[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017047307A1 - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
WO2017047307A1
WO2017047307A1 PCT/JP2016/073745 JP2016073745W WO2017047307A1 WO 2017047307 A1 WO2017047307 A1 WO 2017047307A1 JP 2016073745 W JP2016073745 W JP 2016073745W WO 2017047307 A1 WO2017047307 A1 WO 2017047307A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing composition
polysilicon
water
silicon nitride
Prior art date
Application number
PCT/JP2016/073745
Other languages
French (fr)
Japanese (ja)
Inventor
易民 潘
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Publication of WO2017047307A1 publication Critical patent/WO2017047307A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition.
  • CMP chemical mechanical polishing
  • a polysilicon film that is relatively easy to polish or a silicon nitride film that is relatively difficult to polish is disposed below the amorphous silicon film.
  • the polysilicon film or the amorphous silicon film may be polished using this silicon nitride film as a stopper layer.
  • it is ideal that the polysilicon film or the amorphous silicon film is polished efficiently and the silicon nitride film is hardly polished.
  • the polishing composition used for such polishing includes a ratio of the polishing rate of the polysilicon film and the amorphous silicon film to the polishing rate of the silicon nitride film (the polishing rate of the polysilicon film or the amorphous silicon film is changed to the silicon nitride film). Calculated by dividing by the polishing rate of (5), the polishing rate of the polysilicon film and the amorphous silicon film is high, and the polishing rate of the silicon nitride film is required to be close to zero.
  • Patent Document 1 discloses a polishing composition in which the ratio of the polishing rate of the polysilicon film to the polishing rate of the silicon nitride film is large and the polishing rate of the polysilicon film is high.
  • the polishing composition disclosed in Patent Document 1 cannot be said to have a sufficiently low polishing rate for the silicon nitride film. Therefore, after the polishing of the polysilicon film is completed, if the polishing operation is not properly finished, the silicon nitride film as the stopper layer may be polished.
  • the present invention solves the problems of the prior art as described above, the ratio of the polishing rate of polysilicon and amorphous silicon to the polishing rate of silicon nitride is large, the polishing rate of polysilicon and amorphous silicon is large, and An object of the present invention is to provide a polishing composition having a low polishing rate for silicon nitride.
  • a polishing composition according to one embodiment of the present invention is a polishing composition used for polishing a polishing object having at least one of polysilicon and amorphous silicon and silicon nitride,
  • the gist is to contain abrasive grains, a quaternary ammonium salt having a benzene ring in the structure, and at least one of a water-soluble polymer and a surfactant.
  • the polishing composition of the present invention has a large ratio of the polishing rate of polysilicon and amorphous silicon to the polishing rate of silicon nitride, a high polishing rate of polysilicon and amorphous silicon, and a low polishing rate of silicon nitride.
  • a polishing composition used for polishing a polishing object having polysilicon and silicon nitride will be described.
  • This polishing composition is used for polishing objects having amorphous silicon and silicon nitride. It can also be used for polishing or polishing a polishing object having polysilicon, amorphous silicon, and silicon nitride.
  • the polishing composition of the present embodiment is a polishing composition used for polishing a polishing object having polysilicon and silicon nitride, and includes abrasive grains and a quaternary ammonium salt having a benzene ring in the structure. And at least one of a water-soluble polymer and a surfactant.
  • polishing rate ratio the ratio of the polishing rate of polysilicon to the polishing rate of silicon nitride when polished under the same conditions. It has the performance that the polishing rate of polysilicon is high and the polishing rate of silicon nitride is low. If the object to be polished has amorphous silicon, “polysilicon” may be read as “amorphous silicon” (the same applies to the following).
  • the polishing composition of this embodiment has high hydrolyzability, it is possible to polish polysilicon efficiently. Therefore, if polishing is performed using the polishing composition of the present embodiment, the polishing rate of polysilicon increases. Further, since the cation of the quaternary ammonium salt is adsorbed to the negatively charged silicon nitride, polishing of the silicon nitride is suppressed. Therefore, if polishing is performed using the polishing composition of the present embodiment, the polishing rate of silicon nitride is reduced. Further, since the polishing rate of polysilicon is kept large, the polishing rate ratio becomes large (that is, the polishing selectivity is high), and the polishing rate ratio can be 250 or more.
  • the polishing object having polysilicon and silicon nitride is polished using the polishing composition of the present embodiment, the polysilicon can be efficiently and selectively polished and removed. Further, since silicon nitride is difficult to polish, even if the polishing operation is not terminated immediately after the polishing of polysilicon is completed, the polishing amount of silicon nitride is small. For example, when a silicon wafer with a film in which a polysilicon film is deposited on a silicon nitride film is an object to be polished, the polysilicon film can be efficiently and selectively polished and removed. Even if the polishing operation is not terminated immediately after the polishing of the polysilicon film is completed, the silicon nitride film as the stopper layer is hardly polished.
  • the water-soluble polymer has an action of adsorbing to polysilicon and suppressing polishing.
  • the water-soluble polymer adsorbed on the convex part constituting the level difference is removed by polishing, so that the polishing rate of the polysilicon is maintained, while the high water solubility of the concave part constituting the level difference is maintained.
  • the molecules are not removed and polishing is suppressed. Therefore, when polishing is performed using the polishing composition of the present embodiment, a difference occurs in the polishing rate between the convex portions and the concave portions on the surface of the polysilicon, and as a result, the level difference on the surface of the polysilicon is easily relaxed.
  • the polishing rate of the convex portions is accelerated, and thus particularly excellent step relaxation performance can be obtained.
  • the presence of nitrogen atoms on the surface of the water-soluble polymer adsorbed on the surface of the polysilicon makes the abrasive particles hydrophilic and negatively charged due to the positive charge and hydrophilic action of the nitrogen atoms. This is considered to be because the affinity with the surface of the polysilicon is improved and scraping with abrasive grains is promoted.
  • the polishing object applicable to polishing using the polishing composition of the present embodiment is not particularly limited as long as it has polysilicon and silicon nitride. Examples include a film formed with a polysilicon film and a silicon nitride film.
  • the material of the substrate is not particularly limited, and examples thereof include simple silicon, silicon compound, metal, ceramic, and resin.
  • Examples of the single silicon include single crystal silicon, polysilicon (polycrystalline silicon), and amorphous silicon.
  • Examples of the silicon compound include silicon nitride, silicon dioxide (for example, a silicon dioxide interlayer insulating film formed using tetraethoxysilane (TEOS)), silicon carbide, and the like.
  • Examples of the metal include tungsten, copper, aluminum, hafnium, cobalt, nickel, titanium, tantalum, gold, silver, platinum, palladium, rhodium, ruthenium, iridium, osmium and the like. These metals may be contained in the form of an alloy or a metal compound.
  • a specific example of such an object to be polished is a silicon wafer with a film in which a polysilicon film is deposited on a silicon nitride film.
  • abrasive grains contained in the polishing composition of the present embodiment is not particularly limited, and may be any of inorganic particles, organic particles, and organic-inorganic composite particles, for example.
  • the inorganic particles include particles made of a metal oxide such as silica, alumina, ceria, and titania, and particles made of ceramic such as silicon nitride, silicon carbide, and boron nitride.
  • the organic particles include polymethyl methacrylate (PMMA) particles. These abrasive grains may be used alone or in combination of two or more.
  • silica is preferred.
  • Specific examples of the silica include colloidal silica, fumed silica, sol-gel silica, and the like.
  • colloidal silica is more preferable, and in the colloidal silica, a cage shape (for example, an ellipse centering on the long axis) is used.
  • the shape of a rotating body obtained by rotating the colloidal silica is more preferable.
  • an organic acid may be immobilized on the surface of the silica.
  • the organic acid is immobilized on the silica by chemically bonding a functional group of the organic acid to the surface of the silica.
  • organic acids include sulfonic acid, carboxylic acid, sulfinic acid, and phosphonic acid.
  • the content of abrasive grains in the polishing composition can be 0.1% by mass or more, preferably 0.5% by mass or more, and more preferably 1% by mass or more. As the content of the abrasive grains increases, the removal rate (polishing rate) of the object to be polished by the polishing composition is improved.
  • the content of the abrasive grains in the polishing composition can be 15% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, and particularly preferably. Is 2.3 mass% or less. As the content of the abrasive grains decreases, the material cost of the polishing composition can be reduced, and in addition, the aggregation of the abrasive grains hardly occurs.
  • the average primary particle diameter of the abrasive grains can be 5 nm or more, preferably 10 nm or more, more preferably 30 nm or more. As the average primary particle diameter of the abrasive grains increases, the polishing rate of the object to be polished by the polishing composition increases.
  • the average primary particle diameter of the abrasive grains can be 200 nm or less, preferably 100 nm or less, more preferably 50 nm or less. As the average primary particle diameter of the abrasive grains decreases, a surface to be polished with few surface defects is easily obtained by polishing the object to be polished using the polishing composition.
  • the value of the average primary particle diameter of the abrasive grains can be calculated based on, for example, the specific surface area of the abrasive grains measured by the BET method using nitrogen gas or the like.
  • the average primary particle diameter of virtual spherical particles is calculated based on the specific surface area of the abrasive grains measured by the BET method.
  • the average primary particle diameter of typical spherical particles is defined as the average primary particle diameter of non-spherical abrasive grains.
  • Quaternary ammonium salt having a benzene ring in the structure includes a quaternary ammonium salt having a benzene ring in the structure (hereinafter simply referred to as “quaternary ammonium salt”). Is also added).
  • the kind of the quaternary ammonium salt is not particularly limited as long as it has a benzene ring in its structure.
  • the ammonium ion of the quaternary ammonium salt is represented by the following chemical formula 1. can give.
  • x is an integer of 1 to 15, and y, z, and w are each independently an integer of 0 to 4. However, the smaller x, y, z, and w are preferable.
  • Examples of the quaternary ammonium salt having an ammonium ion represented by the chemical formula 1 include benzyltrimethylammonium chloride, benzyltriethylammonium chloride, benzyltributylammonium chloride represented by the following chemical formulas 2 to 4.
  • Examples of quaternary ammonium salts having ammonium ions other than those represented by Chemical Formula 1 include benzyldimethyltetradecylammonium chloride hydrate, benzyldimethylphenylammonium chloride represented by Chemical Formulas 5 to 12 below. , Trimethylphenylammonium chloride, triethylphenylammonium chloride, benzethonium chloride, benzoylcholine chloride, benzalkonium chloride, denatonium benzoate and the like.
  • the quaternary ammonium salts represented by Chemical Formulas 2 to 12 were salts of ammonium ions and chloride ions or benzoate ions, but ammonium ions and hydroxide ions, fluoride ions, bromide ions, iodine ions. It may be a chloride ion or a salt with an organic acid ion.
  • the ammonium ion of the quaternary ammonium salt is represented by the chemical formula 1 but represented by other chemical formulas. More preferred than the ammonium ion of the quaternary ammonium salt.
  • a hydroxide ion is most preferable from the viewpoint of residual anion on the surface after polishing.
  • the content of the quaternary ammonium salt in the polishing composition can be 0.0001% by mass or more, preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and still more preferably 0. 0.03 mass% or more.
  • content of the quaternary ammonium salt can be 1 mass% or less, Preferably it is 0.5 mass% or less, More preferably, it is 0.3 mass% or less.
  • a water-soluble polymer and a surfactant is added to the polishing composition of this embodiment.
  • the type of the water-soluble polymer is not particularly limited, and examples thereof include celluloses such as methyl cellulose, methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, and carboxymethyl hydroxyethyl cellulose.
  • polysaccharides such as chitosan
  • polymers such as polyethylene glycol, polyethyleneimine, poly-N-vinylpyrrolidone, polyvinyl alcohol, polyacrylic acid (or a salt thereof), polyacrylamide, and polyethylene oxide.
  • These water-soluble polymers may be used alone or in combination of two or more.
  • nitrogen-containing water-soluble polymers having nitrogen in their structure are preferable.
  • the number of nitrogen atoms contained in the nitrogen-containing water-soluble polymer monomer may be one or more.
  • the nitrogen-containing water-soluble polymer may have a nitrogen atom in the main chain, or may have a nitrogen atom in the side chain.
  • the nitrogen-containing water-soluble polymer may have a nitrogen atom as an amino group, imino group, amide group, imide group, carbodiimide group, hydrazide group, or urethane group.
  • the nitrogen-containing water-soluble polymer may have a nitrogen atom as a salt (for example, an ammonium salt) formed from a nitrogen cation and another anion.
  • a nitrogen atom as a salt for example, an ammonium salt
  • the nitrogen-containing water-soluble polymer having a salt structure include polycondensation polyamide such as water-soluble nylon, polycondensation polyester such as water-soluble polyester, polyaddition polyamine, polyaddition polyimine, polyaddition ( Examples thereof include meth) acrylamide, a water-soluble polymer having a nitrogen atom in at least a part of the alkyl main chain, and a water-soluble polymer having a nitrogen atom in at least a part of the side chain.
  • the polyaddition type nitrogen-containing water-soluble polymer examples include polyvinyl imidazole, polyvinyl carbazole, poly-N-vinyl pyrrolidone, polyvinyl caprolactam, and polyvinyl piperidine.
  • the nitrogen-containing water-soluble polymer may have a partially hydrophilic structure such as a vinyl alcohol structure, a methacrylic acid structure, a vinyl sulfonic acid structure, a vinyl alcohol carboxylic acid ester structure, or an oxyalkylene structure. Good.
  • mold may be sufficient.
  • the nitrogen-containing water-soluble polymer may be one having a cation in part or all of the molecule, one having an anion, one having both an anion and a cation, and one having a nonion.
  • these nitrogen-containing water-soluble polymers poly-N-vinylpyrrolidone, polyethyleneimine, and polyacrylamide are more preferable.
  • the weight average molecular weight of the water-soluble polymer can be 5000 or more, preferably 10,000 or more, more preferably 30000 or more, and further preferably 40000 or more. Thereby, the ratio of the polishing rate of polysilicon by the polishing composition and the polishing rate of polysilicon with respect to the polishing rate of silicon nitride is improved. Moreover, the weight average molecular weight of water-soluble polymer can be 3 million or less, Preferably it is 1 million or less, More preferably, it is 100,000 or less, More preferably, it is 60,000 or less. Thereby, the outstanding level
  • the content of the water-soluble polymer in the polishing composition can be 0.0001% by mass or more, preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and still more preferably. It is 0.03 mass% or more. Thereby, the outstanding level
  • the ratio of the content of the water-soluble polymer and the content of the abrasive grains in the polishing composition should be 250 or less. Preferably, it is 150 or less, More preferably, it is 100 or less, More preferably, it is 50 or less. Further, the ratio between the content of the water-soluble polymer and the content of the quaternary ammonium salt in the polishing composition ([quaternary ammonium salt content] / [water-soluble polymer content]) is 1 or more, preferably 2 or more.
  • Surfactant At least one of a water-soluble polymer and a surfactant is added to the polishing composition of the present embodiment.
  • a surfactant any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant can be used.
  • anionic surfactant examples include polyoxyethylene alkyl ether acetic acid, polyoxyethylene alkyl sulfuric acid ester, alkyl sulfuric acid ester, polyoxyethylene alkyl sulfuric acid, alkyl sulfuric acid, alkylbenzene sulfonic acid, alkyl phosphoric acid ester, polyoxyethylene Examples thereof include ethylene alkyl phosphate ester, polyoxyethylene sulfosuccinic acid, alkyl sulfosuccinic acid, alkyl naphthalene sulfonic acid, alkyl diphenyl ether disulfonic acid, and salts thereof (for example, ammonium lauryl sulfate).
  • cationic surfactant examples include alkyl trimethyl ammonium salt, alkyl dimethyl ammonium salt, alkyl benzyl dimethyl ammonium salt, and alkyl amine salt.
