WO2017047783A1 - Linear motor - Google Patents
Linear motor Download PDFInfo
- Publication number
- WO2017047783A1 WO2017047783A1 PCT/JP2016/077537 JP2016077537W WO2017047783A1 WO 2017047783 A1 WO2017047783 A1 WO 2017047783A1 JP 2016077537 W JP2016077537 W JP 2016077537W WO 2017047783 A1 WO2017047783 A1 WO 2017047783A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- coils
- axial direction
- linear motor
- resin
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
- H02K41/03—Synchronous motors; Motors moving step by step; Reluctance motors
Definitions
- the present invention relates to a three-phase linear motor.
- Patent Document 1 discloses a linear motor that includes a stator including a coil of multiples of 3 arranged coaxially and a mover including a permanent magnet, and the mover linearly moves on the inner peripheral side of the coil.
- the linear motor of the same document is a three-phase AC motor, and includes a plurality of coil sets including three coils corresponding to the U phase, the V phase, and the W phase as a plurality of coils.
- an object of the present invention is to provide a linear motor that can fix a plurality of coils arranged in the axial direction without supporting each coil on a coil bobbin or the like.
- a three-phase linear motor of the present invention includes a cylindrical coil unit in which at least three coils arranged coaxially are covered with resin, and a mover including a permanent magnet. The mover moves in the axial direction on the inner peripheral side of the coil unit.
- the plurality of coils are hardened with resin as a coil unit. Therefore, a plurality of coils can be fixed in an axial direction without supporting each coil on a coil bobbin or the like.
- the three coils may be a U-phase coil, a V-phase coil, and a W-phase coil, respectively. That is, the three coils of the coil unit function as a U-phase coil, a V-phase coil, and a W-phase coil, respectively, when driving the linear motor.
- each coil unit is connected in the axial direction.
- the number of coil units is increased or decreased to change the thrust for moving the mover, the number of coil units is increased or decreased, and the increased or decreased number of coil units are connected in the axial direction.
- the state in which the plurality of coil units are connected in the axial direction is the same as the state in which the plurality of coils are covered and fixed by the resin, even if the number of coils increases, It can be fixed in an array in the direction.
- the resin is preferably BMC (bulk molding compound). If comprised in this way, the heat
- the plurality of coils are covered with resin. Therefore, a plurality of coils can be fixed in an axial direction without supporting each coil on a coil bobbin or the like.
- FIG. 1 is an external perspective view of a linear motion rotation drive device equipped with a linear motion rotation detector of the present invention.
- FIG. 2 is a cross-sectional view of the linear motion rotary drive device of FIG. 1 cut along a plane including an axis.
- FIG. 3 is an exploded perspective view of the linear motion rotary drive device of FIG.
- the direct-acting rotary drive device 1 includes an output shaft 2, a linear motor unit (linear motor) 3 that moves the output shaft 2 along the axis L, and the output shaft 2 rotates about the axis ⁇ .
- the rotary motor unit 4 and the ball spline bearing (bearing) 5 are provided.
- the ball spline bearing 5 supports the output shaft 2 so as to be movable in the axial direction and transmits the driving force of the rotary motor unit 4 to the output shaft 2.
- the linear motion rotation drive device 1 includes a linear motion rotation detector 7 for detecting the linear motion position and the rotational position of the output shaft 2.
- the linear rotation detector 7 includes a cylindrical magnetic scale 8 that is coaxially fixed to the output shaft 2 and a magnetic sensor 9 that faces the magnetic scale 8 from a direction orthogonal to the axis L.
- the magnetic scale 8, the linear motor unit 3, the rotary motor unit 4, and the ball spline bearing 5 of the linear motion rotation detector 7 are arranged coaxially in this order from one side to the other side in the axial direction. .
- the axial direction is X
- the axis is ⁇ .
- the linear motor unit 3 includes a mover 11 and a stator 12.
- the mover 11 includes an output shaft 2 and a plurality of permanent magnets 13 fixed to the outer peripheral surface of the output shaft 2.
- Each permanent magnet 13 has an annular shape, and an N pole and an S pole are magnetized in the axial direction X.
- the plurality of permanent magnets 13 face each other with the adjacent permanent magnets 13 facing the same pole. In this example, ten permanent magnets 13 are fixed to the output shaft 2.
- the stator 12 is located on the outer peripheral side of the mover 11. As shown in FIGS. 1 and 2, the stator 12 includes a cylindrical coil array 15 having a plurality of coils 17 arranged coaxially, and a wiring board 16 fixed to the coil array 15.
- the coil array 15 includes a plurality of cylindrical coil units 19 in which three coils 17 adjacent in the axial direction X are integrally covered with a resin 18 and hardened. Each coil unit 19 is coaxially connected in the axial direction X, thereby forming a coil array 15.
- the coil array 15 includes seven coil units 19. Therefore, the coil array 15 includes 21 coils 17.
- each coil unit 19 has a rectangular outline when viewed from the axial direction X. As shown in FIG. 4, each coil unit 19 includes four side surfaces around the axis ⁇ . As shown in FIG. 1, one of the four side surfaces is a substrate fixing surface 19a. As shown in FIG. 3, the start end 17 a and the end end 17 b of each coil 17 in the coil unit 19 are exposed (protruded) from the substrate fixing surface 19 a.
- Each coil unit 19 is connected in a posture with the substrate fixing surface 19a directed in the same direction.
- each coil unit 19 is connected with an adhesive.
- the wiring substrate 16 is fixed to a flat surface (substrate fixing surface of the coil array 15) formed by arranging the substrate fixing surfaces 19 a of the coil units 19 in the axial direction X.
- the wiring board 16 is connected to the start end 17 a and the end end 17 b of each coil 17 of each coil unit 19.
- connection of each coil unit 19 can also be performed using a screw
- the linear motor unit 3 is a three-phase motor, and when the linear motor unit 3 is driven, the three coils 17 of each coil unit 19 are respectively a U-phase coil 17 (U) and a V-phase coil 17. (V) functions as a W-phase coil 17 (W). That is, the three coils 17 of each coil unit 19 are a U-phase coil 17 (U), a V-phase coil 17 (V), and a W-phase coil 17 (W), respectively.
- the linear motor unit 3 moves the mover 11 in the axial direction X while moving the coil 17 to be fed in the axial direction X.
- the coil unit 19 includes a rectangular bottom portion 51, a rectangular tube portion 52 that rises from the outer peripheral edge of the bottom portion 51, and a cylindrical portion 53 that protrudes from the bottom portion 51 and extends inside the rectangular tube.
- a mold 54 for molding More specifically, the three coils 17 are inserted into the mold 54 so that the cylindrical portion 53 is inserted into the hollow portion of each coil 17, and the three coils 17 are stacked in the mold 54.
- BMC bulk molding compound
- BMC is used as the resin 18 for molding the coil 17, but a PPS resin can also be used.
