WO2017047407A1 - Composite polarizing plate and liquid crystal panel using same - Google Patents
Composite polarizing plate and liquid crystal panel using same Download PDFInfo
- Publication number
- WO2017047407A1 WO2017047407A1 PCT/JP2016/075808 JP2016075808W WO2017047407A1 WO 2017047407 A1 WO2017047407 A1 WO 2017047407A1 JP 2016075808 W JP2016075808 W JP 2016075808W WO 2017047407 A1 WO2017047407 A1 WO 2017047407A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polarizing plate
- film
- polarizing
- protective film
- composite
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
Definitions
- the present invention relates to a composite polarizing plate excellent in durability and a liquid crystal panel using the same.
- liquid crystal display devices have been rapidly used as information display devices such as mobile phones, personal digital assistants, computer monitors, and televisions by taking advantage of low power consumption, low voltage operation, light weight, and thinness. It has become widespread. With the development of liquid crystal technology, liquid crystal display devices of various modes have been proposed, and problems of liquid crystal display such as response speed, contrast, and narrow viewing angle are being solved. Under such circumstances, liquid crystal display devices have also been developed in fields where high durability is required such as in-vehicle applications. However, for a severe endurance test at a temperature of 95 ° C., there is a problem that the polarization degree is greatly lowered in a polarizing plate dyed with a conventional polyvinyl alcohol resin with iodine.
- Patent Document 1 discloses a configuration in which two polarizing plates are used on the light emission side of a projection display device.
- the polarizing plates are spatially separated.
- a cooling gas is passed between two polarizing plates or a sapphire or crystal with high thermal conductivity is sandwiched between two polarizing plates, the refractive index is placed at the interface of the air layer or quartz. There is a problem that reflection due to the difference is large and the light use efficiency is lowered.
- Patent Document 2 JP-A-10-133196 discloses a composite polarizing plate obtained by directly laminating polarizing plates with improved heat resistance for a liquid crystal projector.
- a polarizing plate in which a triacetyl cellulose film is disposed as a protective layer on both sides of a polarizing film having a thickness of 20 to 30 ⁇ m has a large shrinkage force when the heat is applied. Problems such as peeling of the plate may occur.
- a material such as glass having a thermal conductivity of 0.8 W / m ⁇ K or more is used as the protective layer of the polarizing film, there is a problem that processing such as cutting is not easy and production efficiency is low. For these reasons, there is also a problem that it is difficult to provide functionality by providing a surface treatment layer on the surface of the composite polarizing plate.
- the first protective film, the first polarizing film having a thickness of 15 ⁇ m or less, and the second polarizing film having a thickness of 15 ⁇ m or less are laminated in this order, and the absorption axis of the first polarizing film and the first polarizing film
- a composite polarizing plate in which the absorption axis of the polarizing film of 2 is substantially parallel is provided.
- a composite polarizing plate in which the second protective film is laminated on the surface opposite to the surface on which the first polarizing film is laminated.
- the single transmittance of the first polarizing plate having the first polarizing film and the first protective film is the single transmittance of the second polarizing plate having the second polarizing film and the second protective film.
- the difference between the thickness of the first polarizing film and the thickness of the second polarizing film is 5 ⁇ m or less.
- stacked in order to bond to a liquid crystal panel is also provided.
- the second protective film preferably contains at least one selected from the group consisting of a cellulose resin, a polyolefin resin, and an acrylic resin, and preferably has a thickness direction retardation value of ⁇ 10 to 10 nm.
- a composite polarizing plate having a third protective film between the first polarizing film and the second polarizing film is also provided.
- the third protective film is made of a cellulose-based resin, has an in-plane retardation value Re (590) at a wavelength of 590 nm of 10 nm or less, and an absolute value of a thickness direction retardation value Rth (590) at a wavelength of 590 nm is 10 nm or less. It is preferable that
- the present invention also provides a liquid crystal panel in which the above-mentioned composite polarizing plate is laminated on at least one of the liquid crystal cells via an adhesive.
- a composite polarizing plate and a liquid crystal panel excellent in heat resistance and durability can be obtained by laminating two polarizing films having a thickness of 15 ⁇ m or less.
- the composite polarizing plate 10 according to the present invention is configured by laminating a first protective film 12A, a first polarizing film 11A, and a second polarizing film 11B in this order. It is preferable that the 2nd protective film 12B is laminated
- the composite polarizing plate 10 includes a first protective film 12A, a first polarizing film 11A, a third protective film 15, and a second polarizing film 11B laminated in this order. Configured. It is preferable that the 2nd protective film 12B is laminated
- the first polarizing film 11A and the second polarizing film 11B are arranged so that their absorption axes are substantially parallel.
- substantially parallel means that the angle between the two is not strictly limited to 0 °, and for example, is within a range of 0 ⁇ 5 °, preferably within a range of 0 ⁇ 3 °.
- a laminated body including the first protective film 12A and the first polarizing film 11A is referred to as a first polarizing plate
- a laminated body including the second polarizing film 11B and the second protective film 12B is referred to as a second polarizing film.
- the third protective film 15 is included in either the first polarizing plate or the second polarizing plate. That is, the composite polarizing plate 10 of the present invention preferably has a layer configuration in which a first polarizing plate and a second polarizing plate are laminated.
- the thickness of both the first polarizing film and the second polarizing film is set to 15 ⁇ m or less. Further, since the single transmittance of the first polarizing plate is smaller than the single transmittance of the second polarizing plate, the single transmittance of the composite polarizing plate can be further increased.
- the difference between the thickness of the first polarizing film and the thickness of the second polarizing film is 5 ⁇ m or less.
- the second protective film preferably contains at least one selected from the group consisting of a cellulose resin, a polyolefin resin, and an acrylic resin.
- the thickness direction retardation value of the second protective film is preferably ⁇ 10 to 10 nm.
- an adhesive layer 14 may be laminated on the second polarizing film or the second protective film.
- a composite polarizing plate can be bonded to a liquid crystal cell through the pressure-sensitive adhesive layer 14 to obtain a liquid crystal panel.
- the composite polarizing plate of this invention is used suitably for the visual recognition side of a liquid crystal display device, a back surface side, or both.
- the third protective film 15 is made of a cellulose resin film, has an in-plane retardation value Re (590) of 10 nm or less at a wavelength of 590 nm, and an absolute value of a thickness direction retardation value Rth (590) at a wavelength of 590 nm. Is preferably 10 nm or less.
- each polarizing plate may be lowered after being placed in a high temperature environment, the two polarizing plates are laminated in paranicol. As a result, a decrease in the degree of polarization can be suppressed.
- the first polarizing film 11A and the second polarizing film 11B constituting the composite polarizing plate 10 are usually a step of uniaxially stretching a polyvinyl alcohol-based resin film, and by staining the polyvinyl alcohol-based resin film with a dichroic dye. Produced through a step of adsorbing a dichroic dye, a step of crosslinking a polyvinyl alcohol resin film adsorbed with a dichroic dye with a boric acid aqueous solution, and a step of washing with water after the crosslinking treatment with a boric acid aqueous solution. be able to.
- the polyvinyl alcohol resin can be produced by saponifying a polyvinyl acetate resin.
- the polyvinyl acetate resin may be a copolymer of vinyl acetate and another monomer copolymerizable therewith, in addition to polyvinyl acetate which is a homopolymer of vinyl acetate.
- Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
- the degree of saponification of the polyvinyl alcohol resin is usually about 85 to 100 mol%, preferably 98 mol% or more.
- the polyvinyl alcohol resin may be modified, for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can be used.
- the degree of polymerization of the polyvinyl alcohol resin is usually about 1,000 to 10,000, and preferably about 1,500 to 5,000.
- a film obtained by forming such a polyvinyl alcohol resin is used as an original film of a polarizing film.
- the method for forming a polyvinyl alcohol-based resin is not particularly limited, and can be formed by a known method.
- the film thickness of the polyvinyl alcohol resin raw film is, for example, about 10 to 100 ⁇ m, preferably about 10 to 50 ⁇ m.
- Uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before dyeing with the dichroic dye, simultaneously with dyeing, or after dyeing.
- the uniaxial stretching may be performed before boric acid treatment or during boric acid treatment.
- uniaxial stretching can also be performed in a plurality of stages shown here.
- a method of stretching uniaxially between rolls having different peripheral speeds, a method of stretching uniaxially using a hot roll, or the like can be adopted.
- Uniaxial stretching may be performed by dry stretching in which stretching is performed in the air, or may be performed by wet stretching in which a polyvinyl alcohol-based resin film is stretched using a solvent such as water. The draw ratio is usually about 3 to 8 times.
- the dyeing of the polyvinyl alcohol resin film with the dichroic dye can be performed, for example, by a method of immersing the polyvinyl alcohol resin film in an aqueous solution containing the dichroic dye.
- a method of immersing the polyvinyl alcohol resin film in an aqueous solution containing the dichroic dye Specifically, iodine or a dichroic organic dye is used as the dichroic dye.
- iodine When iodine is used as the dichroic dye, a method of dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide is usually employed.
- the content of iodine in this aqueous solution is usually about 0.01 to 1 part by weight per 100 parts by weight of water, and the content of potassium iodide is usually about 0.5 to 20 parts by weight per 100 parts by weight of water. It is.
- the temperature of the aqueous solution used for dyeing is usually about 20 to 40 ° C.
- the immersion time (dyeing time) in this aqueous solution is usually about 20 to 1,800 seconds.
- a method of immersing and dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic organic dye is usually employed.
- the content of the dichroic organic dye in this aqueous solution is usually about 1 ⁇ 10 ⁇ 4 to 10 parts by weight, preferably 1 ⁇ 10 ⁇ 3 to 1 part by weight per 100 parts by weight of water.
- This aqueous dye solution may contain an inorganic salt such as sodium sulfate as a dyeing assistant.
- the temperature of the aqueous dichroic organic dye solution used for dyeing is usually about 20 to 80 ° C.
- the immersion time (dyeing time) in this aqueous solution is usually about 10 to 1,800 seconds.
- the boric acid treatment after dyeing with the dichroic dye can be performed by a method of immersing the dyed polyvinyl alcohol-based resin film in a boric acid-containing aqueous solution.
- the boric acid content in the boric acid-containing aqueous solution is usually about 2 to 15 parts by weight, preferably 5 to 12 parts by weight per 100 parts by weight of water.
- the boric acid-containing aqueous solution preferably contains potassium iodide.
- the content of potassium iodide in the boric acid-containing aqueous solution is usually about 0.1 to 15 parts by weight, preferably 5 to 12 parts by weight, per 100 parts by weight of water.
- the immersion time in the boric acid-containing aqueous solution is usually about 60 to 1,200 seconds, preferably 150 to 600 seconds, and more preferably 200 to 400 seconds.
- the temperature of the boric acid-containing aqueous solution is usually 50 ° C. or higher, preferably 50 to 85 ° C., more preferably 60 to 80 ° C.
- the polyvinyl alcohol resin film after the boric acid treatment is usually washed with water.
- the water washing treatment can be performed, for example, by a method of immersing a boric acid-treated polyvinyl alcohol resin film in water.
- a solution containing potassium iodide may be used for washing with water.
- the temperature of water in the water washing treatment is usually about 5 to 40 ° C.
- the immersion time is usually about 1 to 120 seconds.
- a drying process is performed to obtain a polarizing film.
- the drying process can be performed using a hot air dryer or a far infrared heater.
- the temperature for the drying treatment is usually about 30 to 100 ° C., preferably 50 to 80 ° C.
- the drying treatment time is usually about 60 to 600 seconds, preferably 120 to 600 seconds.
- the moisture content in the polarizing film is reduced to a practical level.
- the water content is usually about 5 to 20% by weight, preferably 8 to 15% by weight.
- the moisture content is less than 5% by weight, the polarizing film loses its flexibility, and may be damaged or broken after drying. On the other hand, if the moisture content exceeds 20% by weight, the thermal stability tends to be insufficient.
- a polarizing film having a dichroic dye adsorbed and oriented on a polyvinyl alcohol resin film can be produced.
- the stretching, dyeing, boric acid treatment, water washing step, and drying step of the polyvinyl alcohol resin film in the production process of the polarizing film may be performed in accordance with, for example, the method described in JP2012-159778A. .
- the thickness of the polarizing film is preferably 12 ⁇ m or less.
- the thickness of the polarizing film is usually 3 ⁇ m or more in that good optical properties can be imparted.
- the thickness difference between the thickness of the first polarizing film 11A and the thickness of the second polarizing film 11B is preferably 5 ⁇ m or less. More preferably, it is 3 ⁇ m or less.
- the polarizing film preferably has a shrinkage force of 2 N or less per 2 mm width in the absorption axis direction when held at a temperature of 80 ° C. for 240 minutes. If the shrinkage force is greater than 2N, the amount of dimensional change under a high temperature environment increases, and the shrinkage force of the polarizing film increases, so that the polarizing film tends to be easily cracked or peeled off. The shrinkage force of the polarizing film tends to be 2N or less when the draw ratio is lowered and the thickness of the polarizing film is reduced.
- the difference in shrinkage force per 2 mm width in the absorption axis direction between the two polarizing films is preferably 1 N or less, and more preferably 0.5 N or less.
- the single transmittance of the second polarizing plate is larger than the single transmittance of the first polarizing plate.
- the magnitude of the contraction force may be different.
- the difference in contraction force may be 0.1 N or more.
- First protective film 12A of 1st protective films used for the composite polarizing plate 10 can be comprised with a transparent resin film.
- a transparent resin film it is preferable to use a material that is excellent in transparency, mechanical strength, thermal stability, moisture shielding properties, and the like.
- the transparent resin film means a resin film having a single transmittance of 80% or more in the visible light region.
- a conventional protective film forming material in this field such as a cellulose resin, a chain polyolefin resin, a cyclic polyolefin resin, an acrylic resin, a polyimide resin, a polycarbonate resin, and a polyester resin
- a film formed from a widely used material can be used.
- a material constituting the protective film 12A for example, a cellulose resin is preferable.
- the cellulose resin may be an organic acid ester or mixed organic acid ester of cellulose in which part or all of the hydrogen atoms in the hydroxyl group of cellulose are substituted with an acetyl group, a propionyl group and / or a butyryl group.
- examples include cellulose acetate, propionate, butyrate, and mixed esters thereof. Of these, triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate, cellulose acetate butyrate and the like are preferable.
- These resins may contain appropriate additives as long as the transparency is not impaired. Additives such as antioxidants, ultraviolet absorbers, antistatic agents, lubricants, nucleating agents, antifogging agents, antiblocking agents, phase difference reducing agents, stabilizers, processing aids, plasticizers, impact aids , Matting agents, antibacterial agents, fungicides and the like. A plurality of these additives may be used in combination.
- any optimum method may be appropriately selected.
- a solvent cast method in which a resin dissolved in a solvent is cast on a metal band or drum, and the solvent is removed by drying to obtain a film.
- the resin is heated above its melting temperature, kneaded and extruded from a die.
- a melt extrusion method for obtaining a film by cooling can be used.
- a single layer film can be extruded or a multilayer film can be coextruded.
- [Surface treatment layer 20 of first protective film 12A] 12 A of 1st protective films may have the surface treatment layer 20 in the surface on the opposite side to the surface bonded by 11 A of 1st polarizing films.
- Examples of the surface treatment layer 20 include a hard coat layer having a fine surface irregularity shape.
- the hard coat layer preferably has a pencil hardness higher than H. If the pencil hardness is H or smaller, the surface is likely to be scratched, and if the pencil hardness is scratched, the visibility of the liquid crystal display device is deteriorated.
- the pencil hardness is determined in accordance with JIS K 5600-5-4: 1999 “General test methods for coating materials—Part 5: Mechanical properties of coating film—Section 4: Scratch hardness (pencil method)”. It is represented by the hardness of the hardest pencil that does not cause scratches when scratched with a pencil.
- the first protective film 12A having the surface treatment layer 20 preferably has a haze value in the range of 0.1 to 45%, more preferably in the range of 5 to 40%.
- a haze value in the range of 0.1 to 45%, more preferably in the range of 5 to 40%.
- the haze value is larger than 45%, the reflection of external light can be reduced, but the black display screen is reduced.
- the haze value is less than 0.1%, sufficient antiglare performance cannot be obtained, and external light is reflected on the screen, which is not preferable.
- the haze value is determined according to JIS K 7136: 2000 “Plastics—How to determine haze of transparent material”.
- the hard coat layer with fine surface irregularities forms a method of forming a coating film containing organic fine particles or inorganic fine particles on the surface of the resin film, or a coating film containing or not containing organic fine particles or inorganic fine particles. Then, it can be formed by a method of pressing against a roll having an uneven shape, such as an embossing method.
- a coating film can be formed by, for example, a method of applying a coating liquid (curable resin composition) containing a binder component made of a curable resin and organic fine particles or inorganic fine particles to the surface of the resin film. .
- the inorganic fine particles for example, silica, colloidal silica, alumina, alumina sol, aluminosilicate, alumina-silica composite oxide, kaolin, talc, mica, calcium carbonate, calcium phosphate and the like can be used.
- resin particles such as crosslinked polyacrylic acid particles, methyl methacrylate / styrene copolymer resin particles, crosslinked polystyrene particles, crosslinked polymethyl methacrylate particles, silicone resin particles, or polyimide particles should be used. Can do.
- the binder component for dispersing inorganic fine particles or organic fine particles may be selected from materials having high hardness (hard coat).
- a photocurable resin a thermosetting resin, an electron beam curable resin, and the like can be used. From the viewpoint of productivity and the hardness of the surface treatment layer 20 to be obtained, a photocurable resin is preferable. .
- a photocurable resin what is marketed can be used suitably.
- polyfunctional acrylates such as trimethylolpropane triacrylate and pentaerythritol tetraacrylate are used singly or in combination of two or more, and “Irgacure (registered trademark) 907” and “Irgacure (registered trademark) 184” are used.
- a photopolymerization initiator such as “Lucirin (registered trademark) TPO” (both trade names sold by BASF) can be mixed to obtain a photocurable resin.
- a resin composition obtained by dispersing inorganic fine particles or organic fine particles therein is applied onto a resin film and irradiated with light, whereby inorganic fine particles or organic fine particles are present in the binder resin.
- a dispersed hard coat layer can be formed.
- polyfunctional acrylate constituting the photocurable resin in addition to the above-described monomer types such as trimethylolpropane triacrylate and pentaerythritol tetraacrylate, urethane acrylate, polyol (meth) acrylate, or alkyl having two or more hydroxyl groups
- An oligomer type one such as a (meth) acrylic oligomer having a group can also be used.
- the urethane acrylate here is prepared using, for example, (meth) acrylic acid and / or (meth) acrylic ester, polyol, and diisocyanate.
- urethane is prepared by preparing hydroxy (meth) acrylate with at least one hydroxyl group remaining from (meth) acrylic acid and / or (meth) acrylic acid ester and polyol, and reacting it with diisocyanate.
- Acrylate can be produced.
- These (meth) acrylic acid and / or (meth) acrylic acid ester, polyol, and diisocyanate may be used singly or in combination of two or more. Moreover, you may add various additives according to the objective.
- Examples of the (meth) acrylic acid ester used for the production of urethane acrylate include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, and (meth).
- (Meth) acrylic acid alkyl esters such as butyl acrylate
- (meth) acrylic acid cycloalkyl esters such as (meth) acrylic acid cyclohexyl.
- the polyol used for the production of urethane acrylate is a compound having at least two hydroxyl groups in the molecule.
- Specific examples include ethylene glycol, trimethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, 1,9 -Nonanediol, 1,10-decane glycol, 2,2,4-trimethyl-1,3-pentanediol, 3-methyl-1,5-pentanediol, neopentyl glycol ester of hydroxypivalic acid, cyclohexanedimethylol, 1,4-cyclohexanediol, spiroglycol, tricyclodecane dimethylol, hydrogenated bisphenol A, ethylene oxide added bisphenol A, propylene oxide added bisphenol A, trimethyl
- the diisocyanate used in the production of urethane acrylate can be various aromatic, aliphatic or alicyclic diisocyanates. Specific examples include tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, 1,5-naphthalene diisocyanate, diphenyl-4,4′-diisocyanate, 3,3′-dimethyldiphenyl-4.
- polyol (meth) acrylate that can be a polyfunctional acrylate
- examples of polyol (meth) acrylate that can be a polyfunctional acrylate include pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, Examples include 1,6-hexanediol di (meth) acrylate. These may be used alone or in combination. Furthermore, you may add various additives as needed.
- the polyol (meth) acrylate preferably comprises pentaerythritol triacrylate and pentaerythritol tetraacrylate. These may be a copolymer or a mixture.
- the (meth) acryl oligomer having an alkyl group containing two or more hydroxyl groups that can be another polyfunctional acrylate for example, a (meth) acryl oligomer having a 2,3-dihydroxypropyl group or a 2-hydroxyethyl group And (meth) acrylic oligomers having 2,3-dihydroxypropyl groups.
- photopolymerization initiator constituting the photocurable resin examples include 2,2-dimethoxy-2-phenylacetophenone, acetophenone, benzophenone, xanthone, 3-methylacetophenone, 4-chlorobenzophenone, 4,4′- Dimethoxybenzophenone, benzoinpropyl ether, benzyldimethyl ketal, N, N, N ′, N′-tetramethyl-4,4′-diaminobenzophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropane- Examples include 1-one and other thioxanthone compounds.
- the photo-curable resin can be used in a state dissolved in a solvent as necessary.
- a solvent various organic solvents including ethyl acetate and butyl acetate can be used.
- the photocurable resin may contain a leveling agent, and examples thereof include a fluorine-based or silicone-based leveling agent.
- the silicone leveling agent include reactive silicone, polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane.
- Preferred are reactive silicone and siloxane leveling agents.
- leveling agent for reactive silicone examples include those having a siloxane bond and an acryloyl group or a hydroxyl group. Specific examples include the following copolymers.
- an acrylic binder component binder resin
- the adhesion to the protective film is improved, the mechanical strength is improved, and the surface treatment layer 20 that can effectively prevent surface scratches. Can be formed.
- an uncured hard coat layer is formed on a resin film, and the hard coat layer is pressed against the mold on which the fine irregular shape is formed.
- the layer is cured and the shape of the mold is transferred to the hard coat layer.
- the transfer to the mold-shaped hard coat layer is preferably carried out by embossing, and as the embossing, a UV embossing method using an ultraviolet curable resin which is a kind of a photocurable resin is preferable.
- the hard coat layer may or may not contain inorganic or organic fine particles.
- an ultraviolet curable resin layer is formed on the surface of the protective film and cured while pressing the ultraviolet curable resin layer against the concave and convex surface of the mold so that the concave and convex surface of the mold becomes an ultraviolet curable resin. Transferred to the layer. Specifically, an ultraviolet curable resin is applied on a resin film, and the applied ultraviolet curable resin is in close contact with the uneven surface of the mold, and then the ultraviolet ray is irradiated from the resin film side to cure the ultraviolet ray. The shape of the mold is transferred to the ultraviolet curable resin by curing the curable resin and then peeling the resin film on which the cured ultraviolet curable resin layer is formed from the mold.
- ultraviolet curable resin is not restrict
- a visible light curable resin that can be cured with visible light having a wavelength longer than that of ultraviolet light may be used by appropriately selecting a photopolymerization initiator.
- the thickness of the surface treatment layer 20 is not particularly limited, but is preferably in the range of 2 to 30 ⁇ m, more preferably 3 to 30 ⁇ m.
- the thickness of the surface treatment layer 20 is less than 2 ⁇ m, it is difficult to obtain sufficient hardness and the surface tends to be easily damaged.
- the thickness is larger than 30 ⁇ m, the film tends to break or the first protective film 12A curls due to curing shrinkage of the surface treatment layer and tends to reduce productivity.
- haze is preferably imparted to the first protective film 12A by the hard coat layer, but with the formation of the hard coat layer, the haze is generated by dispersing inorganic or organic fine particles in the protective film. It may be given. Specific examples of the inorganic or organic fine particles used for this purpose are the same as those listed above.
- the first protective film 12A has various additional surface treatments such as antistatic treatment, antifouling treatment, or antibacterial treatment in addition to the antiglare treatment (haze imparting treatment) that also serves as a hard coat layer. It may be applied, and a coating layer made of a liquid crystalline compound or a high molecular weight compound thereof may be formed. In addition to the surface treatment, the antistatic function may be imparted to other portions of the polarizing plate such as an adhesive layer.
- the second protective film 12B may be the same film as the first protective film 12A or a different film.
- the second protective film 12B preferably contains a cellulose resin, a polyolefin resin, or an acrylic resin because the retardation value is easily controlled and easily available.
- the polyolefin resin here includes a chain polyolefin resin and a cyclic polyolefin resin.
- the same resin as the first protective film 12A can be used.
- the cyclic polyolefin resin is obtained by polymerizing cyclic olefin monomers such as norbornene and other cyclopentadiene derivatives in the presence of a catalyst.
- cyclic polyolefin resin is used, a protective film having a predetermined retardation value to be described later is easily obtained.
- cyclic polyolefin-based resin for example, ring-opening metathesis polymerization is performed from cyclopentadiene and olefins or (meth) acrylic acid or esters thereof using norbornene obtained by Diels-Alder reaction or a derivative thereof as a monomer.
- a cyclic olefin such as norbornene, tetracyclododecene, or a derivative thereof with a
- cyclic polyolefin resin a commercially available product can be easily obtained.
- examples of commercial products are “TOPAS” produced by TOPAS ADVANCED POLYMERS GmbH and sold by Polyplastics Co., Ltd. in Japan, and “Arton” (registered by JSR Corporation). Trademark) ”,“ ZEONOR (registered trademark) ”and“ ZEONEX (registered trademark) ”sold by Nippon Zeon Co., Ltd., and“ APEL (registered trademark) ”sold by Mitsui Chemicals, Inc.
- chain polyolefin resin are polyethylene resin and polypropylene resin.
- a homopolymer of propylene, or a copolymer obtained by copolymerizing propylene as a main component and a comonomer copolymerizable therewith for example, ethylene in a proportion of 1 to 20% by weight, preferably 3 to 10% by weight.
- ethylene in a proportion of 1 to 20% by weight, preferably 3 to 10% by weight.
- the polypropylene resin may contain an alicyclic saturated hydrocarbon resin.
- the retardation value can be easily controlled.
- the content of the alicyclic saturated hydrocarbon resin is advantageously 0.1 to 30% by weight relative to the polypropylene resin, and more preferably 3 to 20% by weight.
- the content of the alicyclic saturated hydrocarbon resin is less than 0.1% by weight, the effect of controlling the retardation value cannot be sufficiently obtained, while when the content exceeds 30% by weight, the protective film Therefore, there is a concern that the alicyclic saturated hydrocarbon resin may bleed out over time.
- the acrylic resin is typically a polymer containing 50% by weight or more of methyl methacrylate units.
- the content of methyl methacrylate units is preferably 70% by weight or more, and may be 100% by weight.
- a method for forming a film from the resin as described above a method corresponding to each resin may be appropriately selected.
- the above-described solvent casting method, melt extrusion method, or the like can be employed.
- the melt extrusion method is preferably employed from the viewpoint of productivity.
- a cellulose resin is generally formed into a film by a solvent casting method.
- the second protective film 12B has a thickness direction retardation value so as not to impair the wide viewing angle characteristics inherent in the IPS mode liquid crystal cell.
- Rth is preferably in the range of ⁇ 10 to 10 nm.
- the retardation value Rth in the thickness direction is a value obtained by multiplying the value obtained by subtracting the refractive index in the thickness direction from the in-plane average refractive index, and is defined by the following formula (a).
- the in-plane retardation value Re is a value obtained by multiplying the in-plane refractive index difference by the film thickness, and is defined by the following formula (b).
- Rth [(n x + ny ) / 2 ⁇ n z ] ⁇ d (a)
- Re (n x ⁇ n y ) ⁇ d (b)
- n x is a refractive index in x-axis direction in the film plane (in-plane slow axis direction)
- n y is a y-axis direction (in-plane fast axis direction in the film plane, the plane In the direction perpendicular to the x-axis)
- nz is the refractive index in the z-axis direction (thickness direction) perpendicular to the film surface
- d is the thickness of the film.
- the phase difference value can be a value at an arbitrary wavelength in the range of about 500 to 650 nm near the center of visible light, but in this specification, the phase difference value at a wavelength of 590 nm is used as a standard.
- the retardation value Rth in the thickness direction and the in-plane retardation value Re can be measured using various commercially available retardation meters.
- the retardation value Rth in the thickness direction of the resin film within the range of ⁇ 10 to 10 nm
- a method of minimizing the distortion remaining in the thickness direction when the film is produced For example, in the solvent casting method, a method of relaxing residual shrinkage strain in the thickness direction generated when the cast resin solution is dried by heat treatment can be employed.
- the melt extrusion method the distance from the die to the cooling drum is reduced as much as possible in order to prevent the resin film from being drawn from the die and cooled, and the extrusion amount and the rotation speed of the cooling drum are reduced.
- a method of controlling the film so that the film is not stretched can be employed.
- the method of relieving the distortion which remains in the obtained film by heat processing similarly to the solvent casting method is also employable.
- the third protective film 15 As the third protective film 15, a resin film similar to the first protective film 12A can be used.
- the third protective film 15 may be the same film as the first protective film 12A or may be a different film.
- a cellulose resin is preferable.
- the cellulose resin film the same film as the first protective film 12A can be used.
- the third protective film 15 has an in-plane retardation value Re (590) of 10 nm or less at a wavelength of 590 nm,
- the absolute value of the thickness direction retardation value Rth (590) at a wavelength of 590 nm is preferably 10 nm or less.
- Bonding of the first polarizing film 11A and the first protective film 12A, bonding of the second polarizing film 11B and the second protective film 12B, and the first polarizing film 11A and the third protective film 15 Or bonding with the 2nd polarizing film 11B and the 3rd protective film 15 can be performed with an adhesive agent or an adhesive.
- the first polarizing film 11A and the second polarizing film 11B are collectively referred to as a polarizing film
- the first protective film 12A, the second protective film 12B, and the third protective film 15 Are sometimes simply referred to as protective films.
- the adhesive layer for bonding the polarizing film and the protective film can have a thickness of about 0.01 to 30 ⁇ m, preferably 0.01 to 10 ⁇ m, more preferably 0.05 to 5 ⁇ m. If the thickness of the adhesive layer is within this range, the protective film and the polarizing film to be laminated do not float or peel off, and an adhesive force having no practical problem can be obtained.
- the pressure-sensitive adhesive layer for bonding the polarizing film and the protective film can have a thickness of about 5 to 50 ⁇ m, preferably 5 to 30 ⁇ m, more preferably 10 to 25 ⁇ m.
- an appropriate adhesive can be used as appropriate according to the type and purpose of the adherend, and an anchor coating agent can be used as necessary.
- the adhesive include a solvent-type adhesive, an emulsion-type adhesive, a pressure-sensitive adhesive, a rewet-adhesive, a polycondensation-type adhesive, a solventless-type adhesive, a film-type adhesive, and a hot-melt-type adhesive. Can be mentioned.
- an aqueous adhesive that is, an adhesive component in which the adhesive component is dissolved or dispersed in water.
- adhesive components that can be dissolved in water include polyvinyl alcohol resins.
- An example of an adhesive component that can be dispersed in water is a urethane resin having a hydrophilic group.
- the water-based adhesive can be prepared by mixing such an adhesive component with water together with an additional additive added as necessary.
- examples of commercially available polyvinyl alcohol resins that can be used as water-based adhesives include “KL-318”, which is a carboxyl group-modified polyvinyl alcohol sold by Kuraray Co., Ltd.
- the water-based adhesive can contain a crosslinking agent as necessary.
- the crosslinking agent include amine compounds, aldehyde compounds, methylol compounds, water-soluble epoxy resins, isocyanate compounds, and polyvalent metal salts.
- an aldehyde compound such as glyoxal, a methylol compound such as methylol melamine, a water-soluble epoxy resin, or the like is preferably used as a crosslinking agent.
- the water-soluble epoxy resin is, for example, a polyamide obtained by reacting epichlorohydrin with a polyamide polyamine which is a reaction product of a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine and a dicarboxylic acid such as adipic acid. It can be an epoxy resin.
- a polyamide polyamine which is a reaction product of a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine and a dicarboxylic acid such as adipic acid.
- It can be an epoxy resin.
- Examples of commercially available water-soluble epoxy resins include “Smilease Resin (registered trademark) 650 (30)” sold by Taoka Chemical Co., Ltd.
- a polarizing plate can be obtained by applying a water-based adhesive to the adhesive surface of the polarizing film and / or the protective film to be bonded thereto, and bonding them together, followed by drying treatment. Prior to adhesion, it is also effective to subject the protective film to easy adhesion treatment such as saponification treatment, corona discharge treatment, plasma treatment, or primer treatment to enhance wettability.
- the drying temperature can be about 50 to 100 ° C., for example. After drying treatment, curing at a temperature slightly higher than room temperature, for example, at a temperature of about 30 to 50 ° C. for about 1 to 10 days is preferable in order to further increase the adhesive strength.
- Another preferable adhesive is a curable adhesive composition containing an epoxy compound that is cured by irradiation with active energy rays or heating.
- the curable epoxy compound has at least two epoxy groups in the molecule.
- the adhesive between the polarizing film and the protective film is performed by irradiating the applied layer of the adhesive composition with an active energy ray or applying heat to the adhesive composition, and a curable epoxy compound contained in the adhesive. It can carry out by the method of hardening. Curing of the epoxy compound is generally performed by cationic polymerization of the epoxy compound. Further, from the viewpoint of productivity, this curing is preferably performed by irradiation with active energy rays.
- the epoxy compound contained in the curable adhesive composition is preferably one that does not contain an aromatic ring in the molecule.
- epoxy compounds that do not contain an aromatic ring in the molecule include hydrogenated epoxy compounds, alicyclic epoxy compounds, and aliphatic epoxy compounds.
- An epoxy compound suitably used for such a curable adhesive composition is described in detail in, for example, Japanese Patent Application Laid-Open No. 2004-245925, but the outline is also described here.
- the hydrogenated epoxy compound is a glycidyl compound obtained by subjecting an aromatic polyhydroxy compound, which is a raw material of an aromatic epoxy compound, to a nuclear hydrogenated polyhydroxy compound obtained by selectively performing a nuclear hydrogenation reaction in the presence of a catalyst and under pressure. It can be etherified.
- aromatic polyhydroxy compound that is a raw material of the aromatic epoxy compound include bisphenols such as bisphenol A, bisphenol F, and bisphenol S; phenol novolac resin, cresol novolac resin, and hydroxybenzaldehyde phenol novolac resin And novolak type resins; polyhydroxy compounds such as tetrahydroxydiphenylmethane, tetrahydroxybenzophenone, and polyvinylphenol.
- a glycidyl ether can be obtained by performing a nuclear hydrogenation reaction on such an aromatic polyhydroxy compound and reacting the resulting hydrogenated polyhydroxy compound with epichlorohydrin.
- Suitable hydrogenated epoxy compounds include hydrogenated glycidyl ether of bisphenol A.
- the alicyclic epoxy compound is a compound having at least one epoxy group bonded to the alicyclic ring in the molecule.
- the “epoxy group bonded to the alicyclic ring” means a bridged oxygen atom —O— in the structure represented by the following formula, wherein m is an integer of 2 to 5.
- a compound in which one or a plurality of hydrogen atoms in (CH 2 ) m in this formula are bonded to another chemical structure can be an alicyclic epoxy compound.
- One or more hydrogen atoms in (CH 2 ) m forming the alicyclic ring may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group.
- Specific examples of the alicyclic epoxy compound are listed below. Here, the compound names are given first, and then the chemical formulas corresponding to each are shown, and the same reference numerals are given to the compound names and the chemical formulas corresponding thereto.
- the aliphatic epoxy compound can be an aliphatic polyhydric alcohol or a polyglycidyl ether of an alkylene oxide adduct thereof. More specifically, diglycidyl ether of propylene glycol; diglycidyl ether of 1,4-butanediol; diglycidyl ether of 1,6-hexanediol; triglycidyl ether of glycerin; triglycidyl ether of trimethylolpropane; ethylene Polyglycidyl ether of polyether polyol (for example, diglycidyl ether of polyethylene glycol) obtained by adding alkylene oxide (ethylene oxide or propylene oxide) to aliphatic polyhydric alcohol such as glycol, propylene glycol, and glycerin Can be mentioned.
- alkylene oxide ethylene oxide or propylene oxide
- the epoxy compound may be used alone or in combination of two or more.
- the epoxy compound preferably includes an alicyclic epoxy compound having at least one epoxy group bonded to the alicyclic ring in the molecule.
