WO2017051806A1 - Honeycomb filter, and method for producing honeycomb filter - Google Patents
Honeycomb filter, and method for producing honeycomb filter Download PDFInfo
- Publication number
- WO2017051806A1 WO2017051806A1 PCT/JP2016/077721 JP2016077721W WO2017051806A1 WO 2017051806 A1 WO2017051806 A1 WO 2017051806A1 JP 2016077721 W JP2016077721 W JP 2016077721W WO 2017051806 A1 WO2017051806 A1 WO 2017051806A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum
- honeycomb structure
- mass
- honeycomb filter
- channels
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/022—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
Definitions
- the present invention relates to a honeycomb filter and a method for manufacturing a honeycomb filter.
- a ceramic honeycomb filter mainly composed of cordierite is known as an engine exhaust gas filter.
- the honeycomb filter includes a porous honeycomb structure having a plurality of channels, one end of a part of the plurality of channels, and the other end of the remaining channel among the plurality of channels. A plurality of closing portions to be closed.
- Such a honeycomb filter is used by being housed in a metal can, and an inorganic fiber sheet is often interposed between the can and the filter.
- gas may leak from the gap between the can and the filter during use.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a honeycomb filter in which gas does not easily leak from a gap between a can and a filter during use.
- a honeycomb filter according to the present invention includes a porous honeycomb structure having a plurality of flow paths, One end of some of the plurality of channels, and a plurality of sealing portions for closing the other ends of the remaining channels of the plurality of channels. And
- the porosity of the porous honeycomb structure is 55 to 70%;
- the porous honeycomb structure includes cordierite as a main component,
- the average thermal expansion coefficient between 40 and 800 ° C. of the porous honeycomb structure is 1.4 ⁇ 10 ⁇ 6 to 2.1 ⁇ 10 ⁇ 6 / K.
- a method for manufacturing a honeycomb filter according to the present invention includes a step of forming a cordierite raw material including an aluminum source, a magnesium source, a silicon source, and a pore former to obtain a green honeycomb structure having a plurality of flow paths; Firing the green honeycomb structure to obtain a porous honeycomb structure; Sealing any one end of each of the plurality of flow paths of the green honeycomb structure or the porous honeycomb structure.
- the aluminum source includes at least one of alumina and kaolin and aluminum hydroxide.
- the ratio of the mass of the aluminum element contained in the aluminum hydroxide to the mass of the total aluminum element contained in the aluminum source is 15 to 95%
- the ratio of the mass of aluminum element contained in alumina to the mass of aluminum element contained in aluminum hydroxide is 0 to 0.4 or 1.0 to 5.0
- the ratio of the mass of aluminum element contained in kaolin to the mass of aluminum element contained in aluminum hydroxide is 0 to 1.1 or 1.5 to 3.5.
- a honeycomb filter that hardly leaks gas from a gap between a can and a filter during use, and a manufacturing method thereof.
- FIG. 1 is a cross-sectional view along the axial direction of a honeycomb filter according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view in a direction perpendicular to the axis of the honeycomb filter according to one embodiment of the present invention.
- FIG. 3 is a cross-sectional view in a direction perpendicular to the axis of a honeycomb filter according to another embodiment of the present invention.
- FIG. 4 is a cross-sectional view showing a state in which the honeycomb filter is accommodated in the can.
- the honeycomb filter 100 includes a porous honeycomb structure 120 and a sealing portion 130.
- the porous honeycomb structure 120 has a columnar shape, and has an inlet end face (one end) 100a and an outlet end face (the other end) 100b.
- the porous honeycomb structure 120 has a plurality of flow paths 110. Sealing portions 130 are respectively provided at the end portions of some of the flow channels 110 on the outlet end surface 100b side, and these partial flow channels 110 have inlets whose inlet end surfaces 100a are opened and whose outlet end surfaces 100b are sealed. A flow path 110a is formed. Sealing portions 130 are respectively provided at the ends of the remaining flow paths 110 on the inlet end face 100a side.
- the remaining flow paths 110 are outlet flow paths 110b in which the inlet end face 100a is sealed and the outlet end face 100b is opened.
- each inlet channel 110 a is adjacent to at least one outlet channel 110 b via a partition wall W.
- the arrangement of the inlet channel 110a and the outlet channel 110b in the porous honeycomb structure is not particularly limited.
- the inlet channel 110a may be adjacent to at least one outlet channel 110b, the inlet channel 110a may be adjacent to another inlet channel, or the outlet channel 110b may be adjacent to another outlet channel. May be.
- the inlet channel 110 a is adjacent to the three other inlet channels 110 a and adjacent to the three outlet channels 110 b.
- 110a and the outlet channel 110b may be regularly arranged.
- one outlet channel 110b is adjacent to the six inlet channels 110a, and is not adjacent to the other outlet channels 110b.
- Each flow path is adjacent to a total of 6 other flow paths through partition walls W.
- the aggregate of the partition walls W constitutes the porous honeycomb structure 120.
- the inlet channel 110a and the outlet channel are arranged so that one inlet channel 110a is adjacent to the four other inlet channels 110a and adjacent to the two outlet channels 110b.
- 110b may be regularly arranged.
- One outlet channel 110b is adjacent to the six inlet channels 110a, and is not adjacent to the other outlet channels 110b. Thus, each channel is adjacent to a total of six other channels.
- each partition wall W is preferably 5 to 12 mil, that is, 0.125 to 0.30 mm.
- the lower limit of the thickness of the partition wall W can be 6 mil, that is, 0.15 mm.
- the upper limit of the thickness of the partition W can be 10 mil, ie, 0.25 mm, and can also be 8 mil, ie, 0.20 mm.
- the cell density that is, the density of the flow path (cell) in the cross section orthogonal to the axis of the porous honeycomb structure can be, for example, 150 to 350 cpsi.
- the main component, that is, the maximum component of the porous honeycomb structure 120 is cordierite.
- the porous honeycomb structure 120 preferably contains 50% by mass or more of cordierite, preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass.
- Cordierite is a compound composed of about 48% to about 52% by weight of SiO 2 component, about 32% to about 36% by weight of Al 2 O 3 component, and about 12% to about 15% by weight of MgO component And usually forms a crystalline phase.
- the porosity of the porous honeycomb structure 120 is 55 to 70%.
- the lower limit of the porosity can be 57% or more, and can be 60% or more.
- the upper limit of the porosity can be 69% or less, and can be 68% or less.
- the pore size distribution D10 of the porous honeycomb structure 120 can be 5 to 15 ⁇ m, D50 can be 7 to 20 ⁇ m, and D90 can be 10 to 40 ⁇ m.
- Dn (n is a real number of 0 to 100) is a pore diameter in which n% of the total pore volume has a smaller pore diameter.
- the porosity and pore size distribution of the porous honeycomb structure 120 can be measured by a mercury intrusion method (contact angle: 130 °, surface tension: 485 dyne / cm).
- the average thermal expansion coefficient between 40 and 800 ° C. of the porous honeycomb structure 120 is 1.4 ⁇ 10 ⁇ 6 to 2.1 ⁇ 10 ⁇ 6 / K.
- the lower limit of this average coefficient of thermal expansion can be 1.45 ⁇ 10 ⁇ 6 / K.
- the upper limit of this average thermal expansion coefficient can be 2.05 ⁇ 10 ⁇ 6 / K.
- the material of the sealing portion 130 is not particularly limited, but is preferably a ceramic material, and can be a ceramic mainly composed of cordierite as with the porous honeycomb structure 120.
- the sealing part 130 can be porous and can have the same pore diameter distribution, porosity, and thermal expansion coefficient as the porous honeycomb structure.
- honeycomb filter 100 is housed in a metal cylindrical can 10.
- the honeycomb filter 100 is housed in a metal cylindrical can 10.
- the material of the can are metal materials such as stainless steel and steel.
- a sealing material 20 is disposed between the can 10 and the honeycomb filter 100.
- An example of the sealing material is a nonwoven fabric mat made of inorganic fibers. Examples of the inorganic fiber material are alumina, silica alumina, and glass. Tapered tubes 11 and 12 are connected to both ends of the can 10.
- the temperature of the inflowing exhaust gas may be about 150 to 650 ° C., for example.
- the honeycomb filter 100 is heated to about 1000 ° C., and the can 10 disposed with the sealing material 20 functioning also as a heat insulating material interposed therebetween is heated to about 200 ° C. and thermally expanded.
- the average thermal expansion coefficient between 0 to 650 ° C. of the metal material is about 12 ⁇ 10 ⁇ 6 / K for steel or the like, for example.
- the average thermal expansion coefficient between 40 and 800 ° C. of the conventional honeycomb filter mainly composed of cordierite is about 1.2 ⁇ 10 ⁇ 6 / K.
- the can 10 expands more than the honeycomb filter 100 in use, a gap is generated in the sealing material, and the exhaust gas may leak.
- the average coefficient of thermal expansion between 40 and 800 ° C. is 1.4 ⁇ 10 ⁇ 6 to 2.1 ⁇ 10 ⁇ 6 / K, which is a conventional cordierite. Since it is higher than the honeycomb filter containing as a main component, a gap with the can 10 is less likely to occur during use, and gas leakage from the sealing material can be suppressed. In addition, when the gap is small, there is an effect of suppressing the displacement or breakage of the filter from the can due to vibration or the like.
- the gap bulk density given by W / G is It becomes an index related to the size of the gap, and if it is large, it is easy to cause a gas leak or displacement.
- the pressure loss can be lowered and the fuel efficiency can be improved.
- Such a honeycomb filter can be used as, for example, a gasoline particle filter (GPF) for a gasoline engine or a diesel particle filter (DPF) for diesel engine exhaust gas.
- the exhaust gas can be flowed as indicated by an arrow G in FIG.
- a method for manufacturing a honeycomb filter includes, for example, a raw material preparation step of preparing a cordierite raw material containing an inorganic raw material powder or an additive containing a constituent element of cordierite, and a green honeycomb structure having a plurality of channels by forming the raw material mixture
- the inorganic raw material powder containing the constituent elements of cordierite is a mixture containing a magnesium source, an aluminum source, and a silicon source.
- Magneium source examples of the magnesium source contained in the mixture are magnesium oxide and talc (Mg 3 Si 4 O 10 (OH) 2 ). Moreover, the compound guide
- magnesium salts include magnesium chloride, magnesium perchlorate, magnesium phosphate, magnesium pyrophosphate, magnesium oxalate, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium sulfate, magnesium citrate, magnesium lactate, and magnesium stearate.
- magnesium salts include magnesium chloride, magnesium perchlorate, magnesium phosphate, magnesium pyrophosphate, magnesium oxalate, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium sulfate, magnesium citrate, magnesium lactate, and magnesium stearate.
- magnesium salts include magnesium chloride, magnesium perchlorate, magnesium phosphate, magnesium pyrophosphate, magnesium oxalate, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium sulfate, magnesium citrate, magnesium lactate, and magnesium stearate.
- the aluminum source includes at least one of alumina (Al 2 O 3 ) and kaolin (Al 2 Si 2 O 5 (OH) 4 ), and aluminum hydroxide Al (OH) 3 .
- crystal type of alumina examples include ⁇ type, ⁇ type, ⁇ type, and ⁇ type, and may be amorphous.
- ⁇ -type alumina is preferable.
- Examples of the aluminum hydroxide crystal type include a gibbsite type, a bayerite type, a norosotrandite type, a boehmite type, and a pseudo-boehmite type, and may be amorphous (amorphous).