- the rotary motor unit 4 includes a mover 21 and a stator 22.
- the mover 21 includes a hollow nut shaft 23 through which the output shaft 2 passes.
- the nut shaft 23 includes a small-diameter cylindrical portion 23a and a large-diameter cylindrical portion 23b having a larger diameter than the small-diameter cylindrical portion 23a.
- the large diameter cylindrical portion 23b is continuously provided on the ball spline bearing 5 side of the small diameter cylindrical portion 23a.
- the mover 21 includes a cylindrical yoke 24 fixed to the outer peripheral surface of the small-diameter cylindrical portion 23 a of the nut shaft 23, and a cylindrical permanent magnet 25 fixed to the outer peripheral surface of the yoke 24.
- the permanent magnet 25 has a cylindrical shape, and a plurality of N and S poles are alternately magnetized around the axis ⁇ (circumferential direction).
- the stator 22 is located on the outer peripheral side of the permanent magnet 25.
- the stator 22 includes a cylindrical yoke 26 surrounding the permanent magnet 25 from the outer peripheral side, and a plurality of coils 27 fixed to the inner peripheral surface of the yoke 26.
- Each coil 27 is fixed to the yoke 26 in such a posture that its hollow portion is oriented in the radial direction orthogonal to the axis L.
- the plurality of coils 27 are arranged around the axis line ⁇ .
- the stator 22 includes six coils 27.
- the yoke 26 is held by the case 28 from the outer peripheral side.
- the contour shape when the case 28 is viewed from the axial direction X is a square.
- the nut shaft 23 rotates around the axis line ⁇ by feeding power to the coil 27.
- a ball nut 31 constituting the ball spline bearing 5 is disposed on the inner peripheral side of the large-diameter cylindrical portion 23 b of the nut shaft 23.
- the balls constituting the ball spline bearing 5 and the splines provided on the output shaft 2 are omitted.
- the rotation of the nut shaft 23 is transmitted to the output shaft 2 via the ball nut 31. Therefore, when the rotary motor unit 4 is driven, the output shaft 2 rotates.
- the large diameter cylindrical portion 23 b of the nut shaft 23 is covered with a bearing case 32.
- the contour shape when the bearing case 32 is viewed from the axial direction X is a square.
- FIG. 5 is an explanatory diagram of the linear motion rotation detector 7.
- the magnetic scale 8 is cylindrical.
- the magnetic scale 8 is coaxially fixed to the output shaft 2 in a state where the output shaft 2 passes through the center hole.
- the magnetic scale 8 moves linearly in the axial direction X integrally with the output shaft 2 and rotates about the axis ⁇ .
- the magnetic scale 8 includes a cylindrical member 35 that is a fixed portion to the output shaft 2 and an annular permanent magnet 36 that is fixed to the outer peripheral side of the cylindrical member 35.
- the permanent magnet 36 is a lattice in which S poles and N poles are alternately arranged in the axial direction X on the circumferential surface around the axis ⁇ , and S poles and N poles are alternately magnetized around the axis ⁇ .
- a magnetized pattern 37 is provided.
- the lattice-like magnetized pattern 37 is provided with a plurality of axial tracks 37a extending in the axial direction X in parallel in the axial direction ⁇ , with S poles and N poles alternately arranged in the axial direction X.
- the lattice-like magnetized pattern 37 includes a plurality of circumferential tracks 37b arranged in parallel in the axial direction X, with S and N poles alternately arranged around the axial line ⁇ and extending around the axial line ⁇ .
- the magnetic sensor 9 includes a sensor substrate 40 facing the magnetic scale 8 from a direction orthogonal to the axis L in a posture parallel to the axis L.
- the magnetic sensor 9 includes a first magnetoresistive element (first magnetic detecting element) 41 for detecting a linear motion position formed on a substrate surface 40a facing the magnetic scale 8 in the sensor substrate 40, and a first rotating sensor for detecting a rotational position.
- Two magnetoresistive elements (second magnetic detection elements) 42 are provided.
- the first magnetoresistive element 41 has its magnetosensitive direction in the axial direction X. Therefore, the first magnetoresistive element 41 includes a plurality of magnetized patterns 37 of the magnetic scale 8 and a plurality of rows of axial tracks 37a extending in the axial direction X with S poles and N poles alternately arranged around the axis ⁇ . The change in the magnetic field when the magnetic scale 8 moves is detected.
- the first magnetoresistive element 41 rotates at a boundary portion (a portion where the N pole and the S pole are adjacent) between two axial tracks 37a adjacent to each other around the axis ⁇ . Detect magnetic field.
- the first magnetoresistive element 41 detects a rotating magnetic field using the saturation sensitivity region of the magnetoresistive element. In other words, the first magnetoresistive element 41 detects a rotating magnetic field in which the direction in the in-plane direction changes at the boundary portion by applying a magnetic field intensity at which the resistance value is saturated while applying a current to a magnetoresistive pattern described later. .
- the second magnetoresistive element 42 has its magnetic sensing direction oriented around the axis ⁇ (circumferential direction). Therefore, the second magnetoresistive element 42 has the magnetization pattern 37 of the magnetic scale 8 in the axial direction X with the circumferential track 37b extending in the axial direction ⁇ by alternately arranging the S and N poles around the axial line ⁇ . As having a plurality of rows, a change in the magnetic field when the magnetic scale 8 rotates is detected. Further, the second magnetoresistive element 42 is a rotating magnetic field generated at a boundary portion (a portion where the N pole and the S pole are adjacent) between two circumferential tracks 37b adjacent in the axial direction X in the plurality of circumferential tracks 37b. Is detected.
- the second magnetoresistive element 42 detects the rotating magnetic field using the saturation sensitivity region of the magnetoresistive element. That is, the second magnetoresistive element 42 detects a rotating magnetic field in which the direction in the in-plane direction changes at the boundary portion by applying a magnetic field intensity at which the resistance value is saturated while passing a current through a magnetoresistive pattern to be described later. .
- the magnetoresistive pattern of the first magnetoresistive element 41 and the magnetoresistive pattern of the second magnetoresistive element 42 formed on the sensor substrate 40 are laminated.
- the plurality of coils 17 are covered with the resin 18. Therefore, a plurality of coils 17 can be fixed in the axial direction X without supporting each coil 17 on a coil bobbin or the like.
- the linear motor unit 3 includes a cylindrical coil unit 19 in which three coils arranged coaxially are hardened with a resin 18. Therefore, when the number of coils 17 is increased or decreased in order to change the thrust for linearly moving the mover 11, the number of coil units 19 is increased or decreased, and the increased or decreased number of coil units 19 are connected in the axial direction. That's fine.
