[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017051615A1 - 電力制御システム、方法及び制御装置 - Google Patents

電力制御システム、方法及び制御装置 Download PDF

Info

Publication number
WO2017051615A1
WO2017051615A1 PCT/JP2016/072770 JP2016072770W WO2017051615A1 WO 2017051615 A1 WO2017051615 A1 WO 2017051615A1 JP 2016072770 W JP2016072770 W JP 2016072770W WO 2017051615 A1 WO2017051615 A1 WO 2017051615A1
Authority
WO
WIPO (PCT)
Prior art keywords
facility
power
storage battery
upper limit
power consumption
Prior art date
Application number
PCT/JP2016/072770
Other languages
English (en)
French (fr)
Inventor
真恒 寺内
裕介 三木
隆人 小林
山田 和夫
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP16848403.8A priority Critical patent/EP3355435B1/en
Priority to US15/761,023 priority patent/US10615602B2/en
Priority to JP2017541468A priority patent/JP6692365B2/ja
Publication of WO2017051615A1 publication Critical patent/WO2017051615A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present disclosure relates to power control, and more specifically, to a technology for controlling power supplied to a facility such as a factory by controlling charge / discharge of a storage battery.
  • storage batteries are installed in the customer's facilities to manage the power supply to the facilities.
  • a storage battery or solar cell is installed in a customer's facility, and the power conditioner controls the supply of power from the grid to the facility, charging / discharging of the storage battery, the supply of power generated by the solar cell to the facility, or power sale To do.
  • the power charge is composed of, for example, a basic power charge and a power charge (a pay-as-you-go charge) determined according to the amount of power used.
  • the basic charge of power is set according to the highest peak power among the power consumed by consumers in the past.
  • a threshold is set so that the level of power consumed by the consumer is below a certain level, and the power stored in the storage battery is supplied to the facility according to the comparison result of the magnitude of the consumer's power consumption and the threshold.
  • the consumer it is possible to level the peak demand for power consumed by consumers.
  • the consumer it is possible for the consumer to reduce the amount of power supplied from the grid and to reduce the power charge.
  • leveling the load has an advantage that the power supply is stabilized.
  • Patent Document 1 As a technique for reducing the maximum peak power level (peak cut), for example, Japanese Patent Laid-Open No. 2008-306932 (Patent Document 1) suppresses the capacity of a power storage device while reliably performing peak cut. Describes a power storage system that can According to the technique of Patent Document 1, the power storage system switches the secondary battery so that the secondary battery is charged during the nighttime power hours and discharged from the secondary battery during the daytime power peak hours. Further, the power storage system causes the power storage device to perform a charging operation when the discharge operation by the power storage device is not required during the peak time period and the charge state of the power storage device is not a full charge state. Thus, since there is a margin in power demand in the peak time zone and the charging operation is performed when the power storage device is not fully charged, it is possible to maintain the state where the power storage device is close to full charge as much as possible. It is described in.
  • a threshold value for comparing with the power consumption in the facility may be set sufficiently high. However, if the threshold value is set high, there will be less opportunities to start discharging from the storage battery due to the peak cut, and the effect of leveling the load will be reduced, leading to unstable power supply for the power company. In other words, it may reduce the willingness to disseminate the peak cut system for the electric power company.
  • An object of the present disclosure is to provide a technology that can control the supply of power to a facility and meet the demands of both a consumer and a power supplier.
  • the power control system is for controlling the supply of power to a facility.
  • the power control system is installed in a facility, is charged by receiving power supply, and discharges the charged power, thereby storing a storage battery for supplying power to the facility and the actual power consumption value of the facility
  • Power storage means acquisition means for acquiring at least one of information relating to the external environment of the facility, or parameter information relating to power consumption in the internal environment of the facility, and information acquired by the acquisition means for the facility
  • an upper limit set value of power supplied from the grid to the facility based on the actual value of power consumption stored in the power storage means, and set an upper limit for the power supplied from the grid to the facility
  • Supply control means for supplying the power charged in the storage battery to the facility when the power consumption of the facility exceeds the upper limit set value.
  • a method for controlling the supply of power to a facility is provided.
  • a storage battery is installed in the facility.
  • the storage battery is charged by receiving power supply, and supplies power to the facility by discharging the charged power.
  • the control device obtains at least one of information on an external environment of the facility or information on a parameter related to power consumption in the internal environment of the facility, and the control device is obtained for the facility.
  • the upper limit setting value of power supplied from the system to the facility is determined, and the upper limit of power supplied from the system to the facility is set to the upper limit setting value. In the case where the power consumption of the facility exceeds the upper limit set value, the power charged in the storage battery is supplied to the facility.
  • a control device for controlling the supply of power to the facility.
  • a storage battery is installed in the facility to receive power and be charged, and to supply the facility with power by discharging the charged power.
  • the control device includes supply control means for controlling supply of power from the storage battery to the facility.
  • the supply control means determines the power supplied from the grid to the facility, which is determined based on at least one of the information related to the external environment of the facility or the information related to the internal environment of the facility, and the actual power consumption value of the facility. When the power consumption of the facility exceeds the upper limit set value so that the upper limit set value is obtained and the upper limit of the power supplied from the grid to the facility is the upper limit set value, the power charged in the storage battery is Configured to supply.
  • the power demand peak is further leveled so that the facility can use the power while controlling the peak power demand so as not to exceed the maximum power that the power supplier can supply. Can be. Therefore, it is possible for the consumer to reduce the basic charge of power. In addition, for the power supply company, the supply of power can be further stabilized.
  • FIG. 1 is a block diagram schematically showing a configuration of a power control system 1 according to a first embodiment.
  • 2 is a block diagram showing a configuration of a control device 100.
  • FIG. 3 is a diagram showing a data structure of internal environment information 163 stored in the control device 100.
  • FIG. It is a figure which shows the data structure of the storage battery performance information 165 memorize
  • FIG. 4 is a flowchart showing processing for controlling charging / discharging of the storage battery 500 based on at least one of information related to the external environment of the facility 800 and information related to the internal environment.
  • 6 is a flowchart illustrating an operation of the control device 100 in the power control system of the second embodiment.
  • FIG. 1 is a block diagram schematically showing the configuration of the power control system 1 of the first embodiment.
  • the control device 100 controls the supply of power to the facility 800.
  • the control device 100 receives information on the power that can be supplied by the power plant 900 to the facility 800 (suppliable power information) from, for example, the server 300 so that the maximum power that can be supplied by the power plant 900 is not exceeded.
  • the facility 800 is, for example, a factory and is a facility that consumes electric power. The amount of power demand varies depending on the type of facility.
  • a power control system 1 includes a control device 100, a power conditioner 200, a server 300, an information terminal 400, a storage battery 500, a solar cell string 600, a facility 800, and a power plant 900.
  • the control device 100, the information terminal 400, and the server 300 are connected to be communicable with each other via the cloud network 700.
  • the solar cell string 600, the power conditioner 200, and the storage battery 500 are disposed, for example, in the vicinity of the facility 800 (for example, outdoors of the facility 800).
  • Solar cell string 600 includes a plurality of solar cell modules.
  • the solar cell string 600 supplies the power conditioner 200 with the electric power generated by the photoelectric effect upon receiving sunlight.
  • the storage battery 500 is installed in the facility 800, is charged by receiving power supplied from the power conditioner 200, and discharges the charged power to supply power to the facility 800 by the power conditioner 200.
  • the power consuming device is a device that consumes power by operating in the internal environment of the facility 800.
  • the power consuming device is a production device that is installed in a factory to produce a product.
  • the control device 100 is a computer system including a storage device.
  • the control device 100 receives information regarding the external environment of the facility 800 from the server 300 via the cloud network 700.
  • the information regarding the external environment of the facility 800 includes, for example, performance data regarding the temperature at the location of the facility 800 and data on the temperature expected at the location of the facility 800 (expected temperature data).
  • the control device 100 receives information regarding the internal environment of the facility 800 from the server 300 or the information terminal 400 via the cloud network 700.
  • the information related to the internal environment of the facility 800 includes, for example, operation result data of power consuming devices operating in the facility 800 and operation plan data indicating the plan contents for operating the power consuming devices.
  • the operation plan data of the power consuming equipment is information on the time zone during which the production machine for producing the product is operated, information on the number of productions that the production machine is scheduled to produce, and the like. Contains information. That is, the operation plan data of the power consuming device is information regarding the amount of power consumed by the power consuming device.
  • the control device 100 acquires the actual power consumption value in the facility 800 from the server 300, for example, and stores the acquired value in a memory or the like.
  • the control apparatus 100 acquires at least one of information related to the external environment of the facility 800 and information related to the internal environment of the facility 800 from the server 300 and the like, and based on the acquired information and the actual power consumption value in the facility 800.
  • the upper limit setting value (threshold value) indicating the upper limit of the power supplied from the system to the facility 800 is determined.
  • the control device 100 supplies the power charged in the storage battery 500 to the facility 800.
  • the power conditioner 200 is controlled so as to be supplied to the inverter.
  • the control device 100 estimates the relationship between the air temperature and the power consumption of the facility 800 based on the actual data regarding the air temperature and the actual power consumption value of the facility 800.
  • the control device 100 calculates a predicted value of power consumption of the facility 800 based on the estimation result and the predicted temperature data.
  • the control device 100 determines an upper limit setting value based on the calculated predicted value (for example, a predetermined ratio of a peak of power consumption in the predicted value (for example, a cut amount specified by the user, It may be a fixed ratio to the predicted value (for example, 90%)).
  • the control device 100 supplies the power charged in the storage battery 500 to the facility 800 when the power consumption of the facility 800 exceeds the determined upper limit setting value.
  • the control apparatus 100 estimates the relationship between the operation results of the power consuming device and the power consumption of the facility 800 based on the operation result data of the power consuming device of the facility 800 and the actual power consumption value of the facility 800. .
