, and three-dimensional decorating method | |
JP7156204B2 (en) | Cured film, its production method and laminate | |
JP7369558B2 (en) | Laminated film for decorating 3D molded products | |
JP4771020B2 (en) | Easy-adhesive polyester film for optics | |
JP2022034529A (en) | Curable resin composition and laminated film | |
JP2021020414A (en) | Laminate film for decoration of three-dimensional molded article | |
JP7369559B2 (en) | Laminated film for decorating 3D molded products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15905296 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15905296 Country of ref document: EP Kind code of ref document: A1 |