- the state in which the plurality of coil units 19 are connected in the axial direction is the same as the state in which the plurality of coils 17 are covered and fixed by the resin 18. Therefore, even when the number of the coils 17 arranged coaxially is increased or decreased, it is not necessary to create a new molding die 54 corresponding to the arrangement length of the coils 17 and mold the coils 17.
- a mold 54 for molding the three coils 17 arranged coaxially with the resin 18 may be prepared, and more than three coils 17 may be covered with the resin 18.
- the mold 54 for hardening is not necessary. Therefore, when manufacturing a plurality of linear motors having different thrusts, the cost of the mold 54 can be suppressed.
- each coil unit 19 has a rectangular outline shape when viewed from the axial direction X, but may have a shape other than a rectangular shape.
- the three coils 17 are coiled together with a resin 18 to form a single coil unit 19, but three or more coils 17, for example, six coils 17 are coiled together with a resin 18.
- One coil unit can also be used.
- Linear motor part (linear motor) DESCRIPTION OF SYMBOLS 11 ... Movable element 13 of linear motor part ... Permanent magnet 17 of linear motor part ... Coil 18 of linear motor part ... Resin 18 19 ... Coil unit L ... Axis
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Linear Motors (AREA)
Abstract
[Problem] To provide a linear motor in which a plurality of coils arranged in an axial direction can be fixed without supporting the coils using a coil bobbin or the like. [Solution] This linear motor part 3 has: a plurality of cylindrical coil units in which three coils 17 arranged coaxially are covered with a resin 18 and hardened; and a movable element 11 that is provided with a permanent magnet 13. The coil units 19 are connected coaxially in an axial direction X. The movable element 11 moves in the axial direction X on an inner peripheral side of the coil units 19. When increasing/decreasing the number of coils 17 in order to change the thrust for moving the movable element 11, the number of coil units 19 may be increased/decreased and the increased/decreased number of coil units 19 connected in the axial direction X. The state in which the coil units 19 are connected in the axial direction X is the same as a state in which the coils 17 are covered with the resin 18 and fixed.
Description
本発明は3相のリニアモータに関する。
The present invention relates to a three-phase linear motor.
同軸に配列された3の倍数のコイルを備える固定子と、永久磁石を備える可動子と、を備え、可動子がコイルの内周側を直動するリニアモータは特許文献1に記載されている。同文献のリニアモータは3相交流モータであり、複数のコイルとして、U相、V相、W相に対応する3つのコイルからなるコイル組を、複数、備える。
Patent Document 1 discloses a linear motor that includes a stator including a coil of multiples of 3 arranged coaxially and a mover including a permanent magnet, and the mover linearly moves on the inner peripheral side of the coil. . The linear motor of the same document is a three-phase AC motor, and includes a plurality of coil sets including three coils corresponding to the U phase, the V phase, and the W phase as a plurality of coils.
ここで、複数のコイルを軸線方向に配列した状態で固定することは、各コイルをコイルボビンなどに巻き付けた状態とて連結しなければ難しい。
Here, it is difficult to fix a plurality of coils arranged in the axial direction unless they are connected in a state where each coil is wound around a coil bobbin or the like.
かかる問題点に鑑みて、本発明の課題は、コイルボビンなどに各コイルを支持させることなく、複数のコイルを軸線方向に配列した状態で固定できるリニアモータを提供することにある。
In view of such problems, an object of the present invention is to provide a linear motor that can fix a plurality of coils arranged in the axial direction without supporting each coil on a coil bobbin or the like.
上記課題を解決するために、本発明の3相のリニアモータは、同軸に配置された少なくとも3つのコイルが樹脂で被い固められている筒状のコイルユニットと、永久磁石を備える可動子と、を有し、前記可動子が前記コイルユニットの内周側を軸線方向に移動することを特徴とする。
In order to solve the above problems, a three-phase linear motor of the present invention includes a cylindrical coil unit in which at least three coils arranged coaxially are covered with resin, and a mover including a permanent magnet. The mover moves in the axial direction on the inner peripheral side of the coil unit.
本発明によれば、複数のコイルはコイルユニットとして樹脂により被い固められている。従って、コイルボビンなどに各コイルを支持させることなく、複数のコイルを軸線方向に配列した状態で固定できる。
According to the present invention, the plurality of coils are hardened with resin as a coil unit. Therefore, a plurality of coils can be fixed in an axial direction without supporting each coil on a coil bobbin or the like.
本発明において、前記3つのコイルは、それぞれU相のコイル、V相のコイル、W相のコイルであるものとすることができる。すなわち、コイルユニットの3つのコイルは、リニアモータを駆動する際に、それぞれU相のコイル、V相のコイル、W相のコイルとして機能する。
In the present invention, the three coils may be a U-phase coil, a V-phase coil, and a W-phase coil, respectively. That is, the three coils of the coil unit function as a U-phase coil, a V-phase coil, and a W-phase coil, respectively, when driving the linear motor.
本発明において、前記コイルユニットを複数備え、各コイルユニットは軸線方向で連結されていることが望ましい。このようにすれば、可動子を移動させる推力を変更するためにコイルの数を増減させる場合には、コイルユニットの数を増減させて、増減させた数のコイルユニットを軸線方向で連結すればよい。また、複数のコイルユニットを軸線方向で連結した状態は、複数のコイルが樹脂により覆われて固定された状態と同様の状態となるので、コイルの数が増加した場合でも、複数のコイルを軸線方向に配列した状態で固定できる。
In the present invention, it is preferable that a plurality of the coil units are provided, and each coil unit is connected in the axial direction. In this way, when the number of coils is increased or decreased to change the thrust for moving the mover, the number of coil units is increased or decreased, and the increased or decreased number of coil units are connected in the axial direction. Good. In addition, since the state in which the plurality of coil units are connected in the axial direction is the same as the state in which the plurality of coils are covered and fixed by the resin, even if the number of coils increases, It can be fixed in an array in the direction.
本発明において、前記樹脂は、BMC(バルクモールディングコンパウンド)であることが望ましい。このように構成すれば、コイルで発生する熱を効果的に外部に逃がすことができる。
In the present invention, the resin is preferably BMC (bulk molding compound). If comprised in this way, the heat | fever which generate | occur | produces with a coil can be escaped effectively outside.
本発明によれば、複数のコイルは樹脂により被い固められている。従って、コイルボビンなどに各コイルを支持させることなく、複数のコイルを軸線方向に配列した状態で固定できる。
According to the present invention, the plurality of coils are covered with resin. Therefore, a plurality of coils can be fixed in an axial direction without supporting each coil on a coil bobbin or the like.
図面を参照して、本発明の実施の形態を説明する。
Embodiments of the present invention will be described with reference to the drawings.