- the epoxy compound used in the curable adhesive composition usually has an epoxy equivalent in the range of 30 to 3,000 g / equivalent, and this epoxy equivalent is preferably in the range of 50 to 1,500 g / equivalent.
- an epoxy compound having an epoxy equivalent of less than 30 g / equivalent is used, there is a possibility that the flexibility of the polarizing plate after curing is lowered or the adhesive strength is lowered.
- compatibility with other components contained in the adhesive composition may be reduced.
- cationic polymerization is preferably used as the curing reaction of the epoxy compound.
- the cationic polymerization initiator generates a cationic species or a Lewis acid by irradiation or heating with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates an epoxy group polymerization reaction.
- active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams
- the cationic polymerization initiator is provided with latency.
- a cationic polymerization initiator that generates a cationic species or Lewis acid by irradiation of active energy rays and initiates a polymerization reaction of an epoxy group is referred to as a “photo cationic polymerization initiator”, and generates a cationic species or a Lewis acid by heat.
- the cationic polymerization initiator that initiates the polymerization reaction of the epoxy group is referred to as “thermal cationic polymerization initiator”.
- the method of curing the adhesive composition by irradiation with active energy rays using a cationic photopolymerization initiator enables curing at normal temperature and humidity, reducing the need to consider the distortion due to heat resistance or expansion of the polarizing film. And it is advantageous in that the protective film and the polarizing film can be satisfactorily bonded.
- the cationic photopolymerization initiator acts catalytically by light, it is excellent in storage stability and workability even when mixed with an epoxy compound.
- the photocationic polymerization initiator examples include aromatic diazonium salts; onium salts such as aromatic iodonium salts and aromatic sulfonium salts, and iron-allene complexes.
- the compounding amount of the photocationic polymerization initiator is usually 0.5 to 20 parts by weight, preferably 1 part by weight or more and preferably 15 parts by weight or less based on 100 parts by weight of the epoxy compound. If the amount of the cationic photopolymerization initiator is less than 0.5 parts by weight based on 100 parts by weight of the epoxy compound, the curing becomes insufficient, and the mechanical strength and adhesive strength of the cured product tend to be reduced.
- the blending amount of the cationic photopolymerization initiator exceeds 20 parts by weight with respect to 100 parts by weight of the epoxy compound, the ionic substance in the cured product increases, resulting in an increase in the hygroscopic property of the cured product and durability performance May be reduced.
- the curable adhesive composition may further contain a photosensitizer as necessary.
- a photosensitizer By using a photosensitizer, the reactivity of cationic polymerization can be improved, and the mechanical strength and adhesive strength of the cured product can be improved.
- the photosensitizer include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo compounds, diazo compounds, halogen compounds, and photoreducible dyes.
- the amount is preferably in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the curable adhesive composition.
- a sensitizing aid such as a naphthoquinone derivative may be used for improving the curing rate.
- thermal cationic polymerization initiator examples include benzylsulfonium salt, thiophenium salt, thioranium salt, benzylammonium, pyridinium salt, hydrazinium salt, carboxylic acid ester, sulfonic acid ester, and amine imide.
- the curable adhesive composition containing the epoxy compound is preferably cured by photocationic polymerization as described above, but can be cured by thermal cationic polymerization in the presence of the above-mentioned thermal cationic polymerization initiator. Cationic polymerization and thermal cationic polymerization can be used in combination. When photocationic polymerization and thermal cationic polymerization are used in combination, the curable adhesive composition preferably contains both a photocationic polymerization initiator and a thermal cationic polymerization initiator.
- the curable adhesive composition may further contain a compound that promotes cationic polymerization, such as an oxetane compound or a polyol compound.
- An oxetane compound is a compound having a 4-membered ring ether in the molecule.
- the polyol compound may be alkylene glycol including ethylene glycol, hexamethylene glycol, polyethylene glycol or the like, or an oligomer thereof, polyester polyol, polycaprolactone polyol, polycarbonate polyol and the like.
- the amount is usually 50% by weight or less, preferably 30% by weight or less in the curable adhesive composition.
- the curable adhesive composition may have other additives such as ion trapping agents, antioxidants, chain transfer agents, sensitizers, tackifiers, thermoplastic resins, fillers, as long as the adhesiveness is not impaired.
- the ion trapping agent include inorganic compounds including powdered bismuth-based, antimony-based, magnesium-based, aluminum-based, calcium-based, titanium-based, and mixed systems thereof.
- the antioxidant include And hindered phenolic antioxidants.
- the curable adhesive composition containing the epoxy compound After applying the curable adhesive composition containing the epoxy compound to the adhesive surface of the polarizing film or the protective film, or to the adhesive surface of both of them, it is pasted on the adhesive-coated surface, and active energy rays.
- the polarizing film and the protective film can be bonded by curing the uncured adhesive layer by irradiating or heating.
- an adhesive coating method for example, various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be adopted.
- This curable adhesive composition can basically be used as a solvent-free adhesive that does not substantially contain a solvent, but each coating system has an optimum viscosity range, so that the viscosity is adjusted.
- a solvent may be contained.
- the solvent is preferably an organic solvent that dissolves each component including an epoxy compound well without degrading the optical performance of the polarizing film.
- hydrocarbons typified by toluene, typified by ethyl acetate, etc. Esters can be used.
- the adhesive composition When the adhesive composition is cured by irradiation with active energy rays, the above-mentioned various types of active energy rays can be used, but since the handling is easy and the amount of irradiation light is easy to control, ultraviolet rays are not emitted. Preferably used. Active energy rays such as ultraviolet irradiation intensity and irradiation dose do not affect various optical performance including polarization degree of polarizing film, and various optical performance including transparency and retardation characteristics of protective film. Therefore, it is determined as appropriate so as to maintain an appropriate productivity.
- active energy rays such as ultraviolet irradiation intensity and irradiation dose do not affect various optical performance including polarization degree of polarizing film, and various optical performance including transparency and retardation characteristics of protective film. Therefore, it is determined as appropriate so as to maintain an appropriate productivity.
- the adhesive composition When the adhesive composition is cured by heat, it can be heated by a generally known method. Usually, heating is performed at a temperature higher than the temperature at which the thermal cationic polymerization initiator compounded in the curable adhesive composition generates cationic species and Lewis acid, and the specific heating temperature is, for example, about 50 to 200 ° C. .
- the same adhesive as that used for bonding the polarizing film and the protective film can be used.
- the pressure-sensitive adhesive layer 13 used for laminating the first polarizing plate and the second polarizing plate is excellent in optical transparency and excellent in adhesive properties including appropriate wettability, cohesiveness, adhesiveness and the like. Although what is necessary is just, what is further excellent in durability etc. is preferable.
- the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 13 is preferably a pressure-sensitive adhesive containing an acrylic resin (acrylic pressure-sensitive adhesive).
- the acrylic resin contained in the acrylic pressure-sensitive adhesive is a resin mainly composed of alkyl acrylate such as butyl acrylate, ethyl acrylate, isooctyl acrylate, and 2-ethylhexyl acrylate.
- This acrylic resin is usually copolymerized with a polar monomer.
- the polar monomer is a compound having a polymerizable unsaturated bond and a polar functional group.
- the polymerizable unsaturated bond is generally derived from a (meth) acryloyl group, and the polar functional group.
- the group can be a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group, or the like.
- polar monomers include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (meth) acrylamide, 2-N, N-dimethylaminoethyl ( Examples include meth) acrylate and glycidyl (meth) acrylate.
- the acrylic adhesive usually contains a crosslinking agent together with the acrylic resin.
- a crosslinking agent is an isocyanate compound having at least two isocyanato groups (—NCO) in the molecule.
- additives may be further added to the adhesive.
- Suitable additives include silane coupling agents and antistatic agents.
- a silane coupling agent is effective in increasing the adhesive strength with glass.
- Antistatic agents are effective in reducing or preventing the generation of static electricity.
- the pressure-sensitive adhesive layer 13 is prepared by preparing a pressure-sensitive adhesive composition in which the above pressure-sensitive adhesive component is dissolved in an organic solvent, and bonding surfaces (polarizing film or protective film) of two polarizing plates to be bonded to each other. Apply the above-mentioned pressure-sensitive adhesive composition to the release treatment surface of the base film made of a resin film that has been subjected to a release treatment by applying directly to any of the above, or drying the solvent. It can be formed by removing the pressure-sensitive adhesive layer, sticking it to one of the bonding surfaces (polarizing film or protective film) of the two polarizing plates, and transferring the pressure-sensitive adhesive layer.
- the pressure-sensitive adhesive layer 13 is formed by the former direct coating method, a resin film (also called a separator) that has been subjected to a release treatment is bonded to the surface, and the pressure-sensitive adhesive layer surface is temporarily protected until use. It is customary.
- the latter transfer method is often employed from the viewpoint of the handleability of the pressure-sensitive adhesive composition that is an organic solvent solution.
- the release-treated base film used for forming the pressure-sensitive adhesive layer first is used. It is also advantageous in that it can be used as a separator after being attached to a polarizing plate.
- the pressure-sensitive adhesive layer 14 formed on the surface of the second protective film 12B opposite to the bonding surface with the second polarizing film 11B is excellent in optical transparency, moderate wettability, cohesiveness, Any material may be used as long as it has excellent adhesive properties including adhesiveness, but materials having excellent durability and the like are preferably used.
- an adhesive containing an acrylic resin (acrylic adhesive) is preferably used as the adhesive forming the adhesive layer.
- the same material as the pressure-sensitive adhesive 13 can be used.
- the pressure-sensitive adhesive layer 14 may contain various additives in the same manner as the pressure-sensitive adhesive layer 13.
- the pressure-sensitive adhesive layer 14 preferably contains an antistatic agent.
- the surface protective film separator
- the static electricity generated when the surface protective film is peeled off causes the alignment failure of the liquid crystal in the liquid crystal cell, and this phenomenon may cause the display failure of the liquid crystal display device.
- it is effective to add an antistatic agent to the adhesive.
- the first polarizing film 11A and the second polarizing film 11B are directly bonded via an adhesive layer or an adhesive layer. Furthermore, the composite polarizing plate with an adhesive is obtained by forming the adhesive layer 14 on the second protective film 12B. The composite polarizing plate with the pressure-sensitive adhesive can be bonded to the liquid crystal cell via the pressure-sensitive adhesive 14.
- a second polarizing plate B ′ in which the protective film 12B and the second polarizing film 11B are laminated is manufactured.
- the pressure-sensitive adhesive layer 13 is formed on the third protective film 15 of the first polarizing plate A ′ or the polarizing film of the second polarizing plate B ′.
- the composite polarizing plate 10 is obtained.
- the composite polarizing plate with an adhesive is obtained by forming the adhesive layer 14 on the second protective film 12B.
- the composite polarizing plate with the pressure-sensitive adhesive can be bonded to the liquid crystal cell via the pressure-sensitive adhesive layer 14.
- a method of producing the composite polarizing plate 10 by laminating the first polarizing plate A (or A ′) and the second polarizing plate B (or B ′) with a solvent-free adhesive by roll-to-roll.
- a solvent-free adhesive by roll-to-roll.
- the single transmittance of the first polarizing plate is preferably 38.0 to 43.0%, and 40.0 to 42. More preferably, it is 5%.
- the single transmittance of the second polarizing plate is preferably 40.0 to 45.0%, more preferably 41.0 to 43.0%.
- both the polarization degree of a 1st polarizing plate and the polarization degree of a 2nd polarizing plate are 99.90% or more, and it is more preferable that it is 99.95% or more.
- the single transmittance of the second polarizing plate is preferably larger than the single transmittance of the first polarizing plate.
- the difference between the single transmittance of the first polarizing plate and the single transmittance of the second polarizing plate is preferably 0.1% or more, more preferably more than 0.2%, 0.4 % Or more.
- the upper limit of the difference is not particularly limited, but is usually 5% or less, preferably 2% or less, and more preferably 1% or less.
- the polarization degree of the composite polarizing plate obtained by the above production method is preferably 99.95% or more, more preferably 99.99% or more, and further preferably 99.995% or more.
- the composite polarizing plate of this invention suppresses the fall of a polarization degree even after the heat test put into 95 degreeC oven for 1000 hours.
- the polarization degree of the composite polarizing plate after the heat test can be 99.95% or more, or 99.99% or more.
- the magnitude of the degree of polarization reduction before and after the heat resistance test can be 0.010% or less, preferably 0.005% or less in the composite polarizing plate of the present invention, More preferably, it may be 0.003% or less.
- the liquid crystal cell has two cell substrates and a liquid crystal layer sandwiched between the substrates.
- the cell substrate is often made of glass, but may be a plastic substrate.
- the liquid crystal cell itself used in the liquid crystal panel of the present invention can be composed of various types employed in this field.
- a liquid crystal panel can be produced by bonding the composite polarizing plate 10 to a liquid crystal cell via the pressure-sensitive adhesive layer 14.
- the composite polarizing plate of this invention is used suitably for the visual recognition side of a liquid crystal display device, a back surface side, or its both surfaces.
- Measurement of thickness Measurement was performed using a digital micrometer “MH-15M” manufactured by Nikon Corporation.
- the temperature in the sample chamber was set to be maintained at 80 ° C. after the temperature rise. After allowing the temperature to rise for 4 hours, the contraction force in the long side direction of the measurement sample was measured in an environment at 80 ° C. In this measurement, the static load was 0 mN, and a SUS probe was used as the jig.
- a crosslinking agent As a crosslinking agent, a water-soluble polyamide epoxy resin (trade name “Smiles Resin (registered trademark) 650” manufactured by Taoka Chemical Industry Co., Ltd., an aqueous solution having a solid content of 30%) as a crosslinking agent was added to this aqueous solution as a solid content of 6 parts of polyvinyl alcohol. The mixture was mixed at a ratio of 5 parts per to make a primer coating solution. And after corona-treating a base film (thickness 110 ⁇ m, polypropylene film having a melting point of 163 ° C.), a primer coating solution was applied to the corona-treated surface using a micro gravure coater. Thereafter, it was dried at 80 ° C. for 10 minutes to form a primer layer having a thickness of 0.2 ⁇ m.
- a water-soluble polyamide epoxy resin trade name “Smiles Resin (registered trademark) 650” manufactured by Taoka Chemical Industry Co., Ltd.
- polyvinyl alcohol powder having an average polymerization degree of 2400 and a saponification degree of 98.0 to 99.0 mol% (trade name “PVA124” obtained from Kuraray Co., Ltd.) was dissolved in hot water at 95 ° C. to obtain 8%
- a polyvinyl alcohol aqueous solution having a concentration was prepared.
- the obtained aqueous solution was coated on the primer layer of the base film using a lip coater at room temperature and dried at 80 ° C. for 20 minutes to obtain a laminated film consisting of the base film / primer layer / polyvinyl alcohol layer. Produced.
- the obtained laminated film was subjected to free end longitudinal uniaxial stretching at a temperature of 160 ° C. by 5.8 times.
- the total thickness of the laminated stretched film thus obtained was 28.5 ⁇ m, and the thickness of the polyvinyl alcohol layer was 5.0 ⁇ m.
- the resulting laminated stretched film was dyed by immersing it in an aqueous solution having a water / iodine / potassium iodide weight ratio of 100 / 0.35 / 10 at 26 ° C. for 90 seconds, and then washed with 10 ° C. pure water.
- this laminated stretched film was immersed in an aqueous solution having a water / boric acid / potassium iodide weight ratio of 100 / 9.5 / 5 at 76 ° C. for 300 seconds to crosslink the polyvinyl alcohol.
- the substrate was washed with pure water at 10 ° C. for 10 seconds, and finally dried at 80 ° C. for 200 seconds.
- a polarizing laminated film in which a polarizing film 3 having a thickness of 5 ⁇ m composed of a polyvinyl alcohol layer on which iodine was adsorbed and oriented was formed on a polypropylene base film was produced. It was 1.45 N when the obtained polarizing film was peeled from the base material and the shrinkage force was measured.
- Adhesives A and B The following two types of pressure-sensitive adhesives were prepared.
- Adhesive A Sheet-like adhesive having a thickness of 25 ⁇ m [“P-3132” manufactured by Lintec Corporation]
- Adhesive B Sheet-like adhesive having a thickness of 15 ⁇ m [“P-0082” manufactured by Lintec Corporation]
- Protective films A, B, C The following three types of protective films were prepared.
- Protective film A Triacetyl cellulose film with hard coat manufactured by Konica Minolta, Inc .; 25KCHCN-TC (thickness 32 ⁇ m)
- Polarizers I-1 to P-1 were produced in the same manner except that the water-based adhesive used in Production Examples 7 to 14 was changed to an adhesive made of the curable epoxy resin composition.
- the pasting was performed by irradiating with an ultraviolet ray using an ultraviolet irradiation device with a belt conveyor (lamp: Fusion D lamp, integrated light quantity 1500 mJ / cm 2 ) and leaving it at room temperature for 1 hour.
- the single transmittance of the manufactured polarizing plate was as follows.
- the inside of () shows the polarizing plate produced with the water-system adhesive of the same structure.
- Polarizers I-2 to P-2 were similarly prepared except that the water-based adhesive used in Production Examples 25 to 32 was changed to an adhesive made of a curable epoxy resin composition.
- the pasting was performed by irradiating with an ultraviolet ray using an ultraviolet irradiation device with a belt conveyor (lamp: Fusion D lamp, integrated light quantity 1500 mJ / cm 2 ) and leaving it at room temperature for 1 hour.
- the single transmittance of the manufactured polarizing plate was as follows.
- the inside of () shows the polarizing plate produced with the water-system adhesive of the same structure.
- Example 1 The polarizing film 1 in the polarizing plate A-1 and the polarizing film 1 in the polarizing plate B-1 were bonded together using an adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, the surface of the polarizing film to be bonded and the surface of the pressure-sensitive adhesive were previously subjected to corona treatment. Adhesive A was bonded to the protective film B side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 2 The polarizing film 1 in the polarizing plate A-1 and the polarizing film 1 in the polarizing plate C-1 were bonded using an adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, the surface of the polarizing film to be bonded and the surface of the pressure-sensitive adhesive were previously subjected to corona treatment. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 3 The polarizing film 2 in the polarizing plate D-1 and the polarizing film 2 in the polarizing plate E-1 were bonded together using an adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, the surface of the polarizing film to be bonded and the surface of the pressure-sensitive adhesive were previously subjected to corona treatment. Adhesive A was bonded to the protective film B side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.997%.
- Example 4 The polarizing film 2 in the polarizing plate D-1 and the polarizing film 2 in the polarizing plate F-1 were bonded using an adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, the surface of the polarizing film to be bonded and the surface of the pressure-sensitive adhesive were previously subjected to corona treatment. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.997%.
- Example 5 The polarizing film 1 in the polarizing plate A-1 and the polarizing film 2 in the polarizing plate F-1 were bonded using an adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, the surface of the polarizing film to be bonded and the surface of the pressure-sensitive adhesive were previously subjected to corona treatment. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 6 The polarizing film 2 in the polarizing plate D-1 and the polarizing film 1 in the polarizing plate C-1 were bonded together using the adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, the surface of the polarizing film to be bonded and the surface of the pressure-sensitive adhesive were previously subjected to corona treatment. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 7 The polarizing film 3 in the polarizing plate H-1 and the polarizing film 1 in the polarizing plate C-1 were bonded together using an adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, the surface of the polarizing film to be bonded and the surface of the pressure-sensitive adhesive were previously subjected to corona treatment. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.997%, and the single transmittance was 37.9%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 8 A composite polarizing plate was produced in the same manner except that the polarizing plate A-1 of Example 1 was changed to the polarizing plate I-1 and the polarizing plate B-1 was changed to the polarizing plate J-1.
- the polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 9 A composite polarizing plate was prepared in the same manner except that the polarizing plate A-1 of Example 2 was changed to the polarizing plate I-1 and the polarizing plate C-1 was changed to the polarizing plate K-1.
- the polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 10 A composite polarizing plate was produced in the same manner except that the polarizing plate D-1 of Example 3 was changed to the polarizing plate L-1 and the polarizing plate E-1 was changed to the polarizing plate M-1.
- the polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.997%.
- Example 11 A composite polarizing plate was produced in the same manner except that the polarizing plate D-1 of Example 4 was changed to the polarizing plate L-1, and the polarizing plate F-1 was changed to the polarizing plate N-1.
- the polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.997%.
- Example 12 A composite polarizing plate was prepared in the same manner except that the polarizing plate A-1 of Example 5 was changed to the polarizing plate I-1 and the polarizing plate F-1 was changed to the polarizing plate N-1.
- the polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 13 A composite polarizing plate was prepared in the same manner except that the polarizing plate D-1 of Example 6 was changed to the polarizing plate L-1, and the polarizing plate C-1 was changed to the polarizing plate K-1.
- the polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 14 A composite polarizing plate was prepared in the same manner except that the polarizing plate H-1 of Example 7 was changed to the polarizing plate P-1 and the polarizing plate C-1 was changed to the polarizing plate K-1.
- the polarization degree of the composite polarizing plate was 99.997%, and the single transmittance was 37.9%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 15 The protective film B in the polarizing plate A-2 and the polarizing film 1 in the polarizing plate B-2 were bonded using the adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, a corona treatment was performed in advance on the protective film surface, the polarizing film surface, and the pressure-sensitive adhesive surface to be bonded. Adhesive A was bonded to the protective film B side which is the outermost layer of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 16 The protective film B in the polarizing plate A-2 and the polarizing film 1 in the polarizing plate C-2 were bonded using the adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, a corona treatment was performed in advance on the protective film surface, the polarizing film surface, and the pressure-sensitive adhesive surface to be bonded. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The composite polarization degree was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 17 The protective film B in the polarizing plate D-2 and the polarizing film 2 in the polarizing plate E-2 were bonded using the adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, a corona treatment was performed in advance on the protective film surface, the polarizing film surface, and the pressure-sensitive adhesive surface to be bonded. Adhesive A was bonded to the protective film B side which is the outermost layer of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.997%.
- Example 18 The protective film B in the polarizing plate D-2 and the polarizing film 2 in the polarizing plate F-2 were bonded using the adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, a corona treatment was performed in advance on the protective film surface, the polarizing film surface, and the pressure-sensitive adhesive surface to be bonded. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.997%.
- Example 19 The protective film B in the polarizing plate A-2 and the polarizing film 2 in the polarizing plate F-2 were bonded using the adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, a corona treatment was performed in advance on the protective film surface, the polarizing film surface, and the pressure-sensitive adhesive surface to be bonded. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 20 The protective film B in the polarizing plate D-2 and the polarizing film 1 in the polarizing plate C-2 were bonded using the adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, a corona treatment was performed in advance on the protective film surface, the polarizing film surface, and the pressure-sensitive adhesive surface to be bonded. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 21 The protective film B in the polarizing plate H-2 and the polarizing film 1 in the polarizing plate C-2 were bonded using the adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, a corona treatment was performed in advance on the protective film surface, the polarizing film surface, and the pressure-sensitive adhesive surface to be bonded. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The composite polarization degree was 99.997%, and the single transmittance was 37.9%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 22 A composite polarizing plate was produced in the same manner except that the polarizing plate A-2 of Example 15 was changed to the polarizing plate I-2 and the polarizing plate B-2 was changed to the polarizing plate J-2.
- the polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 23 A composite polarizing plate was produced in the same manner except that the polarizing plate A-2 of Example 16 was changed to the polarizing plate I-2 and the polarizing plate C-2 was changed to the polarizing plate K-2.
- the composite polarization degree was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 24 A composite polarizing plate was produced in the same manner except that the polarizing plate D-2 of Example 17 was changed to the polarizing plate L-2 and the polarizing plate E-2 was changed to the polarizing plate M-2.
- the polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.997%.
- Example 25 A composite polarizing plate was prepared in the same manner except that the polarizing plate D-2 of Example 18 was changed to the polarizing plate L-2 and the polarizing plate F-2 was changed to the polarizing plate N-2.
- the polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.997%.
- Example 26 A composite polarizing plate was prepared in the same manner except that the polarizing plate A-2 of Example 19 was changed to the polarizing plate I-2 and the polarizing plate F-2 was changed to the polarizing plate N-2.
- the polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 27 A composite polarizing plate was produced in the same manner except that the polarizing plate D-2 of Example 20 was changed to the polarizing plate L-2 and the polarizing plate C-2 was changed to the polarizing plate K-2.
- the polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Example 28 A composite polarizing plate was produced in the same manner except that the polarizing plate H-2 of Example 21 was changed to the polarizing plate P-2 and the polarizing plate C-2 was changed to the polarizing plate K-2.
- the composite polarization degree was 99.997%, and the single transmittance was 37.9%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%.
- Adhesive A was bonded onto the protective film C in the polarizing plate G-1.
- the protective film surface and the pressure-sensitive adhesive surface were previously subjected to corona treatment.
- the polarization degree of the polarizing plate G-1 was 99.993%.
- the produced polarizing plate was cut into a 40 mm square, and bonded to Eagle XG manufactured by Corning, to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.94%.
- Adhesive A was bonded onto the protective film C in the polarizing plate O-1.
- the protective film surface and the pressure-sensitive adhesive surface were previously subjected to corona treatment.
- the degree of polarization of the polarizing plate O-1 was 99.993%.
- the produced polarizing plate was cut into a 40 mm square, and bonded to Eagle XG manufactured by Corning, to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.94%.
- Example 3 A composite polarizing plate was prepared in the same manner except that the polarizing plate A-1 of Example 1 was changed to the polarizing plate Q-1, and the polarizing plate B-1 was changed to the polarizing plate R-1.
- the polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%, but peeling occurred in a region within 1 mm from the end of the polarizing plate.
- Adhesive A was bonded onto the protective film C in the polarizing plate G-2.
- the protective film surface and the pressure-sensitive adhesive surface were previously subjected to corona treatment.
- the polarization degree of the polarizing plate G-2 was 99.993%.
- the produced polarizing plate was cut into a 40 mm square, and bonded to Eagle XG manufactured by Corning, to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.94%.
- Adhesive A was bonded onto the protective film C in the polarizing plate O-2.
- the protective film surface and the pressure-sensitive adhesive surface were previously subjected to corona treatment.
- the polarization degree of the polarizing plate O-2 was 99.993%.
- the produced polarizing plate was cut into a 40 mm square, and bonded to Eagle XG manufactured by Corning, to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.94%.
- a composite polarizing plate was prepared in the same manner except that the polarizing plate A-2 of Example 15 was changed to the polarizing plate Q-2 and the polarizing plate B-2 was changed to the polarizing plate R-2.
- the polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
- the produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation.
- the sample thus prepared was put into an oven at 95 ° C. for 1000 hours.
- the degree of polarization after the heat test was 99.996%, but peeling occurred in a region within 1 mm from the end of the polarizing plate.
- Tables 1 and 2 show the layer structure of the composite polarizing plate produced in each example.
- Table 3 shows the results of Examples and Comparative Examples.
- a composite polarizing plate and a liquid crystal panel having excellent heat resistance can be obtained.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polarising Elements (AREA)
- Laminated Bodies (AREA)
- Liquid Crystal (AREA)
Abstract
Provided is a composite polarizing plate that experiences little reduction in degree of polarization at high temperatures. Also provided is a liquid crystal panel that has high heat resistance. A composite polarizing plate in which the following are laminated, in order: a first protective film; a first polarizing film that has a thickness of 15 μm or less; and a second polarizing film that has a thickness of 15 μm or less. The absorption axis of the first polarizing film and the absorption axis of the second polarizing film are approximately parallel.
Description
本発明は、耐久性に優れた複合偏光板、並びにそれを用いた液晶パネルに関するものである。
The present invention relates to a composite polarizing plate excellent in durability and a liquid crystal panel using the same.
近年、消費電力が少なく、低電圧で動作し、軽量でかつ薄型という特長を生かして、携帯電話、携帯情報端末、コンピュータ用のモニター、テレビなど、情報用表示デバイスとして、液晶表示装置が急速に普及してきている。液晶技術の発展に伴い、さまざまなモードの液晶表示装置が提案され、応答速度やコントラスト、狭視野角といった液晶表示の問題点が解消されつつある。このような中、車載用途などの高耐久性が要求される分野にも液晶表示装置が展開されてきている。しかしながら、温度95℃というような過酷な耐久試験に対しては、従来のヨウ素でポリビニルアルコール系樹脂を染色した偏光板では偏光度の低下が大きいことが問題となっている。
In recent years, liquid crystal display devices have been rapidly used as information display devices such as mobile phones, personal digital assistants, computer monitors, and televisions by taking advantage of low power consumption, low voltage operation, light weight, and thinness. It has become widespread. With the development of liquid crystal technology, liquid crystal display devices of various modes have been proposed, and problems of liquid crystal display such as response speed, contrast, and narrow viewing angle are being solved. Under such circumstances, liquid crystal display devices have also been developed in fields where high durability is required such as in-vehicle applications. However, for a severe endurance test at a temperature of 95 ° C., there is a problem that the polarization degree is greatly lowered in a polarizing plate dyed with a conventional polyvinyl alcohol resin with iodine.
特開2002-072162号公報(特許文献1)には、投写型表示装置の光出射側に2枚の偏光板を使用した構成が開示されているが、偏光板を冷却するために2枚の偏光板を空間的に離して配置している。冷却用の気体を2枚の偏光板の間に通したり、熱伝導度の高いサファイアや水晶を2枚の偏光板の間に挟んだりする構成を採用した場合、空気層や水晶などの界面に置いて屈折率差による反射が大きく、光の利用効率が低下してしまう問題がある。
Japanese Patent Application Laid-Open No. 2002-072162 (Patent Document 1) discloses a configuration in which two polarizing plates are used on the light emission side of a projection display device. The polarizing plates are spatially separated. When a cooling gas is passed between two polarizing plates or a sapphire or crystal with high thermal conductivity is sandwiched between two polarizing plates, the refractive index is placed at the interface of the air layer or quartz. There is a problem that reflection due to the difference is large and the light use efficiency is lowered.
また特開平10-133196号公報(特許文献2)には、液晶プロジェクタ用に耐熱性を向上させた偏光板を直接積層した複合偏光板が開示されている。しかしながら、厚さが20~30μmである偏光フィルムの両面に保護層として、トリアセチルセルロースフィルムを配置した偏光板では、熱が加わった際の偏光フィルムの収縮力が大きく、液晶パネルの反りや偏光板が剥がれるなどの問題が生じることがある。また、偏光フィルムの保護層として熱伝導度が0.8W/m・K以上となるガラス等の材料を用いた場合には、裁断などの加工が容易ではなく生産効率が低いという問題がある。こうしたことから、複合偏光板表面への表面処理層を設けることにより機能性が付与しづらいという問題もある。
JP-A-10-133196 (Patent Document 2) discloses a composite polarizing plate obtained by directly laminating polarizing plates with improved heat resistance for a liquid crystal projector. However, a polarizing plate in which a triacetyl cellulose film is disposed as a protective layer on both sides of a polarizing film having a thickness of 20 to 30 μm has a large shrinkage force when the heat is applied. Problems such as peeling of the plate may occur. Further, when a material such as glass having a thermal conductivity of 0.8 W / m · K or more is used as the protective layer of the polarizing film, there is a problem that processing such as cutting is not easy and production efficiency is low. For these reasons, there is also a problem that it is difficult to provide functionality by providing a surface treatment layer on the surface of the composite polarizing plate.
本発明の目的は、高温での偏光度低下が小さく、耐熱耐久性に優れた複合偏光板を提供することにある。本発明のもう一つの目的は、耐熱性の高い液晶パネルを提供することにある。
An object of the present invention is to provide a composite polarizing plate that has a small decrease in polarization degree at high temperatures and is excellent in heat resistance and durability. Another object of the present invention is to provide a liquid crystal panel having high heat resistance.
すなわち本発明によれば、第1の保護フィルム、厚みが15μm以下の第1の偏光フィルム、厚みが15μm以下の第2の偏光フィルムがこの順に積層され、第1の偏光フィルムの吸収軸と第2の偏光フィルムの吸収軸とが略平行である複合偏光板が提供される。
That is, according to the present invention, the first protective film, the first polarizing film having a thickness of 15 μm or less, and the second polarizing film having a thickness of 15 μm or less are laminated in this order, and the absorption axis of the first polarizing film and the first polarizing film A composite polarizing plate in which the absorption axis of the polarizing film of 2 is substantially parallel is provided.
また本発明によれば、第2の偏光フィルムの第1の偏光フィルムが積層されている面とは反対の面に、第2の保護フィルムを積層した複合偏光板も提供される。
Further, according to the present invention, there is also provided a composite polarizing plate in which the second protective film is laminated on the surface opposite to the surface on which the first polarizing film is laminated.
この複合偏光板では、第1の偏光フィルム及び第1の保護フィルムを有する第1の偏光板の単体透過率が第2の偏光フィルム及び第2の保護フィルムを有する第2の偏光板の単体透過率より小さいことが好ましく、第1の偏光フィルム厚みと第2の偏光フィルムの厚みの差を5μm以下とすることが好ましい。また、液晶パネルへ貼合するために第2の保護フィルムの第2の偏光フィルムが積層された面とは反対側の面に、粘着剤層を備える複合偏光板も提供される。
In this composite polarizing plate, the single transmittance of the first polarizing plate having the first polarizing film and the first protective film is the single transmittance of the second polarizing plate having the second polarizing film and the second protective film. Preferably, the difference between the thickness of the first polarizing film and the thickness of the second polarizing film is 5 μm or less. Moreover, the composite polarizing plate which provides an adhesive layer on the surface on the opposite side to the surface where the 2nd polarizing film of the 2nd protective film was laminated | stacked in order to bond to a liquid crystal panel is also provided.
第2の保護フィルムは、セルロース系樹脂、ポリオレフィン系樹脂およびアクリル系樹脂からなる群から選ばれる少なくとも一種を含むことが好ましく、厚み方向の位相差値が-10~10nmであることが好ましい。
The second protective film preferably contains at least one selected from the group consisting of a cellulose resin, a polyolefin resin, and an acrylic resin, and preferably has a thickness direction retardation value of −10 to 10 nm.
また本発明によれば、第1の偏光フィルムと第2の偏光フィルムとの間に、第3の保護フィルムを有する複合偏光板も提供される。
Further, according to the present invention, a composite polarizing plate having a third protective film between the first polarizing film and the second polarizing film is also provided.
第3の保護フィルムは、セルロース系樹脂からなり波長590nmにおける面内の位相差値Re(590)が10nm以下であり、波長590nmにおける厚み方向の位相差値Rth(590)の絶対値が10nm以下であることが好ましい。
The third protective film is made of a cellulose-based resin, has an in-plane retardation value Re (590) at a wavelength of 590 nm of 10 nm or less, and an absolute value of a thickness direction retardation value Rth (590) at a wavelength of 590 nm is 10 nm or less. It is preferable that
また、本発明によれば上記の複合偏光板が粘着剤を介して液晶セルの少なくとも一方に積層された液晶パネルも提供される。
The present invention also provides a liquid crystal panel in which the above-mentioned composite polarizing plate is laminated on at least one of the liquid crystal cells via an adhesive.
本発明によれば、15μm以下の厚みの2枚の偏光フィルムを積層することにより、耐熱耐久性に優れた複合偏光板及び液晶パネルが得られる。
According to the present invention, a composite polarizing plate and a liquid crystal panel excellent in heat resistance and durability can be obtained by laminating two polarizing films having a thickness of 15 μm or less.
図1を参照して、本発明にかかる複合偏光板10の層構成を説明する。本発明にかかる複合偏光板10は、第1の保護フィルム12A、第1の偏光フィルム11A、第2の偏光フィルム11Bをこの順に積層して構成される。第2の偏光フィルム11Bにおける第一の偏光フィルム11Aが積層された面とは反対側の面には、第2の保護フィルム12Bが積層されることが好ましい。第1の保護フィルム12Aにおける第1の偏光フィルム11Aの貼合面とは反対側の面には表面処理層20を形成することも有用である。
Referring to FIG. 1, the layer configuration of the composite polarizing plate 10 according to the present invention will be described. The composite polarizing plate 10 according to the present invention is configured by laminating a first protective film 12A, a first polarizing film 11A, and a second polarizing film 11B in this order. It is preferable that the 2nd protective film 12B is laminated | stacked on the surface on the opposite side to the surface where 11 A of 1st polarizing films in the 2nd polarizing film 11B were laminated | stacked. It is also useful to form the surface treatment layer 20 on the surface of the first protective film 12A opposite to the bonding surface of the first polarizing film 11A.