  • amphoteric surfactants include alkyl betaines and alkyl amine oxides.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, glycerin fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkylamine, and alkylalkanolamide. can give. These surfactants may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a known additive contained in a general polishing composition may be further added as necessary.
  • various additives such as a pH adjuster, an oxidizing agent, an anticorrosive, a chelating agent, a dispersion aid, an antiseptic, and an antifungal agent may be added.
  • a pH adjuster may be added to the polishing composition of the present embodiment, if necessary, in order to adjust the pH to a desired value.
  • the pH adjuster used may be either acid or alkali, and may be either an inorganic compound or an organic compound.
  • As the pH adjuster for example, nitric acid, phosphoric acid, hydrochloric acid, sulfuric acid, citric acid and the like can be used.
  • the pH of the polishing composition of the present embodiment is not particularly limited, but may be 7 or more and 11 or less.
  • An oxidizing agent may be added to the polishing composition of the present embodiment, if necessary, in order to oxidize the surface of the object to be polished.
  • the oxidizing agent has an action of oxidizing the surface of the object to be polished, and when an oxidizing agent is added to the polishing composition, there is an effect of improving the polishing rate by the polishing composition.
  • An oxidizing agent that can be used is, for example, a peroxide.
  • Specific examples of the peroxide include hydrogen peroxide, peracetic acid, percarbonate, urea peroxide, perchloric acid, persulfate (for example, sodium persulfate, potassium persulfate, ammonium persulfate) and the like.
  • An anticorrosive agent may be added to the polishing composition of the present embodiment as necessary in order to suppress corrosion of the surface of the object to be polished.
  • Specific examples of the anticorrosive include amines, pyridines, tetraphenylphosphonium salts, benzotriazoles, triazoles, tetrazoles, benzoic acid and the like.
  • the metal contamination of the polishing object is suppressed by capturing metal impurity components in the polishing system to form a complex.
  • a chelating agent may be added. Specific examples of the chelating agent include carboxylic acid, amine, organic phosphonic acid, amino acid and the like.
  • a dispersion aid may be added as necessary in order to facilitate redispersion of the aggregate of abrasive grains.
  • Specific examples of the dispersion aid include condensed phosphates such as pyrophosphate and hexametaphosphate.
  • an antiseptic and an antifungal agent may be added to the polishing composition of the present embodiment as necessary.
  • antiseptics and fungicides include isothiazoline-based antiseptics such as 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one, and paraoxybenzoic acid esters. And phenoxyethanol.
  • the polishing composition of this embodiment may contain liquid media, such as water and an organic solvent.
  • the liquid medium is a dispersion medium for dispersing or dissolving each component of the polishing composition (abrasive grains, quaternary ammonium salt having a benzene ring in the structure, water-soluble polymer, surfactant, additive, etc.). Or it functions as a solvent.
  • liquid medium examples include water and organic solvents, and one kind can be used alone, or two or more kinds can be mixed and used, but preferably contains water. However, it is preferable to use water containing as little impurities as possible from the viewpoint of suppressing the inhibition of the action of each component. Specifically, pure water, ultrapure water, or distilled water from which foreign substances are removed through a filter after removing impurity ions with an ion exchange resin is preferable.
  • the manufacturing method of the polishing composition of this embodiment is not specifically limited, For example, an abrasive grain, a quaternary ammonium salt, water-soluble polymer, and surfactant At least one and optionally various additives can be produced by stirring and mixing in a liquid medium such as water.
  • a liquid medium such as water.
  • the temperature at the time of mixing is not specifically limited, 10 to 40 degreeC is preferable and you may heat in order to improve a dissolution rate. Further, the mixing time is not particularly limited.
  • polishing method of polishing object The method and conditions for polishing the polishing object using the polishing composition of the present embodiment are not particularly limited, and the polishing object is within the range of general polishing methods and conditions. Polishing may be performed by appropriately selecting a method and conditions suitable for polishing an object. For example, a polishing composition is interposed between a polishing object (for example, a silicon wafer with a film in which a polysilicon film is deposited on a silicon nitride film) and a polishing pad, and a polishing apparatus (single-side polishing apparatus, double-side polishing) The object to be polished can be polished by polishing under general polishing conditions using an apparatus or the like.
  • a polishing object for example, a silicon wafer with a film in which a polysilicon film is deposited on a silicon nitride film
  • a polishing apparatus single-side polishing apparatus, double-side polishing
  • the silicon wafer when a silicon wafer with a film in which a polysilicon film is deposited on a silicon nitride film is an object to be polished and is polished using a single-side polishing apparatus, the silicon wafer is held using a holder called a carrier. The surface of the silicon wafer is polished by rotating the surface plate while supplying the polishing composition by pressing the surface plate with the polishing pad affixed to the surface of the silicon wafer.
  • polishing a silicon wafer using a double-side polishing apparatus the silicon wafer is held using a holder called a carrier, and a surface plate with a polishing pad attached from both sides of the silicon wafer to both sides of the silicon wafer. Each surface of the silicon wafer is polished by rotating the surface plates on both sides while supplying the polishing composition.
  • the kind of the polishing pad is not particularly limited, and may be a foam or a non-foam such as a cloth or a non-woven fabric, and a general non-woven fabric, a polyurethane foam, a porous fluororesin, or the like can be used. Further, the polishing pad may be subjected to groove processing for forming a groove in which the polishing composition is accumulated.
  • Polishing pad materials include polyurethane, acrylic, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, polyethylene, poly-4-methylpentene, cellulose, cellulose ester, polyamide (nylon, aramid, etc.), polyimide, polyimide Resins such as amides, polysiloxane copolymers, oxirane compounds, phenol resins, polystyrenes, polycarbonates, and epoxy resins can be used.
  • the polishing composition of the present embodiment can be recovered after being used for polishing the polishing object and reused for polishing the polishing object.
  • the method of reusing the polishing composition there is a method in which the polishing composition discharged from the polishing apparatus is collected in a tank and is circulated again into the polishing apparatus to be used for polishing. If the polishing composition is circulated, the amount of the polishing composition discharged as a waste liquid can be reduced, so that the environmental load can be reduced. Moreover, since the quantity of the polishing composition to be used can be reduced, the manufacturing cost required for grinding
  • the abrasive grains consumed, lost due to use in polishing, quaternary ammonium salts, water-soluble polymers, surfactants, additives, etc. It is good to reuse after adding a part or all as a composition regulator.
  • a composition regulator what mixed abrasive grain, a quaternary ammonium salt, water-soluble polymer, surfactant, an additive, etc. by arbitrary mixing ratios can be used.
  • the polishing composition is adjusted to a composition suitable for reuse and suitable polishing can be performed.
  • Concentrations of abrasive grains, quaternary ammonium salts, water-soluble polymers, surfactants, and additives contained in the composition modifier are arbitrary and are not particularly limited, and are appropriately adjusted according to the size of the tank and polishing conditions. do it.
  • the polishing composition of the present embodiment may be a one-component type, or a multi-component type such as a two-component type in which a part or all of the components of the polishing composition are mixed in an arbitrary ratio. Also good. Furthermore, the polishing composition of this embodiment may be used for polishing as it is, but a diluted composition obtained by diluting the stock solution with a liquid medium such as water may be used for polishing. .
  • Example 1 Abrasive grains, a quaternary ammonium salt, a water-soluble polymer, and water were mixed to produce a polishing composition (see Table 1).
  • the abrasive grains are bowl-shaped colloidal silica having an average primary particle diameter of 35 nm, and the concentration of the abrasive grains in the polishing composition is 2.0% by mass.
  • the quaternary ammonium salt is benzyltrimethylammonium hydroxide (hereinafter referred to as “BTMAH”), and the concentration of BTMAH in the polishing composition is 0.05 mass%.
  • BTMAH benzyltrimethylammonium hydroxide
  • the water-soluble polymer is poly-N-vinylpyrrolidone (hereinafter referred to as “PVP”) having a weight average molecular weight (Mw) of 45000, and the concentration of PVP in the polishing composition is 0.02% by mass. Moreover, pH of this polishing composition was 10.0.
  • PVP poly-N-vinylpyrrolidone
  • Example 2 Polishing composition in the same manner as in Example 1 except that the abrasive grains, BTMAH and PVP in the polishing composition, and the weight average molecular weight (Mw) of PVP were as shown in Table 1. Manufactured. The pH of these polishing compositions was as shown in Table 1.
  • Example 10 Except for using polyvinyl methyl ketone (hereinafter referred to as “PVMK”) having a weight average molecular weight of 500,000 instead of PVP as the water-soluble polymer, and setting the concentration of PVMK in the polishing composition to 0.05 mass%.
  • PVMK polyvinyl methyl ketone
  • a polishing composition was produced in the same manner as in Example 2. The polishing composition had a pH of 10.0.
  • Example 11 As a water-soluble polymer, a methyl vinyl ether / maleic anhydride alternating copolymer (hereinafter referred to as “PMVEMA”) having a weight average molecular weight of 216000 is used instead of PVP, and the concentration of PMVEMA in the polishing composition is 0.05 mass%.
  • a polishing composition was produced in the same manner as in Example 2 except that. The polishing composition had a pH of 10.0.
  • Example 12 In this example, a surfactant is used in place of the water-soluble polymer.
  • Example 2 was used except that a surfactant, ammonium lauryl sulfate (hereinafter referred to as “ALS”), was used instead of the water-soluble polymer, and the concentration of ALS in the polishing composition was 0.10% by mass.
  • ALS ammonium lauryl sulfate
  • a polishing composition was produced in the same manner. The polishing composition had a pH of 10.0.
  • Example 2 Example 2 except that trimethylammonium hydroxide (hereinafter referred to as “TMAH”) was used instead of BTMAH as the quaternary ammonium salt, and the concentration of TMAH in the polishing composition was 0.07 mass%.
  • TMAH trimethylammonium hydroxide
  • a polishing composition was produced in the same manner.
  • the polishing composition had a pH of 10.4.
  • Example 4 Example 4 except that triethylammonium hydroxide (hereinafter referred to as “TEAH”) was used as the quaternary ammonium salt instead of BTMAH, and the concentration of TEAH in the polishing composition was 0.08 mass%.
  • a polishing composition was produced in the same manner. The polishing composition had a pH of 10.2.
  • Example 3 Comparative Example 3 except that tributylammonium hydroxide (hereinafter referred to as “TBAH”) was used as the quaternary ammonium salt instead of BTMAH, and the concentration of TBAH in the polishing composition was 0.12 mass%.
  • a polishing composition was produced in the same manner.
  • the polishing composition had a pH of 10.1.
  • Example 4 A polishing composition was produced in the same manner as in Example 2, except that ammonia was used as the base instead of the quaternary ammonium salt, and the concentration of ammonia in the polishing composition was 0.07% by mass.
  • the polishing composition had a pH of 10.0.
  • Example 5 A polishing composition was produced in the same manner as in Example 4, except that ammonia was used as the base instead of the quaternary ammonium salt, and the concentration of ammonia in the polishing composition was 0.07% by mass.
  • the polishing composition had a pH of 10.0.
  • Example 6 A polishing composition was produced in the same manner as in Example 6, except that ammonia was used as the base instead of the quaternary ammonium salt, and the concentration of ammonia in the polishing composition was 0.07% by mass.
  • the polishing composition had a pH of 10.0.
  • Example 7 A polishing composition was produced in the same manner as in Example 10, except that ammonia was used as the base instead of the quaternary ammonium salt, and the concentration of ammonia in the polishing composition was 0.07% by mass.
  • the polishing composition had a pH of 10.0.
  • Example 8 A polishing composition was produced in the same manner as in Example 11, except that ammonia was used as the base instead of the quaternary ammonium salt, and the concentration of ammonia in the polishing composition was 0.07% by mass.
  • the polishing composition had a pH of 10.0.
  • polishing composition instead of quaternary ammonium salt, ammonia is used as a base, the concentration of ammonia in the polishing composition is 0.07 mass%, and polyvinyl alcohol having a weight average molecular weight of 40000 instead of PVP as a water-soluble polymer (Hereinafter referred to as “PVA”), a polishing composition was produced in the same manner as in Example 2 except that the concentration of PVA in the polishing composition was 0.10% by mass. The polishing composition had a pH of 10.0.
  • Example 12 A polishing composition was produced in the same manner as in Example 12, except that ammonia was used as the base in place of the quaternary ammonium salt, and the concentration of ammonia in the polishing composition was 0.07% by mass.
  • the polishing composition had a pH of 10.0.
  • polishing object was polished using these polishing compositions.
  • a silicon wafer (manufactured by SVM) having a polysilicon film on the surface and a silicon wafer (manufactured by SVM) having a silicon nitride film on the surface are polished, and polishing is performed under the same polishing method and polishing conditions.
  • the polishing rates of polysilicon and silicon nitride were calculated.
  • the ratio of the polishing rate of polysilicon to the polishing rate of silicon nitride (polishing rate ratio) was calculated from the calculated polishing rate of polysilicon and the polishing rate of silicon nitride.
  • each polishing rate and polishing rate ratio are shown in Table 1.
  • the polishing rate was calculated by dividing the difference in film thickness before and after polishing the polysilicon film or silicon nitride film of the silicon wafer by the polishing time. Therefore, the unit of the polishing rate is nm / min.
  • the film thickness of the polysilicon film or silicon nitride film was measured using a film thickness measuring device ASET-F5x (trade name) manufactured by KLA-Tencor Corporation.
  • polishing conditions are as follows. Polishing equipment: CMP equipment F-REX300E (trade name) manufactured by Ebara Manufacturing Co., Ltd. Polishing pad: Polishing pad IC1010 (trade name) manufactured by Dow Electronic Materials Polishing load: 10.3 kPa Surface plate rotation speed: 60 rpm Carrier rotation speed: 65rpm Polishing time: 1 minute Supply rate of the polishing composition: 300 mL / min (using flowing)
  • the silicon wafer on which the wiring was formed was used as an object to be polished, and polishing was performed using the polishing compositions of Examples 1 to 12 and Comparative Examples 1 to 12, respectively.
  • This silicon wafer is a 300 mm diameter wafer manufactured by Advanced Material Technology Co., Ltd., and is obtained by forming a silicon oxide film 2, a silicon nitride film 3, and a polysilicon film 4 on a silicon substrate 1.
  • a silicon oxide film 2 (thickness 12.5 nm) is formed on a silicon substrate 1 by thermal oxidation, and further a silicon nitride film 3 (by a low pressure chemical vapor deposition method) is formed on the silicon oxide film 2 ( A film thickness of 70.0 nm) is formed.
  • the silicon oxide film 2 and the silicon nitride film 3 are partially removed to form a plurality of trenches (minimum width 0.18 ⁇ m).
  • a polysilicon film 4 (film thickness 152.5 nm) is deposited on the silicon nitride film 3, and the trench is also filled with polysilicon.
  • a step (step) 4a is formed in the upper portion of the trench on the surface of the silicon wafer (the surface of the polysilicon film 4).
  • the step height of the step 4a is 70 nm. Then, the surface of the silicon wafer was polished using the polishing compositions of Examples 1 to 12 and Comparative Examples 1 to 12, and the step height of the step 4a remaining after polishing was measured.
  • polishing conditions are as follows. Polishing equipment: Wrapping equipment EJ-380IN (trade name) manufactured by Engis Japan Polishing pad: Polishing pad IC1010 (trade name) manufactured by Dow Electronic Materials Polishing load: 6.9 kPa Surface plate rotation speed: 70 rpm Polishing time: 1 minute Supply rate of the polishing composition: 100 mL / min (using pouring)
  • the polishing rate ratio was large, the polishing rate of polysilicon was high, and the polishing rate of silicon nitride was low. Further, the step height was A or B, and the step 4a remaining after polishing was small. On the other hand, in the polishing using the polishing compositions of Comparative Examples 1 to 12, although the polysilicon polishing rate is high and the silicon nitride polishing rate is low, the polishing rate ratio is small. , Less than 250. Some step heights were A or B, but some were C (the step 4a remaining after polishing was large).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