- Examples of the amorphous aluminum hydroxide include an aluminum hydrolyzate obtained by hydrolyzing an aqueous solution of a water-soluble aluminum compound such as an aluminum salt or an aluminum alkoxide.
- the ratio of the mass of the aluminum element contained in the aluminum hydroxide to the mass of the total aluminum element contained in the aluminum source is 15 to 95%.
- the upper limit of this ratio can be 92%.
- the ratio of the mass of aluminum element contained in alumina to the mass of aluminum element contained in aluminum hydroxide is 0 to 0.4 or 1.0 to 5.0.
- the ratio of the mass of aluminum element contained in kaolin to the mass of aluminum element contained in aluminum hydroxide is 0 to 1.1 or 1.5 to 3.5.
- An aluminum source other than those described above may be included as the aluminum source.
- Examples of other aluminum sources include compounds that are led to alumina by firing alone in air. Examples of such a compound include aluminum salts, aluminum alkoxides, and metal aluminum.
- the aluminum salt may be an inorganic salt with an inorganic acid or an organic salt with an organic acid.
- the aluminum inorganic salt include aluminum nitrates such as aluminum nitrate and ammonium nitrate, and aluminum carbonates such as ammonium aluminum carbonate.
- the aluminum organic salt include aluminum oxalate, aluminum acetate, aluminum stearate, aluminum lactate, and aluminum laurate.
- aluminum alkoxide examples include aluminum isopropoxide, aluminum ethoxide, aluminum sec-butoxide, aluminum tert-butoxide and the like.
- silicon source examples include silicon oxide (quartz, amorphous silica), talc (Mg 3 Si 4 O 10 (OH) 2 ), and kaolin (Al 2 Si 2 O 5 (OH) 4 ).
- induced to a silica by baking alone in the air is also mentioned.
- examples of such compounds include silicic acid, silicon carbide, silicon nitride, silicon sulfide, silicon tetrachloride, silicon acetate, sodium silicate, sodium orthosilicate, glass frit and the like.
- the inorganic raw material powder containing the constituent elements of cordierite may be partially or wholly cordierite powder.
- the blending amount of each component is appropriately adjusted so that the SiO 2 component, Al 2 O 3 component, and MgO component fall within the above cordierite composition range.
- the particle size D50 of the inorganic raw material powder containing the constituent elements of cordierite can be 1 to 30 ⁇ m.
- additives examples include pore formers (pore forming agents), binders, lubricants, plasticizers, and solvents.
- the pore former a material formed by a material that disappears at a temperature lower than the temperature at which the molded body is degreased and fired in the firing process can be used.
- the pore former disappears due to combustion or the like.
- a space is created at the location where the pore former was present, and the inorganic raw material powder located between the spaces contracts during firing to form a communication hole in the partition wall through which fluid can flow. can do.
- the pore former is, for example, organic powder, carbon powder, or dry ice powder.
- organic powders are corn starch, barley starch, wheat starch, tapioca starch, bean starch, rice starch, pea starch, and potato starch (potato starch).
- resin powders are polyethylene powder, hollow resin powder (a compound having an ether structure which is gasified at a temperature below the softening point of the thermoplastic resin and does not contain chlorine or bromine inside the thermoplastic resin as an outer shell. Is a thermally expandable microsphere).
- An example of carbon powder is graphite.
- the content of the pore former is, for example, 10 to 50 parts by mass, preferably 20 to 40 parts by mass with respect to 100 parts by mass of the inorganic raw material powder.
- the D50 of the pore former may be 10 to 30 ⁇ m.
- the binder is, for example, celluloses such as methylcellulose, carboxymethylcellulose, hydroxyalkylmethylcellulose, sodium carboxymethylcellulose; alcohols such as polyvinyl alcohol; salts such as lignin sulfonate; waxes such as paraffin wax and microcrystalline wax.
- the content of the binder in the raw material mixture is, for example, 20 parts by mass or less with respect to 100 parts by mass of the inorganic raw material powder.
- Lubricants or plasticizers include, for example, alcohols such as glycerin; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, alginic acid, oleic acid and stearic acid; higher fatty acid metal salts such as stearic acid A1, polyoxyalkylene alkyl Ether.
- the content of the lubricant or plasticizer in the raw material mixture is, for example, 10 parts by mass or less with respect to 100 parts by mass of the inorganic raw material powder.
- the solvent examples include water and alcohol.
- Water is preferably ion-exchanged water because it has few impurities.
- the content of the solvent is, for example, 10 to 100 parts by mass with respect to 100 parts by mass of the inorganic raw material powder.
- a green honeycomb structure having a honeycomb structure having a plurality of flow paths is obtained using the cordierite raw material.
- the cordierite raw material it may be formed into the shape of the target honeycomb structure using a forming device such as a uniaxial press machine or an extrusion molding machine similar to those usually used.
- the firing step the green honeycomb structure obtained in the forming step is fired to obtain a fired porous honeycomb structure.
- calcination degreasing for removing a binder or the like contained in the molded body (in the cordierite raw material) may be performed before the molded body is fired.
- the firing temperature is usually 1300 ° C. or higher, preferably 1400 ° C. or higher.
- a calcination temperature is 1500 degrees C or less normally, Preferably it is 1450 degrees C or less.
- the temperature raising rate is not particularly limited, but is usually 1 to 500 ° C./hour.
- the pore former is organic powder or carbon powder
- the firing time may be a time sufficient for the inorganic raw material powder to transition to the cordierite-based crystal, and varies depending on the amount of raw material, type of firing furnace, firing temperature, firing atmosphere, etc., but is usually 5 to 24 hours. It is.
- the sealing step is performed between the molding step and the firing step or after the firing step.
- a sealing step is performed between the forming step and the firing step, one end of each flow path of the green honeycomb structure obtained in the forming step is sealed with a sealing material, and then green in the firing step.
- the sealing step is performed after the firing step, after sealing one end of each flow path of the porous honeycomb structure obtained in the firing step with the sealing material, the sealing material is fired together with the porous honeycomb structure. By doing so, a similar honeycomb honeycomb filter is obtained.
- the sealing material the same raw material as the cordierite raw material for obtaining the green honeycomb molded body can be used.
- the honeycomb filter having the porous structure described above can be easily obtained.
- aluminum hydroxide is considered to have a role of increasing the thermal expansion coefficient of cordierite.
- the present invention is not limited to the above embodiment, and various modifications can be made.
- the inlet channel 110a and the outlet channel 110b are closed by the plug-shaped sealing part 130, but other sealing methods may be adopted.
- the partition wall at the end of the porous honeycomb molded body is reduced toward the end face of the honeycomb filter until the cross-sectional area of one of the flow paths increases and the cross-sectional area of the other flow path becomes zero.
- the sealing portion may be formed by deforming as described above and then firing.
- Example 1 A cordierite raw material (kaolin, alumina, aluminum hydroxide, talc, silica), a pore former, and a binder were mixed, and a honeycomb formed body was prepared with an extruder.
- the blending amount of each raw material was as shown in Table 1.
- Table 2 shows the mass ratio of Al in each alumina source. Potato starch was used as the pore former. Further, in order to give plasticity suitable for extrusion molding, an appropriate amount of water and a lubricant were added to the mixture of the raw materials, and molding was performed.
- the formed honeycomb formed body had the shape shown in FIG. 2, and the density of hexagonal cells was 290 cpsi. The outer diameter was 25.4 mm, the height was 150.3 mm, and the wall thickness was 10.4 mil.
- honeycomb formed body One end or the other end of each flow path of the obtained honeycomb formed body was sealed by plugging using the same forming raw material as described above. Thereafter, the sealed honeycomb formed body was fired in an air atmosphere to obtain a honeycomb filter.
- Example 2-7 Comparative Examples 1-2
- the composition of the cordierite raw material was the same as that of Example 1 except that the composition was changed as shown in Table 1.
- the porosity of the obtained honeycomb filter and the pore diameters D10, D50, and D90 were measured by mercury porosimetry using an Autopore III manufactured by Micromeritics. First, a small piece cut out from the honeycomb filter is stored in the measurement cell as a test piece, and after the pressure inside the cell is reduced, mercury is introduced and then the pressure is applied, and the pressure at this time and the pressure is pushed into the pores existing in the sample. The relationship between the pore diameter and the cumulative pore volume was determined from the relationship with the mercury volume.
- the total pore volume was the cumulative pore volume at a pressure of 60,000 psi (414 MPa) (corresponding to a pore diameter of 0.003 ⁇ m). The results are shown in Table 3.
- the coefficient of thermal expansion between the temperatures of the porous honeycomb structure was determined as follows. That is, a rectangular parallelepiped piece having a length of 20 mm and a length and width of 5 mm was cut out from the honeycomb filter. Using a thermomechanical analyzer (IMA6300 manufactured by SII Technology Co., Ltd.), the temperature was raised from room temperature (25 ° C.) to 1000 ° C. at 600 ° C./h, and the expansion coefficient of the small pieces in the temperature range of 40 to 800 ° C. was measured. The results are shown in Table 3.
- IMA6300 manufactured by SII Technology Co., Ltd.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filtering Materials (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
A honeycomb filter 100 is provided with: a porous honeycomb structure 120 having a plurality of channels 110; and a plurality of sealing parts 130 that close one end of some channels 110a among the channels 110, and close the other end of the remaining channels 110b among the channels 110. The porosity of the porous honeycomb structure 120 is 55-70%. The porous honeycomb structure 120 contains cordierite as the main component. The average coefficient of thermal expansion of the porous honeycomb structure 120 from 40°C to 800°C is 1.4×10-6-2.1×10-6/K.
Description
本発明は、ハニカムフィルタ及びハニカムフィルタの製造方法に関する。
The present invention relates to a honeycomb filter and a method for manufacturing a honeycomb filter.
従来より、エンジン排ガスのフィルタとして、コージェライトを主成分とするセラミック製のハニカムフィルタが知られている。ハニカムフィルタは、複数の流路を有する多孔質ハニカム構造体と、複数の流路の内の一部の流路の一端、及び、前記複数の流路の内の残部の流路の他端を閉じる複数の封口部と、を備える。このようなハニカムフィルタは、金属製の缶に収容されて使用され、缶とフィルタとの間には無機繊維シートが介在される場合が多い。
Conventionally, a ceramic honeycomb filter mainly composed of cordierite is known as an engine exhaust gas filter. The honeycomb filter includes a porous honeycomb structure having a plurality of channels, one end of a part of the plurality of channels, and the other end of the remaining channel among the plurality of channels. A plurality of closing portions to be closed. Such a honeycomb filter is used by being housed in a metal can, and an inorganic fiber sheet is often interposed between the can and the filter.
しかしながら、従来のコージェライト製のハニカムフィルタは、使用時に缶とフィルタとの隙間からガスが漏れることがあった。
However, in a conventional cordierite honeycomb filter, gas may leak from the gap between the can and the filter during use.
本発明は上記課題に鑑みてなされたものであり、使用時に缶とフィルタとの隙間からガスが漏れにくいハニカムフィルタを提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a honeycomb filter in which gas does not easily leak from a gap between a can and a filter during use.