また、図2を参照して、本発明にかかる複合偏光板10は、第1の保護フィルム12A、第1の偏光フィルム11A、第3の保護フィルム15、第2の偏光フィルム11Bをこの順に積層して構成される。第2の偏光フィルム11Bにおける第3の保護フィルム15が積層された面とは反対側の面には、第2の保護フィルム12Bが積層されることが好ましい。第1の保護フィルム12Aにおける第1の偏光フィルム11Aとの貼合面とは反対側の面には表面処理層20を形成することも有用である。
2, the composite polarizing plate 10 according to the present invention includes a first protective film 12A, a first polarizing film 11A, a third protective film 15, and a second polarizing film 11B laminated in this order. Configured. It is preferable that the 2nd protective film 12B is laminated | stacked on the surface on the opposite side to the surface where the 3rd protective film 15 was laminated | stacked in the 2nd polarizing film 11B. It is also useful to form the surface treatment layer 20 on the surface of the first protective film 12A opposite to the bonding surface with the first polarizing film 11A.
本発明の複合偏光板において、第1の偏光フィルム11Aと第2の偏光フィルム11Bとは、その吸収軸が略平行となるように配置される。本明細書において略平行とは、両者のなす角が厳密に0°であることに限定されず、例えば0±5°の範囲内、好ましくは0±3°の範囲内であることをいう。
In the composite polarizing plate of the present invention, the first polarizing film 11A and the second polarizing film 11B are arranged so that their absorption axes are substantially parallel. In the present specification, the term “substantially parallel” means that the angle between the two is not strictly limited to 0 °, and for example, is within a range of 0 ± 5 °, preferably within a range of 0 ± 3 °.
以下、第1の保護フィルム12Aと第1の偏光フィルム11Aとを含む積層体を第1の偏光板といい、第2の偏光フィルム11Bと第2の保護フィルム12Bを含む積層体を第2の偏光板ということがある。第3の保護フィルム15は、第1の偏光板もしくは第2の偏光板のいずれかに含まれる。すなわち、好適には本発明の複合偏光板10は、第1の偏光板と第2の偏光板とが積層された層構成を有する。
Hereinafter, a laminated body including the first protective film 12A and the first polarizing film 11A is referred to as a first polarizing plate, and a laminated body including the second polarizing film 11B and the second protective film 12B is referred to as a second polarizing film. Sometimes called a polarizing plate. The third protective film 15 is included in either the first polarizing plate or the second polarizing plate. That is, the composite polarizing plate 10 of the present invention preferably has a layer configuration in which a first polarizing plate and a second polarizing plate are laminated.
高温環境下における偏光板の収縮力を抑えるために、第1の偏光フィルム、第2の偏光フィルムともに厚みを15μm以下にする。また、第1の偏光板の単体透過率が第2の偏光板の単体透過率より小さいことにより複合偏光板の単体透過率をより高めることができる。
In order to suppress the contraction force of the polarizing plate in a high temperature environment, the thickness of both the first polarizing film and the second polarizing film is set to 15 μm or less. Further, since the single transmittance of the first polarizing plate is smaller than the single transmittance of the second polarizing plate, the single transmittance of the composite polarizing plate can be further increased.
さらには、第1の偏光フィルム厚みと第2の偏光フィルムの厚みの差が5μm以下であることが好ましい。第2の保護フィルムは、セルロース系樹脂、ポリオレフィン系樹脂およびアクリル系樹脂からなる群から選ばれる少なくとも一種を含むことが好ましい。また、第2の保護フィルムの厚み方向の位相差値が-10~10nmであることが好ましい。
Furthermore, it is preferable that the difference between the thickness of the first polarizing film and the thickness of the second polarizing film is 5 μm or less. The second protective film preferably contains at least one selected from the group consisting of a cellulose resin, a polyolefin resin, and an acrylic resin. In addition, the thickness direction retardation value of the second protective film is preferably −10 to 10 nm.
複合偏光板10には、第2の偏光フィルム上又は第2の保護フィルム上に粘着剤層14を積層させてもよい。粘着剤層14を介して複合偏光板を液晶セルに貼合し液晶パネルを得ることができる。通常、偏光板は液晶セルの両面に貼合されるが、本発明の複合偏光板は、液晶表示装置の視認側及び背面側もしくはその両方に好適に用いられる。
In the composite polarizing plate 10, an adhesive layer 14 may be laminated on the second polarizing film or the second protective film. A composite polarizing plate can be bonded to a liquid crystal cell through the pressure-sensitive adhesive layer 14 to obtain a liquid crystal panel. Usually, although a polarizing plate is bonded on both surfaces of a liquid crystal cell, the composite polarizing plate of this invention is used suitably for the visual recognition side of a liquid crystal display device, a back surface side, or both.
第3の保護フィルム15は、セルロース系樹脂フィルムからなり、波長590nmにおける面内の位相差値Re(590)が10nm以下であり、波長590nmにおける厚み方向の位相差値Rth(590)の絶対値が10nm以下であるものを用いることが好ましい。
The third protective film 15 is made of a cellulose resin film, has an in-plane retardation value Re (590) of 10 nm or less at a wavelength of 590 nm, and an absolute value of a thickness direction retardation value Rth (590) at a wavelength of 590 nm. Is preferably 10 nm or less.
本発明の複合偏光板において、高温環境下に置かれた後では、個々の偏光板の偏光度は低下するおそれがあるものの、2枚の偏光板がパラニコルに積層されているため、複合偏光板としては偏光度の低下を抑えることができる。
In the composite polarizing plate of the present invention, although the degree of polarization of each polarizing plate may be lowered after being placed in a high temperature environment, the two polarizing plates are laminated in paranicol. As a result, a decrease in the degree of polarization can be suppressed.
以下、本発明に係る複合偏光板、液晶パネルを構成するそれぞれの部材について、図1及び図2に付した符号を参照しながら順を追って詳細に説明する。
Hereinafter, each member constituting the composite polarizing plate and the liquid crystal panel according to the present invention will be described in detail with reference to the reference numerals attached to FIG. 1 and FIG.
[偏光フィルム]
複合偏光板10を構成する第1の偏光フィルム11A,第2の偏光フィルム11Bは、通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理して架橋させる工程、及びホウ酸水溶液による架橋処理後に水洗する工程を経て、製造することができる。 [Polarized film]
The first polarizing film 11A and the second polarizing film 11B constituting the composite polarizingplate 10 are usually a step of uniaxially stretching a polyvinyl alcohol-based resin film, and by staining the polyvinyl alcohol-based resin film with a dichroic dye. Produced through a step of adsorbing a dichroic dye, a step of crosslinking a polyvinyl alcohol resin film adsorbed with a dichroic dye with a boric acid aqueous solution, and a step of washing with water after the crosslinking treatment with a boric acid aqueous solution. be able to.
複合偏光板10を構成する第1の偏光フィルム11A,第2の偏光フィルム11Bは、通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理して架橋させる工程、及びホウ酸水溶液による架橋処理後に水洗する工程を経て、製造することができる。 [Polarized film]
The first polarizing film 11A and the second polarizing film 11B constituting the composite polarizing
ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより製造できる。ポリ酢酸ビニル系樹脂は、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとそれに共重合可能な他の単量体との共重合体であることもできる。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などが挙げられる。
The polyvinyl alcohol resin can be produced by saponifying a polyvinyl acetate resin. The polyvinyl acetate resin may be a copolymer of vinyl acetate and another monomer copolymerizable therewith, in addition to polyvinyl acetate which is a homopolymer of vinyl acetate. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
ポリビニルアルコール系樹脂のケン化度は、通常85~100モル%程度であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタールなども使用可能である。ポリビニルアルコール系樹脂の重合度は、通常1,000~10,000程度であり、好ましくは1,500~5,000程度である。
The degree of saponification of the polyvinyl alcohol resin is usually about 85 to 100 mol%, preferably 98 mol% or more. The polyvinyl alcohol resin may be modified, for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can be used. The degree of polymerization of the polyvinyl alcohol resin is usually about 1,000 to 10,000, and preferably about 1,500 to 5,000.
このようなポリビニルアルコール系樹脂を製膜したものが、偏光フィルムの原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものでなく、公知の方法で製膜することができる。ポリビニルアルコール系樹脂原反フィルムの膜厚は、例えば10~100μm程度、好ましくは10~50μm程度である。
A film obtained by forming such a polyvinyl alcohol resin is used as an original film of a polarizing film. The method for forming a polyvinyl alcohol-based resin is not particularly limited, and can be formed by a known method. The film thickness of the polyvinyl alcohol resin raw film is, for example, about 10 to 100 μm, preferably about 10 to 50 μm.
ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素による染色の前、染色と同時、又は染色の後に行うことができる。一軸延伸を染色の後で行う場合、この一軸延伸は、ホウ酸処理の前に行ってもよいし、ホウ酸処理中に行ってもよい。もちろん、ここに示した複数の段階で一軸延伸を行うこともできる。一軸延伸には、周速の異なるロール間で一軸に延伸する方法や、熱ロールを用いて一軸に延伸する方法などが採用できる。また一軸延伸は、大気中で延伸を行う乾式延伸により行ってもよいし、水等の溶剤を用い、ポリビニルアルコール系樹脂フィルムを膨潤させた状態で延伸を行う湿式延伸により行ってもよい。延伸倍率は、通常3~8倍程度である。
Uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before dyeing with the dichroic dye, simultaneously with dyeing, or after dyeing. When uniaxial stretching is performed after dyeing, the uniaxial stretching may be performed before boric acid treatment or during boric acid treatment. Of course, uniaxial stretching can also be performed in a plurality of stages shown here. For uniaxial stretching, a method of stretching uniaxially between rolls having different peripheral speeds, a method of stretching uniaxially using a hot roll, or the like can be adopted. Uniaxial stretching may be performed by dry stretching in which stretching is performed in the air, or may be performed by wet stretching in which a polyvinyl alcohol-based resin film is stretched using a solvent such as water. The draw ratio is usually about 3 to 8 times.
ポリビニルアルコール系樹脂フィルムの二色性色素による染色は、例えば、二色性色素を含有する水溶液にポリビニルアルコール系樹脂フィルムを浸漬する方法により行うことができる。二色性色素として、具体的にはヨウ素や二色性有機染料が用いられる。なお、ポリビニルアルコール系樹脂フィルムは、染色処理の前に水に浸漬して膨潤させる処理を施しておくことが好ましい。
The dyeing of the polyvinyl alcohol resin film with the dichroic dye can be performed, for example, by a method of immersing the polyvinyl alcohol resin film in an aqueous solution containing the dichroic dye. Specifically, iodine or a dichroic organic dye is used as the dichroic dye. In addition, it is preferable to perform the process which a polyvinyl alcohol-type resin film swells by immersing in water before a dyeing process.
二色性色素としてヨウ素を用いる場合は、通常、ヨウ素及びヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。この水溶液におけるヨウ素の含有量は、水100重量部あたり、通常0.01~1重量部程度であり、ヨウ化カリウムの含有量は、水100重量部あたり、通常0.5~20重量部程度である。染色に用いる水溶液の温度は、通常20~40℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常20~1,800秒程度である。
When iodine is used as the dichroic dye, a method of dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide is usually employed. The content of iodine in this aqueous solution is usually about 0.01 to 1 part by weight per 100 parts by weight of water, and the content of potassium iodide is usually about 0.5 to 20 parts by weight per 100 parts by weight of water. It is. The temperature of the aqueous solution used for dyeing is usually about 20 to 40 ° C. The immersion time (dyeing time) in this aqueous solution is usually about 20 to 1,800 seconds.
一方、二色性色素として二色性の有機染料を用いる場合は、通常、水溶性の二色性有機染料を含む水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。この水溶液における二色性有機染料の含有量は、水100重量部あたり、通常1×10-4~10重量部程度であり、好ましくは1×10-3~1重量部である。この染料水溶液は、硫酸ナトリウムのような無機塩を染色助剤として含有していてもよい。染色に用いる二色性有機染料水溶液の温度は、通常20~80℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常10~1,800秒程度である。
On the other hand, when a dichroic organic dye is used as the dichroic dye, a method of immersing and dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic organic dye is usually employed. The content of the dichroic organic dye in this aqueous solution is usually about 1 × 10 −4 to 10 parts by weight, preferably 1 × 10 −3 to 1 part by weight per 100 parts by weight of water. This aqueous dye solution may contain an inorganic salt such as sodium sulfate as a dyeing assistant. The temperature of the aqueous dichroic organic dye solution used for dyeing is usually about 20 to 80 ° C. The immersion time (dyeing time) in this aqueous solution is usually about 10 to 1,800 seconds.
二色性色素による染色後のホウ酸処理は、染色されたポリビニルアルコール系樹脂フィルムをホウ酸含有水溶液に浸漬する方法により、行うことができる。ホウ酸含有水溶液におけるホウ酸の含有量は、水100重量部あたり、通常2~15重量部程度であり、好ましくは5~12重量部である。二色性色素としてヨウ素を用いる場合、このホウ酸含有水溶液はヨウ化カリウムを含有することが好ましい。ホウ酸含有水溶液におけるヨウ化カリウムの含有量は、水100重量部あたり、通常0.1~15重量部程度であり、好ましくは5~12重量部である。ホウ酸含有水溶液への浸漬時間は、通常60~1,200秒程度であり、好ましくは150~600秒、さらに好ましくは200~400秒である。ホウ酸含有水溶液の温度は、通常50℃以上であり、好ましくは50~85℃、さらに好ましくは60~80℃である。
The boric acid treatment after dyeing with the dichroic dye can be performed by a method of immersing the dyed polyvinyl alcohol-based resin film in a boric acid-containing aqueous solution. The boric acid content in the boric acid-containing aqueous solution is usually about 2 to 15 parts by weight, preferably 5 to 12 parts by weight per 100 parts by weight of water. When iodine is used as the dichroic dye, the boric acid-containing aqueous solution preferably contains potassium iodide. The content of potassium iodide in the boric acid-containing aqueous solution is usually about 0.1 to 15 parts by weight, preferably 5 to 12 parts by weight, per 100 parts by weight of water. The immersion time in the boric acid-containing aqueous solution is usually about 60 to 1,200 seconds, preferably 150 to 600 seconds, and more preferably 200 to 400 seconds. The temperature of the boric acid-containing aqueous solution is usually 50 ° C. or higher, preferably 50 to 85 ° C., more preferably 60 to 80 ° C.
ホウ酸処理後のポリビニルアルコール系樹脂フィルムは、通常、水洗処理される。水洗処理は、例えば、ホウ酸処理されたポリビニルアルコール系樹脂フィルムを水に浸漬する方法により、行うことができる。水洗にはヨウ化カリウムを含有する溶液を使用してもよい。水洗処理における水の温度は、通常5~40℃程度である。また浸漬時間は、通常1~120秒程度である。
The polyvinyl alcohol resin film after the boric acid treatment is usually washed with water. The water washing treatment can be performed, for example, by a method of immersing a boric acid-treated polyvinyl alcohol resin film in water. A solution containing potassium iodide may be used for washing with water. The temperature of water in the water washing treatment is usually about 5 to 40 ° C. The immersion time is usually about 1 to 120 seconds.
水洗後は乾燥処理が施されて、偏光フィルムが得られる。乾燥処理は、熱風乾燥機や遠赤外線ヒーターを用いて行うことができる。乾燥処理の温度は、通常30~100℃程度であり、好ましくは50~80℃である。乾燥処理の時間は、通常60~600秒程度であり、好ましくは120~600秒である。乾燥処理により、偏光フィルム中の水分率は実用程度にまで低減される。その水分率は、通常5~20重量%程度であり、好ましくは8~15重量%である。水分率が5重量%を下回ると、偏光フィルムの可撓性が失われ、乾燥後に損傷したり、破断したりすることがある。また水分率が20重量%を超えると、熱安定性が不足する傾向にある。
After washing with water, a drying process is performed to obtain a polarizing film. The drying process can be performed using a hot air dryer or a far infrared heater. The temperature for the drying treatment is usually about 30 to 100 ° C., preferably 50 to 80 ° C. The drying treatment time is usually about 60 to 600 seconds, preferably 120 to 600 seconds. By the drying treatment, the moisture content in the polarizing film is reduced to a practical level. The water content is usually about 5 to 20% by weight, preferably 8 to 15% by weight. When the moisture content is less than 5% by weight, the polarizing film loses its flexibility, and may be damaged or broken after drying. On the other hand, if the moisture content exceeds 20% by weight, the thermal stability tends to be insufficient.
以上のようにして、ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向した偏光フィルムを製造することができる。
As described above, a polarizing film having a dichroic dye adsorbed and oriented on a polyvinyl alcohol resin film can be produced.
また、偏光フィルムの製造工程におけるポリビニルアルコール系樹脂フィルムの延伸、染色、ホウ酸処理、水洗工程、乾燥工程は、例えば、特開2012-159778号に記載されている方法に準じて行ってもよい。この文献記載の方法では、基材フィルムへのポリビニルアルコール系樹脂のコーティングにより、偏光フィルムとなるポリビニルアルコール系樹脂層を形成する方法を用いることも有用である。
Further, the stretching, dyeing, boric acid treatment, water washing step, and drying step of the polyvinyl alcohol resin film in the production process of the polarizing film may be performed in accordance with, for example, the method described in JP2012-159778A. . In the method described in this document, it is also useful to use a method of forming a polyvinyl alcohol resin layer to be a polarizing film by coating a polyvinyl alcohol resin on a base film.
偏光フィルム自体の収縮力を低くすることも、高温環境下における偏光度低下を抑制する観点から、また良好な外観を保持できる観点から好ましい。高温環境下における偏光フィルムの収縮力を低く抑えるためには、偏光フィルムの厚さを12μm以下とすることが好ましい。良好な光学特性を付与できるという点で、偏光フィルムの厚みは通常3μm以上である。
It is also preferable to reduce the contraction force of the polarizing film itself from the viewpoint of suppressing a decrease in the degree of polarization under a high temperature environment and from the viewpoint of maintaining a good appearance. In order to suppress the shrinkage force of the polarizing film under a high temperature environment, the thickness of the polarizing film is preferably 12 μm or less. The thickness of the polarizing film is usually 3 μm or more in that good optical properties can be imparted.
第1の偏光フィルム11Aの厚みと、第2の偏光フィルム11Bの厚みの差の大きさは、5μm以下であることが好ましい。さらに好ましくは3μm以下である。このように厚みの差の小さい偏光フィルムを用いることで高温環境下における寸法変化の挙動を、第一の偏光フィルム11Aと第2の偏光フィルム11Bとで合わせることができる。そのため2枚の偏光フィルムの熱収縮差による応力の差に起因して発生するような偏光フィルムのクラックが抑制されるものと考えられる。
The thickness difference between the thickness of the first polarizing film 11A and the thickness of the second polarizing film 11B is preferably 5 μm or less. More preferably, it is 3 μm or less. Thus, by using a polarizing film with a small thickness difference, the behavior of dimensional change under a high temperature environment can be matched between the first polarizing film 11A and the second polarizing film 11B. Therefore, it is thought that the crack of the polarizing film which generate | occur | produces due to the difference in the stress by the thermal contraction difference of two polarizing films is suppressed.
偏光フィルムは、80℃の温度で240分間保持したときの、その吸収軸方向の幅2mmあたりの収縮力が、2N以下であることが好ましい。この収縮力が、2Nより大きいと高温環境下での寸法変化量が大きくなり、且つ、偏光フィルムの収縮力が大きくなるために、偏光フィルムに割れや剥がれが発生しやすくなるという傾向にある。偏光フィルムの収縮力は、延伸倍率を下げると、また偏光フィルムの厚さを薄くすると2N以下となる傾向にある。
The polarizing film preferably has a shrinkage force of 2 N or less per 2 mm width in the absorption axis direction when held at a temperature of 80 ° C. for 240 minutes. If the shrinkage force is greater than 2N, the amount of dimensional change under a high temperature environment increases, and the shrinkage force of the polarizing film increases, so that the polarizing film tends to be easily cracked or peeled off. The shrinkage force of the polarizing film tends to be 2N or less when the draw ratio is lowered and the thickness of the polarizing film is reduced.
また2枚の偏光フィルムの吸収軸方向の幅2mmあたりの収縮力の差は、1N以下であることが好ましく、0.5N以下であることがより好ましい。後述のとおり、本発明の複合偏光板においては、第1の偏光板の単体透過率よりも、第2の偏光板の単体透過率のほうが大きいことが好ましいことから、2枚の偏光フィルムは、収縮力の大きさが異なっていてもよく、例えば収縮力の差は0.1N以上であってもよい。
The difference in shrinkage force per 2 mm width in the absorption axis direction between the two polarizing films is preferably 1 N or less, and more preferably 0.5 N or less. As will be described later, in the composite polarizing plate of the present invention, it is preferable that the single transmittance of the second polarizing plate is larger than the single transmittance of the first polarizing plate. The magnitude of the contraction force may be different. For example, the difference in contraction force may be 0.1 N or more.
[第1の保護フィルム12A]
複合偏光板10に用いる第1の保護フィルム12Aは、透明な樹脂フィルムで構成することができる。特に、透明性、機械的強度、熱安定性、水分遮蔽性などに優れる材料で構成することが好ましい。本明細書において、透明な樹脂フィルムとは可視光域において単体透過率が80%以上である樹脂フィルムのことをいう。 [First protective film 12A]
12 A of 1st protective films used for the compositepolarizing plate 10 can be comprised with a transparent resin film. In particular, it is preferable to use a material that is excellent in transparency, mechanical strength, thermal stability, moisture shielding properties, and the like. In this specification, the transparent resin film means a resin film having a single transmittance of 80% or more in the visible light region.
複合偏光板10に用いる第1の保護フィルム12Aは、透明な樹脂フィルムで構成することができる。特に、透明性、機械的強度、熱安定性、水分遮蔽性などに優れる材料で構成することが好ましい。本明細書において、透明な樹脂フィルムとは可視光域において単体透過率が80%以上である樹脂フィルムのことをいう。 [First protective film 12A]
12 A of 1st protective films used for the composite
第1の保護フィルム12Aとしては、セルロース系樹脂、鎖状ポリオレフィン系樹脂、環状ポリオレフィン系樹脂、アクリル系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂など、当分野において従来保護フィルムの形成材料として広く用いられている材料から形成されたフィルムを使用することができる。保護フィルム12Aを構成する材料としては、例えば、セルロース系樹脂が好ましい。
As the first protective film 12A, a conventional protective film forming material in this field, such as a cellulose resin, a chain polyolefin resin, a cyclic polyolefin resin, an acrylic resin, a polyimide resin, a polycarbonate resin, and a polyester resin A film formed from a widely used material can be used. As a material constituting the protective film 12A, for example, a cellulose resin is preferable.
セルロース系樹脂は、セルロースの水酸基における水素原子の一部又は全部が、アセチル基、プロピオニル基及び/又はブチリル基で置換された、セルロースの有機酸エステル又は混合有機酸エステルでありうる。例えば、セルロースの酢酸エステル、プロピオン酸エステル、酪酸エステル、それらの混合エステルなどからなるものが挙げられる。なかでも、トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどが好ましい。
The cellulose resin may be an organic acid ester or mixed organic acid ester of cellulose in which part or all of the hydrogen atoms in the hydroxyl group of cellulose are substituted with an acetyl group, a propionyl group and / or a butyryl group. Examples include cellulose acetate, propionate, butyrate, and mixed esters thereof. Of these, triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate, cellulose acetate butyrate and the like are preferable.
これらの樹脂は、透明性を損なわない範囲で、適宜の添加物が配合されていてもよい。添加物として例えば、酸化防止剤、紫外線吸収剤、帯電防止剤、滑剤、造核剤、防曇剤、アンチブロッキング剤、位相差低減剤、安定剤、加工助剤、可塑剤、耐衝撃助剤、艶消し剤、抗菌剤、防かび剤などを挙げることができる。これらの添加物は、複数種が併用されてもよい。
These resins may contain appropriate additives as long as the transparency is not impaired. Additives such as antioxidants, ultraviolet absorbers, antistatic agents, lubricants, nucleating agents, antifogging agents, antiblocking agents, phase difference reducing agents, stabilizers, processing aids, plasticizers, impact aids , Matting agents, antibacterial agents, fungicides and the like. A plurality of these additives may be used in combination.
以上のような樹脂からフィルムを製膜する方法としては、任意の最適な方法を適宜選択すればよい。例えば、溶剤に溶解させた樹脂を、金属製のバンド又はドラムに流延し、溶剤を乾燥除去してフィルムを得る溶剤キャスト法、樹脂をその溶融温度以上に加熱し、混練してダイから押し出し、冷却することによりフィルムを得る溶融押出法などが使用できる。溶融押出法では、単層フィルムを押し出すこともできるし、多層フィルムを同時押出することもできる。
As a method for forming a film from the resin as described above, any optimum method may be appropriately selected. For example, a solvent cast method in which a resin dissolved in a solvent is cast on a metal band or drum, and the solvent is removed by drying to obtain a film. The resin is heated above its melting temperature, kneaded and extruded from a die. A melt extrusion method for obtaining a film by cooling can be used. In the melt extrusion method, a single layer film can be extruded or a multilayer film can be coextruded.
これら樹脂のフィルムは、市販品を容易に入手することが可能である。市販されているフィルムの例を挙げると、セルロース系樹脂フィルムとして、それぞれ商品名で、富士フイルム株式会社から販売されている“フジタック(登録商標) TD”、コニカミノルタ株式会社から販売されている“コニカミノルタ TAC フィルム KC”などがある。
These resin films can be easily obtained as commercial products. Examples of commercially available films include “Fujitac (registered trademark) TD” sold by Fuji Film Co., Ltd. and Konica Minolta Co., Ltd., respectively, as cellulose resin films. Konica Minolta TAC Film KC ”.
[第1の保護フィルム12Aの表面処理層20]
第1の保護フィルム12Aは、第1の偏光フィルム11Aに貼合される面と反対側の面に、表面処理層20を有してもよい。この表面処理層20としては、例えば、微細な表面凹凸形状を有するハードコート層が挙げられる。ハードコート層は、鉛筆硬度がHより硬いことが好ましい。その鉛筆硬度がH又はそれより小さいと、表面に傷が付きやすくなり、傷が付くと液晶表示装置の視認性が悪くなる。鉛筆硬度は、JIS K 5600-5-4:1999「塗料一般試験方法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆法)」に準じて求められ、各硬度の鉛筆を用いて引っかいたときに傷が生じない最も硬い鉛筆の硬度で表される。 [Surface treatment layer 20 of first protective film 12A]
12 A of 1st protective films may have thesurface treatment layer 20 in the surface on the opposite side to the surface bonded by 11 A of 1st polarizing films. Examples of the surface treatment layer 20 include a hard coat layer having a fine surface irregularity shape. The hard coat layer preferably has a pencil hardness higher than H. If the pencil hardness is H or smaller, the surface is likely to be scratched, and if the pencil hardness is scratched, the visibility of the liquid crystal display device is deteriorated. The pencil hardness is determined in accordance with JIS K 5600-5-4: 1999 “General test methods for coating materials—Part 5: Mechanical properties of coating film—Section 4: Scratch hardness (pencil method)”. It is represented by the hardness of the hardest pencil that does not cause scratches when scratched with a pencil.
第1の保護フィルム12Aは、第1の偏光フィルム11Aに貼合される面と反対側の面に、表面処理層20を有してもよい。この表面処理層20としては、例えば、微細な表面凹凸形状を有するハードコート層が挙げられる。ハードコート層は、鉛筆硬度がHより硬いことが好ましい。その鉛筆硬度がH又はそれより小さいと、表面に傷が付きやすくなり、傷が付くと液晶表示装置の視認性が悪くなる。鉛筆硬度は、JIS K 5600-5-4:1999「塗料一般試験方法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆法)」に準じて求められ、各硬度の鉛筆を用いて引っかいたときに傷が生じない最も硬い鉛筆の硬度で表される。 [
12 A of 1st protective films may have the
表面処理層20を有する第1の保護フィルム12Aは、そのヘイズ値が 0.1~45%の範囲、さらには5~40%の範囲となるようにすることが好ましい。ヘイズ値が45%より大きな領域になると、外光の映り込みは低減できるものの、黒表示の画面のしまりが低下してしまう。また、ヘイズ値が0.1%を下回ると、十分な防眩性能が得られず、外光が画面に映り込むので、好ましくない。ここで、ヘイズ値は、JIS K 7136:2000「プラスチック-透明材料のヘイズの求め方」に従って求められる。
The first protective film 12A having the surface treatment layer 20 preferably has a haze value in the range of 0.1 to 45%, more preferably in the range of 5 to 40%. When the haze value is larger than 45%, the reflection of external light can be reduced, but the black display screen is reduced. On the other hand, when the haze value is less than 0.1%, sufficient antiglare performance cannot be obtained, and external light is reflected on the screen, which is not preferable. Here, the haze value is determined according to JIS K 7136: 2000 “Plastics—How to determine haze of transparent material”.
微細な表面凹凸形状を有するハードコート層は、樹脂フィルムの表面に、有機微粒子又は無機微粒子を含有する塗膜を形成する方法や、有機微粒子又は無機微粒子を含有するか又は含有しない塗膜を形成した後、凹凸形状を付与したロールに押し当てる方法、例えばエンボス法などによって、形成することができる。このような塗膜は、例えば、樹脂フィルムの表面に、硬化性樹脂からなるバインダー成分と有機微粒子又は無機微粒子とを含有する塗布液(硬化性樹脂組成物)を塗布する方法などによって、形成できる。
The hard coat layer with fine surface irregularities forms a method of forming a coating film containing organic fine particles or inorganic fine particles on the surface of the resin film, or a coating film containing or not containing organic fine particles or inorganic fine particles. Then, it can be formed by a method of pressing against a roll having an uneven shape, such as an embossing method. Such a coating film can be formed by, for example, a method of applying a coating liquid (curable resin composition) containing a binder component made of a curable resin and organic fine particles or inorganic fine particles to the surface of the resin film. .
無機微粒子としては、例えば、シリカ、コロイダルシリカ、アルミナ、アルミナゾル、アルミノシリケート、アルミナ-シリカ複合酸化物、カオリン、タルク、マイカ、炭酸カルシウム、リン酸カルシウムなどを用いることができる。また、有機微粒子としては、架橋ポリアクリル酸粒子、メタクリル酸メチル/スチレン共重合体樹脂粒子、架橋ポリスチレン粒子、架橋ポリメタクリル酸メチル粒子、シリコーン樹脂粒子、又はポリイミド粒子のような樹脂粒子を用いることができる。
As the inorganic fine particles, for example, silica, colloidal silica, alumina, alumina sol, aluminosilicate, alumina-silica composite oxide, kaolin, talc, mica, calcium carbonate, calcium phosphate and the like can be used. Further, as the organic fine particles, resin particles such as crosslinked polyacrylic acid particles, methyl methacrylate / styrene copolymer resin particles, crosslinked polystyrene particles, crosslinked polymethyl methacrylate particles, silicone resin particles, or polyimide particles should be used. Can do.
無機微粒子又は有機微粒子を分散させるためのバインダー成分は、高硬度(ハードコート)となる材料から選定すればよい。バインダー成分として、光硬化性樹脂、熱硬化性樹脂、電子線硬化性樹脂などを用いることができるが、生産性や、得られる表面処理層20の硬度などの観点から、光硬化性樹脂が好ましい。光硬化性樹脂としては、市販されているものを適宜用いることができる。例えば、トリメチロールプロパントリアクリレートやペンタエリスリトールテトラアクリレートのような多官能アクリレートを単独で、又は2種以上組み合わせて用い、これに、“イルガキュア(登録商標) 907”、“イルガキュア(登録商標) 184”又は“ルシリン(登録商標) TPO”(いずれもBASF社から販売されている商品名)のような光重合開始剤を混合し、光硬化性樹脂とすることができる。光硬化性樹脂を用いる場合は、そこに無機微粒子又は有機微粒子を分散させて得られる樹脂組成物を樹脂フィルム上に塗布し、光を照射することにより、バインダー樹脂中に無機微粒子又は有機微粒子が分散されたハードコート層を形成することができる。
The binder component for dispersing inorganic fine particles or organic fine particles may be selected from materials having high hardness (hard coat). As the binder component, a photocurable resin, a thermosetting resin, an electron beam curable resin, and the like can be used. From the viewpoint of productivity and the hardness of the surface treatment layer 20 to be obtained, a photocurable resin is preferable. . As a photocurable resin, what is marketed can be used suitably. For example, polyfunctional acrylates such as trimethylolpropane triacrylate and pentaerythritol tetraacrylate are used singly or in combination of two or more, and “Irgacure (registered trademark) 907” and “Irgacure (registered trademark) 184” are used. Alternatively, a photopolymerization initiator such as “Lucirin (registered trademark) TPO” (both trade names sold by BASF) can be mixed to obtain a photocurable resin. When a photocurable resin is used, a resin composition obtained by dispersing inorganic fine particles or organic fine particles therein is applied onto a resin film and irradiated with light, whereby inorganic fine particles or organic fine particles are present in the binder resin. A dispersed hard coat layer can be formed.
光硬化性樹脂を構成する多官能アクリレートとして、上記したトリメチロールプロパントリアクリレートやペンタエリスリトールテトラアクリレートのようなモノマータイプのもののほか、ウレタンアクリレート、ポリオール(メタ)アクリレート、又は水酸基を2個以上含むアルキル基を有する(メタ)アクリルオリゴマーのような、オリゴマータイプのものを用いることもできる。
As the polyfunctional acrylate constituting the photocurable resin, in addition to the above-described monomer types such as trimethylolpropane triacrylate and pentaerythritol tetraacrylate, urethane acrylate, polyol (meth) acrylate, or alkyl having two or more hydroxyl groups An oligomer type one such as a (meth) acrylic oligomer having a group can also be used.
ここでいうウレタンアクリレートは、例えば、(メタ)アクリル酸及び/又は(メタ)アクリル酸エステル、ポリオール、並びにジイソシアネートを用いて調製される。具体的には、(メタ)アクリル酸及び/又は(メタ)アクリル酸エステルとポリオールとから、水酸基が少なくとも1個残ったヒドロキシ(メタ)アクリレートを調製し、これをジイソシアネートと反応させる方法によって、ウレタンアクリレートを製造することができる。これら(メタ)アクリル酸及び/又は(メタ)アクリル酸エステル、ポリオール、並びにジイソシアネートは、それぞれ1種でもよく、2種以上を組み合わせて用いてもよい。また、目的に応じて各種添加剤を加えてもよい。
The urethane acrylate here is prepared using, for example, (meth) acrylic acid and / or (meth) acrylic ester, polyol, and diisocyanate. Specifically, urethane is prepared by preparing hydroxy (meth) acrylate with at least one hydroxyl group remaining from (meth) acrylic acid and / or (meth) acrylic acid ester and polyol, and reacting it with diisocyanate. Acrylate can be produced. These (meth) acrylic acid and / or (meth) acrylic acid ester, polyol, and diisocyanate may be used singly or in combination of two or more. Moreover, you may add various additives according to the objective.
ウレタンアクリレートの製造に用いられる(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、及び(メタ)アクリル酸ブチルのような(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸シクロヘキシルのような(メタ)アクリル酸シクロアルキルエステルが挙げられる。
Examples of the (meth) acrylic acid ester used for the production of urethane acrylate include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, and (meth). (Meth) acrylic acid alkyl esters such as butyl acrylate; (meth) acrylic acid cycloalkyl esters such as (meth) acrylic acid cyclohexyl.
同じくウレタンアクリレートの製造に用いられるポリオールは、分子内に水酸基を少なくとも2個有する化合物である。具体例を挙げると、エチレングリコール、トリメチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカングリコール、2,2,4-トリメチル-1,3-ペンタンジオール、3-メチル-1,5-ペンタンジオール、ヒドロキシピバリン酸のネオペンチルグリコールエステル、シクロヘキサンジメチロール、1,4-シクロヘキサンジオール、スピログリコール、トリシクロデカンジメチロール、水添ビスフェノールA、エチレンオキサイド付加ビスフェノールA、プロピレンオキサイド付加ビスフェノールA、トリメチロールエタン、トリジメチロールプロパン、グリセリン、3-メチルペンタン-1,3,5-トリオール、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グルコース類などがある。
Similarly, the polyol used for the production of urethane acrylate is a compound having at least two hydroxyl groups in the molecule. Specific examples include ethylene glycol, trimethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, 1,9 -Nonanediol, 1,10-decane glycol, 2,2,4-trimethyl-1,3-pentanediol, 3-methyl-1,5-pentanediol, neopentyl glycol ester of hydroxypivalic acid, cyclohexanedimethylol, 1,4-cyclohexanediol, spiroglycol, tricyclodecane dimethylol, hydrogenated bisphenol A, ethylene oxide added bisphenol A, propylene oxide added bisphenol A, trimethylol ethane, tridimethyl Rupuropan, glycerin, 3-methylpentane-1,3,5-triol, pentaerythritol, dipentaerythritol, tripentaerythritol, and the like glucose ethers.