Provided is a polishing composition in which the ratio of the rate of polishing polysilicon or amorphous silicon to the rate of polishing silicon nitride is high, the rate of polishing polysilicon or amorphous silicon is high, and the rate of polishing silicon nitride is low. The polishing composition comprises abrasive grains, a quaternary ammonium salt having a benzene ring in the structure, and a water-soluble polymer and/or a surfactant. This polishing composition is for use in polishing a work which includes polysilicon and/or amorphous silicon and further includes silicon nitride.

Description

研磨用組成物Polishing composition
 本発明は研磨用組成物に関する。 The present invention relates to a polishing composition.
 半導体基板の表面を化学的機械的研磨(Chemical Mechanical Polishing;CMP)により平坦化する場合には、比較的研磨されやすいポリシリコン膜又はアモルファスシリコン膜の下層に比較的研磨されにくい窒化ケイ素膜を配し、この窒化ケイ素膜をストッパー層としてポリシリコン膜又はアモルファスシリコン膜の研磨が行われることがある。このような研磨においては、ポリシリコン膜又はアモルファスシリコン膜が効率よく研磨され、且つ、窒化ケイ素膜はほとんど研磨されないことが理想的である。 When the surface of a semiconductor substrate is planarized by chemical mechanical polishing (CMP), a polysilicon film that is relatively easy to polish or a silicon nitride film that is relatively difficult to polish is disposed below the amorphous silicon film. Then, the polysilicon film or the amorphous silicon film may be polished using this silicon nitride film as a stopper layer. In such polishing, it is ideal that the polysilicon film or the amorphous silicon film is polished efficiently and the silicon nitride film is hardly polished.
 したがって、このような研磨に用いられる研磨用組成物には、窒化ケイ素膜の研磨速度に対するポリシリコン膜及びアモルファスシリコン膜の研磨速度の比(ポリシリコン膜又はアモルファスシリコン膜の研磨速度を窒化ケイ素膜の研磨速度で除することにより算出される)が大きいこと、ポリシリコン膜及びアモルファスシリコン膜の研磨速度が大きいこと、及び、窒化ケイ素膜の研磨速度がゼロに近いことが要求される。 Accordingly, the polishing composition used for such polishing includes a ratio of the polishing rate of the polysilicon film and the amorphous silicon film to the polishing rate of the silicon nitride film (the polishing rate of the polysilicon film or the amorphous silicon film is changed to the silicon nitride film). Calculated by dividing by the polishing rate of (5), the polishing rate of the polysilicon film and the amorphous silicon film is high, and the polishing rate of the silicon nitride film is required to be close to zero.
 例えば特許文献1には、窒化ケイ素膜の研磨速度に対するポリシリコン膜の研磨速度の比が大きく、且つ、ポリシリコン膜の研磨速度が大きい研磨用組成物が開示されている。しかしながら、特許文献1に開示の研磨用組成物は、窒化ケイ素膜の研磨速度が十分に小さいとは言えなかった。したがって、ポリシリコン膜の研磨が完了した後に、的確に研磨作業を終了させなければ、ストッパー層である窒化ケイ素膜にまで研磨が及んでしまうおそれがあった。 For example, Patent Document 1 discloses a polishing composition in which the ratio of the polishing rate of the polysilicon film to the polishing rate of the silicon nitride film is large and the polishing rate of the polysilicon film is high. However, the polishing composition disclosed in Patent Document 1 cannot be said to have a sufficiently low polishing rate for the silicon nitride film. Therefore, after the polishing of the polysilicon film is completed, if the polishing operation is not properly finished, the silicon nitride film as the stopper layer may be polished.
日本国特許公開公報 2004年第266155号Japanese Patent Publication No. 2004-266155
 そこで、本発明は上記のような従来技術が有する問題点を解決し、窒化ケイ素の研磨速度に対するポリシリコン及びアモルファスシリコンの研磨速度の比が大きく、ポリシリコン及びアモルファスシリコンの研磨速度が大きく、且つ、窒化ケイ素の研磨速度が小さい研磨用組成物を提供することを課題とする。 Therefore, the present invention solves the problems of the prior art as described above, the ratio of the polishing rate of polysilicon and amorphous silicon to the polishing rate of silicon nitride is large, the polishing rate of polysilicon and amorphous silicon is large, and An object of the present invention is to provide a polishing composition having a low polishing rate for silicon nitride.
 前記課題を解決するため、本発明の一態様に係る研磨用組成物は、ポリシリコン及びアモルファスシリコンの少なくとも一方と窒化ケイ素とを有する研磨対象物の研磨に用いられる研磨用組成物であって、砥粒と、構造中にベンゼン環を有する第4級アンモニウム塩と、水溶性高分子及び界面活性剤の少なくとも一方と、を含有することを要旨とする。 In order to solve the above problems, a polishing composition according to one embodiment of the present invention is a polishing composition used for polishing a polishing object having at least one of polysilicon and amorphous silicon and silicon nitride, The gist is to contain abrasive grains, a quaternary ammonium salt having a benzene ring in the structure, and at least one of a water-soluble polymer and a surfactant.
 本発明の研磨用組成物は、窒化ケイ素の研磨速度に対するポリシリコン及びアモルファスシリコンの研磨速度の比が大きく、ポリシリコン及びアモルファスシリコンの研磨速度が大きく、且つ、窒化ケイ素の研磨速度が小さい。 The polishing composition of the present invention has a large ratio of the polishing rate of polysilicon and amorphous silicon to the polishing rate of silicon nitride, a high polishing rate of polysilicon and amorphous silicon, and a low polishing rate of silicon nitride.
シリコンウェーハの構成を説明する断面図である。It is sectional drawing explaining the structure of a silicon wafer.
 本発明の一実施形態について以下に詳細に説明する。なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。例えば、本実施形態においては、ポリシリコン及び窒化ケイ素を有する研磨対象物の研磨に用いられる研磨用組成物について説明するが、この研磨用組成物は、アモルファスシリコン及び窒化ケイ素を有する研磨対象物の研磨や、ポリシリコンとアモルファスシリコンと窒化ケイ素とを有する研磨対象物の研磨にも用いることができる。 An embodiment of the present invention will be described in detail below. In addition, this embodiment shows an example of this invention and this invention is not limited to this embodiment. In addition, various changes or improvements can be added to the present embodiment, and forms to which such changes or improvements are added can also be included in the present invention. For example, in this embodiment, a polishing composition used for polishing a polishing object having polysilicon and silicon nitride will be described. This polishing composition is used for polishing objects having amorphous silicon and silicon nitride. It can also be used for polishing or polishing a polishing object having polysilicon, amorphous silicon, and silicon nitride.
 本実施形態の研磨用組成物は、ポリシリコン及び窒化ケイ素を有する研磨対象物の研磨に用いられる研磨用組成物であって、砥粒と、構造中にベンゼン環を有する第4級アンモニウム塩と、水溶性高分子及び界面活性剤の少なくとも一方と、を含有する。
 このような本実施形態の研磨用組成物は、同一条件で研磨を行った場合の窒化ケイ素の研磨速度に対するポリシリコンの研磨速度の比(以下「研磨速度比」と記すこともある)が大きく、ポリシリコンの研磨速度が大きく、且つ、窒化ケイ素の研磨速度が小さいという性能を有している。なお、研磨対象物がアモルファスシリコンを有している場合には、「ポリシリコン」を「アモルファスシリコン」に読み替えればよい(以下も同様である)。
The polishing composition of the present embodiment is a polishing composition used for polishing a polishing object having polysilicon and silicon nitride, and includes abrasive grains and a quaternary ammonium salt having a benzene ring in the structure. And at least one of a water-soluble polymer and a surfactant.
In the polishing composition of this embodiment, the ratio of the polishing rate of polysilicon to the polishing rate of silicon nitride when polished under the same conditions (hereinafter also referred to as “polishing rate ratio”) is large. It has the performance that the polishing rate of polysilicon is high and the polishing rate of silicon nitride is low. If the object to be polished has amorphous silicon, “polysilicon” may be read as “amorphous silicon” (the same applies to the following).
 詳述すると、本実施形態の研磨用組成物は、高い加水分解性を有しているので、ポリシリコンを効率的に研磨することができる。よって、本実施形態の研磨用組成物を用いて研磨を行えば、ポリシリコンの研磨速度が大きくなる。また、第4級アンモニウム塩の陽イオンが、負に帯電した窒化ケイ素に吸着するので、窒化ケイ素の研磨が抑制される。よって、本実施形態の研磨用組成物を用いて研磨を行えば、窒化ケイ素の研磨速度が小さくなる。そして、ポリシリコンの研磨速度は大きく保たれるので、研磨速度比は大きくなり(すなわち、研磨の選択性が高い)、研磨速度比が250以上となり得る。 More specifically, since the polishing composition of this embodiment has high hydrolyzability, it is possible to polish polysilicon efficiently. Therefore, if polishing is performed using the polishing composition of the present embodiment, the polishing rate of polysilicon increases. Further, since the cation of the quaternary ammonium salt is adsorbed to the negatively charged silicon nitride, polishing of the silicon nitride is suppressed. Therefore, if polishing is performed using the polishing composition of the present embodiment, the polishing rate of silicon nitride is reduced. Further, since the polishing rate of polysilicon is kept large, the polishing rate ratio becomes large (that is, the polishing selectivity is high), and the polishing rate ratio can be 250 or more.
 したがって、本実施形態の研磨用組成物を用いて、ポリシリコン及び窒化ケイ素を有する研磨対象物の研磨を行えば、ポリシリコンを効率的且つ選択的に研磨して除去することができる。また、窒化ケイ素が研磨されにくいので、ポリシリコンの研磨が完了した直後に研磨作業を終了させなかったとしても、窒化ケイ素の研磨量は僅かである。例えば、窒化ケイ素膜の上にポリシリコン膜を堆積させた膜付シリコンウェーハが研磨対象物である場合には、ポリシリコン膜を効率的且つ選択的に研磨して除去することができる。また、ポリシリコン膜の研磨が完了した直後に研磨作業を終了させなかったとしても、ストッパー層である窒化ケイ素膜はほとんど研磨されない。 Therefore, if the polishing object having polysilicon and silicon nitride is polished using the polishing composition of the present embodiment, the polysilicon can be efficiently and selectively polished and removed. Further, since silicon nitride is difficult to polish, even if the polishing operation is not terminated immediately after the polishing of polysilicon is completed, the polishing amount of silicon nitride is small. For example, when a silicon wafer with a film in which a polysilicon film is deposited on a silicon nitride film is an object to be polished, the polysilicon film can be efficiently and selectively polished and removed. Even if the polishing operation is not terminated immediately after the polishing of the polysilicon film is completed, the silicon nitride film as the stopper layer is hardly polished.
 さらに、水溶性高分子は、ポリシリコンに吸着して研磨を抑制する作用がある。ポリシリコンの表面に段差がある場合、段差を構成する凸部に吸着した水溶性高分子は研磨により除去されるためポリシリコンの研磨速度は維持される一方、段差を構成する凹部の水溶性高分子は除去されず研磨が抑制される。よって、本実施形態の研磨用組成物を用いて研磨を行えば、ポリシリコンの表面の凸部と凹部の研磨速度に差が生じ、その結果、ポリシリコンの表面の段差が緩和されやすい。
 さらに、水溶性高分子として、その構造中に窒素を有する含窒素水溶性高分子を使用すると、凸部の研磨速度が促進されるため、特に良好な段差緩和性能を得ることができる。これは、ポリシリコンの表面に吸着した水溶性高分子の表面に窒素原子が存在することで、窒素原子が持つ正電荷及び親水性作用の影響により、親水性であり負電荷を持つ砥粒とポリシリコンの表面との親和性が向上し、砥粒によるかきとりが促進されるためと考えられる。
Furthermore, the water-soluble polymer has an action of adsorbing to polysilicon and suppressing polishing. When there is a level difference on the surface of the polysilicon, the water-soluble polymer adsorbed on the convex part constituting the level difference is removed by polishing, so that the polishing rate of the polysilicon is maintained, while the high water solubility of the concave part constituting the level difference is maintained. The molecules are not removed and polishing is suppressed. Therefore, when polishing is performed using the polishing composition of the present embodiment, a difference occurs in the polishing rate between the convex portions and the concave portions on the surface of the polysilicon, and as a result, the level difference on the surface of the polysilicon is easily relaxed.
Furthermore, when a nitrogen-containing water-soluble polymer having nitrogen in its structure is used as the water-soluble polymer, the polishing rate of the convex portions is accelerated, and thus particularly excellent step relaxation performance can be obtained. This is because the presence of nitrogen atoms on the surface of the water-soluble polymer adsorbed on the surface of the polysilicon makes the abrasive particles hydrophilic and negatively charged due to the positive charge and hydrophilic action of the nitrogen atoms. This is considered to be because the affinity with the surface of the polysilicon is improved and scraping with abrasive grains is promoted.
 以下に、本実施形態の研磨用組成物について、さらに詳細に説明する。
1.研磨対象物について
 本実施形態の研磨用組成物を用いる研磨に適用可能な研磨対象物は、ポリシリコン及び窒化ケイ素を有するものであれば特に限定されるものではないが、例えば、基体の表面にポリシリコン膜及び窒化ケイ素膜が形成されたものがあげられる。基体の材質は特に限定されるものではなく、単体シリコン、シリコン化合物、金属、セラミック、樹脂等があげられる。
Below, the polishing composition of this embodiment is demonstrated in detail.
1. Regarding the polishing object The polishing object applicable to polishing using the polishing composition of the present embodiment is not particularly limited as long as it has polysilicon and silicon nitride. Examples include a film formed with a polysilicon film and a silicon nitride film. The material of the substrate is not particularly limited, and examples thereof include simple silicon, silicon compound, metal, ceramic, and resin.
 単体シリコンとしては、例えば単結晶シリコン、ポリシリコン(多結晶シリコン)、アモルファスシリコン等があげられる。また、シリコン化合物としては、例えば窒化ケイ素、二酸化ケイ素(例えば、テトラエトキシシラン(TEOS)を用いて形成される二酸化ケイ素層間絶縁膜)、炭化ケイ素等があげられる。
 また、金属としては、例えば、タングステン、銅、アルミニウム、ハフニウム、コバルト、ニッケル、チタン、タンタル、金、銀、白金、パラジウム、ロジウム、ルテニウム、イリジウム、オスミウム等があげられる。これらの金属は、合金又は金属化合物の形態で含まれていてもよい。
 このような研磨対象物の具体例としては、窒化ケイ素膜の上にポリシリコン膜を堆積させた膜付シリコンウェーハがあげられる。
Examples of the single silicon include single crystal silicon, polysilicon (polycrystalline silicon), and amorphous silicon. Examples of the silicon compound include silicon nitride, silicon dioxide (for example, a silicon dioxide interlayer insulating film formed using tetraethoxysilane (TEOS)), silicon carbide, and the like.
Examples of the metal include tungsten, copper, aluminum, hafnium, cobalt, nickel, titanium, tantalum, gold, silver, platinum, palladium, rhodium, ruthenium, iridium, osmium and the like. These metals may be contained in the form of an alloy or a metal compound.
A specific example of such an object to be polished is a silicon wafer with a film in which a polysilicon film is deposited on a silicon nitride film.
2.砥粒について
 本実施形態の研磨用組成物に含有される砥粒の種類は特に限定されるものではく、例えば、無機粒子、有機粒子、及び有機無機複合粒子のいずれであってもよい。無機粒子の具体例としては、例えば、シリカ、アルミナ、セリア、チタニア等の金属酸化物からなる粒子、及び、窒化ケイ素、炭化ケイ素、窒化ホウ素等のセラミックからなる粒子があげられる。有機粒子の具体例としては、例えばポリメタクリル酸メチル(PMMA)粒子があげられる。これらの砥粒は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
2. About abrasive grains The kind of abrasive grains contained in the polishing composition of the present embodiment is not particularly limited, and may be any of inorganic particles, organic particles, and organic-inorganic composite particles, for example. Specific examples of the inorganic particles include particles made of a metal oxide such as silica, alumina, ceria, and titania, and particles made of ceramic such as silicon nitride, silicon carbide, and boron nitride. Specific examples of the organic particles include polymethyl methacrylate (PMMA) particles. These abrasive grains may be used alone or in combination of two or more.
 これらの具体例の中でもシリカが好ましい。シリカの具体例としては、コロイダルシリカ、フュームドシリカ、ゾルゲル法シリカ等があげられるが、これらシリカの中ではコロイダルシリカがより好ましく、コロイダルシリカの中では繭形(例えば、長軸を中心に楕円を回転して得られる回転体の形状)のコロイダルシリカがさらに好ましい。さらに、シリカの表面には有機酸を固定化してもよい。シリカへの有機酸の固定化は、シリカの表面に有機酸の官能基を化学的に結合させることにより行われる。有機酸の例としては、スルホン酸、カルボン酸、スルフィン酸、及びホスホン酸があげられる。 Of these specific examples, silica is preferred. Specific examples of the silica include colloidal silica, fumed silica, sol-gel silica, and the like. Among these silicas, colloidal silica is more preferable, and in the colloidal silica, a cage shape (for example, an ellipse centering on the long axis) is used. The shape of a rotating body obtained by rotating the colloidal silica is more preferable. Furthermore, an organic acid may be immobilized on the surface of the silica. The organic acid is immobilized on the silica by chemically bonding a functional group of the organic acid to the surface of the silica. Examples of organic acids include sulfonic acid, carboxylic acid, sulfinic acid, and phosphonic acid.
 研磨用組成物中の砥粒の含有量は0.1質量%以上とすることができ、好ましくは0.5質量%以上、より好ましくは1質量%以上である。砥粒の含有量が多くなるにつれて、研磨用組成物による研磨対象物の除去速度(研磨速度)が向上する。
 また、研磨用組成物中の砥粒の含有量は、15質量%以下とすることができ、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下、特に好ましくは2.3質量%以下である。砥粒の含有量が少なくなるにつれて、研磨用組成物の材料コストを抑えることができることに加えて、砥粒の凝集が起こりにくい。