本発明に係るハニカムフィルタは、複数の流路を有する多孔質ハニカム構造体と、
前記複数の流路の内の一部の流路の一端、及び、前記複数の流路の内の残部の流路の他端を閉じる複数の封口部と、を備える。そして、
前記多孔質ハニカム構造体の気孔率が55~70%であり、
前記多孔質ハニカム構造体はコージェライトを主成分として含み、
前記多孔質ハニカム構造体の40~800℃の間の平均熱膨張係数は1.4×10-6~2.1×10-6/Kである。 A honeycomb filter according to the present invention includes a porous honeycomb structure having a plurality of flow paths,
One end of some of the plurality of channels, and a plurality of sealing portions for closing the other ends of the remaining channels of the plurality of channels. And
The porosity of the porous honeycomb structure is 55 to 70%;
The porous honeycomb structure includes cordierite as a main component,
The average thermal expansion coefficient between 40 and 800 ° C. of the porous honeycomb structure is 1.4 × 10 −6 to 2.1 × 10 −6 / K.
前記複数の流路の内の一部の流路の一端、及び、前記複数の流路の内の残部の流路の他端を閉じる複数の封口部と、を備える。そして、
前記多孔質ハニカム構造体の気孔率が55~70%であり、
前記多孔質ハニカム構造体はコージェライトを主成分として含み、
前記多孔質ハニカム構造体の40~800℃の間の平均熱膨張係数は1.4×10-6~2.1×10-6/Kである。 A honeycomb filter according to the present invention includes a porous honeycomb structure having a plurality of flow paths,
One end of some of the plurality of channels, and a plurality of sealing portions for closing the other ends of the remaining channels of the plurality of channels. And
The porosity of the porous honeycomb structure is 55 to 70%;
The porous honeycomb structure includes cordierite as a main component,
The average thermal expansion coefficient between 40 and 800 ° C. of the porous honeycomb structure is 1.4 × 10 −6 to 2.1 × 10 −6 / K.
本発明に係るハニカムフィルタの製造方法は、アルミニウム源、マグネシウム源、ケイ素源、及び、造孔材を含むコージェライト原料を成形して、複数の流路を有するグリーンハニカム構造体を得る工程と、
前記グリーンハニカム構造体を焼成して多孔質ハニカム構造体を得る工程と、
前記グリーンハニカム構造体又は前記多孔質ハニカム構造体の前記複数の流路それぞれのいずれかの端部を封口する工程と、を備える。
前記アルミニウム源は、アルミナ及びカオリンの少なくとも一方と、水酸化アルミニウムと、を含む。
前記アルミニウム源に含まれる全アルミニウム元素の質量に対する、水酸化アルミニウムに含まれるアルミニウム元素の質量の比が15~95%であり、
水酸化アルミニウムに含まれるアルミニウム元素の質量に対する、アルミナに含まれるアルミニウム元素の質量の比が0~0.4又は1.0~5.0であり、
水酸化アルミニウムに含まれるアルミニウム元素の質量に対する、カオリンに含まれるアルミニウム元素の質量の比が0~1.1又は1.5~3.5である。 A method for manufacturing a honeycomb filter according to the present invention includes a step of forming a cordierite raw material including an aluminum source, a magnesium source, a silicon source, and a pore former to obtain a green honeycomb structure having a plurality of flow paths;
Firing the green honeycomb structure to obtain a porous honeycomb structure;
Sealing any one end of each of the plurality of flow paths of the green honeycomb structure or the porous honeycomb structure.
The aluminum source includes at least one of alumina and kaolin and aluminum hydroxide.
The ratio of the mass of the aluminum element contained in the aluminum hydroxide to the mass of the total aluminum element contained in the aluminum source is 15 to 95%,
The ratio of the mass of aluminum element contained in alumina to the mass of aluminum element contained in aluminum hydroxide is 0 to 0.4 or 1.0 to 5.0,
The ratio of the mass of aluminum element contained in kaolin to the mass of aluminum element contained in aluminum hydroxide is 0 to 1.1 or 1.5 to 3.5.
前記グリーンハニカム構造体を焼成して多孔質ハニカム構造体を得る工程と、
前記グリーンハニカム構造体又は前記多孔質ハニカム構造体の前記複数の流路それぞれのいずれかの端部を封口する工程と、を備える。
前記アルミニウム源は、アルミナ及びカオリンの少なくとも一方と、水酸化アルミニウムと、を含む。
前記アルミニウム源に含まれる全アルミニウム元素の質量に対する、水酸化アルミニウムに含まれるアルミニウム元素の質量の比が15~95%であり、
水酸化アルミニウムに含まれるアルミニウム元素の質量に対する、アルミナに含まれるアルミニウム元素の質量の比が0~0.4又は1.0~5.0であり、
水酸化アルミニウムに含まれるアルミニウム元素の質量に対する、カオリンに含まれるアルミニウム元素の質量の比が0~1.1又は1.5~3.5である。 A method for manufacturing a honeycomb filter according to the present invention includes a step of forming a cordierite raw material including an aluminum source, a magnesium source, a silicon source, and a pore former to obtain a green honeycomb structure having a plurality of flow paths;
Firing the green honeycomb structure to obtain a porous honeycomb structure;
Sealing any one end of each of the plurality of flow paths of the green honeycomb structure or the porous honeycomb structure.
The aluminum source includes at least one of alumina and kaolin and aluminum hydroxide.
The ratio of the mass of the aluminum element contained in the aluminum hydroxide to the mass of the total aluminum element contained in the aluminum source is 15 to 95%,
The ratio of the mass of aluminum element contained in alumina to the mass of aluminum element contained in aluminum hydroxide is 0 to 0.4 or 1.0 to 5.0,
The ratio of the mass of aluminum element contained in kaolin to the mass of aluminum element contained in aluminum hydroxide is 0 to 1.1 or 1.5 to 3.5.
本発明によれば、使用時に缶とフィルタとの隙間からガスが漏れにくいハニカムフィルタ、及び、その製造方法が提供される。
According to the present invention, there are provided a honeycomb filter that hardly leaks gas from a gap between a can and a filter during use, and a manufacturing method thereof.
図面を参照して、本発明の実施形態に係るハニカムフィルタ100を説明する。図1に示すように、ハニカムフィルタ100は、多孔質ハニカム構造体120、及び、封口部130を有する。
A honeycomb filter 100 according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the honeycomb filter 100 includes a porous honeycomb structure 120 and a sealing portion 130.
多孔質ハニカム構造体120は、柱状形状を有し、入口端面(一端)100a及び出口端面(他端)100bを有する。また、多孔質ハニカム構造体120は、複数の流路110を有する。一部の流路110の出口端面100b側の端部にはそれぞれ封口部130が設けられており、これらの一部の流路110は、入口端面100aが開口され出口端面100bが封口された入口流路110aを形成する。残りの流路110の入口端面100a側の端部にはそれぞれ封口部130が設けられており、これら残りの流路110は、入口端面100aが封口され出口端面100bが開口された出口流路110bを形成する。
The porous honeycomb structure 120 has a columnar shape, and has an inlet end face (one end) 100a and an outlet end face (the other end) 100b. The porous honeycomb structure 120 has a plurality of flow paths 110. Sealing portions 130 are respectively provided at the end portions of some of the flow channels 110 on the outlet end surface 100b side, and these partial flow channels 110 have inlets whose inlet end surfaces 100a are opened and whose outlet end surfaces 100b are sealed. A flow path 110a is formed. Sealing portions 130 are respectively provided at the ends of the remaining flow paths 110 on the inlet end face 100a side. The remaining flow paths 110 are outlet flow paths 110b in which the inlet end face 100a is sealed and the outlet end face 100b is opened. Form.
入口流路110a及び出口流路110bの断面形状は、例えば、円形、楕円形、四角形、六角形、八角形であることができる。多孔質ハニカム構造体120において、各入口流路110aは少なくとも1つの出口流路110bと隔壁Wを介して隣接している。
The cross-sectional shape of the inlet channel 110a and the outlet channel 110b can be, for example, a circle, an ellipse, a rectangle, a hexagon, or an octagon. In the porous honeycomb structure 120, each inlet channel 110 a is adjacent to at least one outlet channel 110 b via a partition wall W.
多孔質ハニカム構造体における入口流路110aと出口流路110bとの配列は特に限定されない。入口流路110aが少なくとも1つの出口流路110bと隣接していればよく、入口流路110aが他の入口流路と隣接していたり、出口流路110bが他の出口流路と隣接していてもよい。
The arrangement of the inlet channel 110a and the outlet channel 110b in the porous honeycomb structure is not particularly limited. The inlet channel 110a may be adjacent to at least one outlet channel 110b, the inlet channel 110a may be adjacent to another inlet channel, or the outlet channel 110b may be adjacent to another outlet channel. May be.
具体的には、例えば、図2に示すように、1つの入口流路110aが3つの他の入口流路110aと隣接し、かつ、3つの出口流路110bと隣接するように、入口流路110a及び出口流路110bが規則的に配置されていることができる。この場合、1つの出口流路110bは6つの入口流路110aと隣接し、他の出口流路110bとは隣接しない。各流路は、合計6つの他の流路とそれぞれ隔壁Wを介して隣接している。隔壁Wの集合体が多孔質ハニカム構造体120を構成する。
Specifically, for example, as illustrated in FIG. 2, the inlet channel 110 a is adjacent to the three other inlet channels 110 a and adjacent to the three outlet channels 110 b. 110a and the outlet channel 110b may be regularly arranged. In this case, one outlet channel 110b is adjacent to the six inlet channels 110a, and is not adjacent to the other outlet channels 110b. Each flow path is adjacent to a total of 6 other flow paths through partition walls W. The aggregate of the partition walls W constitutes the porous honeycomb structure 120.
また、図3に示すように、1つの入口流路110aが4つの他の入口流路110aと隣接し、かつ、2つの出口流路110bと隣接するように、入口流路110a及び出口流路110bが規則的に配置されていることもできる。1つの出口流路110bは6つの入口流路110aと隣接し、他の出口流路110bとは隣接しない。従って、各流路は合計6つの他の流路に隣接している。
Further, as shown in FIG. 3, the inlet channel 110a and the outlet channel are arranged so that one inlet channel 110a is adjacent to the four other inlet channels 110a and adjacent to the two outlet channels 110b. 110b may be regularly arranged. One outlet channel 110b is adjacent to the six inlet channels 110a, and is not adjacent to the other outlet channels 110b. Thus, each channel is adjacent to a total of six other channels.
各隔壁Wの厚みは、5~12mil、すなわち、0.125~0.30mmが好ましい。隔壁Wの厚みの下限は、6mil、すなわち、0.15mmとすることができる。また、隔壁Wの厚みの上限は、10mil、すなわち、0.25mmとすることができ、8mil、すなわち、0.20mmとすることもできる。
The thickness of each partition wall W is preferably 5 to 12 mil, that is, 0.125 to 0.30 mm. The lower limit of the thickness of the partition wall W can be 6 mil, that is, 0.15 mm. Moreover, the upper limit of the thickness of the partition W can be 10 mil, ie, 0.25 mm, and can also be 8 mil, ie, 0.20 mm.
セル密度、すなわち、多孔質ハニカム構造体の軸に直交する断面における流路(セル)の密度は、例えば、150~350cpsiとすることができる。
The cell density, that is, the density of the flow path (cell) in the cross section orthogonal to the axis of the porous honeycomb structure can be, for example, 150 to 350 cpsi.