同じくウレタンアクリレートの製造に用いられるジイソシアネートは、芳香族、脂肪族又は脂環式の各種ジイソシアネート類であることができる。具体例を挙げると、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、1,5-ナフタレンジイソシアネート、ジフェニル-4,4’-ジイソシアネート、3,3’-ジメチルジフェニル-4,4’-ジイソシアネート、キシレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、及びこれらのうち芳香環を有する化合物の水添物などがある。
Similarly, the diisocyanate used in the production of urethane acrylate can be various aromatic, aliphatic or alicyclic diisocyanates. Specific examples include tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, 1,5-naphthalene diisocyanate, diphenyl-4,4′-diisocyanate, 3,3′-dimethyldiphenyl-4. , 4′-diisocyanate, xylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4′-diisocyanate, and hydrogenated compounds of these having an aromatic ring.
多官能アクリレートとなりうるポリオール(メタ)アクリレートの具体例を挙げると、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレートなどがある。これらはそれぞれ単独で用いてもよく、組み合わせて用いてもよい。さらに、必要に応じて各種添加剤を加えてもよい。ポリオール(メタ)アクリレートは、好ましくはペンタエリスリトールトリアクリレート及びペンタエリスリトールテトラアクリレートを含む。これらは共重合体であってもよく、混合物であってもよい。
Specific examples of polyol (meth) acrylate that can be a polyfunctional acrylate include pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, Examples include 1,6-hexanediol di (meth) acrylate. These may be used alone or in combination. Furthermore, you may add various additives as needed. The polyol (meth) acrylate preferably comprises pentaerythritol triacrylate and pentaerythritol tetraacrylate. These may be a copolymer or a mixture.
さらに、別の多官能アクリレートとなりうる水酸基を2個以上含むアルキル基を有する(メタ)アクリルオリゴマーとしては、例えば、2,3-ジヒドロキシプロピル基を有する(メタ)アクリルオリゴマーや、2-ヒドロキシエチル基及び2,3-ジヒドロキシプロピル基を有する(メタ)アクリルオリゴマーが挙げられる。
Furthermore, as the (meth) acryl oligomer having an alkyl group containing two or more hydroxyl groups that can be another polyfunctional acrylate, for example, a (meth) acryl oligomer having a 2,3-dihydroxypropyl group or a 2-hydroxyethyl group And (meth) acrylic oligomers having 2,3-dihydroxypropyl groups.
光硬化性樹脂を構成する光重合開始剤の具体例を挙げると、2,2-ジメトキシ-2-フェニルアセトフェノン、アセトフェノン、ベンゾフェノン、キサントン、3-メチルアセトフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、ベンゾインプロピルエーテル、ベンジルジメチルケタール、N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、その他チオキサントン系化合物などがある。
Specific examples of the photopolymerization initiator constituting the photocurable resin include 2,2-dimethoxy-2-phenylacetophenone, acetophenone, benzophenone, xanthone, 3-methylacetophenone, 4-chlorobenzophenone, 4,4′- Dimethoxybenzophenone, benzoinpropyl ether, benzyldimethyl ketal, N, N, N ′, N′-tetramethyl-4,4′-diaminobenzophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropane- Examples include 1-one and other thioxanthone compounds.
光硬化性樹脂は、必要に応じて溶媒に溶解した状態で用いることもできる。溶媒としては、酢酸エチルや酢酸ブチルをはじめとする各種の有機溶媒を用いることができる。
The photo-curable resin can be used in a state dissolved in a solvent as necessary. As the solvent, various organic solvents including ethyl acetate and butyl acetate can be used.
また光硬化性樹脂は、レベリング剤を含有してもよく、例えば、フッ素系又はシリコーン系のレベリング剤を挙げることができる。シリコーン系のレベリング剤としては、反応性シリコーン、ポリジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、ポリメチルアルキルシロキサンが挙げられる。好ましくは、反応性シリコーン及びシロキサン系のレベリング剤である。反応性シリコーンのレベリング剤を用いることにより、ハードコート層表面に滑り性が付与され、優れた耐擦傷性を長期間持続させることができる。一方、シロキサン系のレベリング剤を用いると、膜形成能を向上させることができる。
The photocurable resin may contain a leveling agent, and examples thereof include a fluorine-based or silicone-based leveling agent. Examples of the silicone leveling agent include reactive silicone, polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane. Preferred are reactive silicone and siloxane leveling agents. By using a reactive silicone leveling agent, the surface of the hard coat layer is provided with slipperiness, and excellent scratch resistance can be maintained for a long period of time. On the other hand, when a siloxane-based leveling agent is used, film forming ability can be improved.
反応性シリコーンのレベリング剤としては、シロキサン結合と、アクリロイル基又は水酸基とを有するものが挙げられる。具体例として、次のような共重合体を挙げることができる。
(a)ジメチルシロキサン/3-アクリロイル-2-ヒドロキシプロポキシプロピルシロキサン/2-アクリロイル-3-ヒドロキシプロポキシプロピルシロキサンの共重合体、
(b)ジメチルシロキサン/ヒドロキシプロピルシロキサン/トリ(ω-イソシアナトアルキル)イソシアヌル酸/脂肪族ポリエステルの共重合体、
(c)ジメチルシロキサン/末端がアクリレートのポリアルキレングリコールアルキルシロキサン/末端が水酸基のポリアルキレングリコールアルキルシロキサンの共重合体。 Examples of the leveling agent for reactive silicone include those having a siloxane bond and an acryloyl group or a hydroxyl group. Specific examples include the following copolymers.
(A) a copolymer of dimethylsiloxane / 3-acryloyl-2-hydroxypropoxypropylsiloxane / 2-acryloyl-3-hydroxypropoxypropylsiloxane,
(B) a copolymer of dimethylsiloxane / hydroxypropylsiloxane / tri (ω-isocyanatoalkyl) isocyanuric acid / aliphatic polyester,
(C) Copolymer of dimethylsiloxane / polyalkylene glycol alkylsiloxane having acrylate at the end / polyalkylene glycol alkylsiloxane having a hydroxyl group at the end.
(a)ジメチルシロキサン/3-アクリロイル-2-ヒドロキシプロポキシプロピルシロキサン/2-アクリロイル-3-ヒドロキシプロポキシプロピルシロキサンの共重合体、
(b)ジメチルシロキサン/ヒドロキシプロピルシロキサン/トリ(ω-イソシアナトアルキル)イソシアヌル酸/脂肪族ポリエステルの共重合体、
(c)ジメチルシロキサン/末端がアクリレートのポリアルキレングリコールアルキルシロキサン/末端が水酸基のポリアルキレングリコールアルキルシロキサンの共重合体。 Examples of the leveling agent for reactive silicone include those having a siloxane bond and an acryloyl group or a hydroxyl group. Specific examples include the following copolymers.
(A) a copolymer of dimethylsiloxane / 3-acryloyl-2-hydroxypropoxypropylsiloxane / 2-acryloyl-3-hydroxypropoxypropylsiloxane,
(B) a copolymer of dimethylsiloxane / hydroxypropylsiloxane / tri (ω-isocyanatoalkyl) isocyanuric acid / aliphatic polyester,
(C) Copolymer of dimethylsiloxane / polyalkylene glycol alkylsiloxane having acrylate at the end / polyalkylene glycol alkylsiloxane having a hydroxyl group at the end.
市販の反応性シリコーンの具体例を挙げると、いずれも商品名で、DIC株式会社から販売されている“GRANDIC(登録商標) PC-4100”、ビックケミー・ジャパン株式会社から販売されている“BYK-UV3500”、“BYK-UV3750”、“BYK-370”、“BYK-371”、“BYK-375”、及び“BYK-377”などがある。
Specific examples of commercially available reactive silicones are all trade names of “GRANDIC (registered trademark) PC-4100” sold by DIC Corporation, and “BYK-” sold by Big Chemie Japan Corporation. UV3500 "," BYK-UV3750 "," BYK-370 "," BYK-371 "," BYK-375 ", and" BYK-377 ".
以上例示したようなアクリル系のバインダー成分(バインダー樹脂)を用いることにより、保護フィルムとの密着性が向上するとともに、機械的強度が向上し、表面の傷付きを有効に防止できる表面処理層20を形成することができる。
By using an acrylic binder component (binder resin) as exemplified above, the adhesion to the protective film is improved, the mechanical strength is improved, and the surface treatment layer 20 that can effectively prevent surface scratches. Can be formed.
エンボス法により微細表面凹凸形状を有するハードコート層を設ける場合は、樹脂フィルム上に未硬化のハードコート層を形成し、そこに微細凹凸形状が形成された金型を押し当てながら、当該ハードコート層を硬化させ、金型の形状をそのハードコート層に転写すればよい。金型形状のハードコート層への転写は、エンボスにより行うことが好ましく、エンボスとしては、光硬化性樹脂の一種である紫外線硬化性樹脂を用いるUVエンボス法が好ましい。エンボス法により微細表面凹凸形状を形成する場合、ハードコート層は、無機又は有機微粒子を含有していてもよく、含有していなくてもよい。
When providing a hard coat layer having a fine surface irregular shape by the embossing method, an uncured hard coat layer is formed on a resin film, and the hard coat layer is pressed against the mold on which the fine irregular shape is formed. The layer is cured and the shape of the mold is transferred to the hard coat layer. The transfer to the mold-shaped hard coat layer is preferably carried out by embossing, and as the embossing, a UV embossing method using an ultraviolet curable resin which is a kind of a photocurable resin is preferable. When the fine surface irregularity shape is formed by the embossing method, the hard coat layer may or may not contain inorganic or organic fine particles.
UVエンボス法では、保護フィルムの表面に紫外線硬化性樹脂層を形成し、その紫外線硬化性樹脂層を金型の凹凸面に押し当てながら硬化させることで、金型の凹凸面が紫外線硬化性樹脂層に転写される。具体的には、樹脂フィルム上に紫外線硬化性樹脂を塗工し、塗工された紫外線硬化性樹脂を金型の凹凸面に密着させた状態で、樹脂フィルム側から紫外線を照射して紫外線硬化性樹脂を硬化させ、次に、硬化後の紫外線硬化性樹脂層が形成された樹脂フィルムを金型から剥離することにより、金型の形状を紫外線硬化性樹脂に転写する。紫外線硬化性樹脂の種類は特に制限されず、例えば前記したものを用いることができる。また、紫外線硬化性樹脂の代わりに、光重合開始剤を適宜選定することにより、紫外線より波長の長い可視光で硬化が可能な可視光硬化性樹脂を用いてもよい。
In the UV embossing method, an ultraviolet curable resin layer is formed on the surface of the protective film and cured while pressing the ultraviolet curable resin layer against the concave and convex surface of the mold so that the concave and convex surface of the mold becomes an ultraviolet curable resin. Transferred to the layer. Specifically, an ultraviolet curable resin is applied on a resin film, and the applied ultraviolet curable resin is in close contact with the uneven surface of the mold, and then the ultraviolet ray is irradiated from the resin film side to cure the ultraviolet ray. The shape of the mold is transferred to the ultraviolet curable resin by curing the curable resin and then peeling the resin film on which the cured ultraviolet curable resin layer is formed from the mold. The kind in particular of ultraviolet curable resin is not restrict | limited, For example, what was mentioned above can be used. Further, instead of the ultraviolet curable resin, a visible light curable resin that can be cured with visible light having a wavelength longer than that of ultraviolet light may be used by appropriately selecting a photopolymerization initiator.
表面処理層20の厚みは、特に限定されないが、2~30μm、さらには3~30μmの範囲にあることが好ましい。表面処理層20の厚みが2μmを下回ると、十分な硬度が得られにくくなり、表面が傷付きやすくなる傾向にある。また、その厚みが30μmより大きくなると、割れやすくなったり、表面処理層の硬化収縮により第1の保護フィルム12Aがカールして生産性を低下させたりする傾向にある。
The thickness of the surface treatment layer 20 is not particularly limited, but is preferably in the range of 2 to 30 μm, more preferably 3 to 30 μm. When the thickness of the surface treatment layer 20 is less than 2 μm, it is difficult to obtain sufficient hardness and the surface tends to be easily damaged. On the other hand, when the thickness is larger than 30 μm, the film tends to break or the first protective film 12A curls due to curing shrinkage of the surface treatment layer and tends to reduce productivity.
第1の保護フィルム12Aには、前記のように、ハードコート層によりヘイズが付与されることが好ましいが、ハードコート層の形成とともに、保護フィルム中に無機又は有機微粒子を分散させることによりヘイズが付与されていてもよい。このために用いる無機又は有機微粒子の具体例は、先に掲げたものと同様である。
As described above, haze is preferably imparted to the first protective film 12A by the hard coat layer, but with the formation of the hard coat layer, the haze is generated by dispersing inorganic or organic fine particles in the protective film. It may be given. Specific examples of the inorganic or organic fine particles used for this purpose are the same as those listed above.
第1の保護フィルム12Aには、ハードコート層を兼ねる前記の防眩処理(ヘイズ付与処理)のほか、帯電防止処理や、防汚処理、又は抗菌処理のような、各種の追加の表面処理が施されていてもよく、液晶性化合物やその高分子量化合物などからなるコート層が形成されていてもよい。なお、帯電防止機能は、表面処理以外でも、例えば粘着剤層など、偏光板の他の部分に付与してもよい。
The first protective film 12A has various additional surface treatments such as antistatic treatment, antifouling treatment, or antibacterial treatment in addition to the antiglare treatment (haze imparting treatment) that also serves as a hard coat layer. It may be applied, and a coating layer made of a liquid crystalline compound or a high molecular weight compound thereof may be formed. In addition to the surface treatment, the antistatic function may be imparted to other portions of the polarizing plate such as an adhesive layer.
[第2の保護フィルム12B]
第2の保護フィルム12Bとしては、第1の保護フィルム12Aと同じフィルムであってもよいし、異なるフィルムであってもよい。
第2の保護フィルム12Bとしては、位相差値の制御が容易で、入手も容易であることから、セルロース系樹脂、ポリオレフィン系樹脂又はアクリル系樹脂を含むことが好ましい。ここでいうポリオレフィン系樹脂は、鎖状ポリオレフィン系樹脂及び環状ポリオレフィン系樹脂を包含する。 [Second protective film 12B]
The second protective film 12B may be the same film as the first protective film 12A or a different film.
The second protective film 12B preferably contains a cellulose resin, a polyolefin resin, or an acrylic resin because the retardation value is easily controlled and easily available. The polyolefin resin here includes a chain polyolefin resin and a cyclic polyolefin resin.
第2の保護フィルム12Bとしては、第1の保護フィルム12Aと同じフィルムであってもよいし、異なるフィルムであってもよい。
第2の保護フィルム12Bとしては、位相差値の制御が容易で、入手も容易であることから、セルロース系樹脂、ポリオレフィン系樹脂又はアクリル系樹脂を含むことが好ましい。ここでいうポリオレフィン系樹脂は、鎖状ポリオレフィン系樹脂及び環状ポリオレフィン系樹脂を包含する。 [Second protective film 12B]
The second protective film 12B may be the same film as the first protective film 12A or a different film.
The second protective film 12B preferably contains a cellulose resin, a polyolefin resin, or an acrylic resin because the retardation value is easily controlled and easily available. The polyolefin resin here includes a chain polyolefin resin and a cyclic polyolefin resin.
セルロース系樹脂としては、第1の保護フィルム12Aと同様のものを用いることができる。
As the cellulose resin, the same resin as the first protective film 12A can be used.
環状ポリオレフィン系樹脂は、例えば、ノルボルネン及び他のシクロペンタジエン誘導体のような環状オレフィンモノマーを、触媒の存在下に重合して得られるものである。このような環状ポリオレフィン系樹脂を用いると、後述する所定の位相差値を有する保護フィルムが得られやすい。
The cyclic polyolefin resin is obtained by polymerizing cyclic olefin monomers such as norbornene and other cyclopentadiene derivatives in the presence of a catalyst. When such a cyclic polyolefin resin is used, a protective film having a predetermined retardation value to be described later is easily obtained.
環状ポリオレフィン系樹脂としては、例えば、シクロペンタジエンとオレフィン類又は(メタ)アクリル酸若しくはそのエステル類とから、ディールス・アルダー反応によって得られるノルボルネン又はその誘導体をモノマーとして開環メタセシス重合を行い、それに続く水添によって得られる樹脂;ジシクロペンタジエンとオレフィン類又は(メタ)アクリル酸若しくはそのエステル類とからディールス・アルダー反応によって得られるテトラシクロドデセン又はその誘導体をモノマーとして開環メタセシス重合を行い、それに続く水添によって得られる樹脂;ノルボルネン、テトラシクロドデセン、それらの誘導体、及びその他の環状オレフィンモノマーから選ばれる少なくとも2種のモノマーを同様に開環メタセシス共重合し、それに続く水添によって得られる樹脂;ノルボルネン、テトラシクロドデセン、又はそれらの誘導体のような環状オレフィンに、鎖状オレフィン及び/又はビニル基を有する芳香族化合物を付加共重合させて得られる樹脂などが挙げられる。
As the cyclic polyolefin-based resin, for example, ring-opening metathesis polymerization is performed from cyclopentadiene and olefins or (meth) acrylic acid or esters thereof using norbornene obtained by Diels-Alder reaction or a derivative thereof as a monomer. Resin obtained by hydrogenation; ring-opening metathesis polymerization using dicyclopentadiene and olefins or (meth) acrylic acid or esters thereof by tetracyclododecene or a derivative thereof obtained by Diels-Alder reaction, Resin obtained by subsequent hydrogenation; at least two monomers selected from norbornene, tetracyclododecene, their derivatives, and other cyclic olefin monomers are similarly copolymerized by ring-opening metathesis, Resin obtained by subsequent hydrogenation; resin obtained by addition copolymerization of a cyclic olefin such as norbornene, tetracyclododecene, or a derivative thereof with a chain olefin and / or an aromatic compound having a vinyl group Can be mentioned.
環状ポリオレフィン系樹脂は、市販品を容易に入手することが可能である。市販品の例を挙げると、それぞれ商品名で、TOPAS ADVANCED POLYMERS GmbHにて生産され、日本ではポリプラスチックス株式会社から販売されている“TOPAS”、JSR株式会社から販売されている“アートン(登録商標)”、日本ゼオン株式会社から販売されている“ゼオノア(登録商標)”及び“ゼオネックス(登録商標)”、三井化学株式会社から販売されている“アペル(登録商標)”などがある。
As the cyclic polyolefin resin, a commercially available product can be easily obtained. Examples of commercial products are “TOPAS” produced by TOPAS ADVANCED POLYMERS GmbH and sold by Polyplastics Co., Ltd. in Japan, and “Arton” (registered by JSR Corporation). Trademark) ”,“ ZEONOR (registered trademark) ”and“ ZEONEX (registered trademark) ”sold by Nippon Zeon Co., Ltd., and“ APEL (registered trademark) ”sold by Mitsui Chemicals, Inc.
鎖状ポリオレフィン系樹脂の典型的な例は、ポリエチレン系樹脂及びポリプロピレン系樹脂である。なかでも、プロピレンの単独重合体、又はプロピレンを主体とし、それに共重合可能なコモノマー、例えばエチレンを、1~20重量%、好ましくは3~10重量%の割合で共重合させた共重合体が好適に用いられる。
Typical examples of chain polyolefin resin are polyethylene resin and polypropylene resin. Among them, a homopolymer of propylene, or a copolymer obtained by copolymerizing propylene as a main component and a comonomer copolymerizable therewith, for example, ethylene in a proportion of 1 to 20% by weight, preferably 3 to 10% by weight. Preferably used.
ポリプロピレン系樹脂は、脂環族飽和炭化水素樹脂を含有してもよい。脂環族飽和炭化水素樹脂を含有させることにより、位相差値が制御しやすくなる。脂環族飽和炭化水素樹脂の含有量は、ポリプロピレン系樹脂に対して0.1~30重量%とするのが有利であり、より好ましい含有量は、3~20重量%である。脂環族飽和炭化水素樹脂の含有量が0.1重量%未満であると、位相差値を制御する効果が十分に得られず、一方でその含有量が30重量%を超えると、保護フィルムから経時的に脂環族飽和炭化水素樹脂のブリードアウトを生じる懸念がある。
The polypropylene resin may contain an alicyclic saturated hydrocarbon resin. By containing the alicyclic saturated hydrocarbon resin, the retardation value can be easily controlled. The content of the alicyclic saturated hydrocarbon resin is advantageously 0.1 to 30% by weight relative to the polypropylene resin, and more preferably 3 to 20% by weight. When the content of the alicyclic saturated hydrocarbon resin is less than 0.1% by weight, the effect of controlling the retardation value cannot be sufficiently obtained, while when the content exceeds 30% by weight, the protective film Therefore, there is a concern that the alicyclic saturated hydrocarbon resin may bleed out over time.
アクリル系樹脂は、典型的には、メタクリル酸メチル単位を50重量%以上含む重合体である。メタクリル酸メチル単位の含有量は、好ましくは70重量%以上であり、100重量%であってもよい。
The acrylic resin is typically a polymer containing 50% by weight or more of methyl methacrylate units. The content of methyl methacrylate units is preferably 70% by weight or more, and may be 100% by weight.
以上のような樹脂からフィルムに製膜する方法は、それぞれの樹脂に応じた方法を適宜選択すればよく、例えば、先に述べた溶剤キャスト法、溶融押出法などが採用できる。なかでもポリオレフィン系樹脂やアクリル系樹脂に対しては、生産性の観点から溶融押出法が好ましく採用される。一方、セルロース系樹脂は溶剤キャスト法によって製膜されるのが一般的である。
As a method for forming a film from the resin as described above, a method corresponding to each resin may be appropriately selected. For example, the above-described solvent casting method, melt extrusion method, or the like can be employed. Among these, for polyolefin resins and acrylic resins, the melt extrusion method is preferably employed from the viewpoint of productivity. On the other hand, a cellulose resin is generally formed into a film by a solvent casting method.
液晶セルが横電解(IPS:In-Plane Switching)モードである場合、そのIPSモード液晶セルが本来有する広視野角特性を損なわないために、第2の保護フィルム12Bは、厚み方向の位相差値Rthが-10~10nmの範囲にあることが好ましい。厚み方向の位相差値Rthは、面内の平均屈折率から厚み方向の屈折率を差し引いた値にフィルムの厚みを乗じて得られる値であって、下記式(a)で定義される。また、面内の位相差値Reは、面内の屈折率差にフィルムの厚みを乗じて得られる値であって、下記式(b)で定義される。
Rth=〔(nx+ny)/2-nz〕×d (a)
Re=(nx-ny)×d (b) When the liquid crystal cell is in an in-plane switching (IPS) mode, the second protective film 12B has a thickness direction retardation value so as not to impair the wide viewing angle characteristics inherent in the IPS mode liquid crystal cell. Rth is preferably in the range of −10 to 10 nm. The retardation value Rth in the thickness direction is a value obtained by multiplying the value obtained by subtracting the refractive index in the thickness direction from the in-plane average refractive index, and is defined by the following formula (a). The in-plane retardation value Re is a value obtained by multiplying the in-plane refractive index difference by the film thickness, and is defined by the following formula (b).
Rth = [(n x + ny ) / 2−n z ] × d (a)
Re = (n x −n y ) × d (b)
Rth=〔(nx+ny)/2-nz〕×d (a)
Re=(nx-ny)×d (b) When the liquid crystal cell is in an in-plane switching (IPS) mode, the second protective film 12B has a thickness direction retardation value so as not to impair the wide viewing angle characteristics inherent in the IPS mode liquid crystal cell. Rth is preferably in the range of −10 to 10 nm. The retardation value Rth in the thickness direction is a value obtained by multiplying the value obtained by subtracting the refractive index in the thickness direction from the in-plane average refractive index, and is defined by the following formula (a). The in-plane retardation value Re is a value obtained by multiplying the in-plane refractive index difference by the film thickness, and is defined by the following formula (b).
Rth = [(n x + ny ) / 2−n z ] × d (a)
Re = (n x −n y ) × d (b)
式中、nxはフィルム面内のx軸方向(面内遅相軸方向)の屈折率であり、nyはフィルム面内のy軸方向(面内進相軸方向であって、面内でx軸に直交する方向)の屈折率であり、nz はフィルム面に垂直なz軸方向(厚み方向)の屈折率であり、そしてdはフィルムの厚さである。
Wherein, n x is a refractive index in x-axis direction in the film plane (in-plane slow axis direction), n y is a y-axis direction (in-plane fast axis direction in the film plane, the plane In the direction perpendicular to the x-axis), nz is the refractive index in the z-axis direction (thickness direction) perpendicular to the film surface, and d is the thickness of the film.
ここで、位相差値は、可視光の中心付近である500~650nm程度の範囲で任意の波長における値でありうるが、本明細書では波長590nmにおける位相差値を標準とする。厚み方向の位相差値Rth及び面内の位相差値Reは、市販の各種位相差計を用いて測定することができる。
Here, the phase difference value can be a value at an arbitrary wavelength in the range of about 500 to 650 nm near the center of visible light, but in this specification, the phase difference value at a wavelength of 590 nm is used as a standard. The retardation value Rth in the thickness direction and the in-plane retardation value Re can be measured using various commercially available retardation meters.
樹脂フィルムの厚み方向の位相差値Rthを-10~10nmの範囲内に制御する方法としては、フィルムを作製するときに、厚み方向に残留するゆがみを極力小さくする方法が挙げられる。例えば、上記溶剤キャスト法においては、その流延樹脂溶液を乾燥するときに生じる厚み方向の残留収縮歪みを、熱処理によって緩和させる方法などが採用できる。一方、上記溶融押出法においては、樹脂フィルムをダイから押し出し、冷却するまでの間に延伸されることを防ぐため、ダイから冷却ドラムまでの距離を極力縮めるとともに、押出し量と冷却ドラムの回転速度をフィルムが延伸されないよう制御する方法などが採用できる。また、溶剤キャスト法と同様に、得られたフィルムに残留する歪みを熱処理によって緩和させる方法も採用できる。
As a method for controlling the retardation value Rth in the thickness direction of the resin film within the range of −10 to 10 nm, there is a method of minimizing the distortion remaining in the thickness direction when the film is produced. For example, in the solvent casting method, a method of relaxing residual shrinkage strain in the thickness direction generated when the cast resin solution is dried by heat treatment can be employed. On the other hand, in the melt extrusion method, the distance from the die to the cooling drum is reduced as much as possible in order to prevent the resin film from being drawn from the die and cooled, and the extrusion amount and the rotation speed of the cooling drum are reduced. A method of controlling the film so that the film is not stretched can be employed. Moreover, the method of relieving the distortion which remains in the obtained film by heat processing similarly to the solvent casting method is also employable.
[第3の保護フィルム15]
第3の保護フィルム15には、第1の保護フィルム12Aと同様の樹脂フィルムを使用できる。第3の保護フィルム15は、第1の保護フィルム12Aと同じフィルムであってもよいし、異なるフィルムであってもよい。第3の保護フィルム15としては、位相差値の制御が容易で、入手も容易であることから、セルロース系樹脂が好ましい。セルロース系樹脂フィルムとしては、第1の保護フィルム12Aと同様のものを用いることができる。 [Third protective film 15]
As the third protective film 15, a resin film similar to the first protective film 12A can be used. The third protective film 15 may be the same film as the first protective film 12A or may be a different film. As the 3rd protective film 15, since control of a phase difference value is easy and acquisition is also easy, a cellulose resin is preferable. As the cellulose resin film, the same film as the first protective film 12A can be used.
第3の保護フィルム15には、第1の保護フィルム12Aと同様の樹脂フィルムを使用できる。第3の保護フィルム15は、第1の保護フィルム12Aと同じフィルムであってもよいし、異なるフィルムであってもよい。第3の保護フィルム15としては、位相差値の制御が容易で、入手も容易であることから、セルロース系樹脂が好ましい。セルロース系樹脂フィルムとしては、第1の保護フィルム12Aと同様のものを用いることができる。 [Third protective film 15]
As the third protective film 15, a resin film similar to the first protective film 12A can be used. The third protective film 15 may be the same film as the first protective film 12A or may be a different film. As the 3rd protective film 15, since control of a phase difference value is easy and acquisition is also easy, a cellulose resin is preferable. As the cellulose resin film, the same film as the first protective film 12A can be used.
第3の保護フィルム15による偏光解消による複合偏光板の偏光度低下を抑制するために、第3の保護フィルム15は、波長590nmにおける面内の位相差値Re(590)が10nm以下であり、波長590nmにおける厚み方向の位相差値Rth(590)の絶対値が10nm以下であることが好ましい。
In order to suppress a decrease in the degree of polarization of the composite polarizing plate due to depolarization by the third protective film 15, the third protective film 15 has an in-plane retardation value Re (590) of 10 nm or less at a wavelength of 590 nm, The absolute value of the thickness direction retardation value Rth (590) at a wavelength of 590 nm is preferably 10 nm or less.
第3の保護フィルムの厚み方向の位相差値Rthを10nm以下の範囲内に制御する方法としては、第2の保護フィルムと同様の手法を用いればよい。
As a method for controlling the retardation value Rth in the thickness direction of the third protective film within a range of 10 nm or less, a method similar to that for the second protective film may be used.
[偏光フィルムと保護フィルムとの貼合]
第1の偏光フィルム11Aと第1の保護フィルム12Aとの貼合、第2の偏光フィルム11Bと第2の保護フィルム12Bとの貼合、及び第1の偏光フィルム11Aと第3の保護フィルム15もしくは第2の偏光フィルム11Bと第3の保護フィルム15との貼合は、接着剤又は粘着剤によりおこなうことができる。
本明細書において、第1の偏光フィルム11Aと第2の偏光フィルム11Bとを総称して単に偏光フィルムといい、第1の保護フィルム12Aと第2の保護フィルム12Bと第3の保護フィルム15とを総称して単に保護フィルムということがある。
偏光フィルムと保護フィルムとを貼合する接着剤層は、その厚さを0.01~30μm程度とすることができ、好ましくは0.01~10μm、さらに好ましくは0.05~5μmである。接着剤層の厚さがこの範囲にあれば、積層される保護フィルムと偏光フィルムとの間に浮きや剥がれを生じず、実用上問題のない接着力が得られる。偏光フィルムと保護フィルムとを貼合する粘着剤層は、その厚さを5~50μm程度とすることができ、好ましくは5~30μm、さらに好ましくは10~25μmである。 [Bonding of polarizing film and protective film]
Bonding of the first polarizing film 11A and the first protective film 12A, bonding of the second polarizing film 11B and the second protective film 12B, and the first polarizing film 11A and the third protective film 15 Or bonding with the 2nd polarizing film 11B and the 3rd protective film 15 can be performed with an adhesive agent or an adhesive.
In this specification, the first polarizing film 11A and the second polarizing film 11B are collectively referred to as a polarizing film, and the first protective film 12A, the second protective film 12B, and the third protective film 15 Are sometimes simply referred to as protective films.
The adhesive layer for bonding the polarizing film and the protective film can have a thickness of about 0.01 to 30 μm, preferably 0.01 to 10 μm, more preferably 0.05 to 5 μm. If the thickness of the adhesive layer is within this range, the protective film and the polarizing film to be laminated do not float or peel off, and an adhesive force having no practical problem can be obtained. The pressure-sensitive adhesive layer for bonding the polarizing film and the protective film can have a thickness of about 5 to 50 μm, preferably 5 to 30 μm, more preferably 10 to 25 μm.
第1の偏光フィルム11Aと第1の保護フィルム12Aとの貼合、第2の偏光フィルム11Bと第2の保護フィルム12Bとの貼合、及び第1の偏光フィルム11Aと第3の保護フィルム15もしくは第2の偏光フィルム11Bと第3の保護フィルム15との貼合は、接着剤又は粘着剤によりおこなうことができる。
本明細書において、第1の偏光フィルム11Aと第2の偏光フィルム11Bとを総称して単に偏光フィルムといい、第1の保護フィルム12Aと第2の保護フィルム12Bと第3の保護フィルム15とを総称して単に保護フィルムということがある。
偏光フィルムと保護フィルムとを貼合する接着剤層は、その厚さを0.01~30μm程度とすることができ、好ましくは0.01~10μm、さらに好ましくは0.05~5μmである。接着剤層の厚さがこの範囲にあれば、積層される保護フィルムと偏光フィルムとの間に浮きや剥がれを生じず、実用上問題のない接着力が得られる。偏光フィルムと保護フィルムとを貼合する粘着剤層は、その厚さを5~50μm程度とすることができ、好ましくは5~30μm、さらに好ましくは10~25μmである。 [Bonding of polarizing film and protective film]
Bonding of the first polarizing film 11A and the first protective film 12A, bonding of the second polarizing film 11B and the second protective film 12B, and the first polarizing film 11A and the third protective film 15 Or bonding with the 2nd polarizing film 11B and the 3rd protective film 15 can be performed with an adhesive agent or an adhesive.
In this specification, the first polarizing film 11A and the second polarizing film 11B are collectively referred to as a polarizing film, and the first protective film 12A, the second protective film 12B, and the third protective film 15 Are sometimes simply referred to as protective films.
The adhesive layer for bonding the polarizing film and the protective film can have a thickness of about 0.01 to 30 μm, preferably 0.01 to 10 μm, more preferably 0.05 to 5 μm. If the thickness of the adhesive layer is within this range, the protective film and the polarizing film to be laminated do not float or peel off, and an adhesive force having no practical problem can be obtained. The pressure-sensitive adhesive layer for bonding the polarizing film and the protective film can have a thickness of about 5 to 50 μm, preferably 5 to 30 μm, more preferably 10 to 25 μm.
接着剤層の形成には、被着体の種類や目的に応じて、適宜、適切な接着剤を用いることができ、また必要に応じてアンカーコート剤を用いることもできる。接着剤として、例えば、溶剤型接着剤、エマルジョン型接着剤、感圧性接着剤、再湿性接着剤、重縮合型接着剤、無溶剤型接着剤、フィルム状接着剤、ホットメルト型接着剤などが挙げられる。
In forming the adhesive layer, an appropriate adhesive can be used as appropriate according to the type and purpose of the adherend, and an anchor coating agent can be used as necessary. Examples of the adhesive include a solvent-type adhesive, an emulsion-type adhesive, a pressure-sensitive adhesive, a rewet-adhesive, a polycondensation-type adhesive, a solventless-type adhesive, a film-type adhesive, and a hot-melt-type adhesive. Can be mentioned.
好ましい接着剤の一つとして、水系接着剤、すなわち、接着剤成分が水に溶解又は分散しているものを挙げることができる。水に溶解可能な接着剤成分の例を挙げると、ポリビニルアルコール系樹脂がある。また、水に分散可能な接着剤成分の例を挙げると、親水基を有するウレタン系樹脂がある。水系接着剤は、このような接着剤成分を、必要に応じて配合される追加の添加剤とともに、水に混合して調製することができる。水系接着剤となりうる市販のポリビニルアルコール系樹脂の例を挙げると、株式会社クラレから販売されているカルボキシル基変性ポリビニルアルコールである“KL-318”などがある。
As one of preferable adhesives, there can be mentioned an aqueous adhesive, that is, an adhesive component in which the adhesive component is dissolved or dispersed in water. Examples of adhesive components that can be dissolved in water include polyvinyl alcohol resins. An example of an adhesive component that can be dispersed in water is a urethane resin having a hydrophilic group. The water-based adhesive can be prepared by mixing such an adhesive component with water together with an additional additive added as necessary. Examples of commercially available polyvinyl alcohol resins that can be used as water-based adhesives include “KL-318”, which is a carboxyl group-modified polyvinyl alcohol sold by Kuraray Co., Ltd.
水系接着剤は、必要に応じて架橋剤を含有することができる。架橋剤の例を挙げると、アミン化合物、アルデヒド化合物、メチロール化合物、水溶性エポキシ樹脂、イソシアネート化合物、多価金属塩などがある。ポリビニルアルコール系樹脂を接着剤成分とする場合は、グリオキザールをはじめとするアルデヒド化合物、メチロールメラミンをはじめとするメチロール化合物、水溶性エポキシ樹脂などが、架橋剤として好ましく用いられる。ここで水溶性エポキシ樹脂は、例えば、ジエチレントリアミンやトリエチレンテトラミンのようなポリアルキレンポリアミンとアジピン酸のようなジカルボン酸との反応物であるポリアミドポリアミンに、エピクロロヒドリンを反応させて得られるポリアミドエポキシ樹脂であることができる。水溶性エポキシ樹脂の市販品の例を挙げると、田岡化学工業株式会社から販売されている“スミレーズレジン(登録商標) 650(30)”などがある。
The water-based adhesive can contain a crosslinking agent as necessary. Examples of the crosslinking agent include amine compounds, aldehyde compounds, methylol compounds, water-soluble epoxy resins, isocyanate compounds, and polyvalent metal salts. When a polyvinyl alcohol resin is used as an adhesive component, an aldehyde compound such as glyoxal, a methylol compound such as methylol melamine, a water-soluble epoxy resin, or the like is preferably used as a crosslinking agent. Here, the water-soluble epoxy resin is, for example, a polyamide obtained by reacting epichlorohydrin with a polyamide polyamine which is a reaction product of a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine and a dicarboxylic acid such as adipic acid. It can be an epoxy resin. Examples of commercially available water-soluble epoxy resins include “Smilease Resin (registered trademark) 650 (30)” sold by Taoka Chemical Co., Ltd.