  • the control device 100 calculates a predicted value of the power consumption of the facility 800 based on the estimation result and the operation plan data of the power consuming device.
  • the control device 100 determines an upper limit setting value based on the calculated predicted value.
  • the control device 100 supplies the power charged in the storage battery 500 to the facility 800 when the power consumption of the facility 800 exceeds the determined upper limit setting value.
  • a storage battery 500 and a solar cell string 600 are connected to the power conditioner 200.
  • the power conditioner 200 receives power supplied from the grid and supplies power to the facility 800.
  • the power conditioner 200 has a function of converting DC power generated by the solar cell string 600 into AC power that can be used in the facility 800.
  • the power conditioner 200 supplies the power generated by the solar cell string 600 to the facility 800 or the storage battery 500. Further, the power conditioner 200 sells the electric power generated by the solar cell string 600 to the outside through the watt hour meter. Further, the power conditioner 200 controls charging to the storage battery 500 and discharging from the storage battery 500.
  • the control device 100 can control the operation of the power conditioner 200.
  • the control device 100 uses the power corresponding to the total calculation result (power consumption) predicted to be consumed in the facility 800 beyond the upper limit set value in the power consumption prediction data.
  • the storage battery 500 is charged by the power conditioner 200 before the time zone predicted to exceed the set value.
  • the power conditioner 200 is predicted to be consumed in a predetermined time (for example, a midnight time zone where the power rate is relatively low) exceeding the upper limit set value in the power consumption prediction data.
  • the storage battery 500 is charged with power for one day corresponding to the amount of power.
  • the power conditioner 200 compares the power consumption of the facility 800 with the upper limit set value, and when the power supplied from the system to the facility 800 reaches the upper limit set value, the power conditioner 200 calculates the power stored in the storage battery 500. Supply to facility 800. By doing so, the power supplied from the grid to the facility 800 does not exceed the upper limit setting value (the upper limit of the power supplied from the grid to the facility 800 is set to the upper limit setting value), The power conditioner 200 can supply the power stored in the storage battery 500 to the facility 800.
  • the server 300 is a server that collects predetermined information such as weather information and distributes it to the control device 100. Further, the server 300 collects power consumption information of the facility 800 and distributes it to the control device 100.
  • the information terminal 400 is a terminal operated by a user of the facility 800, for example, and transmits information related to the internal environment of the facility 800 to the control device 100, the server 300, or the like.
  • FIG. 2 is a block diagram illustrating a configuration of the control device 100.
  • control device 100 includes a communication unit 102, a storage unit 106, and a control unit 107.
  • the communication unit 102 is a communication interface that performs modulation / demodulation processing for the control device 100 to transmit and receive signals to and from other communication devices.
  • the storage unit 106 includes a flash memory, an HDD (Hard Disk Drive), a RAM (Random Access Memory), and the like, stores a program used by the control device 100, and accumulates various data used by the control device 100.
  • the storage unit 106 stores power consumption performance data 161, external environment information 162, internal environment information 163, upper limit set value information 164, and storage battery performance information 165.
  • the power consumption record data 161 is data indicating a history of power consumption for the facility 800 managed by the control device 100.
  • the actual power consumption data 161 indicates the history of the overall power consumption of the facility 800, the power consumption of the power consuming devices installed in the facility 800, and the like.
  • External environment information 162 is information regarding the external environment of the facility 800.
  • the external environment information 162 includes actual data and predicted temperature data regarding the temperature at the location of the facility 800.
  • the internal environment information 163 is information related to the internal environment of the facility 800.
  • the internal environment information 163 includes information indicating an operation result and an operation plan of a power consuming device that operates in the facility 800.
  • the power consuming device operating in the facility 800 is, for example, a production machine for manufacturing a product when the facility 800 is a factory.
  • the operation results of the power consuming equipment include, for example, the number of products produced by the operation of the production machine, the time zone during which the production machine is operated, and the like.
  • the operation plan of the power consuming device includes information such as a time zone in which the production machine is scheduled to operate, a planned number of products produced by the production machine, and a planned weight.
  • the internal environment information 163 includes information related to the operation plan such as the number of personnel for operating the machine, the number of orders received, the planned number of sales, and the number of sales targets.
  • the upper limit set value information 164 is data defining an upper limit set value of power supplied from the grid in the facility 800.
  • the storage battery performance information 165 is information indicating the performance of the storage battery 500.
  • the storage battery 500 is, for example, the number of times that the storage battery 500 is guaranteed by a performance test or the like (guaranteed number), a period during which a failure or the like is guaranteed after the use of the storage battery 500 is started (guarantee period), or other performance. Information indicating this is defined in advance.
  • the storage battery performance information 165 changes with the use of the storage battery 500, such as the actual value of the number of times charge / discharge has been performed since the start of use of the storage battery 500, and the period (trial period) that has elapsed since the start of use of the storage battery 500. Information indicating the performance to be performed.
  • the control unit 107 controls the operation of the control device 100 by reading and executing a control program stored in the storage unit 106.
  • the control unit 107 is realized by, for example, one or a plurality of processors.
  • the control unit 107 operates as a parameter, and thus functions as a parameter acquisition unit 171, a correlation calculation unit 172, a power consumption prediction unit 173, a threshold value calculation unit 174, and a charge / discharge control unit 175.
  • the parameter acquisition unit 171 uses information used by the control device 100 for controlling the operation of the power conditioner 200 such as the power consumption performance data 161, the external environment information 162, the internal environment information 163, and the storage battery performance information 165, for example, the server 300, Obtained from an external device such as the information terminal 400.
  • the correlation calculation unit 172 performs a calculation for estimating the correlation between the temperature and the power consumption of the facility 800 based on the power consumption record data 161 and the external environment information 162. Further, the correlation calculation unit 172 performs a calculation for estimating the correlation between the operation results of the power consuming devices in the facility 800 and the power consumption in the facility 800 based on the power consumption record data 161 and the internal environment information 163. .
  • the power consumption prediction unit 173 predicts the time change of the power consumption of the facility 800 based on the overall power consumption of the facility 800, the actual value of the power consumption of the power consuming devices installed in the facility 800, and the like.
  • the power consumption prediction unit 173 uses the correlation between the actual temperature value estimated by the correlation calculation unit 172 and the power consumption of the facility 800, and the predicted temperature data indicated in the external environment information 162. The predicted value of is calculated.
  • the power consumption prediction unit 173 determines the facility based on the correlation between the operation results of the power consumption devices in the facility 800 and the power consumption of the facility 800 and the information on the operation plan of the power consumption devices indicated in the internal environment information 163. A predicted value of 800 power consumption is calculated.
  • the threshold value calculation unit 174 is based on the information acquired by the parameter acquisition unit 171 and the power consumption record data 161, and the upper limit set value of power supplied from the system to the facility 800 (power consumption threshold value for performing peak cut). To decide. Specifically, the threshold value calculation unit 174 determines the upper limit setting value based on the predicted power consumption value of the facility 800 predicted by the power consumption prediction unit 173. For example, the threshold value calculation unit 174 may define the minimum value of the upper limit set value in order to peak-cut power consumption that is greater than or equal to a certain value. In addition, the threshold value calculation unit 174 may use a certain ratio (for example, 80%) of the predicted power consumption value of the facility 800 predicted by the power consumption prediction unit 173 as the upper limit setting value. By doing this, the upper limit value can be changed each time based on external environment information such as temperature, or internal environment information such as production plan, etc., and peak leveling can be performed more effectively. To realize. This further stabilizes the power supply of the power supplier.
  • the charge / discharge control unit 175 controls the charge / discharge of the storage battery 500 by controlling the power conditioner 200.
  • the power conditioner 200 receives supply of power from the system via the power meter 101.
  • the charge / discharge control unit 175 sets the power consumption of the facility 800 to the upper limit so that the upper limit of the power supplied from the system to the facility 800 is set to the upper limit set value determined by the threshold value calculation unit 174.
  • the power charged in the storage battery 500 is supplied to the facility 800.
  • FIG. 3 is a diagram illustrating a data structure of the internal environment information 163 stored in the control device 100.
  • each record of the internal environment information 163 associates facility identification information 163A, date 163B, production target 163C, and production quantity 163D.
  • the facility identification information 163A is information for identifying each facility managed by the control device 100.
  • the date and time 163B indicates the date and time when the production specified in the facility 800 as a production plan is performed.
  • the production target 163C indicates an object produced in the facility 800 when the facility 800 is a factory.
  • the production number 163D indicates the number of products to be produced as the production target 163C. That is, the internal environment information 163 indicates which power consuming equipment (production machine) in the facility 800 is operated and how much (production number) is operated in order to produce which product. And related information.
  • FIG. 4 is a diagram showing a data structure of the storage battery performance information 165 stored in the control device 100.
  • each record of storage battery performance information 165 associates a use period 165A, a charge / discharge count actual value 165B, a charge / discharge guarantee count 165C, and a guarantee period 165D.
  • the control device 100 updates the charge / discharge number actual value 165B every time the storage battery 500 is charged / discharged by the power conditioner 200.
  • the control device 100 updates the usage period 165A while the storage battery 500 continues to operate.
  • the use period 165A indicates a period (usage period) that has elapsed since the use of the storage battery 500 was started.
  • the charging / discharging actual value 165B indicates the actual number of times that the storage battery 500 has been charged and discharged.
  • the number of charge / discharge guarantees 165C indicates the number of times that the storage battery 500 can be charged / discharged, which is defined in advance by the manufacturer of the storage battery 500.
  • the warranty period 165D indicates a period (guarantee period) for guaranteeing the use of the storage battery 500, which is defined in advance by the manufacturer of the storage battery 500.