多孔質ハニカム構造体120の主成分すなわち最大成分はコージェライトである。多孔質ハニカム構造体120が、コージェライトを50質量%以上含むことが好ましく、70質量%以上含むことが好ましく、80質量%以上含むことがより好ましく、90質量%含むことがより一層好ましい。
The main component, that is, the maximum component of the porous honeycomb structure 120 is cordierite. The porous honeycomb structure 120 preferably contains 50% by mass or more of cordierite, preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass.
コージェライトとは、約48%~約52重量%のSiO2成分、約32%~約36重量%のAl2O3成分、および約12%~約15重量%のMgO成分から構成される化合物であり、通常結晶相を形成する。
Cordierite is a compound composed of about 48% to about 52% by weight of SiO 2 component, about 32% to about 36% by weight of Al 2 O 3 component, and about 12% to about 15% by weight of MgO component And usually forms a crystalline phase.
本実施形態において、多孔質ハニカム構造体120の気孔率は55~70%である。この気孔率の下限は、57%以上であることができ、60%以上であることもできる。この気孔率の上限は、69%以下であることができ、68%以下であることもできる。
多孔質ハニカム構造体120の気孔径分布のD10は5~15μm、D50は7~20μm、D90は10~40μmとすることができる。なお、Dn(nは0~100の実数)は、全細孔体積のn%がそれよりも小さな細孔径を有している細孔径である。 In the present embodiment, the porosity of theporous honeycomb structure 120 is 55 to 70%. The lower limit of the porosity can be 57% or more, and can be 60% or more. The upper limit of the porosity can be 69% or less, and can be 68% or less.
The pore size distribution D10 of theporous honeycomb structure 120 can be 5 to 15 μm, D50 can be 7 to 20 μm, and D90 can be 10 to 40 μm. Dn (n is a real number of 0 to 100) is a pore diameter in which n% of the total pore volume has a smaller pore diameter.
多孔質ハニカム構造体120の気孔径分布のD10は5~15μm、D50は7~20μm、D90は10~40μmとすることができる。なお、Dn(nは0~100の実数)は、全細孔体積のn%がそれよりも小さな細孔径を有している細孔径である。 In the present embodiment, the porosity of the
The pore size distribution D10 of the
多孔質ハニカム構造体120の気孔率及び気孔径分布は、水銀圧入法(接触角:130°、表面張力:485dyne/cm)により測定することができる。
The porosity and pore size distribution of the porous honeycomb structure 120 can be measured by a mercury intrusion method (contact angle: 130 °, surface tension: 485 dyne / cm).
多孔質ハニカム構造体120の40~800℃の間の平均熱膨張係数は1.4×10-6~2.1×10-6/Kである。この平均熱膨張係数の下限は、1.45×10-6/Kであることができる。この平均熱膨張係数の上限は、2.05×10-6/Kであることができる。
The average thermal expansion coefficient between 40 and 800 ° C. of the porous honeycomb structure 120 is 1.4 × 10 −6 to 2.1 × 10 −6 / K. The lower limit of this average coefficient of thermal expansion can be 1.45 × 10 −6 / K. The upper limit of this average thermal expansion coefficient can be 2.05 × 10 −6 / K.
この平均熱膨張係数は、多孔質ハニカム構造体120から切り出したサンプルを40℃から800℃まで昇温させ、40℃の時の長さをL0、800℃の時の長さをL1としたときに、(L1-L0)/(L0・760)[1/K]で求められる。
This average coefficient of thermal expansion is obtained when the sample cut from the porous honeycomb structure 120 is heated from 40 ° C. to 800 ° C., the length at 40 ° C. is L0, and the length at 800 ° C. is L1. And (L1-L0) / (L0 · 760) [1 / K].
封口部130の材料は特に限定されないが、セラミック材料で有ることが好ましく、多孔質ハニカム構造体120と同様にコージェライトを主成分とするセラミックであることができる。封口部130は多孔質であることができ、多孔質ハニカム構造体と同様の細孔径分布、気孔率、及び熱膨張係数を有することができる。
The material of the sealing portion 130 is not particularly limited, but is preferably a ceramic material, and can be a ceramic mainly composed of cordierite as with the porous honeycomb structure 120. The sealing part 130 can be porous and can have the same pore diameter distribution, porosity, and thermal expansion coefficient as the porous honeycomb structure.
続いて、このようなハニカムフィルタ100の使用態様の一例を図4を参照して説明する。ハニカムフィルタ100は、金属製の筒状の缶10内に収容される。缶の材質の例は、ステンレス、鋼などの金属材料である。
Subsequently, an example of how the honeycomb filter 100 is used will be described with reference to FIG. The honeycomb filter 100 is housed in a metal cylindrical can 10. Examples of the material of the can are metal materials such as stainless steel and steel.
缶10とハニカムフィルタ100との間には、シール材20が配置されている。シール材の例は、無機繊維製の不織布マットである。無機繊維の材料の例は、アルミナ、シリカアルミナ、ガラスである。缶10の両端には、テーパー管11、12が接続されている。
A sealing material 20 is disposed between the can 10 and the honeycomb filter 100. An example of the sealing material is a nonwoven fabric mat made of inorganic fibers. Examples of the inorganic fiber material are alumina, silica alumina, and glass. Tapered tubes 11 and 12 are connected to both ends of the can 10.
このようにしてハニカムフィルタを使用する際、ハニカムフィルタには高温の排ガスが流入する。流入する排ガスの温度は、例えば、150~650℃程度になる場合がある。これによって、ハニカムフィルタ100は1000℃程度にまで加熱され、断熱材としても機能するシール材20を挟んで配置される缶10は200℃程度にまで加熱され、それぞれ熱膨張する。
When using a honeycomb filter in this way, high temperature exhaust gas flows into the honeycomb filter. The temperature of the inflowing exhaust gas may be about 150 to 650 ° C., for example. As a result, the honeycomb filter 100 is heated to about 1000 ° C., and the can 10 disposed with the sealing material 20 functioning also as a heat insulating material interposed therebetween is heated to about 200 ° C. and thermally expanded.
ここで、金属材料の0~650℃の間の平均熱膨張係数は、例えば、鋼等では約12×10-6/Kである。そして、従来のコージェライトを主成分とするハニカムフィルタの40~800℃の間の平均熱膨張係数は1.2×10-6/K程度である。この場合、使用時にはハニカムフィルタ100よりも缶10がより膨張するため、シール材に隙間が生じ、排ガスがリークする場合がある。
Here, the average thermal expansion coefficient between 0 to 650 ° C. of the metal material is about 12 × 10 −6 / K for steel or the like, for example. The average thermal expansion coefficient between 40 and 800 ° C. of the conventional honeycomb filter mainly composed of cordierite is about 1.2 × 10 −6 / K. In this case, since the can 10 expands more than the honeycomb filter 100 in use, a gap is generated in the sealing material, and the exhaust gas may leak.
しかしながら、本実施形態に係るハニカムフィルタ100によれば、40~800℃の間の平均熱膨張係数は1.4×10-6~2.1×10-6/Kであって従来のコージェライトを主成分とするハニカムフィルタよりも高いので、使用時に缶10との隙間が生じにくく、シール材からのガスのリークを抑制できる。また、隙間が少ないと、振動等によるフィルタの缶からのずれや破損の抑制効果もある。
However, according to the honeycomb filter 100 according to the present embodiment, the average coefficient of thermal expansion between 40 and 800 ° C. is 1.4 × 10 −6 to 2.1 × 10 −6 / K, which is a conventional cordierite. Since it is higher than the honeycomb filter containing as a main component, a gap with the can 10 is less likely to occur during use, and gas leakage from the sealing material can be suppressed. In addition, when the gap is small, there is an effect of suppressing the displacement or breakage of the filter from the can due to vibration or the like.
なお、缶10の内面の単位面積当たりのシール材20の質量をWとし、ハニカムフィルタ100と缶10とのギャップをG[m]としたときに、W/Gで与えられるギャップバルク密度は、隙間の大きさに関する指標となり、大きければガスリークやずれ等を起こしやすくなる。
When the mass of the sealing material 20 per unit area of the inner surface of the can 10 is W and the gap between the honeycomb filter 100 and the can 10 is G [m], the gap bulk density given by W / G is It becomes an index related to the size of the gap, and if it is large, it is easy to cause a gas leak or displacement.
また、平均熱膨張係数が上記範囲を上回る場合、熱膨張が大きくなりすぎて、排ガス温度や排ガス量の変動が起こった場合にクラックが生じる場合がある。
In addition, when the average thermal expansion coefficient exceeds the above range, thermal expansion becomes too large, and cracks may occur when the exhaust gas temperature or the amount of exhaust gas fluctuates.
また、平均気孔率が55~70%であるので、圧力損失を低くできて、燃費性能を向上できる。
Also, since the average porosity is 55 to 70%, the pressure loss can be lowered and the fuel efficiency can be improved.
このようなハニカムフィルタは、例えば、ガソリンエンジン用のガソリン粒子フィルタ、(GPF)、ディーゼルエンジン排ガス用の用のディーゼル粒子フィルタ(DPF)として使用することができる。排ガスをたとえば図1の矢印Gのように流して煤等の粒子を隔壁Wでろ過することができる。
Such a honeycomb filter can be used as, for example, a gasoline particle filter (GPF) for a gasoline engine or a diesel particle filter (DPF) for diesel engine exhaust gas. The exhaust gas can be flowed as indicated by an arrow G in FIG.
(ハニカムフィルタの製造方法)
次に、ハニカムフィルタの製造方法の一実施形態について説明する。ハニカムフィルタの製造方法は、例えば、コージェライトの構成元素を含む無機原料粉や添加剤を含むコージェライト原料を調製する原料調製工程と、原料混合物を成形して複数の流路を有するグリーンハニカム構造体を得る成形工程と、グリーンハニカム構造体を焼成する焼成工程と、を備え、成形工程と焼成工程の間、又は、焼成工程の後に、各流路のいずれか端部を封口する工程と、を備える。 (Honeycomb filter manufacturing method)
Next, an embodiment of a method for manufacturing a honeycomb filter will be described. A method for manufacturing a honeycomb filter includes, for example, a raw material preparation step of preparing a cordierite raw material containing an inorganic raw material powder or an additive containing a constituent element of cordierite, and a green honeycomb structure having a plurality of channels by forming the raw material mixture A molding step for obtaining a body, and a firing step for firing the green honeycomb structure, a step of sealing one end of each flow path between the molding step and the firing step, or after the firing step; Is provided.
次に、ハニカムフィルタの製造方法の一実施形態について説明する。ハニカムフィルタの製造方法は、例えば、コージェライトの構成元素を含む無機原料粉や添加剤を含むコージェライト原料を調製する原料調製工程と、原料混合物を成形して複数の流路を有するグリーンハニカム構造体を得る成形工程と、グリーンハニカム構造体を焼成する焼成工程と、を備え、成形工程と焼成工程の間、又は、焼成工程の後に、各流路のいずれか端部を封口する工程と、を備える。 (Honeycomb filter manufacturing method)
Next, an embodiment of a method for manufacturing a honeycomb filter will be described. A method for manufacturing a honeycomb filter includes, for example, a raw material preparation step of preparing a cordierite raw material containing an inorganic raw material powder or an additive containing a constituent element of cordierite, and a green honeycomb structure having a plurality of channels by forming the raw material mixture A molding step for obtaining a body, and a firing step for firing the green honeycomb structure, a step of sealing one end of each flow path between the molding step and the firing step, or after the firing step; Is provided.