偏光フィルム及び/又はそこに貼合される保護フィルムの接着面に、水系接着剤を塗布し、両者を貼り合わせた後、乾燥処理を施すことにより、偏光板を得ることができる。接着に先立って、保護フィルムには、ケン化処理、コロナ放電処理、プラズマ処理、又はプライマー処理のような易接着処理を施し、濡れ性を高めておくことも有効である。乾燥温度は、例えば50~100℃程度とすることができる。乾燥処理後、室温よりもやや高い温度、例えば30~50℃程度の温度で1~10日間程度養生することは、接着力を一層高めるうえで好ましい。
A polarizing plate can be obtained by applying a water-based adhesive to the adhesive surface of the polarizing film and / or the protective film to be bonded thereto, and bonding them together, followed by drying treatment. Prior to adhesion, it is also effective to subject the protective film to easy adhesion treatment such as saponification treatment, corona discharge treatment, plasma treatment, or primer treatment to enhance wettability. The drying temperature can be about 50 to 100 ° C., for example. After drying treatment, curing at a temperature slightly higher than room temperature, for example, at a temperature of about 30 to 50 ° C. for about 1 to 10 days is preferable in order to further increase the adhesive strength.
もう一つの好ましい接着剤として、活性エネルギー線の照射又は加熱により硬化するエポキシ化合物を含有する硬化性接着剤組成物が挙げられる。ここで硬化性のエポキシ化合物は、分子内に少なくとも2個のエポキシ基を有するものである。この場合、偏光フィルムと保護フィルムとの接着は、当該接着剤組成物の塗布層に対して、活性エネルギー線を照射するか、又は熱を付与し、接着剤に含有される硬化性のエポキシ化合物を硬化させる方法により行うことができる。エポキシ化合物の硬化は、一般に、エポキシ化合物のカチオン重合により行われる。また生産性の観点から、この硬化は活性エネルギー線の照射により行うことが好ましい。
Another preferable adhesive is a curable adhesive composition containing an epoxy compound that is cured by irradiation with active energy rays or heating. Here, the curable epoxy compound has at least two epoxy groups in the molecule. In this case, the adhesive between the polarizing film and the protective film is performed by irradiating the applied layer of the adhesive composition with an active energy ray or applying heat to the adhesive composition, and a curable epoxy compound contained in the adhesive. It can carry out by the method of hardening. Curing of the epoxy compound is generally performed by cationic polymerization of the epoxy compound. Further, from the viewpoint of productivity, this curing is preferably performed by irradiation with active energy rays.
耐候性、屈折率、カチオン重合性などの観点から、硬化性接着剤組成物に含有されるエポキシ化合物は、分子内に芳香環を含まないものであることが好ましい。分子内に芳香環を含まないエポキシ化合物として、水素化エポキシ化合物、脂環式エポキシ化合物、脂肪族エポキシ化合物などが例示できる。このような硬化性接着剤組成物に好適に用いられるエポキシ化合物は、例えば、特開2004-245925号公報で詳細に説明されているが、ここでも概略を説明することとする。
From the viewpoint of weather resistance, refractive index, cationic polymerizability, etc., the epoxy compound contained in the curable adhesive composition is preferably one that does not contain an aromatic ring in the molecule. Examples of epoxy compounds that do not contain an aromatic ring in the molecule include hydrogenated epoxy compounds, alicyclic epoxy compounds, and aliphatic epoxy compounds. An epoxy compound suitably used for such a curable adhesive composition is described in detail in, for example, Japanese Patent Application Laid-Open No. 2004-245925, but the outline is also described here.
水素化エポキシ化合物は、芳香族エポキシ化合物の原料である芳香族ポリヒドロキシ化合物に触媒の存在下及び加圧下で選択的に核水素化反応を行うことにより得られる核水添ポリヒドロキシ化合物を、グリシジルエーテル化したものであることができる。芳香族エポキシ化合物の原料である芳香族ポリヒドロキシ化合物としては、例えば、ビスフェノールA、ビスフェールF、及びビスフェノールSのようなビスフェノール類;フェノールノボラック樹脂、クレゾールノボラック樹脂、及びヒドロキシベンズアルデヒドフェノールノボラック樹脂のようなノボラック型の樹脂;テトラヒドロキシジフェニルメタン、テトラヒドロキシベンゾフェノン、及びポリビニルフェノールのような多官能型の化合物などが挙げられる。このような芳香族ポリヒドロキシ化合物に核水素化反応を行い、得られる核水添ポリヒドロキシ化合物にエピクロロヒドリンを反応させることにより、グリシジルエーテル化することができる。好適な水素化エポキシ化合物として、水素化されたビスフェノールAのグリシジルエーテルが挙げられる。
The hydrogenated epoxy compound is a glycidyl compound obtained by subjecting an aromatic polyhydroxy compound, which is a raw material of an aromatic epoxy compound, to a nuclear hydrogenated polyhydroxy compound obtained by selectively performing a nuclear hydrogenation reaction in the presence of a catalyst and under pressure. It can be etherified. Examples of the aromatic polyhydroxy compound that is a raw material of the aromatic epoxy compound include bisphenols such as bisphenol A, bisphenol F, and bisphenol S; phenol novolac resin, cresol novolac resin, and hydroxybenzaldehyde phenol novolac resin And novolak type resins; polyhydroxy compounds such as tetrahydroxydiphenylmethane, tetrahydroxybenzophenone, and polyvinylphenol. A glycidyl ether can be obtained by performing a nuclear hydrogenation reaction on such an aromatic polyhydroxy compound and reacting the resulting hydrogenated polyhydroxy compound with epichlorohydrin. Suitable hydrogenated epoxy compounds include hydrogenated glycidyl ether of bisphenol A.
脂環式エポキシ化合物は、脂環式環に結合したエポキシ基を分子内に少なくとも1個有する化合物である。「脂環式環に結合したエポキシ基」とは、次式に示される構造における橋かけの酸素原子-O-を意味し、この式中、mは2~5の整数である。
The alicyclic epoxy compound is a compound having at least one epoxy group bonded to the alicyclic ring in the molecule. The “epoxy group bonded to the alicyclic ring” means a bridged oxygen atom —O— in the structure represented by the following formula, wherein m is an integer of 2 to 5.
この式における(CH2)m中の水素原子を1個又は複数個取り除いた形の基が他の化学構造に結合している化合物が、脂環式エポキシ化合物となりうる。また、脂環式環を形成する(CH2)m中の1個又は複数個の水素原子は、メチル基やエチル基のような直鎖状アルキル基で適宜置換されていてもよい。脂環式エポキシ化合物のなかでも、オキサビシクロヘキサン環(上式においてm=3のもの)や、オキサビシクロヘプタン環(上式においてm=4のもの)を有するエポキシ化合物は、優れた接着性を示すことから好ましく用いられる。以下に、脂環式エポキシ化合物の具体的な例を掲げる。ここでは、まず化合物名を挙げ、その後、それぞれに対応する化学式を示すこととし、化合物名とそれに対応する化学式には同じ符号を付す。
A compound in which one or a plurality of hydrogen atoms in (CH 2 ) m in this formula are bonded to another chemical structure can be an alicyclic epoxy compound. One or more hydrogen atoms in (CH 2 ) m forming the alicyclic ring may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group. Among alicyclic epoxy compounds, an epoxy compound having an oxabicyclohexane ring (m = 3 in the above formula) or an oxabicycloheptane ring (m = 4 in the above formula) has excellent adhesion. It is preferably used from the indication. Specific examples of the alicyclic epoxy compound are listed below. Here, the compound names are given first, and then the chemical formulas corresponding to each are shown, and the same reference numerals are given to the compound names and the chemical formulas corresponding thereto.
A:3,4-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、
B:3,4-エポキシ-6-メチルシクロヘキシルメチル 3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、
C:エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、
D:ビス(3,4-エポキシシクロヘキシルメチル) アジペート、
E:ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル) アジペート、
F:ジエチレングリコールビス(3,4-エポキシシクロヘキシルメチルエーテル)、
G:エチレングリコールビス(3,4-エポキシシクロヘキシルメチルエーテル)、
H:2,3,14,15-ジエポキシ-7,11,18,21-テトラオキサトリスピロ[5.2.2.5.2.2]ヘンイコサン、
I:3-(3,4-エポキシシクロヘキシル)-8,9-エポキシ-1,5-ジオキサスピロ[5.5]ウンデカン、
J:4-ビニルシクロヘキセンジオキサイド、
K:リモネンジオキサイド、
L:ビス(2,3-エポキシシクロペンチル)エーテル、
M:ジシクロペンタジエンジオキサイドなど。 A: 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate,
B: 3,4-epoxy-6-methylcyclohexylmethyl 3,4-epoxy-6-methylcyclohexanecarboxylate,
C: ethylene bis (3,4-epoxycyclohexanecarboxylate),
D: Bis (3,4-epoxycyclohexylmethyl) adipate,
E: bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate,
F: Diethylene glycol bis (3,4-epoxycyclohexyl methyl ether),
G: ethylene glycol bis (3,4-epoxycyclohexyl methyl ether),
H: 2,3,14,15-diepoxy-7,11,18,21-tetraoxatrispiro [5.2.2.5.2.2] henicosane,
I: 3- (3,4-epoxycyclohexyl) -8,9-epoxy-1,5-dioxaspiro [5.5] undecane,
J: 4-vinylcyclohexene dioxide
K: Limonene dioxide
L: bis (2,3-epoxycyclopentyl) ether,
M: Dicyclopentadiene dioxide and the like.
B:3,4-エポキシ-6-メチルシクロヘキシルメチル 3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、
C:エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、
D:ビス(3,4-エポキシシクロヘキシルメチル) アジペート、
E:ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル) アジペート、
F:ジエチレングリコールビス(3,4-エポキシシクロヘキシルメチルエーテル)、
G:エチレングリコールビス(3,4-エポキシシクロヘキシルメチルエーテル)、
H:2,3,14,15-ジエポキシ-7,11,18,21-テトラオキサトリスピロ[5.2.2.5.2.2]ヘンイコサン、
I:3-(3,4-エポキシシクロヘキシル)-8,9-エポキシ-1,5-ジオキサスピロ[5.5]ウンデカン、
J:4-ビニルシクロヘキセンジオキサイド、
K:リモネンジオキサイド、
L:ビス(2,3-エポキシシクロペンチル)エーテル、
M:ジシクロペンタジエンジオキサイドなど。 A: 3,4-
B: 3,4-epoxy-6-
C: ethylene bis (3,4-epoxycyclohexanecarboxylate),
D: Bis (3,4-epoxycyclohexylmethyl) adipate,
E: bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate,
F: Diethylene glycol bis (3,4-epoxycyclohexyl methyl ether),
G: ethylene glycol bis (3,4-epoxycyclohexyl methyl ether),
H: 2,3,14,15-diepoxy-7,11,18,21-tetraoxatrispiro [5.2.2.5.2.2] henicosane,
I: 3- (3,4-epoxycyclohexyl) -8,9-epoxy-1,5-dioxaspiro [5.5] undecane,
J: 4-vinylcyclohexene dioxide
K: Limonene dioxide
L: bis (2,3-epoxycyclopentyl) ether,
M: Dicyclopentadiene dioxide and the like.
脂肪族エポキシ化合物は、脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテルであることができる。より具体的には、プロピレングリコールのジグリシジルエーテル;1,4-ブタンジオールのジグリシジルエーテル;1,6-ヘキサンジオールのジグリシジルエーテル;グリセリンのトリグリシジルエーテル;トリメチロールプロパンのトリグリシジルエーテル;エチレングリコール、プロピレングリコール、及びグリセリンのような脂肪族多価アルコールにアルキレンオキサイド(エチレンオキサイドやプロピレンオキサイド)を付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル(例えばポリエチレングリコールのジグリシジルエーテル)などが挙げられる。
The aliphatic epoxy compound can be an aliphatic polyhydric alcohol or a polyglycidyl ether of an alkylene oxide adduct thereof. More specifically, diglycidyl ether of propylene glycol; diglycidyl ether of 1,4-butanediol; diglycidyl ether of 1,6-hexanediol; triglycidyl ether of glycerin; triglycidyl ether of trimethylolpropane; ethylene Polyglycidyl ether of polyether polyol (for example, diglycidyl ether of polyethylene glycol) obtained by adding alkylene oxide (ethylene oxide or propylene oxide) to aliphatic polyhydric alcohol such as glycol, propylene glycol, and glycerin Can be mentioned.
硬化性接着剤組成物において、エポキシ化合物は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。なかでもこのエポキシ化合物は、脂環式環に結合したエポキシ基を分子内に少なくとも1個有する脂環式エポキシ化合物を含むことが好ましい。
In the curable adhesive composition, the epoxy compound may be used alone or in combination of two or more. Among these, the epoxy compound preferably includes an alicyclic epoxy compound having at least one epoxy group bonded to the alicyclic ring in the molecule.
硬化性接着剤組成物に用いられるエポキシ化合物は、通常30~3,000g/当量の範囲内のエポキシ当量を有し、このエポキシ当量は好ましくは50~1,500g/当量の範囲である。エポキシ当量が30g/当量を下回るエポキシ化合物を用いた場合には、硬化後の偏光板の可撓性が低下したり、接着強度が低下したりする可能性がある。一方、3,000g/当量を超えるエポキシ当量を有する化合物では、接着剤組成物に含有される他の成分との相溶性が低下する可能性がある。
The epoxy compound used in the curable adhesive composition usually has an epoxy equivalent in the range of 30 to 3,000 g / equivalent, and this epoxy equivalent is preferably in the range of 50 to 1,500 g / equivalent. When an epoxy compound having an epoxy equivalent of less than 30 g / equivalent is used, there is a possibility that the flexibility of the polarizing plate after curing is lowered or the adhesive strength is lowered. On the other hand, in a compound having an epoxy equivalent exceeding 3,000 g / equivalent, compatibility with other components contained in the adhesive composition may be reduced.
反応性の観点から、エポキシ化合物の硬化反応としてカチオン重合が好ましく用いられる。そのためには、エポキシ化合物を含む硬化性接着剤組成物には、カチオン重合開始剤を配合するのが好ましい。カチオン重合開始剤は、可視光線、紫外線、X線、及び電子線のような活性エネルギー線の照射又は加熱によって、カチオン種又はルイス酸を発生し、エポキシ基の重合反応を開始させる。作業性の観点から、カチオン重合開始剤には潜在性が付与されていることが好ましい。以下、活性エネルギー線の照射によってカチオン種又はルイス酸を発生し、エポキシ基の重合反応を開始させるカチオン重合開始剤を「光カチオン重合開始剤」といい、熱によってカチオン種又はルイス酸を発生し、エポキシ基の重合反応を開始させるカチオン重合開始剤を「熱カチオン重合開始剤」という。
From the viewpoint of reactivity, cationic polymerization is preferably used as the curing reaction of the epoxy compound. For that purpose, it is preferable to mix | blend a cationic polymerization initiator with the curable adhesive composition containing an epoxy compound. The cationic polymerization initiator generates a cationic species or a Lewis acid by irradiation or heating with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates an epoxy group polymerization reaction. From the viewpoint of workability, it is preferable that the cationic polymerization initiator is provided with latency. Hereinafter, a cationic polymerization initiator that generates a cationic species or Lewis acid by irradiation of active energy rays and initiates a polymerization reaction of an epoxy group is referred to as a “photo cationic polymerization initiator”, and generates a cationic species or a Lewis acid by heat. The cationic polymerization initiator that initiates the polymerization reaction of the epoxy group is referred to as “thermal cationic polymerization initiator”.
光カチオン重合開始剤を用い、活性エネルギー線の照射により接着剤組成物の硬化を行う方法は、常温常湿での硬化が可能となり、偏光フィルムの耐熱性又は膨張による歪を考慮する必要が減少し、保護フィルムと偏光フィルムとを良好に接着できる点において有利である。また、光カチオン重合開始剤は、光で触媒的に作用するため、エポキシ化合物に混合しても保存安定性や作業性に優れる。
The method of curing the adhesive composition by irradiation with active energy rays using a cationic photopolymerization initiator enables curing at normal temperature and humidity, reducing the need to consider the distortion due to heat resistance or expansion of the polarizing film. And it is advantageous in that the protective film and the polarizing film can be satisfactorily bonded. In addition, since the cationic photopolymerization initiator acts catalytically by light, it is excellent in storage stability and workability even when mixed with an epoxy compound.
光カチオン重合開始剤としては、例えば、芳香族ジアゾニウム塩;芳香族ヨードニウム塩や芳香族スルホニウム塩のようなオニウム塩、鉄-アレン錯体などを挙げることができる。光カチオン重合開始剤の配合量は、エポキシ化合物100重量部に対し、通常0.5~20重量部であり、好ましくは1重量部以上、また好ましくは15重量部以下である。光カチオン重合開始剤の配合量が、エポキシ化合物100重量部に対して0.5重量部を下回ると、硬化が不十分になり、硬化物の機械的強度や接着強度が低下する傾向にある。一方、光カチオン重合開始剤の配合量が、エポキシ化合物100重量部に対して20重量部を超えると、硬化物中のイオン性物質が増加することで硬化物の吸湿性が高くなり、耐久性能が低下する可能性がある。
Examples of the photocationic polymerization initiator include aromatic diazonium salts; onium salts such as aromatic iodonium salts and aromatic sulfonium salts, and iron-allene complexes. The compounding amount of the photocationic polymerization initiator is usually 0.5 to 20 parts by weight, preferably 1 part by weight or more and preferably 15 parts by weight or less based on 100 parts by weight of the epoxy compound. If the amount of the cationic photopolymerization initiator is less than 0.5 parts by weight based on 100 parts by weight of the epoxy compound, the curing becomes insufficient, and the mechanical strength and adhesive strength of the cured product tend to be reduced. On the other hand, when the blending amount of the cationic photopolymerization initiator exceeds 20 parts by weight with respect to 100 parts by weight of the epoxy compound, the ionic substance in the cured product increases, resulting in an increase in the hygroscopic property of the cured product and durability performance May be reduced.
光カチオン重合開始剤を用いる場合、硬化性接着剤組成物は、必要に応じてさらに光増感剤を含有することができる。光増感剤を用いることで、カチオン重合の反応性を向上させ、硬化物の機械的強度や接着強度を向上させることができる。光増感剤としては、例えば、カルボニル化合物、有機硫黄化合物、過硫化物、レドックス系化合物、アゾ化合物、ジアゾ化合物、ハロゲン化合物、光還元性色素などが挙げられる。光増感剤を配合する場合、その量は、硬化性接着剤組成物100重量部に対して0.1~20重量部の範囲内とすることが好ましい。また、硬化速度向上のために、ナフトキノン誘導体のような増感助剤を用いてもよい。
When using a photocationic polymerization initiator, the curable adhesive composition may further contain a photosensitizer as necessary. By using a photosensitizer, the reactivity of cationic polymerization can be improved, and the mechanical strength and adhesive strength of the cured product can be improved. Examples of the photosensitizer include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo compounds, diazo compounds, halogen compounds, and photoreducible dyes. When a photosensitizer is blended, the amount is preferably in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the curable adhesive composition. Further, a sensitizing aid such as a naphthoquinone derivative may be used for improving the curing rate.
一方、熱カチオン重合開始剤としては、ベンジルスルホニウム塩、チオフェニウム塩、チオラニウム塩、ベンジルアンモニウム、ピリジニウム塩、ヒドラジニウム塩、カルボン酸エステル、スルホン酸エステル、アミンイミドなどを挙げることができる。
On the other hand, examples of the thermal cationic polymerization initiator include benzylsulfonium salt, thiophenium salt, thioranium salt, benzylammonium, pyridinium salt, hydrazinium salt, carboxylic acid ester, sulfonic acid ester, and amine imide.
エポキシ化合物を含有する硬化性接着剤組成物は、先述のとおり光カチオン重合によって硬化させることが好ましいが、上記の熱カチオン重合開始剤を存在させ、熱カチオン重合によって硬化させることもできるし、光カチオン重合と熱カチオン重合を併用することもできる。光カチオン重合と熱カチオン重合を併用する場合、硬化性接着剤組成物には、光カチオン重合開始剤と熱カチオン重合開始剤の両方を含有させることが好ましい。
The curable adhesive composition containing the epoxy compound is preferably cured by photocationic polymerization as described above, but can be cured by thermal cationic polymerization in the presence of the above-mentioned thermal cationic polymerization initiator. Cationic polymerization and thermal cationic polymerization can be used in combination. When photocationic polymerization and thermal cationic polymerization are used in combination, the curable adhesive composition preferably contains both a photocationic polymerization initiator and a thermal cationic polymerization initiator.
また、硬化性接着剤組成物は、オキセタン化合物やポリオール化合物など、カチオン重合を促進させる化合物をさらに含有してもよい。オキセタン化合物は、分子内に4員環エーテルを有する化合物である。オキセタン化合物を配合する場合、その量は、硬化性接着剤組成物中に、通常5~95重量%、好ましくは5~50重量%である。またポリオール化合物は、エチレングリコールやヘキサメチレングリコール、ポリエチレングリコールなどを包含するアルキレングリコール又はそのオリゴマー、ポリエステルポリオール、ポリカプロラクトンポリオール、ポリカーボネートポリオールなどでありうる。ポリオール化合物を配合する場合、その量は、硬化性接着剤組成物中に、通常50重量%以下、好ましくは30重量%以下である。
The curable adhesive composition may further contain a compound that promotes cationic polymerization, such as an oxetane compound or a polyol compound. An oxetane compound is a compound having a 4-membered ring ether in the molecule. When the oxetane compound is blended, the amount thereof is usually 5 to 95% by weight, preferably 5 to 50% by weight in the curable adhesive composition. The polyol compound may be alkylene glycol including ethylene glycol, hexamethylene glycol, polyethylene glycol or the like, or an oligomer thereof, polyester polyol, polycaprolactone polyol, polycarbonate polyol and the like. When a polyol compound is blended, the amount is usually 50% by weight or less, preferably 30% by weight or less in the curable adhesive composition.
さらに、硬化性接着剤組成物は、その接着性を損なわない限り、他の添加剤、例えば、イオントラップ剤、酸化防止剤、連鎖移動剤、増感剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤などを含有することができる。イオントラップ剤としては、例えば、粉末状のビスマス系、アンチモン系、マグネシウム系、アルミニウム系、カルシウム系、チタン系、これらの混合系などを包含する無機化合物が挙げられ、酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤などが挙げられる。
In addition, the curable adhesive composition may have other additives such as ion trapping agents, antioxidants, chain transfer agents, sensitizers, tackifiers, thermoplastic resins, fillers, as long as the adhesiveness is not impaired. Agents, flow modifiers, plasticizers, antifoaming agents, and the like. Examples of the ion trapping agent include inorganic compounds including powdered bismuth-based, antimony-based, magnesium-based, aluminum-based, calcium-based, titanium-based, and mixed systems thereof. Examples of the antioxidant include And hindered phenolic antioxidants.
エポキシ化合物を含有する硬化性接着剤組成物を、偏光フィルム又は保護フィルムの接着面、あるいはこれら双方の接着面に塗工した後、接着剤の塗工された面で貼合し、活性エネルギー線を照射するか又は加熱することにより未硬化の接着剤層を硬化させて、偏光フィルムと保護フィルムとを接着させることができる。接着剤の塗工方法としては、例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーターなど、種々の塗工方式が採用できる。
After applying the curable adhesive composition containing the epoxy compound to the adhesive surface of the polarizing film or the protective film, or to the adhesive surface of both of them, it is pasted on the adhesive-coated surface, and active energy rays. The polarizing film and the protective film can be bonded by curing the uncured adhesive layer by irradiating or heating. As an adhesive coating method, for example, various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be adopted.
この硬化性接着剤組成物は、基本的には、溶剤を実質的に含まない無溶剤型接着剤として用いることができるが、各塗工方式には各々最適な粘度範囲があるため、粘度調整のために溶剤を含有させてもよい。溶剤は、偏光フィルムの光学性能を低下させることなく、エポキシ化合物をはじめとする各成分を良好に溶解する有機溶剤であることが好ましく、例えば、トルエンに代表される炭化水素類、酢酸エチルに代表されるエステル類などを用いることができる。
This curable adhesive composition can basically be used as a solvent-free adhesive that does not substantially contain a solvent, but each coating system has an optimum viscosity range, so that the viscosity is adjusted. For this purpose, a solvent may be contained. The solvent is preferably an organic solvent that dissolves each component including an epoxy compound well without degrading the optical performance of the polarizing film. For example, hydrocarbons typified by toluene, typified by ethyl acetate, etc. Esters can be used.
活性エネルギー線の照射により接着剤組成物の硬化を行う場合、活性エネルギー線としては先述した各種のものを用いることができるが、取扱いが容易で、照射光量などの制御もしやすいことから、紫外線が好ましく用いられる。活性エネルギー線、例えば紫外線の照射強度や照射量は、偏光フィルムの偏光度をはじめとする各種光学性能、及び保護フィルムの透明性や位相差特性をはじめとする各種光学性能に影響を及ぼさない範囲で、適度の生産性が保たれるように適宜決定される。
When the adhesive composition is cured by irradiation with active energy rays, the above-mentioned various types of active energy rays can be used, but since the handling is easy and the amount of irradiation light is easy to control, ultraviolet rays are not emitted. Preferably used. Active energy rays such as ultraviolet irradiation intensity and irradiation dose do not affect various optical performance including polarization degree of polarizing film, and various optical performance including transparency and retardation characteristics of protective film. Therefore, it is determined as appropriate so as to maintain an appropriate productivity.
熱により接着剤組成物の硬化を行う場合は、一般的に知られた方法で加熱することができる。通常は、硬化性接着剤組成物に配合された熱カチオン重合開始剤がカチオン種やルイス酸を発生する温度以上で加熱が行われ、具体的な加熱温度は、例えば50~200℃程度である。
When the adhesive composition is cured by heat, it can be heated by a generally known method. Usually, heating is performed at a temperature higher than the temperature at which the thermal cationic polymerization initiator compounded in the curable adhesive composition generates cationic species and Lewis acid, and the specific heating temperature is, for example, about 50 to 200 ° C. .
[第1の偏光板と第2の偏光板との積層]
第1の偏光板と第2の偏光板との積層には、偏光フィルムと保護フィルムとの貼合に用いた接着剤と同じものが使用できる。もう一つの形態としては、第1の偏光板と第2の偏光板との積層に粘着剤を用いることも好ましい。 [Lamination of first polarizing plate and second polarizing plate]
For the lamination of the first polarizing plate and the second polarizing plate, the same adhesive as that used for bonding the polarizing film and the protective film can be used. As another form, it is also preferable to use an adhesive for lamination of the first polarizing plate and the second polarizing plate.
第1の偏光板と第2の偏光板との積層には、偏光フィルムと保護フィルムとの貼合に用いた接着剤と同じものが使用できる。もう一つの形態としては、第1の偏光板と第2の偏光板との積層に粘着剤を用いることも好ましい。 [Lamination of first polarizing plate and second polarizing plate]
For the lamination of the first polarizing plate and the second polarizing plate, the same adhesive as that used for bonding the polarizing film and the protective film can be used. As another form, it is also preferable to use an adhesive for lamination of the first polarizing plate and the second polarizing plate.
[粘着剤層13]
第1の偏光板と第2の偏光板との積層に用いる粘着剤層13は、光学的な透明性に優れ、適度な濡れ性、凝集性、接着性などを包含する粘着特性に優れるものであればよいが、さらに耐久性などに優れるものが好ましい。具体的には、粘着剤層13を形成する粘着剤として、アクリル系樹脂を含有する粘着剤(アクリル系粘着剤)が好ましい。 [Adhesive layer 13]
The pressure-sensitive adhesive layer 13 used for laminating the first polarizing plate and the second polarizing plate is excellent in optical transparency and excellent in adhesive properties including appropriate wettability, cohesiveness, adhesiveness and the like. Although what is necessary is just, what is further excellent in durability etc. is preferable. Specifically, the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 13 is preferably a pressure-sensitive adhesive containing an acrylic resin (acrylic pressure-sensitive adhesive).
第1の偏光板と第2の偏光板との積層に用いる粘着剤層13は、光学的な透明性に優れ、適度な濡れ性、凝集性、接着性などを包含する粘着特性に優れるものであればよいが、さらに耐久性などに優れるものが好ましい。具体的には、粘着剤層13を形成する粘着剤として、アクリル系樹脂を含有する粘着剤(アクリル系粘着剤)が好ましい。 [Adhesive layer 13]
The pressure-
アクリル系粘着剤に含有されるアクリル系樹脂は、アクリル酸ブチル、アクリル酸エチル、アクリル酸イソオクチル、及びアクリル酸2-エチルヘキシルのようなアクリル酸アルキルエステルを主要なモノマーとする樹脂である。このアクリル系樹脂には通常、極性モノマーが共重合されている。極性モノマーとは、重合性不飽和結合及び極性官能基を有する化合物であり、ここで重合性不飽和結合は、(メタ)アクリロイル基に由来するものとするのが一般的であり、また極性官能基は、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基などでありうる。極性モノマーの具体例を挙げると、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリルアミド、2-N,N-ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレートなどがある。
The acrylic resin contained in the acrylic pressure-sensitive adhesive is a resin mainly composed of alkyl acrylate such as butyl acrylate, ethyl acrylate, isooctyl acrylate, and 2-ethylhexyl acrylate. This acrylic resin is usually copolymerized with a polar monomer. The polar monomer is a compound having a polymerizable unsaturated bond and a polar functional group. Here, the polymerizable unsaturated bond is generally derived from a (meth) acryloyl group, and the polar functional group. The group can be a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group, or the like. Specific examples of polar monomers include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (meth) acrylamide, 2-N, N-dimethylaminoethyl ( Examples include meth) acrylate and glycidyl (meth) acrylate.
またアクリル系粘着剤には、通常、アクリル系樹脂とともに架橋剤が配合されている。架橋剤の代表例として、分子内に少なくとも2個のイソシアナト基(-NCO)を有するイソシアネート化合物を挙げることができる。
Also, the acrylic adhesive usually contains a crosslinking agent together with the acrylic resin. A typical example of the crosslinking agent is an isocyanate compound having at least two isocyanato groups (—NCO) in the molecule.
粘着剤には、さらに各種の添加剤が配合されていてもよい。好適な添加剤として、シランカップリング剤や帯電防止剤などが挙げられる。シランカップリング剤は、ガラスとの接着力を高めるうえで有効である。帯電防止剤は、静電気の発生を低減又は防止するうえで有効である。
Various kinds of additives may be further added to the adhesive. Suitable additives include silane coupling agents and antistatic agents. A silane coupling agent is effective in increasing the adhesive strength with glass. Antistatic agents are effective in reducing or preventing the generation of static electricity.
粘着剤層13は、以上のような粘着剤成分が有機溶剤に溶解してなる粘着剤組成物を調製し、これを接着する2枚の偏光板の貼合面(偏光フィルムもしくは保護フィルム)のいずれかに直接塗布し、溶剤を乾燥除去する方法によって、あるいは、離型処理が施された樹脂フィルムからなる基材フィルムの離型処理面に上記の粘着剤組成物を塗布し、溶剤を乾燥除去して粘着剤層とし、これを2枚の偏光板の貼合面(偏光フィルムもしくは保護フィルム)のいずれかに貼着し、粘着剤層を転写する方法によって、形成できる。前者の直接塗工法によって粘着剤層13を形成した場合は、その表面に離型処理が施された樹脂フィルム(セパレータとも呼ばれる)を貼合し、使用時まで粘着剤層表面を仮着保護するのが通例である。有機溶剤溶液である粘着剤組成物の取扱い性の観点などから、後者の転写法が多く採用されており、この場合は、最初に粘着剤層の形成に用いる離型処理された基材フィルムが、偏光板に貼着した後そのままセパレータとなりうる点からも好都合である。
The pressure-sensitive adhesive layer 13 is prepared by preparing a pressure-sensitive adhesive composition in which the above pressure-sensitive adhesive component is dissolved in an organic solvent, and bonding surfaces (polarizing film or protective film) of two polarizing plates to be bonded to each other. Apply the above-mentioned pressure-sensitive adhesive composition to the release treatment surface of the base film made of a resin film that has been subjected to a release treatment by applying directly to any of the above, or drying the solvent. It can be formed by removing the pressure-sensitive adhesive layer, sticking it to one of the bonding surfaces (polarizing film or protective film) of the two polarizing plates, and transferring the pressure-sensitive adhesive layer. When the pressure-sensitive adhesive layer 13 is formed by the former direct coating method, a resin film (also called a separator) that has been subjected to a release treatment is bonded to the surface, and the pressure-sensitive adhesive layer surface is temporarily protected until use. It is customary. The latter transfer method is often employed from the viewpoint of the handleability of the pressure-sensitive adhesive composition that is an organic solvent solution. In this case, the release-treated base film used for forming the pressure-sensitive adhesive layer first is used. It is also advantageous in that it can be used as a separator after being attached to a polarizing plate.
2枚の偏光板を接着剤や粘着剤を介して積層する前には、貼合される偏光フィルム面及び保護フィルム面や粘着剤面にあらかじめコロナ処理やプラズマ処理などを行うことも有用である。
Prior to laminating the two polarizing plates via an adhesive or pressure-sensitive adhesive, it is also useful to perform corona treatment or plasma treatment on the polarizing film surface, protective film surface, and pressure-sensitive adhesive surface to be bonded in advance. .
[粘着剤層14]
第2の保護フィルム12Bにおける第2の偏光フィルム11Bとの貼合面とは反対側の面に形成される粘着剤層14は、光学的な透明性に優れ、適度な濡れ性、凝集性、接着性などを包含する粘着特性に優れるものであればよいが、さらに耐久性などに優れるものが好ましく用いられる。具体的には、粘着剤層を形成する粘着剤として、アクリル系樹脂を含有する粘着剤(アクリル系粘着剤)が好ましく用いられる。具体的には、前記粘着剤13と同様のものを用いることができる。 [Adhesive layer 14]
The pressure-sensitive adhesive layer 14 formed on the surface of the second protective film 12B opposite to the bonding surface with the second polarizing film 11B is excellent in optical transparency, moderate wettability, cohesiveness, Any material may be used as long as it has excellent adhesive properties including adhesiveness, but materials having excellent durability and the like are preferably used. Specifically, an adhesive containing an acrylic resin (acrylic adhesive) is preferably used as the adhesive forming the adhesive layer. Specifically, the same material as the pressure-sensitive adhesive 13 can be used.
第2の保護フィルム12Bにおける第2の偏光フィルム11Bとの貼合面とは反対側の面に形成される粘着剤層14は、光学的な透明性に優れ、適度な濡れ性、凝集性、接着性などを包含する粘着特性に優れるものであればよいが、さらに耐久性などに優れるものが好ましく用いられる。具体的には、粘着剤層を形成する粘着剤として、アクリル系樹脂を含有する粘着剤(アクリル系粘着剤)が好ましく用いられる。具体的には、前記粘着剤13と同様のものを用いることができる。 [Adhesive layer 14]
The pressure-
粘着剤層14は、粘着剤層13と同様に各種添加剤を含有していてもよい。中でも粘着剤層14は帯電防止剤を含有することが好ましい。一般に、粘着剤層を介して偏光板を液晶セルに貼る際には、それまで粘着剤層を覆って仮着保護していた表面保護フィルム(セパレータ)を剥がしてから液晶セルに貼り合わされるが、その表面保護フィルムを剥がすときに発生する静電気によって、液晶セル内の液晶の配向不良を生じ、この現象が液晶表示装置の表示不良をもたらすことがある。このような静電気の発生を低減又は防止する手段として、粘着剤への帯電防止剤の配合は有効である。
The pressure-sensitive adhesive layer 14 may contain various additives in the same manner as the pressure-sensitive adhesive layer 13. In particular, the pressure-sensitive adhesive layer 14 preferably contains an antistatic agent. In general, when attaching a polarizing plate to a liquid crystal cell via an adhesive layer, the surface protective film (separator) that has been temporarily protected by covering the adhesive layer is peeled off and then attached to the liquid crystal cell. The static electricity generated when the surface protective film is peeled off causes the alignment failure of the liquid crystal in the liquid crystal cell, and this phenomenon may cause the display failure of the liquid crystal display device. As a means for reducing or preventing the generation of static electricity, it is effective to add an antistatic agent to the adhesive.