(直動回転駆動装置)
図1は本発明の直動回転検出器を備えた直動回転駆動装置の外観斜視図である。図2は図1の直動回転駆動装置を軸線を含む面で切断した断面図である。図3は図1の直動回転駆動装置の分解斜視図である。図1に示すように、直動回転駆動装置1は、出力軸2と、出力軸2を軸線Lに沿って移動させるリニアモータ部(リニアモータ)3と、出力軸2を軸線回りθに回転させる回転モータ部4と、ボールスプライン軸受(軸受)5を備える。ボールスプライン軸受5は、出力軸2を軸線方向に移動可能に支持するとともに回転モータ部4の駆動力を出力軸2に伝達する。 (Linear rotation drive device)
FIG. 1 is an external perspective view of a linear motion rotation drive device equipped with a linear motion rotation detector of the present invention. FIG. 2 is a cross-sectional view of the linear motion rotary drive device of FIG. 1 cut along a plane including an axis. FIG. 3 is an exploded perspective view of the linear motion rotary drive device of FIG. As shown in FIG. 1, the direct-actingrotary drive device 1 includes an output shaft 2, a linear motor unit (linear motor) 3 that moves the output shaft 2 along the axis L, and the output shaft 2 rotates about the axis θ. The rotary motor unit 4 and the ball spline bearing (bearing) 5 are provided. The ball spline bearing 5 supports the output shaft 2 so as to be movable in the axial direction and transmits the driving force of the rotary motor unit 4 to the output shaft 2.
図1は本発明の直動回転検出器を備えた直動回転駆動装置の外観斜視図である。図2は図1の直動回転駆動装置を軸線を含む面で切断した断面図である。図3は図1の直動回転駆動装置の分解斜視図である。図1に示すように、直動回転駆動装置1は、出力軸2と、出力軸2を軸線Lに沿って移動させるリニアモータ部(リニアモータ)3と、出力軸2を軸線回りθに回転させる回転モータ部4と、ボールスプライン軸受(軸受)5を備える。ボールスプライン軸受5は、出力軸2を軸線方向に移動可能に支持するとともに回転モータ部4の駆動力を出力軸2に伝達する。 (Linear rotation drive device)
FIG. 1 is an external perspective view of a linear motion rotation drive device equipped with a linear motion rotation detector of the present invention. FIG. 2 is a cross-sectional view of the linear motion rotary drive device of FIG. 1 cut along a plane including an axis. FIG. 3 is an exploded perspective view of the linear motion rotary drive device of FIG. As shown in FIG. 1, the direct-acting
また、直動回転駆動装置1は、出力軸2の直動位置および回転位置を検出するための直動回転検出器7を備える。直動回転検出器7は、出力軸2に同軸に固定された筒状の磁気スケール8と、軸線Lと直交する方向から磁気スケール8に対向する磁気センサ9を備える。
Also, the linear motion rotation drive device 1 includes a linear motion rotation detector 7 for detecting the linear motion position and the rotational position of the output shaft 2. The linear rotation detector 7 includes a cylindrical magnetic scale 8 that is coaxially fixed to the output shaft 2 and a magnetic sensor 9 that faces the magnetic scale 8 from a direction orthogonal to the axis L.
直動回転検出器7の磁気スケール8、リニアモータ部3、回転モータ部4、および、ボールスプライン軸受5は、軸線方向の一方側から他方側に向って、この順番で同軸に配置されている。なお、以下の説明では、軸線方向をXとし、軸線回りをθとする。
The magnetic scale 8, the linear motor unit 3, the rotary motor unit 4, and the ball spline bearing 5 of the linear motion rotation detector 7 are arranged coaxially in this order from one side to the other side in the axial direction. . In the following description, the axial direction is X, and the axis is θ.
(リニアモータ部)
図2に示すように、リニアモータ部3は可動子11と固定子12とを有する。可動子11は出力軸2と出力軸2の外周面に固定した複数の永久磁石13を備える。各永久磁石13は、環状であり、軸線方向XにN極とS極とが着磁されている。複数の永久磁石13は、隣り合う永久磁石13同士が互いに同一の極を向けて対向する。本例では出力軸2に10個の永久磁石13が固定されている。 (Linear motor part)
As shown in FIG. 2, thelinear motor unit 3 includes a mover 11 and a stator 12. The mover 11 includes an output shaft 2 and a plurality of permanent magnets 13 fixed to the outer peripheral surface of the output shaft 2. Each permanent magnet 13 has an annular shape, and an N pole and an S pole are magnetized in the axial direction X. The plurality of permanent magnets 13 face each other with the adjacent permanent magnets 13 facing the same pole. In this example, ten permanent magnets 13 are fixed to the output shaft 2.
図2に示すように、リニアモータ部3は可動子11と固定子12とを有する。可動子11は出力軸2と出力軸2の外周面に固定した複数の永久磁石13を備える。各永久磁石13は、環状であり、軸線方向XにN極とS極とが着磁されている。複数の永久磁石13は、隣り合う永久磁石13同士が互いに同一の極を向けて対向する。本例では出力軸2に10個の永久磁石13が固定されている。 (Linear motor part)
As shown in FIG. 2, the
固定子12は可動子11の外周側に位置する。図1、2に示すように、固定子12は、同軸に配列した複数のコイル17を備える筒状のコイル配列体15と、コイル配列体15に固定された配線基板16を備える。
The stator 12 is located on the outer peripheral side of the mover 11. As shown in FIGS. 1 and 2, the stator 12 includes a cylindrical coil array 15 having a plurality of coils 17 arranged coaxially, and a wiring board 16 fixed to the coil array 15.
図2、図3に示すように、コイル配列体15は、軸線方向Xで隣り合う3つのコイル17を樹脂18により一体に被い固めた筒状のコイルユニット19を、複数、備える。各コイルユニット19は軸線方向Xで同軸に連結され、これによりコイル配列体15が構成されている。本例では、コイル配列体15は7つのコイルユニット19を備える。従って、コイル配列体15は21個のコイル17を備える。
2 and 3, the coil array 15 includes a plurality of cylindrical coil units 19 in which three coils 17 adjacent in the axial direction X are integrally covered with a resin 18 and hardened. Each coil unit 19 is coaxially connected in the axial direction X, thereby forming a coil array 15. In this example, the coil array 15 includes seven coil units 19. Therefore, the coil array 15 includes 21 coils 17.
図4(a)はコイルユニットの斜視図であり、図4(b)はコイルユニットの製造方向の説明図である。各コイルユニット19は、軸線方向Xから見た場合の輪郭形状が矩形である。図4に示すように、各コイルユニット19は軸線回りθに4つの側面を備える。図1に示すように、4つの側面のうちの一つの側面は基板固定面19aとなっている。図3に示すように、基板固定面19aからはコイルユニット19内の各コイル17の始端17aと終端17bが外側に露出(突出)している。
4 (a) is a perspective view of the coil unit, and FIG. 4 (b) is an explanatory diagram of the manufacturing direction of the coil unit. Each coil unit 19 has a rectangular outline when viewed from the axial direction X. As shown in FIG. 4, each coil unit 19 includes four side surfaces around the axis θ. As shown in FIG. 1, one of the four side surfaces is a substrate fixing surface 19a. As shown in FIG. 3, the start end 17 a and the end end 17 b of each coil 17 in the coil unit 19 are exposed (protruded) from the substrate fixing surface 19 a.
各コイルユニット19は基板固定面19aを同一方向に向けた姿勢で連結される。本例では、各コイルユニット19は接着剤での連結されている。配線基板16は、各コイルユニット19の基板固定面19aが軸線方向Xに並ぶことにより形成された平坦面(コイル配列体15の基板固定面)に固定される。配線基板16には各コイルユニット19の各コイル17の始端17aおよび終端17bが接続される。なお、各コイルユニット19の連結は、ネジなどを用いて行うこともできる。
Each coil unit 19 is connected in a posture with the substrate fixing surface 19a directed in the same direction. In this example, each coil unit 19 is connected with an adhesive. The wiring substrate 16 is fixed to a flat surface (substrate fixing surface of the coil array 15) formed by arranging the substrate fixing surfaces 19 a of the coil units 19 in the axial direction X. The wiring board 16 is connected to the start end 17 a and the end end 17 b of each coil 17 of each coil unit 19. In addition, connection of each coil unit 19 can also be performed using a screw | thread etc. FIG.
ここで、リニアモータ部3は3相モータであり、各コイルユニット19の3つのコイル17は、リニアモータ部3を駆動する際に、それぞれU相のコイル17(U)、V相のコイル17(V)、W相のコイル17(W)として機能する。すなわち、各コイルユニット19の3つのコイル17は、それぞれ、U相のコイル17(U)、V相のコイル17(V)、W相のコイル17(W)である。リニアモータ部3では給電するコイル17を軸線方向Xに移動させながら可動子11を軸線方向Xに移動させる。
Here, the linear motor unit 3 is a three-phase motor, and when the linear motor unit 3 is driven, the three coils 17 of each coil unit 19 are respectively a U-phase coil 17 (U) and a V-phase coil 17. (V) functions as a W-phase coil 17 (W). That is, the three coils 17 of each coil unit 19 are a U-phase coil 17 (U), a V-phase coil 17 (V), and a W-phase coil 17 (W), respectively. The linear motor unit 3 moves the mover 11 in the axial direction X while moving the coil 17 to be fed in the axial direction X.
なお、コイルユニット19は、図4(b)に示すように、矩形の底部51と、底部51の外周縁から立ち上がる角筒部52と、底部51から突出して角筒の内側を延びる円柱部53とを備えるモールド用の金型54を用いて形成される。より具体的には、各コイル17の中空部に円柱部53が挿入されるようにして3つのコイル17を金型54内に投入して、金型54内で3つのコイル17を積層した状態とする。その後、角筒部52の内側にBMC(バルクモールディングコンパウンド)を充填してBMCにより金型54内のコイル17をモールド成形する。ここで、本例では、コイル17をモールドする樹脂18としてBMCを用いているが、PPS樹脂を用いることもできる。
As shown in FIG. 4B, the coil unit 19 includes a rectangular bottom portion 51, a rectangular tube portion 52 that rises from the outer peripheral edge of the bottom portion 51, and a cylindrical portion 53 that protrudes from the bottom portion 51 and extends inside the rectangular tube. Are formed using a mold 54 for molding. More specifically, the three coils 17 are inserted into the mold 54 so that the cylindrical portion 53 is inserted into the hollow portion of each coil 17, and the three coils 17 are stacked in the mold 54. And Thereafter, BMC (bulk molding compound) is filled inside the rectangular tube portion 52, and the coil 17 in the mold 54 is molded by BMC. Here, in this example, BMC is used as the resin 18 for molding the coil 17, but a PPS resin can also be used.
(回転モータ部)
回転モータ部4は可動子21と固定子22とを有する。可動子21は出力軸2が貫通する中空のナットシャフト23を備える。図3に示すように、ナットシャフト23は、小径筒部23aと、小径筒部23aよりも大径の大径筒部23bを備える。大径筒部23bは小径筒部23aのボールスプライン軸受5の側に連続して設けられている。また、可動子21は、ナットシャフト23の小径筒部23aの外周面に固定された筒状のヨーク24と、ヨーク24の外周面に固定された筒状の永久磁石25を備える。永久磁石25は、筒状であり、軸線回りθ(周方向)にN極とS極が交互に複数着磁されている。 (Rotary motor part)
Therotary motor unit 4 includes a mover 21 and a stator 22. The mover 21 includes a hollow nut shaft 23 through which the output shaft 2 passes. As shown in FIG. 3, the nut shaft 23 includes a small-diameter cylindrical portion 23a and a large-diameter cylindrical portion 23b having a larger diameter than the small-diameter cylindrical portion 23a. The large diameter cylindrical portion 23b is continuously provided on the ball spline bearing 5 side of the small diameter cylindrical portion 23a. The mover 21 includes a cylindrical yoke 24 fixed to the outer peripheral surface of the small-diameter cylindrical portion 23 a of the nut shaft 23, and a cylindrical permanent magnet 25 fixed to the outer peripheral surface of the yoke 24. The permanent magnet 25 has a cylindrical shape, and a plurality of N and S poles are alternately magnetized around the axis θ (circumferential direction).
回転モータ部4は可動子21と固定子22とを有する。可動子21は出力軸2が貫通する中空のナットシャフト23を備える。図3に示すように、ナットシャフト23は、小径筒部23aと、小径筒部23aよりも大径の大径筒部23bを備える。大径筒部23bは小径筒部23aのボールスプライン軸受5の側に連続して設けられている。また、可動子21は、ナットシャフト23の小径筒部23aの外周面に固定された筒状のヨーク24と、ヨーク24の外周面に固定された筒状の永久磁石25を備える。永久磁石25は、筒状であり、軸線回りθ(周方向)にN極とS極が交互に複数着磁されている。 (Rotary motor part)
The
固定子22は永久磁石25の外周側に位置する。固定子22は、永久磁石25を外周側から囲む筒状のヨーク26と、ヨーク26の内周面に固定された複数のコイル27を備える。各コイル27は、その中空部を軸線Lと直交する半径方向に向けた姿勢でヨーク26に固定されている。複数のコイル27は軸線回りθに配列されている。本例では、固定子22は6つのコイル27を備える。ヨーク26はケース28により外周側から保持されている。ケース28を軸線方向Xから見た場合の輪郭形状は正方形である。
The stator 22 is located on the outer peripheral side of the permanent magnet 25. The stator 22 includes a cylindrical yoke 26 surrounding the permanent magnet 25 from the outer peripheral side, and a plurality of coils 27 fixed to the inner peripheral surface of the yoke 26. Each coil 27 is fixed to the yoke 26 in such a posture that its hollow portion is oriented in the radial direction orthogonal to the axis L. The plurality of coils 27 are arranged around the axis line θ. In this example, the stator 22 includes six coils 27. The yoke 26 is held by the case 28 from the outer peripheral side. The contour shape when the case 28 is viewed from the axial direction X is a square.
コイル27への給電によりナットシャフト23は軸線回りθに回転する。ここで、ナットシャフト23の大径筒部23bの内周側には、ボールスプライン軸受5を構成するボールナット31が配置されている。なお、図2において、ボールスプライン軸受5を構成するボールおよび出力軸2に設けられたスプラインは省略されている。ナットシャフト23の回転は、ボールナット31を介して出力軸2に伝達される。従って、回転モータ部4が駆動されると出力軸2は回転する。ナットシャフト23の大径筒部23bは、軸受ケース32により覆われている。軸受ケース32を軸線方向Xから見た場合の輪郭形状は正方形である。
The nut shaft 23 rotates around the axis line θ by feeding power to the coil 27. Here, a ball nut 31 constituting the ball spline bearing 5 is disposed on the inner peripheral side of the large-diameter cylindrical portion 23 b of the nut shaft 23. In FIG. 2, the balls constituting the ball spline bearing 5 and the splines provided on the output shaft 2 are omitted. The rotation of the nut shaft 23 is transmitted to the output shaft 2 via the ball nut 31. Therefore, when the rotary motor unit 4 is driven, the output shaft 2 rotates. The large diameter cylindrical portion 23 b of the nut shaft 23 is covered with a bearing case 32. The contour shape when the bearing case 32 is viewed from the axial direction X is a square.
(直動回転検出器)
図5は直動回転検出器7の説明図である。図5に示すように、磁気スケール8は円筒状である。図1乃至3に示すように、磁気スケール8は、その中心孔に出力軸2を貫通させた状態で出力軸2に同軸に固定されている。磁気スケール8は、出力軸2と一体に軸線方向Xに直動するとともに軸線回りθに回転する。 (Linear rotation detector)
FIG. 5 is an explanatory diagram of the linearmotion rotation detector 7. As shown in FIG. 5, the magnetic scale 8 is cylindrical. As shown in FIGS. 1 to 3, the magnetic scale 8 is coaxially fixed to the output shaft 2 in a state where the output shaft 2 passes through the center hole. The magnetic scale 8 moves linearly in the axial direction X integrally with the output shaft 2 and rotates about the axis θ.
図5は直動回転検出器7の説明図である。図5に示すように、磁気スケール8は円筒状である。図1乃至3に示すように、磁気スケール8は、その中心孔に出力軸2を貫通させた状態で出力軸2に同軸に固定されている。磁気スケール8は、出力軸2と一体に軸線方向Xに直動するとともに軸線回りθに回転する。 (Linear rotation detector)
FIG. 5 is an explanatory diagram of the linear
磁気スケール8は、出力軸2への固定部となる筒部材35と、筒部材35の外周側に固定された環状の永久磁石36を備える。永久磁石36は、軸線回りθの円周面に、軸線方向XにS極とN極とが交互に配列され、かつ、軸線回りθにS極とN極とが交互に着磁された格子状の着磁パターン37を備える。ここで、格子状の着磁パターン37は、軸線方向XにS極とN極とが交互に配列されて軸線方向Xに延びる軸方向トラック37aを軸線回りθに並列に複数備えるものである。また、格子状の着磁パターン37は、軸線回りθにS極とN極とが交互に配列されて軸線回りθに延びる周方向トラック37bを軸線方向Xに並列に複数備えるものである。
The magnetic scale 8 includes a cylindrical member 35 that is a fixed portion to the output shaft 2 and an annular permanent magnet 36 that is fixed to the outer peripheral side of the cylindrical member 35. The permanent magnet 36 is a lattice in which S poles and N poles are alternately arranged in the axial direction X on the circumferential surface around the axis θ, and S poles and N poles are alternately magnetized around the axis θ. A magnetized pattern 37 is provided. Here, the lattice-like magnetized pattern 37 is provided with a plurality of axial tracks 37a extending in the axial direction X in parallel in the axial direction θ, with S poles and N poles alternately arranged in the axial direction X. The lattice-like magnetized pattern 37 includes a plurality of circumferential tracks 37b arranged in parallel in the axial direction X, with S and N poles alternately arranged around the axial line θ and extending around the axial line θ.
磁気センサ9は、軸線Lと平行な姿勢で軸線Lと直交する方向から磁気スケール8に対向するセンサ基板40を備える。また、磁気センサ9は、センサ基板40において磁気スケール8に対向する基板表面40aに形成された直動位置検出用の第1磁気抵抗素子(第1磁気検出素子)41と回転位置検出用の第2磁気抵抗素子(第2磁気検出素子)42を備える。
The magnetic sensor 9 includes a sensor substrate 40 facing the magnetic scale 8 from a direction orthogonal to the axis L in a posture parallel to the axis L. The magnetic sensor 9 includes a first magnetoresistive element (first magnetic detecting element) 41 for detecting a linear motion position formed on a substrate surface 40a facing the magnetic scale 8 in the sensor substrate 40, and a first rotating sensor for detecting a rotational position. Two magnetoresistive elements (second magnetic detection elements) 42 are provided.
第1磁気抵抗素子41は、その感磁方向を軸線方向Xに向けている。従って、第1磁気抵抗素子41は、磁気スケール8の着磁パターン37を、S極とN極とが交互に配列されて軸線方向Xに延びる軸方向トラック37aを軸線回りθに複数列備えるものとして、磁気スケール8が移動したときの磁界の変化を検出する。ここで、第1磁気抵抗素子41は、複数の軸方向トラック37aにおいて、軸線回りθで隣り合う2つの軸方向トラック37aの境界部分(N極とS極とが隣り合う部分)で発生する回転磁界を検出する。また、第1磁気抵抗素子41は磁気抵抗素子の飽和感度領域を利用して回転磁界を検出する。すなわち、第1磁気抵抗素子41は、後述する磁気抵抗パターンに電流を流し、かつ、抵抗値が飽和する磁界強度を印加して、境界部分で面内方向の向きが変化する回転磁界を検出する。
The first magnetoresistive element 41 has its magnetosensitive direction in the axial direction X. Therefore, the first magnetoresistive element 41 includes a plurality of magnetized patterns 37 of the magnetic scale 8 and a plurality of rows of axial tracks 37a extending in the axial direction X with S poles and N poles alternately arranged around the axis θ. The change in the magnetic field when the magnetic scale 8 moves is detected. Here, in the plurality of axial tracks 37a, the first magnetoresistive element 41 rotates at a boundary portion (a portion where the N pole and the S pole are adjacent) between two axial tracks 37a adjacent to each other around the axis θ. Detect magnetic field. The first magnetoresistive element 41 detects a rotating magnetic field using the saturation sensitivity region of the magnetoresistive element. In other words, the first magnetoresistive element 41 detects a rotating magnetic field in which the direction in the in-plane direction changes at the boundary portion by applying a magnetic field intensity at which the resistance value is saturated while applying a current to a magnetoresistive pattern described later. .
第2磁気抵抗素子42は、その感磁方向を軸線回りθ(周方向)に向けている。従って、第2磁気抵抗素子42は、磁気スケール8の着磁パターン37を、軸線回りθにS極とN極とが交互に配列されて軸線回りθに延びる周方向トラック37bを軸線方向Xに複数列備えるものとして、磁気スケール8が回転したときの磁界の変化を検出する。また、第2磁気抵抗素子42は、複数の周方向トラック37bにおいて、軸線方向Xで隣り合う2つの周方向トラック37bの境界部分(N極とS極とが隣り合う部分)で発生する回転磁界を検出する。また、第2磁気抵抗素子42は磁気抵抗素子の飽和感度領域を利用して回転磁界を検出する。すなわち、第2磁気抵抗素子42は、後述する磁気抵抗パターンに電流を流し、かつ、抵抗値が飽和する磁界強度を印加して、境界部分で面内方向の向きが変化する回転磁界を検出する。
The second magnetoresistive element 42 has its magnetic sensing direction oriented around the axis θ (circumferential direction). Therefore, the second magnetoresistive element 42 has the magnetization pattern 37 of the magnetic scale 8 in the axial direction X with the circumferential track 37b extending in the axial direction θ by alternately arranging the S and N poles around the axial line θ. As having a plurality of rows, a change in the magnetic field when the magnetic scale 8 rotates is detected. Further, the second magnetoresistive element 42 is a rotating magnetic field generated at a boundary portion (a portion where the N pole and the S pole are adjacent) between two circumferential tracks 37b adjacent in the axial direction X in the plurality of circumferential tracks 37b. Is detected. Further, the second magnetoresistive element 42 detects the rotating magnetic field using the saturation sensitivity region of the magnetoresistive element. That is, the second magnetoresistive element 42 detects a rotating magnetic field in which the direction in the in-plane direction changes at the boundary portion by applying a magnetic field intensity at which the resistance value is saturated while passing a current through a magnetoresistive pattern to be described later. .
本例では、センサ基板40上に形成された第1磁気抵抗素子41の磁気抵抗パターンと第2磁気抵抗素子42の磁気抵抗パターンは積層されている。
In this example, the magnetoresistive pattern of the first magnetoresistive element 41 and the magnetoresistive pattern of the second magnetoresistive element 42 formed on the sensor substrate 40 are laminated.
(作用効果)
本例によれば、複数のコイル17は樹脂18により被い固められている。従って、コイルボビンなどに各コイル17を支持させることなく、複数のコイル17を軸線方向Xに配列した状態で固定できる。 (Function and effect)
According to this example, the plurality ofcoils 17 are covered with the resin 18. Therefore, a plurality of coils 17 can be fixed in the axial direction X without supporting each coil 17 on a coil bobbin or the like.
本例によれば、複数のコイル17は樹脂18により被い固められている。従って、コイルボビンなどに各コイル17を支持させることなく、複数のコイル17を軸線方向Xに配列した状態で固定できる。 (Function and effect)
According to this example, the plurality of
また、本例では、リニアモータ部3は、同軸に配置された3つのコイルを樹脂18で固めた筒状のコイルユニット19を備える。従って、可動子11を直動させる推力を変更するためにコイル17の数を増減させる場合には、コイルユニット19の数を増減させて、増減させた数のコイルユニット19を軸線方向で連結すればよい。ここで、複数のコイルユニット19を軸線方向で連結した状態は、複数のコイル17が樹脂18により覆われて固定された状態と同様の状態となる。従って、同軸に配列するコイル17の数を増減させた場合でも、コイル17の配列長に対応する新たなモールド用の金型54を作成して、コイル17をモールドする必要がない。すなわち、本例によれば、同軸に配置された3つのコイル17を樹脂18で被い固めるためのモールド用の金型54を用意すればよく、3を超える数のコイル17を樹脂18で被い固めるためのモールド用の金型54は必要ない。従って、推力の異なる複数のリニアモータを製造する場合などに、金型54にかかるコストを抑制できる。
Further, in this example, the linear motor unit 3 includes a cylindrical coil unit 19 in which three coils arranged coaxially are hardened with a resin 18. Therefore, when the number of coils 17 is increased or decreased in order to change the thrust for linearly moving the mover 11, the number of coil units 19 is increased or decreased, and the increased or decreased number of coil units 19 are connected in the axial direction. That's fine. Here, the state in which the plurality of coil units 19 are connected in the axial direction is the same as the state in which the plurality of coils 17 are covered and fixed by the resin 18. Therefore, even when the number of the coils 17 arranged coaxially is increased or decreased, it is not necessary to create a new molding die 54 corresponding to the arrangement length of the coils 17 and mold the coils 17. That is, according to the present example, a mold 54 for molding the three coils 17 arranged coaxially with the resin 18 may be prepared, and more than three coils 17 may be covered with the resin 18. The mold 54 for hardening is not necessary. Therefore, when manufacturing a plurality of linear motors having different thrusts, the cost of the mold 54 can be suppressed.
また、本例では、樹脂18としてBMCを用いてコイル17を被い固めているので、コイル17で発生する熱を外部に逃しやすい。
In this example, since the coil 17 is covered and hardened using BMC as the resin 18, the heat generated in the coil 17 is easily released to the outside.
(その他の実施の形態)
上記の例では、各コイルユニット19は、軸線方向Xから見た場合の輪郭形状が矩形であるが、矩形以外の形状を備えてもよい。また、上記の例では、3つのコイル17をコイル組として樹脂18で固めて一つのコイルユニット19としているが、3つ以上のコイル17、例えば、6つのコイル17をコイル組として樹脂18で固めて一つのコイルユニットとすることもできる。 (Other embodiments)
In the above example, eachcoil unit 19 has a rectangular outline shape when viewed from the axial direction X, but may have a shape other than a rectangular shape. In the above example, the three coils 17 are coiled together with a resin 18 to form a single coil unit 19, but three or more coils 17, for example, six coils 17 are coiled together with a resin 18. One coil unit can also be used.
上記の例では、各コイルユニット19は、軸線方向Xから見た場合の輪郭形状が矩形であるが、矩形以外の形状を備えてもよい。また、上記の例では、3つのコイル17をコイル組として樹脂18で固めて一つのコイルユニット19としているが、3つ以上のコイル17、例えば、6つのコイル17をコイル組として樹脂18で固めて一つのコイルユニットとすることもできる。 (Other embodiments)
In the above example, each
3・・・リニアモータ部(リニアモータ)
11・・・リニアモータ部の可動子
13・・・リニアモータ部の永久磁石
17・・・リニアモータ部のコイル
18・・・樹脂18
19・・・コイルユニット
L・・・軸線 3. Linear motor part (linear motor)
DESCRIPTION OF SYMBOLS 11 ...Movable element 13 of linear motor part ... Permanent magnet 17 of linear motor part ... Coil 18 of linear motor part ... Resin 18
19 ... Coil unit L ... Axis
11・・・リニアモータ部の可動子
13・・・リニアモータ部の永久磁石
17・・・リニアモータ部のコイル
18・・・樹脂18
19・・・コイルユニット
L・・・軸線 3. Linear motor part (linear motor)
DESCRIPTION OF SYMBOLS 11 ...
19 ... Coil unit L ... Axis
Claims (4)
- 同軸に配置された少なくとも3つのコイルが樹脂で被い固められている筒状のコイルユニットと、
永久磁石を備える可動子と、を有し、
前記可動子が前記コイルユニットの内周側を軸線方向に移動することを特徴とする3相のリニアモータ。 A cylindrical coil unit in which at least three coils arranged coaxially are covered with resin, and
A mover comprising a permanent magnet,
The three-phase linear motor characterized in that the mover moves in the axial direction on the inner peripheral side of the coil unit. - 請求項1において、
前記3つのコイルは、それぞれU相のコイル、V相のコイル、W相のコイルであることを特徴とするリニアモータ。 In claim 1,
The three coils are a U-phase coil, a V-phase coil, and a W-phase coil, respectively. - 請求項1または2において、
前記コイルユニットを複数備え、各コイルユニットは軸線方向で連結されていることを特徴とするリニアモータ。 In claim 1 or 2,
A linear motor comprising a plurality of the coil units, wherein each coil unit is connected in the axial direction. - 請求項1ないし3のうちのいずれかの項において、
前記樹脂は、BMCであることを特徴とするリニアモータ。 In any one of claims 1 to 3,
The linear motor, wherein the resin is BMC.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680054243.0A CN108028594A (en) | 2015-09-18 | 2016-09-16 | Line motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015185560A JP2017060362A (en) | 2015-09-18 | 2015-09-18 | Linear motor |
JP2015-185560 | 2015-09-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017047783A1 true WO2017047783A1 (en) | 2017-03-23 |
Family
ID=58289448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/077537 WO2017047783A1 (en) | 2015-09-18 | 2016-09-16 | Linear motor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2017060362A (en) |
CN (1) | CN108028594A (en) |
WO (1) | WO2017047783A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109904990B (en) * | 2019-03-06 | 2024-06-18 | 深圳市领略数控设备有限公司 | Encoder separation type direct-drive motor |
JP7304251B2 (en) * | 2019-09-25 | 2023-07-06 | 日本トムソン株式会社 | Slide device with built-in moving magnet type linear motor |
CN111355349B (en) * | 2020-04-13 | 2021-05-11 | 南通启电新能源科技有限公司 | Production process of reciprocating linear generator with high energy utilization rate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54122508A (en) * | 1978-03-13 | 1979-09-22 | Japanese National Railways<Jnr> | Molding of electromagnetic rail |
JP2004357353A (en) * | 2003-05-27 | 2004-12-16 | Fuji Electric Fa Components & Systems Co Ltd | Linear electromagnetic actuator |
JP2009159752A (en) * | 2007-12-27 | 2009-07-16 | Yaskawa Electric Corp | Linear motor and manufacturing method |
JP2013070525A (en) * | 2011-09-22 | 2013-04-18 | Sanyo Denki Co Ltd | Stator core and stator |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4860222B2 (en) * | 2005-09-28 | 2012-01-25 | Thk株式会社 | Linear motor and manufacturing method thereof |
JP2010259259A (en) * | 2009-04-27 | 2010-11-11 | Nippon Pulse Motor Co Ltd | Mover of linear motor and method for manufacturing the same |
JP5750340B2 (en) * | 2011-09-05 | 2015-07-22 | 山洋電気株式会社 | Electric machine |
-
2015
- 2015-09-18 JP JP2015185560A patent/JP2017060362A/en active Pending
-
2016
- 2016-09-16 WO PCT/JP2016/077537 patent/WO2017047783A1/en active Application Filing
- 2016-09-16 CN CN201680054243.0A patent/CN108028594A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54122508A (en) * | 1978-03-13 | 1979-09-22 | Japanese National Railways<Jnr> | Molding of electromagnetic rail |
JP2004357353A (en) * | 2003-05-27 | 2004-12-16 | Fuji Electric Fa Components & Systems Co Ltd | Linear electromagnetic actuator |
JP2009159752A (en) * | 2007-12-27 | 2009-07-16 | Yaskawa Electric Corp | Linear motor and manufacturing method |
JP2013070525A (en) * | 2011-09-22 | 2013-04-18 | Sanyo Denki Co Ltd | Stator core and stator |
Also Published As
Publication number | Publication date |
---|---|
CN108028594A (en) | 2018-05-11 |
JP2017060362A (en) | 2017-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101475555B1 (en) | Actuator | |
JP2013544483A (en) | Rotating electric machine | |
JP2010528581A5 (en) | ||
JP5672507B2 (en) | Rotating electric machine | |
WO2017047783A1 (en) | Linear motor | |
JP6376987B2 (en) | Rotating electric machine | |
WO2017209271A1 (en) | Linear motion and rotation detector, linear motion and rotation detector unit, and linear motion and rotation drive device | |
JP2011083056A (en) | Axial gap motor and electric power steering device | |
JP5827904B2 (en) | Magnetization method of motor and rotor magnet | |
JP6459754B2 (en) | motor | |
WO2017047782A1 (en) | Linear motion/rotation drive device | |
JP5093567B2 (en) | θZ actuator | |
JP6007609B2 (en) | Rotating electric machine and vehicle steering apparatus provided with the same | |
KR101301381B1 (en) | Switched Reluctance Motor | |
JP2015061411A (en) | Linear/rotary actuator and method for controlling the same | |
JP2014121104A (en) | Brushless dc motor, motor unit, optical element driving device and imaging apparatus | |
WO2017047781A1 (en) | Linear motion/rotation detector | |
KR20180027021A (en) | Stator and motor having the same | |
KR101396175B1 (en) | Brushless dc motor | |
JP2008141908A (en) | Brushless motor and electric power steering system equipped with it | |
JP2015114208A5 (en) | ||
JP5314067B2 (en) | Servomotor | |
JP5625388B2 (en) | Rotation position detection device and permanent magnet synchronous motor provided with the same | |
JP2010187505A (en) | thetaZ-AXIS LINEAR MOTOR | |
JP7308504B2 (en) | Cylindrical linear motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16846654 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16846654 Country of ref document: EP Kind code of ref document: A1 |