(原料調製工程)
原料調製工程では、コージェライトの構成元素を含む各種無機原料粉と添加剤とを混合した後に混練してコージェライト原料を調製する。 (Raw material preparation process)
In the raw material preparation step, various inorganic raw material powders containing constituent elements of cordierite and additives are mixed and then kneaded to prepare a cordierite raw material.
原料調製工程では、コージェライトの構成元素を含む各種無機原料粉と添加剤とを混合した後に混練してコージェライト原料を調製する。 (Raw material preparation process)
In the raw material preparation step, various inorganic raw material powders containing constituent elements of cordierite and additives are mixed and then kneaded to prepare a cordierite raw material.
コージェライトの構成元素を含む無機原料粉は、マグネシウム源、アルミニウム源、及び、ケイ素源を含む混合物である。
The inorganic raw material powder containing the constituent elements of cordierite is a mixture containing a magnesium source, an aluminum source, and a silicon source.
(マグネシウム源)
上記混合物に含まれるマグネシウム源の例は、酸化マグネシウム、タルク(Mg3Si4O10(OH)2)である。また、空気中、単独で焼成することによりマグネシアに導かれる化合物も挙げられる。かかる化合物としては、例えばマグネシウム塩、マグネシウムアルコキシド、水酸化マグネシウム、窒化マグネシウム、金属マグネシウムなどが挙げられる。 (Magnesium source)
Examples of the magnesium source contained in the mixture are magnesium oxide and talc (Mg 3 Si 4 O 10 (OH) 2 ). Moreover, the compound guide | induced to magnesia by baking alone in the air is also mentioned. Examples of such a compound include magnesium salt, magnesium alkoxide, magnesium hydroxide, magnesium nitride, and magnesium metal.
上記混合物に含まれるマグネシウム源の例は、酸化マグネシウム、タルク(Mg3Si4O10(OH)2)である。また、空気中、単独で焼成することによりマグネシアに導かれる化合物も挙げられる。かかる化合物としては、例えばマグネシウム塩、マグネシウムアルコキシド、水酸化マグネシウム、窒化マグネシウム、金属マグネシウムなどが挙げられる。 (Magnesium source)
Examples of the magnesium source contained in the mixture are magnesium oxide and talc (Mg 3 Si 4 O 10 (OH) 2 ). Moreover, the compound guide | induced to magnesia by baking alone in the air is also mentioned. Examples of such a compound include magnesium salt, magnesium alkoxide, magnesium hydroxide, magnesium nitride, and magnesium metal.
マグネシウム塩として具体的には、塩化マグネシウム、過塩素酸マグネシウム、リン酸マグネシウム、ピロりん酸マグネシウム、蓚酸マグネシウム、硝酸マグネシウム、炭酸マグネシウム、酢酸マグネシウム、硫酸マグネシウム、クエン酸マグネシウム、乳酸マグネシウム、ステアリン酸マグネシウム、サリチル酸マグネシウム、ミリスチン酸マグネシウム、グルコン酸マグネシウム、ジメタクリル酸マグネシウム、安息香酸マグネシウムなどが挙げられる。
Specific examples of magnesium salts include magnesium chloride, magnesium perchlorate, magnesium phosphate, magnesium pyrophosphate, magnesium oxalate, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium sulfate, magnesium citrate, magnesium lactate, and magnesium stearate. , Magnesium salicylate, magnesium myristate, magnesium gluconate, magnesium dimethacrylate, magnesium benzoate and the like.
(アルミニウム源)
アルミニウム源は、アルミナ(Al2O3)及びカオリン(Al2Si2O5(OH)4)の少なくとも一方と、水酸化アルミニウムAl(OH)3と、を含む。 (Aluminum source)
The aluminum source includes at least one of alumina (Al 2 O 3 ) and kaolin (Al 2 Si 2 O 5 (OH) 4 ), and aluminum hydroxide Al (OH) 3 .
アルミニウム源は、アルミナ(Al2O3)及びカオリン(Al2Si2O5(OH)4)の少なくとも一方と、水酸化アルミニウムAl(OH)3と、を含む。 (Aluminum source)
The aluminum source includes at least one of alumina (Al 2 O 3 ) and kaolin (Al 2 Si 2 O 5 (OH) 4 ), and aluminum hydroxide Al (OH) 3 .
アルミナの結晶型としては、γ型、δ型、θ型、α型などが挙げられ、アモルファスであってもよい。アルミナとして好ましくはα型のアルミナである。
Examples of the crystal type of alumina include γ type, δ type, θ type, and α type, and may be amorphous. As the alumina, α-type alumina is preferable.
水酸化アルミニウムの結晶型としては、例えばギブサイト型、バイヤライト型、ノロソトランダイト型、ベーマイト型、擬ベーマイト型などが挙げられ、不定形(アモルファス)であってもよい。アモルファスの水酸化アルミニウムとしては、例えばアルミニウム塩、アルミニウムアルコキシドなどのような水溶性アルミニウム化合物の水溶液を加水分解して得られるアルミニウム加水分解物も挙げられる。
Examples of the aluminum hydroxide crystal type include a gibbsite type, a bayerite type, a norosotrandite type, a boehmite type, and a pseudo-boehmite type, and may be amorphous (amorphous). Examples of the amorphous aluminum hydroxide include an aluminum hydrolyzate obtained by hydrolyzing an aqueous solution of a water-soluble aluminum compound such as an aluminum salt or an aluminum alkoxide.
アルミニウム源に含まれる全アルミニウム元素の質量に対する、水酸化アルミニウムに含まれるアルミニウム元素の質量の比は15~95%である。この比の上限は92%であることができる。
The ratio of the mass of the aluminum element contained in the aluminum hydroxide to the mass of the total aluminum element contained in the aluminum source is 15 to 95%. The upper limit of this ratio can be 92%.
水酸化アルミニウムに含まれるアルミニウム元素の質量に対する、アルミナに含まれるアルミニウム元素の質量の比が0~0.4又は1.0~5.0である。
The ratio of the mass of aluminum element contained in alumina to the mass of aluminum element contained in aluminum hydroxide is 0 to 0.4 or 1.0 to 5.0.
さらに、水酸化アルミニウムに含まれるアルミニウム元素の質量に対する、カオリンに含まれるアルミニウム元素の質量の比が0~1.1又は1.5~3.5である。
Further, the ratio of the mass of aluminum element contained in kaolin to the mass of aluminum element contained in aluminum hydroxide is 0 to 1.1 or 1.5 to 3.5.
水酸化アルミニウムの添加が、熱膨張率の向上に寄与していると思われるが、水酸化アルミニウムを含みつつも、カオリン及びアルミナに対する比が特定の範囲となると平均熱膨張率が高くならない理由は不明である。
It seems that the addition of aluminum hydroxide contributes to the improvement of the coefficient of thermal expansion, but the reason why the average coefficient of thermal expansion does not increase when the ratio to kaolin and alumina is within a specific range while containing aluminum hydroxide. It is unknown.
アルミニウム源として、上述以外のアルミニウム源を含んでもよい。他のアルミニウム源の例は、空気中、単独で焼成することによりアルミナに導かれる化合物も挙げられる。かかる化合物としては、例えばアルミニウム塩、アルミニウムアルコキシド、金属アルミニウムなどが挙げられる。
An aluminum source other than those described above may be included as the aluminum source. Examples of other aluminum sources include compounds that are led to alumina by firing alone in air. Examples of such a compound include aluminum salts, aluminum alkoxides, and metal aluminum.
アルミニウム塩は、無機酸との無機塩であってもよいし、有機酸との有機塩であってもよい。アルミニウム無機塩として具体的には、例えば硝酸アルミニウム、硝酸アンモニウムアルミニウムなどのアルミニウム硝酸塩、炭酸アンモニウムアルミニウムなどのアルミニウム炭酸塩などが挙げられる。アルミニウム有機塩としては、例えば蓚酸アルミニウム、酢酸アルミニウム、ステアリン酸アルミニウム、乳酸アルミニウム、ラウリン酸アルミニウムなどが挙げられる。
The aluminum salt may be an inorganic salt with an inorganic acid or an organic salt with an organic acid. Specific examples of the aluminum inorganic salt include aluminum nitrates such as aluminum nitrate and ammonium nitrate, and aluminum carbonates such as ammonium aluminum carbonate. Examples of the aluminum organic salt include aluminum oxalate, aluminum acetate, aluminum stearate, aluminum lactate, and aluminum laurate.
アルミニウムアルコキシドとして具体的には、例えばアルミニウムイソプロポキシド、アルミニウムエトキシド、アルミニウムsec-ブトキシド、アルミニウムtert-ブトキシドなどが挙げられる。
Specific examples of the aluminum alkoxide include aluminum isopropoxide, aluminum ethoxide, aluminum sec-butoxide, aluminum tert-butoxide and the like.
(ケイ素源)
ケイ素源としては、酸化ケイ素(石英、アモルファスシリカ)、タルク(Mg3Si4O10(OH)2)、カオリン(Al2Si2O5(OH)4)である。また、空気中、単独で焼成することによりシリカに導かれる化合物の粉末も挙げられる。かかる化合物としては、例えばケイ酸、炭化ケイ素、窒化ケイ素、硫化ケイ素、四塩化ケイ素、酢酸ケイ素、ケイ酸ナトリウム、オルトケイ酸ナトリウム、ガラスフリットなどが挙げられる。 (Silicon source)
Examples of the silicon source include silicon oxide (quartz, amorphous silica), talc (Mg 3 Si 4 O 10 (OH) 2 ), and kaolin (Al 2 Si 2 O 5 (OH) 4 ). Moreover, the powder of the compound guide | induced to a silica by baking alone in the air is also mentioned. Examples of such compounds include silicic acid, silicon carbide, silicon nitride, silicon sulfide, silicon tetrachloride, silicon acetate, sodium silicate, sodium orthosilicate, glass frit and the like.
ケイ素源としては、酸化ケイ素(石英、アモルファスシリカ)、タルク(Mg3Si4O10(OH)2)、カオリン(Al2Si2O5(OH)4)である。また、空気中、単独で焼成することによりシリカに導かれる化合物の粉末も挙げられる。かかる化合物としては、例えばケイ酸、炭化ケイ素、窒化ケイ素、硫化ケイ素、四塩化ケイ素、酢酸ケイ素、ケイ酸ナトリウム、オルトケイ酸ナトリウム、ガラスフリットなどが挙げられる。 (Silicon source)
Examples of the silicon source include silicon oxide (quartz, amorphous silica), talc (Mg 3 Si 4 O 10 (OH) 2 ), and kaolin (Al 2 Si 2 O 5 (OH) 4 ). Moreover, the powder of the compound guide | induced to a silica by baking alone in the air is also mentioned. Examples of such compounds include silicic acid, silicon carbide, silicon nitride, silicon sulfide, silicon tetrachloride, silicon acetate, sodium silicate, sodium orthosilicate, glass frit and the like.
また、コージェライトの構成元素を含む無機原料粉は、一部又は全部がコージェライト粉であってもよい。
Also, the inorganic raw material powder containing the constituent elements of cordierite may be partially or wholly cordierite powder.
各成分の配合量は、SiO2成分、Al2O3成分、およびMgO成分が上述のコージェライト組成の範囲となるように適宜調節される。コージェライトの構成元素を含む無機原料粉の粒径D50は、1~30μmであることができる。
The blending amount of each component is appropriately adjusted so that the SiO 2 component, Al 2 O 3 component, and MgO component fall within the above cordierite composition range. The particle size D50 of the inorganic raw material powder containing the constituent elements of cordierite can be 1 to 30 μm.
