WO2017043365A1 - 金属多孔体、燃料電池、及び金属多孔体の製造方法 - Google Patents
金属多孔体、燃料電池、及び金属多孔体の製造方法 Download PDFInfo
- Publication number
- WO2017043365A1 WO2017043365A1 PCT/JP2016/075290 JP2016075290W WO2017043365A1 WO 2017043365 A1 WO2017043365 A1 WO 2017043365A1 JP 2016075290 W JP2016075290 W JP 2016075290W WO 2017043365 A1 WO2017043365 A1 WO 2017043365A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- nickel
- porous body
- porous
- layer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/08—Alloys with open or closed pores
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a metal porous body, a fuel cell, and a method for producing a metal porous body.
- a polymer polymer fuel cell (PEFC) using an ion exchange membrane as an electrolyte has been put into practical use for cogeneration, and a vehicle using this as a power source has begun to be put into practical use.
- the basic structure of a polymer electrolyte fuel cell includes an anode, a membrane, and a cathode.
- the membrane is an ion exchange membrane, and a fluorine-based exchange membrane having a sulfone group is mainly employed. Due to the improvement of the characteristics of the membrane, the practical use of the polymer electrolyte fuel cell is promoted.
- a solid polymer fuel cell is a unit cell in which a gas diffusion layer and a separator are arranged on the back of each electrode of an anode and a cathode, and this is used as a laminated structure (for example, Patent Document 1).
- the operating temperature is in the range of about 70 ° C. to 110 ° C. in consideration of performance, removal from the system due to evaporation of generated water, lifespan, and the like. Increasing the operating temperature improves the discharge characteristics. For cogeneration, there is an advantage that high-temperature exhaust heat can be obtained, but the lifetime is shorter than that at low temperatures.
- the gas diffusion layer carbon paper obtained by processing carbon fibers into a nonwoven fabric is generally used, and the gas diffusion layer also functions as a current collector. Also, as a gas diffusion layer, a groove is provided in a carbon plate used as a separator to facilitate gas supply and discharge. Thus, it is common to use carbon paper and a groove together as a gas diffusion layer. Note that the carbon paper also functions to suppress the membrane electrode assembly (MEA) from biting into the grooves of the separator.
- MEA membrane electrode assembly
- the porous metal body according to one aspect of the present invention is a porous metal body having a three-dimensional network structure composed of a skeleton and having an outer shape that is a flat plate shape having a pair of main surfaces and end faces connecting the pair of main surfaces.
- the skeleton includes a main metal layer made of nickel or a nickel alloy, and an oxide layer formed on the surface of the main metal layer.
- the porous metal body A porous metal body in which the oxide layer is not formed in a portion forming a pair of main surfaces.
- FIG. 1 is a diagram illustrating an outline of an example of a configuration of a cell of a fuel cell according to an embodiment of the present invention.
- FIG. 2 is a graph showing the evaluation results of the corrosion resistance of the porous metal bodies 1 to 3 produced in the examples.
- FIG. 3 is a graph showing the evaluation results of the power generation characteristics of the batteries A to D produced in the examples.
- the porosity of the groove formed in the carbon plate used as the separator for the solid polymer fuel depends on how much the carbon plate is provided, but is practically about 50%. That is, the groove is provided in about 1 ⁇ 2 of the area of one surface of the carbon plate. Further, the shape of the groove is a rectangle, and the width thereof is about 500 ⁇ m.
- the width of the groove is preferably increased and deepened, and the ratio of the groove per unit area is preferably increased.
- the greater the number of grooves provided in the separator the lower the conductivity of the separator, thereby reducing the battery characteristics. Since the influence of the conductivity of the separator on the battery characteristics is large, from the viewpoint of battery characteristics, the ratio of the grooves is small, and it is preferable that the groove is shallow.
- the smaller the groove width and the greater the number of grooves the more uniformly the gas is supplied to the MEA.
- the groove width decreases, the MEA is less likely to be grooved by the pressure applied when the cells are integrated, and the MEA is deformed and the function as the groove is reduced. This adverse effect becomes more prominent as the size of the battery increases and the number of batteries increases. In other words, the larger the electrode, the greater the number of cells, and the greater the required load, the greater.
- the present inventors examined using a metal porous body having a three-dimensional network structure as a gas diffusion layer.
- the porous metal body having a three-dimensional network structure has a very high porosity and can reduce pressure loss.
- the conventional metal porous body made of nickel is inferior in corrosion resistance as compared with the carbon material, so there is room for improvement in this respect.
- a metal porous body made of nickel having improved corrosion resistance a metal porous body in which nickel is alloyed with tin or chromium has already been proposed. Although these nickel-tin alloy porous bodies and nickel-chromium alloy porous bodies are excellent in corrosion resistance as compared with metal porous bodies made of nickel, they do not achieve the same corrosion resistance as that of carbon materials.
- the corrosion resistance of the metal porous body used as the gas diffusion layer does not always discharge, but is particularly problematic when used for a fuel cell that performs intermittent discharge such that discharge is stopped for a certain period and then discharged again.
- the reason is as follows.
- hydrogen containing water vapor is supplied to an anode to become hydrogen ions.
- This hydrogen ion moves to the cathode side through the ion exchange membrane, generates water by an electrochemical reaction, and goes out of the system.
- the supply of hydrogen and air is stopped and the discharge is stopped, the generated water remaining in the gas diffusion layer flows backward and touches the ion exchange membrane.
- the gas diffusion layer is a metal material and even a very small amount of metal is eluted in the generated water, it will adversely affect the ion exchange membrane, reducing the water retention of the membrane and reducing the discharge characteristics. End up. Therefore, the more severe the corrosion resistance is required for the gas diffusion layer of such a fuel cell with many pauses.
- an object of the present invention is to provide a porous metal body that is excellent in corrosion resistance and can be used as a gas diffusion layer of a fuel cell.
- the metal porous body according to one aspect of the present invention is: A porous metal body having a three-dimensional network structure composed of a skeleton, and having an outer shape of a flat plate having a pair of main surfaces and an end surface connecting the pair of main surfaces,
- the skeleton is A main metal layer made of nickel or a nickel alloy; An oxide layer formed on the surface of the main metal layer; With Of the surface of the main metal layer, the oxide layer is not formed on the portion forming the pair of main surfaces of the metal porous body, the metal porous body, It is.
- a pair of main surfaces of the metal porous body refers to a pair of main surfaces in the outer shape of the metal porous body, and the main surface includes a cross-sectional portion of the skeleton. Is located.
- the porous metal body according to the embodiment of the present invention is the porous metal body according to (1), wherein the skeleton includes a conductive layer formed on a surface of the oxide layer. According to the invention described in (2) above, a porous metal body having a conductive skeleton surface can be provided.
- the porous metal body according to the embodiment of the present invention is the porous metal body according to (2), wherein the conductive layer includes carbon powder and a binder. According to the invention described in (3) above, it is possible to provide a porous metal body having a conductive layer having excellent corrosion resistance and adhesion on the surface of the skeleton.
- the porous metal body according to the embodiment of the present invention is the porous metal body according to (2) or (3), wherein the conductive layer contains silver. According to the invention as described in said (4), the porous metal body which has the electroconductive layer excellent in electroconductivity on the surface of frame
- the porous metal body according to the embodiment of the present invention is the porous metal body according to any one of (1) to (5) above, wherein the oxide layer is nickel oxide. According to the invention as described in said (5) or said (6), the metal porous body which has the frame
- a fuel cell according to an embodiment of the present invention is a fuel cell using the porous metal body according to any one of (1) to (6) above as a gas diffusion layer. According to the invention described in (7) above, it is possible to provide a fuel cell having high output and excellent power generation per volume.
- a method for producing a porous metal body according to an embodiment of the present invention includes: A method for producing a porous metal body according to (1) above, A porous structure having a three-dimensional network structure composed of a skeleton, the outer shape being a flat plate shape having a pair of main surfaces and end faces connecting the pair of main surfaces, and the skeleton including a main metal layer made of nickel or a nickel alloy A preparation process for preparing the body; A heat treatment step of forming an oxide layer on the surface of the main metal layer by heating the porous body in an oxidizing atmosphere; A removing step of removing an oxide layer formed on a portion of the surface of the main metal layer that forms the pair of main surfaces; It is a manufacturing method of the metal porous body which has this. According to the invention as described in said (8), the manufacturing method of the porous metal body which is excellent in corrosion resistance and can be utilized as a gas diffusion layer of a fuel cell can be provided.
- a method for producing a porous metal body according to an embodiment of the present invention includes: After the preparation step and before the heat treatment step, It is a manufacturing method of the metal porous body as described in said (8) which has the acid treatment process which immerses the said porous body in an acidic solution, and dries.
- a method for producing a porous metal body according to an embodiment of the present invention includes: The method for producing a porous metal body according to (9), wherein the acidic solution is nitric acid, sulfuric acid, hydrochloric acid, or acetic acid. According to the invention as described in said (9) or said (10), the manufacturing method of the metal porous body which has a thick oxide layer on the surface of frame
- a method for producing a porous metal body according to an embodiment of the present invention includes: After the heat treatment step, The method for producing a porous metal body according to any one of (8) to (10), further including a conductive layer forming step of forming a conductive layer on a surface of the oxide layer.
- a conductive layer forming step of forming a conductive layer on a surface of the oxide layer According to the invention described in (11) above, it is possible to provide a method for producing the porous metal body described in (2) above.
- the conductive layer formation step may be performed any time after the heat treatment step, may be performed before the removal step, or may be performed after the removal step.
- the porous metal body according to the embodiment of the present invention is a flat plate having an outer shape having a pair of main surfaces and end surfaces connecting the pair of main surfaces, and the skeleton has a three-dimensional network structure.
- the skeleton includes a main metal layer made of nickel or a nickel alloy and an oxide layer formed on the surface of the main metal layer.
- the said oxide layer is not formed in the part which comprises a pair of main surface of a metal porous body among the surfaces of a main metal layer.
- the main metal layer is a portion made of nickel or a nickel alloy in the skeleton of the metal porous body.
- the cross section of the skeleton is exposed on the main surface of the metal porous body.
- an oxide layer of an element constituting the main metal layer is formed on the surface of the main metal layer constituting the skeleton of the metal porous body.
- nickel, a nickel alloy, or a metal oxide layer forming a nickel alloy is formed on the surface of the main metal layer. Since the oxide layer is formed on the surface of the main metal layer, the metal porous body according to the embodiment of the present invention is superior in corrosion resistance to sulfuric acid or the like than nickel. For example, when nickel oxide is formed as an oxide layer on the surface of the main metal layer of the metal porous body, the nickel oxide has better corrosion resistance than nickel, so the corrosion resistance of the metal porous body is also improved.
- the said oxide layer is not formed in a pair of main surface of the metal porous body which concerns on embodiment of this invention, ie, the cross-sectional part of frame
- it can be made conductive by making a pair of main surface of a metal porous body contact other conductive materials.
- porous metal body according to the embodiment of the present invention has better corrosion resistance against sulfuric acid or the like than a conventional porous metal body made of nickel or a nickel alloy, it is preferably used as a gas diffusion layer for a fuel cell. Can do.
- porous metal has a high porosity and a three-dimensional network structure, so when used as a gas diffusion layer, gas pressure loss is reduced and gas diffusibility is improved. Can be made. Thereby, the power generation performance in MEA of a fuel cell can be improved.
- a conductive layer is preferably formed on the oxide layer.
- the surface of the skeleton of the metal porous body can be made conductive.
- the material constituting the conductive layer is not particularly limited as long as it has conductivity and is formed into a film shape on the surface of the oxide layer of the porous metal body. It is preferable that it contains an agent. Thereby, a film-like conductive layer that adheres to the surface of the oxide layer of the metal porous body is formed.
- carbon powder can be preferably used. Carbon powder is preferable because it is lightweight and easily available. As the carbon powder, for example, carbon black, activated carbon, graphite or the like can be used alone or in combination. In addition to carbon powder, conductive powder such as gold, silver, palladium, copper, and aluminum can be used. Among these, silver powder can be preferably used in terms of corrosion resistance and conductivity.
- a resin can be preferably used.
- a resin having excellent film forming ability (film forming ability) and heat resistance can be preferably used. It is preferable to withstand heat of about 70 ° C. to 110 ° C., which is the operating temperature of the polymer electrolyte fuel cell.
- polyolefins such as polyethylene and polypropylene, polyacrylic acid ester, polyvinyl acetate, vinyl alcohol-polystyrene copolymer, ethylene-acrylic acid methyl ester copolymer, polymethacrylic acid ester, formalized polyvinyl Alcohol or the like can be used. These may be used alone or in combination.