第2の保護フィルム12Bと粘着剤層14を貼合する際には、第2の保護フィルム12Bと粘着剤層14とを貼りあわせる面に、それぞれコロナ処理、プラズマ処理などを行うことも有用である。
When laminating the second protective film 12B and the pressure-sensitive adhesive layer 14, it is also useful to perform corona treatment, plasma treatment, etc. on the surface where the second protective film 12B and the pressure-sensitive adhesive layer 14 are laminated. is there.
[複合偏光板の製造方法]
本発明の複合偏光板を製造する方法としては、特に制限されないが、例えば、第1の保護フィルム12Aと第1の偏光フィルム11Aとを積層した第1の偏光板A、及び第2の保護フィルム12Bと第2の偏光フィルム11Bとを積層した第2の偏光板Bを製造する。次に、第1の偏光板Aもしくは第2の偏光板Bの偏光フィルム上に粘着剤層13を形成する。こうして作製した第1の偏光板A及び第2の偏光板Bを粘着剤層13を介してロールツーロールで貼りあわせると複合偏光板10が得られる。なおこの場合において、第1の偏光フィルム11Aと第2の偏光フィルム11Bとは、粘着剤層又は接着剤層を介して、直接貼合される。さらに粘着剤層14を、第2の保護フィルム12B上に形成することで粘着剤付き複合偏光板が得られる。粘着剤付き複合偏光板は、粘着剤14を介して液晶セルに貼合することができる。 [Production method of composite polarizing plate]
Although it does not restrict | limit especially as a method to manufacture the composite polarizing plate of this invention, For example, the 1st polarizing film A which laminated | stacked the 1st protective film 12A and the 1st polarizing film 11A, and the 2nd protective film The 2nd polarizing plate B which laminated | stacked 12B and the 2nd polarizing film 11B is manufactured. Next, the pressure-sensitive adhesive layer 13 is formed on the polarizing film of the first polarizing plate A or the second polarizing plate B. When the first polarizing plate A and the second polarizing plate B thus produced are bonded together by a roll-to-roll through the pressure-sensitive adhesive layer 13, the composite polarizing plate 10 is obtained. In this case, the first polarizing film 11A and the second polarizing film 11B are directly bonded via an adhesive layer or an adhesive layer. Furthermore, the composite polarizing plate with an adhesive is obtained by forming the adhesive layer 14 on the second protective film 12B. The composite polarizing plate with the pressure-sensitive adhesive can be bonded to the liquid crystal cell via the pressure-sensitive adhesive 14.
本発明の複合偏光板を製造する方法としては、特に制限されないが、例えば、第1の保護フィルム12Aと第1の偏光フィルム11Aとを積層した第1の偏光板A、及び第2の保護フィルム12Bと第2の偏光フィルム11Bとを積層した第2の偏光板Bを製造する。次に、第1の偏光板Aもしくは第2の偏光板Bの偏光フィルム上に粘着剤層13を形成する。こうして作製した第1の偏光板A及び第2の偏光板Bを粘着剤層13を介してロールツーロールで貼りあわせると複合偏光板10が得られる。なおこの場合において、第1の偏光フィルム11Aと第2の偏光フィルム11Bとは、粘着剤層又は接着剤層を介して、直接貼合される。さらに粘着剤層14を、第2の保護フィルム12B上に形成することで粘着剤付き複合偏光板が得られる。粘着剤付き複合偏光板は、粘着剤14を介して液晶セルに貼合することができる。 [Production method of composite polarizing plate]
Although it does not restrict | limit especially as a method to manufacture the composite polarizing plate of this invention, For example, the 1st polarizing film A which laminated | stacked the 1st protective film 12A and the 1st polarizing film 11A, and the 2nd protective film The 2nd polarizing plate B which laminated | stacked 12B and the 2nd polarizing film 11B is manufactured. Next, the pressure-
また、本発明の複合偏光板を製造する方法として、たとえば、第1の保護フィルム12A、第1の偏光フィルム11A及び第3の保護フィルム15を積層した第1の偏光板A’と第2の保護フィルム12Bと第2の偏光フィルム11Bを積層した第2の偏光板B’を製造する。次に、第1の偏光板A’の第3の保護フィルム15上もしくは第2の偏光板B’の偏光フィルム上に粘着剤層13を形成する。こうして作製した第1の偏光板A’及び第2の偏光板B’を粘着剤13を介してロールツーロールで貼りあわせると複合偏光板10が得られる。さらに粘着剤層14を第2の保護フィルム12B上に形成することで粘着剤付き複合偏光板が得られる。粘着剤付き複合偏光板は、粘着剤層14を介して液晶セルに貼合することができる。
In addition, as a method for producing the composite polarizing plate of the present invention, for example, the first polarizing film A ′ and the second polarizing film in which the first protective film 12A, the first polarizing film 11A, and the third protective film 15 are laminated. A second polarizing plate B ′ in which the protective film 12B and the second polarizing film 11B are laminated is manufactured. Next, the pressure-sensitive adhesive layer 13 is formed on the third protective film 15 of the first polarizing plate A ′ or the polarizing film of the second polarizing plate B ′. When the first polarizing plate A ′ and the second polarizing plate B ′ thus produced are bonded together by a roll-to-roll through the adhesive 13, the composite polarizing plate 10 is obtained. Furthermore, the composite polarizing plate with an adhesive is obtained by forming the adhesive layer 14 on the second protective film 12B. The composite polarizing plate with the pressure-sensitive adhesive can be bonded to the liquid crystal cell via the pressure-sensitive adhesive layer 14.
また、前記の第1の偏光板A(またはA’)および第2の偏光板B(またはB’)を無溶剤型の接着剤によりロールツーロールで貼りあわせ複合偏光板10を作製する方法も好ましく用いられる。
Also, a method of producing the composite polarizing plate 10 by laminating the first polarizing plate A (or A ′) and the second polarizing plate B (or B ′) with a solvent-free adhesive by roll-to-roll. Preferably used.
上記のように2つの偏光板を積層させて複合偏光板を製造する場合、第1の偏光板の単体透過率は38.0~43.0%であることが好ましく、40.0~42.5%であることがより好ましい。第2の偏光板の単体透過率は40.0~45.0%であることが好ましく、41.0~43.0%であることがより好ましい。また第1の偏光板の偏光度及び第2の偏光板の偏光度は、いずれも99.90%以上であることが好ましく、99.95%以上であることがより好ましい。
When a composite polarizing plate is produced by laminating two polarizing plates as described above, the single transmittance of the first polarizing plate is preferably 38.0 to 43.0%, and 40.0 to 42. More preferably, it is 5%. The single transmittance of the second polarizing plate is preferably 40.0 to 45.0%, more preferably 41.0 to 43.0%. Moreover, it is preferable that both the polarization degree of a 1st polarizing plate and the polarization degree of a 2nd polarizing plate are 99.90% or more, and it is more preferable that it is 99.95% or more.
このように本発明の複合偏光板においては、第1の偏光板の単体透過率よりも、第2の偏光板の単体透過率のほうが大きいことが好ましい。第1の偏光板の単体透過率と第2の偏光板の単体透過率との差は、0.1%以上であることが好ましく、0.2%超であることがより好ましく、0.4%以上であってもよい。差の上限は、特に制限されないが通常5%以下であり、2%以下であることが好ましく、1%以下であることがより好ましい。
Thus, in the composite polarizing plate of the present invention, the single transmittance of the second polarizing plate is preferably larger than the single transmittance of the first polarizing plate. The difference between the single transmittance of the first polarizing plate and the single transmittance of the second polarizing plate is preferably 0.1% or more, more preferably more than 0.2%, 0.4 % Or more. The upper limit of the difference is not particularly limited, but is usually 5% or less, preferably 2% or less, and more preferably 1% or less.
また、複合偏光板10を構成するすべてのフィルムを水系接着剤もしくは無溶剤型の接着剤で1回で積層することも生産効率がよく好ましく用いられる。
In addition, it is preferable to use a method in which all the films constituting the composite polarizing plate 10 are laminated with a water-based adhesive or a solventless adhesive at a time.
上記製造方法により得られる複合偏光板の偏光度は99.95%以上であることが好ましく、99.99%以上であることがより好ましく、99.995%以上であることがさらに好ましい。また本発明の複合偏光板は、95℃のオーブンに1000時間投入する耐熱試験後であっても、偏光度の低下が抑制される。例えば、前記耐熱試験後の複合偏光板の偏光度としては、99.95%以上とすることができ、99.99%以上とすることもできる。別の観点から、前記耐熱試験前後の偏光度低下の大きさは、本発明の複合偏光板において、0.010%以下とすることができ、好ましくは0.005%以下とすることができ、より好ましくは0.003%以下とすることもできる。
The polarization degree of the composite polarizing plate obtained by the above production method is preferably 99.95% or more, more preferably 99.99% or more, and further preferably 99.995% or more. Moreover, the composite polarizing plate of this invention suppresses the fall of a polarization degree even after the heat test put into 95 degreeC oven for 1000 hours. For example, the polarization degree of the composite polarizing plate after the heat test can be 99.95% or more, or 99.99% or more. From another viewpoint, the magnitude of the degree of polarization reduction before and after the heat resistance test can be 0.010% or less, preferably 0.005% or less in the composite polarizing plate of the present invention, More preferably, it may be 0.003% or less.
[液晶セル]
液晶セルは、2枚のセル基板と、それら基板間に挟持された液晶層とを有する。セル基板は、一般にガラスで構成されることが多いが、プラスチック基板であってもよい。その他、本発明の液晶パネルに用いる液晶セル自体は、この分野で採用されている各種のもので構成することができる。 [Liquid Crystal Cell]
The liquid crystal cell has two cell substrates and a liquid crystal layer sandwiched between the substrates. In general, the cell substrate is often made of glass, but may be a plastic substrate. In addition, the liquid crystal cell itself used in the liquid crystal panel of the present invention can be composed of various types employed in this field.
液晶セルは、2枚のセル基板と、それら基板間に挟持された液晶層とを有する。セル基板は、一般にガラスで構成されることが多いが、プラスチック基板であってもよい。その他、本発明の液晶パネルに用いる液晶セル自体は、この分野で採用されている各種のもので構成することができる。 [Liquid Crystal Cell]
The liquid crystal cell has two cell substrates and a liquid crystal layer sandwiched between the substrates. In general, the cell substrate is often made of glass, but may be a plastic substrate. In addition, the liquid crystal cell itself used in the liquid crystal panel of the present invention can be composed of various types employed in this field.
[液晶パネル]
粘着剤層14を介して複合偏光板10を液晶セルに貼合することで、液晶パネルを作製することができる。通常、偏光板は液晶セルの両面に貼合されるが、本発明の複合偏光板は、液晶表示装置の視認側及び背面側もしくはその両面に好適に用いられる。 [LCD panel]
A liquid crystal panel can be produced by bonding the compositepolarizing plate 10 to a liquid crystal cell via the pressure-sensitive adhesive layer 14. Usually, although a polarizing plate is bonded on both surfaces of a liquid crystal cell, the composite polarizing plate of this invention is used suitably for the visual recognition side of a liquid crystal display device, a back surface side, or its both surfaces.
粘着剤層14を介して複合偏光板10を液晶セルに貼合することで、液晶パネルを作製することができる。通常、偏光板は液晶セルの両面に貼合されるが、本発明の複合偏光板は、液晶表示装置の視認側及び背面側もしくはその両面に好適に用いられる。 [LCD panel]
A liquid crystal panel can be produced by bonding the composite
以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中、含有量ないし使用量を表す部及び%は、特記ないかぎり重量基準である。なお、以下の例における各物性の測定は、次の方法で行った。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In the examples, the parts and% representing the content or amount used are based on weight unless otherwise specified. In addition, each physical property in the following examples was measured by the following method.
(1)厚さの測定:
株式会社ニコン製のデジタルマイクロメーター“MH-15M”を用いて測定した。 (1) Measurement of thickness:
Measurement was performed using a digital micrometer “MH-15M” manufactured by Nikon Corporation.
株式会社ニコン製のデジタルマイクロメーター“MH-15M”を用いて測定した。 (1) Measurement of thickness:
Measurement was performed using a digital micrometer “MH-15M” manufactured by Nikon Corporation.
(2)面内位相差値及び厚み方向の位相差値の測定:
王子計測機器株式会社製の平行ニコル回転法を原理とする位相差計“KOBRA(登録商標)-WPR”を用い、23℃の温度において、波長590nmでの面内位相差値及び厚み方向の位相差値を測定した。 (2) Measurement of in-plane retardation value and thickness direction retardation value:
Using the phase difference meter “KOBRA (registered trademark) -WPR” based on the parallel Nicol rotation method manufactured by Oji Scientific Instruments Co., Ltd., the in-plane retardation value at the wavelength of 590 nm and the thickness direction position at a temperature of 23 ° C. The phase difference value was measured.
王子計測機器株式会社製の平行ニコル回転法を原理とする位相差計“KOBRA(登録商標)-WPR”を用い、23℃の温度において、波長590nmでの面内位相差値及び厚み方向の位相差値を測定した。 (2) Measurement of in-plane retardation value and thickness direction retardation value:
Using the phase difference meter “KOBRA (registered trademark) -WPR” based on the parallel Nicol rotation method manufactured by Oji Scientific Instruments Co., Ltd., the in-plane retardation value at the wavelength of 590 nm and the thickness direction position at a temperature of 23 ° C. The phase difference value was measured.
(3)偏光フィルムの収縮力の測定:
偏光フィルムの吸収軸方向が長軸となるように幅2mm×長さ50mmの断片に株式会社荻野精機製作所製のスーパーカッターでカットした。得られた短冊状の偏光フィルムを収縮力測定サンプルとした。収縮力測定サンプルを熱機械分析装置〔株式会社日立ハイテクサイエンス製の“TMA/6100”〕にチャック間距離を10mmとしてセットし、試験片を20℃の室内に十分な時間放置した後、サンプルの室内の温度を20℃から80℃まで1分間で昇温させ、昇温後サンプル室内の温度を80℃で維持するように設定した。昇温後4時間放置した後、80℃の環境下で測定サンプルの長辺方向の収縮力を測定した。この測定において、静荷重は0mNとし、治具にはSUS製のプローブを使用した。 (3) Measurement of contraction force of polarizing film:
A piece of 2 mm wide × 50 mm long was cut with a super cutter manufactured by Sugano Seiki Co., Ltd. so that the absorption axis direction of the polarizing film was the long axis. The obtained strip-shaped polarizing film was used as a shrinkage force measurement sample. The sample for measuring the shrinkage force was set in a thermomechanical analyzer (“TMA / 6100” manufactured by Hitachi High-Tech Science Co., Ltd.) with a distance between chucks of 10 mm, and the specimen was left in a room at 20 ° C. for a sufficient time. The room temperature was raised from 20 ° C. to 80 ° C. over 1 minute, and the temperature in the sample chamber was set to be maintained at 80 ° C. after the temperature rise. After allowing the temperature to rise for 4 hours, the contraction force in the long side direction of the measurement sample was measured in an environment at 80 ° C. In this measurement, the static load was 0 mN, and a SUS probe was used as the jig.
偏光フィルムの吸収軸方向が長軸となるように幅2mm×長さ50mmの断片に株式会社荻野精機製作所製のスーパーカッターでカットした。得られた短冊状の偏光フィルムを収縮力測定サンプルとした。収縮力測定サンプルを熱機械分析装置〔株式会社日立ハイテクサイエンス製の“TMA/6100”〕にチャック間距離を10mmとしてセットし、試験片を20℃の室内に十分な時間放置した後、サンプルの室内の温度を20℃から80℃まで1分間で昇温させ、昇温後サンプル室内の温度を80℃で維持するように設定した。昇温後4時間放置した後、80℃の環境下で測定サンプルの長辺方向の収縮力を測定した。この測定において、静荷重は0mNとし、治具にはSUS製のプローブを使用した。 (3) Measurement of contraction force of polarizing film:
A piece of 2 mm wide × 50 mm long was cut with a super cutter manufactured by Sugano Seiki Co., Ltd. so that the absorption axis direction of the polarizing film was the long axis. The obtained strip-shaped polarizing film was used as a shrinkage force measurement sample. The sample for measuring the shrinkage force was set in a thermomechanical analyzer (“TMA / 6100” manufactured by Hitachi High-Tech Science Co., Ltd.) with a distance between chucks of 10 mm, and the specimen was left in a room at 20 ° C. for a sufficient time. The room temperature was raised from 20 ° C. to 80 ° C. over 1 minute, and the temperature in the sample chamber was set to be maintained at 80 ° C. after the temperature rise. After allowing the temperature to rise for 4 hours, the contraction force in the long side direction of the measurement sample was measured in an environment at 80 ° C. In this measurement, the static load was 0 mN, and a SUS probe was used as the jig.
(4)偏光板の偏光度及び単体透過率の測定:
積分球付き分光光度計〔日本分光株式会社製の「V7100」、2度視野;C光源〕を用いて測定した。 (4) Measurement of polarization degree and single transmittance of polarizing plate:
The measurement was performed using a spectrophotometer with an integrating sphere [“V7100” manufactured by JASCO Corporation, 2-degree field of view; C light source].
積分球付き分光光度計〔日本分光株式会社製の「V7100」、2度視野;C光源〕を用いて測定した。 (4) Measurement of polarization degree and single transmittance of polarizing plate:
The measurement was performed using a spectrophotometer with an integrating sphere [“V7100” manufactured by JASCO Corporation, 2-degree field of view; C light source].
[製造例1]偏光フィルム1の作製
厚み20μmのポリビニルアルコールフィルム(平均重合度約2400、ケン化度99.9モル%以上)を、乾式延伸により約4倍に一軸延伸し、さらに緊張状態を保ったまま、40℃の純水に40秒間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.052/5.7/100の水溶液に28℃で30秒間浸漬して染色処理を行った。その後、ヨウ化カリウム/ホウ酸/水の重量比が11.0/6.2/100の水溶液に70℃で120秒間浸漬した。引き続き、8℃の純水で15秒間洗浄した後、300Nの張力で保持した状態で、60℃で50秒間、次いで75℃で20秒間乾燥して、ポリビニルアルコールフィルムにヨウ素が吸着配向している厚み7μmの吸収型偏光フィルムを得た。得られた偏光フィルムの収縮力を測定したところ、1.7Nであった。 [Production Example 1] Production of Polarizing Film 1 A 20 μm-thick polyvinyl alcohol film (average polymerization degree of about 2400, saponification degree of 99.9 mol% or more) is uniaxially stretched about 4 times by dry stretching, and the tension state is further increased. The sample was immersed in pure water at 40 ° C. for 40 seconds while being kept, and then immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.052 / 5.7 / 100 at 28 ° C. for 30 seconds to perform the dyeing treatment. went. Thereafter, it was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 11.0 / 6.2 / 100 at 70 ° C. for 120 seconds. Subsequently, after washing with pure water at 8 ° C. for 15 seconds, the film is dried at 60 ° C. for 50 seconds and then at 75 ° C. for 20 seconds while being held at a tension of 300 N, and iodine is adsorbed and oriented on the polyvinyl alcohol film. An absorption polarizing film having a thickness of 7 μm was obtained. It was 1.7N when the contractive force of the obtained polarizing film was measured.
厚み20μmのポリビニルアルコールフィルム(平均重合度約2400、ケン化度99.9モル%以上)を、乾式延伸により約4倍に一軸延伸し、さらに緊張状態を保ったまま、40℃の純水に40秒間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.052/5.7/100の水溶液に28℃で30秒間浸漬して染色処理を行った。その後、ヨウ化カリウム/ホウ酸/水の重量比が11.0/6.2/100の水溶液に70℃で120秒間浸漬した。引き続き、8℃の純水で15秒間洗浄した後、300Nの張力で保持した状態で、60℃で50秒間、次いで75℃で20秒間乾燥して、ポリビニルアルコールフィルムにヨウ素が吸着配向している厚み7μmの吸収型偏光フィルムを得た。得られた偏光フィルムの収縮力を測定したところ、1.7Nであった。 [Production Example 1] Production of Polarizing Film 1 A 20 μm-thick polyvinyl alcohol film (average polymerization degree of about 2400, saponification degree of 99.9 mol% or more) is uniaxially stretched about 4 times by dry stretching, and the tension state is further increased. The sample was immersed in pure water at 40 ° C. for 40 seconds while being kept, and then immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.052 / 5.7 / 100 at 28 ° C. for 30 seconds to perform the dyeing treatment. went. Thereafter, it was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 11.0 / 6.2 / 100 at 70 ° C. for 120 seconds. Subsequently, after washing with pure water at 8 ° C. for 15 seconds, the film is dried at 60 ° C. for 50 seconds and then at 75 ° C. for 20 seconds while being held at a tension of 300 N, and iodine is adsorbed and oriented on the polyvinyl alcohol film. An absorption polarizing film having a thickness of 7 μm was obtained. It was 1.7N when the contractive force of the obtained polarizing film was measured.
[製造例2]偏光フィルム2の作製
厚み30μmのポリビニルアルコールフィルム(平均重合度約2400、ケン化度99.9モル%以上)を、乾式延伸により約4倍に一軸延伸し、さらに緊張状態を保ったまま、40℃の純水に40秒間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.052/5.7/100の水溶液に28℃で30秒間浸漬して染色処理を行った。その後、ヨウ化カリウム/ホウ酸/水の重量比が11.0/6.2/100の水溶液に70℃で120秒間浸漬した。引き続き、8℃の純水で15秒間洗浄した後、300Nの張力で保持した状態で、60℃で50秒間、次いで75℃で20秒間乾燥して、ポリビニルアルコールフィルムにヨウ素が吸着配向している厚み12μmの吸収型偏光フィルムを得た。得られた偏光フィルムの収縮力を測定したところ、2.0Nであった。 [Production Example 2] Production of Polarizing Film 2 A 30 μm-thick polyvinyl alcohol film (average polymerization degree of about 2400, saponification degree of 99.9 mol% or more) is uniaxially stretched about 4 times by dry stretching, and the tension state is further increased. The sample was immersed in pure water at 40 ° C. for 40 seconds while being kept, and then immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.052 / 5.7 / 100 at 28 ° C. for 30 seconds to perform the dyeing treatment. went. Thereafter, it was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 11.0 / 6.2 / 100 at 70 ° C. for 120 seconds. Subsequently, after washing with pure water at 8 ° C. for 15 seconds, the film is dried at 60 ° C. for 50 seconds and then at 75 ° C. for 20 seconds while being held at a tension of 300 N, and iodine is adsorbed and oriented on the polyvinyl alcohol film. An absorption polarizing film with a thickness of 12 μm was obtained. It was 2.0N when the contraction force of the obtained polarizing film was measured.
厚み30μmのポリビニルアルコールフィルム(平均重合度約2400、ケン化度99.9モル%以上)を、乾式延伸により約4倍に一軸延伸し、さらに緊張状態を保ったまま、40℃の純水に40秒間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.052/5.7/100の水溶液に28℃で30秒間浸漬して染色処理を行った。その後、ヨウ化カリウム/ホウ酸/水の重量比が11.0/6.2/100の水溶液に70℃で120秒間浸漬した。引き続き、8℃の純水で15秒間洗浄した後、300Nの張力で保持した状態で、60℃で50秒間、次いで75℃で20秒間乾燥して、ポリビニルアルコールフィルムにヨウ素が吸着配向している厚み12μmの吸収型偏光フィルムを得た。得られた偏光フィルムの収縮力を測定したところ、2.0Nであった。 [Production Example 2] Production of Polarizing Film 2 A 30 μm-thick polyvinyl alcohol film (average polymerization degree of about 2400, saponification degree of 99.9 mol% or more) is uniaxially stretched about 4 times by dry stretching, and the tension state is further increased. The sample was immersed in pure water at 40 ° C. for 40 seconds while being kept, and then immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.052 / 5.7 / 100 at 28 ° C. for 30 seconds to perform the dyeing treatment. went. Thereafter, it was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 11.0 / 6.2 / 100 at 70 ° C. for 120 seconds. Subsequently, after washing with pure water at 8 ° C. for 15 seconds, the film is dried at 60 ° C. for 50 seconds and then at 75 ° C. for 20 seconds while being held at a tension of 300 N, and iodine is adsorbed and oriented on the polyvinyl alcohol film. An absorption polarizing film with a thickness of 12 μm was obtained. It was 2.0N when the contraction force of the obtained polarizing film was measured.
[製造例3]偏光フィルム3の作製
平均重合度1100でケン化度99.5モル%のアセトアセチル基変性ポリビニルアルコール粉末〔日本合成化学工業株式会社製の商品名「ゴーセファイマー(登録商標) Z-200」〕を95℃の熱水に溶解して、3%濃度の水溶液を調製した。この水溶液に架橋剤として、水溶性ポリアミドエポキシ樹脂〔田岡化学工業株式会社製の商品名「スミレーズレジン(登録商標) 650」、固形分濃度30%の水溶液〕を、ポリビニルアルコールの固形分6部あたり5部の割合で混合して、プライマー用塗工液とした。そして、基材フィルム(厚み110μm、融点163℃のポリプロピレンフィルム)にコロナ処理を施した後、そのコロナ処理面に、プライマー用塗工液をマイクログラビアコーターを用いて塗工した。その後、80℃で10分乾燥して、厚さ0.2μmのプライマー層を形成した。 [Production Example 3] Production of PolarizingFilm 3 Acetacetyl group-modified polyvinyl alcohol powder having an average polymerization degree of 1100 and a saponification degree of 99.5 mol% [trade name “GOHSEFIMAR (registered trademark)” manufactured by Nippon Synthetic Chemical Industry Co., Ltd. Z-200 "] was dissolved in hot water at 95 ° C to prepare a 3% strength aqueous solution. As a crosslinking agent, a water-soluble polyamide epoxy resin (trade name “Smiles Resin (registered trademark) 650” manufactured by Taoka Chemical Industry Co., Ltd., an aqueous solution having a solid content of 30%) as a crosslinking agent was added to this aqueous solution as a solid content of 6 parts of polyvinyl alcohol. The mixture was mixed at a ratio of 5 parts per to make a primer coating solution. And after corona-treating a base film (thickness 110 μm, polypropylene film having a melting point of 163 ° C.), a primer coating solution was applied to the corona-treated surface using a micro gravure coater. Thereafter, it was dried at 80 ° C. for 10 minutes to form a primer layer having a thickness of 0.2 μm.
平均重合度1100でケン化度99.5モル%のアセトアセチル基変性ポリビニルアルコール粉末〔日本合成化学工業株式会社製の商品名「ゴーセファイマー(登録商標) Z-200」〕を95℃の熱水に溶解して、3%濃度の水溶液を調製した。この水溶液に架橋剤として、水溶性ポリアミドエポキシ樹脂〔田岡化学工業株式会社製の商品名「スミレーズレジン(登録商標) 650」、固形分濃度30%の水溶液〕を、ポリビニルアルコールの固形分6部あたり5部の割合で混合して、プライマー用塗工液とした。そして、基材フィルム(厚み110μm、融点163℃のポリプロピレンフィルム)にコロナ処理を施した後、そのコロナ処理面に、プライマー用塗工液をマイクログラビアコーターを用いて塗工した。その後、80℃で10分乾燥して、厚さ0.2μmのプライマー層を形成した。 [Production Example 3] Production of Polarizing
次に、平均重合度2400でケン化度98.0~99.0モル%のポリビニルアルコール粉末〔株式会社クラレから入手した商品名「PVA124」〕を95℃の熱水に溶解して、8%濃度のポリビニルアルコール水溶液を調製した。得られた水溶液を、上記基材フィルムのプライマー層上にリップコーターを用いて室温で塗工し、80℃で20分間乾燥して、基材フィルム/プライマー層/ポリビニルアルコール層からなる積層フィルムを作製した。
Next, polyvinyl alcohol powder having an average polymerization degree of 2400 and a saponification degree of 98.0 to 99.0 mol% (trade name “PVA124” obtained from Kuraray Co., Ltd.) was dissolved in hot water at 95 ° C. to obtain 8% A polyvinyl alcohol aqueous solution having a concentration was prepared. The obtained aqueous solution was coated on the primer layer of the base film using a lip coater at room temperature and dried at 80 ° C. for 20 minutes to obtain a laminated film consisting of the base film / primer layer / polyvinyl alcohol layer. Produced.
次いで、得られた積層フィルムを、温度160℃で5.8倍に自由端縦一軸延伸した。こうして得られた積層延伸フィルムの全体厚みは28.5μmであり、ポリビニルアルコール層の厚みは5.0μmであった。
Next, the obtained laminated film was subjected to free end longitudinal uniaxial stretching at a temperature of 160 ° C. by 5.8 times. The total thickness of the laminated stretched film thus obtained was 28.5 μm, and the thickness of the polyvinyl alcohol layer was 5.0 μm.
得られた積層延伸フィルムを、水/ヨウ素/ヨウ化カリウムの重量比が100/0.35/10の水溶液に26℃で90秒間浸漬して染色した後、10℃の純水で洗浄した。次に、この積層延伸フィルムを、水/ホウ酸/ヨウ化カリウムの重量比が100/9.5/5の水溶液に76℃で300秒間浸漬して、ポリビニルアルコールを架橋させた。引き続き、10℃の純水で10秒間洗浄し、最後に80℃で200秒間の乾燥処理を行った。以上の操作により、ポリプロピレン基材フィルム上に、ヨウ素が吸着配向しているポリビニルアルコール層からなる厚み5μmの偏光フィルム3が形成されている偏光性積層フィルムを作製した。得られた偏光フィルムを基材から剥離し収縮力を測定したところ、1.45Nであった。
The resulting laminated stretched film was dyed by immersing it in an aqueous solution having a water / iodine / potassium iodide weight ratio of 100 / 0.35 / 10 at 26 ° C. for 90 seconds, and then washed with 10 ° C. pure water. Next, this laminated stretched film was immersed in an aqueous solution having a water / boric acid / potassium iodide weight ratio of 100 / 9.5 / 5 at 76 ° C. for 300 seconds to crosslink the polyvinyl alcohol. Subsequently, the substrate was washed with pure water at 10 ° C. for 10 seconds, and finally dried at 80 ° C. for 200 seconds. By the above operation, a polarizing laminated film in which a polarizing film 3 having a thickness of 5 μm composed of a polyvinyl alcohol layer on which iodine was adsorbed and oriented was formed on a polypropylene base film was produced. It was 1.45 N when the obtained polarizing film was peeled from the base material and the shrinkage force was measured.
[製造例4]偏光フィルム4の作製
厚み60μmのポリビニルアルコールフィルム(平均重合度約2400、ケン化度99.9モル%以上)を、乾式延伸により約4倍に一軸延伸し、さらに緊張状態を保ったまま、40℃の純水に40秒間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.052/5.7/100の水溶液に28℃で30秒間浸漬して染色処理を行った。その後、ヨウ化カリウム/ホウ酸/水の重量比が11.0/6.2/100の水溶液に70℃で120秒間浸漬した。引き続き、8℃の純水で15秒間洗浄した後、300Nの張力で保持した状態で、60℃で50秒間、次いで75℃で20秒間乾燥して、ポリビニルアルコールフィルムにヨウ素が吸着配向している厚み23μmの吸収型偏光子を得た。得られた偏光フィルムの収縮力を測定したところ、3.1Nであった。 [Production Example 4] Production of Polarizing Film 4 A 60 μm-thick polyvinyl alcohol film (average polymerization degree of about 2400, saponification degree of 99.9 mol% or more) is uniaxially stretched by about 4 times by dry stretching, and the tension state is further increased. The sample was immersed in pure water at 40 ° C. for 40 seconds while being kept, and then immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.052 / 5.7 / 100 at 28 ° C. for 30 seconds to perform the dyeing treatment. went. Thereafter, it was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 11.0 / 6.2 / 100 at 70 ° C. for 120 seconds. Subsequently, after washing with pure water at 8 ° C. for 15 seconds, the film is dried at 60 ° C. for 50 seconds and then at 75 ° C. for 20 seconds while being held at a tension of 300 N, and iodine is adsorbed and oriented on the polyvinyl alcohol film. An absorption polarizer having a thickness of 23 μm was obtained. It was 3.1N when the contraction force of the obtained polarizing film was measured.
厚み60μmのポリビニルアルコールフィルム(平均重合度約2400、ケン化度99.9モル%以上)を、乾式延伸により約4倍に一軸延伸し、さらに緊張状態を保ったまま、40℃の純水に40秒間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.052/5.7/100の水溶液に28℃で30秒間浸漬して染色処理を行った。その後、ヨウ化カリウム/ホウ酸/水の重量比が11.0/6.2/100の水溶液に70℃で120秒間浸漬した。引き続き、8℃の純水で15秒間洗浄した後、300Nの張力で保持した状態で、60℃で50秒間、次いで75℃で20秒間乾燥して、ポリビニルアルコールフィルムにヨウ素が吸着配向している厚み23μmの吸収型偏光子を得た。得られた偏光フィルムの収縮力を測定したところ、3.1Nであった。 [Production Example 4] Production of Polarizing Film 4 A 60 μm-thick polyvinyl alcohol film (average polymerization degree of about 2400, saponification degree of 99.9 mol% or more) is uniaxially stretched by about 4 times by dry stretching, and the tension state is further increased. The sample was immersed in pure water at 40 ° C. for 40 seconds while being kept, and then immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.052 / 5.7 / 100 at 28 ° C. for 30 seconds to perform the dyeing treatment. went. Thereafter, it was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 11.0 / 6.2 / 100 at 70 ° C. for 120 seconds. Subsequently, after washing with pure water at 8 ° C. for 15 seconds, the film is dried at 60 ° C. for 50 seconds and then at 75 ° C. for 20 seconds while being held at a tension of 300 N, and iodine is adsorbed and oriented on the polyvinyl alcohol film. An absorption polarizer having a thickness of 23 μm was obtained. It was 3.1N when the contraction force of the obtained polarizing film was measured.
[製造例5]水系接着剤の作製
水100重量部に対し、カルボキシル基変性ポリビニルアルコール〔株式会社クラレから入手した商品名「KL-318」〕を3重量部溶解し、その水溶液に水溶性エポキシ樹脂であるポリアミドエポキシ系添加剤〔田岡化学工業株式会社から入手した商品名「スミレーズレジン(登録商標) 650(30)」、固形分濃度30重量%の水溶液〕を1.5重量部添加して、水系接着剤を調製した。 [Production Example 5] Preparation ofaqueous adhesive 3 parts by weight of carboxyl group-modified polyvinyl alcohol [trade name “KL-318” obtained from Kuraray Co., Ltd.] was dissolved in 100 parts by weight of water, and a water-soluble epoxy was dissolved in the aqueous solution. 1.5 parts by weight of a resin-based polyamide epoxy additive [trade name “Smileise Resin (registered trademark) 650 (30)” obtained from Taoka Chemical Co., Ltd., aqueous solution with a solid content of 30 wt%] was added. A water-based adhesive was prepared.
水100重量部に対し、カルボキシル基変性ポリビニルアルコール〔株式会社クラレから入手した商品名「KL-318」〕を3重量部溶解し、その水溶液に水溶性エポキシ樹脂であるポリアミドエポキシ系添加剤〔田岡化学工業株式会社から入手した商品名「スミレーズレジン(登録商標) 650(30)」、固形分濃度30重量%の水溶液〕を1.5重量部添加して、水系接着剤を調製した。 [Production Example 5] Preparation of
[製造例6]硬化性エポキシ系樹脂組成物からなる接着剤の作製
脂環式エポキシ系樹脂である上記式Dに相当するジカルボン酸のエポキシシクロヘキシルメチルエステル類としてビス(3,4-エポキシシクロヘキシルメチル)アジペート100部、水素化エポキシ系樹脂として水添ビスフェノールAのジグリシジルエーテル25部、および、光カチオン重合開始剤として4,4’-ビス(ジフェニルスルホニオ)ジフェニルスルフィド ビス(ヘキサフルオロホスフェート)2.2部を混合した後、脱泡して、硬化性エポキシ系樹脂組成物からなる接着剤Aを得た。なお、光カチオン重合開始剤は、50質量%プロピレンカーボネート溶液として配合した。 [Production Example 6] Preparation of adhesive comprising curable epoxy resin composition Bis (3,4-epoxycyclohexylmethyl) as an epoxycyclohexylmethyl ester of dicarboxylic acid corresponding to the above formula D, which is an alicyclic epoxy resin. ) 100 parts of adipate, 25 parts of hydrogenated bisphenol A diglycidyl ether as the hydrogenated epoxy resin, and 4,4′-bis (diphenylsulfonio) diphenyl sulfide bis (hexafluorophosphate) 2 as the photocationic polymerization initiator After mixing 2 parts, defoaming was performed to obtain an adhesive A composed of a curable epoxy resin composition. The photocationic polymerization initiator was blended as a 50% by mass propylene carbonate solution.
脂環式エポキシ系樹脂である上記式Dに相当するジカルボン酸のエポキシシクロヘキシルメチルエステル類としてビス(3,4-エポキシシクロヘキシルメチル)アジペート100部、水素化エポキシ系樹脂として水添ビスフェノールAのジグリシジルエーテル25部、および、光カチオン重合開始剤として4,4’-ビス(ジフェニルスルホニオ)ジフェニルスルフィド ビス(ヘキサフルオロホスフェート)2.2部を混合した後、脱泡して、硬化性エポキシ系樹脂組成物からなる接着剤Aを得た。なお、光カチオン重合開始剤は、50質量%プロピレンカーボネート溶液として配合した。 [Production Example 6] Preparation of adhesive comprising curable epoxy resin composition Bis (3,4-epoxycyclohexylmethyl) as an epoxycyclohexylmethyl ester of dicarboxylic acid corresponding to the above formula D, which is an alicyclic epoxy resin. ) 100 parts of adipate, 25 parts of hydrogenated bisphenol A diglycidyl ether as the hydrogenated epoxy resin, and 4,4′-bis (diphenylsulfonio) diphenyl sulfide bis (hexafluorophosphate) 2 as the photocationic polymerization initiator After mixing 2 parts, defoaming was performed to obtain an adhesive A composed of a curable epoxy resin composition. The photocationic polymerization initiator was blended as a 50% by mass propylene carbonate solution.
[粘着剤A,B]
以下の2種類の粘着剤を用意した。
粘着剤A:厚み25μmのシート状粘着剤〔リンテック株式会社製の「P-3132」〕
粘着剤B:厚み15μmのシート状粘着剤〔リンテック株式会社製の「P-0082」〕 [Adhesives A and B]
The following two types of pressure-sensitive adhesives were prepared.
Adhesive A: Sheet-like adhesive having a thickness of 25 μm [“P-3132” manufactured by Lintec Corporation]
Adhesive B: Sheet-like adhesive having a thickness of 15 μm [“P-0082” manufactured by Lintec Corporation]
以下の2種類の粘着剤を用意した。
粘着剤A:厚み25μmのシート状粘着剤〔リンテック株式会社製の「P-3132」〕
粘着剤B:厚み15μmのシート状粘着剤〔リンテック株式会社製の「P-0082」〕 [Adhesives A and B]
The following two types of pressure-sensitive adhesives were prepared.
Adhesive A: Sheet-like adhesive having a thickness of 25 μm [“P-3132” manufactured by Lintec Corporation]
Adhesive B: Sheet-like adhesive having a thickness of 15 μm [“P-0082” manufactured by Lintec Corporation]
[保護フィルムA、B、C]
以下の3種類の保護フィルムを用意した。
保護フィルムA:コニカミノルタ株式会社製のハードコート付きトリアセチルセルロースフィルム;25KCHCN-TC(厚み32μm)
保護フィルムB:コニカミノルタ株式会社製のトリアセチルセルロースフィルム;KC2CT(厚み20μm、波長590nmでの面内位相差値=1.2nm、波長590nmでの厚み方向位相差=1.3nm)
保護フィルムC:日本ゼオン株式会社製の環状ポリオレフィン系樹脂フィルム;ZF14-013(厚み13μm、波長590nmでの面内位相差値=0.8nm、波長590nmでの厚み方向位相差=3.4nm) [Protective films A, B, C]
The following three types of protective films were prepared.
Protective film A: Triacetyl cellulose film with hard coat manufactured by Konica Minolta, Inc .; 25KCHCN-TC (thickness 32 μm)
Protective film B: Triacetyl cellulose film manufactured by Konica Minolta, Inc .; KC2CT (thickness 20 μm, in-plane retardation value at wavelength 590 nm = 1.2 nm, thickness direction retardation at wavelength 590 nm = 1.3 nm)
Protective film C: Cyclic polyolefin resin film manufactured by ZEON Corporation; ZF14-013 (thickness 13 μm, in-plane retardation value at wavelength 590 nm = 0.8 nm, thickness direction retardation at wavelength 590 nm = 3.4 nm)
以下の3種類の保護フィルムを用意した。
保護フィルムA:コニカミノルタ株式会社製のハードコート付きトリアセチルセルロースフィルム;25KCHCN-TC(厚み32μm)
保護フィルムB:コニカミノルタ株式会社製のトリアセチルセルロースフィルム;KC2CT(厚み20μm、波長590nmでの面内位相差値=1.2nm、波長590nmでの厚み方向位相差=1.3nm)
保護フィルムC:日本ゼオン株式会社製の環状ポリオレフィン系樹脂フィルム;ZF14-013(厚み13μm、波長590nmでの面内位相差値=0.8nm、波長590nmでの厚み方向位相差=3.4nm) [Protective films A, B, C]
The following three types of protective films were prepared.
Protective film A: Triacetyl cellulose film with hard coat manufactured by Konica Minolta, Inc .; 25KCHCN-TC (thickness 32 μm)
Protective film B: Triacetyl cellulose film manufactured by Konica Minolta, Inc .; KC2CT (
Protective film C: Cyclic polyolefin resin film manufactured by ZEON Corporation; ZF14-013 (
[製造例7]
(偏光板A-1の作製)
保護フィルムAにケン化処理を行った。保護フィルムAのトリアセチルセルロース面が偏光フィルム1との貼合面となるように、保護フィルムAと偏光フィルム1とを水系接着剤で接着し偏光板A-1を得た。偏光板A-1の単体透過率は、42.0%であった。 [Production Example 7]
(Preparation of polarizing plate A-1)
The protective film A was saponified. The protective film A and thepolarizing film 1 were adhered with a water-based adhesive so that the triacetyl cellulose surface of the protective film A became a bonding surface with the polarizing film 1 to obtain a polarizing plate A-1. The single transmittance of the polarizing plate A-1 was 42.0%.
(偏光板A-1の作製)
保護フィルムAにケン化処理を行った。保護フィルムAのトリアセチルセルロース面が偏光フィルム1との貼合面となるように、保護フィルムAと偏光フィルム1とを水系接着剤で接着し偏光板A-1を得た。偏光板A-1の単体透過率は、42.0%であった。 [Production Example 7]
(Preparation of polarizing plate A-1)
The protective film A was saponified. The protective film A and the
[製造例8]
(偏光板B-1の作製)
保護フィルムBにケン化処理を行った。保護フィルムBのトリアセチルセルロース面が偏光フィルム1との貼合面となるように、保護フィルムBと偏光フィルム1とを水系接着剤で接着し偏光板B-1を得た。偏光板B-1の単体透過率は、42.5%であった。 [Production Example 8]
(Preparation of polarizing plate B-1)
The protective film B was saponified. The protective film B and thepolarizing film 1 were bonded with a water-based adhesive so that the triacetyl cellulose surface of the protective film B became a bonding surface with the polarizing film 1 to obtain a polarizing plate B-1. The single transmittance of the polarizing plate B-1 was 42.5%.
(偏光板B-1の作製)
保護フィルムBにケン化処理を行った。保護フィルムBのトリアセチルセルロース面が偏光フィルム1との貼合面となるように、保護フィルムBと偏光フィルム1とを水系接着剤で接着し偏光板B-1を得た。偏光板B-1の単体透過率は、42.5%であった。 [Production Example 8]
(Preparation of polarizing plate B-1)
The protective film B was saponified. The protective film B and the
[製造例9]
(偏光板C-1の作製)
保護フィルムCの一方の表面にコロナ処理をした。保護フィルムCのコロナ処理をした面が偏光フィルム1との貼合面となるように、保護フィルムCと偏光フィルム1とを水系接着剤で接着し偏光板C-1を得た。偏光板C-1の単体透過率は、42.3%であった。 [Production Example 9]
(Preparation of polarizing plate C-1)
One surface of the protective film C was subjected to corona treatment. The protective film C and thepolarizing film 1 were bonded with an aqueous adhesive so that the corona-treated surface of the protective film C became a bonding surface with the polarizing film 1 to obtain a polarizing plate C-1. The single transmittance of the polarizing plate C-1 was 42.3%.
(偏光板C-1の作製)
保護フィルムCの一方の表面にコロナ処理をした。保護フィルムCのコロナ処理をした面が偏光フィルム1との貼合面となるように、保護フィルムCと偏光フィルム1とを水系接着剤で接着し偏光板C-1を得た。偏光板C-1の単体透過率は、42.3%であった。 [Production Example 9]
(Preparation of polarizing plate C-1)
One surface of the protective film C was subjected to corona treatment. The protective film C and the
[製造例10]
(偏光板D-1の作製)
保護フィルムAにケン化処理を行った。保護フィルムAのトリアセチルセルロース面が偏光フィルム2との貼合面となるように、保護フィルムAと偏光フィルム2とを水系接着剤で接着し偏光板D-1を得た。偏光板D-1の単体透過率は、42.0%であった。 [Production Example 10]
(Preparation of polarizing plate D-1)
The protective film A was saponified. The protective film A and thepolarizing film 2 were bonded with a water-based adhesive so that the triacetyl cellulose surface of the protective film A became a bonding surface with the polarizing film 2 to obtain a polarizing plate D-1. The single transmittance of the polarizing plate D-1 was 42.0%.
(偏光板D-1の作製)
保護フィルムAにケン化処理を行った。保護フィルムAのトリアセチルセルロース面が偏光フィルム2との貼合面となるように、保護フィルムAと偏光フィルム2とを水系接着剤で接着し偏光板D-1を得た。偏光板D-1の単体透過率は、42.0%であった。 [Production Example 10]
(Preparation of polarizing plate D-1)
The protective film A was saponified. The protective film A and the
[製造例11]
(偏光板E-1の作製)
保護フィルムBにケン化処理を行った。保護フィルムBのトリアセチルセルロース面が偏光フィルム2との貼合面となるように、保護フィルムBと偏光フィルム2とを水系接着剤で接着し偏光板E-1を得た。偏光板E-1の単体透過率は、42.5%であった。 [Production Example 11]
(Preparation of polarizing plate E-1)
The protective film B was saponified. The protective film B and thepolarizing film 2 were bonded with a water-based adhesive so that the triacetyl cellulose surface of the protective film B became a bonding surface with the polarizing film 2 to obtain a polarizing plate E-1. The single transmittance of the polarizing plate E-1 was 42.5%.
(偏光板E-1の作製)
保護フィルムBにケン化処理を行った。保護フィルムBのトリアセチルセルロース面が偏光フィルム2との貼合面となるように、保護フィルムBと偏光フィルム2とを水系接着剤で接着し偏光板E-1を得た。偏光板E-1の単体透過率は、42.5%であった。 [Production Example 11]
(Preparation of polarizing plate E-1)
The protective film B was saponified. The protective film B and the
[製造例12]
(偏光板F-1の作製)
保護フィルムCの一方の表面にコロナ処理を行った。保護フィルムCのコロナ処理をした面が偏光フィルム2との貼合面となるように、保護フィルムCと偏光フィルム2とを水系接着剤で接着し偏光板F-1を得た。偏光板F-1の単体透過率は、42.3%であった。 [Production Example 12]
(Preparation of polarizing plate F-1)
One surface of the protective film C was subjected to corona treatment. The protective film C and thepolarizing film 2 were bonded with a water-based adhesive so that the corona-treated surface of the protective film C became a bonding surface with the polarizing film 2 to obtain a polarizing plate F-1. The single transmittance of the polarizing plate F-1 was 42.3%.
(偏光板F-1の作製)
保護フィルムCの一方の表面にコロナ処理を行った。保護フィルムCのコロナ処理をした面が偏光フィルム2との貼合面となるように、保護フィルムCと偏光フィルム2とを水系接着剤で接着し偏光板F-1を得た。偏光板F-1の単体透過率は、42.3%であった。 [Production Example 12]
(Preparation of polarizing plate F-1)
One surface of the protective film C was subjected to corona treatment. The protective film C and the
[製造例13]
(偏光板G-1の作製)
保護フィルムAにケン化処理を行い、保護フィルムCの一方の表面にコロナ処理をおこなった。保護フィルムAのトリアセチルセルロース面、偏光フィルム2、保護フィルムCのコロナ処理をした面が貼合面となるように3枚のフィルムを水系接着剤で貼合し偏光板G-1を得た。偏光板G-1の単体透過率は、42.3%であった。 [Production Example 13]
(Preparation of polarizing plate G-1)
The protective film A was subjected to saponification treatment, and one surface of the protective film C was subjected to corona treatment. Three films were bonded with an aqueous adhesive so that the triacetyl cellulose surface of the protective film A, thepolarizing film 2, and the corona-treated surface of the protective film C were bonded to each other, and a polarizing plate G-1 was obtained. . The single transmittance of the polarizing plate G-1 was 42.3%.
(偏光板G-1の作製)
保護フィルムAにケン化処理を行い、保護フィルムCの一方の表面にコロナ処理をおこなった。保護フィルムAのトリアセチルセルロース面、偏光フィルム2、保護フィルムCのコロナ処理をした面が貼合面となるように3枚のフィルムを水系接着剤で貼合し偏光板G-1を得た。偏光板G-1の単体透過率は、42.3%であった。 [Production Example 13]
(Preparation of polarizing plate G-1)
The protective film A was subjected to saponification treatment, and one surface of the protective film C was subjected to corona treatment. Three films were bonded with an aqueous adhesive so that the triacetyl cellulose surface of the protective film A, the
[製造例14]
(偏光板H-1の作製)
保護フィルムAにケン化処理を行った。偏光フィルム3が形成されている製造例3で作製した偏光性積層フィルムの基材フィルムとは反対面(偏光フィルム面)に、保護フィルムAのトリアセチルセルロース面が貼合面となるように保護フィルムAを水系接着剤で貼合し、基材フィルムのみを剥離することによって偏光板H-1を得た。偏光板H-1の単体透過率は、41.2%であった。 [Production Example 14]
(Preparation of polarizing plate H-1)
The protective film A was saponified. It protects so that the triacetyl-cellulose surface of the protective film A may become a bonding surface on the opposite surface (polarizing film surface) of the base material film of the polarizing laminated film produced in the manufacture example 3 in which thepolarizing film 3 is formed. Film A was bonded with a water-based adhesive, and only the base film was peeled off to obtain polarizing plate H-1. The single transmittance of the polarizing plate H-1 was 41.2%.
(偏光板H-1の作製)
保護フィルムAにケン化処理を行った。偏光フィルム3が形成されている製造例3で作製した偏光性積層フィルムの基材フィルムとは反対面(偏光フィルム面)に、保護フィルムAのトリアセチルセルロース面が貼合面となるように保護フィルムAを水系接着剤で貼合し、基材フィルムのみを剥離することによって偏光板H-1を得た。偏光板H-1の単体透過率は、41.2%であった。 [Production Example 14]
(Preparation of polarizing plate H-1)
The protective film A was saponified. It protects so that the triacetyl-cellulose surface of the protective film A may become a bonding surface on the opposite surface (polarizing film surface) of the base material film of the polarizing laminated film produced in the manufacture example 3 in which the
[製造例15~22]
製造例7~14で用いた水系接着剤を上記硬化性エポキシ系樹脂組成物からなる接着剤に変更した以外は同様にして偏光板I-1~偏光板P-1を作製した。貼合に際しては、ベルトコンベア付き紫外線照射装置(ランプ:Fusion Dランプ、積算光量1500mJ/cm2)にて紫外線の照射を行ない、室温で1時間放置することで行った。
製造した偏光板の単体透過率は、それぞれ下記であった。
なお、()内は、同構成の水系接着剤で作製した偏光板を示す。
製造例15 偏光板I-1(偏光板A-1):単体透過率は、42.0%
製造例16 偏光板J-1(偏光板B-1):単体透過率は、42.5%
製造例17 偏光板K-1(偏光板C-1):単体透過率は、42.3%
製造例18 偏光板L-1(偏光板D-1):単体透過率は、42.0%
製造例19 偏光板M-1(偏光板E-1):単体透過率は、42.5%
製造例20 偏光板N-1(偏光板F-1):単体透過率は、42.3%
製造例21 偏光板O-1(偏光板G-1):単体透過率は、42.3%
製造例22 偏光板P-1(偏光板H-1):単体透過率は、41.2% [Production Examples 15 to 22]
Polarizers I-1 to P-1 were produced in the same manner except that the water-based adhesive used in Production Examples 7 to 14 was changed to an adhesive made of the curable epoxy resin composition. The pasting was performed by irradiating with an ultraviolet ray using an ultraviolet irradiation device with a belt conveyor (lamp: Fusion D lamp, integrated light quantity 1500 mJ / cm 2 ) and leaving it at room temperature for 1 hour.
The single transmittance of the manufactured polarizing plate was as follows.
In addition, the inside of () shows the polarizing plate produced with the water-system adhesive of the same structure.
Production Example 15 Polarizing plate I-1 (Polarizing plate A-1): Single transmittance is 42.0%
Production Example 16 Polarizing plate J-1 (Polarizing plate B-1): Single transmittance is 42.5%
Production Example 17 Polarizing plate K-1 (Polarizing plate C-1): Single transmittance is 42.3%
Production Example 18 Polarizing plate L-1 (Polarizing plate D-1): Single transmittance is 42.0%
Production Example 19 Polarizing plate M-1 (Polarizing plate E-1): Single transmittance is 42.5%
Production Example 20 Polarizing plate N-1 (Polarizing plate F-1): Single transmittance is 42.3%
Production Example 21 Polarizing plate O-1 (polarizing plate G-1): single transmittance is 42.3%
Production Example 22 Polarizing plate P-1 (Polarizing plate H-1): Single transmittance is 41.2%
製造例7~14で用いた水系接着剤を上記硬化性エポキシ系樹脂組成物からなる接着剤に変更した以外は同様にして偏光板I-1~偏光板P-1を作製した。貼合に際しては、ベルトコンベア付き紫外線照射装置(ランプ:Fusion Dランプ、積算光量1500mJ/cm2)にて紫外線の照射を行ない、室温で1時間放置することで行った。
製造した偏光板の単体透過率は、それぞれ下記であった。
なお、()内は、同構成の水系接着剤で作製した偏光板を示す。
製造例15 偏光板I-1(偏光板A-1):単体透過率は、42.0%
製造例16 偏光板J-1(偏光板B-1):単体透過率は、42.5%
製造例17 偏光板K-1(偏光板C-1):単体透過率は、42.3%
製造例18 偏光板L-1(偏光板D-1):単体透過率は、42.0%
製造例19 偏光板M-1(偏光板E-1):単体透過率は、42.5%
製造例20 偏光板N-1(偏光板F-1):単体透過率は、42.3%
製造例21 偏光板O-1(偏光板G-1):単体透過率は、42.3%
製造例22 偏光板P-1(偏光板H-1):単体透過率は、41.2% [Production Examples 15 to 22]
Polarizers I-1 to P-1 were produced in the same manner except that the water-based adhesive used in Production Examples 7 to 14 was changed to an adhesive made of the curable epoxy resin composition. The pasting was performed by irradiating with an ultraviolet ray using an ultraviolet irradiation device with a belt conveyor (lamp: Fusion D lamp, integrated light quantity 1500 mJ / cm 2 ) and leaving it at room temperature for 1 hour.
The single transmittance of the manufactured polarizing plate was as follows.
In addition, the inside of () shows the polarizing plate produced with the water-system adhesive of the same structure.
Production Example 15 Polarizing plate I-1 (Polarizing plate A-1): Single transmittance is 42.0%
Production Example 16 Polarizing plate J-1 (Polarizing plate B-1): Single transmittance is 42.5%
Production Example 17 Polarizing plate K-1 (Polarizing plate C-1): Single transmittance is 42.3%
Production Example 18 Polarizing plate L-1 (Polarizing plate D-1): Single transmittance is 42.0%
Production Example 19 Polarizing plate M-1 (Polarizing plate E-1): Single transmittance is 42.5%
Production Example 20 Polarizing plate N-1 (Polarizing plate F-1): Single transmittance is 42.3%
Production Example 21 Polarizing plate O-1 (polarizing plate G-1): single transmittance is 42.3%
Production Example 22 Polarizing plate P-1 (Polarizing plate H-1): Single transmittance is 41.2%
[製造例23]
(偏光板Q-1の作製)
偏光板A-1における偏光フィルム1を偏光フィルム4に変更した以外は同様に偏光板を作製した。偏光板Q-1の単体透過率は、42.0%であった。 [Production Example 23]
(Preparation of polarizing plate Q-1)
A polarizing plate was produced in the same manner except that thepolarizing film 1 in the polarizing plate A-1 was changed to the polarizing film 4. The single transmittance of the polarizing plate Q-1 was 42.0%.
(偏光板Q-1の作製)
偏光板A-1における偏光フィルム1を偏光フィルム4に変更した以外は同様に偏光板を作製した。偏光板Q-1の単体透過率は、42.0%であった。 [Production Example 23]
(Preparation of polarizing plate Q-1)
A polarizing plate was produced in the same manner except that the
[製造例24]
(偏光板R-1の作製)
偏光板B-1における偏光フィルム1を偏光フィルム4に変更した以外は同様に偏光板を作製した。偏光板Rの単体透過率は、42.5%であった。 [Production Example 24]
(Preparation of polarizing plate R-1)
A polarizing plate was produced in the same manner except that thepolarizing film 1 in the polarizing plate B-1 was changed to the polarizing film 4. The single transmittance of the polarizing plate R was 42.5%.
(偏光板R-1の作製)
偏光板B-1における偏光フィルム1を偏光フィルム4に変更した以外は同様に偏光板を作製した。偏光板Rの単体透過率は、42.5%であった。 [Production Example 24]
(Preparation of polarizing plate R-1)
A polarizing plate was produced in the same manner except that the
[製造例25]
(偏光板A-2の作製)
保護フィルムAと保護フィルムBにケン化処理を行った。保護フィルムAのトリアセチルセルロース面及び保護フィルムBのトリアセチルロース面が偏光フィルム1との貼合面となるように、保護フィルムAと偏光フィルム1と保護フィルムBとを水系接着剤で接着し偏光板A-2を得た。偏光板A-2の単体透過率は、42.0%であった。 [Production Example 25]
(Preparation of polarizing plate A-2)
The protective films A and B were subjected to saponification treatment. The protective film A, thepolarizing film 1 and the protective film B are bonded with an aqueous adhesive so that the triacetyl cellulose surface of the protective film A and the triacetylrose surface of the protective film B become the bonding surface with the polarizing film 1. A polarizing plate A-2 was obtained. The single transmittance of the polarizing plate A-2 was 42.0%.
(偏光板A-2の作製)
保護フィルムAと保護フィルムBにケン化処理を行った。保護フィルムAのトリアセチルセルロース面及び保護フィルムBのトリアセチルロース面が偏光フィルム1との貼合面となるように、保護フィルムAと偏光フィルム1と保護フィルムBとを水系接着剤で接着し偏光板A-2を得た。偏光板A-2の単体透過率は、42.0%であった。 [Production Example 25]
(Preparation of polarizing plate A-2)
The protective films A and B were subjected to saponification treatment. The protective film A, the
[製造例26]
(偏光板B-2の作製)
保護フィルムBにケン化処理を行った。保護フィルムBのトリアセチルロース面が偏光フィルム1との貼合面となるように、保護フィルムBと偏光フィルム1とを水系接着剤で接着し偏光板B-2を得た。偏光板B-2の単体透過率は、42.5%であった。 [Production Example 26]
(Preparation of polarizing plate B-2)
The protective film B was saponified. The protective film B and thepolarizing film 1 were bonded with a water-based adhesive so that the triacetylulose surface of the protective film B became a bonding surface with the polarizing film 1 to obtain a polarizing plate B-2. The single transmittance of the polarizing plate B-2 was 42.5%.
(偏光板B-2の作製)
保護フィルムBにケン化処理を行った。保護フィルムBのトリアセチルロース面が偏光フィルム1との貼合面となるように、保護フィルムBと偏光フィルム1とを水系接着剤で接着し偏光板B-2を得た。偏光板B-2の単体透過率は、42.5%であった。 [Production Example 26]
(Preparation of polarizing plate B-2)
The protective film B was saponified. The protective film B and the
[製造例27]
(偏光板C-2の作製)
保護フィルムCの一方の表面にコロナ処理をした。コロナ処理をした面が偏光フィルム1との貼合面となるように、保護フィルムCと偏光フィルム1とを水系接着剤で接着し偏光板C-2を得た。偏光板C-2の単体透過率は、42.3%であった。 [Production Example 27]
(Preparation of polarizing plate C-2)
One surface of the protective film C was subjected to corona treatment. The protective film C and thepolarizing film 1 were bonded with an aqueous adhesive so that the corona-treated surface became a bonding surface with the polarizing film 1 to obtain a polarizing plate C-2. The single transmittance of the polarizing plate C-2 was 42.3%.
(偏光板C-2の作製)
保護フィルムCの一方の表面にコロナ処理をした。コロナ処理をした面が偏光フィルム1との貼合面となるように、保護フィルムCと偏光フィルム1とを水系接着剤で接着し偏光板C-2を得た。偏光板C-2の単体透過率は、42.3%であった。 [Production Example 27]
(Preparation of polarizing plate C-2)
One surface of the protective film C was subjected to corona treatment. The protective film C and the
[製造例28]
(偏光板D-2の作製)
保護フィルムAと保護フィルムBにケン化処理を行った。保護フィルムAのトリアセチルセルロース面及び保護フィルムBのトリアセチルロース面が偏光フィルム2との貼合面となるように、保護フィルムAと偏光フィルム2と保護フィルムBとを水系接着剤で接着し偏光板D-2を得た。偏光板D-2の単体透過率は、42.0%であった。 [Production Example 28]
(Preparation of polarizing plate D-2)
The protective films A and B were subjected to saponification treatment. The protective film A, thepolarizing film 2 and the protective film B are bonded with an aqueous adhesive so that the triacetyl cellulose surface of the protective film A and the triacetylrose surface of the protective film B become the bonding surface with the polarizing film 2. A polarizing plate D-2 was obtained. The single transmittance of the polarizing plate D-2 was 42.0%.
(偏光板D-2の作製)
保護フィルムAと保護フィルムBにケン化処理を行った。保護フィルムAのトリアセチルセルロース面及び保護フィルムBのトリアセチルロース面が偏光フィルム2との貼合面となるように、保護フィルムAと偏光フィルム2と保護フィルムBとを水系接着剤で接着し偏光板D-2を得た。偏光板D-2の単体透過率は、42.0%であった。 [Production Example 28]
(Preparation of polarizing plate D-2)
The protective films A and B were subjected to saponification treatment. The protective film A, the
[製造例29]
(偏光板E-2の作製)
保護フィルムBにケン化処理を行った。保護フィルムBのトリアセチルロース面が偏光フィルム2との貼合面となるように、保護フィルムBと偏光フィルム2とを水系接着剤で接着し偏光板E-2を得た。偏光板E-2の単体透過率は、42.5%であった。 [Production Example 29]
(Preparation of polarizing plate E-2)
The protective film B was saponified. The protective film B and thepolarizing film 2 were bonded with a water-based adhesive so that the triacetylulose surface of the protective film B became a bonding surface with the polarizing film 2 to obtain a polarizing plate E-2. The single transmittance of the polarizing plate E-2 was 42.5%.
(偏光板E-2の作製)
保護フィルムBにケン化処理を行った。保護フィルムBのトリアセチルロース面が偏光フィルム2との貼合面となるように、保護フィルムBと偏光フィルム2とを水系接着剤で接着し偏光板E-2を得た。偏光板E-2の単体透過率は、42.5%であった。 [Production Example 29]
(Preparation of polarizing plate E-2)
The protective film B was saponified. The protective film B and the
[製造例30]
(偏光板F-2の作製)
保護フィルムCの一方の表面にコロナ処理をした。保護フィルムCのコロナ処理をした面が偏光フィルム2との貼合面となるように、保護フィルムCと偏光フィルム2とを水系接着剤で接着し偏光板F-2を得た。偏光板F-2の単体透過率は、42.3%であった。 [Production Example 30]
(Preparation of polarizing plate F-2)
One surface of the protective film C was subjected to corona treatment. The protective film C and thepolarizing film 2 were bonded with a water-based adhesive so that the corona-treated surface of the protective film C became a bonding surface with the polarizing film 2 to obtain a polarizing plate F-2. The single transmittance of the polarizing plate F-2 was 42.3%.
(偏光板F-2の作製)
保護フィルムCの一方の表面にコロナ処理をした。保護フィルムCのコロナ処理をした面が偏光フィルム2との貼合面となるように、保護フィルムCと偏光フィルム2とを水系接着剤で接着し偏光板F-2を得た。偏光板F-2の単体透過率は、42.3%であった。 [Production Example 30]
(Preparation of polarizing plate F-2)
One surface of the protective film C was subjected to corona treatment. The protective film C and the
[製造例31]
(偏光板G-2の作製)
保護フィルムAにケン化処理を行い、保護フィルムCの一方の表面にコロナ処理をおこなった。保護フィルムAのトリアセチルセルロース面及び保護フィルムCのコロナ処理をした面が偏光フィルム2との貼合面となるように、保護フィルムAと偏光フィルム2と保護フィルムCとを水系接着剤で貼合し偏光板G-2を得た。偏光板G-2の単体透過率は、42.3%であった。 [Production Example 31]
(Preparation of polarizing plate G-2)
The protective film A was subjected to saponification treatment, and one surface of the protective film C was subjected to corona treatment. The protective film A, thepolarizing film 2 and the protective film C are pasted with a water-based adhesive so that the triacetyl cellulose surface of the protective film A and the corona-treated surface of the protective film C become the bonding surface with the polarizing film 2. Thus, polarizing plate G-2 was obtained. The single transmittance of the polarizing plate G-2 was 42.3%.
(偏光板G-2の作製)
保護フィルムAにケン化処理を行い、保護フィルムCの一方の表面にコロナ処理をおこなった。保護フィルムAのトリアセチルセルロース面及び保護フィルムCのコロナ処理をした面が偏光フィルム2との貼合面となるように、保護フィルムAと偏光フィルム2と保護フィルムCとを水系接着剤で貼合し偏光板G-2を得た。偏光板G-2の単体透過率は、42.3%であった。 [Production Example 31]
(Preparation of polarizing plate G-2)
The protective film A was subjected to saponification treatment, and one surface of the protective film C was subjected to corona treatment. The protective film A, the
[製造例32]
(偏光板H-2の作製)
保護フィルムAおよび保護フィルムBにケン化処理を行った。製造例3で作製した偏光性積層フィルムから基材フィルムのみを剥離し偏光フィルム3を得た。ケン化処理を行った保護フィルムAのトリアセチルセルロース面と偏光フィルム3と保護フィルムBとを水系接着剤で接着し偏光板H-2を得た。偏光板H-2の単体透過率は、41.2%であった。 [Production Example 32]
(Preparation of polarizing plate H-2)
The protective film A and the protective film B were saponified. Only the base film was peeled from the polarizing laminate film produced in Production Example 3 to obtain apolarizing film 3. The triacetylcellulose surface of the protective film A subjected to the saponification treatment, the polarizing film 3 and the protective film B were adhered with an aqueous adhesive to obtain a polarizing plate H-2. The single transmittance of the polarizing plate H-2 was 41.2%.
(偏光板H-2の作製)
保護フィルムAおよび保護フィルムBにケン化処理を行った。製造例3で作製した偏光性積層フィルムから基材フィルムのみを剥離し偏光フィルム3を得た。ケン化処理を行った保護フィルムAのトリアセチルセルロース面と偏光フィルム3と保護フィルムBとを水系接着剤で接着し偏光板H-2を得た。偏光板H-2の単体透過率は、41.2%であった。 [Production Example 32]
(Preparation of polarizing plate H-2)
The protective film A and the protective film B were saponified. Only the base film was peeled from the polarizing laminate film produced in Production Example 3 to obtain a
[製造例33~40]
製造例25~32で用いた水系接着剤を硬化性エポキシ系樹脂組成物からなる接着剤に変更した以外は同様に偏光板I-2~偏光板P-2を作製した。貼合に際しては、ベルトコンベア付き紫外線照射装置(ランプ:Fusion Dランプ、積算光量1500mJ/cm2)にて紫外線の照射を行ない、室温で1時間放置することで行った。
製造した偏光板の単体透過率は、それぞれ下記であった。
なお、()内は、同構成の水系接着剤で作製した偏光板を示す。
製造例33 偏光板I-2(偏光板A-2):単体透過率は、42.0%
製造例34 偏光板J-2(偏光板B-2):単体透過率は、42.5%
製造例35 偏光板K-2(偏光板C-2):単体透過率は、42.3%
製造例36 偏光板L-2(偏光板D-2):単体透過率は、42.0%
製造例37 偏光板M-2(偏光板E-2):単体透過率は、42.5%
製造例38 偏光板N-2(偏光板F-2):単体透過率は、42.3%
製造例39 偏光板O-2(偏光板G-2):単体透過率は、42.3%
製造例40 偏光板P-2(偏光板H-2):単体透過率は、41.2%
[Production Examples 33 to 40]
Polarizers I-2 to P-2 were similarly prepared except that the water-based adhesive used in Production Examples 25 to 32 was changed to an adhesive made of a curable epoxy resin composition. The pasting was performed by irradiating with an ultraviolet ray using an ultraviolet irradiation device with a belt conveyor (lamp: Fusion D lamp, integrated light quantity 1500 mJ / cm 2 ) and leaving it at room temperature for 1 hour.
The single transmittance of the manufactured polarizing plate was as follows.
In addition, the inside of () shows the polarizing plate produced with the water-system adhesive of the same structure.
Production Example 33 Polarizing plate I-2 (Polarizing plate A-2): Single transmittance is 42.0%
Production Example 34 Polarizing plate J-2 (Polarizing plate B-2): Single transmittance is 42.5%
Production Example 35 Polarizing plate K-2 (Polarizing plate C-2): Single transmittance is 42.3%
Production Example 36 Polarizing plate L-2 (polarizing plate D-2): Single transmittance is 42.0%
Production Example 37 Polarizing plate M-2 (Polarizing plate E-2): Single transmittance is 42.5%
Production Example 38 Polarizing plate N-2 (polarizing plate F-2): Single transmittance is 42.3%
Production Example 39 Polarizing plate O-2 (polarizing plate G-2): Single transmittance is 42.3%
Production Example 40 Polarizing plate P-2 (Polarizing plate H-2): Single transmittance is 41.2%
製造例25~32で用いた水系接着剤を硬化性エポキシ系樹脂組成物からなる接着剤に変更した以外は同様に偏光板I-2~偏光板P-2を作製した。貼合に際しては、ベルトコンベア付き紫外線照射装置(ランプ:Fusion Dランプ、積算光量1500mJ/cm2)にて紫外線の照射を行ない、室温で1時間放置することで行った。
製造した偏光板の単体透過率は、それぞれ下記であった。
なお、()内は、同構成の水系接着剤で作製した偏光板を示す。
製造例33 偏光板I-2(偏光板A-2):単体透過率は、42.0%
製造例34 偏光板J-2(偏光板B-2):単体透過率は、42.5%
製造例35 偏光板K-2(偏光板C-2):単体透過率は、42.3%
製造例36 偏光板L-2(偏光板D-2):単体透過率は、42.0%
製造例37 偏光板M-2(偏光板E-2):単体透過率は、42.5%
製造例38 偏光板N-2(偏光板F-2):単体透過率は、42.3%
製造例39 偏光板O-2(偏光板G-2):単体透過率は、42.3%
製造例40 偏光板P-2(偏光板H-2):単体透過率は、41.2%
[Production Examples 33 to 40]
Polarizers I-2 to P-2 were similarly prepared except that the water-based adhesive used in Production Examples 25 to 32 was changed to an adhesive made of a curable epoxy resin composition. The pasting was performed by irradiating with an ultraviolet ray using an ultraviolet irradiation device with a belt conveyor (lamp: Fusion D lamp, integrated light quantity 1500 mJ / cm 2 ) and leaving it at room temperature for 1 hour.
The single transmittance of the manufactured polarizing plate was as follows.
In addition, the inside of () shows the polarizing plate produced with the water-system adhesive of the same structure.
Production Example 33 Polarizing plate I-2 (Polarizing plate A-2): Single transmittance is 42.0%
Production Example 34 Polarizing plate J-2 (Polarizing plate B-2): Single transmittance is 42.5%
Production Example 35 Polarizing plate K-2 (Polarizing plate C-2): Single transmittance is 42.3%
Production Example 36 Polarizing plate L-2 (polarizing plate D-2): Single transmittance is 42.0%
Production Example 37 Polarizing plate M-2 (Polarizing plate E-2): Single transmittance is 42.5%
Production Example 38 Polarizing plate N-2 (polarizing plate F-2): Single transmittance is 42.3%
Production Example 39 Polarizing plate O-2 (polarizing plate G-2): Single transmittance is 42.3%
Production Example 40 Polarizing plate P-2 (Polarizing plate H-2): Single transmittance is 41.2%
[製造例41]
(偏光板Q-2の作製)
偏光板A-2における偏光フィルム1を偏光フィルム4に変更した以外は同様に偏光板を作製した。偏光板Q-2の単体透過率は、42.0%であった。 [Production Example 41]
(Preparation of polarizing plate Q-2)
A polarizing plate was produced in the same manner except that thepolarizing film 1 in the polarizing plate A-2 was changed to the polarizing film 4. The single transmittance of the polarizing plate Q-2 was 42.0%.
(偏光板Q-2の作製)
偏光板A-2における偏光フィルム1を偏光フィルム4に変更した以外は同様に偏光板を作製した。偏光板Q-2の単体透過率は、42.0%であった。 [Production Example 41]
(Preparation of polarizing plate Q-2)
A polarizing plate was produced in the same manner except that the
[製造例42]
(偏光板R-2の作製)
偏光板B-2における偏光フィルム1を偏光フィルム4に変更した以外は同様に偏光板を作製した。偏光板R-2の単体透過率は、42.5%であった。 [Production Example 42]
(Preparation of polarizing plate R-2)
A polarizing plate was produced in the same manner except that thepolarizing film 1 in the polarizing plate B-2 was changed to the polarizing film 4. The single transmittance of the polarizing plate R-2 was 42.5%.
(偏光板R-2の作製)
偏光板B-2における偏光フィルム1を偏光フィルム4に変更した以外は同様に偏光板を作製した。偏光板R-2の単体透過率は、42.5%であった。 [Production Example 42]
(Preparation of polarizing plate R-2)
A polarizing plate was produced in the same manner except that the
[実施例1]
偏光板A-1における偏光フィルム1と偏光板B-1における偏光フィルム1とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムB側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 1]
Thepolarizing film 1 in the polarizing plate A-1 and the polarizing film 1 in the polarizing plate B-1 were bonded together using an adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, the surface of the polarizing film to be bonded and the surface of the pressure-sensitive adhesive were previously subjected to corona treatment. Adhesive A was bonded to the protective film B side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
偏光板A-1における偏光フィルム1と偏光板B-1における偏光フィルム1とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムB側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 1]
The
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例2]
偏光板A-1における偏光フィルム1と偏光板C-1における偏光フィルム1とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 2]
Thepolarizing film 1 in the polarizing plate A-1 and the polarizing film 1 in the polarizing plate C-1 were bonded using an adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, the surface of the polarizing film to be bonded and the surface of the pressure-sensitive adhesive were previously subjected to corona treatment. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
偏光板A-1における偏光フィルム1と偏光板C-1における偏光フィルム1とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 2]
The
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例3]
偏光板D-1における偏光フィルム2と偏光板E-1における偏光フィルム2とを、偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムB側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 3]
Thepolarizing film 2 in the polarizing plate D-1 and the polarizing film 2 in the polarizing plate E-1 were bonded together using an adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, the surface of the polarizing film to be bonded and the surface of the pressure-sensitive adhesive were previously subjected to corona treatment. Adhesive A was bonded to the protective film B side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
偏光板D-1における偏光フィルム2と偏光板E-1における偏光フィルム2とを、偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムB側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 3]
The
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.997%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.997%.
[実施例4]
偏光板D-1における偏光フィルム2と偏光板F-1における偏光フィルム2を偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 4]
Thepolarizing film 2 in the polarizing plate D-1 and the polarizing film 2 in the polarizing plate F-1 were bonded using an adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, the surface of the polarizing film to be bonded and the surface of the pressure-sensitive adhesive were previously subjected to corona treatment. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
偏光板D-1における偏光フィルム2と偏光板F-1における偏光フィルム2を偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 4]
The
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.997%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.997%.
[実施例5]
偏光板A-1における偏光フィルム1と偏光板F-1における偏光フィルム2とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 5]
Thepolarizing film 1 in the polarizing plate A-1 and the polarizing film 2 in the polarizing plate F-1 were bonded using an adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, the surface of the polarizing film to be bonded and the surface of the pressure-sensitive adhesive were previously subjected to corona treatment. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
偏光板A-1における偏光フィルム1と偏光板F-1における偏光フィルム2とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 5]
The
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例6]
偏光板D-1における偏光フィルム2と偏光板C-1における偏光フィルム1とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 6]
Thepolarizing film 2 in the polarizing plate D-1 and the polarizing film 1 in the polarizing plate C-1 were bonded together using the adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, the surface of the polarizing film to be bonded and the surface of the pressure-sensitive adhesive were previously subjected to corona treatment. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
偏光板D-1における偏光フィルム2と偏光板C-1における偏光フィルム1とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 6]
The
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例7]
偏光板H-1における偏光フィルム3と偏光板C-1における偏光フィルム1とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.997%、単体透過率37.9%であった。 [Example 7]
Thepolarizing film 3 in the polarizing plate H-1 and the polarizing film 1 in the polarizing plate C-1 were bonded together using an adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, the surface of the polarizing film to be bonded and the surface of the pressure-sensitive adhesive were previously subjected to corona treatment. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.997%, and the single transmittance was 37.9%.
偏光板H-1における偏光フィルム3と偏光板C-1における偏光フィルム1とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.997%、単体透過率37.9%であった。 [Example 7]
The
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例8]
実施例1の偏光板A-1を偏光板I-1に、偏光板B-1を偏光板J-1に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 8]
A composite polarizing plate was produced in the same manner except that the polarizing plate A-1 of Example 1 was changed to the polarizing plate I-1 and the polarizing plate B-1 was changed to the polarizing plate J-1. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
実施例1の偏光板A-1を偏光板I-1に、偏光板B-1を偏光板J-1に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 8]
A composite polarizing plate was produced in the same manner except that the polarizing plate A-1 of Example 1 was changed to the polarizing plate I-1 and the polarizing plate B-1 was changed to the polarizing plate J-1. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例9]
実施例2の偏光板A-1を偏光板I-1に、偏光板C-1を偏光板K-1に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 9]
A composite polarizing plate was prepared in the same manner except that the polarizing plate A-1 of Example 2 was changed to the polarizing plate I-1 and the polarizing plate C-1 was changed to the polarizing plate K-1. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
実施例2の偏光板A-1を偏光板I-1に、偏光板C-1を偏光板K-1に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 9]
A composite polarizing plate was prepared in the same manner except that the polarizing plate A-1 of Example 2 was changed to the polarizing plate I-1 and the polarizing plate C-1 was changed to the polarizing plate K-1. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例10]
実施例3の偏光板D-1を偏光板L-1に、偏光板E-1を偏光板M-1に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 10]
A composite polarizing plate was produced in the same manner except that the polarizing plate D-1 of Example 3 was changed to the polarizing plate L-1 and the polarizing plate E-1 was changed to the polarizing plate M-1. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
実施例3の偏光板D-1を偏光板L-1に、偏光板E-1を偏光板M-1に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 10]
A composite polarizing plate was produced in the same manner except that the polarizing plate D-1 of Example 3 was changed to the polarizing plate L-1 and the polarizing plate E-1 was changed to the polarizing plate M-1. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.997%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.997%.
[実施例11]
実施例4の偏光板D-1を偏光板L-1に、偏光板F-1を偏光板N-1に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 11]
A composite polarizing plate was produced in the same manner except that the polarizing plate D-1 of Example 4 was changed to the polarizing plate L-1, and the polarizing plate F-1 was changed to the polarizing plate N-1. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
実施例4の偏光板D-1を偏光板L-1に、偏光板F-1を偏光板N-1に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 11]
A composite polarizing plate was produced in the same manner except that the polarizing plate D-1 of Example 4 was changed to the polarizing plate L-1, and the polarizing plate F-1 was changed to the polarizing plate N-1. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.997%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.997%.
[実施例12]
実施例5の偏光板A-1を偏光板I-1に、偏光板F-1を偏光板N-1に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 12]
A composite polarizing plate was prepared in the same manner except that the polarizing plate A-1 of Example 5 was changed to the polarizing plate I-1 and the polarizing plate F-1 was changed to the polarizing plate N-1. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
実施例5の偏光板A-1を偏光板I-1に、偏光板F-1を偏光板N-1に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 12]
A composite polarizing plate was prepared in the same manner except that the polarizing plate A-1 of Example 5 was changed to the polarizing plate I-1 and the polarizing plate F-1 was changed to the polarizing plate N-1. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例13]
実施例6の偏光板D-1を偏光板L-1に、偏光板C-1を偏光板K-1に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 13]
A composite polarizing plate was prepared in the same manner except that the polarizing plate D-1 of Example 6 was changed to the polarizing plate L-1, and the polarizing plate C-1 was changed to the polarizing plate K-1. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
実施例6の偏光板D-1を偏光板L-1に、偏光板C-1を偏光板K-1に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 13]
A composite polarizing plate was prepared in the same manner except that the polarizing plate D-1 of Example 6 was changed to the polarizing plate L-1, and the polarizing plate C-1 was changed to the polarizing plate K-1. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例14]
実施例7の偏光板H-1を偏光板P-1に、偏光板C-1を偏光板K-1に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.997%、単体透過率37.9%であった。 [Example 14]
A composite polarizing plate was prepared in the same manner except that the polarizing plate H-1 of Example 7 was changed to the polarizing plate P-1 and the polarizing plate C-1 was changed to the polarizing plate K-1. The polarization degree of the composite polarizing plate was 99.997%, and the single transmittance was 37.9%.
実施例7の偏光板H-1を偏光板P-1に、偏光板C-1を偏光板K-1に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.997%、単体透過率37.9%であった。 [Example 14]
A composite polarizing plate was prepared in the same manner except that the polarizing plate H-1 of Example 7 was changed to the polarizing plate P-1 and the polarizing plate C-1 was changed to the polarizing plate K-1. The polarization degree of the composite polarizing plate was 99.997%, and the single transmittance was 37.9%.
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例15]
偏光板A-2における保護フィルムBと偏光板B-2における偏光フィルム1とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる保護フィルム表面、偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の最外層となる保護フィルムB側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 15]
The protective film B in the polarizing plate A-2 and thepolarizing film 1 in the polarizing plate B-2 were bonded using the adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, a corona treatment was performed in advance on the protective film surface, the polarizing film surface, and the pressure-sensitive adhesive surface to be bonded. Adhesive A was bonded to the protective film B side which is the outermost layer of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
偏光板A-2における保護フィルムBと偏光板B-2における偏光フィルム1とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる保護フィルム表面、偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の最外層となる保護フィルムB側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 15]
The protective film B in the polarizing plate A-2 and the
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例16]
偏光板A-2における保護フィルムBと偏光板C-2における偏光フィルム1とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる保護フィルム表面、偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光度は99.998%、単体透過率38.6%であった。 [Example 16]
The protective film B in the polarizing plate A-2 and thepolarizing film 1 in the polarizing plate C-2 were bonded using the adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, a corona treatment was performed in advance on the protective film surface, the polarizing film surface, and the pressure-sensitive adhesive surface to be bonded. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The composite polarization degree was 99.998%, and the single transmittance was 38.6%.
偏光板A-2における保護フィルムBと偏光板C-2における偏光フィルム1とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる保護フィルム表面、偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光度は99.998%、単体透過率38.6%であった。 [Example 16]
The protective film B in the polarizing plate A-2 and the
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例17]
偏光板D-2における保護フィルムBと偏光板E-2における偏光フィルム2とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる保護フィルム表面、偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の最外層となる保護フィルムB側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 17]
The protective film B in the polarizing plate D-2 and thepolarizing film 2 in the polarizing plate E-2 were bonded using the adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, a corona treatment was performed in advance on the protective film surface, the polarizing film surface, and the pressure-sensitive adhesive surface to be bonded. Adhesive A was bonded to the protective film B side which is the outermost layer of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
偏光板D-2における保護フィルムBと偏光板E-2における偏光フィルム2とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる保護フィルム表面、偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の最外層となる保護フィルムB側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 17]
The protective film B in the polarizing plate D-2 and the
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.997%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.997%.
[実施例18]
偏光板D-2における保護フィルムBと偏光板F-2における偏光フィルム2とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる保護フィルム表面、偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 18]
The protective film B in the polarizing plate D-2 and thepolarizing film 2 in the polarizing plate F-2 were bonded using the adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, a corona treatment was performed in advance on the protective film surface, the polarizing film surface, and the pressure-sensitive adhesive surface to be bonded. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
偏光板D-2における保護フィルムBと偏光板F-2における偏光フィルム2とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる保護フィルム表面、偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 18]
The protective film B in the polarizing plate D-2 and the
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.997%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.997%.
[実施例19]
偏光板A-2における保護フィルムBと偏光板F-2における偏光フィルム2とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる保護フィルム表面、偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 19]
The protective film B in the polarizing plate A-2 and thepolarizing film 2 in the polarizing plate F-2 were bonded using the adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, a corona treatment was performed in advance on the protective film surface, the polarizing film surface, and the pressure-sensitive adhesive surface to be bonded. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
偏光板A-2における保護フィルムBと偏光板F-2における偏光フィルム2とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる保護フィルム表面、偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 19]
The protective film B in the polarizing plate A-2 and the
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例20]
偏光板D-2における保護フィルムBと偏光板C-2における偏光フィルム1とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる保護フィルム表面、偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 20]
The protective film B in the polarizing plate D-2 and thepolarizing film 1 in the polarizing plate C-2 were bonded using the adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, a corona treatment was performed in advance on the protective film surface, the polarizing film surface, and the pressure-sensitive adhesive surface to be bonded. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
偏光板D-2における保護フィルムBと偏光板C-2における偏光フィルム1とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる保護フィルム表面、偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 20]
The protective film B in the polarizing plate D-2 and the
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例21]
偏光板H-2における保護フィルムBと偏光板C-2における偏光フィルム1とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる保護フィルム表面、偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光度は99.997%、単体透過率37.9%であった。 [Example 21]
The protective film B in the polarizing plate H-2 and thepolarizing film 1 in the polarizing plate C-2 were bonded using the adhesive B so that the absorption axes of the polarizing plates were parallel to each other. At this time, a corona treatment was performed in advance on the protective film surface, the polarizing film surface, and the pressure-sensitive adhesive surface to be bonded. Adhesive A was bonded to the protective film C side of the composite polarizing plate thus obtained. The corona treatment was performed in advance on the protective film surface and the pressure-sensitive adhesive surface even when the pressure-sensitive adhesive A was bonded. The composite polarization degree was 99.997%, and the single transmittance was 37.9%.
偏光板H-2における保護フィルムBと偏光板C-2における偏光フィルム1とを偏光板の吸収軸が互いに平行となるように粘着剤Bを用いて貼りあわせた。この際、貼りあわせる保護フィルム表面、偏光フィルム表面及び粘着剤表面に予めコロナ処理を行った。こうして得られた複合偏光板の保護フィルムC側に粘着剤Aを貼合した。粘着剤Aを貼合する際にも保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。複合偏光度は99.997%、単体透過率37.9%であった。 [Example 21]
The protective film B in the polarizing plate H-2 and the
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例22]
実施例15の偏光板A-2を偏光板I-2に、偏光板B-2を偏光板J-2に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 22]
A composite polarizing plate was produced in the same manner except that the polarizing plate A-2 of Example 15 was changed to the polarizing plate I-2 and the polarizing plate B-2 was changed to the polarizing plate J-2. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
実施例15の偏光板A-2を偏光板I-2に、偏光板B-2を偏光板J-2に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 22]
A composite polarizing plate was produced in the same manner except that the polarizing plate A-2 of Example 15 was changed to the polarizing plate I-2 and the polarizing plate B-2 was changed to the polarizing plate J-2. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例23]
実施例16の偏光板A-2を偏光板I-2に、偏光板C-2を偏光板K-2に変更した以外は同様に複合偏光板を作製した。複合偏光度は99.998%、単体透過率38.6%であった。 [Example 23]
A composite polarizing plate was produced in the same manner except that the polarizing plate A-2 of Example 16 was changed to the polarizing plate I-2 and the polarizing plate C-2 was changed to the polarizing plate K-2. The composite polarization degree was 99.998%, and the single transmittance was 38.6%.
実施例16の偏光板A-2を偏光板I-2に、偏光板C-2を偏光板K-2に変更した以外は同様に複合偏光板を作製した。複合偏光度は99.998%、単体透過率38.6%であった。 [Example 23]
A composite polarizing plate was produced in the same manner except that the polarizing plate A-2 of Example 16 was changed to the polarizing plate I-2 and the polarizing plate C-2 was changed to the polarizing plate K-2. The composite polarization degree was 99.998%, and the single transmittance was 38.6%.
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例24]
実施例17の偏光板D-2を偏光板L-2に、偏光板E-2を偏光板M-2に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 24]
A composite polarizing plate was produced in the same manner except that the polarizing plate D-2 of Example 17 was changed to the polarizing plate L-2 and the polarizing plate E-2 was changed to the polarizing plate M-2. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
実施例17の偏光板D-2を偏光板L-2に、偏光板E-2を偏光板M-2に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 24]
A composite polarizing plate was produced in the same manner except that the polarizing plate D-2 of Example 17 was changed to the polarizing plate L-2 and the polarizing plate E-2 was changed to the polarizing plate M-2. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.997%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.997%.
[実施例25]
実施例18の偏光板D-2を偏光板L-2に、偏光板F-2を偏光板N-2に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 25]
A composite polarizing plate was prepared in the same manner except that the polarizing plate D-2 of Example 18 was changed to the polarizing plate L-2 and the polarizing plate F-2 was changed to the polarizing plate N-2. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
実施例18の偏光板D-2を偏光板L-2に、偏光板F-2を偏光板N-2に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 25]
A composite polarizing plate was prepared in the same manner except that the polarizing plate D-2 of Example 18 was changed to the polarizing plate L-2 and the polarizing plate F-2 was changed to the polarizing plate N-2. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.997%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.997%.
[実施例26]
実施例19の偏光板A-2を偏光板I-2に、偏光板F-2を偏光板N-2に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 26]
A composite polarizing plate was prepared in the same manner except that the polarizing plate A-2 of Example 19 was changed to the polarizing plate I-2 and the polarizing plate F-2 was changed to the polarizing plate N-2. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
実施例19の偏光板A-2を偏光板I-2に、偏光板F-2を偏光板N-2に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 26]
A composite polarizing plate was prepared in the same manner except that the polarizing plate A-2 of Example 19 was changed to the polarizing plate I-2 and the polarizing plate F-2 was changed to the polarizing plate N-2. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例27]
実施例20の偏光板D-2を偏光板L-2に、偏光板C-2を偏光板K-2に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 27]
A composite polarizing plate was produced in the same manner except that the polarizing plate D-2 of Example 20 was changed to the polarizing plate L-2 and the polarizing plate C-2 was changed to the polarizing plate K-2. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
実施例20の偏光板D-2を偏光板L-2に、偏光板C-2を偏光板K-2に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Example 27]
A composite polarizing plate was produced in the same manner except that the polarizing plate D-2 of Example 20 was changed to the polarizing plate L-2 and the polarizing plate C-2 was changed to the polarizing plate K-2. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[実施例28]
実施例21の偏光板H-2を偏光板P-2に、偏光板C-2を偏光板K-2に変更した以外は同様に複合偏光板を作製した。複合偏光度は99.997%、単体透過率37.9%であった。 [Example 28]
A composite polarizing plate was produced in the same manner except that the polarizing plate H-2 of Example 21 was changed to the polarizing plate P-2 and the polarizing plate C-2 was changed to the polarizing plate K-2. The composite polarization degree was 99.997%, and the single transmittance was 37.9%.
実施例21の偏光板H-2を偏光板P-2に、偏光板C-2を偏光板K-2に変更した以外は同様に複合偏光板を作製した。複合偏光度は99.997%、単体透過率37.9%であった。 [Example 28]
A composite polarizing plate was produced in the same manner except that the polarizing plate H-2 of Example 21 was changed to the polarizing plate P-2 and the polarizing plate C-2 was changed to the polarizing plate K-2. The composite polarization degree was 99.997%, and the single transmittance was 37.9%.
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であった。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%.
[比較例1]
偏光板G-1における保護フィルムC上に粘着剤Aを貼合した。粘着剤Aを貼合する際、保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。偏光板G-1の偏光度は、99.993%であった。 [Comparative Example 1]
Adhesive A was bonded onto the protective film C in the polarizing plate G-1. When bonding the pressure-sensitive adhesive A, the protective film surface and the pressure-sensitive adhesive surface were previously subjected to corona treatment. The polarization degree of the polarizing plate G-1 was 99.993%.
偏光板G-1における保護フィルムC上に粘着剤Aを貼合した。粘着剤Aを貼合する際、保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。偏光板G-1の偏光度は、99.993%であった。 [Comparative Example 1]
Adhesive A was bonded onto the protective film C in the polarizing plate G-1. When bonding the pressure-sensitive adhesive A, the protective film surface and the pressure-sensitive adhesive surface were previously subjected to corona treatment. The polarization degree of the polarizing plate G-1 was 99.993%.
作製した偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.94%であった。
The produced polarizing plate was cut into a 40 mm square, and bonded to Eagle XG manufactured by Corning, to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.94%.
[比較例2]
偏光板O-1における保護フィルムC上に粘着剤Aを貼合した。粘着剤Aを貼合する際、保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。偏光板O-1の偏光度は、99.993%であった。 [Comparative Example 2]
Adhesive A was bonded onto the protective film C in the polarizing plate O-1. When bonding the pressure-sensitive adhesive A, the protective film surface and the pressure-sensitive adhesive surface were previously subjected to corona treatment. The degree of polarization of the polarizing plate O-1 was 99.993%.
偏光板O-1における保護フィルムC上に粘着剤Aを貼合した。粘着剤Aを貼合する際、保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。偏光板O-1の偏光度は、99.993%であった。 [Comparative Example 2]
Adhesive A was bonded onto the protective film C in the polarizing plate O-1. When bonding the pressure-sensitive adhesive A, the protective film surface and the pressure-sensitive adhesive surface were previously subjected to corona treatment. The degree of polarization of the polarizing plate O-1 was 99.993%.
作製した偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.94%であった。
The produced polarizing plate was cut into a 40 mm square, and bonded to Eagle XG manufactured by Corning, to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.94%.
[比較例3]
実施例1の偏光板A-1を偏光板Q-1に、偏光板B-1を偏光板R-1に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Comparative Example 3]
A composite polarizing plate was prepared in the same manner except that the polarizing plate A-1 of Example 1 was changed to the polarizing plate Q-1, and the polarizing plate B-1 was changed to the polarizing plate R-1. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
実施例1の偏光板A-1を偏光板Q-1に、偏光板B-1を偏光板R-1に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Comparative Example 3]
A composite polarizing plate was prepared in the same manner except that the polarizing plate A-1 of Example 1 was changed to the polarizing plate Q-1, and the polarizing plate B-1 was changed to the polarizing plate R-1. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であったが、偏光板端部から1mm以内の領域に剥離が発生した。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%, but peeling occurred in a region within 1 mm from the end of the polarizing plate.
[比較例4]
偏光板G-2における保護フィルムC上に粘着剤Aを貼合した。粘着剤Aを貼合する際、保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。偏光板G-2の偏光度は、99.993%であった。 [Comparative Example 4]
Adhesive A was bonded onto the protective film C in the polarizing plate G-2. When bonding the pressure-sensitive adhesive A, the protective film surface and the pressure-sensitive adhesive surface were previously subjected to corona treatment. The polarization degree of the polarizing plate G-2 was 99.993%.
偏光板G-2における保護フィルムC上に粘着剤Aを貼合した。粘着剤Aを貼合する際、保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。偏光板G-2の偏光度は、99.993%であった。 [Comparative Example 4]
Adhesive A was bonded onto the protective film C in the polarizing plate G-2. When bonding the pressure-sensitive adhesive A, the protective film surface and the pressure-sensitive adhesive surface were previously subjected to corona treatment. The polarization degree of the polarizing plate G-2 was 99.993%.
作製した偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.94%であった。
The produced polarizing plate was cut into a 40 mm square, and bonded to Eagle XG manufactured by Corning, to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.94%.
[比較例5]
偏光板O-2における保護フィルムC上に粘着剤Aを貼合した。粘着剤Aを貼合する際、保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。偏光板O-2の偏光度は、99.993%であった。 [Comparative Example 5]
Adhesive A was bonded onto the protective film C in the polarizing plate O-2. When bonding the pressure-sensitive adhesive A, the protective film surface and the pressure-sensitive adhesive surface were previously subjected to corona treatment. The polarization degree of the polarizing plate O-2 was 99.993%.
偏光板O-2における保護フィルムC上に粘着剤Aを貼合した。粘着剤Aを貼合する際、保護フィルム表面及び粘着剤表面に予めコロナ処理を行った。偏光板O-2の偏光度は、99.993%であった。 [Comparative Example 5]
Adhesive A was bonded onto the protective film C in the polarizing plate O-2. When bonding the pressure-sensitive adhesive A, the protective film surface and the pressure-sensitive adhesive surface were previously subjected to corona treatment. The polarization degree of the polarizing plate O-2 was 99.993%.
作製した偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.94%であった。
The produced polarizing plate was cut into a 40 mm square, and bonded to Eagle XG manufactured by Corning, to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.94%.
[比較例6]
実施例15の偏光板A-2を偏光板Q-2に、偏光板B-2を偏光板R-2に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Comparative Example 6]
A composite polarizing plate was prepared in the same manner except that the polarizing plate A-2 of Example 15 was changed to the polarizing plate Q-2 and the polarizing plate B-2 was changed to the polarizing plate R-2. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
実施例15の偏光板A-2を偏光板Q-2に、偏光板B-2を偏光板R-2に変更した以外は同様に複合偏光板を作製した。複合偏光板の偏光度は99.998%、単体透過率38.6%であった。 [Comparative Example 6]
A composite polarizing plate was prepared in the same manner except that the polarizing plate A-2 of Example 15 was changed to the polarizing plate Q-2 and the polarizing plate B-2 was changed to the polarizing plate R-2. The polarization degree of the composite polarizing plate was 99.998%, and the single transmittance was 38.6%.
作製した複合偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを95℃のオーブンに1000時間投入した。耐熱試験後の偏光度は、99.996%であったが、偏光板端部から1mm以内の領域に剥離が発生した。
The produced composite polarizing plate was cut into a 40 mm square and bonded to Corning Eagle XG to produce a sample for heat resistance evaluation. The sample thus prepared was put into an oven at 95 ° C. for 1000 hours. The degree of polarization after the heat test was 99.996%, but peeling occurred in a region within 1 mm from the end of the polarizing plate.
各実施例で作製した複合偏光板の層構成を表1及び2に示す。また実施例及び比較例の結果を表3に示す。
Tables 1 and 2 show the layer structure of the composite polarizing plate produced in each example. Table 3 shows the results of Examples and Comparative Examples.
本発明によれば、耐熱耐久性に優れた複合偏光板及び液晶パネルが得られる。
According to the present invention, a composite polarizing plate and a liquid crystal panel having excellent heat resistance can be obtained.
10 複合偏光板
11A 第1の偏光フィルム
11B 第2の偏光フィルム
12A 第1の保護フィルム
12B 第2の保護フィルム
13,14 粘着剤層
15 第3の保護フィルム
20 表面処理層 DESCRIPTION OFSYMBOLS 10 Composite polarizing plate 11A 1st polarizing film 11B 2nd polarizing film 12A 1st protective film 12B 2nd protective films 13 and 14 Adhesive layer 15 3rd protective film 20 Surface treatment layer
11A 第1の偏光フィルム
11B 第2の偏光フィルム
12A 第1の保護フィルム
12B 第2の保護フィルム
13,14 粘着剤層
15 第3の保護フィルム
20 表面処理層 DESCRIPTION OF
Claims (10)
- 第1の保護フィルム、厚みが15μm以下の第1の偏光フィルム、及び厚みが15μm以下の第2の偏光フィルムがこの順に積層され、第1の偏光フィルムの吸収軸と第2の偏光フィルムの吸収軸とが略平行である複合偏光板。 The first protective film, the first polarizing film having a thickness of 15 μm or less, and the second polarizing film having a thickness of 15 μm or less are laminated in this order, and the absorption axis of the first polarizing film and the absorption of the second polarizing film A composite polarizing plate whose axis is substantially parallel.
- 第1の偏光フィルムの厚みと第2の偏光フィルムの厚みとの差が5μm以下である請求項1に記載の複合偏光板。 The composite polarizing plate according to claim 1, wherein the difference between the thickness of the first polarizing film and the thickness of the second polarizing film is 5 µm or less.
- 第2の偏光フィルムにおける第1の偏光フィルムが積層された面とは反対側の面に、第2の保護フィルムが積層された請求項1又は2に記載の複合偏光板。 The composite polarizing plate according to claim 1 or 2, wherein a second protective film is laminated on a surface of the second polarizing film opposite to the surface on which the first polarizing film is laminated.
- 第1の偏光フィルム及び第1の保護フィルムを有する第1の偏光板の単体透過率が、第2の偏光フィルム及び第2の保護フィルムを有する第2の偏光板の単体透過率より小さい請求項3に記載の複合偏光板。 The single transmittance of the first polarizing plate having the first polarizing film and the first protective film is smaller than the single transmittance of the second polarizing plate having the second polarizing film and the second protective film. 3. The composite polarizing plate according to 3.
- 第2の保護フィルムがセルロース系樹脂、ポリオレフィン系樹脂及びアクリル系樹脂からなる群から選ばれる少なくとも一種を含む請求項3又は4に記載の複合偏光板。 The composite polarizing plate according to claim 3 or 4, wherein the second protective film contains at least one selected from the group consisting of a cellulose resin, a polyolefin resin, and an acrylic resin.
- 第2の保護フィルムの厚み方向の位相差値が-10~10nmである請求項3~5のいずれかに記載の複合偏光板。 6. The composite polarizing plate according to claim 3, wherein the second protective film has a thickness direction retardation value of −10 to 10 nm.
- 第2の保護フィルムにおける第2の偏光フィルムが積層された面とは反対側の面に、粘着剤層が積層された請求項3~6のいずれかに記載の複合偏光板。 The composite polarizing plate according to any one of claims 3 to 6, wherein an adhesive layer is laminated on a surface of the second protective film opposite to the surface on which the second polarizing film is laminated.
- 第1の偏光フィルムと第2の偏光フィルムとの間に、第3の保護フィルムを有する請求項1~7のいずれかに記載の複合偏光板。 The composite polarizing plate according to any one of claims 1 to 7, further comprising a third protective film between the first polarizing film and the second polarizing film.
- 第3の保護フィルムがセルロース系樹脂フィルムからなり、波長590nmにおける面内の位相差値Re(590)が10nm以下であり、波長590nmにおける厚み方向の位相差値Rth(590)の絶対値が10nm以下である請求項8に記載の複合偏光板。 The third protective film is made of a cellulose resin film, the in-plane retardation value Re (590) at a wavelength of 590 nm is 10 nm or less, and the thickness direction retardation value Rth (590) at a wavelength of 590 nm is 10 nm. The composite polarizing plate according to claim 8, wherein:
- 液晶セルの少なくとも一方の面に、請求項1~9のいずれかに記載の複合偏光板が配置された液晶パネル。 A liquid crystal panel in which the composite polarizing plate according to any one of claims 1 to 9 is disposed on at least one surface of a liquid crystal cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017539831A JPWO2017047407A1 (en) | 2015-09-18 | 2016-09-02 | Composite polarizing plate and liquid crystal panel using the same |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-184783 | 2015-09-18 | ||
JP2015184783 | 2015-09-18 | ||
JP2015184784 | 2015-09-18 | ||
JP2015-184784 | 2015-09-18 | ||
JP2015-240883 | 2015-12-10 | ||
JP2015-240884 | 2015-12-10 | ||
JP2015240883 | 2015-12-10 | ||
JP2015240884 | 2015-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017047407A1 true WO2017047407A1 (en) | 2017-03-23 |
Family
ID=58289202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/075808 WO2017047407A1 (en) | 2015-09-18 | 2016-09-02 | Composite polarizing plate and liquid crystal panel using same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2017047407A1 (en) |
TW (1) | TWI681874B (en) |
WO (1) | WO2017047407A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10133196A (en) * | 1996-10-28 | 1998-05-22 | Sony Corp | Liquid crystal display device and polarizing plate for it |
JP2003084271A (en) * | 2001-09-14 | 2003-03-19 | Fujitsu Ltd | Liquid crystal display device |
JP2007233362A (en) * | 2006-02-02 | 2007-09-13 | Semiconductor Energy Lab Co Ltd | Display device |
JP2010039420A (en) * | 2008-08-08 | 2010-02-18 | Nitto Denko Corp | Liquid crystal panel and liquid crystal display |
JP2011059266A (en) * | 2009-09-08 | 2011-03-24 | Hitachi Displays Ltd | Liquid crystal display apparatus |
WO2012111703A1 (en) * | 2011-02-15 | 2012-08-23 | 富士フイルム株式会社 | Barrier element and 3d display device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5546766B2 (en) * | 2009-01-07 | 2014-07-09 | 日東電工株式会社 | Liquid crystal panel and liquid crystal display device |
JP5930636B2 (en) * | 2011-09-27 | 2016-06-08 | 住友化学株式会社 | Polarizer |
JP5602823B2 (en) * | 2012-12-07 | 2014-10-08 | 住友化学株式会社 | Polarizing laminated film and method for producing polarizing plate, polarizing laminated film |
JP6116880B2 (en) * | 2012-12-07 | 2017-04-19 | 住友化学株式会社 | Production method of polarizing laminated film and polarizing plate |
-
2016
- 2016-09-02 JP JP2017539831A patent/JPWO2017047407A1/en active Pending
- 2016-09-02 WO PCT/JP2016/075808 patent/WO2017047407A1/en active Application Filing
- 2016-09-02 TW TW105128417A patent/TWI681874B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10133196A (en) * | 1996-10-28 | 1998-05-22 | Sony Corp | Liquid crystal display device and polarizing plate for it |
JP2003084271A (en) * | 2001-09-14 | 2003-03-19 | Fujitsu Ltd | Liquid crystal display device |
JP2007233362A (en) * | 2006-02-02 | 2007-09-13 | Semiconductor Energy Lab Co Ltd | Display device |
JP2010039420A (en) * | 2008-08-08 | 2010-02-18 | Nitto Denko Corp | Liquid crystal panel and liquid crystal display |
JP2011059266A (en) * | 2009-09-08 | 2011-03-24 | Hitachi Displays Ltd | Liquid crystal display apparatus |
WO2012111703A1 (en) * | 2011-02-15 | 2012-08-23 | 富士フイルム株式会社 | Barrier element and 3d display device |
Also Published As
Publication number | Publication date |
---|---|
TW201720644A (en) | 2017-06-16 |
TWI681874B (en) | 2020-01-11 |
JPWO2017047407A1 (en) | 2018-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5446732B2 (en) | Manufacturing method of polarizing plate | |
JP5251827B2 (en) | Liquid crystal display | |
WO2018193729A1 (en) | Polarizing plate and liquid crystal panel | |
JP5903794B2 (en) | Polarizing plate set, liquid crystal panel and liquid crystal display device | |
WO2017047408A1 (en) | Composite polarizing plate and liquid crystal panel using same | |
JP2011203571A (en) | Polarizing plate and method for manufacturing the same | |
JP2011170234A (en) | Liquid crystal display device | |
WO2017047405A1 (en) | Composite polarizing plate and liquid crystal panel using same | |
WO2017047406A1 (en) | Composite polarizing plate and liquid crystal panel using same | |
JP2017083820A (en) | Polarizing plate and liquid crystal panel, and manufacturing method of polarizing plate | |
CN106990471B (en) | Polarizing plate and liquid crystal panel | |
JP2021036328A (en) | Polarizing plate set and liquid crystal panel | |
JP2017138582A (en) | Method for manufacturing polarizing plate | |
JP2017097087A (en) | Polarizing plate and image display device | |
JP6112249B2 (en) | Polarizing plate set and liquid crystal panel | |
WO2017130656A1 (en) | Production method for polarizing plates | |
WO2017047407A1 (en) | Composite polarizing plate and liquid crystal panel using same | |
JP2017102425A (en) | Polarizing plate and liquid crystal panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16846278 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017539831 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16846278 Country of ref document: EP Kind code of ref document: A1 |