添加剤としては、例えば、造孔材(孔形成剤)、バインダ、潤滑剤、可塑剤、溶媒が挙げられる。
Examples of additives include pore formers (pore forming agents), binders, lubricants, plasticizers, and solvents.
造孔材としては、焼成工程において成形体を脱脂・焼成する温度以下で消失する素材によって形成されたものを使用することができる。脱脂や焼成において、造孔材を含有する成形体が加熱されると、造孔材は燃焼等によって消滅する。これにより、造孔材が存在した箇所に空間ができると共に、この空間同士の間に位置する無機原料粉末が焼成の際に収縮することにより、流体を流すことができる連通孔を隔壁内に形成することができる。
As the pore former, a material formed by a material that disappears at a temperature lower than the temperature at which the molded body is degreased and fired in the firing process can be used. In degreasing and firing, when the molded body containing the pore former is heated, the pore former disappears due to combustion or the like. As a result, a space is created at the location where the pore former was present, and the inorganic raw material powder located between the spaces contracts during firing to form a communication hole in the partition wall through which fluid can flow. can do.
造孔材は、例えば、有機物粉、炭素粉、ドライアイス粉である。有機物粉の例は、トウモロコシ澱粉、大麦澱粉、小麦澱粉、タピオカ澱粉、豆澱粉、米澱粉、エンドウ澱粉、ポテト澱粉(馬鈴薯デンプン)である。樹脂粉の例は、ポリエチレン粉、中空樹脂粉(熱可塑性樹脂を外殻とし、その内部に該熱可塑性樹脂の軟化点以下の温度でガス化し、かつ塩素、臭素を含有しないエーテル構造を有する化合物を発泡剤として含有する熱膨張性微小球)である。炭素粉の例は、黒鉛である。造孔材の含有量は、例えば、無機原料粉末100質量部に対して10~50質量部であり、20~40質量部が好ましい。
The pore former is, for example, organic powder, carbon powder, or dry ice powder. Examples of organic powders are corn starch, barley starch, wheat starch, tapioca starch, bean starch, rice starch, pea starch, and potato starch (potato starch). Examples of resin powders are polyethylene powder, hollow resin powder (a compound having an ether structure which is gasified at a temperature below the softening point of the thermoplastic resin and does not contain chlorine or bromine inside the thermoplastic resin as an outer shell. Is a thermally expandable microsphere). An example of carbon powder is graphite. The content of the pore former is, for example, 10 to 50 parts by mass, preferably 20 to 40 parts by mass with respect to 100 parts by mass of the inorganic raw material powder.
造孔材のD50は10~30μmであってもよい。
The D50 of the pore former may be 10 to 30 μm.
バインダは、例えば、メチルセルロース、カルボキシルメチルセルロース、ヒドロキシアルキルメチルセルロース、ナトリウムカルボキシルメチルセルロースなどのセルロース類;ポリビニルアルコールなどのアルコール類;リグニンスルホン酸塩等の塩;パラフィンワックス、マイクロクリスタリンワックス等のワックスである。原料混合物におけるバインダの含有量は、例えば、無機原料粉末100質量部に対して20質量部以下である。
The binder is, for example, celluloses such as methylcellulose, carboxymethylcellulose, hydroxyalkylmethylcellulose, sodium carboxymethylcellulose; alcohols such as polyvinyl alcohol; salts such as lignin sulfonate; waxes such as paraffin wax and microcrystalline wax. The content of the binder in the raw material mixture is, for example, 20 parts by mass or less with respect to 100 parts by mass of the inorganic raw material powder.
潤滑剤または可塑剤は、例えばグリセリン等のアルコール類;カプリル酸、ラウリン酸、パルミチン酸、アラギン酸、オレイン酸、ステアリン酸等の高級脂肪酸;ステアリン酸A1等の高級脂肪酸金属塩、ポリオキシアルキレンアルキルエーテルである。原料混合物における潤滑剤または可塑剤の含有量は、例えば無機原料粉末100質量部に対して10質量部以下である。
Lubricants or plasticizers include, for example, alcohols such as glycerin; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, alginic acid, oleic acid and stearic acid; higher fatty acid metal salts such as stearic acid A1, polyoxyalkylene alkyl Ether. The content of the lubricant or plasticizer in the raw material mixture is, for example, 10 parts by mass or less with respect to 100 parts by mass of the inorganic raw material powder.
溶媒としては、例えば水やアルコールが挙げられる。水は不純物が少ない点で、イオン交換水が好ましい。原料混合物が溶媒を含有する場合、溶媒の含有率は、例えば、無機原料粉末100質量部に対して10~100質量部である。
Examples of the solvent include water and alcohol. Water is preferably ion-exchanged water because it has few impurities. When the raw material mixture contains a solvent, the content of the solvent is, for example, 10 to 100 parts by mass with respect to 100 parts by mass of the inorganic raw material powder.
(成形工程)
成形工程では、上記コージェライト原料を用いて複数の流路を有したハニカム構造を備えるグリーンハニカム構造体を得る。コージェライト原料を成形する工程には、例えば、通常用いられているものと同様の一軸プレス機、押出成形機などの成形装置を用いて、目的とするハニカム構造体の形状に成形すればよい。 (Molding process)
In the forming step, a green honeycomb structure having a honeycomb structure having a plurality of flow paths is obtained using the cordierite raw material. In the step of forming the cordierite raw material, it may be formed into the shape of the target honeycomb structure using a forming device such as a uniaxial press machine or an extrusion molding machine similar to those usually used.
成形工程では、上記コージェライト原料を用いて複数の流路を有したハニカム構造を備えるグリーンハニカム構造体を得る。コージェライト原料を成形する工程には、例えば、通常用いられているものと同様の一軸プレス機、押出成形機などの成形装置を用いて、目的とするハニカム構造体の形状に成形すればよい。 (Molding process)
In the forming step, a green honeycomb structure having a honeycomb structure having a plurality of flow paths is obtained using the cordierite raw material. In the step of forming the cordierite raw material, it may be formed into the shape of the target honeycomb structure using a forming device such as a uniaxial press machine or an extrusion molding machine similar to those usually used.
(焼成工程)
焼成工程では、成形工程において得られたグリーンハニカム構造体を焼成して焼成された多孔質ハニカム構造体を得る。焼成工程では、成形体の焼成前に、成形体中(コージェライト原料中)に含まれるバインダ等を除去するための仮焼(脱脂)が行われてもよい。成形体の焼成において、焼成温度は、通常1300℃以上であり、好ましくは1400℃以上である。また、焼成温度は、通常1500℃以下であり、好ましくは1450℃以下である。昇温速度は特に限定されるものではないが、通常1~500℃/時間である。造孔材が、有機物粉及び炭素粉である場合には、焼成を酸素含有雰囲気で行うことが好ましい。焼成は、通常、管状電気炉、箱型電気炉、トンネル炉、マイクロ波加熱炉、ロータリー炉、ローラーハース炉、ガス焼成炉などの通常の焼成炉を用いて行われる。焼成時間は、無機原料粉末がコージェライト系結晶に遷移するのに十分な時間であればよく、原料の量、焼成炉の形式、焼成温度、焼成雰囲気等により異なるが、通常は5~24時間である。 (Baking process)
In the firing step, the green honeycomb structure obtained in the forming step is fired to obtain a fired porous honeycomb structure. In the firing step, calcination (degreasing) for removing a binder or the like contained in the molded body (in the cordierite raw material) may be performed before the molded body is fired. In the firing of the molded body, the firing temperature is usually 1300 ° C. or higher, preferably 1400 ° C. or higher. Moreover, a calcination temperature is 1500 degrees C or less normally, Preferably it is 1450 degrees C or less. The temperature raising rate is not particularly limited, but is usually 1 to 500 ° C./hour. When the pore former is organic powder or carbon powder, it is preferable to perform firing in an oxygen-containing atmosphere. Firing is usually performed using a conventional firing furnace such as a tubular electric furnace, a box-type electric furnace, a tunnel furnace, a microwave heating furnace, a rotary furnace, a roller hearth furnace, or a gas firing furnace. The firing time may be a time sufficient for the inorganic raw material powder to transition to the cordierite-based crystal, and varies depending on the amount of raw material, type of firing furnace, firing temperature, firing atmosphere, etc., but is usually 5 to 24 hours. It is.
焼成工程では、成形工程において得られたグリーンハニカム構造体を焼成して焼成された多孔質ハニカム構造体を得る。焼成工程では、成形体の焼成前に、成形体中(コージェライト原料中)に含まれるバインダ等を除去するための仮焼(脱脂)が行われてもよい。成形体の焼成において、焼成温度は、通常1300℃以上であり、好ましくは1400℃以上である。また、焼成温度は、通常1500℃以下であり、好ましくは1450℃以下である。昇温速度は特に限定されるものではないが、通常1~500℃/時間である。造孔材が、有機物粉及び炭素粉である場合には、焼成を酸素含有雰囲気で行うことが好ましい。焼成は、通常、管状電気炉、箱型電気炉、トンネル炉、マイクロ波加熱炉、ロータリー炉、ローラーハース炉、ガス焼成炉などの通常の焼成炉を用いて行われる。焼成時間は、無機原料粉末がコージェライト系結晶に遷移するのに十分な時間であればよく、原料の量、焼成炉の形式、焼成温度、焼成雰囲気等により異なるが、通常は5~24時間である。 (Baking process)
In the firing step, the green honeycomb structure obtained in the forming step is fired to obtain a fired porous honeycomb structure. In the firing step, calcination (degreasing) for removing a binder or the like contained in the molded body (in the cordierite raw material) may be performed before the molded body is fired. In the firing of the molded body, the firing temperature is usually 1300 ° C. or higher, preferably 1400 ° C. or higher. Moreover, a calcination temperature is 1500 degrees C or less normally, Preferably it is 1450 degrees C or less. The temperature raising rate is not particularly limited, but is usually 1 to 500 ° C./hour. When the pore former is organic powder or carbon powder, it is preferable to perform firing in an oxygen-containing atmosphere. Firing is usually performed using a conventional firing furnace such as a tubular electric furnace, a box-type electric furnace, a tunnel furnace, a microwave heating furnace, a rotary furnace, a roller hearth furnace, or a gas firing furnace. The firing time may be a time sufficient for the inorganic raw material powder to transition to the cordierite-based crystal, and varies depending on the amount of raw material, type of firing furnace, firing temperature, firing atmosphere, etc., but is usually 5 to 24 hours. It is.
(封口工程)
封口工程は、成形工程と焼成工程の間、又は、焼成工程の後に行われる。成形工程と焼成工程の間に封口工程を行う場合、成形工程において得られた未焼成のグリーンハニカム構造体の各流路のいずれか一方の端部を封口材で封口した後、焼成工程においてグリーンハニカム構造体と共に封口材を焼成することにより、複数の流路を有する多孔質ハニカム構造体及び各流路のいずれか一方の端部を封口する封口部を備えコージェライトを主成分とするハニカムフィルタが得られる。焼成工程の後に封口工程を行う場合、焼成工程において得られた多孔質ハニカム構造体の各流路のいずれか一方の端部を封口材で封口した後、多孔質ハニカム構造体と共に封口材を焼成することにより、同様のハニカムハニカムフィルタが得られる。封口材としては、上記グリーンハニカム成形体を得るためのコージェライト原料と同様の原料を用いることができる。 (Sealing process)
The sealing step is performed between the molding step and the firing step or after the firing step. When a sealing step is performed between the forming step and the firing step, one end of each flow path of the green honeycomb structure obtained in the forming step is sealed with a sealing material, and then green in the firing step. A honeycomb filter having a cordierite as a main component, comprising a porous honeycomb structure having a plurality of flow paths by sealing a sealing material together with the honeycomb structure, and a sealing part that seals one end of each flow path Is obtained. When the sealing step is performed after the firing step, after sealing one end of each flow path of the porous honeycomb structure obtained in the firing step with the sealing material, the sealing material is fired together with the porous honeycomb structure. By doing so, a similar honeycomb honeycomb filter is obtained. As the sealing material, the same raw material as the cordierite raw material for obtaining the green honeycomb molded body can be used.