- polyurethane, silicone resin, polyimide, and fluorine resin can also be preferably used as the resin.
- the nickel alloy constituting the metal porous body is not particularly limited, and examples thereof include tin, chromium, aluminum, titanium, copper, cobalt, tungsten, iron, manganese, silver, gold, phosphorus, and boron.
- An alloy of at least one and nickel can be mentioned. It is preferably an alloy with a metal that forms an alloy with nickel and is superior in corrosion resistance to sulfuric acid or the like than nickel. From the viewpoint of corrosion resistance and manufacturing cost, the nickel alloy is preferably an alloy containing nickel and at least one of chromium, tin, and tungsten. In the nickel alloy, the metal component contained other than nickel may be only one kind or plural kinds.
- the nickel alloy is preferably nickel chromium, nickel tin, or nickel tungsten.
- the metal porous body which concerns on embodiment of this invention may contain the component which does not form an alloy with nickel intentionally or unavoidable besides nickel and a nickel alloy.
- the thickness of the outer shape of the porous metal body that is, the height of the end face connecting one main surface and the other main surface is preferably 0.10 mm or more and 1.20 mm or less.
- the thickness of the outer shape of the metal porous body is 0.10 mm or more and 1.20 mm or less, it can contribute to miniaturization of the fuel cell when used as a gas diffusion layer of the fuel cell.
- the porous metal body has little gas pressure loss and excellent gas diffusibility, the output of the fuel cell can be increased.
- the thickness of the outer shape of the metal porous body is 0.10 mm or more, the mechanical strength of the metal porous body is maintained and the gas has a sufficient gas diffusion capacity.
- the thickness of the outer shape of the metal porous body is 1.20 mm or less, it is possible to contribute to miniaturization of the fuel cell. From these viewpoints, the thickness of the outer shape of the metal porous body is preferably 0.20 mm or more and 1.0 mm or less, and more preferably 0.30 mm or more and 0.80 mm or less.
- the porous metal body according to the embodiment of the present invention preferably has a porosity of 51% or more and 90% or less.
- the porosity is 51% or more, gas pressure loss can be further reduced when the metal porous body is used as a gas diffusion layer of a fuel cell.
- the porosity is 90% or less, gas diffusibility can be further enhanced when the metal porous body is used as a gas diffusion layer of a fuel cell. This is because, since the metal porous body has a three-dimensional network structure, when the porosity decreases, the rate at which the gas hits the skeleton of the metal porous body increases.
- the porosity of the metal porous body is 85% or less, the conductivity becomes excellent. From these viewpoints, the porosity of the metal porous body according to the embodiment of the present invention is more preferably 55% or more and 88% or less, and further preferably 60% or more and 85% or less.
- the basis weight of nickel is preferably about 200 g / m 2 or more and 1200 g / m 2 or less.
- the basis weight of the total amount of the metal components is preferably about 200 g / m 2 or more and 1200 g / m 2 or less.
- the strength and conductivity of the metal porous body can be sufficiently increased.
- the raise of a manufacturing cost and the increase in a weight can be suppressed because the sum total of the metal amount of metal shall be 1200 g / m ⁇ 2 > or less.
- the metal porous body according to the embodiment of the present invention preferably has a basis weight of 300 g / m 2 or more and 1100 g / m 2 or less, more preferably 400 g / m 2 or more and 1000 g / m 2 or less. More preferably it is.
- the pore diameter viewed from above the metal porous body is preferably 100 ⁇ m or more and 700 ⁇ m or less.
- the hole diameter is 100 ⁇ m or more, a high-power fuel cell can be obtained while suppressing the pressure loss of the fuel gas.
- the hole diameter is 700 ⁇ m or less, the fuel gas can be diffused smoothly, and the fuel use efficiency can be improved.
- the pore diameter of the metal porous body is more preferably 150 ⁇ m or more and 650 ⁇ m or less, and further preferably 200 ⁇ m or more and 600 ⁇ m or less.
- “viewed from above” refers to the case of viewing from the thickness direction of the planar metal porous body.
- the average pore diameter is a value obtained from the reciprocal of the number of cells of the metal porous body.
- the number of cells is a numerical value obtained by counting the number of cells on the outermost surface intersecting the line when a line having a length of 1 inch is drawn on the main surface of the metal porous body, and the unit is cell / inch. However, 1 inch shall be 2.54 cm.
- the fuel cell according to the embodiment of the present invention is a fuel cell using the porous metal body according to the embodiment of the present invention as a gas diffusion layer.
- the type of the fuel cell is not particularly limited, and may be a solid polymer fuel cell or a solid oxide fuel cell.
- a solid polymer fuel cell will be described as an example.
- ion exchange membranes and the like in the polymer electrolyte fuel cell can be used.
- a membrane / electrode assembly obtained by bonding an ion exchange membrane and a catalyst layer a commercially available one can be used as it is.
- Both the anode and cathode platinum catalysts are integrated using a gas diffusion electrode carrying about 0.5 mg / cm 2 and Nafion (registered trademark) 112 as an ion exchange membrane.
- FIG. 1 is a schematic cross-sectional view of a single cell of a polymer electrolyte fuel cell.
- a membrane-electrode assembly (MEA) M has activated carbon layers (2-1, 2-2) containing gas diffusion electrodes, that is, platinum catalysts, on both surfaces of an ion exchange membrane 1-1.
- a hydrogen electrode as an anode and an air electrode as a cathode, respectively.
- the current collector (3-1, 3-2) also serves as a bipolar current collector and a gas diffusion layer.
- commercially available carbon paper treated with water repellency can be used.
- As the carbon paper for example, a paper having water repellency to which a porosity of about 50% and a fluororesin of about 15% are added can be used.
- the separator (4-1, 4-2) for example, a commercially available graphite plate can be used.
- the gas diffusion layer (4-1-1, 4-2-1) is a porous metal body according to the embodiment of the present invention, and also serves as a gas supply / discharge path. Since the porous metal body according to the embodiment of the present invention is very thin compared to the conventional porous metal body, the fuel cell can be downsized.
- FIG. 1 shows a single cell, a fuel cell that has been put to practical use is configured by stacking cells so that a desired voltage can be handled via a separator.
- each cell is connected in series, if one side of the separator is a cathode, it is assembled so that the anode of the next cell comes to the other side, and the periphery is pressurized and integrated with bolts, nuts and the like.
- the metal porous body according to the embodiment of the present invention can be produced by various methods. Examples of the production method include the methods described in the above (8) to (11). Below, each process of the manufacturing method of a metal porous body is demonstrated in detail.
- This step is a step of preparing a porous body including a main metal layer made of nickel or a nickel alloy as a starting material.
- the porous body is a flat plate having an outer shape having a pair of main surfaces and end surfaces connecting the main surfaces, the skeleton has a three-dimensional network structure, and includes a main metal layer made of nickel or a nickel alloy. I just need it.
- a method for producing a porous body having a main metal layer made of nickel or a nickel alloy is not particularly limited, but is preferably produced by the following plating method.
- the surface of the skeleton of a resin molded body having a three-dimensional network structure is subjected to a conductive treatment, and subsequently plated with nickel or a nickel alloy, and then the resin molded body as a base material is removed, A porous body having a main metal layer made of a nickel alloy can be produced.
- any known or commercially available one may be used as long as it is porous.
- a resin foam, nonwoven fabric, felt, woven fabric, or the like can be used.
- these can also be used in combination as needed.
- a sheet-like material is preferably a flexible material because it breaks when the rigidity is high.
- a resin foam As the resin molding.
- the resin foam include foamed urethane, foamed styrene, and foamed melamine resin.
- foamed urethane is preferable from the viewpoint of particularly high porosity.
- the porosity of the resin molded body is not limited, and is usually about 60% to 97%, preferably about 80% to 96%.
- the thickness of the resin molded body is not limited, and is appropriately determined according to the use of the obtained porous metal body. Usually, it is about 600 ⁇ m or more and 5000 ⁇ m or less, preferably about 800 ⁇ m or more and 2000 ⁇ m or less.
- the resin molded body has a very high porosity, a flat plate shape cannot be maintained when the thickness is 500 ⁇ m or less.
- a foamed resin is used as a resin molded body having a three-dimensional network structure will be described as an example.
- the conductive treatment of the skeleton surface of the resin molded body is not particularly limited as long as it is a method capable of providing a conductive layer on the surface of the skeleton of the resin molded body.
- the material constituting the conductive layer include metals such as nickel, tin, chromium, copper, iron, tungsten, titanium, and stainless steel, and carbon powder such as carbon powder.
- Specific examples of the conductive treatment include metal powders such as nickel, tin, and chromium, and conductive paints obtained by adding a binder to graphite powder, electroless plating treatment, sputtering, vapor deposition, ion plating, and the like. Preferred examples include phase treatment.
- the electroless plating treatment using nickel can be performed by immersing the foamed resin in a known electroless nickel plating bath such as a nickel sulfate aqueous solution containing sodium hypophosphite as a reducing agent. If necessary, the resin molded body may be immersed in an activation liquid containing a trace amount of palladium ions (cleaning liquid manufactured by Kanigen Co., Ltd.) or the like before immersion in the plating bath.
- a known electroless nickel plating bath such as a nickel sulfate aqueous solution containing sodium hypophosphite as a reducing agent.
- the resin molded body may be immersed in an activation liquid containing a trace amount of palladium ions (cleaning liquid manufactured by Kanigen Co., Ltd.) or the like before immersion in the plating bath.
- a resin molded body is attached to a substrate holder, and then a DC voltage is applied between the holder and a target (nickel or chromium) while introducing an inert gas.
- the ionized inert gas thus collides with nickel or chromium, and the blown-off nickel particles or chromium particles may be deposited on the surface of the resin molded body.
- a conductive paint such as carbon powder or metal powder
- powder having conductivity on the surface of the skeleton of the resin molded body for example, powder of metal material such as stainless steel, crystalline graphite, amorphous
- a method of applying a mixture of carbon powder such as carbon black for example, chromium powder, tin powder, or tungsten powder may be used in combination with the carbon powder.
- the porous body which consists of nickel chromium, nickel tin, and nickel tungsten can be manufactured.
- carbon powder carbon black, activated carbon, graphite or the like can be used, and the material is not particularly limited. Carbon black may be used for the purpose of making the conductivity uniform, and fine graphite powder may be used for considering the strength of the conductive coating layer. Moreover, it is preferable to mix including activated carbon. You may add the thickener generally used, for example, carboxymethylcellulose (CMC) etc., when producing a slurry.
- the surface of the skeleton of the resin molded body can be made conductive by applying this slurry to the skeleton of the resin molded body that has been cut into a plate shape or a strip shape by adjusting the thickness.
- the nickel plating layer may be formed using either electroless nickel plating or electrolytic nickel plating, but electrolytic nickel plating is preferable because of its higher efficiency. What is necessary is just to perform an electrolytic nickel plating process in accordance with a conventional method.
- a known or commercially available bath can be used, and examples thereof include a watt bath, a chloride bath, a sulfamic acid bath, and the like.
- the resin molded body having a conductive coating layer formed on the surface thereof by electroless plating or sputtering is immersed in a plating bath, and the resin molded body is connected to the cathode and the nickel counter electrode is connected to the anode to allow direct current or pulse intermittent current to flow.
- a nickel plating layer can be formed on the conductive coating layer.
- the basis weight of an electrolytic nickel plating layer so that the content rate of nickel may be 50 mass% or more as a final metal composition of a porous body.
- the amount of nickel is about 200 g / m ⁇ 2 > or more and about 1200 g / m ⁇ 2 > or less.
- the basis weight of the total metal amount is preferably about 200 g / m 2 or more and 1200 g / m 2 or less.
- the basis weight of nickel or nickel alloy is more preferably 300 g / m 2 or more and 1100 g / m 2 or less, and further preferably 400 g / m 2 or more and 1000 g / m 2 or less.
- a chromium plating layer or a tin plating layer is further formed on the nickel plating layer, followed by heat treatment. It may be alloyed.
- (Chrome plating layer formation) When forming a chromium plating layer on a nickel plating layer, it can carry out as follows, for example. That is, it may be carried out according to a known chrome plating method, and a known or commercially available plating bath can be used. For example, a hexavalent chromium bath or a trivalent chromium bath can be used.
- a chrome plating layer can be formed by immersing a porous body to be plated in the chrome plating bath and connecting it to the cathode, connecting a chrome plate to the anode as a counter electrode, and applying a direct current or pulse intermittent current.