The content of abrasive grains in the polishing composition can be 0.1% by mass or more, preferably 0.5% by mass or more, and more preferably 1% by mass or more. As the content of the abrasive grains increases, the removal rate (polishing rate) of the object to be polished by the polishing composition is improved.
The content of the abrasive grains in the polishing composition can be 15% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, and particularly preferably. Is 2.3 mass% or less. As the content of the abrasive grains decreases, the material cost of the polishing composition can be reduced, and in addition, the aggregation of the abrasive grains hardly occurs.
 砥粒の平均一次粒子径は5nm以上とすることができ、好ましくは10nm以上、より好ましくは30nm以上である。砥粒の平均一次粒子径が大きくなるにつれて、研磨用組成物による研磨対象物の研磨速度が向上する。
 また、砥粒の平均一次粒子径は、200nm以下とすることができ、好ましくは100nm以下、より好ましくは50nm以下である。砥粒の平均一次粒子径が小さくなるにつれて、研磨用組成物を用いて研磨対象物を研磨することにより表面欠陥の少ない被研磨面が得られやすい。
The average primary particle diameter of the abrasive grains can be 5 nm or more, preferably 10 nm or more, more preferably 30 nm or more. As the average primary particle diameter of the abrasive grains increases, the polishing rate of the object to be polished by the polishing composition increases.
The average primary particle diameter of the abrasive grains can be 200 nm or less, preferably 100 nm or less, more preferably 50 nm or less. As the average primary particle diameter of the abrasive grains decreases, a surface to be polished with few surface defects is easily obtained by polishing the object to be polished using the polishing composition.
 なお、砥粒の平均一次粒子径の値は、例えば、窒素ガス等を用いたBET法で測定される砥粒の比表面積に基づいて計算することができる。なお、繭形のコロイダルシリカ等の非球状の砥粒の場合は、BET法で測定される砥粒の比表面積に基づいて仮想的な球状粒子の平均一次粒子径が計算されるので、この仮想的な球状粒子の平均一次粒子径を非球状の砥粒の平均一次粒子径とする。 Note that the value of the average primary particle diameter of the abrasive grains can be calculated based on, for example, the specific surface area of the abrasive grains measured by the BET method using nitrogen gas or the like. In the case of non-spherical abrasive grains such as bowl-shaped colloidal silica, the average primary particle diameter of virtual spherical particles is calculated based on the specific surface area of the abrasive grains measured by the BET method. The average primary particle diameter of typical spherical particles is defined as the average primary particle diameter of non-spherical abrasive grains.
3.構造中にベンゼン環を有する第4級アンモニウム塩について
 本実施形態の研磨用組成物には、構造中にベンゼン環を有する第4級アンモニウム塩(以下、単に「第4級アンモニウム塩」と記すこともある)が添加される。第4級アンモニウム塩の種類は、その構造中にベンゼン環を有していれば特に限定されるものではないが、例えば、第4級アンモニウム塩のアンモニウムイオンが下記化学式1で表されるものがあげられる。
 なお、下記化学式1中のxは1以上15以下の整数であり、y、z、及びwはそれぞれ独立して0以上4以下の整数である。ただし、x、y、z、及びwは小さいほど好ましい。
3. Quaternary ammonium salt having a benzene ring in the structure The polishing composition of the present embodiment includes a quaternary ammonium salt having a benzene ring in the structure (hereinafter simply referred to as “quaternary ammonium salt”). Is also added). The kind of the quaternary ammonium salt is not particularly limited as long as it has a benzene ring in its structure. For example, the ammonium ion of the quaternary ammonium salt is represented by the following chemical formula 1. can give.
In the following chemical formula 1, x is an integer of 1 to 15, and y, z, and w are each independently an integer of 0 to 4. However, the smaller x, y, z, and w are preferable.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記化学式1で表されるアンモニウムイオンを有する第4級アンモニウム塩の例としては、下記の各化学式2~4に示すベンジルトリメチルアンモニウムクロリド、ベンジルトリエチルアンモニウムクロリド、ベンジルトリブチルアンモニウムクロリド等があげられる。 Examples of the quaternary ammonium salt having an ammonium ion represented by the chemical formula 1 include benzyltrimethylammonium chloride, benzyltriethylammonium chloride, benzyltributylammonium chloride represented by the following chemical formulas 2 to 4.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 また、上記化学式1で表されるもの以外のアンモニウムイオンを有する第4級アンモニウム塩の例としては、下記の各化学式5~12に示すベンジルジメチルテトラデシルアンモニウムクロリド水和物、ベンジルジメチルフェニルアンモニウムクロリド、トリメチルフェニルアンモニウムクロリド、トリエチルフェニルアンモニウムクロリド、ベンゼトニウムクロリド、ベンゾイルコリンクロリド、ベンザルコニウムクロリド、デナトニウム安息香酸塩等があげられる。 Examples of quaternary ammonium salts having ammonium ions other than those represented by Chemical Formula 1 include benzyldimethyltetradecylammonium chloride hydrate, benzyldimethylphenylammonium chloride represented by Chemical Formulas 5 to 12 below. , Trimethylphenylammonium chloride, triethylphenylammonium chloride, benzethonium chloride, benzoylcholine chloride, benzalkonium chloride, denatonium benzoate and the like.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 これらの第4級アンモニウム塩は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 なお、化学式2~12に示した第4級アンモニウム塩は、アンモニウムイオンと塩化物イオン又は安息香酸イオンとの塩であったが、アンモニウムイオンと水酸化物イオン、フッ化物イオン、臭化物イオン、ヨウ化物イオン、又は有機酸イオンとの塩でもよい。
 また、ポリシリコンの研磨速度及び窒化ケイ素の研磨速度に対するポリシリコンの研磨速度の比を向上させるためには、第4級アンモニウム塩のアンモニウムイオンは、化学式1に示すものが、他の化学式に示す第4級アンモニウム塩のアンモニウムイオンよりも好ましい。
 さらに、第4級アンモニウム塩のアニオンとしては、研磨後表面のアニオン残留の観点から、水酸化物イオンが最も好ましい。
One of these quaternary ammonium salts may be used alone, or two or more thereof may be used in combination.
The quaternary ammonium salts represented by Chemical Formulas 2 to 12 were salts of ammonium ions and chloride ions or benzoate ions, but ammonium ions and hydroxide ions, fluoride ions, bromide ions, iodine ions. It may be a chloride ion or a salt with an organic acid ion.
Further, in order to improve the ratio of the polishing rate of polysilicon and the polishing rate of polysilicon with respect to the polishing rate of polysilicon and the polishing rate of polysilicon, the ammonium ion of the quaternary ammonium salt is represented by the chemical formula 1 but represented by other chemical formulas. More preferred than the ammonium ion of the quaternary ammonium salt.
Further, as the anion of the quaternary ammonium salt, a hydroxide ion is most preferable from the viewpoint of residual anion on the surface after polishing.
 研磨用組成物中の第4級アンモニウム塩の含有量は0.0001質量%以上とすることができ、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.03質量%以上である。第4級アンモニウム塩の含有量が高くなるにつれて、研磨用組成物によるポリシリコンの研磨速度及び窒化ケイ素の研磨速度に対するポリシリコンの研磨速度の比が向上する。
 また、研磨用組成物中の第4級アンモニウム塩の含有量は、1質量%以下とすることができ、好ましくは0.5質量%以下、より好ましくは0.3質量%以下である。これにより、優れた段差緩和性能が得られる。
The content of the quaternary ammonium salt in the polishing composition can be 0.0001% by mass or more, preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and still more preferably 0. 0.03 mass% or more. As the content of the quaternary ammonium salt increases, the polishing rate of polysilicon by the polishing composition and the ratio of the polishing rate of polysilicon to the polishing rate of silicon nitride improve.
Moreover, content of the quaternary ammonium salt in polishing composition can be 1 mass% or less, Preferably it is 0.5 mass% or less, More preferably, it is 0.3 mass% or less. Thereby, the outstanding level | step difference mitigation performance is obtained.
4.水溶性高分子について
 本実施形態の研磨用組成物には水溶性高分子及び界面活性剤の少なくとも一方が添加される。水溶性高分子の種類は特に限定されるものではなく、例えば、メチルセルロース、メチルヒドロキシエチルセルロース、メチルヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カルボキシエチルセルロース、カルボキシメチルヒドロキシエチルセルロース等のセルロース類や、キトサン等の多糖類や、ポリエチレングリコール、ポリエチレンイミン、ポリ-N-ビニルピロリドン、ポリビニルアルコール、ポリアクリル酸(又はその塩)、ポリアクリルアミド、ポリエチレンオキシド等のポリマー類があげられる。これらの水溶性高分子は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
4). About Water-Soluble Polymer At least one of a water-soluble polymer and a surfactant is added to the polishing composition of this embodiment. The type of the water-soluble polymer is not particularly limited, and examples thereof include celluloses such as methyl cellulose, methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, and carboxymethyl hydroxyethyl cellulose. And polysaccharides such as chitosan, and polymers such as polyethylene glycol, polyethyleneimine, poly-N-vinylpyrrolidone, polyvinyl alcohol, polyacrylic acid (or a salt thereof), polyacrylamide, and polyethylene oxide. These water-soluble polymers may be used alone or in combination of two or more.
 これらの水溶性高分子の中でも、その構造中に窒素を有する含窒素水溶性高分子が好ましい。含窒素水溶性高分子の単量体が有する窒素原子の数は、1個でもよいし複数でもよい。また、含窒素水溶性高分子は、その主鎖に窒素原子を有していてもよいし、側鎖に窒素原子を有していてもよい。さらに、含窒素水溶性高分子は、窒素原子をアミノ基、イミノ基、アミド基、イミド基、カルボジイミド基、ヒドラジド基、又はウレタン基として有していてもよい。 Among these water-soluble polymers, nitrogen-containing water-soluble polymers having nitrogen in their structure are preferable. The number of nitrogen atoms contained in the nitrogen-containing water-soluble polymer monomer may be one or more. Further, the nitrogen-containing water-soluble polymer may have a nitrogen atom in the main chain, or may have a nitrogen atom in the side chain. Furthermore, the nitrogen-containing water-soluble polymer may have a nitrogen atom as an amino group, imino group, amide group, imide group, carbodiimide group, hydrazide group, or urethane group.
 さらに、含窒素水溶性高分子は、窒素原子を、窒素カチオンと他のアニオンから形成される塩(例えばアンモニウム塩)として有していてもよい。塩の構造を有する含窒素水溶性高分子としては、例えば、水溶性ナイロン等の重縮合系ポリアミド、水溶性ポリエステル等の重縮合系ポリエステル、重付加系ポリアミン、重付加系ポリイミン、重付加系(メタ)アクリルアミド、アルキル主鎖の少なくとも一部に窒素原子を有する水溶性高分子、側鎖の少なくとも一部に窒素原子を有する水溶性高分子等があげられる。 Furthermore, the nitrogen-containing water-soluble polymer may have a nitrogen atom as a salt (for example, an ammonium salt) formed from a nitrogen cation and another anion. Examples of the nitrogen-containing water-soluble polymer having a salt structure include polycondensation polyamide such as water-soluble nylon, polycondensation polyester such as water-soluble polyester, polyaddition polyamine, polyaddition polyimine, polyaddition ( Examples thereof include meth) acrylamide, a water-soluble polymer having a nitrogen atom in at least a part of the alkyl main chain, and a water-soluble polymer having a nitrogen atom in at least a part of the side chain.
 重付加系の含窒素水溶性高分子の具体例としては、ポリビニルイミダゾール、ポリビニルカルバゾール、ポリ-N-ビニルピロリドン、ポリビニルカプロラクタム、ポリビニルピペリジンがあげられる。また、含窒素水溶性高分子は、ビニルアルコール構造、メタクリル酸構造、ビニルスルホン酸構造、ビニルアルコールカルボン酸エステル構造、オキシアルキレン構造等の親水性を有する構造を部分的に有するものであってもよい。また、これらのジブロック型やトリブロック型、ランダム型、交互型といった複数種の構造を有する重合体であってもよい。 Specific examples of the polyaddition type nitrogen-containing water-soluble polymer include polyvinyl imidazole, polyvinyl carbazole, poly-N-vinyl pyrrolidone, polyvinyl caprolactam, and polyvinyl piperidine. Further, the nitrogen-containing water-soluble polymer may have a partially hydrophilic structure such as a vinyl alcohol structure, a methacrylic acid structure, a vinyl sulfonic acid structure, a vinyl alcohol carboxylic acid ester structure, or an oxyalkylene structure. Good. Moreover, the polymer which has multiple types of structures, such as these diblock type | molds, a triblock type | mold, a random type | mold, and an alternating type | mold, may be sufficient.
 さらに、含窒素水溶性高分子は、分子中の一部又は全部にカチオンを持つもの、アニオンを持つもの、アニオンとカチオンとの両方を持つもの、ノニオンを持つのものいずれであってもよい。
 これらの含窒素水溶性高分子の中では、ポリ-N-ビニルピロリドン、ポリエチレンイミン、ポリアクリルアミドがより好ましい。
Further, the nitrogen-containing water-soluble polymer may be one having a cation in part or all of the molecule, one having an anion, one having both an anion and a cation, and one having a nonion.
Of these nitrogen-containing water-soluble polymers, poly-N-vinylpyrrolidone, polyethyleneimine, and polyacrylamide are more preferable.
 水溶性高分子の重量平均分子量は、5000以上とすることができ、好ましくは10000以上、より好ましくは30000以上、さらに好ましくは40000以上である。これにより、研磨用組成物によるポリシリコンの研磨速度及び窒化ケイ素の研磨速度に対するポリシリコンの研磨速度の比が向上する。
 また、水溶性高分子の重量平均分子量は、300万以下とすることができ、好ましくは100万以下、より好ましくは10万以下、さらに好ましくは6万以下である。これにより、優れた段差緩和性能が得られる。
The weight average molecular weight of the water-soluble polymer can be 5000 or more, preferably 10,000 or more, more preferably 30000 or more, and further preferably 40000 or more. Thereby, the ratio of the polishing rate of polysilicon by the polishing composition and the polishing rate of polysilicon with respect to the polishing rate of silicon nitride is improved.
Moreover, the weight average molecular weight of water-soluble polymer can be 3 million or less, Preferably it is 1 million or less, More preferably, it is 100,000 or less, More preferably, it is 60,000 or less. Thereby, the outstanding level | step difference mitigation performance is obtained.
 さらに、研磨用組成物中の水溶性高分子の含有量は0.0001質量%以上とすることができ、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.03質量%以上である。これにより、優れた段差緩和性能が得られる。
 さらに、研磨用組成物中の水溶性高分子の含有量は、1質量%以下とすることができ、好ましくは0.5質量%以下、より好ましくは0.3質量%以下、さらに好ましくは0.1質量%以下である。これにより、研磨用組成物によるポリシリコンの研磨速度及び窒化ケイ素の研磨速度に対するポリシリコンの研磨速度の比が向上する。
Furthermore, the content of the water-soluble polymer in the polishing composition can be 0.0001% by mass or more, preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and still more preferably. It is 0.03 mass% or more. Thereby, the outstanding level | step difference mitigation performance is obtained.
Furthermore, the content of the water-soluble polymer in the polishing composition can be 1% by mass or less, preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and still more preferably 0%. .1% by mass or less. Thereby, the ratio of the polishing rate of polysilicon by the polishing composition and the polishing rate of polysilicon with respect to the polishing rate of silicon nitride is improved.
 さらに、研磨用組成物中の水溶性高分子の含有量と砥粒の含有量との比([砥粒の含有量]/[水溶性高分子の含有量])は、250以下とすることができ、好ましくは150以下、より好ましくは100以下、さらに好ましくは50以下である。
 さらに、研磨用組成物中の水溶性高分子の含有量と第4級アンモニウム塩の含有量との比([第4級アンモニウム塩の含有量]/[水溶性高分子の含有量])は、1以上とすることができ、好ましくは2以上である。
Furthermore, the ratio of the content of the water-soluble polymer and the content of the abrasive grains in the polishing composition ([abrasive grain content] / [water-soluble polymer content]) should be 250 or less. Preferably, it is 150 or less, More preferably, it is 100 or less, More preferably, it is 50 or less.
Further, the ratio between the content of the water-soluble polymer and the content of the quaternary ammonium salt in the polishing composition ([quaternary ammonium salt content] / [water-soluble polymer content]) is 1 or more, preferably 2 or more.
5.界面活性剤について
 本実施形態の研磨用組成物には水溶性高分子及び界面活性剤の少なくとも一方が添加される。界面活性剤としては、陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤、及び非イオン性界面活性剤のいずれも使用することができる。
 陰イオン性界面活性剤の具体例としては、ポリオキシエチレンアルキルエーテル酢酸、ポリオキシエチレンアルキル硫酸エステル、アルキル硫酸エステル、ポリオキシエチレンアルキル硫酸、アルキル硫酸、アルキルベンゼンスルホン酸、アルキルリン酸エステル、ポリオキシエチレンアルキルリン酸エステル、ポリオキシエチレンスルホコハク酸、アルキルスルホコハク酸、アルキルナフタレンスルホン酸、アルキルジフェニルエーテルジスルホン酸、又はこれらの塩(例えばラウリル硫酸アンモニウム)があげられる。
5). Surfactant At least one of a water-soluble polymer and a surfactant is added to the polishing composition of the present embodiment. As the surfactant, any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant can be used.
Specific examples of the anionic surfactant include polyoxyethylene alkyl ether acetic acid, polyoxyethylene alkyl sulfuric acid ester, alkyl sulfuric acid ester, polyoxyethylene alkyl sulfuric acid, alkyl sulfuric acid, alkylbenzene sulfonic acid, alkyl phosphoric acid ester, polyoxyethylene Examples thereof include ethylene alkyl phosphate ester, polyoxyethylene sulfosuccinic acid, alkyl sulfosuccinic acid, alkyl naphthalene sulfonic acid, alkyl diphenyl ether disulfonic acid, and salts thereof (for example, ammonium lauryl sulfate).
 また、陽イオン性界面活性剤の具体例としては、アルキルトリメチルアンモニウム塩、アルキルジメチルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩、アルキルアミン塩があげられる。
 さらに、両性界面活性剤の具体例としては、アルキルベタイン、アルキルアミンオキシドがあげられる。
Specific examples of the cationic surfactant include alkyl trimethyl ammonium salt, alkyl dimethyl ammonium salt, alkyl benzyl dimethyl ammonium salt, and alkyl amine salt.
Furthermore, specific examples of amphoteric surfactants include alkyl betaines and alkyl amine oxides.
 さらに、非イオン性界面活性剤の具体例としては、ポリオキシエチレンアルキルエーテル、ポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルアミン、アルキルアルカノールアミドがあげられる。
 これらの界面活性剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Furthermore, specific examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, glycerin fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkylamine, and alkylalkanolamide. can give.
These surfactants may be used individually by 1 type, and may be used in combination of 2 or more type.
6.その他の添加剤について
 本実施形態の研磨用組成物には、その性能を向上させるために、必要に応じて、一般的な研磨用組成物に含有される公知の添加剤を更に添加してもよい。例えば、pH調整剤、酸化剤、防食剤、キレート剤、分散助剤、防腐剤、防カビ剤等の各種添加剤を添加してもよい。
6). About other additives In order to improve the performance of the polishing composition of the present embodiment, a known additive contained in a general polishing composition may be further added as necessary. Good. For example, various additives such as a pH adjuster, an oxidizing agent, an anticorrosive, a chelating agent, a dispersion aid, an antiseptic, and an antifungal agent may be added.
6-1 pH調整剤について
 本実施形態の研磨用組成物には、pHを所望の値に調整するために、必要に応じてpH調整剤を添加してもよい。使用されるpH調整剤は、酸及びアルカリのいずれであってもよく、また無機化合物及び有機化合物のいずれであってもよい。pH調整剤としては、例えば、硝酸、リン酸、塩酸、硫酸、クエン酸等を用いることができる。
 本実施形態の研磨用組成物のpHは特に限定されるものではないが、7以上11以下としてもよい。
6-1 About pH adjuster A pH adjuster may be added to the polishing composition of the present embodiment, if necessary, in order to adjust the pH to a desired value. The pH adjuster used may be either acid or alkali, and may be either an inorganic compound or an organic compound. As the pH adjuster, for example, nitric acid, phosphoric acid, hydrochloric acid, sulfuric acid, citric acid and the like can be used.
The pH of the polishing composition of the present embodiment is not particularly limited, but may be 7 or more and 11 or less.
6-2 酸化剤について
 本実施形態の研磨用組成物には、研磨対象物の表面を酸化するために、必要に応じて酸化剤を添加してもよい。酸化剤は研磨対象物の表面を酸化する作用を有し、研磨用組成物中に酸化剤を加えた場合は、研磨用組成物による研磨速度の向上効果がある。
 使用可能な酸化剤は、例えば過酸化物である。過酸化物の具体例としては、過酸化水素、過酢酸、過炭酸塩、過酸化尿素、過塩素酸、過硫酸塩(例えば過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム)等があげられる。
6-2 Oxidizing agent An oxidizing agent may be added to the polishing composition of the present embodiment, if necessary, in order to oxidize the surface of the object to be polished. The oxidizing agent has an action of oxidizing the surface of the object to be polished, and when an oxidizing agent is added to the polishing composition, there is an effect of improving the polishing rate by the polishing composition.
An oxidizing agent that can be used is, for example, a peroxide. Specific examples of the peroxide include hydrogen peroxide, peracetic acid, percarbonate, urea peroxide, perchloric acid, persulfate (for example, sodium persulfate, potassium persulfate, ammonium persulfate) and the like.
6-3 防食剤について
 本実施形態の研磨用組成物には、研磨対象物の表面の腐食を抑制するために、必要に応じて防食剤を添加してもよい。防食剤の具体例としては、アミン類、ピリジン類、テトラフェニルホスホニウム塩、ベンゾトリアゾール類、トリアゾール類、テトラゾール類、安息香酸等があげられる。
6-3 Anticorrosive Agent An anticorrosive agent may be added to the polishing composition of the present embodiment as necessary in order to suppress corrosion of the surface of the object to be polished. Specific examples of the anticorrosive include amines, pyridines, tetraphenylphosphonium salts, benzotriazoles, triazoles, tetrazoles, benzoic acid and the like.
6-4 キレート剤について
 本実施形態の研磨用組成物には、研磨系中の金属不純物成分を捕捉して錯体を形成することによって研磨対象物の金属汚染を抑制するために、必要に応じてキレート剤を添加してもよい。キレート剤の具体例としては、カルボン酸、アミン、有機ホスホン酸、アミノ酸等があげられる。
6-4 Chelating Agent In the polishing composition of this embodiment, the metal contamination of the polishing object is suppressed by capturing metal impurity components in the polishing system to form a complex. A chelating agent may be added. Specific examples of the chelating agent include carboxylic acid, amine, organic phosphonic acid, amino acid and the like.
6-5 分散助剤について
 本実施形態の研磨用組成物には、砥粒の凝集体の再分散を容易にするために、必要に応じて分散助剤を添加してもよい。分散助剤の具体例としては、ピロリン酸塩やヘキサメタリン酸塩等の縮合リン酸塩等があげられる。
6-5 About Dispersion Aid To the polishing composition of the present embodiment, a dispersion aid may be added as necessary in order to facilitate redispersion of the aggregate of abrasive grains. Specific examples of the dispersion aid include condensed phosphates such as pyrophosphate and hexametaphosphate.
6-6 防腐剤、防カビ剤について
 本実施形態の研磨用組成物には、必要に応じて防腐剤や防カビ剤を添加してもよい。防腐剤及び防カビ剤としては、例えば、2-メチル-4-イソチアゾリン-3-オン、5-クロロ-2-メチル-4-イソチアゾリン-3-オン等のイソチアゾリン系防腐剤や、パラオキシ安息香酸エステル類や、フェノキシエタノールがあげられる。
6-6 Preservative and Antifungal Agent An antiseptic and an antifungal agent may be added to the polishing composition of the present embodiment as necessary. Examples of antiseptics and fungicides include isothiazoline-based antiseptics such as 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one, and paraoxybenzoic acid esters. And phenoxyethanol.
7.液状媒体について
 本実施形態の研磨用組成物は、水、有機溶剤等の液状媒体を含有してもよい。液状媒体は、研磨用組成物の各成分(砥粒、構造中にベンゼン環を有する第4級アンモニウム塩、水溶性高分子、界面活性剤、添加剤等)を分散又は溶解するための分散媒又は溶媒として機能する。
7). About a liquid medium The polishing composition of this embodiment may contain liquid media, such as water and an organic solvent. The liquid medium is a dispersion medium for dispersing or dissolving each component of the polishing composition (abrasive grains, quaternary ammonium salt having a benzene ring in the structure, water-soluble polymer, surfactant, additive, etc.). Or it functions as a solvent.
 液状媒体としては水、有機溶剤があげられ、1種を単独で用いることができるし、2種以上を混合して用いることができるが、水を含有することが好ましい。ただし、各成分の作用を阻害することを抑制するという観点から、不純物をできる限り含有しない水を用いることが好ましい。具体的には、イオン交換樹脂にて不純物イオンを除去した後にフィルタを通して異物を除去した純水や超純水、あるいは蒸留水が好ましい。 Examples of the liquid medium include water and organic solvents, and one kind can be used alone, or two or more kinds can be mixed and used, but preferably contains water. However, it is preferable to use water containing as little impurities as possible from the viewpoint of suppressing the inhibition of the action of each component. Specifically, pure water, ultrapure water, or distilled water from which foreign substances are removed through a filter after removing impurity ions with an ion exchange resin is preferable.
8.研磨用組成物の製造方法について
 本実施形態の研磨用組成物の製造方法は特に限定されるものではなく、例えば、砥粒と、第4級アンモニウム塩と、水溶性高分子及び界面活性剤の少なくとも一方と、所望により各種添加剤とを、水等の液状媒体中で攪拌、混合することによって製造することができる。混合時の温度は特に限定されるものではないが、10℃以上40℃以下が好ましく、溶解速度を向上させるために加熱してもよい。また、混合時間も特に限定されない。
8). About the manufacturing method of polishing composition The manufacturing method of the polishing composition of this embodiment is not specifically limited, For example, an abrasive grain, a quaternary ammonium salt, water-soluble polymer, and surfactant At least one and optionally various additives can be produced by stirring and mixing in a liquid medium such as water. Although the temperature at the time of mixing is not specifically limited, 10 to 40 degreeC is preferable and you may heat in order to improve a dissolution rate. Further, the mixing time is not particularly limited.
9.研磨対象物の研磨方法について
 本実施形態の研磨用組成物を用いて研磨対象物を研磨する方法や条件は特に限定されるものではなく、一般的な研磨の方法、条件の範囲内において研磨対象物の研磨に好適な方法、条件を適宜選択して研磨を行えばよい。例えば、研磨対象物(例えば、窒化ケイ素膜の上にポリシリコン膜を堆積させた膜付シリコンウェーハ)と研磨パッドとの間に研磨用組成物を介在させ、研磨装置(片面研磨装置、両面研磨装置等)を用いて一般的な研磨条件で研磨を行うことによって、研磨対象物の研磨を行うことができる。
9. Polishing method of polishing object The method and conditions for polishing the polishing object using the polishing composition of the present embodiment are not particularly limited, and the polishing object is within the range of general polishing methods and conditions. Polishing may be performed by appropriately selecting a method and conditions suitable for polishing an object. For example, a polishing composition is interposed between a polishing object (for example, a silicon wafer with a film in which a polysilicon film is deposited on a silicon nitride film) and a polishing pad, and a polishing apparatus (single-side polishing apparatus, double-side polishing) The object to be polished can be polished by polishing under general polishing conditions using an apparatus or the like.
 例えば、窒化ケイ素膜の上にポリシリコン膜を堆積させた膜付シリコンウェーハを研磨対象物とし、片面研磨装置を用いて研磨する場合には、キャリアと呼ばれる保持具を用いてシリコンウェーハを保持し、研磨パッドが貼付された定盤をシリコンウェーハの片面に押しつけて研磨用組成物を供給しながら定盤を回転させることにより、シリコンウェーハの片面を研磨する。
 また、両面研磨装置を用いてシリコンウェーハを研磨する場合には、キャリアと呼ばれる保持具を用いてシリコンウェーハを保持し、研磨パッドが貼付された定盤をシリコンウェーハの両側からシリコンウェーハの両面にそれぞれ押しつけて、研磨用組成物を供給しながら両側の定盤を回転させることにより、シリコンウェーハの両面を研磨する。
For example, when a silicon wafer with a film in which a polysilicon film is deposited on a silicon nitride film is an object to be polished and is polished using a single-side polishing apparatus, the silicon wafer is held using a holder called a carrier. The surface of the silicon wafer is polished by rotating the surface plate while supplying the polishing composition by pressing the surface plate with the polishing pad affixed to the surface of the silicon wafer.
In addition, when polishing a silicon wafer using a double-side polishing apparatus, the silicon wafer is held using a holder called a carrier, and a surface plate with a polishing pad attached from both sides of the silicon wafer to both sides of the silicon wafer. Each surface of the silicon wafer is polished by rotating the surface plates on both sides while supplying the polishing composition.
 研磨パッドの種類は特に限定されるものではなく、発泡体でもよいし、布、不織布等の非発泡体でもよく、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等が使用できる。また、研磨パッドには、研磨用組成物が溜まるような溝を形成する溝加工が施されていてもよい。研磨パッドの材質としてはポリウレタン、アクリル、ポリエステル、アクリル-エステル共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリ4-メチルペンテン、セルロース、セルロースエステル、ポリアミド(ナイロン、アラミド等)、ポリイミド、ポリイミドアミド、ポリシロキサン共重合体、オキシラン化合物、フェノール樹脂、ポリスチレン、ポリカーボネート、エポキシ樹脂等の樹脂が使用できる。 The kind of the polishing pad is not particularly limited, and may be a foam or a non-foam such as a cloth or a non-woven fabric, and a general non-woven fabric, a polyurethane foam, a porous fluororesin, or the like can be used. Further, the polishing pad may be subjected to groove processing for forming a groove in which the polishing composition is accumulated. Polishing pad materials include polyurethane, acrylic, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, polyethylene, poly-4-methylpentene, cellulose, cellulose ester, polyamide (nylon, aramid, etc.), polyimide, polyimide Resins such as amides, polysiloxane copolymers, oxirane compounds, phenol resins, polystyrenes, polycarbonates, and epoxy resins can be used.
 なお、本実施形態の研磨用組成物は、研磨対象物の研磨に使用された後に回収し、研磨対象物の研磨に再使用することができる。研磨用組成物を再使用する方法の一例としては、研磨装置から排出された研磨用組成物をタンクに回収し、再度研磨装置内へ循環させて研磨に使用する方法があげられる。研磨用組成物を循環使用すれば、廃液として排出される研磨用組成物の量を減らすことができるので、環境負荷を低減することができる。また、使用する研磨用組成物の量を減らすことができるので、研磨対象物の研磨に要する製造コストを抑制することができる。 Note that the polishing composition of the present embodiment can be recovered after being used for polishing the polishing object and reused for polishing the polishing object. As an example of the method of reusing the polishing composition, there is a method in which the polishing composition discharged from the polishing apparatus is collected in a tank and is circulated again into the polishing apparatus to be used for polishing. If the polishing composition is circulated, the amount of the polishing composition discharged as a waste liquid can be reduced, so that the environmental load can be reduced. Moreover, since the quantity of the polishing composition to be used can be reduced, the manufacturing cost required for grinding | polishing of a grinding | polishing target object can be suppressed.
 本実施形態の研磨用組成物を再使用する際には、研磨に使用したことにより消費、損失された砥粒、第4級アンモニウム塩、水溶性高分子、界面活性剤、添加剤等の一部又は全部を、組成調整剤として添加した上で再使用するとよい。組成調整剤としては、砥粒、第4級アンモニウム塩、水溶性高分子、界面活性剤、添加剤等を任意の混合比率で混合したものを用いることができる。組成調整剤を追加で添加することにより、研磨用組成物が再使用されるのに好適な組成に調整され、好適な研磨を行うことができる。組成調整剤に含有される砥粒、第4級アンモニウム塩、水溶性高分子、界面活性剤、添加剤の濃度は任意であり、特に限定されず、タンクの大きさや研磨条件に応じて適宜調整すればよい。 When reusing the polishing composition of the present embodiment, the abrasive grains consumed, lost due to use in polishing, quaternary ammonium salts, water-soluble polymers, surfactants, additives, etc. It is good to reuse after adding a part or all as a composition regulator. As a composition regulator, what mixed abrasive grain, a quaternary ammonium salt, water-soluble polymer, surfactant, an additive, etc. by arbitrary mixing ratios can be used. By additionally adding a composition adjusting agent, the polishing composition is adjusted to a composition suitable for reuse and suitable polishing can be performed. Concentrations of abrasive grains, quaternary ammonium salts, water-soluble polymers, surfactants, and additives contained in the composition modifier are arbitrary and are not particularly limited, and are appropriately adjusted according to the size of the tank and polishing conditions. do it.
 また、本実施形態の研磨用組成物は一液型であってもよいし、研磨用組成物の成分の一部又は全部を任意の比率で混合した二液型等の多液型であってもよい。さらに、本実施形態の研磨用組成物は、原液をそのまま研磨に用いてもよいが、原液を水等の液状媒体で希釈して得た研磨用組成物の希釈物を研磨に用いてもよい。 Further, the polishing composition of the present embodiment may be a one-component type, or a multi-component type such as a two-component type in which a part or all of the components of the polishing composition are mixed in an arbitrary ratio. Also good. Furthermore, the polishing composition of this embodiment may be used for polishing as it is, but a diluted composition obtained by diluting the stock solution with a liquid medium such as water may be used for polishing. .
〔実施例〕
 以下に実施例及び比較例を示し、本発明をさらに具体的に説明する。
 (実施例1)
 砥粒、第4級アンモニウム塩、水溶性高分子、及び水を混合して、研磨用組成物を製造した(表1を参照)。砥粒は、平均一次粒子径35nmの繭形のコロイダルシリカであり、研磨用組成物中の砥粒の濃度は2.0質量%である。第4級アンモニウム塩はベンジルトリメチルアンモニウムヒドロキシド(以下「BTMAH」と記す)であり、研磨用組成物中のBTMAHの濃度は0.05質量%である。水溶性高分子は、重量平均分子量(Mw)45000のポリ-N-ビニルピロリドン(以下「PVP」と記す)であり、研磨用組成物中のPVPの濃度は0.02質量%である。また、この研磨用組成物のpHは10.0であった。
〔Example〕
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
Example 1
Abrasive grains, a quaternary ammonium salt, a water-soluble polymer, and water were mixed to produce a polishing composition (see Table 1). The abrasive grains are bowl-shaped colloidal silica having an average primary particle diameter of 35 nm, and the concentration of the abrasive grains in the polishing composition is 2.0% by mass. The quaternary ammonium salt is benzyltrimethylammonium hydroxide (hereinafter referred to as “BTMAH”), and the concentration of BTMAH in the polishing composition is 0.05 mass%. The water-soluble polymer is poly-N-vinylpyrrolidone (hereinafter referred to as “PVP”) having a weight average molecular weight (Mw) of 45000, and the concentration of PVP in the polishing composition is 0.02% by mass. Moreover, pH of this polishing composition was 10.0.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 (実施例2~9)
 研磨用組成物中の砥粒、BTMAH、及びPVPの濃度、並びに、PVPの重量平均分子量(Mw)を、表1に示す通りとした点以外は、実施例1と同様にして研磨用組成物を製造した。これらの研磨用組成物のpHは表1に示す通りであった。
(Examples 2 to 9)
Polishing composition in the same manner as in Example 1 except that the abrasive grains, BTMAH and PVP in the polishing composition, and the weight average molecular weight (Mw) of PVP were as shown in Table 1. Manufactured. The pH of these polishing compositions was as shown in Table 1.
 (実施例10)
 水溶性高分子としてPVPに代えて重量平均分子量500000のポリビニルメチルケトン(以下「PVMK」と記す)を用い、研磨用組成物中のPVMKの濃度を0.05質量%とした点以外は、実施例2と同様にして研磨用組成物を製造した。この研磨用組成物のpHは10.0であった。
(Example 10)
Except for using polyvinyl methyl ketone (hereinafter referred to as “PVMK”) having a weight average molecular weight of 500,000 instead of PVP as the water-soluble polymer, and setting the concentration of PVMK in the polishing composition to 0.05 mass%. A polishing composition was produced in the same manner as in Example 2. The polishing composition had a pH of 10.0.
 (実施例11)
 水溶性高分子としてPVPに代えて重量平均分子量216000のメチルビニルエーテル/無水マレイン酸交互共重合体(以下「PMVEMA」と記す)を用い、研磨用組成物中のPMVEMAの濃度を0.05質量%とした点以外は、実施例2と同様にして研磨用組成物を製造した。この研磨用組成物のpHは10.0であった。
(Example 11)
As a water-soluble polymer, a methyl vinyl ether / maleic anhydride alternating copolymer (hereinafter referred to as “PMVEMA”) having a weight average molecular weight of 216000 is used instead of PVP, and the concentration of PMVEMA in the polishing composition is 0.05 mass%. A polishing composition was produced in the same manner as in Example 2 except that. The polishing composition had a pH of 10.0.
 (実施例12)
 この実施例は、水溶性高分子に代えて界面活性剤を用いた例である。水溶性高分子に代えて界面活性剤であるラウリル硫酸アンモニウム(以下「ALS」と記す)を用い、研磨用組成物中のALSの濃度を0.10質量%とした点以外は、実施例2と同様にして研磨用組成物を製造した。この研磨用組成物のpHは10.0であった。
Example 12
In this example, a surfactant is used in place of the water-soluble polymer. Example 2 was used except that a surfactant, ammonium lauryl sulfate (hereinafter referred to as “ALS”), was used instead of the water-soluble polymer, and the concentration of ALS in the polishing composition was 0.10% by mass. A polishing composition was produced in the same manner. The polishing composition had a pH of 10.0.
 (比較例1)
 第4級アンモニウム塩としてBTMAHに代えてトリメチルアンモニウムヒドロキシド(以下「TMAH」と記す)を用い、研磨用組成物中のTMAHの濃度を0.07質量%とした点以外は、実施例2と同様にして研磨用組成物を製造した。この研磨用組成物のpHは10.4であった。
(Comparative Example 1)
Example 2 except that trimethylammonium hydroxide (hereinafter referred to as “TMAH”) was used instead of BTMAH as the quaternary ammonium salt, and the concentration of TMAH in the polishing composition was 0.07 mass%. A polishing composition was produced in the same manner. The polishing composition had a pH of 10.4.
 (比較例2)
 第4級アンモニウム塩としてBTMAHに代えてトリエチルアンモニウムヒドロキシド(以下「TEAH」と記す)を用い、研磨用組成物中のTEAHの濃度を0.08質量%とした点以外は、実施例4と同様にして研磨用組成物を製造した。この研磨用組成物のpHは10.2であった。
(Comparative Example 2)
Example 4 except that triethylammonium hydroxide (hereinafter referred to as “TEAH”) was used as the quaternary ammonium salt instead of BTMAH, and the concentration of TEAH in the polishing composition was 0.08 mass%. A polishing composition was produced in the same manner. The polishing composition had a pH of 10.2.
 (比較例3)
 第4級アンモニウム塩としてBTMAHに代えてトリブチルアンモニウムヒドロキシド(以下「TBAH」と記す)を用い、研磨用組成物中のTBAHの濃度を0.12質量%とした点以外は、実施例4と同様にして研磨用組成物を製造した。この研磨用組成物のpHは10.1であった。
(Comparative Example 3)
Example 4 except that tributylammonium hydroxide (hereinafter referred to as “TBAH”) was used as the quaternary ammonium salt instead of BTMAH, and the concentration of TBAH in the polishing composition was 0.12 mass%. A polishing composition was produced in the same manner. The polishing composition had a pH of 10.1.
 (比較例4)
 第4級アンモニウム塩に代えて塩基としてアンモニアを用い、研磨用組成物中のアンモニアの濃度を0.07質量%とした点以外は、実施例2と同様にして研磨用組成物を製造した。この研磨用組成物のpHは10.0であった。
(Comparative Example 4)
A polishing composition was produced in the same manner as in Example 2, except that ammonia was used as the base instead of the quaternary ammonium salt, and the concentration of ammonia in the polishing composition was 0.07% by mass. The polishing composition had a pH of 10.0.
 (比較例5)
 第4級アンモニウム塩に代えて塩基としてアンモニアを用い、研磨用組成物中のアンモニアの濃度を0.07質量%とした点以外は、実施例4と同様にして研磨用組成物を製造した。この研磨用組成物のpHは10.0であった。
(Comparative Example 5)
A polishing composition was produced in the same manner as in Example 4, except that ammonia was used as the base instead of the quaternary ammonium salt, and the concentration of ammonia in the polishing composition was 0.07% by mass. The polishing composition had a pH of 10.0.
 (比較例6)
 第4級アンモニウム塩に代えて塩基としてアンモニアを用い、研磨用組成物中のアンモニアの濃度を0.07質量%とした点以外は、実施例6と同様にして研磨用組成物を製造した。この研磨用組成物のpHは10.0であった。
(Comparative Example 6)
A polishing composition was produced in the same manner as in Example 6, except that ammonia was used as the base instead of the quaternary ammonium salt, and the concentration of ammonia in the polishing composition was 0.07% by mass. The polishing composition had a pH of 10.0.
 (比較例7)
 第4級アンモニウム塩に代えて塩基としてアンモニアを用い、研磨用組成物中のアンモニアの濃度を0.07質量%とした点以外は、実施例10と同様にして研磨用組成物を製造した。この研磨用組成物のpHは10.0であった。
(Comparative Example 7)
A polishing composition was produced in the same manner as in Example 10, except that ammonia was used as the base instead of the quaternary ammonium salt, and the concentration of ammonia in the polishing composition was 0.07% by mass. The polishing composition had a pH of 10.0.
 (比較例8)
 第4級アンモニウム塩に代えて塩基としてアンモニアを用い、研磨用組成物中のアンモニアの濃度を0.07質量%とした点以外は、実施例11と同様にして研磨用組成物を製造した。この研磨用組成物のpHは10.0であった。
(Comparative Example 8)
A polishing composition was produced in the same manner as in Example 11, except that ammonia was used as the base instead of the quaternary ammonium salt, and the concentration of ammonia in the polishing composition was 0.07% by mass. The polishing composition had a pH of 10.0.
 (比較例9)
 第4級アンモニウム塩に代えて塩基としてアンモニアを用い、研磨用組成物中のアンモニアの濃度を0.07質量%とした点と、水溶性高分子としてPVPに代えて重量平均分子量40000のポリビニルアルコール(以下「PVA」と記す)を用い、研磨用組成物中のPVAの濃度を0.10質量%とした点以外は、実施例2と同様にして研磨用組成物を製造した。この研磨用組成物のpHは10.0であった。
(Comparative Example 9)
Instead of quaternary ammonium salt, ammonia is used as a base, the concentration of ammonia in the polishing composition is 0.07 mass%, and polyvinyl alcohol having a weight average molecular weight of 40000 instead of PVP as a water-soluble polymer (Hereinafter referred to as “PVA”), a polishing composition was produced in the same manner as in Example 2 except that the concentration of PVA in the polishing composition was 0.10% by mass. The polishing composition had a pH of 10.0.
 (比較例10)
 第4級アンモニウム塩に代えて塩基としてアンモニアを用い、研磨用組成物中のアンモニアの濃度を0.07質量%とした点と、水溶性高分子としてPVPに代えて重量平均分子量250000のヒドロキシエチルセルロース(以下「HEC」と記す)を用い、研磨用組成物中のHECの濃度を0.04質量%とした点以外は、実施例2と同様にして研磨用組成物を製造した。この研磨用組成物のpHは10.0であった。
(Comparative Example 10)
Hydroxyethyl cellulose having a weight average molecular weight of 250,000 instead of PVP as the water-soluble polymer, using ammonia as the base instead of the quaternary ammonium salt and setting the ammonia concentration in the polishing composition to 0.07% by mass. (Hereinafter referred to as “HEC”), and a polishing composition was produced in the same manner as in Example 2 except that the concentration of HEC in the polishing composition was 0.04 mass%. The polishing composition had a pH of 10.0.
 (比較例11)
 第4級アンモニウム塩に代えて塩基としてアンモニアを用い、研磨用組成物中のアンモニアの濃度を0.07質量%とした点と、水溶性高分子としてPVPに代えて重量平均分子量1100のポリオキシエチレン(3)ポリオキシプロピレン(17)グリコール(以下「POEPOP」と記す)を用い、研磨用組成物中のPOEPOPの濃度を0.10質量%とした点以外は、実施例2と同様にして研磨用組成物を製造した。この研磨用組成物のpHは10.0であった。
 なお、ポリオキシエチレン(3)ポリオキシプロピレン(17)グリコールの「(3)」はオキシエチレン単位の平均繰り返し数が3であることを意味する。同様に「(17)」はオキシプロピレン単位の平均繰り返し数が17であることを意味する。
(Comparative Example 11)
Instead of the quaternary ammonium salt, ammonia was used as the base, the concentration of ammonia in the polishing composition was 0.07% by mass, and the water-soluble polymer was polyoxy having a weight average molecular weight of 1100 instead of PVP. Except that ethylene (3) polyoxypropylene (17) glycol (hereinafter referred to as “POEPOP”) was used and the concentration of POEPOP in the polishing composition was 0.10% by mass, the same as in Example 2 A polishing composition was produced. The polishing composition had a pH of 10.0.
In addition, “(3)” of polyoxyethylene (3) polyoxypropylene (17) glycol means that the average number of repeating oxyethylene units is 3. Similarly, “(17)” means that the average number of repeating oxypropylene units is 17.
 (比較例12)
 第4級アンモニウム塩に代えて塩基としてアンモニアを用い、研磨用組成物中のアンモニアの濃度を0.07質量%とした点以外は、実施例12と同様にして研磨用組成物を製造した。この研磨用組成物のpHは10.0であった。
(Comparative Example 12)
A polishing composition was produced in the same manner as in Example 12, except that ammonia was used as the base in place of the quaternary ammonium salt, and the concentration of ammonia in the polishing composition was 0.07% by mass. The polishing composition had a pH of 10.0.
 次に、これらの研磨用組成物を用いて研磨対象物の研磨を行った。まず、ポリシリコン膜を表面に有するシリコンウェーハ(SVM社製)及び窒化ケイ素膜を表面に有するシリコンウェーハ(SVM社製)を研磨対象物とし、同一の研磨方法、研磨条件でそれぞれ研磨を行って、ポリシリコン及び窒化ケイ素の研磨速度をそれぞれ算出した。そして、算出したポリシリコンの研磨速度と窒化ケイ素の研磨速度から、窒化ケイ素の研磨速度に対するポリシリコンの研磨速度の比(研磨速度比)を算出した。 Next, the polishing object was polished using these polishing compositions. First, a silicon wafer (manufactured by SVM) having a polysilicon film on the surface and a silicon wafer (manufactured by SVM) having a silicon nitride film on the surface are polished, and polishing is performed under the same polishing method and polishing conditions. The polishing rates of polysilicon and silicon nitride were calculated. Then, the ratio of the polishing rate of polysilicon to the polishing rate of silicon nitride (polishing rate ratio) was calculated from the calculated polishing rate of polysilicon and the polishing rate of silicon nitride.
 各研磨速度及び研磨速度比の値を表1に示す。研磨速度は、シリコンウェーハのポリシリコン膜又は窒化ケイ素膜の研磨前後での膜厚差を研磨時間で除することにより算出した。よって、研磨速度の単位はnm/minである。ポリシリコン膜又は窒化ケイ素膜の膜厚は、ケーエルエー・テンコール株式会社製の膜厚測定装置ASET-F5x(商品名)を用いて測定した。 The values of each polishing rate and polishing rate ratio are shown in Table 1. The polishing rate was calculated by dividing the difference in film thickness before and after polishing the polysilicon film or silicon nitride film of the silicon wafer by the polishing time. Therefore, the unit of the polishing rate is nm / min. The film thickness of the polysilicon film or silicon nitride film was measured using a film thickness measuring device ASET-F5x (trade name) manufactured by KLA-Tencor Corporation.
 研磨条件は下記の通りである。
  研磨装置:株式会社荏原製作所製のCMP装置F-REX300E(商品名)
  研磨パッド:ダウ・エレクトロニック・マテリアルズ社製の研磨パッド IC1010(商品名)
  研磨荷重:10.3kPa
  定盤回転速度:60rpm
  キャリア回転速度:65rpm
  研磨時間:1分間
  研磨用組成物の供給速度:300mL/分(掛け流し使用)
The polishing conditions are as follows.
Polishing equipment: CMP equipment F-REX300E (trade name) manufactured by Ebara Manufacturing Co., Ltd.
Polishing pad: Polishing pad IC1010 (trade name) manufactured by Dow Electronic Materials
Polishing load: 10.3 kPa
Surface plate rotation speed: 60 rpm
Carrier rotation speed: 65rpm
Polishing time: 1 minute Supply rate of the polishing composition: 300 mL / min (using flowing)
 次に、配線が形成されたシリコンウェーハ(図1を参照)を研磨対象物とし、実施例1~12及び比較例1~12の研磨用組成物を用いてそれぞれ研磨を行った。まず、研磨対象物であるシリコンウェーハの構成について、図1を参照しながら説明する。このシリコンウェーハは、アドバンスマテリアルテクノロジー株式会社製の直径300mmのウェーハであり、シリコン基板1上に酸化ケイ素膜2、窒化ケイ素膜3、及びポリシリコン膜4が形成されたものである。 Next, the silicon wafer on which the wiring was formed (see FIG. 1) was used as an object to be polished, and polishing was performed using the polishing compositions of Examples 1 to 12 and Comparative Examples 1 to 12, respectively. First, the configuration of a silicon wafer that is an object to be polished will be described with reference to FIG. This silicon wafer is a 300 mm diameter wafer manufactured by Advanced Material Technology Co., Ltd., and is obtained by forming a silicon oxide film 2, a silicon nitride film 3, and a polysilicon film 4 on a silicon substrate 1.
 詳述すると、シリコン基板1上に、熱酸化による酸化ケイ素膜2(膜厚12.5nm)が形成されており、さらに酸化ケイ素膜2の上に減圧化学気相蒸着法による窒化ケイ素膜3(膜厚70.0nm)が形成されている。そして、酸化ケイ素膜2及び窒化ケイ素膜3の一部が除去されて、溝状のトレンチ(最小幅0.18μm)が複数形成されている。さらに、窒化ケイ素膜3の上にポリシリコン膜4(膜厚152.5nm)が堆積されており、トレンチ内もポリシリコンで埋められている。 More specifically, a silicon oxide film 2 (thickness 12.5 nm) is formed on a silicon substrate 1 by thermal oxidation, and further a silicon nitride film 3 (by a low pressure chemical vapor deposition method) is formed on the silicon oxide film 2 ( A film thickness of 70.0 nm) is formed. The silicon oxide film 2 and the silicon nitride film 3 are partially removed to form a plurality of trenches (minimum width 0.18 μm). Furthermore, a polysilicon film 4 (film thickness 152.5 nm) is deposited on the silicon nitride film 3, and the trench is also filled with polysilicon.
 このようなシリコンウェーハの表面(ポリシリコン膜4の表面)のトレンチの上方部分には、段差(ステップ)4aが形成されている。この段差4aのステップ高さは70nmである。そして、このシリコンウェーハの表面を、実施例1~12及び比較例1~12の研磨用組成物を用いてそれぞれ研磨し、研磨後に残っている段差4aのステップ高さを測定した。 A step (step) 4a is formed in the upper portion of the trench on the surface of the silicon wafer (the surface of the polysilicon film 4). The step height of the step 4a is 70 nm. Then, the surface of the silicon wafer was polished using the polishing compositions of Examples 1 to 12 and Comparative Examples 1 to 12, and the step height of the step 4a remaining after polishing was measured.
 研磨条件は下記の通りである。
  研磨装置:日本エンギス株式会社製のラッピング装置EJ-380IN(商品名)
  研磨パッド:ダウ・エレクトロニック・マテリアルズ社製の研磨パッド IC1010(商品名)
  研磨荷重:6.9kPa
  定盤回転速度:70rpm
  研磨時間:1分間
  研磨用組成物の供給速度:100mL/分(掛け流し使用)
The polishing conditions are as follows.
Polishing equipment: Wrapping equipment EJ-380IN (trade name) manufactured by Engis Japan
Polishing pad: Polishing pad IC1010 (trade name) manufactured by Dow Electronic Materials
Polishing load: 6.9 kPa
Surface plate rotation speed: 70 rpm
Polishing time: 1 minute Supply rate of the polishing composition: 100 mL / min (using pouring)
 また、ステップ高さの測定には、ケーエルエー・テンコール株式会社製の高分解能表面トポグラフィプロファイリングシステムHRP340(商品名)を用いた。結果を表1に示す。表1においては、研磨後に残っている段差4aのステップ高さが8nm未満であった場合は「A」、8nm以上12nm未満であった場合は「B」、12nm超過であった場合は「C」と示してある。 In addition, for the measurement of the step height, a high-resolution surface topography profiling system HRP340 (trade name) manufactured by KLA-Tencor Corporation was used. The results are shown in Table 1. In Table 1, when the step height of the step 4a remaining after polishing is less than 8 nm, “A”, when the step height is 8 nm or more and less than 12 nm, “B”, when it exceeds 12 nm, “C”. ".
 表1から分かるように、実施例1~12の研磨用組成物を用いた研磨では、研磨速度比が大きく、ポリシリコンの研磨速度が大きく、且つ、窒化ケイ素の研磨速度が小さかった。また、ステップ高さはA又はBであり、研磨後に残る段差4aは小さかった。
 これに対して、比較例1~12の研磨用組成物を用いた研磨では、ポリシリコンの研磨速度が大きいものや、窒化ケイ素の研磨速度が小さいものはあるものの、いずれも研磨速度比は小さく、250未満であった。また、ステップ高さについては、A又はBであるものもあったが、Cであるもの(研磨後に残る段差4aが大きいもの)もあった。
As can be seen from Table 1, in the polishing using the polishing compositions of Examples 1 to 12, the polishing rate ratio was large, the polishing rate of polysilicon was high, and the polishing rate of silicon nitride was low. Further, the step height was A or B, and the step 4a remaining after polishing was small.
On the other hand, in the polishing using the polishing compositions of Comparative Examples 1 to 12, although the polysilicon polishing rate is high and the silicon nitride polishing rate is low, the polishing rate ratio is small. , Less than 250. Some step heights were A or B, but some were C (the step 4a remaining after polishing was large).
    1    シリコン基板
    2    酸化ケイ素膜
    3    窒化ケイ素膜
    4    ポリシリコン膜
    4a   段差
1 silicon substrate 2 silicon oxide film 3 silicon nitride film 4 polysilicon film 4a step

Claims (3)

  1.  ポリシリコン及びアモルファスシリコンの少なくとも一方と窒化ケイ素とを有する研磨対象物の研磨に用いられる研磨用組成物であって、砥粒と、構造中にベンゼン環を有する第4級アンモニウム塩と、水溶性高分子及び界面活性剤の少なくとも一方と、を含有する研磨用組成物。 A polishing composition used for polishing a polishing object having at least one of polysilicon and amorphous silicon and silicon nitride, comprising abrasive grains, a quaternary ammonium salt having a benzene ring in its structure, and water-soluble A polishing composition comprising at least one of a polymer and a surfactant.
  2.  前記水溶性高分子が含窒素水溶性高分子である請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the water-soluble polymer is a nitrogen-containing water-soluble polymer.
  3.  前記第4級アンモニウム塩のアンモニウムイオンが下記化学式1で表されるものであり、下記化学式1中のxは1以上15以下の整数であり、y、z、及びwはそれぞれ独立して0以上4以下の整数である請求項1又は請求項2に記載の研磨用組成物。
    Figure JPOXMLDOC01-appb-C000001
    The ammonium ion of the quaternary ammonium salt is represented by the following chemical formula 1, wherein x in the following chemical formula 1 is an integer of 1 to 15, and y, z, and w are each independently 0 or more. The polishing composition according to claim 1, wherein the polishing composition is an integer of 4 or less.
    Figure JPOXMLDOC01-appb-C000001
PCT/JP2016/073745 2015-09-15 2016-08-12 Polishing composition WO2017047307A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-182197 2015-09-15
JP2015182197A JP6533439B2 (en) 2015-09-15 2015-09-15 Polishing composition

Publications (1)

Publication Number Publication Date
WO2017047307A1 true WO2017047307A1 (en) 2017-03-23

Family

ID=58288965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073745 WO2017047307A1 (en) 2015-09-15 2016-08-12 Polishing composition

Country Status (3)

Country Link
JP (1) JP6533439B2 (en)
TW (1) TWI683896B (en)
WO (1) WO2017047307A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066873A1 (en) * 2018-09-25 2020-04-02 日産化学株式会社 Polishing method for silicon wafer with reduced wear on carrier, and polishing liquid used therein
US20220348788A1 (en) * 2021-04-27 2022-11-03 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Polishing composition and method of polishing a substrate having enhanced defect reduction

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180479A1 (en) * 2017-03-31 2018-10-04 株式会社フジミインコーポレーテッド Polishing composition
WO2019069370A1 (en) * 2017-10-03 2019-04-11 日立化成株式会社 Polishing liquid, polishing liquid set, polishing method, and defect inhibition method
JP7133414B2 (en) 2018-09-20 2022-09-08 株式会社フジミインコーポレーテッド Polishing composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247542A (en) * 2003-02-14 2004-09-02 Kao Corp Method for manufacturing substrate for precision component
JP2004266155A (en) * 2003-03-03 2004-09-24 Jsr Corp Water dispersed element for chemical mechanical polishing and chemical mechanical polishing method using the same and method for manufacturing semiconductor device
JP2005101545A (en) * 2003-08-05 2005-04-14 Rohm & Haas Electronic Materials Cmp Holdings Inc Composition for polishing semiconductor layer
WO2008105223A1 (en) * 2007-02-27 2008-09-04 Hitachi Chemical Co., Ltd. Cmp slurry for silicon film
JP2011216873A (en) * 2010-03-31 2011-10-27 Rohm & Haas Electronic Materials Cmp Holdings Inc Method of chemical mechanical polishing substrate with polishing composition adapted to enhance silicon oxide removal
JP2014515777A (en) * 2011-04-15 2014-07-03 キャボット マイクロエレクトロニクス コーポレイション Compositions and methods for selective polishing of silicon nitride materials
JP2016017149A (en) * 2014-07-09 2016-02-01 日立化成株式会社 Abrasive, abrasive set, and substrate polishing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446046B2 (en) * 2005-01-06 2008-11-04 Intel Corporation Selective polish for fabricating electronic devices
KR101388956B1 (en) * 2006-12-28 2014-04-24 가오 가부시키가이샤 Polishing liquid composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247542A (en) * 2003-02-14 2004-09-02 Kao Corp Method for manufacturing substrate for precision component
JP2004266155A (en) * 2003-03-03 2004-09-24 Jsr Corp Water dispersed element for chemical mechanical polishing and chemical mechanical polishing method using the same and method for manufacturing semiconductor device
JP2005101545A (en) * 2003-08-05 2005-04-14 Rohm & Haas Electronic Materials Cmp Holdings Inc Composition for polishing semiconductor layer
WO2008105223A1 (en) * 2007-02-27 2008-09-04 Hitachi Chemical Co., Ltd. Cmp slurry for silicon film
JP2011216873A (en) * 2010-03-31 2011-10-27 Rohm & Haas Electronic Materials Cmp Holdings Inc Method of chemical mechanical polishing substrate with polishing composition adapted to enhance silicon oxide removal
JP2014515777A (en) * 2011-04-15 2014-07-03 キャボット マイクロエレクトロニクス コーポレイション Compositions and methods for selective polishing of silicon nitride materials
JP2016017149A (en) * 2014-07-09 2016-02-01 日立化成株式会社 Abrasive, abrasive set, and substrate polishing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066873A1 (en) * 2018-09-25 2020-04-02 日産化学株式会社 Polishing method for silicon wafer with reduced wear on carrier, and polishing liquid used therein
CN112703581A (en) * 2018-09-25 2021-04-23 日产化学株式会社 Method for polishing silicon wafer with reduced carrier wear and polishing liquid therefor
JPWO2020066873A1 (en) * 2018-09-25 2021-09-24 日産化学株式会社 Polishing method for silicon wafers with reduced carrier wear and polishing fluid used for it
US11621171B2 (en) 2018-09-25 2023-04-04 Nissan Chemical Corporation Method for polishing silicon wafer with reduced wear on carrier, and polishing liquid used therein
US11984320B2 (en) 2018-09-25 2024-05-14 Nissan Chemical Corporation Method for polishing silicon wafer with reduced wear on carrier, and polishing liquid used therein
US20220348788A1 (en) * 2021-04-27 2022-11-03 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Polishing composition and method of polishing a substrate having enhanced defect reduction

Also Published As

Publication number Publication date
TW201726880A (en) 2017-08-01
JP6533439B2 (en) 2019-06-19
TWI683896B (en) 2020-02-01
JP2017057263A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6082097B2 (en) High removal rate and low defect CMP compositions selective to oxides and nitrides
JP6542761B2 (en) Polishing composition of mixed abrasives
JP6023125B2 (en) Chemical mechanical polishing slurry composition and method for copper using it and through silicon via application
WO2017047307A1 (en) Polishing composition
TWI642771B (en) Tungsten-processing slurry with cationic surfactant
JP6603234B2 (en) Composition and method for CMP of tungsten material
JP6730385B2 (en) Metal chemical mechanical planarization (CMP) composition and method thereof
TW200811276A (en) Polishing composition containing polyether amine
KR20170074869A (en) Composition for polishing
KR20220042239A (en) Composition for tungsten cmp
JP6298588B2 (en) Cleaning liquid and substrate polishing method
JP2022541201A (en) Method for increasing barrier film removal rate in bulk tungsten slurry
JP2017508833A (en) Chemical mechanical polishing (CMP) composition comprising poly (amino acid)
TWI787329B (en) Chemical mechanical polishing method for cobalt
KR20180002629A (en) Abrasive composition
KR20140122271A (en) Chemical mechanical polishing (cmp) composition comprising a protein
EP3124569A1 (en) Polishing composition, and polishing method using same
JP6929239B2 (en) Polishing composition and polishing method
JPWO2018168207A1 (en) Surface treatment composition, method for producing the same, and surface treatment method using the same
TW201915133A (en) Chemical mechanical polishing method for cobalt
WO2016190128A1 (en) Polishing method and composition adjusting agent
JP2018170445A (en) Polishing composition and polishing method
JP2015523716A (en) Method for manufacturing semiconductor device and method for using chemical mechanical polishing composition
TWI510605B (en) Chemical mechanical polishing solution
US10119049B2 (en) Polishing agent, storage solution for polishing agent and polishing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846178

Country of ref document: EP

Kind code of ref document: A1