封口工程は、成形工程と焼成工程の間、又は、焼成工程の後に行われる。成形工程と焼成工程の間に封口工程を行う場合、成形工程において得られた未焼成のグリーンハニカム構造体の各流路のいずれか一方の端部を封口材で封口した後、焼成工程においてグリーンハニカム構造体と共に封口材を焼成することにより、複数の流路を有する多孔質ハニカム構造体及び各流路のいずれか一方の端部を封口する封口部を備えコージェライトを主成分とするハニカムフィルタが得られる。焼成工程の後に封口工程を行う場合、焼成工程において得られた多孔質ハニカム構造体の各流路のいずれか一方の端部を封口材で封口した後、多孔質ハニカム構造体と共に封口材を焼成することにより、同様のハニカムハニカムフィルタが得られる。封口材としては、上記グリーンハニカム成形体を得るためのコージェライト原料と同様の原料を用いることができる。 (Sealing process)
The sealing step is performed between the molding step and the firing step or after the firing step. When a sealing step is performed between the forming step and the firing step, one end of each flow path of the green honeycomb structure obtained in the forming step is sealed with a sealing material, and then green in the firing step. A honeycomb filter having a cordierite as a main component, comprising a porous honeycomb structure having a plurality of flow paths by sealing a sealing material together with the honeycomb structure, and a sealing part that seals one end of each flow path Is obtained. When the sealing step is performed after the firing step, after sealing one end of each flow path of the porous honeycomb structure obtained in the firing step with the sealing material, the sealing material is fired together with the porous honeycomb structure. By doing so, a similar honeycomb honeycomb filter is obtained. As the sealing material, the same raw material as the cordierite raw material for obtaining the green honeycomb molded body can be used.
本実施形態に係る製造方法によれば、上述の多孔質構造を有するハニカムフィルタを容易に得ることができる。
特に、水酸化アルミニウムは、コージェライトの熱膨張係数を高める役割があると考えられる。 According to the manufacturing method according to the present embodiment, the honeycomb filter having the porous structure described above can be easily obtained.
In particular, aluminum hydroxide is considered to have a role of increasing the thermal expansion coefficient of cordierite.
特に、水酸化アルミニウムは、コージェライトの熱膨張係数を高める役割があると考えられる。 According to the manufacturing method according to the present embodiment, the honeycomb filter having the porous structure described above can be easily obtained.
In particular, aluminum hydroxide is considered to have a role of increasing the thermal expansion coefficient of cordierite.
本発明は上記実施形態に限定されず様々な変形態様が可能である。
例えば、上記実施形態では、入口流路110a及び出口流路110bが、プラグ状の封口部130により閉じられているが、他の封口法を採用してもよい。例えば、多孔質ハニカム成形体の端部の隔壁を、ハニカムフィルタの端面に向かって一方の各流路の断面積が拡大し、かつ、他方の各流路の断面積がゼロになるまで縮小するように変形させ、その後焼成することによって封口部を形成してもよい。 The present invention is not limited to the above embodiment, and various modifications can be made.
For example, in the above embodiment, theinlet channel 110a and the outlet channel 110b are closed by the plug-shaped sealing part 130, but other sealing methods may be adopted. For example, the partition wall at the end of the porous honeycomb molded body is reduced toward the end face of the honeycomb filter until the cross-sectional area of one of the flow paths increases and the cross-sectional area of the other flow path becomes zero. The sealing portion may be formed by deforming as described above and then firing.
例えば、上記実施形態では、入口流路110a及び出口流路110bが、プラグ状の封口部130により閉じられているが、他の封口法を採用してもよい。例えば、多孔質ハニカム成形体の端部の隔壁を、ハニカムフィルタの端面に向かって一方の各流路の断面積が拡大し、かつ、他方の各流路の断面積がゼロになるまで縮小するように変形させ、その後焼成することによって封口部を形成してもよい。 The present invention is not limited to the above embodiment, and various modifications can be made.
For example, in the above embodiment, the
(実施例1)
コージェライト原料(カオリン、アルミナ、水酸化アルミニウム、タルク、シリカ)、造孔材、バインダーを混合し、押出成形機でハニカム成形体を作成した。 (Example 1)
A cordierite raw material (kaolin, alumina, aluminum hydroxide, talc, silica), a pore former, and a binder were mixed, and a honeycomb formed body was prepared with an extruder.
コージェライト原料(カオリン、アルミナ、水酸化アルミニウム、タルク、シリカ)、造孔材、バインダーを混合し、押出成形機でハニカム成形体を作成した。 (Example 1)
A cordierite raw material (kaolin, alumina, aluminum hydroxide, talc, silica), a pore former, and a binder were mixed, and a honeycomb formed body was prepared with an extruder.
各原料の配合量は、表1に示すようにした。各アルミナ源中のAlの質量比等を表2に示す。造孔材として馬鈴薯澱粉を用いた。また、押出成形に適する可塑性を与えるために、上記原料の混合物に適量の水及び潤滑剤を添加して成形した。成形されたハニカム成形体は、図2の形状を有し、六角形のセルの密度は290cpsiであった。外径は25.4mmであり、高さは150.3mm、壁の厚みは10.4milであった。
The blending amount of each raw material was as shown in Table 1. Table 2 shows the mass ratio of Al in each alumina source. Potato starch was used as the pore former. Further, in order to give plasticity suitable for extrusion molding, an appropriate amount of water and a lubricant were added to the mixture of the raw materials, and molding was performed. The formed honeycomb formed body had the shape shown in FIG. 2, and the density of hexagonal cells was 290 cpsi. The outer diameter was 25.4 mm, the height was 150.3 mm, and the wall thickness was 10.4 mil.
(実施例2~7、比較例1~2)
コージェライト原料の組成を、表1に示されるように変更する以外は実施例1と同様にした。 (Examples 2-7, Comparative Examples 1-2)
The composition of the cordierite raw material was the same as that of Example 1 except that the composition was changed as shown in Table 1.
コージェライト原料の組成を、表1に示されるように変更する以外は実施例1と同様にした。 (Examples 2-7, Comparative Examples 1-2)
The composition of the cordierite raw material was the same as that of Example 1 except that the composition was changed as shown in Table 1.
(気孔率及び細孔構造)
得られたハニカムフィルタの気孔率、及び、気孔径のD10、D50、D90を水銀圧入法により、Micromeritics製オートポアIIIを使用して行った。まず、ハニカムフィルタから切出した小片を試験片として測定セル内に収納し、セル内を減圧した後、水銀を導入してから加圧し、このときの圧力と試料内に存在する細孔中に押し込まれた水銀の体積との関係から、細孔径と累積細孔容積の関係を求めた。このとき、水銀を導入する圧力は0.5psi(3.4×10-3MPa)とし、圧力から細孔径を算出する際の常数は、接触角=130°、表面張力:485dyne/cmとした。また全細孔容積は、圧力60,000psi(414MPa)の時の累積細孔容積とした(細孔径0.003μmに相当)。結果を表3に示す。 (Porosity and pore structure)
The porosity of the obtained honeycomb filter and the pore diameters D10, D50, and D90 were measured by mercury porosimetry using an Autopore III manufactured by Micromeritics. First, a small piece cut out from the honeycomb filter is stored in the measurement cell as a test piece, and after the pressure inside the cell is reduced, mercury is introduced and then the pressure is applied, and the pressure at this time and the pressure is pushed into the pores existing in the sample. The relationship between the pore diameter and the cumulative pore volume was determined from the relationship with the mercury volume. At this time, the pressure for introducing mercury was 0.5 psi (3.4 × 10 −3 MPa), and the constants for calculating the pore diameter from the pressure were contact angle = 130 ° and surface tension: 485 dyne / cm. . The total pore volume was the cumulative pore volume at a pressure of 60,000 psi (414 MPa) (corresponding to a pore diameter of 0.003 μm). The results are shown in Table 3.
得られたハニカムフィルタの気孔率、及び、気孔径のD10、D50、D90を水銀圧入法により、Micromeritics製オートポアIIIを使用して行った。まず、ハニカムフィルタから切出した小片を試験片として測定セル内に収納し、セル内を減圧した後、水銀を導入してから加圧し、このときの圧力と試料内に存在する細孔中に押し込まれた水銀の体積との関係から、細孔径と累積細孔容積の関係を求めた。このとき、水銀を導入する圧力は0.5psi(3.4×10-3MPa)とし、圧力から細孔径を算出する際の常数は、接触角=130°、表面張力:485dyne/cmとした。また全細孔容積は、圧力60,000psi(414MPa)の時の累積細孔容積とした(細孔径0.003μmに相当)。結果を表3に示す。 (Porosity and pore structure)
The porosity of the obtained honeycomb filter and the pore diameters D10, D50, and D90 were measured by mercury porosimetry using an Autopore III manufactured by Micromeritics. First, a small piece cut out from the honeycomb filter is stored in the measurement cell as a test piece, and after the pressure inside the cell is reduced, mercury is introduced and then the pressure is applied, and the pressure at this time and the pressure is pushed into the pores existing in the sample. The relationship between the pore diameter and the cumulative pore volume was determined from the relationship with the mercury volume. At this time, the pressure for introducing mercury was 0.5 psi (3.4 × 10 −3 MPa), and the constants for calculating the pore diameter from the pressure were contact angle = 130 ° and surface tension: 485 dyne / cm. . The total pore volume was the cumulative pore volume at a pressure of 60,000 psi (414 MPa) (corresponding to a pore diameter of 0.003 μm). The results are shown in Table 3.
(熱膨張率)
多孔質ハニカム構造体の各温度間の熱膨張率は、以下のようにして求めた。すなわち、ハニカムフィルタから長さ20mm、縦横それぞれ5mmの直方体の小片を切り出した。熱機械的分析装置(SIIテクノロジー株式会社製 IMA6300)を用い、室温(25℃)から1000℃まで600℃/hで昇温させ、40~800℃の温度範囲における小片の膨張率を測定した。結果を表3に示す。 (Coefficient of thermal expansion)
The coefficient of thermal expansion between the temperatures of the porous honeycomb structure was determined as follows. That is, a rectangular parallelepiped piece having a length of 20 mm and a length and width of 5 mm was cut out from the honeycomb filter. Using a thermomechanical analyzer (IMA6300 manufactured by SII Technology Co., Ltd.), the temperature was raised from room temperature (25 ° C.) to 1000 ° C. at 600 ° C./h, and the expansion coefficient of the small pieces in the temperature range of 40 to 800 ° C. was measured. The results are shown in Table 3.