- the process of forming a tin plating layer on a nickel plating layer can be performed as follows, for example. That is, as a sulfuric acid bath, a plating bath having a composition of stannous sulfate 55 g / L, sulfuric acid 100 g / L, cresol sulfonic acid 100 g / L, gelatin 2 g / L, and ⁇ -naphthol 1 g / L is prepared.
- tin plating is performed by setting the cathode current density to 2 A / dm 2 , the anode current density to 1 A / dm 2 or less, the temperature to 20 ° C., and the stirring (cathode oscillation) to 2 m / min.
- a layer can be formed.
- strike nickel plating it is desirable to perform strike nickel plating immediately before to remove the surface oxide film of the porous body and put it into the tin plating bath without being dried. Thereby, the adhesiveness of a tin plating layer can be improved.
- the conditions for strike nickel plating can be as follows, for example.
- a wood strike nickel bath having a composition of nickel chloride 240 g / L, hydrochloric acid (having a specific gravity of about 1.18) 125 ml / L, setting the temperature to room temperature, and using nickel or carbon for the anode It can be carried out.
- the above plating procedure is summarized as follows: degreasing with an A-screen (cathodic electrolytic degreasing 5 A / dm 2 ⁇ 1 minute), hot water washing, water washing, acid activity (hydrochloric acid immersion 1 minute), wood strike nickel plating treatment (5 to 10 A / dm) 2 ⁇ 1 min), processed to tin plating, washed and dried without washing and drying.
- plating solution circulation during plating In general, it is difficult to uniformly plate a substrate such as a resin molded body having a three-dimensional network structure. It is preferable to circulate the plating solution in order to prevent non-attachment to the inside or to reduce the difference in the amount of plating adhesion between the inside and the outside.
- a circulation method there are methods such as using a pump and installing a fan inside the plating tank. Also, if a plating solution is sprayed onto the resin molded body using these methods, or if the resin molded body is placed adjacent to the suction port, the plating solution can easily flow inside the resin molded body, which is effective.
- a porous body having a main metal layer made of nickel or a nickel alloy can be obtained by removing a resin molded body used as a substrate from a resin structure having a nickel plating layer or a nickel alloy plating layer formed on the surface. .
- the nickel plating layer or the nickel alloy plating layer becomes the main metal layer of the skeleton of the porous body.
- the method for removing the resin molding is not limited, and examples thereof include chemical treatment and combustion removal by incineration.
- the heating may be performed in an oxidizing atmosphere such as air of about 600 ° C. or higher.
- the obtained porous body is heat-treated in a reducing atmosphere as necessary to reduce the metal, thereby obtaining a porous body having a main metal layer made of nickel or a nickel alloy.
- This step is a step of heat-treating the porous body including the main metal layer made of nickel or nickel alloy prepared above in an oxidizing atmosphere.
- an oxide layer of an element constituting the main metal layer is formed on the surface of the main metal layer.
- the oxidizing atmosphere is not particularly limited as long as it is an atmosphere in which nickel or nickel alloy constituting the skeleton is oxidized. For example, it may be performed in an air atmosphere or an atmosphere containing 10% or more of oxygen.
- the heat processing temperature is at about 300 degreeC or more and 1000 degrees C or less.
- the oxidation of nickel or a nickel alloy can be accelerated
- skeleton can be suppressed because it is 1000 degrees C or less.
- the heat treatment temperature is more preferably 300 ° C. or more and 900 ° C. or less, and further preferably 350 ° C. or more and 850 ° C. or less.
- the heat treatment time may be a time during which nickel or a nickel alloy can be oxidized.
- the soaking time may be about 15 minutes or more and about 2 hours or less.
- the heat treatment time is more preferably 20 minutes or longer and 1.5 hours or shorter, and further preferably 30 minutes or longer and 1 hour or shorter.
- This step is a step of removing the oxide layer formed on the portion forming the pair of main surfaces of the porous body from the oxide layer formed on the surface of the main metal layer by the heat treatment. Since the oxide layer is not formed on the portion constituting the main surface of the metal porous body, it is possible to conduct by bringing the main surface of the metal porous body into contact with another conductive material.
- the method for removing the oxide layer formed on the main surface of the porous body including the main metal layer made of nickel or nickel alloy is not particularly limited, and the nickel or nickel alloy constituting the main metal layer is exposed. Any method can be used. For example, a method of polishing using sandpaper or an abrasive, a method of etching with a chemical solution, a method of using a reducing agent, and the like can be preferably used.
- the metal porous body which concerns on embodiment of this invention can be manufactured with the above manufacturing method.
- a porous body including a main metal layer made of nickel or a nickel alloy is dipped in an acidic solution and dried, and then the heat treatment step is performed.
- the surface of the porous body is oxidized and roughened, whereby the oxidation easily proceeds, and the thickness of the oxide layer formed on the surface of the main metal layer can be increased.
- the acidic solution for example, nitric acid, sulfuric acid, hydrochloric acid, acetic acid and the like can be used. It is preferable to use an aqueous solution of these acidic solutions. For example, when dilute nitric acid is used, the surface of the porous body becomes nickel nitrate, which is heated at 250 ° C.
- the metal porous body in which the oxide layer is formed exhibits excellent corrosion resistance in the generated water as compared with the metal porous body not having the oxide layer. Therefore, the metal porous body on which the oxide layer is formed can be used for a member that requires corrosion resistance in the generated water. For example, it is preferable as a gas diffusion layer for a fuel cell in which the number of stops increases due to long-term use. Can be used.
- the conductive layer formation process It is preferable to further form a conductive layer on the surface of the oxide layer of the porous metal body on which the oxide layer is formed. Thereby, the surface of the skeleton of the metal porous body can be made conductive.
- the conductive layer is not particularly limited as long as it is a conductive layer. However, considering that the metal porous body is used as a gas diffusion layer of a fuel cell, the conductive layer is preferably excellent in corrosion resistance. Note that the conductive layer formation step may be performed any time after the heat treatment step, may be performed before the removal step, or may be performed after the removal step.
- the conductive layer can be formed by applying a slurry containing conductive powder and a binder to the surface of the oxide layer of the metal porous body and drying it.
- a slurry containing conductive powder and a binder can be used as the conductive powder.
- Carbon powder is preferable because it is lightweight and easily available.
- the carbon powder for example, carbon black, activated carbon, graphite or the like can be used alone or in combination.
- the conductive powders such as gold, silver, palladium, copper, and aluminum can be used in addition to the carbon powder.
- silver powder can be preferably used in terms of corrosion resistance and conductivity.
- a resin can be preferably used.
- a resin having excellent film forming ability (film forming ability) and heat resistance can be preferably used. It is preferable to withstand heat of about 70 ° C. to 110 ° C., which is the operating temperature of the polymer electrolyte fuel cell.
- polyolefins such as polyethylene and polypropylene, polyacrylic acid ester, polyvinyl acetate, vinyl alcohol-polystyrene copolymer, ethylene-acrylic acid methyl ester copolymer, polymethacrylic acid ester, formalized polyvinyl Alcohol or the like can be used. These may be used alone or in combination.
- polyurethane, silicone resin, polyimide, and fluorine resin can also be preferably used as the resin.
- the porous metal body obtained as described above preferably further includes a step of rolling to adjust the thickness of the outer shape to 0.10 mm or more and 1.20 mm or less.
- -Thickening process This step is a step of rolling the metal porous body and adjusting the thickness so that the thickness of the outer shape becomes 0.10 mm or more and 1.20 mm or less. Rolling can be performed by, for example, a roller press or a flat plate press.
- By adjusting the thickness of the metal porous body it is possible to make the thickness of the outer shape of the metal porous body uniform and eliminate the unevenness of the surface unevenness. Moreover, the porosity can be reduced by rolling the metal porous body.
- the thickness of the outer shape of the metal porous body is 0.20 mm or more and 1.0 mm or less, and it is more preferable to roll so that the thickness is 0.30 mm or more and 0.80 mm or less.
- the metal porous body is used as the gas diffusion layer of the fuel cell, a metal porous body having a thickness slightly thicker than the thickness of the gas diffusion layer when incorporated in the fuel cell is manufactured, The metal porous body may be deformed by the pressure at the time of incorporation so that the thickness becomes 0.10 mm or more and 1.20 mm or less.
- the porous metal body may be slightly rolled in advance to form a porous metal body having a thickness slightly thicker than the thickness of the gas diffusion layer when incorporated in the fuel cell.
- the adhesion between the MEA of the fuel cell and the gas diffusion layer (metal porous body) can be further enhanced.
- the metal porous body which concerns on embodiment of this invention can be used conveniently also for the hydrogen production use by water electrolysis besides a fuel cell use.
- Hydrogen production methods are broadly classified into [1] alkaline water electrolysis method, [2] PEM method, and [3] SOEC method, and any of these methods can use a porous metal body.
- the alkaline water electrolysis method [1] is a method in which water is electrolyzed by immersing an anode and a cathode in a strong alkaline aqueous solution and applying a voltage.
- a metal porous body as an electrode, the contact area between water and the electrode is increased, and the efficiency of water electrolysis can be increased.
- the metal porous body preferably has a pore diameter of 100 ⁇ m or more and 5000 ⁇ m or less when viewed from above.
- the pore size when the metal porous body is viewed from above is 100 ⁇ m or more, the generated hydrogen / oxygen bubbles are prevented from clogging the pores of the metal porous body and reducing the contact area between water and the electrode. be able to.
- the pore diameter is 5000 ⁇ m or less, the surface area of the electrode is sufficiently increased, and the efficiency of water electrolysis can be increased.
- the pore size when the metal porous body is viewed from above is more preferably 400 ⁇ m or more and 4000 ⁇ m or less.
- the thickness and the amount of metal of the metal porous body may be appropriately selected depending on the scale of the equipment because it causes a deflection or the like when the electrode area increases.
- a plurality of porous metal bodies having different pore diameters can be used in combination in order to achieve both the elimination of bubbles and the securing of the surface area.
- the metal porous body which concerns on embodiment of this invention as an electrode in an alkaline water electrolysis system, what is necessary is just to use the metal porous body which has a conductive layer on the surface of an oxide layer.
- the PEM method of [2] is a method of electrolyzing water using a solid polymer electrolyte membrane.
- a solid polymer electrolyte membrane By placing an anode and a cathode on both sides of the solid polymer electrolyte membrane and applying a voltage while flowing water to the anode side, hydrogen ions generated by water electrolysis move to the cathode side through the solid polymer electrolyte membrane And is taken out as hydrogen on the cathode side.
- the operating temperature is about 100 ° C.
- the polymer electrolyte fuel cell that generates electricity with hydrogen and oxygen and discharges water is operated in exactly the reverse manner with the same configuration. Since the anode side and the cathode side are completely separated, there is an advantage that high purity hydrogen can be taken out. Since both the anode and the cathode must pass through the electrode and allow water and hydrogen gas to pass through, the electrode needs a conductive porous body.
- the porous metal body according to the embodiment of the present invention has high porosity and good electrical conductivity, it can be used for PEM water electrolysis as well as it can be suitably used for polymer electrolyte fuel cells. It can be used suitably.
- the metal porous body preferably has a pore diameter of 100 ⁇ m or more and 700 ⁇ m or less when viewed from above. When the porous metal body is viewed from above, the pore diameter is 100 ⁇ m or more, and the generated hydrogen / oxygen bubbles are clogged in the pores of the porous metal body, reducing the contact area between water and the solid polymer electrolyte membrane. Can be suppressed.
- the pore diameter is 700 ⁇ m or less, so that sufficient water retention can be ensured, and water is prevented from passing through before reacting. Electrolysis can be performed. From the same viewpoint, the pore diameter when the metal porous body is viewed from above is more preferably 150 ⁇ m or more and 650 ⁇ m or less, and further preferably 200 ⁇ m or more and 600 ⁇ m or less.
- the thickness and the amount of metal of the porous metal body may be appropriately selected depending on the scale of the equipment. However, if the porosity is too small, the pressure loss for allowing water to pass increases, so the porosity is 30% or more. It is preferable to adjust the thickness and the amount of metal. Also, in the PEM method, the electrical connection between the solid polymer electrolyte membrane and the electrode is a pressure bonding, so it is necessary to adjust the amount of metal so that the increase in electrical resistance due to deformation and creep during pressurization is within a practically acceptable range. .
- the amount of metal is preferably about 200 g / m 2 or more and 1200 g / m 2 or less, more preferably about 300 g / m 2 or more and about 1100 g / m 2 or less, 400 g / m 2 or more and 1000 g / m 2 or less. More preferably, it is about 2 or less.
- a plurality of porous metal bodies having different pore diameters can be used in combination for ensuring porosity and electrical connection.
- the SOEC method [3] is a method of electrolyzing water using a solid oxide electrolyte membrane, and the configuration differs depending on whether the electrolyte membrane is a proton conducting membrane or an oxygen ion conducting membrane.
- the oxygen ion conductive membrane hydrogen is generated on the cathode side for supplying water vapor, so that the hydrogen purity is lowered. Therefore, it is preferable to use a proton conductive membrane from the viewpoint of hydrogen production.
- hydrogen ions generated by water electrolysis are moved to the cathode side through the solid oxide electrolyte membrane. In this method, only hydrogen is extracted on the cathode side.
- the operating temperature is about 600 ° C to 800 ° C.
- a solid oxide fuel cell that generates electricity with hydrogen and oxygen and discharges water is operated in exactly the reverse manner with the same configuration.
- the electrode must be conductive and have a porous body that can withstand a high-temperature oxidizing atmosphere, particularly on the anode side. Since the porous metal body according to the embodiment of the present invention has high porosity, good electrical conductivity, and high oxidation resistance and heat resistance, it can be suitably used for a solid oxide fuel cell. It can also be suitably used for SOEC water electrolysis. It is preferable to use a Ni alloy to which a metal having high oxidation resistance such as Cr is added for the electrode on the side that becomes an oxidizing atmosphere.
- the porous metal body preferably has a pore diameter of 100 ⁇ m or more and 700 ⁇ m or less when viewed from above. Since the pore diameter when the metal porous body is viewed from above is 100 ⁇ m or more, water vapor or generated hydrogen is clogged in the pores of the metal porous body, and the contact area between the water vapor and the solid oxide electrolyte membrane is reduced. This can be suppressed. Moreover, when the metal porous body is viewed from above, the pore diameter is 700 ⁇ m or less, so that it is possible to prevent the pressure loss from becoming too low and water vapor to pass through before sufficiently reacting. From the same viewpoint, the pore diameter when the metal porous body is viewed from above is more preferably 150 ⁇ m or more and 650 ⁇ m or less, and further preferably 200 ⁇ m or more and 600 ⁇ m or less.
- the thickness of the metal porous body and the amount of metal may be appropriately selected depending on the scale of the equipment. However, if the porosity is too small, the pressure loss for introducing water vapor increases, so that the porosity is 30% or more. It is preferable to adjust the thickness and the amount of metal. In addition, in the SOEC method, since the electrical connection between the solid oxide electrolyte membrane and the electrode is a pressure bonding, it is necessary to adjust the amount of metal so that the increase in electric resistance due to deformation and creep during pressurization is within a practically acceptable range. .
- the amount of metal is preferably about 200 g / m 2 or more and 1200 g / m 2 or less, more preferably about 300 g / m 2 or more and about 1100 g / m 2 or less, 400 g / m 2 or more and 1000 g / m 2 or less. More preferably, it is about 2 or less.
- a plurality of porous metal bodies having different pore diameters can be used in combination for ensuring porosity and electrical connection.
- Appendix 1 By electrolyzing water using a metal porous body having a three-dimensional network structure composed of a skeleton and having an outer shape as a plate having a pair of main surfaces and an end surface connecting the pair of main surfaces as an electrode
- a method for producing hydrogen that generates hydrogen comprising:
- the skeleton of the porous metal body includes a main metal layer made of nickel or a nickel alloy, and an oxide layer formed on the surface of the main metal layer, The method for producing hydrogen, wherein the oxide layer is not formed on portions of the surface of the main metal layer that form a pair of main surfaces of the metal porous body.
- the skeleton is The method for producing hydrogen according to appendix 1, comprising a conductive layer formed on a surface of the oxide layer.
- Appendix 3 The method for producing hydrogen according to appendix 2, wherein the conductive layer includes carbon powder and a binder.
- Appendix 4 The method for producing hydrogen according to supplementary note 2 or supplementary note 3, wherein the conductive layer contains silver.
- Appendix 5 The method for producing hydrogen according to any one of appendix 1 to appendix 4, wherein the nickel alloy includes at least one of chromium, tin, and tungsten and nickel.
- Appendix 6) The method for producing hydrogen according to any one of appendices 1 to 5, wherein the oxide layer is nickel oxide.
- the metal porous body is disposed on both sides of the solid oxide electrolyte membrane, the solid polymer electrolyte membrane and the metal porous body are brought into contact with each other, and each metal porous body acts as an anode and a cathode.
- the method for producing hydrogen according to any one of appendix 1 to appendix 6, wherein hydrogen is generated by electrolyzing water to generate hydrogen on the cathode side.
- (Appendix 10) An apparatus for producing hydrogen capable of generating hydrogen by electrolyzing water, A porous metal body having a three-dimensional network structure composed of a skeleton and having an outer shape having a pair of main surfaces and an end surface connecting the pair of main surfaces as an electrode;
- the skeleton of the porous metal body includes a main metal layer made of nickel or a nickel alloy, and an oxide layer formed on the surface of the main metal layer, An apparatus for producing hydrogen, wherein the oxide layer is not formed on portions of the surface of the main metal layer that form a pair of main surfaces of the porous metal body.
- the skeleton is The hydrogen production apparatus according to appendix 10, comprising a conductive layer formed on a surface of the oxide layer.
- (Appendix 12) The hydrogen production apparatus according to appendix 11, wherein the conductive layer includes carbon powder and a binder.
- (Appendix 13) The hydrogen production apparatus according to appendix 11 or appendix 12, wherein the conductive layer contains silver.
- (Appendix 14) The hydrogen production apparatus according to any one of appendix 10 to appendix 13, wherein the nickel alloy includes at least one of chromium, tin, and tungsten and nickel.
- (Appendix 15) The hydrogen production apparatus according to any one of appendix 10 to appendix 14, wherein the oxide layer is nickel oxide.
- (Appendix 16) The hydrogen production apparatus according to any one of appendix 11 to appendix 15, wherein the water is a strong alkaline aqueous solution.
- Appendix 17 Having an anode and a cathode on both sides of the solid polymer electrolyte membrane; The anode and the cathode are in contact with the solid polymer electrolyte membrane; A hydrogen production apparatus capable of generating hydrogen on the cathode side by electrolyzing water supplied to the anode side, The hydrogen production apparatus according to any one of appendix 10 to appendix 15, wherein the metal porous body is used for at least one of the anode and the cathode.
- Appendix 18 Having an anode and a cathode on both sides of the solid oxide electrolyte membrane; The anode and the cathode are in contact with the solid polymer electrolyte membrane; A hydrogen production apparatus capable of generating hydrogen on the cathode side by electrolyzing water vapor supplied to the anode side, The hydrogen production apparatus according to any one of appendix 10 to appendix 15, wherein the metal porous body is used for at least one of the anode and the cathode.
- Example 1 -Fabrication of porous metal- ⁇ Preparation process> (Conductive layer formation process)
- a resin molded body having a three-dimensional network structure a urethane resin foam sheet having a porosity of 90%, an average pore diameter of 450 ⁇ m, and a thickness of 1.3 mm was used.
- a slurry was prepared by dispersing 1000 g of graphite powder having an average particle size of 0.5 ⁇ m and 130 g of chromium powder having an average particle size of 5 ⁇ m in 5 L of an acrylic-styrene copolymer emulsion of 10% by mass.
- the urethane resin foam was immersed in this slurry. Then, the urethane resin foam was pulled up, excess slurry was removed between the rolls, and dried to make the surface of the skeleton conductive.
- the amount of chromium applied after drying was set to 70 g / m 2 .
- the electroconductive urethane resin foam was subjected to electrolytic nickel plating by a known sulfamic acid bath method.
- Electrolytic nickel plating was performed with a known composition, that is, a bath mainly composed of nickel sulfamate 430 g / L, nickel chloride 7 g / L, and boric acid 32 g / L at a current density of 250 mA / cm 2 .
- the basis weight of nickel was set to 600 g / m 2 .
- the resin structure was heated in the atmosphere at 800 ° C. for 15 minutes to incinerate and remove the resin and graphite powder added to the resin molded body and the slurry. After that, heat treatment is performed at 1000 ° C. for 25 minutes in a hydrogen atmosphere to reduce the metal that has been partially oxidized by heating in the air, and alloying and annealing to form a main metal layer whose skeleton is made of a nickel chromium alloy. A porous body was obtained. The uniformity of the alloy was confirmed by X-ray analysis and electron microscope. Thereafter, the porous body including the main metal layer made of a nickel chromium alloy was adjusted to a thickness of 0.50 mm with a roller press.
- the porous body including the main metal layer made of a nickel-chromium alloy had a porosity of 84.6%, a basis weight of 670 g / m 2 , a ratio of nickel to chromium of 90% by weight of nickel, and 10% by weight of chromium.
- a pair of main surfaces of a porous body having an oxide layer formed on the surface of the main metal layer is polished by sandpaper to form an oxide formed on a portion of the main metal layer that forms the pair of main surfaces. The layer was removed.
- a slurry was prepared by dispersing 450 g of graphite powder having an average particle diameter of 1.0 ⁇ m in 2.5 L of an 8% by mass aqueous polypropylene emulsion.
- the porous body obtained above was immersed in this slurry, and the slurry was applied to the surface of the skeleton.
- the binding property of resin was improved by heat-processing for 30 minutes at 135 degreeC.
- a porous metal body 1 in which a conductive layer having corrosion resistance and conductivity was formed on the surface of the oxide layer was obtained.
- the porous metal body 1 was used as a gas diffusion layer / gas supply / discharge path of a polymer electrolyte fuel cell (single cell).
- a commercially available MEA was used, and the metal porous body 1 was cut into 5 ⁇ 5 cm to form the single cell shown in FIG.
- the MEA was sandwiched between two carbon papers, and the outside was sandwiched between two metal porous bodies 1 to form a single cell.
- a gasket and a concave graphite plate were used, and the four corners were fastened and fixed with bolts and nuts.
- the separator graphite plate is practically a laminated battery, its thickness is about 1 to 2 mm.
- the example is a single cell and has a thickness of 10 mm to make it strong enough to withstand tightening. .
- This cell was designated as battery A.
- Example 2 -Fabrication of porous metal- ⁇ Preparation process> (Conductive layer formation process)
- a resin molded body having a three-dimensional network structure a urethane resin foam sheet having a porosity of 90%, an average pore diameter of 450 ⁇ m, and a thickness of 1.3 mm was used.
- a slurry was prepared by dispersing 900 g of graphite powder having an average particle diameter of 0.5 ⁇ m in 1 L of a 10% by mass acrylic ester aqueous emulsion.
- the urethane resin foam was immersed in this slurry. Then, the urethane resin foam was pulled up, excess slurry was removed between the rolls, and dried to make the surface of the skeleton conductive.
- the amount of graphite applied after drying was set to 20 g / m 2 .
- the urethane resin foam imparted with conductivity was subjected to electrolytic nickel plating by a known sulfamic acid bath method.
- Electrolytic nickel plating was performed with a known composition, that is, a bath mainly composed of nickel sulfamate 430 g / L, nickel chloride 7 g / L, and boric acid 32 g / L at a current density of 250 mA / cm 2 .
- the basis weight of nickel was set to 600 g / m 2 .
- tin plating was performed using a known sulfuric acid bath.
- the sulfuric acid bath was composed of stannous sulfate 55 g / L, sulfuric acid 100 g / L, cresol sulfonic acid 100 g / L, gelatin 2 g / L, and ⁇ -naphthol 1 g / L.
- the cathode current density is 2 A / dm 2
- the anode current density is 1 A / dm 2 or less
- the temperature is 20 ° C.
- the stirring (cathode oscillation) is 2 m / min. Formation was performed.
- the basis weight of tin was set to 150 g / m 2 .
- the resin structure was heated in the atmosphere at 800 ° C. for 15 minutes to incinerate and remove the resin (binder) and graphite powder added to the resin molded body and the slurry. After that, heat treatment is performed at 1000 ° C. for 50 minutes in a hydrogen atmosphere to reduce the metal that has been partially oxidized by heating in the atmosphere, and by alloying and annealing by thermal diffusion, the skeleton is made of a nickel-tin alloy. A porous body provided with a metal layer was obtained. The uniformity of the alloy was confirmed by X-ray analysis and electron microscope. Thereafter, the thickness of the porous body including the main metal layer made of a nickel-tin alloy was adjusted to 0.50 mm with a roller press.
- the porous body including the main metal layer made of a nickel-tin alloy had a porosity of 82.4%, a basis weight of 750 g / m 2 , and a nickel-tin ratio of 80 mass% nickel and 20 mass% tin.
- ⁇ Acid treatment process> The porous body provided with the main metal layer made of the nickel tin alloy obtained above was immersed in a 0.5N nitric acid aqueous solution at room temperature, immediately pulled up, and left at room temperature for 1 hour.
- ⁇ Heat treatment process> A porous body having a main metal layer made of a nickel-tin alloy after being immersed in the above nitric acid aqueous solution is heated in an air atmosphere at 500 ° C. for 1 hour to decompose and oxidize nickel nitrate forming the surface of the main metal layer I let you. Thus, it was confirmed by oxygen mapping by SEM-EDX of the cross section that more oxide layers were formed than the porous metal body of Example 1.
- the oxide layer in the portion constituting the pair of main surfaces of the porous body was removed, and a conductive layer having corrosion resistance and conductivity was formed on the surface of the oxide layer. This is designated as metal porous body 2.
- FIG. 2 A single cell was constructed using a general-purpose separator (graphite plate) with grooves formed as a gas diffusion layer. That is, the same MEA and carbon paper as the battery A were used for both the anode and the cathode. The grooves were 1 mm in both depth and width, and the width between the grooves was 1 mm. The apparent porosity of the gas diffusion layer is approximately 50%. This cell was designated as battery C.
- Example 3 After forming the oxide layer by the method of Example 1, a metal porous body 4 was produced in the same manner as in Example 1 except that polishing and conductive layer application were not performed. Using this metal porous body 4, a single cell of a fuel cell similar to that of Example 1 was produced. This cell was designated as battery D.
- the amount of Ni elution of the metal porous bodies 1 and 2 produced in Examples 1 and 2 was 5 ppm or less, and excellent corrosion resistance was exhibited with respect to 34 ppm of the metal porous body 3 produced in Comparative Example 1.
- Batteries A and B using the porous metal bodies 1 and 2 produced in Examples 1 and 2 are higher in voltage even in a high current region than the battery C using the general-purpose separator of Comparative Example 2, and have excellent power generation characteristics. showed that.
- the battery D using the metal porous body 4 of Comparative Example 3 that was not polished had remarkably poor power generation characteristics. This is presumably because polishing was not performed and thus the electric resistance was high and sufficient current collecting performance could not be exhibited.
- M Membrane / electrode assembly (MEA) 1-1 Ion exchange membrane 2-1 Gas diffusion electrode (activated carbon layer containing platinum catalyst) 2-2 Gas diffusion electrode (activated carbon layer containing platinum catalyst) 3-1 Current collector 3-2 Current collector 4-1 Separator 4-1-1 Gas diffusion layer 4-2 Separator 4-2-1 Gas diffusion layer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
本出願は、2015年9月10日出願の日本出願第2015-178157号、2016年1月28日出願の日本出願第2016-014148号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
固体高分子型燃料電池の基本的な構造は、アノード、膜、カソードからなる。膜がイオン交換膜であり、スルフォン基を持つフッ素系交換膜が主として採用されている。この膜の特性の向上により、固体高分子型燃料電池の実用化が促進されている。
なお、カーボンペーパーは膜電極複合体(Membrane Electrode Assembly:MEA)がセパレーターの溝に食い込むのを抑制する働きもしている。
しかしながら、従来のニッケルからなる金属多孔体は炭素材料に比べて耐食性に劣るため、この点で改良の余地があった。ニッケルからなる金属多孔体の耐食性を向上させたものとして、ニッケルをスズやクロムと合金化した金属多孔体が既に提案されている。これらのニッケルスズ合金多孔体やニッケルクロム合金多孔体はニッケルからなる金属多孔体に比べて耐食性に優れるものの、炭素材料と同程度の耐食性は達成されていない。
固体高分子型燃料電池は、通常の放電では、水蒸気を含む水素がアノードに供給されて水素イオンとなる。この水素イオンがイオン交換膜を通ってカソード側に移動し、電気化学反応によって水を生成し、系外に出て行く。ところが、水素、空気の供給を止めて放電を中止すると、ガス拡散層に残っている生成水が逆流してイオン交換膜に触れることが起きる。このとき、ガス拡散層が金属材料であって、生成水中に極微量でも金属が溶出していると、イオン交換膜に悪影響を与え、膜の水保持性が低下して放電特性が低下してしまう。したがって、このような休止が多い燃料電池のガス拡散層ほど、より厳しい耐食性が必要になる。
最初に本発明の実施態様を列記して説明する。
(1)本発明の一態様に係る金属多孔体は、
骨格からなる三次元網目状構造を有し、外形形状が一対の主面および前記一対の主面を繋ぐ端面を有する平板状である金属多孔体であって、
前記骨格は、
ニッケル又はニッケル合金からなる主金属層と、
前記主金属層の表面に形成される酸化物層と、
を備え、
前記主金属層の表面のうち、前記金属多孔体の一対の主面を成す部分には前記酸化物層が形成されていない、金属多孔体、
である。
上記(1)に記載の発明によれば、耐食性に優れ、燃料電池のガス拡散層として利用可能な金属多孔体を提供することが可能となる。
本発明の実施形態に係る金属多孔体において、「金属多孔体の一対の主面」とは、金属多孔体の外形形状における一対の主面のことをいい、当該主面には骨格の断面部分が位置している。
上記(2)に記載の発明によれば、骨格の表面が導電性の金属多孔体を提供することができる。
上記(3)に記載の発明によれば、耐食性に優れ、かつ、密着性に優れた導電層を骨格の表面に有する金属多孔体を提供することができる。
上記(4)に記載の発明によれば、導電性により優れた導電層を骨格の表面に有する金属多孔体を提供することができる。
(6)本発明の実施形態に係る金属多孔体は、前記酸化物層が酸化ニッケルである上記(1)から上記(5)のいずれか一項に記載の金属多孔体、である。
上記(5)又は上記(6)に記載の発明によれば、より耐食性に優れた骨格を有する金属多孔体を提供することができる。
上記(7)に記載の発明によれば、高出力で、体積当たりの発電量に優れた燃料電池を提供することができる。
上記(1)に記載の金属多孔体の製造方法であって、
骨格からなる三次元網目状構造を有し、外形形状が一対の主面および前記一対の主面を繋ぐ端面を有する平板状であり、前記骨格がニッケル又はニッケル合金からなる主金属層を備える多孔体を用意する用意工程と、
前記多孔体を酸化雰囲気中で加熱することにより、前記主金属層の表面に酸化物層を形成する熱処理工程と、
前記主金属層の表面のうち、前記一対の主面を成す部分に形成された酸化物層を除去する除去工程と、
を有する金属多孔体の製造方法、である。
上記(8)に記載の発明によれば、耐食性に優れ、燃料電池のガス拡散層として利用可能な金属多孔体の製造方法を提供することができる。
前記用意工程の後であって前記熱処理工程の前に、
前記多孔体を酸性溶液に浸漬し、乾燥させる酸処理工程を有する上記(8)に記載の金属多孔体の製造方法、である。
(10)本発明の実施形態に係る金属多孔体の製造方法は、
前記酸性溶液が、硝酸、硫酸、塩酸又は酢酸である上記(9)に記載の金属多孔体の製造方法、である。
上記(9)又は上記(10)に記載の発明によれば、骨格の表面に厚い酸化物層を有する金属多孔体の製造方法を提供することができる。
前記熱処理工程の後に、
前記酸化物層の表面に導電層を形成する導電層形成工程を有する上記(8)から上記(10)のいずれか一項に記載の金属多孔体の製造方法、である。
上記(11)に記載の発明によれば、上記(2)に記載の金属多孔体の製造する方法を提供することができる。なお、上記(11)に記載の発明において、導電層形成工程は熱処理工程の後であればいつ行なってもよく、除去工程の前に行なってもよいし、除去工程の後に行なってもよい。
本発明の実施形態に係る金属多孔体等の具体例を以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
本発明の実施形態に係る金属多孔体は、外形形状が一対の主面及び当該一対の主面を繋ぐ端面を有する平板状であり、骨格は三次元網目状構造をなしている。そして、骨格は、ニッケル又はニッケル合金からなる主金属層と、当該主金属層の表面に形成されている酸化物層と、を備えている。但し、主金属層の表面のうち、金属多孔体の一対の主面を成す部分には前記酸化物層は形成されていない。
上記のように、主金属層は、金属多孔体の骨格のうちニッケル又はニッケル合金からなる部分である。また、金属多孔体の主面においては、骨格の断面が露出している。
主金属層の表面に酸化物層が形成されていることにより、本発明の実施形態に係る金属多孔体は、硫酸等に対する耐食性がニッケルよりも優れたものとなっている。例えば金属多孔体の主金属層の表面に酸化物層として酸化ニッケルが形成されていると、酸化ニッケルはニッケルよりも優れた耐食性を有すため、金属多孔体の耐食性も向上する。
一方、本発明の実施形態に係る金属多孔体の一対の主面、すなわち骨格の断面部分には、前記酸化物層が形成されていない。これにより、金属多孔体の一対の主面を他の導電性材料と接触させることで導通させることができる。
導電層を構成する材料は、導電性を有し、金属多孔体の酸化物層の表面に膜状に形成されるものである限り、特に限定されるものではないが、導電性粉末と結着剤を含むものであることが好ましい。これにより、金属多孔体の酸化物層の表面に密着するフィルム状の導電層が形成される。
具体的には、ポリエチレンやポリプロピレンなどのポリオレフィンをはじめ、ポリアクリル酸エステル、ポリ酢酸ビニル、ビニルアルコール-ポリスチレン共重合体、エチレン-アクリル酸メチルエステル共重合体、ポリメタアクリル酸エステル、ホルマール化ポリビニルアルコールなどを用いることができる。これらは、単独で用いても良いし、混合して用いても構わない。さらにポリウレタン、シリコーン樹脂、ポリイミドなどや、フッ素樹脂も前記樹脂として好ましく用いることができる。
耐食性や製造コストの面からは、ニッケル合金は、クロム、スズ及びタングステンのうちの少なくとも一つと、ニッケルとを含む合金が好ましい。ニッケル合金においては、ニッケル以外に含まれる金属成分は、一種のみであってもよいし、複数種であってもよい。
ニッケル以外の金属成分が一種のみの場合には、ニッケル合金は、ニッケルクロム、ニッケルスズ、ニッケルタングステンであることが好ましい。
なお、本発明の実施形態に係る金属多孔体には、ニッケル及びニッケル合金の他にもニッケルと合金を形成しない成分が意図的あるいは不可避的に含まれていても構わない。
金属の目付量の合計が200g/m2以上であることにより、金属多孔体の強度と導電性を充分に高くすることができる。また、金属の目付量の合計を1200g/m2以下とすることで、製造コストの上昇や重量の増加を抑制することができる。これらの観点から、本発明の実施形態に係る金属多孔体は、目付量が300g/m2以上、1100g/m2以下であることがより好ましく、400g/m2以上、1000g/m2以下であることが更に好ましい。
なお、平均孔径は金属多孔体のセル数の逆数から求めた値である。セル数は、金属多孔体の主面に長さ1インチの線を引いたときに、線と交差する最表面のセルの数を数えた数値であり、単位は個/インチである。但し、1インチは2.54センチメートルとする。
本発明の実施形態に係る燃料電池は、前記本発明の実施形態に係る金属多孔体をガス拡散層として用いた燃料電池である。燃料電池の種類は特に限定されるものではなく、固体高分子型燃料電池であってもよいし、固体酸化物型燃料電池であってもよい。
以下では、固体高分子型燃料電池を例に説明する。
例えば、イオン交換膜と触媒層とを接合した膜・電極接合体などは、市販されているものをそのまま利用することができる。アノード、カソードの白金触媒はいずれも約0.5mg/cm2が担持されたガス拡散電極、イオン交換膜としてNafion(登録商標) 112を用いて一体化されている。
図1においては、膜・電極接合体(MEA)Mは、イオン交換膜1-1の両面にガス拡散電極つまり白金触媒を含む活性炭層(2-1、2-2)を有している。それぞれアノードとしての水素極とカソードとしての空気極である。また、集電体(3-1、3-2)は、両極の集電体とガス拡散層を兼ねており、例えば、市販の撥水性処理したカーボンペーパーを用いることができる。カーボンペーパーとしては例えば、多孔度は約50%、フッ素樹脂約15%が添加されていて撥水性を有しているものを用いることができる。
なお、図1は単セルであるが、実用化されている燃料電池では、セパレーターを介して所望の電圧に対応できるようにセルが積層されて構成されている。通常各セルは直列結合なのでセパレーターの一方面がカソードであれば、他の面には隣のセルのアノードがくるように組み立てられ、周辺をボルト、ナットなどで加圧一体化している。
本発明実施形態に係る金属多孔体は種々の方法によって製造することができ、その製造方法としては、例えば、前記(8)~(11)に記載の方法等が挙げられる。
以下に、金属多孔体の製造方法の各工程を詳細に説明する。
この工程は、出発材料となるニッケル又はニッケル合金からなる主金属層を備える多孔体を用意する工程である。当該多孔体は、外形形状が一対の主面及び当該主面を繋ぐ端面を有する平板状であり、骨格が三次元網目状構造を有し、ニッケル又はニッケル合金からなる主金属層を備えるものであればよい。
ニッケル又はニッケル合金からなる主金属層をそなえる多孔体を製造する方法は特に限定されるものではないが、以下のようなめっき法によって製造することが好ましい。すなわち、三次元網目状構造を有する樹脂成形体の骨格の表面を導電化処理し、続いて、ニッケル又はニッケル合金をめっきしてから、基材である樹脂成形体を除去することにより、ニッケル又はニッケル合金からなる主金属層を備える多孔体を製造することができる。
基材として用いる三次元網目状構造を有する平板状の樹脂成形体としては、多孔性のものであればよく公知又は市販のものを使用できる。例えば、樹脂製の発泡体、不織布、フェルト、織布などを用いることができる。また、必要に応じてこれらを組み合わせて用いることもできる。素材としては特に限定されるものではないが、金属をめっきした後焼却処理により除去できるものが好ましい。また、樹脂成形体の取扱い上、特にシート状のものにおいては剛性が高いと折れるので柔軟性のある素材であることが好ましい。
以下では、三次元網目状構造を有する樹脂成形体として発泡状樹脂を用いた場合を例にとって説明する。
樹脂成形体の骨格表面の導電化処理は、樹脂成形体の骨格の表面に導電性を有する層を設けることができる方法である限り、特に限定されるものではない。導電性を有する層(導電被覆層)を構成する材料としては、例えば、ニッケル、スズ、クロム、銅、鉄、タングステン、チタン、ステンレススチール等の金属の他、カーボン粉末等の炭素粉末が挙げられる。
導電化処理の具体例としては、例えばニッケル、スズ、クロムなどの金属粉末や黒鉛粉末にバインダを加えて得られる導電性塗料の塗布、無電解めっき処理、スパッタリングや蒸着・イオンプレーティングなどの気相処理等が好ましく挙げられる。
ニッケルめっき層の形成は無電解ニッケルめっき及び電解ニッケルめっきのどちらを利用しても構わないが、電解ニッケルめっきの方が、効率が良いため好ましい。電解ニッケルめっき処理は、常法に従って行えばよい。電解ニッケルめっき処理に用いるめっき浴としては、公知又は市販のものを使用することができ、例えば、ワット浴、塩化浴、スルファミン酸浴等が挙げられる。
前記の無電解めっきやスパッタリングにより表面に導電被覆層が形成された樹脂成形体をめっき浴に浸し、樹脂成形体を陰極に、ニッケル対極板を陽極に接続して直流或いはパルス断続電流を通電させることにより、導電被覆層上にニッケルめっき層を形成することができる。
なお、ニッケルからなる主金属層を備える多孔体においては、ニッケルの目付量が200g/m2以上、1200g/m2以下程度であることが好ましい。また、他の金属成分を含み、ニッケル合金からなる主金属層を供える多孔体の場合には、金属総量の目付量が200g/m2以上、1200g/m2以下程度であることが好ましい。ニッケル又はニッケル合金の目付量は、300g/m2以上、1100g/m2以下であることがより好ましく、400g/m2以上、1000g/m2以下であることが更に好ましい。
((クロムめっき層の形成))
ニッケルめっき層の上にクロムめっき層を形成する場合には、例えば、次のようにして行うことができる。すなわち、公知のクロムめっき方法に従って行えばよく、めっき浴としては公知又は市販のものを使用することができる。例えば、6価クロム浴、3価クロム浴を用いることができる。めっき対象となる多孔体を前記クロムめっき浴に浸して陰極に接続し、対極としてクロム板を陽極に接続して直流あるいはパルス断続電流を通電させることによりクロムめっき層を形成することができる。
ニッケルめっき層の上にスズめっき層を形成する工程は、例えば、次のようにして行うことができる。すなわち、硫酸浴として、硫酸第一スズ55g/L、硫酸100g/L、クレゾールスルホン酸100g/L、ゼラチン2g/L、βナフトール1g/Lの組成のめっき浴を用意する。そして、当該めっき浴中で、陰極電流密度を2A/dm2、陽極電流密度を1A/dm2以下とし、温度を20℃、攪拌(陰極揺動)を2m/分とすることで、スズめっき層の形成を行うことができる。
スズめっきの密着性を向上させるため、直前にストライクニッケルめっきを行って、多孔体の表面酸化膜を除去し、乾燥させずに濡れたままスズめっき浴に投入することが望ましい。これによりスズめっき層の密着性を高めることができる。
ストライクニッケルめっきの条件は、例えば次のようにすることができる。すなわち、ウッドストライクニッケル浴として、塩化ニッケル 240g/L、塩酸(比重1.18程度のもの) 125ml/Lの組成のものを用意し、温度を室温にして、陽極にニッケルまたはカーボンを用いることで行うことができる。
以上のめっき手順をまとめると、エースクリーンによる脱脂(陰極電解脱脂5A/dm2×1分)、湯洗、水洗、酸活性(塩酸浸漬1分)、ウッドストライクニッケルめっき処理(5~10A/dm2×1分)、洗浄して乾燥させずにスズめっきへ処理、水洗・乾燥、となる。
三次元網目状構造を有する樹脂成形体のような基材へのめっきは、一般的に内部へ均一にめっきすることが難しい。内部への未着を防いだり、内部と外部のめっき付着量の差を低減したりするために、めっき液を循環させることが好ましい。循環の方法としては、ポンプを使用したり、めっき槽内部にファンを設置したりするなどの方法がある。また、これらの方法を用いて樹脂成形体にめっき液を吹き付けたり、吸引口に樹脂成形体を隣接させたりすると、樹脂成形体の内部にめっき液の流れができやすくなって効果的である。
表面にニッケルめっき層あるいはニッケル合金めっき層が形成された樹脂構造体から、基材として用いた樹脂成形体を除去することでニッケル又はニッケル合金からなる主金属層を備える多孔体を得ることができる。樹脂成形体が除去されることにより、ニッケルめっき層又はニッケル合金めっき層は、多孔体の骨格の主金属層となる。
樹脂成形体を除去する方法は限定的でなく、薬品による処理や、焼却による燃焼除去の方法が挙げられる。焼却による場合には、例えば、600℃程度以上の大気等の酸化性雰囲気下で加熱すればよい。
得られた多孔体を、必要に応じて還元性雰囲気下で加熱処理して金属を還元することにより、ニッケルあるいはニッケル合金からなる主金属層を備える多孔体が得られる。
この工程は、上記で用意したニッケル又はニッケル合金からなる主金属層を備える多孔体を酸化雰囲気中で熱処理する工程である。この工程により、主金属層を構成する元素の酸化物層が主金属層の表面に形成される。
酸化雰囲気は特に限定されるものではなく、骨格を構成しているニッケル又はニッケル合金が酸化する雰囲気であればよい。例えば、大気雰囲気下や、酸素を10%以上含んでいる雰囲気下等で行えばよい。
これらの観点から、熱処理温度は300℃以上、900℃以下とすることがより好ましく、350℃以上、850℃以下であることが更に好ましい。
15分以上であることにより、ニッケル又はニッケル合金を充分に酸化させることができる。また、2時間以下であることによって、ニッケル又はニッケル合金が酸化されすぎて脆化することを抑制できる。これらの観点から熱処理時間は、20分以上、1.5時間以下であることがより好ましく、30分以上、1時間以下であることが更に好ましい。
この工程は、上記熱処理によって主金属層の表面に形成された酸化物層のうち、多孔体の一対の主面を成す部分に形成された酸化物層を除去する工程である。金属多孔体の主面を成す部分に酸化物層が形成されていないことにより、金属多孔体の主面を他の導電性材料と接触させることで導通させることが可能になる。
ニッケル又はニッケル合金からなる主金属層を備える多孔体の主面に形成された酸化物層を除去する方法は特に限定されるものではなく、主金属層を構成しているニッケル又はニッケル合金が露出するようにできる方法であればよい。
例えば、サンドペーパーや研磨剤を用いて研磨する方法や、薬液によりエッチングする方法、還元剤を用いる方法などを好ましく利用することができる。
また、酸化物層の厚さをより厚くして更に耐食性を高めることも可能であり、その場合には、以下の方法により金属多孔体を製造することが好ましい。
ニッケル又はニッケル合金からなる主金属層を備える多孔体を酸性溶液に浸漬して乾燥させ、その後に前記熱処理工程を行うことが好ましい。これにより、多孔体の表面が酸化・粗面化されることにより酸化が進行しやすくなり、主金属層の表面に形成される酸化物層の厚さをより厚くすることができる。
酸性溶液としては、例えば、硝酸、硫酸、塩酸、酢酸などを用いることができる。これらの酸性溶液の水溶液を用いることが好ましい。例えば、稀硝酸を用いると、多孔体の表面が硝酸ニッケルとなり、これを250℃以上で加熱することにより酸化ニッケルが形成される。このため、単にニッケルを加熱するよりも多くの酸化物層を形成することができる。
金属多孔体の骨格の主金属層の表面に厚い酸化物層が形成されることにより、金属多孔体の耐食性が高まる。酸化物層が形成された金属多孔体は、酸化物層を有しない金属多孔体と比較して、生成水中での優れた耐食性を示す。したがって、酸化物層が形成された金属多孔体は、生成水中での耐食性が必要な部材に用いることができ、例えば、長期の使用により停止の回数が多くなる燃料電池用のガス拡散層として好ましく用いることができる。
酸化物層が形成された金属多孔体の酸化物層の表面に、更に導電層を形成することが好ましい。これにより金属多孔体の骨格の表面を導電性にすることができる。導電層は導電性を有する層で有る限り、特に限定されるものではないが、金属多孔体を燃料電池のガス拡散層として利用することを考慮すると、耐食性に優れたものであることが好ましい。
なお、導電層形成工程は熱処理工程後であればいつ行なってもよく、除去工程の前に行なってもよいし、除去工程の後に行なってもよい。
具体的には、ポリエチレンやポリプロピレンなどのポリオレフィンをはじめ、ポリアクリル酸エステル、ポリ酢酸ビニル、ビニルアルコール-ポリスチレン共重合体、エチレン-アクリル酸メチルエステル共重合体、ポリメタアクリル酸エステル、ホルマール化ポリビニルアルコールなどを用いることができる。これらは、単独で用いても良いし、混合して用いても構わない。さらにポリウレタン、シリコーン樹脂、ポリイミドなどや、フッ素樹脂も前記樹脂として好ましく用いることができる。
-調厚工程-
この工程は、金属多孔体を圧延して、外形形状の厚さが0.10mm以上、1.20mm以下となるように調厚する工程である。圧延は、例えば、ローラープレス機や平板プレス等によって行うことができる。金属多孔体を調厚することにより、金属多孔体の外形形状の厚さを均一にし、かつ、表面の凹凸のバラツキをなくすことができる。また、金属多孔体を圧延することにより気孔率を小さくすることができる。金属多孔体の外形形状の厚さが、0.20mm以上、1.0mm以下となるように圧延することがより好ましく、0.30mm以上、0.80mm以下となるように圧延することが更に好ましい。
なお、金属多孔体を燃料電池のガス拡散層として用いる場合には、燃料電池に組み込まれた際のガス拡散層の厚さよりもわずかに厚い厚さの金属多孔体を製造し、燃料電池への組み込み時の圧力により金属多孔体を変形させて厚さが0.10mm以上、1.20mm以下となるようにしてもよい。このとき、金属多孔体を予めわずかに圧延しておいて、燃料電池に組み込まれた際のガス拡散層の厚さよりもわずかに厚い厚さの金属多孔体としておいてもよい。これにより燃料電池のMEAとガス拡散層(金属多孔体)との密着性をより高めることができる。
本発明の実施形態に係る金属多孔体は、燃料電池用途以外に、水電解による水素製造用途にも好適に使用できる。水素の製造方式には、大きく分けて[1]アルカリ水電解方式、[2]PEM方式、及び[3]SOEC方式があり、いずれの方式にも金属多孔体を用いることができる。
アルカリ水電解方式による水素の製造方法においては、金属多孔体は上から見た場合の孔径が100μm以上、5000μm以下であることが好ましい。金属多孔体を上から見た場合の孔径が100μm以上であることにより、発生した水素・酸素の気泡が金属多孔体の気孔部に詰まって水と電極との接触面積が小さくなることを抑制することができる。
また、金属多孔体を上から見た場合の孔径が5000μm以下であることにより電極の表面積が十分に大きくなり、水の電気分解の効率を高めることができる。同様の観点から、金属多孔体を上から見た場合の孔径は400μm以上、4000μm以下であることがより好ましい。
金属多孔体の厚さや金属量は、電極面積が大きくなるとたわみなどの原因となるため、設備の規模によって適宜選択すればよい。気泡の抜けと表面積の確保を両立するために、異なる孔径を持つ複数の金属多孔体を組み合わせて使うこともできる。
なお、アルカリ水電解方式において本発明の実施形態に係る金属多孔体を電極として用いる場合には、酸化物層の表面に導電層を有する金属多孔体を用いればよい。
プロトン伝導膜の両側に陽極と陰極を配置し、陽極側に水蒸気を導入しながら電圧を印加することで、水の電気分解により発生した水素イオンを、固体酸化物電解質膜を通して陰極側へ移動させ、陰極側で水素のみを取り出す方式である。動作温度は600℃~800℃程度である。水素と酸素で発電して水を排出する固体酸化物型燃料電池と、同様の構成で全く逆の動作をさせるものである。
以上の説明は、以下に付記する特徴を含む。
(付記1)
骨格からなる三次元網目状構造を有し、外形形状が一対の主面および前記一対の主面を繋ぐ端面を有する平板状である金属多孔体を電極として用いて、水を電気分解することによって水素を発生させる水素の製造方法であって、
前記金属多孔体の骨格は、ニッケル又はニッケル合金からなる主金属層と、前記主金属層の表面に形成される酸化物層と、を備え、
前記主金属層の表面のうち、前記金属多孔体の一対の主面を成す部分には前記酸化物層は形成されていない、水素の製造方法。
(付記2)
前記骨格は、
前記酸化物層の表面に形成される導電層を備える、付記1に記載の水素の製造方法。
(付記3)
前記導電層が炭素粉末及び結着剤を含む付記2に記載の水素の製造方法。
(付記4)
前記導電層が銀を含む付記2又は付記3に記載の水素の製造方法。
(付記5)
前記ニッケル合金が、クロム、スズ及びタングステンのうちの少なくとも一つと、ニッケルと、を含む、付記1から付記4のいずれか一項に記載の水素の製造方法。
(付記6)
前記酸化物層が酸化ニッケルである付記1から付記5のいずれか一項に記載の水素の製造方法。
(付記7)
前記水が強アルカリ水溶液である付記2から付記6のいずれか一項に記載の水素の製造方法。
(付記8)
固体高分子電解質膜の両側に前記金属多孔体を配置して前記固体高分子電解質膜と前記金属多孔体とを接触させ、それぞれの金属多孔体を陽極及び陰極として作用させ、前記陽極側に水を供給して電気分解することによって、前記陰極側に水素を発生させる、付記1から付記6のいずれか一項に記載の水素の製造方法。
(付記9)
固体酸化物電解質膜の両側に前記金属多孔体を配置して前記固体高分子電解質膜と前記金属多孔体とを接触させ、それぞれの金属多孔体を陽極及び陰極として作用させ、前記陽極側に水蒸気を供給して水を電気分解することによって、前記陰極側に水素を発生させる、付記1から付記6のいずれか一項に記載の水素の製造方法。
(付記10)
水を電気分解することによって水素を発生させることが可能な水素の製造装置であって、
骨格からなる三次元網目状構造を有し、外形形状が一対の主面および前記一対の主面を繋ぐ端面を有する平板状である金属多孔体を電極として備え、
前記金属多孔体の骨格は、ニッケル又はニッケル合金からなる主金属層と、前記主金属層の表面に形成される酸化物層と、を備え、
前記主金属層の表面のうち、前記金属多孔体の一対の主面を成す部分には前記酸化物層は形成されていない、水素の製造装置。
(付記11)
前記骨格は、
前記酸化物層の表面に形成される導電層を備える、付記10に記載の水素の製造装置。
(付記12)
前記導電層が炭素粉末及び結着剤を含む付記11に記載の水素の製造装置。
(付記13)
前記導電層が銀を含む付記11又は付記12に記載の水素の製造装置。
(付記14)
前記ニッケル合金が、クロム、スズ及びタングステンのうちの少なくとも一つと、ニッケルと、を含む、付記10から付記13のいずれか一項に記載の水素の製造装置。
(付記15)
前記酸化物層が酸化ニッケルである付記10から付記14のいずれか一項に記載の水素の製造装置。
(付記16)
前記水が強アルカリ水溶液である付記11から付記15のいずれか一項に記載の水素の製造装置。
(付記17)
固体高分子電解質膜の両側に陽極及び陰極を有し、
前記陽極及び前記陰極は前記固体高分子電解質膜と接触しており、
前記陽極側に供給された水を電気分解することによって前記陰極側に水素を発生させることが可能な水素の製造装置であって、
前記陽極及び前記陰極の少なくとも一方に前記金属多孔体を用いる、付記10から付記15のいずれか一項に記載の水素の製造装置。
(付記18)
固体酸化物電解質膜の両側に陽極及び陰極を有し、
前記陽極及び前記陰極は前記固体高分子電解質膜と接触しており、
前記陽極側に供給された水蒸気を電気分解することによって前記陰極側に水素を発生させることが可能な水素の製造装置であって、
前記陽極及び前記陰極の少なくとも一方に前記金属多孔体を用いる、付記10から付記15のいずれか一項に記載の水素の製造装置。
-金属多孔体の作製-
<用意工程>
(導電層形成工程)
三次元網目状構造を有する樹脂成形体として、気孔率90%、平均孔径450μm、厚さ1.3mmのウレタン樹脂発泡体のシートを用いた。平均粒径0.5μmの黒鉛粉末1000gと平均粒径5μmのクロム粉末130gを、10質量%のアクリル-スチレン共重合体エマルジョン5Lに分散させてスラリーを作製した。このスラリーにウレタン樹脂発泡体を浸漬した。そして、ウレタン樹脂発泡体を引き上げ、ロール間を通して余分なスラリーを除去し、乾燥させて骨格の表面を導電化した。乾燥後のクロムの塗着量が70g/m2となるようにした。
導電性を付与したウレタン樹脂発泡体を、公知のスルファミン酸浴法で電解ニッケルめっきを施した。公知の組成、つまりスルファミン酸ニッケル430g/L、塩化ニッケル7g/L、ホウ酸32g/Lを主とする浴で、電流密度を250mA/cm2として電解ニッケルめっきを行った。これにより、樹脂成形体の骨格の表面にニッケルめっき層からなる主金属層が形成された樹脂構造体を得た。ニッケルの目付量は600g/m2となるようにした。
前記樹脂構造体を、大気中800℃で15分間加熱することで、樹脂成形体とスラリーに添加していた樹脂や黒鉛粉末などを焼却除去した。その後、水素雰囲気中で1000℃、25分間熱処理を行ない、大気中の加熱で一部酸化していた金属を還元するとともに合金化と焼鈍を行なうことで骨格がニッケルクロム合金からなる主金属層を備える多孔体を得た。合金の均一性はX線解析や電子顕微鏡により確認した。
その後、ニッケルクロム合金からなる主金属層を備える多孔体をローラープレス機で、厚さを0.50mmに調厚した。ニッケルクロム合金からなる主金属層を備える多孔体は、気孔率が84.6%、目付量が670g/m2、ニッケルとクロムの比率はニッケル90質量%、クロム10質量%であった。
上記で得たニッケルクロム合金からなる主金属層を備えた多孔体を空気雰囲気中500℃で1時間加熱して、骨格を酸化させた。これにより、主金属層の表面に均一な酸化物層が形成されたことを骨格の断面のSEM-EDXによる元素マッピングによって確認した。
主金属層の表面に酸化物層が形成された多孔体の一対の主面をサンドペーパーによって研磨することで、主金属層の表面のうち、一対の主面を成す部分に形成された酸化物層を除去した。
8質量%の水性ポリプロピレンエマルジョン 2.5Lに、平均粒径1.0μmの黒鉛粉末450gを分散してスラリーを作製した。このスラリーに上記で得た多孔体を浸漬してスラリーを骨格の表面に塗着させた。そして、135℃で30分間熱処理をすることで、樹脂の結着性を高めた。これにより、耐食性かつ導電性を有する導電層が酸化物層の表面に形成された金属多孔体1を得た。
上記の金属多孔体1を、固体高分子型燃料電池(単セル)のガス拡散層兼ガス供給・排出路として用いた。
金属多孔体1を用いて単セルを組み立てるために市販のMEAを用い、金属多孔体1を5×5cmに裁断して、図1に示した単セルを構成した。MEAを2枚のカーボンペーパーで挟み、更にその外側を2枚の金属多孔体1で挟んで単セルを構成した。空気極と水素極がリークしないよう、ガスケットと凹型に加工した黒鉛板を用い、4角をボルトとナットにより締め付け固定した。これにより、各構成材料の接触性の向上とともに水素、空気のセルからの漏れを防止した。なお、セパレーターの黒鉛板は、実用的には積層電池にするのでその厚さは1~2mm程度であるが、実施例は単セルであり、締め付けに耐える強度にするために厚さ10mmとした。このセルを電池Aとした。
-金属多孔体の作製-
<用意工程>
(導電層形成工程)
三次元網目状構造を有する樹脂成形体として、気孔率90%、平均孔径450μm、厚さ1.3mmのウレタン樹脂発泡体のシートを用いた。平均粒径0.5μmの黒鉛粉末900gを、10質量%のアクリル酸エステル系水性エマルジョン1Lに分散させてスラリーを作製した。このスラリーにウレタン樹脂発泡体を浸漬した。そして、ウレタン樹脂発泡体を引き上げ、ロール間を通して余分なスラリーを除去し、乾燥させて骨格の表面を導電化した。乾燥後の黒鉛の塗着量が20g/m2となるようにした。
導電性を付与したウレタン樹脂発泡体に、公知のスルファミン酸浴法で電解ニッケルめっきを施した。公知の組成、つまりスルファミン酸ニッケル430g/L、塩化ニッケル7g/L、ホウ酸32g/Lを主とする浴で、電流密度を250mA/cm2として電解ニッケルめっきを行った。これにより、樹脂成形体の骨格の表面にニッケルめっき層が形成された樹脂構造体を得た。ニッケルの目付量は600g/m2となるようにした。
続いて、公知の硫酸浴を用いてスズめっきを施した。硫酸浴の組成は、硫酸第一スズ55g/L、硫酸100g/L、クレゾールスルホン酸100g/L、ゼラチン2g/L、βナフトール1g/Lの組成とした。当該硫酸浴中で、陰極電流密度を2A/dm2、陽極電流密度を1A/dm2以下とし、温度を20℃、攪拌(陰極揺動)を2m/分とすることで、スズめっき層の形成を行った。スズの目付量は150g/m2となるようにした。
これにより、黒鉛粉末を含む導電被覆層の上にニッケルめっき層、スズめっき層からなる主金属層が形成された樹脂構造体が得られた。
前記樹脂構造体を、大気中800℃で15分間加熱することで、樹脂成形体とスラリーに添加していた樹脂(結着剤)や黒鉛粉末などを焼却除去した。その後、水素雰囲気中で1000℃で50分間熱処理を行ない、大気中の加熱で一部酸化していた金属を還元するとともに熱拡散による合金化と焼鈍を行なうことで骨格がニッケルスズ合金からなる主金属層を備える多孔体を得た。合金の均一性はX線解析や電子顕微鏡により確認した。
その後、ニッケルスズ合金からなる主金属層を備える多孔体をローラープレス機で、厚さを0.50mmに調厚した。ニッケルスズ合金からなる主金属層を備える多孔体は、気孔率が82.4%、目付量が750g/m2、ニッケルとスズの比率はニッケル80質量%、スズ20質量%であった。
上記で得たニッケルスズ合金からなる主金属層を備えた多孔体を、室温で、0.5Nの硝酸水溶液に浸漬し、直ちに引き上げて室温で1時間放置した。
<熱処理工程>
上記の硝酸水溶液に浸漬した後のニッケルスズ合金からなる主金属層を備える多孔体を空気雰囲気中500℃で1時間加熱して、主金属層の表面を形成している硝酸ニッケルを分解後酸化させた。これにより、実施例1の金属多孔体よりも多く酸化物層が形成されたことを断面のSEM-EDXによる酸素マッピングによって確認した。
上記の金属多孔体2を、用いた以外は実施例1と同様にして燃料電池の単セルを作製した。この単セルを電池Bとした。
実施例2と同様の方法でニッケルめっきを700g/m2とし、スズめっきや酸処理、酸化物層の付与を行わずにニッケルのみからなる多孔体を得た。
その後、ニッケルからなる多孔体をローラープレス機で、厚さを0.50mmに調厚して金属多孔体3を得た。ニッケルからなる金属多孔体3は、気孔率が84.3%であった。
汎用のセパレーター(黒鉛板)に溝を形成したものをガス拡散層として用いて単セルを構成した。つまり、電池Aと同様のMEA、カーボンペーパーをアノード、カソードともに用いた。溝は深さ、幅ともに1mm、とし、溝間の幅を1mmとした。ガス拡散層の見かけの気孔率は、ほぼ50%になる。このセルを電池Cとした。
実施例1の方法で酸化物層を形成した後、研磨や導電層付与を行わなかった以外は実施例1と同様にして金属多孔体4を作製した。この金属多孔体4を用いて実施例1と同様の燃料電池の単セルを作製した。このセルを電池Dとした。
硫酸によりpH=3に調整した10%硫酸ナトリウム水溶液に、前記金属多孔体1~3を浸し、0.8Vの電位を1時間かけたときのNi溶出量を調べることにより各金属多孔体の耐食性を評価した。Niの溶出量は、試験に用いた液のICP分析で求めた。結果を図2に示す。
電池A~Dについて、各電池のアノードに水素を、カソードに空気を供給して、発電特性を調べた。
なお、各ガスの供給は負荷に応じて調整する装置を用いた。電極の周囲温度は25℃、作動温度として80℃を採用した。結果を図3に示す。図3においては、縦軸が電圧(V)を表し、横軸が電流密度(mA/cm2)を表している。
1-1 イオン交換膜
2-1 ガス拡散電極(白金触媒を含む活性炭層)
2-2 ガス拡散電極(白金触媒を含む活性炭層)
3-1 集電体
3-2 集電体
4-1 セパレーター
4-1-1 ガス拡散層
4-2 セパレーター
4-2-1 ガス拡散層
Claims (11)
- 骨格からなる三次元網目状構造を有し、外形形状が一対の主面および前記一対の主面を繋ぐ端面を有する平板状である金属多孔体であって、
前記骨格は、
ニッケル又はニッケル合金からなる主金属層と、
前記主金属層の表面に形成される酸化物層と、
を備え、
前記主金属層の表面のうち、前記金属多孔体の一対の主面を成す部分には前記酸化物層は形成されていない、金属多孔体。 - 前記骨格は、
前記酸化物層の表面に形成される導電層を備える、請求項1に記載の金属多孔体。 - 前記導電層が炭素粉末及び結着剤を含む請求項2に記載の金属多孔体。
- 前記導電層が銀を含む請求項2又は請求項3に記載の金属多孔体。
- 前記ニッケル合金が、クロム、スズ及びタングステンのうちの少なくとも一つと、ニッケルと、を含む、請求項1から請求項4のいずれか一項に記載の金属多孔体。
- 前記酸化物層が酸化ニッケルである請求項1から請求項5のいずれか一項に記載の金属多孔体。
- 請求項1から請求項6のいずれか一項に記載の金属多孔体をガス拡散層に用いた燃料電池。
- 請求項1に記載の金属多孔体の製造方法であって、
骨格からなる三次元網目状構造を有し、外形形状が一対の主面および前記一対の主面を繋ぐ端面を有する平板状であり、前記骨格がニッケル又はニッケル合金からなる主金属層を備える多孔体を用意する用意工程と、
前記多孔体を酸化雰囲気中で加熱することにより、前記主金属層の表面に酸化物層を形成する熱処理工程と、
前記主金属層の表面のうち、前記一対の主面を成す部分に形成された酸化物層を除去する除去工程と、
を有する金属多孔体の製造方法。 - 前記用意工程の後であって前記熱処理工程の前に、
前記多孔体を酸性溶液に浸漬し、乾燥させる酸処理工程を有する請求項8に記載の金属多孔体の製造方法。 - 前記酸性溶液が、硝酸、硫酸、塩酸又は酢酸である請求項9に記載の金属多孔体の製造方法。
- 前記熱処理工程の後に、
前記酸化物層の表面に導電層を形成する導電層形成工程を有する請求項8から請求項10のいずれか一項に記載の金属多孔体の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16844226.7A EP3349282A4 (en) | 2015-09-10 | 2016-08-30 | Metal porous body, fuel cell, and method for manufacturing metal porous body |
US15/758,457 US20180261853A1 (en) | 2015-09-10 | 2016-08-30 | Porous metal body, fuel battery, and method for producing porous metal body |
KR1020187002722A KR20180050645A (ko) | 2015-09-10 | 2016-08-30 | 금속 다공체, 연료 전지 및, 금속 다공체의 제조 방법 |
CN201680052666.9A CN108140845A (zh) | 2015-09-10 | 2016-08-30 | 金属多孔体、燃料电池以及制造金属多孔体的方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015178157 | 2015-09-10 | ||
JP2015-178157 | 2015-09-10 | ||
JP2016014148A JP6701601B2 (ja) | 2015-09-10 | 2016-01-28 | 金属多孔体、燃料電池、及び金属多孔体の製造方法 |
JP2016-014148 | 2016-01-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017043365A1 true WO2017043365A1 (ja) | 2017-03-16 |
Family
ID=58239642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/075290 WO2017043365A1 (ja) | 2015-09-10 | 2016-08-30 | 金属多孔体、燃料電池、及び金属多孔体の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017043365A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019106879A1 (ja) * | 2017-11-29 | 2019-06-06 | 住友電気工業株式会社 | 金属多孔体、燃料電池及び金属多孔体の製造方法 |
WO2019167433A1 (ja) * | 2018-02-27 | 2019-09-06 | 住友電気工業株式会社 | 金属多孔体およびその製造方法、ならびに燃料電池 |
US20220190410A1 (en) * | 2020-12-16 | 2022-06-16 | Airbus Operations Gmbh | Structural composite laminate structure for an aircraft part, aircraft part manufactured with such a laminate and aircraft |
CN116133732A (zh) * | 2020-09-17 | 2023-05-16 | 富山住友电工株式会社 | 镍铬多孔体及镍铬多孔体的制造方法 |
CN117926304A (zh) * | 2023-06-30 | 2024-04-26 | 国家能源投资集团有限责任公司 | 一种碱性电解水膜电极及其制备方法和电解槽 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49105942A (ja) * | 1973-02-16 | 1974-10-07 | ||
JPH06188008A (ja) * | 1992-04-01 | 1994-07-08 | Toshiba Corp | 燃料電池 |
JP2003282068A (ja) * | 2002-03-25 | 2003-10-03 | Sumitomo Electric Ind Ltd | 金属多孔体及びそれを用いた固体高分子型燃料電池 |
JP2004300451A (ja) * | 2003-03-28 | 2004-10-28 | Mitsui Chemicals Inc | ガス拡散電極、その製造方法、及び電解方法 |
JP2006164947A (ja) * | 2004-11-15 | 2006-06-22 | Seiko Instruments Inc | 高分子電解質型燃料電池 |
JP2006173067A (ja) * | 2004-12-20 | 2006-06-29 | Seiko Instruments Inc | 燃料電池 |
JP2011241457A (ja) * | 2010-05-20 | 2011-12-01 | Sumitomo Electric Ind Ltd | 高耐食性を有する金属多孔体 |
WO2013061841A1 (ja) * | 2011-10-27 | 2013-05-02 | 住友電気工業株式会社 | 多孔質集電体、その製造方法及び多孔質集電体を用いた燃料電池 |
-
2016
- 2016-08-30 WO PCT/JP2016/075290 patent/WO2017043365A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49105942A (ja) * | 1973-02-16 | 1974-10-07 | ||
JPH06188008A (ja) * | 1992-04-01 | 1994-07-08 | Toshiba Corp | 燃料電池 |
JP2003282068A (ja) * | 2002-03-25 | 2003-10-03 | Sumitomo Electric Ind Ltd | 金属多孔体及びそれを用いた固体高分子型燃料電池 |
JP2004300451A (ja) * | 2003-03-28 | 2004-10-28 | Mitsui Chemicals Inc | ガス拡散電極、その製造方法、及び電解方法 |
JP2006164947A (ja) * | 2004-11-15 | 2006-06-22 | Seiko Instruments Inc | 高分子電解質型燃料電池 |
JP2006173067A (ja) * | 2004-12-20 | 2006-06-29 | Seiko Instruments Inc | 燃料電池 |
JP2011241457A (ja) * | 2010-05-20 | 2011-12-01 | Sumitomo Electric Ind Ltd | 高耐食性を有する金属多孔体 |
WO2013061841A1 (ja) * | 2011-10-27 | 2013-05-02 | 住友電気工業株式会社 | 多孔質集電体、その製造方法及び多孔質集電体を用いた燃料電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3349282A4 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019106879A1 (ja) * | 2017-11-29 | 2019-06-06 | 住友電気工業株式会社 | 金属多孔体、燃料電池及び金属多孔体の製造方法 |
JPWO2019106879A1 (ja) * | 2017-11-29 | 2020-10-01 | 住友電気工業株式会社 | 金属多孔体、燃料電池及び金属多孔体の製造方法 |
JP7076693B2 (ja) | 2017-11-29 | 2022-05-30 | 住友電気工業株式会社 | 金属多孔体、燃料電池及び金属多孔体の製造方法 |
WO2019167433A1 (ja) * | 2018-02-27 | 2019-09-06 | 住友電気工業株式会社 | 金属多孔体およびその製造方法、ならびに燃料電池 |
CN111771003A (zh) * | 2018-02-27 | 2020-10-13 | 住友电气工业株式会社 | 金属多孔体、该金属多孔体的制造方法以及燃料电池 |
JPWO2019167433A1 (ja) * | 2018-02-27 | 2021-03-11 | 住友電気工業株式会社 | 金属多孔体およびその製造方法、ならびに燃料電池 |
JP7124860B2 (ja) | 2018-02-27 | 2022-08-24 | 住友電気工業株式会社 | 金属多孔体およびその製造方法、ならびに燃料電池 |
US12074349B2 (en) | 2018-02-27 | 2024-08-27 | Sumitomo Electric Industries, Ltd. | Metal porous body, method of producing the same, and fuel cell |
CN116133732A (zh) * | 2020-09-17 | 2023-05-16 | 富山住友电工株式会社 | 镍铬多孔体及镍铬多孔体的制造方法 |
US20220190410A1 (en) * | 2020-12-16 | 2022-06-16 | Airbus Operations Gmbh | Structural composite laminate structure for an aircraft part, aircraft part manufactured with such a laminate and aircraft |
CN117926304A (zh) * | 2023-06-30 | 2024-04-26 | 国家能源投资集团有限责任公司 | 一种碱性电解水膜电极及其制备方法和电解槽 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6701601B2 (ja) | 金属多孔体、燃料電池、及び金属多孔体の製造方法 | |
JP6663584B2 (ja) | 金属多孔体、燃料電池、及び金属多孔体の製造方法 | |
JP2017033917A (ja) | 金属多孔体、燃料電池、及び金属多孔体の製造方法 | |
JP5691107B2 (ja) | 高耐食性を有する金属多孔体及びその製造方法 | |
JP6300315B2 (ja) | 燃料電池用集電体及び燃料電池 | |
KR102380034B1 (ko) | 금속 다공체, 연료 전지 및, 금속 다공체의 제조 방법 | |
WO2017043365A1 (ja) | 金属多孔体、燃料電池、及び金属多孔体の製造方法 | |
JP6614131B2 (ja) | 多孔質集電体、燃料電池及び多孔質集電体の製造方法 | |
WO2003079477A1 (fr) | Pile a combustible du type a cellule de polyelctrolyte solide | |
WO2017022542A1 (ja) | 金属多孔体、燃料電池、及び金属多孔体の製造方法 | |
US20180030607A1 (en) | Method for producing nickel alloy porous body | |
EP3016189A1 (en) | Porous metal body, method for manufacturing porous metal body, and fuel cell | |
JP2010027262A (ja) | 燃料電池用セパレータ及び燃料電池 | |
KR20200029439A (ko) | 금속 다공체, 고체 산화물형 연료 전지 및 금속 다공체의 제조 방법 | |
JP5466269B2 (ja) | 燃料電池用セパレータ及び燃料電池 | |
TW201727980A (zh) | 燃料電池之分隔件用不銹鋼鋼板及其製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16844226 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187002722 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15758457 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016844226 Country of ref document: EP |