  • FIG. 5 shows that the control device 100 charges / discharges the storage battery 500 by setting an upper limit set value for peak cut based on at least one of information on the external environment of the facility 800 and information on the internal environment of the facility 800. It is a figure which shows the operation
  • the horizontal axis indicates the passage of time
  • the vertical axis indicates the predicted value or the actual measurement value of the power consumption of the facility 800.
  • the control device 100 sets an upper limit setting value based on at least one of information related to the external environment of the facility 800 or information related to the internal environment every day, and based on the set upper limit setting value.
  • the charge / discharge control of the storage battery 500 is performed, but the frequency of setting the upper limit set value is not limited to one day.
  • the control device 100 functions as a supply control unit by functioning as a correlation calculation unit 172, a power consumption prediction unit 173, a threshold value calculation unit 174, and a charge / discharge control unit 175. For example, on the date “A month B”, the control device 100 predicts the predicted temperature “Tmp_B (° C.)” as the external environment information 162 at the location of the facility 800 or the production plan “Prd_B ( ) ”. When the power consumption prediction unit 173 generates power consumption prediction data for the date “A month B day”, the control device 100 determines the upper limit set value “Th_B” using the threshold value calculation unit 174.
  • the charge / discharge control unit 175 discharges power from the storage battery 500 to the facility 800 when the power consumption of the facility 800 exceeds the upper limit set value “Th_B” on the date “A month B day”. In other words, the control device 100 causes the storage battery 500 to be charged with the power necessary for the discharge prior to the discharge of the power from the storage battery 500 to the facility 800.
  • control device 100 sets the upper limit setting value based on at least one of the information related to the external environment of the facility 800 or the information related to the internal environment and performs charge / discharge control of the storage battery 500 every day.
  • the level of power supplied from the grid to the facility 800 can be cut and leveled, and the power supply by the power supply company is further stabilized.
  • FIG. 6 is a diagram illustrating an example of processing in which the control device 100 calculates the correlation based on the power consumption actual data 161 and the external environment information 162 and predicts the power consumption based on the predicted temperature.
  • FIG. 6A shows a plot of the actual power consumption value indicated in the actual power consumption data 161 and the actual temperature data value indicated in the external environment information 162.
  • the maximum value of the power consumption at each temperature is shown in FIG. Based on this, a formula indicating the relationship between temperature and power consumption is derived.
  • an expression indicating the relationship between the temperature and the power consumption is obtained so as to exceed the power consumption at each temperature.
  • the value of power consumption on the vertical axis indicates the maximum value (kW) of power consumption per day.
  • the correlation between the average electric energy (kWh) and the temperature may be calculated.
  • FIG. 6B shows an example in which the control device 100 obtains the maximum value of power consumption for each temperature zone based on the power consumption result data 161 and the external environment information 162.
  • the width of the temperature zone is divided into intervals of 2 ° C.
  • the control device 100 uses the maximum value in each section to predict power consumption based on the predicted temperature. Further, as illustrated in the example of FIG. 6B, the control device 100 may designate the temperature zone width as the use range.
  • the power consumption is predicted based on the predicted temperature using the actual power consumption value in the section from the temperature “12 ° C.” to the temperature “28 ° C.”.
  • FIG. 6C illustrates an example in which the control device 100 calculates a linear expression of peak power with respect to temperature by cutting out the width of the temperature zone as a use range, as illustrated in FIG. 6B.
  • the horizontal axis indicates the temperature
  • the vertical axis indicates the peak value of power consumption in each temperature zone.
  • the control device 100 has an expression for the peak power with respect to the temperature (in FIG. 6C, in the range from the temperature “12 ° C.” to the temperature “28 ° C.” in the example of FIG. 6C).
  • a linear expression may be calculated.
  • the broken line indicates the actual peak power consumption with respect to the temperature.
  • FIG. 6C the broken line indicates the actual peak power consumption with respect to the temperature.
  • a straight line is a linear expression obtained by approximating a broken line to a straight line, and this linear expression indicates the relationship of peak power to temperature.
  • the control unit 100 the temperature range, such as the coefficient of determination R 2 of the approximate straight line is calculated as a linear expression of the peak power becomes a maximum, it may be calculated first-order equation of peak power.
  • the control apparatus 100 is good also as calculating the formula which shows the relationship of the peak electric power with respect to temperature not only with a temporary formula but with another polynomial and another relational expression.
  • the control device 100 predicts the power consumption of the facility 800 based on the information on the predicted temperature by calculating the correlation between the temperature and the power consumption in this way.
  • the control apparatus 100 with respect to the prediction result of the power consumption of the facility 800, the predicted value (Wp) of the peak power value, the maximum peak power (Wmax) in the actual result, and the target cut amount (Cp) specified by the user Based on the above, an upper limit set value (Th) is calculated. That is, the control device 100 may calculate the upper limit set value by the following [Equation 1].
  • FIG. 7 is a flowchart showing a process in which the control device 100 controls charging / discharging of the storage battery 500 based on at least one of information related to the external environment of the facility 800 and information related to the internal environment.
  • the control apparatus 100 performs the process shown in FIG. 7 for every day, for example, it is not restricted to this.
  • step S ⁇ b> 701 the control device 100 causes the parameter acquisition unit 171 to use the temperature information (actual value and predicted value) at the location of the facility 800 as information related to the external environment of the facility 800 or the facility as information related to the internal environment of the facility 800.
  • Operation results and operation plans (for example, production plan information of production machines) of 800 power consuming devices are acquired from the server 300 or the like.
  • step S ⁇ b> 703 the control device 100 causes the correlation calculation unit 172 to correlate information related to the external environment of the facility 800 and the actual power consumption (correlation between the actual temperature and actual power consumption), or the interior of the facility 800. At least one of the correlation between the environmental information and the actual power consumption (correlation between the actual production plan and the actual power consumption) is calculated.
  • step S705 the control device 100 uses the power consumption prediction unit 173 to calculate the correlation calculated in step S703 and the predicted temperature (external environment information 162) or production plan (internal environment information 163).
  • the power consumption of the facility 800 is predicted.
  • step S ⁇ b> 707 the control device 100 determines an upper limit set value for peak cutting of power by the threshold value calculation unit 174.
  • step S709 the control device 100 uses the charge / discharge control unit 175 to supply the power charged in the storage battery 500 to the facility 800 so that the power supplied from the system does not exceed the upper limit set value (threshold value) determined in step S707.
  • the power conditioner 200 is controlled so as to be supplied to the inverter.
  • the power control system of the second embodiment determines whether to execute the charge / discharge control of the power conditioner 200 described in the first embodiment in accordance with the change in the performance of the storage battery 500. Thereby, charging / discharging of the storage battery 500 can be controlled so that the guaranteed number of times of charging / discharging of the storage battery 500 can be secured within the range of the guarantee period defined for the storage battery 500.
  • FIG. 8 is a flowchart showing the operation of the control device 100 in the power control system of the second embodiment.
  • step S706 the control device 100 refers to the storage battery performance information 165, and uses the storage battery 500 based on the usage period of the storage battery 500, the actual value of the number of times the storage battery 500 has been charged and discharged, and the guaranteed number of times of charge and discharge of the storage battery 500.
  • control device 100 determines whether or not the predicted life of storage battery 500 exceeds the warranty period of storage battery 500, and when the predicted life exceeds the warranty period (YES in step S708), performs the process of step S709. If not (NO in step S708), the process of step S710 is performed.
  • step S710 the control device 100 transfers the upper limit set value from the system to the facility 800 based on the upper limit set value set in advance so that the number of times of charging / discharging the storage battery 500 is not consumed within the warranty period of the storage battery 500.
  • the power conditioner 200 is controlled so that the power charged in the storage battery 500 is supplied to the facility 800 so that the supplied power does not exceed.
  • the control device 100 performs the determination of the upper limit set value and the charge / discharge control of the storage battery 500 by the power conditioner 200 as described in the first embodiment in a time zone indicated in a predetermined schedule, for example. Also good. That is, the control device 100 peaks at the upper limit set value determined by the power consumption prediction based on the power consumption performance data 161, the external environment information 162, and the internal environment information 163 in the time zone indicated in the predetermined schedule. It is also possible to perform cutting and charge the storage battery 500 or the like regardless of the prediction of power consumption in other time zones. This increases the possibility of avoiding a situation where the storage battery 500 is not charged and peak cut cannot be performed.
  • control device 100 sets the upper limit determined by the power consumption prediction based on the power consumption performance data 161, the external environment information 162, and the internal environment information 163 in the time zone indicated in the predetermined first schedule.
  • the peak cut and the discharge are performed at the same time, and the charging of the storage battery 500 may be performed regardless of the prediction of the power consumption in the time zone that is not included in either the first schedule or the second schedule. Good.
  • control device 100 may perform determination of the upper limit set value and charge / discharge control of the storage battery 500 by the power conditioner 200 as described in the first embodiment within a predetermined time limit. That is, during peak cut operation, discharge within a predetermined time limit is continued, and when the remaining amount of the storage battery 500 is low, the facility 800 is charged from the storage battery 500 with the amount of discharge obtained by the remaining amount of the storage battery 500 / the limited time. It is good also as discharging to.
  • the power control system 1 sets an upper limit based on information related to the external environment of the facility 800, information related to the internal environment of the facility 800, and other information in addition to the actual power consumption value.
  • a value is set, and discharge of the storage battery 500 can be started when the power consumption of the facility 800 exceeds the upper limit set value.
  • the power control system according to the present embodiment is realized by a processor and a program executed on the processor.
  • the program for realizing the present embodiment is provided by transmission / reception using a network via a communication interface.
  • 100 power control device 200 power conditioner, 300 server, 400 information terminal, 500 storage battery, 600 solar cell string, 700 cloud network, 800 facility, 900 power plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Emergency Management (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

電力制御システム(1)において、制御装置(100)は、施設(800)の外部環境に関する情報(気温の実績および予想)、または、施設(800)の内部環境における電力消費に関連するパラメータの情報(生産計画)の少なくともいずれかを取得し、これら情報と、消費電力の実績との相関を算出する。制御装置(100)は、算出された相関と、予想気温などの情報に基づいて、施設(800)の消費電力を予測し、予測結果に基づいて系統から施設(800)へ供給される電力の上限設定値を決定する。制御装置(100)は、施設(800)の消費電力が上限設定値を超える場合に、蓄電池(500)に充電された電力を施設(800)へ供給する。これによれば、電力の需要のピークをいっそう平準化させて、電力供給事業者が供給可能な最大電力を超えないように電力の需要のピークを制御しつつ施設で電力が利用されるようになる。

Description

電力制御システム、方法及び制御装置
 本出願は、2015年9月24日に出願された特願2015-187049号に対して、優先権の利益を主張するものであり、それを参照することにより、その内容のすべてを本書に含める。
 本開示は、電力制御に関し、より特定的には、蓄電池の充放電を制御することにより、工場などの施設に供給される電力を制御する技術に関する。
 近年、電力の供給を受ける需要家のエネルギー消費を制御するため、需要家の施設に蓄電池を設置して、施設への電力の供給を管理することが行われている。例えば、需要家の施設に蓄電池や太陽電池を設置し、パワーコンディショナが、系統から施設への電力の供給、蓄電池の充放電、太陽電池が発電する電力の施設への供給または売電を制御する。電力料金は、例えば、電力の基本料金と、電力の使用量に応じて定められる電力量料金(従量制料金)とから構成されている。電力の基本料金は、過去に需要家が消費した電力のうち、最も高いピーク電力に応じて設定される。そのため、需要家が消費する電力のレベルが一定以下となるよう閾値を設定し、需要家の消費電力の大きさと閾値とを比較した比較結果に応じて蓄電池に蓄積された電力を施設に供給することで、需要家が消費する電力の需要のピークを平準化することができる。これにより、需要家にとっては系統から供給される電力の消費量を抑えて電力料金の低減を図ることができる。また、発電所や変電所を有する電力供給事業者(電力会社)にとっても、負荷を平準化させることは、電力の供給を安定させることにつながるなどの利点がある。
 最大ピーク電力のレベルを低減すること(ピークカット)を図る技術として、例えば、特開2008-306832号公報(特許文献1)は、蓄電装置の容量を抑制する一方でピークカットを確実に行うことができる電力貯蔵システムを記載している。特許文献1の技術によると、電力貯蔵システムは、夜間電力時間帯に二次電池を充電し、昼間の電力ピーク時間帯に二次電池からの放電がなされるように切り換える。さらに電力貯蔵システムは、ピーク時間帯に、蓄電装置による放電動作を必要としない状態であって、且つ蓄電装置の充電状態が満充電状態でない場合に、蓄電装置に充電動作を行わせる。このように、ピーク時間帯において電力需要に余裕があり、蓄電装置が満充電状態でないときに充電動作が行われるので、可及的に蓄電装置が満充電に近い状態を維持できることが特許文献1に記載されている。
特開2008-306832号公報
 このように、電力の需要を平準化するためのピークカットが行われているが、ピークカットのために蓄電池から頻繁に放電させることにより蓄電池の蓄電容量を使い切ってしまうと、ピークカットに失敗し、最大ピーク電力の大きさにより定まる電力の基本料金が増加するおそれがある。例えば、比較的多くの電力を消費する工場においては基本料金が値上がりすることとなり、生産コストの肥大化につながる。したがって、ピークカットが失敗しないようにするには、施設における消費電力と比較するための閾値を十分に高く設定することがある。しかし、閾値を高く設定すると、ピークカットのために蓄電池から放電を開始する機会が少なくなることとなり、負荷の平準化の効果が小さくなり、電力会社にとっては電力の供給の不安定化につながる。すなわち、電力会社にとっては、ピークカットのシステムを普及させるための意欲を減退させることにもなりうる。
 したがって、電力の需要のピークをいっそう平準化させて、電力供給事業者が供給可能な最大電力を超えないように電力の需要のピークを制御しつつ施設で電力が利用されることが望ましい。本開示は、施設への電力の供給を制御して、需要家と電力供給事業者の双方の要請に応えることが可能な技術を提供することを目的としている。
 一実施形態に従う電力制御システムは、施設への電力の供給を制御するためのものである。電力制御システムは、施設に設置され、電力の供給を受けて充電され、充電された電力を放電することにより、施設へ電力を供給するための蓄電池と、施設の消費電力の実績値を記憶するための電力記憶手段と、施設の外部環境に関する情報、または、施設の内部環境における電力消費に関連するパラメータの情報の少なくともいずれかを取得する取得手段と、施設について、取得手段により取得される情報と、電力記憶手段に記憶される消費電力の実績値とに基づいて、系統から当該施設へ供給される電力の上限設定値を決定し、施設に対し系統から供給される電力の上限を上限設定値までとするよう、施設の消費電力が上限設定値を超える場合に、蓄電池に充電された電力を当該施設へ供給する供給制御手段とを含む。
 別の実施形態に従うと、施設への電力の供給を制御するための方法が提供される。施設には、蓄電池が設置される。蓄電池は、電力の供給を受けて充電され、充電された電力を放電することにより、施設へ電力を供給するためものである。この方法は、制御装置が、施設の外部環境に関する情報、または、施設の内部環境における電力消費に関連するパラメータの情報の少なくともいずれかを取得するステップと、制御装置が、施設について、取得される情報と、施設の消費電力の実績値とに基づいて、系統から当該施設へ供給される電力の上限設定値を決定し、施設に対し系統から供給される電力の上限を上限設定値までとするよう、施設の消費電力が上限設定値を超える場合に、蓄電池に充電された電力を当該施設へ供給させるステップとを含む。
 別の実施形態に従うと、施設への電力の供給を制御するための制御装置が提供される。施設には、電力の供給を受けて充電され、充電された電力を放電することにより施設へ電力を供給するための蓄電池が設置されている。制御装置は、蓄電池から施設への電力の供給を制御する供給制御手段とを備える。供給制御手段は、施設の外部環境に関する情報、または、施設の内部環境に関する情報の少なくともいずれかと、施設の消費電力の実績値とに基づいて決定される、系統から当該施設へ供給される電力の上限設定値を取得して、施設に対し系統から供給される電力の上限を上限設定値までとするよう、施設の消費電力が上限設定値を超える場合に、蓄電池に充電された電力を当該施設へ供給するように構成されている。
 一実施形態によると、電力の需要のピークをいっそう平準化させて、電力供給事業者が供給可能な最大電力を超えないように電力の需要のピークを制御しつつ施設で電力が利用されるようにすることができる。そのため需要家にとっては電力の基本料金の低減を図ることができる。また、電力供給事業者にとっては、電力の供給をいっそう安定化させることができる。
 この発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解されるこの発明に関する次の詳細な説明から明らかとなるであろう。
実施の形態1の電力制御システム1の構成を概略的に示すブロック図である。 制御装置100の構成を示すブロック図である。 制御装置100に記憶される内部環境情報163のデータ構造を示す図である。 制御装置100に記憶される蓄電池性能情報165のデータ構造を示す図である。 制御装置100が施設800の外部環境に関する情報または施設800の内部環境に関する情報の少なくともいずれかに基づいて、ピークカットのための上限設定値を設定することにより蓄電池500の充放電を制御する動作を示す図である。 制御装置100が消費電力実績データ161と外部環境情報162とに基づいて相関関係を演算し、予想気温に基づいて消費電力を予測する処理の例を示す図である。 制御装置100が施設800の外部環境に関する情報または内部環境に関する情報の少なくともいずれかに基づいて蓄電池500の充放電を制御する処理を示すフローチャートである。 実施の形態2の電力制御システムにおける制御装置100の動作を示すフローチャートである。
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 [実施の形態1]
 図1は、実施の形態1の電力制御システム1の構成を概略的に示すブロック図である。電力制御システム1において、制御装置100は、施設800への電力の供給を制御する。制御装置100は、発電所900が施設800へ供給することができる電力の情報(供給可能電力情報)を、例えばサーバ300から受信して、発電所900が供給可能な最大電力を超えないように、系統電力の施設800への供給を制御する。施設800は、例えば、工場などであり、電力を消費する施設である。施設の種類によって、電力の需要量が異なる。
 図1を参照して、電力制御システム1は、制御装置100と、パワーコンディショナ200と、サーバ300と、情報端末400と、蓄電池500と、太陽電池ストリング600と、施設800と、発電所900とを含む。制御装置100と情報端末400とサーバ300とは、クラウドネットワーク700を介して互いに通信可能に接続されている。太陽電池ストリング600と、パワーコンディショナ200と、蓄電池500とは、例えば、施設800の近郊(例えば、施設800の屋外)に配置されている。太陽電池ストリング600は、複数の太陽電池モジュールを含む。太陽電池ストリング600は、太陽光を受けて光電効果により発電した電力をパワーコンディショナ200へ供給する。蓄電池500は、施設800に設置され、パワーコンディショナ200から電力の供給を受けて充電され、充電された電力を放電することにより、パワーコンディショナ200により施設800へ電力を供給する。
 施設800の屋内には、分電盤、多回路CT(Current Transformer)センサ、電力消費機器その他の機器が配置される。施設800に配置される分電盤および多回路CTセンサの検出結果に基づき、施設800における消費電力の実績値が例えばサーバ300によって算出される。電力消費機器は、施設800の内部環境で稼働することで電力を消費する機器であり、例えば、工場の内部に設置されて製品の生産をするための生産機器などである。
 制御装置100は、記憶装置を備えるコンピュータシステムである。制御装置100は、サーバ300から、施設800の外部環境に関する情報を、クラウドネットワーク700を介して受信する。施設800の外部環境に関する情報は、例えば、施設800の位置における気温に関する実績データと、施設800の位置において予想される気温のデータ(予想気温データ)を含む。また、制御装置100は、サーバ300または情報端末400から、施設800の内部環境に関する情報を、クラウドネットワーク700を介して受信する。施設800の内部環境に関する情報は、例えば、施設800において稼動する電力消費機器の稼働実績データと、電力消費機器を稼働させる計画内容を示す稼働計画データとを含む。電力消費機器の稼働計画データとは、例えば、施設800が工場である場合に、生産物を生産するための製作機械を稼働させる時間帯の情報、製作機械が生産を予定する生産数の情報その他の情報を含む。すなわち、電力消費機器の稼働計画データとは、電力消費機器によって消費される電力の大きさに関する情報である。
 制御装置100は、施設800における消費電力の実績値を、例えばサーバ300等から取得して、取得した値をメモリ等に記憶させる。制御装置100は、施設800の外部環境に関する情報または施設800の内部環境に関する情報の少なくともいずれかをサーバ300等から取得し、取得される情報と、施設800における消費電力の実績値とに基づいて、系統から施設800へ供給される電力の上限を示す上限設定値(閾値)を決定する。制御装置100は、施設800に対し系統から供給される電力の上限を上限設定値までとするよう、施設800の消費電力が上限設定値を超える場合に、蓄電池500に充電された電力を施設800へ供給するようパワーコンディショナ200を制御する。
 例えば、制御装置100は、気温に関する実績データおよび施設800の消費電力の実績値に基づいて、気温と施設800の消費電力との関係を推定する。制御装置100は、この推定結果と、予想気温データとに基づいて、施設800の消費電力の予測値を算出する。制御装置100は、算出された予測値に基づいて上限設定値を決定(例えば、予測値における電力消費のピークの所定割合(例えばユーザにより指定されるカット量であるとしてもよいし、消費電力の予測値に対する固定の割合(例えば90%)であるとしてもよい))する。制御装置100は、決定された上限設定値を施設800の消費電力が超える場合に、蓄電池500に充電された電力を施設800へ供給する。
 また、例えば、制御装置100は、施設800の電力消費機器の稼働実績データおよび施設800の消費電力の実績値に基づいて、電力消費機器の稼働実績と施設800の消費電力との関係を推定する。制御装置100は、この推定結果と、電力消費機器の稼働計画データとに基づいて、施設800の消費電力の予測値を算出する。制御装置100は、算出された予測値に基づいて上限設定値を決定する。制御装置100は、決定された上限設定値を施設800の消費電力が超える場合に、蓄電池500に充電された電力を施設800へ供給する。
 パワーコンディショナ200には、蓄電池500と、太陽電池ストリング600とが接続されている。パワーコンディショナ200は、系統から供給される電力を受けて、施設800へ電力を供給する。パワーコンディショナ200は、太陽電池ストリング600で発電された直流電力を、施設800で使用できる交流電力に変換する機能を有している。パワーコンディショナ200は、太陽電池ストリング600で発電された電力を、施設800または蓄電池500へ供給する。また、パワーコンディショナ200は、太陽電池ストリング600で発電された電力を、電力量計を通じて外部に売電する。また、パワーコンディショナ200は、蓄電池500への充電および蓄電池500からの放電を制御する。
 制御装置100は、パワーコンディショナ200の動作を制御することができる。制御装置100は、上限の設定値を超えて施設800において消費されると予測される電力の合計の算出結果(電力量)に相当する電力を、消費電力の予測データにおいて、消費電力が上限の設定値を上回ると予測される時間帯より前に、パワーコンディショナ200によって蓄電池500を充電する。例えば、パワーコンディショナ200は、予め定められた時間(例えば、電力料金が比較的安価な深夜の時間帯)に、消費電力の予測データにおいて上限の設定値を超えて消費されると予測される電力量に相当する一日分の電力を蓄電池500に充電させる。
 パワーコンディショナ200は、施設800の消費電力と上限の設定値とを比較して、系統から施設800へ供給される電力が上限の設定値に達した場合に、蓄電池500に蓄積された電力を施設800へ供給する。こうすることで、系統から施設800へ供給される電力が、上限の設定値を超えないよう(施設800に対し系統から供給される電力の上限を、当該上限の設定値までとするよう)、パワーコンディショナ200は、蓄電池500に蓄電される電力を施設800へ供給することができる。
 サーバ300は、天気情報など予め定められた情報を収集して制御装置100へ配信するサーバである。また、サーバ300は、施設800などの消費電力の情報を収集して制御装置100へ配信する。
 情報端末400は、例えば施設800のユーザが操作する端末であり、施設800の内部環境に関する情報を制御装置100またはサーバ300等へ送信する。
 <制御装置100の構成>
 図2は、制御装置100の構成を示すブロック図である。図2を参照して、制御装置100は、通信部102と、記憶部106と、制御部107とを含む。
 通信部102は、制御装置100が他の通信機器と信号を送受信するための変復調処理などを行う通信インタフェースである。
 記憶部106は、フラッシュメモリ、HDD(Hard Disk Drive)、RAM(Random Access Memory)等により構成され、制御装置100が使用するプログラムを記憶し、制御装置100が使用する各種のデータを蓄積する。ある局面において、記憶部106は、消費電力実績データ161と、外部環境情報162と、内部環境情報163と、上限設定値情報164と、蓄電池性能情報165とを記憶する。
 消費電力実績データ161は、制御装置100が管理する施設800についての消費電力の履歴を示すデータである。消費電力実績データ161は、施設800の全体の消費電力、施設800に設置される電力消費機器の消費電力などの履歴を示す。
 外部環境情報162は、施設800の外部環境に関する情報である。例えば、外部環境情報162は、施設800の位置における気温に関する実績データおよび予想気温データを含む。なお、外部環境情報162として、湿度や気圧など、気温に関する情報以外の気象データの情報を用いることとしてもよい。
 内部環境情報163は、施設800の内部環境に関する情報である。例えば、内部環境情報163は、施設800において稼動する電力消費機器の稼働実績および稼働計画を示す情報を含む。施設800において稼動する電力消費機器とは、例えば、施設800が工場である場合に、製品を製造するための生産機械である。電力消費機器の稼働実績は、例えば生産機械が稼働することにより生産した製品の個数、生産機械が稼働した時間帯などを含む。電力消費機器の稼働計画は、例えば生産機械が稼働する予定の時間帯、生産機械が製品を生産する予定個数、予定重量などの情報を含む。さらに、内部環境情報163は、機械を操作するための人員数や、受注件数、販売予定数、販売目標数など、稼働計画に関係する情報を含む。
 上限設定値情報164は、施設800において、系統から供給を受ける電力の上限の設定値を定めたデータである。
 蓄電池性能情報165は、蓄電池500の性能を示す情報である。蓄電池500は、例えば、蓄電池500が性能試験等により保証されている充放電の回数(保証回数)、蓄電池500の使用を開始してから故障等の対応を保証する期間(保証期間)その他の性能を示す情報が予め規定されている。蓄電池性能情報165は、蓄電池500の使用を開始してから充放電を実行した回数の実績値、蓄電池500の使用を開始してから経過した期間(試用期間)など、蓄電池500の使用に伴い変化する性能を示す情報を含む。
 制御部107は、記憶部106に記憶される制御プログラムを読み込んで実行することにより、制御装置100の動作を制御する。制御部107は、例えば1または複数のプロセッサにより実現される。制御部107は、プログラムに従って動作することにより、パラメータ取得部171と、相関演算部172と、消費電力予測部173と、閾値演算部174と、充放電制御部175としての機能を発揮する。
 パラメータ取得部171は、制御装置100が消費電力実績データ161、外部環境情報162、内部環境情報163および蓄電池性能情報165などパワーコンディショナ200の動作を制御するために用いる情報を、例えばサーバ300、情報端末400等の外部の機器から取得する。
 相関演算部172は、消費電力実績データ161と外部環境情報162とに基づいて、気温と施設800の消費電力との相関関係を推定するための演算を行う。また、相関演算部172は、消費電力実績データ161と内部環境情報163とに基づいて、施設800の電力消費機器の稼働実績と施設800の消費電力との相関関係を推定するための演算を行う。
 消費電力予測部173は、施設800の全体の消費電力、施設800に設置される電力消費機器の消費電力の実績値などに基づいて、施設800の消費電力の時間変化を予測する。消費電力予測部173は、相関演算部172において推定された気温の実績値と施設800の消費電力との相関関係と、外部環境情報162に示される予想気温データとに基づいて施設800の消費電力の予測値を算出する。また、消費電力予測部173は、施設800の電力消費機器の稼働実績と施設800の消費電力との相関関係と、内部環境情報163に示される電力消費機器の稼働計画の情報とに基づいて施設800の消費電力の予測値を算出する。
 閾値演算部174は、パラメータ取得部171により取得される情報と、消費電力実績データ161とに基づいて、系統から施設800へ供給される電力の上限設定値(ピークカットを行う消費電力の閾値)を決定する。具体的には、閾値演算部174は、消費電力予測部173により予測される施設800の消費電力の予測値に基づいて上限設定値を決定する。例えば、閾値演算部174は、一定値以上の消費電力をピークカットするために上限設定値の最小値を規定することとしてもよい。また、閾値演算部174は、消費電力予測部173により予測される施設800の消費電力の予測値の一定割合(例えば、80%など)を上限設定値としてもよい。こうすることで、気温などの外部環境の情報、または、生産計画など内部環境の情報に基づいて上限設定値を都度変更することができ、ピークカットをより効果的に行って、ピークの平準化を実現する。これにより、電力供給事業者の電力供給がいっそう安定化する。
 充放電制御部175は、パワーコンディショナ200を制御して蓄電池500の充放電を制御する。パワーコンディショナ200は、電力メータ101を介して系統からの電力の供給を受け付けている。具体的には、充放電制御部175は、施設800に対し系統から供給される電力の上限を、閾値演算部174で決定される上限設定値までとするよう、施設800の消費電力が上限設定値を超える場合に、蓄電池500に充電された電力を施設800へ供給する。
 <データ構造>
 図3および図4を参照して、制御装置100に記憶される各種データのデータ構造を説明する。
 図3は、制御装置100に記憶される内部環境情報163のデータ構造を示す図である。図3を参照して、内部環境情報163の各レコードは、施設識別情報163Aと、日時163Bと、生産対象163Cと、生産個数163Dとを対応付けたものである。
 施設識別情報163Aは、制御装置100が管理する施設のそれぞれを識別するための情報である。日時163Bは、施設800において生産計画として規定されている生産が行われる日時を示す。生産対象163Cは、施設800が工場である場合に、施設800のにおいて生産される対象物を示す。生産個数163Dは、生産対象163Cに示される製品が生産される予定の個数を示す。すなわち、内部環境情報163は、どの製品を生産するために、施設800のどの電力消費機器(生産機械)をどの程度(生産個数)稼働させるかを示すものであり、施設800における電力の消費量と関連する情報である。
 図4は、制御装置100に記憶される蓄電池性能情報165のデータ構造を示す図である。図4を参照して、蓄電池性能情報165の各レコードは、使用期間165Aと、充放電回数実績値165Bと、充放電保証回数165Cと、保証期間165Dとを対応付けたものである。制御装置100は、パワーコンディショナ200によって蓄電池500の充放電がなされる都度、充放電回数実績値165Bを更新する。また、制御装置100は、蓄電池500が稼働し続ける間、使用期間165Aを更新する。
 使用期間165Aは、蓄電池500の使用を開始してから経過した期間(使用期間)を示す。充放電回数実績値165Bは、蓄電池500の充放電を実行した回数の実績を示す。充放電保証回数165Cは、予め蓄電池500の製造者によって規定されている、蓄電池500が充放電可能な回数を示す。保証期間165Dは、予め蓄電池500の製造者によって規定されている、蓄電池500の使用を保証する期間(保証期間)を示す。
 <動作>
 電力制御システム1の動作について説明する。
 図5は、制御装置100が施設800の外部環境に関する情報または施設800の内部環境に関する情報の少なくともいずれかに基づいて、ピークカットのための上限設定値を設定することにより蓄電池500の充放電を制御する動作を示す図である。
 図5において、横軸は、時間の経過を示し、縦軸は、施設800の消費電力の予測値または実測値を示す。本実施形態において、制御装置100は、例えば、一日ごとに、施設800の外部環境に関する情報または内部環境に関する情報の少なくともいずれかに基づいて上限設定値を設定し、設定した上限設定値に基づいて蓄電池500の充放電制御を行うが、上限設定値の設定の頻度は、一日単位に限られない。
 制御装置100は、相関演算部172、消費電力予測部173、閾値演算部174および充放電制御部175として機能することで供給制御手段として機能する。例えば、制御装置100は、日付「A月B日」において、施設800の位置における外部環境情報162として予想気温「Tmp_B(℃)」、または、施設800の内部環境情報163として生産計画「Prd_B(個)」を取得する。制御装置100は、消費電力予測部173により、日付「A月B日」の消費電力の予測データを生成すると、閾値演算部174により上限設定値「Th_B」を決定する。充放電制御部175は、日付「A月B日」において、施設800の消費電力が上限設定値「Th_B」を超える場合において蓄電池500から施設800へ電力を放電させる。すなわち、制御装置100は、蓄電池500から施設800への電力の放電に先立ち、蓄電池500に、放電に必要な電力を充電させる。
 このように、制御装置100は、一日ごとに、施設800の外部環境に関する情報または内部環境に関する情報の少なくともいずれかに基づいて上限設定値を設定して蓄電池500の充放電制御を行うことで、系統から施設800へ供給される電力のピークをカットして平準化を行うことができ、電力供給事業者による電力の供給がいっそう安定化する。
 図6は、制御装置100が消費電力実績データ161と外部環境情報162とに基づいて相関関係を演算し、予想気温に基づいて消費電力を予測する処理の例を示す図である。
 図6(A)は、消費電力実績データ161に示される消費電力の実績値と、外部環境情報162に示される気温データの実績値とをプロット図に示し、各気温における消費電力の最大値に基づいて、気温と消費電力との関係を示す式を導いたものである。図6(A)の例では、各気温における消費電力を超えるように、気温と消費電力との関係を示す式を求めている。なお、図6(A)の例では、縦軸の消費電力の値は、一日の消費電力の最大値(kW)を示しているが、この他に、デマンド時限(30分間)の中の平均の電力量(kWh)と、気温との相関関係を算出することとしてもよい。
 図6(B)は、制御装置100が消費電力実績データ161と外部環境情報162とに基づいて、温度帯ごとに消費電力の最大値を求める例を示すものである。図6(B)の例では、温度帯の幅を2℃ごとの区間に区切っている。制御装置100は、このそれぞれの区間における最大値を利用して、予想気温に基づいて消費電力を予測する。また、制御装置100は、図6(B)の例に示すように、温度帯の幅を使用範囲として指定してもよい。例えば、図6(B)の例では、温度「12℃」~温度「28℃」までの区間の消費電力の実績値を用いて、予想気温に基づく消費電力の予測を行う。
 図6(C)は、図6(B)に示すように、温度帯の幅を使用範囲として切り出して、温度に対するピーク電力の一次式を制御装置100が算出する例を示す。図6(C)において、横軸は、温度を示し、縦軸は、各温度帯における消費電力のピーク値を示す。制御装置100は、予め定められた温度帯の幅(図6(C)の例では、温度「12℃」~温度「28℃」までの区間)において、温度に対するピーク電力の式(図6の例では一次式)を算出することとしてもよい。図6(C)において、折れ線は、温度に対する消費電力のピーク電力の実績を示す。図6(C)において、直線は、折れ線を直線に近似することにより得られる一次式であり、この一次式は、温度に対するピーク電力の関係を示す。また、制御装置100は、ピーク電力の一次式として算出される近似直線の決定係数Rが最大になるような温度の範囲について、ピーク電力の一次式を算出してもよい。また、制御装置100は、温度に対するピーク電力の関係を示す式を、一時式に限らず、その他の多項式やその他の関係式によって算出することとしてもよい。
 制御装置100は、このようにして気温と消費電力との相関関係を算出することで、予想気温の情報に基づき施設800の消費電力を予測する。制御装置100は、施設800の消費電力の予測結果に対し、ピーク電力値の予測値(Wp)と、実績における最大のピーク電力(Wmax)と、ユーザが指定する目標のカット量(Cp)とに基づいて、上限設定値(Th)を算出する。すなわち、制御装置100は、以下の[式1]により、上限設定値を算出することとしてもよい。
 [式1] 上限設定値(閾値)=施設800の消費電力のピークの予測値×(1-目標のカット量/実績における最大のピーク電力)
 Th=Wp×(1-Cp/Wmax)
 なお、図6の例では、制御装置100が気温の実績値および予測値と消費電力の実績値とに基づいて上限設定値を算出する例を説明したが、制御装置100が施設800の内部環境に関する情報に基づいて上限設定値を算出する場合も、同様に生産計画の実績値などのパラメータと消費電力とをプロットすること等により、生産計画数などのパラメータと消費電力との相関を示す式を求めることができ、この式と、生産が予定されている数とに基づいて消費電力を予測することができる。
 図7は、制御装置100が施設800の外部環境に関する情報または内部環境に関する情報の少なくともいずれかに基づいて蓄電池500の充放電を制御する処理を示すフローチャートである。制御装置100は、図7に示す処理を、例えば一日ごとに定刻に実行するが、これに限られない。
 ステップS701において、制御装置100は、パラメータ取得部171により、施設800の外部環境に関する情報として施設800の位置の気温の情報(実績値および予測値)、または、施設800の内部環境に関する情報として施設800の電力消費機器の稼働実績および稼働計画(例えば生産機械の生産計画の情報)をサーバ300等から取得する。
 ステップS703において、制御装置100は、相関演算部172により、施設800の外部環境に関する情報と消費電力の実績との相関(気温の実績と消費電力の実績との相関)、または、施設800における内部環境に関する情報と消費電力の実績との相関(生産計画の実績と消費電力の実績との相関)の少なくともいずれかを算出する。
 ステップS705において、制御装置100は、消費電力予測部173により、ステップS703で算出された相関を示す式と、予想気温(外部環境情報162)または生産計画(内部環境情報163)とに基づいて、施設800の消費電力を予測する。
 ステップS707において、制御装置100は、閾値演算部174により、電力のピークカットをするための上限設定値を決定する。
 ステップS709において、制御装置100は、充放電制御部175により、ステップS707で決定された上限設定値(閾値)を系統から供給される電力が超えないよう、蓄電池500に充電された電力を施設800に供給するようパワーコンディショナ200を制御する。
 [実施の形態2]
 実施の形態2の電力制御システムは、蓄電池500の性能の変化に応じて、実施の形態1で説明したパワーコンディショナ200の充放電制御を実行するか否かを判断する。これにより、蓄電池500について規定されている保証期間の範囲内では蓄電池500の充放電の保証回数を確保できるように蓄電池500の充放電を制御することができる。
 図8は、実施の形態2の電力制御システムにおける制御装置100の動作を示すフローチャートである。
 ステップS706において、制御装置100は、蓄電池性能情報165を参照し、蓄電池500を使用した使用期間、蓄電池500が充放電した回数の実績値、蓄電池500の充放電の保証回数に基づいて、蓄電池500の使用が保証回数の範囲内で保証される期間である予測寿命を算出する。すなわち、制御装置100は、式:蓄電池500の予測寿命=蓄電池500の使用期間/蓄電池500の過去の充放電回数の実績値×保障充電回数 に基づいて、蓄電池500の予測寿命を算出する。
 ステップS708において、制御装置100は、蓄電池500の予測寿命が蓄電池500の保証期間を上回るか否かを判断し、予測寿命が保証期間を上回る場合に(ステップS708においてYES)ステップS709の処理を行い、そうでない場合に(ステップS708においてNO)ステップS710の処理を行う。
 ステップS710において、制御装置100は、予め蓄電池500の保証期間内に蓄電池500の充放電回数が費消してしまわないように設定された上限設定値に基づいて、上限設定値を系統から施設800へ供給される電力が超えないよう蓄電池500に充電された電力を施設800へ供給するようパワーコンディショナ200を制御する。
 [実施の形態3]
 制御装置100は、実施の形態1で説明したような上限設定値の決定およびパワーコンディショナ200による蓄電池500の充放電制御を、例えば、予め定められたスケジュールに示される時間帯において実行することとしてもよい。すなわち、制御装置100は、予め定められたスケジュールに示される時間帯においては、消費電力実績データ161、外部環境情報162および内部環境情報163に基づく消費電力の予測によって決定される上限設定値によりピークカットを行い、その他の時間帯においては、消費電力の予測とは関係なく蓄電池500の充電等を行うこととしてもよい。これにより蓄電池500の充電がなくピークカットが行えない事態を回避する可能性が高まる。
 もしくは、制御装置100は、予め定められた第1のスケジュールに示される時間帯においては、消費電力実績データ161、外部環境情報162および内部環境情報163に基づく消費電力の予測によって決定される上限設定値によりピークカットを行い、予め定められた第2のスケジュールに示される時間帯において、予め定められた一定出力の放電を行いつつ、第1のスケジュールと第2のスケジュールの両方に含まれる時間帯においてはピークカットおよび放電を同時に行い、第1のスケジュールと第2のスケジュールとのいずれにも含まれない時間帯においては、消費電力の予測とは関係なく蓄電池500の充電等を行うこととしてもよい。
 また、制御装置100は予め定められた制限時間内において、実施の形態1で説明したような上限設定値の決定およびパワーコンディショナ200による蓄電池500の充放電制御を行うこととしてもよい。すなわち、ピークカット運転時は、予め定められた制限時間内の放電を継続し、蓄電池500の残量が少ない場合は、蓄電池500の残量/制限時間で得られる放電量で蓄電池500から施設800へ放電することとしてもよい。
 [各実施の形態のまとめ]
 以上のように説明した処理を行うことにより、電力制御システム1は、消費電力の実績値の他に、施設800の外部環境に関する情報、施設800の内部環境に関する情報その他の情報に基づいて上限設定値を設定し、施設800の消費電力が上限設定値を超過する場合に蓄電池500の放電を開始することができる。これにより、ピークカットの実行頻度を適切にすることで、ピークカットに失敗しないように蓄電池500の充放電を制御することができ、電力需要家にとっては電力の基本料金を低減させることができる。また、電力供給事業者にとっては、ピーク電力の平準化効果がいっそう高まることが期待できる。
 本実施の形態に係る電力制御システムは、プロセッサと、その上で実行されるプログラムにより実現される。本実施の形態を実現するプログラムは、通信インタフェースを介してネットワークを利用した送受信等により提供される。
 今回開示された実施の形態はすべての点で例示であって制限的なものでないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 100 電力制御装置、200 パワーコンディショナ、300 サーバ、400 情報端末、500 蓄電池、600 太陽電池ストリング、700 クラウドネットワーク、800 施設、900 発電所。

Claims (7)

  1.  施設への電力の供給を制御するための電力制御システムであって、
     前記施設に設置され、電力の供給を受けて充電され、充電された電力を放電することにより、前記施設へ電力を供給するための蓄電池と、
     前記施設の消費電力の実績値を記憶するための電力記憶手段と、
     前記施設の外部環境に関する情報、または、前記施設の内部環境における電力消費に関連するパラメータの情報の少なくともいずれかを取得する取得手段と、
     前記施設について、前記取得手段により取得される情報と、前記電力記憶手段に記憶される前記消費電力の実績値とに基づいて、系統から当該施設へ供給される電力の上限設定値を決定し、前記施設に対し系統から供給される電力の上限を前記上限設定値までとするよう、前記施設の消費電力が前記上限設定値を超える場合に、前記蓄電池に充電された電力を当該施設へ供給する供給制御手段とを含む、電力制御システム。
  2.  前記取得手段が取得する前記施設の外部環境に関する情報は、前記施設の位置における気温に関する実績データおよび予想気温データを含み、
     前記供給制御手段が前記蓄電池に充電された電力を当該施設へ供給することは、前記気温に関する実績データおよび前記施設の消費電力の実績値に基づき前記気温と前記消費電力との関係を推定し、推定結果と、前記取得手段により取得される前記予想気温データとに基づいて前記施設の消費電力の予測値を算出し、算出された予測値に基づいて前記上限設定値を決定し、決定された前記上限設定値を超える場合に、前記蓄電池に充電された電力を当該施設へ供給することを含む、請求項1に記載の電力制御システム。
  3.  前記取得手段が取得する前記施設の内部環境における電力消費に関連するパラメータの情報は、前記施設において稼動する電力消費機器の稼働実績および稼動計画を示す情報を含み、
     前記供給制御手段が前記蓄電池に充電された電力を当該施設へ供給することは、前記電力消費機器の稼働実績および前記施設の消費電力の実績値に基づき前記電力消費機器の稼働実績と前記消費電力との関係を推定し、推定結果と、前記取得手段により取得される前記電力消費機器の稼働計画とに基づいて前記施設の消費電力の予測値を算出し、算出された予測値に基づいて前記上限設定値を決定し、決定された前記上限設定値を超える場合に、前記蓄電池に充電された電力を当該施設へ供給することを含む、請求項1に記載の電力制御システム。
  4.  前記蓄電池は、充放電の保証回数と、保証期間とが定められており、
     前記供給制御手段が前記蓄電池に充電された電力を当該施設へ供給することは、前記蓄電池を使用した使用期間、前記蓄電池が充放電した回数の実績値、および前記保証回数に基づいて前記蓄電池の使用が前記保証回数の範囲内で保証される期間である予測寿命を算出し、算出された予測寿命が前記蓄電池に定められた前記保証期間を上回る場合に、前記施設に対し系統から供給される電力の上限を前記上限設定値までとするよう、前記施設の消費電力が前記上限設定値を超える場合に、前記蓄電池に充電された電力を当該施設へ供給するように構成されている、請求項1に記載の電力制御システム。
  5.  前記供給制御手段が前記蓄電池に充電された電力を当該施設へ供給することは、予め定められたスケジュールに示される時間帯、または、予め定められた時間内において、前記施設に対し系統から供給される電力の上限を前記上限設定値までとするよう、前記施設の消費電力が前記上限設定値を超える場合に、前記蓄電池に充電された電力を当該施設へ供給することを含む、請求項1に記載の電力制御システム。
  6.  施設への電力の供給を制御するための制御装置であって、
     前記施設には、電力の供給を受けて充電され、充電された電力を放電することにより前記施設へ電力を供給するための蓄電池が設置されており、
     前記制御装置は、
     前記蓄電池から前記施設への電力の供給を制御する供給制御手段とを備え、
     前記供給制御手段は、前記施設の外部環境に関する情報、または、前記施設の内部環境に関する情報の少なくともいずれかと、前記施設の消費電力の実績値とに基づいて決定される、系統から当該施設へ供給される電力の上限設定値を取得して、前記施設に対し系統から供給される電力の上限を前記上限設定値までとするよう、前記施設の消費電力が前記上限設定値を超える場合に、前記蓄電池に充電された電力を当該施設へ供給するように構成されている、制御装置。
  7.  施設への電力の供給を制御するための方法であって、
     前記施設には、蓄電池が設置され、前記蓄電池は、電力の供給を受けて充電され、充電された電力を放電することにより、前記施設へ電力を供給するためものであり、
     前記方法は、
     制御装置が、前記施設の外部環境に関する情報、または、前記施設の内部環境における電力消費に関連するパラメータの情報の少なくともいずれかを取得するステップと、
     制御装置が、前記施設について、前記取得される情報と、前記施設の消費電力の実績値とに基づいて、系統から当該施設へ供給される電力の上限設定値を決定し、前記施設に対し系統から供給される電力の上限を前記上限設定値までとするよう、前記施設の消費電力が前記上限設定値を超える場合に、前記蓄電池に充電された電力を当該施設へ供給させるステップとを含む、方法。
PCT/JP2016/072770 2015-09-24 2016-08-03 電力制御システム、方法及び制御装置 WO2017051615A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16848403.8A EP3355435B1 (en) 2015-09-24 2016-08-03 Power control system and method, and control device
US15/761,023 US10615602B2 (en) 2015-09-24 2016-08-03 Power control system and method, and control device
JP2017541468A JP6692365B2 (ja) 2015-09-24 2016-08-03 電力制御システム、方法及び制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015187049 2015-09-24
JP2015-187049 2015-09-24

Publications (1)

Publication Number Publication Date
WO2017051615A1 true WO2017051615A1 (ja) 2017-03-30

Family

ID=58385955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072770 WO2017051615A1 (ja) 2015-09-24 2016-08-03 電力制御システム、方法及び制御装置

Country Status (4)

Country Link
US (1) US10615602B2 (ja)
EP (1) EP3355435B1 (ja)
JP (1) JP6692365B2 (ja)
WO (1) WO2017051615A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10326305B1 (en) 2018-08-27 2019-06-18 Ekergy Llc Personal power plant system and methods of inverse energy generation
WO2019207094A1 (de) * 2018-04-26 2019-10-31 Sma Solar Technology Ag Verfahren und vorrichtung zum aufeinander abgestimmten betreiben von elektrischen einrichtungen
US10615610B1 (en) 2019-05-28 2020-04-07 Ekergy Llc System and method for efficient charging of multiple battery cassettes

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190137956A1 (en) * 2017-11-06 2019-05-09 Nec Laboratories America, Inc. Battery lifetime maximization in behind-the-meter energy management systems
EP3726307A1 (en) * 2019-04-17 2020-10-21 Carrier Corporation Method for controlling building power consumption
CN113126732B (zh) * 2020-01-15 2024-03-08 戴尔产品有限公司 电力备用设备充电系统
CN114040449A (zh) * 2020-07-21 2022-02-11 中兴通讯股份有限公司 终端网速控制方法、装置、终端及存储介质
FR3119226B1 (fr) * 2021-01-25 2023-05-26 Lair Liquide Sa Pour Letude Et Lexploitation De Procede et appareil de separation d’air par distillation cryogenique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152093A (ja) * 2010-12-28 2012-08-09 Panasonic Corp 電力制御装置
JP2012205436A (ja) * 2011-03-28 2012-10-22 Toshiba Corp 充放電判定装置及びプログラム
JP2014147216A (ja) * 2013-01-29 2014-08-14 Omron Corp システム制御装置、電力供給を制御する方法、電力供給システムによる制御内容を表示する方法、および、プログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306832A (ja) * 2007-06-07 2008-12-18 Kansai Electric Power Co Inc:The 電力貯蔵システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152093A (ja) * 2010-12-28 2012-08-09 Panasonic Corp 電力制御装置
JP2012205436A (ja) * 2011-03-28 2012-10-22 Toshiba Corp 充放電判定装置及びプログラム
JP2014147216A (ja) * 2013-01-29 2014-08-14 Omron Corp システム制御装置、電力供給を制御する方法、電力供給システムによる制御内容を表示する方法、および、プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3355435A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019207094A1 (de) * 2018-04-26 2019-10-31 Sma Solar Technology Ag Verfahren und vorrichtung zum aufeinander abgestimmten betreiben von elektrischen einrichtungen
US10326305B1 (en) 2018-08-27 2019-06-18 Ekergy Llc Personal power plant system and methods of inverse energy generation
US11159017B2 (en) 2018-08-27 2021-10-26 Ekergy Llc Personal power plant system and methods of inverse energy generation
US10615610B1 (en) 2019-05-28 2020-04-07 Ekergy Llc System and method for efficient charging of multiple battery cassettes
US10910846B2 (en) 2019-05-28 2021-02-02 Ekergy Llc System and method for efficient charging of multiple battery cassettes

Also Published As

Publication number Publication date
US10615602B2 (en) 2020-04-07
EP3355435B1 (en) 2019-12-11
US20180262008A1 (en) 2018-09-13
JP6692365B2 (ja) 2020-05-13
EP3355435A1 (en) 2018-08-01
JPWO2017051615A1 (ja) 2018-07-12
EP3355435A4 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
WO2017051615A1 (ja) 電力制御システム、方法及び制御装置
CN108292860B (zh) 电力控制装置、运转计划制定方法以及记录介质
JP5856666B2 (ja) 電力需給制御装置及び電力需給制御方法
US9568901B2 (en) Multi-objective energy management methods for micro-grids
US10298056B2 (en) Power control system, power control method, and recording medium
US20140350743A1 (en) Tiered power management system for microgrids
JP6249895B2 (ja) 電力制御システム、方法及び電力制御装置
JP5695464B2 (ja) 充放電判定装置及び充放電判定プログラム
US20160187910A1 (en) Unit and Method for Energy Regulation of an Electrical Production and Consumption System
US20180248375A1 (en) Power supply and demand prediction system, power supply and demand prediction method and recording medium storing power supply and demand prediction program
JP6373476B2 (ja) 電力管理装置、電力管理システム、および電力管理方法
KR101712944B1 (ko) 에너지 저장 장치의 충방전 스케줄링 장치 및 방법
Xu et al. Multi-objective chance-constrained optimal day-ahead scheduling considering BESS degradation
JP6069738B2 (ja) 充放電制御システム、充放電制御方法、および充放電制御プログラム
JP2016116401A (ja) 電力負荷平準化装置
US20160210706A1 (en) Discharge start time determination system for electricity storage device and discharge start time determination method for electricity storage device
JP2017022864A (ja) 蓄電池制御装置、蓄電池制御方法、及びプログラム
JP2012130106A (ja) 蓄電装置の管理装置、蓄電装置の管理方法、及び電力供給システム
JP6230055B2 (ja) 電力需要予測装置及び電力需要予測方法
JP2019068667A (ja) 充放電制御装置
US20240059172A1 (en) Charge/discharge plan creation device, command device, power grid management system, terminal device, power storage system, charge/discharge system, storage battery, electric vehicle, charge/discharge plan creation method, and storage medium
JP2017195752A (ja) 電力制御システムおよび電力制御方法
JP6010682B2 (ja) 電力需給制御装置及び電力需給制御方法
JP7208095B2 (ja) サーバ装置及び制御方法
JP7423977B2 (ja) 電力管理システム、電力管理装置、電力管理方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848403

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017541468

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15761023

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016848403

Country of ref document: EP