多孔質ハニカム構造体の各温度間の熱膨張率は、以下のようにして求めた。すなわち、ハニカムフィルタから長さ20mm、縦横それぞれ5mmの直方体の小片を切り出した。熱機械的分析装置(SIIテクノロジー株式会社製 IMA6300)を用い、室温(25℃)から1000℃まで600℃/hで昇温させ、40~800℃の温度範囲における小片の膨張率を測定した。結果を表3に示す。 (Coefficient of thermal expansion)
The coefficient of thermal expansion between the temperatures of the porous honeycomb structure was determined as follows. That is, a rectangular parallelepiped piece having a length of 20 mm and a length and width of 5 mm was cut out from the honeycomb filter. Using a thermomechanical analyzer (IMA6300 manufactured by SII Technology Co., Ltd.), the temperature was raised from room temperature (25 ° C.) to 1000 ° C. at 600 ° C./h, and the expansion coefficient of the small pieces in the temperature range of 40 to 800 ° C. was measured. The results are shown in Table 3.
(フィルタ使用時のフィルタと缶間の隙間の拡大量の評価)
40℃での内径がハニカムフィルタと同一である耐熱鋼(SUH409L)製の円筒形状の管内に各ハニカムフィルタを収容し、ハニカムフィルタの温度を800℃、缶の温度を650℃に昇温した場合の、缶とハニカムフィルタ間に形成される隙間の値を計算により求めた。結果を表3に示す。
実施例は、比較例に比較してフィルタと缶との間に形成される隙間を小さくできることが確認された。 (Evaluation of the amount of expansion of the gap between the filter and the can when using the filter)
When each honeycomb filter is housed in a cylindrical tube made of heat-resistant steel (SUH409L) whose inner diameter at 40 ° C. is the same as that of the honeycomb filter, and the temperature of the honeycomb filter is raised to 800 ° C. and the temperature of the can to 650 ° C. The value of the gap formed between the can and the honeycomb filter was obtained by calculation. The results are shown in Table 3.
In the example, it was confirmed that the gap formed between the filter and the can can be reduced as compared with the comparative example.
40℃での内径がハニカムフィルタと同一である耐熱鋼(SUH409L)製の円筒形状の管内に各ハニカムフィルタを収容し、ハニカムフィルタの温度を800℃、缶の温度を650℃に昇温した場合の、缶とハニカムフィルタ間に形成される隙間の値を計算により求めた。結果を表3に示す。
実施例は、比較例に比較してフィルタと缶との間に形成される隙間を小さくできることが確認された。 (Evaluation of the amount of expansion of the gap between the filter and the can when using the filter)
When each honeycomb filter is housed in a cylindrical tube made of heat-resistant steel (SUH409L) whose inner diameter at 40 ° C. is the same as that of the honeycomb filter, and the temperature of the honeycomb filter is raised to 800 ° C. and the temperature of the can to 650 ° C. The value of the gap formed between the can and the honeycomb filter was obtained by calculation. The results are shown in Table 3.
In the example, it was confirmed that the gap formed between the filter and the can can be reduced as compared with the comparative example.
100…ハニカムフィルタ、120…多孔質ハニカム構造体、110…流路、130…封口部。
DESCRIPTION OFSYMBOLS 100 ... Honeycomb filter, 120 ... Porous honeycomb structure, 110 ... Channel, 130 ... Sealing part.
DESCRIPTION OF
Claims (2)
- 複数の流路を有する多孔質ハニカム構造体と、
前記複数の流路の内の一部の流路の一端、及び、前記複数の流路の内の残部の流路の他端を閉じる複数の封口部と、を備え、
前記多孔質ハニカム構造体の気孔率が55~70%であり、
前記多孔質ハニカム構造体はコージェライトを主成分として含み、
前記多孔質ハニカム構造体の40~800℃の間の平均熱膨張係数は1.4×10-6~2.1×10-6/Kである、ハニカムフィルタ。 A porous honeycomb structure having a plurality of flow paths;
One end of a part of the plurality of channels, and a plurality of sealing portions for closing the other end of the remaining channel among the plurality of channels,
The porosity of the porous honeycomb structure is 55 to 70%;
The porous honeycomb structure includes cordierite as a main component,
The honeycomb filter, wherein the porous honeycomb structure has an average coefficient of thermal expansion of 1.4 × 10 −6 to 2.1 × 10 −6 / K between 40 to 800 ° C. - アルミニウム源、マグネシウム源、ケイ素源、及び、造孔材を含むコージェライト原料を成形して、複数の流路を有するグリーンハニカム構造体を得る工程と、
前記グリーンハニカム構造体を焼成して多孔質ハニカム構造体を得る工程と、
前記グリーンハニカム構造体又は前記多孔質ハニカム構造体の前記複数の流路それぞれのいずれかの端部を封口する工程と、を備え、
前記アルミニウム源は、アルミナ及びカオリンの少なくとも一方と、水酸化アルミニウムと、を含み、
前記アルミニウム源に含まれる全アルミニウム元素の質量に対する、水酸化アルミニウムに含まれるアルミニウム元素の質量の比が15~95%であり、
水酸化アルミニウムに含まれるアルミニウム元素の質量に対する、アルミナに含まれるアルミニウム元素の質量の比が0~0.4又は1.0~5.0であり、
水酸化アルミニウムに含まれるアルミニウム元素の質量に対する、カオリンに含まれるアルミニウム元素の質量の比が0~1.1又は1.5~3.5である、ハニカムフィルタの製造方法。
Forming a cordierite raw material including an aluminum source, a magnesium source, a silicon source, and a pore former to obtain a green honeycomb structure having a plurality of flow paths;
Firing the green honeycomb structure to obtain a porous honeycomb structure;
Sealing any one end of each of the plurality of flow paths of the green honeycomb structure or the porous honeycomb structure, and
The aluminum source includes at least one of alumina and kaolin, and aluminum hydroxide,
The ratio of the mass of the aluminum element contained in the aluminum hydroxide to the mass of the total aluminum element contained in the aluminum source is 15 to 95%,
The ratio of the mass of aluminum element contained in alumina to the mass of aluminum element contained in aluminum hydroxide is 0 to 0.4 or 1.0 to 5.0,
A method for manufacturing a honeycomb filter, wherein a ratio of a mass of aluminum element contained in kaolin to a mass of aluminum element contained in aluminum hydroxide is 0 to 1.1 or 1.5 to 3.5.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015186923A JP2018183710A (en) | 2015-09-24 | 2015-09-24 | Honeycomb filter and manufacturing method of the honeycomb filter |
JP2015-186923 | 2015-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017051806A1 true WO2017051806A1 (en) | 2017-03-30 |
Family
ID=58386673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/077721 WO2017051806A1 (en) | 2015-09-24 | 2016-09-20 | Honeycomb filter, and method for producing honeycomb filter |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018183710A (en) |
WO (1) | WO2017051806A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03284313A (en) * | 1990-03-30 | 1991-12-16 | Ngk Insulators Ltd | Production of porous ceramic filter |
JP2002326034A (en) * | 2001-05-01 | 2002-11-12 | Ngk Insulators Ltd | Porous honeycomb structure and method of producing the same |
JP2005324154A (en) * | 2004-05-17 | 2005-11-24 | Hitachi Metals Ltd | Ceramic honeycomb structure |
JP2007283286A (en) * | 2006-03-22 | 2007-11-01 | Ngk Insulators Ltd | Method for producing sealed honeycomb structure |
JP2009542569A (en) * | 2006-06-30 | 2009-12-03 | コーニング インコーポレイテッド | Low microcracked porous ceramic honeycomb and method for producing the same |
WO2010114062A1 (en) * | 2009-03-31 | 2010-10-07 | 日立金属株式会社 | Ceramic honeycomb structure and process for producing same |
JP2013039514A (en) * | 2011-08-12 | 2013-02-28 | Sumitomo Chemical Co Ltd | Honeycomb structure |
JP2014505647A (en) * | 2010-11-30 | 2014-03-06 | コーニング インコーポレイテッド | Cordierite porous ceramic honeycomb structure with delayed generation of microcracks |
-
2015
- 2015-09-24 JP JP2015186923A patent/JP2018183710A/en active Pending
-
2016
- 2016-09-20 WO PCT/JP2016/077721 patent/WO2017051806A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03284313A (en) * | 1990-03-30 | 1991-12-16 | Ngk Insulators Ltd | Production of porous ceramic filter |
JP2002326034A (en) * | 2001-05-01 | 2002-11-12 | Ngk Insulators Ltd | Porous honeycomb structure and method of producing the same |
JP2005324154A (en) * | 2004-05-17 | 2005-11-24 | Hitachi Metals Ltd | Ceramic honeycomb structure |
JP2007283286A (en) * | 2006-03-22 | 2007-11-01 | Ngk Insulators Ltd | Method for producing sealed honeycomb structure |
JP2009542569A (en) * | 2006-06-30 | 2009-12-03 | コーニング インコーポレイテッド | Low microcracked porous ceramic honeycomb and method for producing the same |
WO2010114062A1 (en) * | 2009-03-31 | 2010-10-07 | 日立金属株式会社 | Ceramic honeycomb structure and process for producing same |
JP2014505647A (en) * | 2010-11-30 | 2014-03-06 | コーニング インコーポレイテッド | Cordierite porous ceramic honeycomb structure with delayed generation of microcracks |
JP2013039514A (en) * | 2011-08-12 | 2013-02-28 | Sumitomo Chemical Co Ltd | Honeycomb structure |
Also Published As
Publication number | Publication date |
---|---|
JP2018183710A (en) | 2018-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017051800A1 (en) | Honeycomb filter, and method for producing honeycomb filter | |
JP5502000B2 (en) | Honeycomb structure and particulate filter | |
JP5491558B2 (en) | Honeycomb structure | |
WO2012157421A1 (en) | Honeycomb filter | |
WO2012081580A1 (en) | Green formed body, and process for production of honeycomb structure | |
WO2013024745A1 (en) | Honeycomb structure | |
JP4358662B2 (en) | Method for producing cordierite honeycomb structure | |
US9447716B2 (en) | Honeycomb structure | |
WO2011037177A1 (en) | Method for producing ceramic fired article | |
WO2012157420A1 (en) | Honeycomb filter | |
JP2022507650A (en) | A method for producing a ceramic body containing cozierite, a mixture of batch compositions, and a ceramic body containing cozierite. | |
JP2011051846A (en) | Method for manufacturing ceramic sintered compact | |
WO2013024744A1 (en) | Honeycomb filter | |
WO2017051806A1 (en) | Honeycomb filter, and method for producing honeycomb filter | |
WO2012157422A1 (en) | Honeycomb filter | |
JP2012020442A (en) | Method for manufacturing honeycomb structure | |
US20240368042A1 (en) | Ceramic honeycomb structure and its production method | |
JP2013129583A (en) | Honeycomb structure and honeycomb filter | |
WO2012176888A1 (en) | Aluminum titanate ceramic and molded body | |
JP2011241116A (en) | Method for producing aluminum titanate sintered compact and aluminum titanate sintered compact | |
WO2015159823A1 (en) | Method for manufacturing honeycomb filter and honeycomb filter | |
JP2018058726A (en) | Porous honeycomb structure and honeycomb filter | |
WO2013073532A1 (en) | Honeycomb structure and honeycomb filter | |
JP2013146687A (en) | Method for sealing honeycomb structure and method for producing honeycomb filter | |
JP2012001413A (en) | Method for manufacturing green mold and honeycomb fired body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16848594 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16848594 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |