[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016208029A1 - ハイブリッド車両の変速制御装置 - Google Patents

ハイブリッド車両の変速制御装置 Download PDF

Info

Publication number
WO2016208029A1
WO2016208029A1 PCT/JP2015/068320 JP2015068320W WO2016208029A1 WO 2016208029 A1 WO2016208029 A1 WO 2016208029A1 JP 2015068320 W JP2015068320 W JP 2015068320W WO 2016208029 A1 WO2016208029 A1 WO 2016208029A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
gear
stage
transmission
hybrid vehicle
Prior art date
Application number
PCT/JP2015/068320
Other languages
English (en)
French (fr)
Inventor
古閑 雅人
月▲崎▼ 敦史
良平 豊田
啓太 奥平
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to KR1020187001528A priority Critical patent/KR101849902B1/ko
Priority to CA2990557A priority patent/CA2990557C/en
Priority to MX2017016211A priority patent/MX361845B/es
Priority to BR112017027218-0A priority patent/BR112017027218B1/pt
Priority to JP2017524519A priority patent/JP6421876B2/ja
Priority to RU2017146129A priority patent/RU2664117C1/ru
Priority to CN201580081208.3A priority patent/CN107735600B/zh
Priority to MYPI2017704967A priority patent/MY170685A/en
Priority to PCT/JP2015/068320 priority patent/WO2016208029A1/ja
Priority to EP15896351.2A priority patent/EP3315822B1/en
Priority to US15/739,195 priority patent/US10023182B1/en
Publication of WO2016208029A1 publication Critical patent/WO2016208029A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • B60W2050/0297Control Giving priority to different actuators or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/087Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H2057/0081Fixing of, or adapting to transmission failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/0227Shift map selection, i.e. methods for controlling selection between different shift maps, e.g. to initiate switch to a map for up-hill driving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1224Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/945Characterized by control of gearing, e.g. control of transmission ratio

Definitions

  • the present invention relates to a shift control device for a hybrid vehicle that includes an electric motor and an internal combustion engine as a power source and includes a transmission that switches a plurality of shift speeds by an engagement clutch.
  • a transmission has an ENG transmission and an MG transmission, and each path is fastened by one or a plurality of fastening elements to realize a plurality of shift stages.
  • a transmission there is known a hybrid vehicle having a power transmission path that uses the shift speed of the other shift section while using the shift speed of one transmission (see, for example, Patent Document 1).
  • the power transmission path through the plurality of fastening elements is configured to be a shift stage used in normal shift control. For this reason, backlash is greater than when only one fastening element is routed, and rattling shocks and abnormal noise are worsened when shifting between acceleration and deceleration.
  • backlash is greater than when only one fastening element is routed, and rattling shocks and abnormal noise are worsened when shifting between acceleration and deceleration.
  • the present invention has been made paying attention to the above problem, and when there is a shift request, shift control of a hybrid vehicle that ensures shift response in response to a driver request while achieving good shift quality in a normal shift.
  • An object is to provide an apparatus.
  • the hybrid vehicle of the present invention includes an electric motor and an internal combustion engine as a power source, and a transmission that realizes a plurality of shift stages is mounted in a drive system from the power source to the drive wheels.
  • the transmission includes a plurality of engagement clutches that are engaged and fastened by a stroke from a release position as a shift element that switches a plurality of shift stages.
  • a shift controller that performs shift control for switching a shift stage realized by the transmission by a stroke operation of the engagement clutch based on a shift request.
  • the shift controller selects a shift stage in which one engagement clutch exists in the power transmission path from the power source to the drive wheels from among a plurality of shift stages that can be realized by the transmission, and normally selects the selected shift stages. It is set as a normal use gear group used for shift control at the time.
  • a shift stage in which one engagement clutch exists in the power transmission path from the power source to the drive wheel is selected, and the selected plurality of shift stages are in the normal state.
  • This is a normal use gear group used for the gear shift control.
  • the gear selected as the normal use gear group has only one engagement clutch in the power transmission path. For this reason, in the normal speed change, a good speed change quality is achieved in which rattling shock and noise that are peculiar when the meshing engagement clutch is used as a speed change element are suppressed.
  • the normal use gear stage is a gear stage that suppresses shocks and abnormal noises, there is no need to take vibration measures to moderate the torque increase / decrease slope during gear shifting, and high gear shifting responsiveness is achieved with a short time required for gear shifting. Secured. As a result, when there is a shift request, it is possible to ensure shift responsiveness that meets the driver request while achieving good shift quality in the normal shift.
  • FIG. 1 is an overall system diagram showing a drive system and a control system of a hybrid vehicle to which a shift control device according to a first embodiment is applied.
  • 1 is a control system configuration diagram illustrating a configuration of a transmission control system of a multi-stage gear transmission mounted on a hybrid vehicle to which a transmission control device according to a first embodiment is applied.
  • FIG. 3 is a shift map schematic diagram showing a concept of switching the shift speed in a multi-stage gear transmission mounted on a hybrid vehicle to which the shift control apparatus of the first embodiment is applied.
  • FIG. 3 is a fastening table showing gear positions according to switching positions of three engagement clutches in a multi-stage gear transmission mounted on a hybrid vehicle to which the gear shift control device of Embodiment 1 is applied.
  • 6 is a flowchart illustrating a flow of a shift control process executed by the transmission control unit of the first embodiment.
  • FIG. 6 is a first shift schedule map diagram showing a shift schedule (usually used shift speed) selected when battery SOC is in a normal capacity region.
  • FIG. 5 is a torque flow diagram showing a transmission path of MG1 torque and ICE torque in a multi-stage gear transmission when a normal use gear stage (EV1st, ICE2nd) is selected.
  • FIG. 6 is a torque flow diagram showing a transmission path of MG1 torque and ICE torque in a multi-stage gear transmission when a normal use gear position (EV1st, ICE3rd) is selected.
  • FIG. 6 is a torque flow diagram showing transmission paths of MG1 torque and ICE torque in a multi-stage gear transmission when a normal use gear stage (EV2nd, ICE2nd) is selected.
  • FIG. 5 is a torque flow diagram showing transmission paths of MG1 torque and ICE torque in a multi-stage gear transmission when a normal use gear stage (EV2nd, ICE3rd) is selected.
  • FIG. 5 is a torque flow diagram showing transmission paths for MG1 torque and ICE torque in a multi-stage gear transmission when a normal use gear stage (EV2nd, ICE4th) is selected. It is a 2nd shift schedule map figure which shows the shift schedule (usual use gear position + EV1st
  • FIG. 6 is a torque flow diagram showing a transmission path of MG1 torque and ICE torque in a multi-stage gear transmission when a normal non-use gear stage (EV1st, ICE1st: emergency 1st) is selected.
  • FIG. 6 is a torque flow diagram showing transmission paths for MG1 torque and ICE torque in a multi-stage gear transmission when a normal non-use gear stage (EV2nd, ICE3rd ′: failure gear stage) is selected.
  • the shift control apparatus includes a hybrid vehicle including an engine, two motor generators, and a multi-stage gear transmission having three engagement clutches as drive system components (an example of a hybrid vehicle). Is applied.
  • the configuration of the shift control device for a hybrid vehicle in the first embodiment will be described by being divided into “overall system configuration”, “shift control system configuration”, “shift stage configuration”, and “shift control processing configuration”.
  • FIG. 1 shows a drive system and a control system of a hybrid vehicle to which the shift control device of the first embodiment is applied.
  • the overall system configuration will be described below with reference to FIG.
  • the drive system of the hybrid vehicle includes an internal combustion engine ICE, a first motor generator MG1, a second motor generator MG2, and a multi-stage gear transmission 1 having three engagement clutches C1, C2, C3.
  • ICE is an abbreviation for “Internal-Combustion Engine”.
  • the internal combustion engine ICE is, for example, a gasoline engine or a diesel engine disposed in the front room of the vehicle with the crankshaft direction as the vehicle width direction.
  • the internal combustion engine ICE is connected to the transmission case 10 of the multi-stage gear transmission 1 and the output shaft of the internal combustion engine is connected to the first shaft 11 of the multi-stage gear transmission 1.
  • the internal combustion engine ICE basically starts MG2 using the second motor generator MG2 as a starter motor. However, the starter motor 2 is left in preparation for the case where the MG2 start using the high-power battery 3 cannot be secured, such as at a very low temperature.
  • Both the first motor generator MG1 and the second motor generator MG2 are three-phase AC permanent magnet synchronous motors using the high-power battery 3 as a common power source.
  • the stator of first motor generator MG1 is fixed to the case of first motor generator MG1, and the case is fixed to transmission case 10 of multi-stage gear transmission 1.
  • a first motor shaft that is integral with the rotor of first motor generator MG1 is connected to second shaft 12 of multi-stage gear transmission 1.
  • the stator of the second motor generator MG2 is fixed to the case of the second motor generator MG2, and the case is fixed to the transmission case 10 of the multi-stage gear transmission 1.
  • a second motor shaft integrated with the rotor of second motor generator MG2 is connected to sixth shaft 16 of multi-stage gear transmission 1.
  • a first inverter 4 that converts direct current to three-phase alternating current during power running and converts three-phase alternating current to direct current during regeneration is connected to the stator coil of first motor generator MG1 via first AC harness 5.
  • a second inverter 6 is connected to the stator coil of the second motor generator MG2 via a second AC harness 7 for converting direct current into three-phase alternating current during power running and converting three-phase alternating current into direct current during regeneration.
  • the high-power battery 3 is connected to the first inverter 4 and the second inverter 6 by a DC harness 8 via a junction box 9.
  • the multi-stage gear transmission 1 is a constantly meshing transmission having a plurality of gear pairs with different gear ratios, and is arranged in parallel with each other in a transmission case 10 and has six gear shafts 11 to 16 provided with gears. And three engagement clutches C1, C2, C3 for selecting a gear pair.
  • As the gear shaft a first shaft 11, a second shaft 12, a third shaft 13, a fourth shaft 14, a fifth shaft 15 and a sixth shaft 16 are provided.
  • As the engagement clutch a first engagement clutch C1, a second engagement clutch C2, and a third engagement clutch C3 are provided.
  • the transmission case 10 is provided with an electric oil pump 20 that supplies lubricating oil to a bearing portion and a gear meshing portion in the case.
  • the first shaft 11 is a shaft to which the internal combustion engine ICE is connected.
  • a first gear 101, a second gear 102, and a third gear 103 are arranged in order from the right side of FIG. .
  • the first gear 101 is provided integrally (including integrated fixing) with respect to the first shaft 11.
  • the second gear 102 and the third gear 103 are idle gears in which bosses protruding in the axial direction are inserted into the outer periphery of the first shaft 11, and are connected to the first shaft 11 via the second engagement clutch C2. It is provided so that drive connection is possible.
  • the second shaft 12 is a cylindrical shaft that is connected to the first motor generator MG1 and is coaxially arranged with the axial center aligned with the outer position of the first shaft 11, and the second shaft 12 has a right side in FIG.
  • a fourth gear 104 and a fifth gear 105 are arranged in this order.
  • the fourth gear 104 and the fifth gear 105 are provided integrally with the second shaft 12 (including integrated fixing).
  • the third shaft 13 is a shaft disposed on the output side of the multi-stage gear transmission 1.
  • the third shaft 13 includes a sixth gear 106, a seventh gear 107, and an eighth gear in order from the right side of FIG. 108, a ninth gear 109, and a tenth gear 110 are arranged.
  • the sixth gear 106, the seventh gear 107, and the eighth gear 108 are provided integrally with the third shaft 13 (including integrated fixing).
  • the ninth gear 109 and the tenth gear 110 are idle gears in which bosses protruding in the axial direction are inserted into the outer periphery of the third shaft 13, and are connected to the third shaft 13 via the third engagement clutch C3. It is provided so that drive connection is possible.
  • the sixth gear 106 meshes with the second gear 102 of the first shaft 11, the seventh gear 107 meshes with the sixteenth gear 116 of the differential gear 17, and the eighth gear 108 meshes with the third gear 103 of the first shaft 11.
  • the ninth gear 109 meshes with the fourth gear 104 of the second shaft 12, and the tenth gear 110 meshes with the fifth gear 105 of the second shaft 12.
  • the fourth shaft 14 is a shaft whose both ends are supported by the transmission case 10, and the eleventh gear 111, the twelfth gear 112, and the thirteenth gear 113 are sequentially arranged on the fourth shaft 14 from the right side in FIG. Be placed.
  • the eleventh gear 111 is provided integrally with the fourth shaft 14 (including integrated fixation).
  • the twelfth gear 112 and the thirteenth gear 113 are idle gears in which bosses protruding in the axial direction are inserted into the outer periphery of the fourth shaft 14, and are connected to the fourth shaft 14 via the first engagement clutch C1. It is provided so that drive connection is possible.
  • the eleventh gear 111 is engaged with the first gear 101 of the first shaft 11
  • the twelfth gear 112 is engaged with the second gear 102 of the first shaft 11
  • the thirteenth gear 113 is engaged with the fourth gear 104 of the second shaft 12. Mesh with.
  • the fifth shaft 15 is a shaft whose both ends are supported by the transmission case 10, and a fourteenth gear 114 that meshes with the eleventh gear 111 of the fourth shaft 14 is provided integrally (including integral fixing).
  • the sixth shaft 16 is a shaft to which the second motor generator MG2 is connected, and a fifteenth gear 115 that meshes with the fourteenth gear 114 of the fifth shaft 15 is provided integrally (including integrated fixing).
  • the second motor generator MG2 and the internal combustion engine ICE are mechanically connected by a gear train including a 15th gear 115, a 14th gear 114, an 11th gear 111, and a first gear 101 that mesh with each other.
  • This gear train is a reduction gear train that decelerates the MG2 rotation speed when the internal combustion engine ICE is started by the second motor generator MG2, and the engine rotation is generated during the MG2 power generation that generates the second motor generator MG2 by driving the internal combustion engine ICE. It becomes a speed increasing gear train that increases the number.
  • the first engagement clutch C1 is interposed between the twelfth gear 112 and the thirteenth gear 113 of the fourth shaft 14, and is not fastened by a meshing stroke in a rotationally synchronized state by having no synchronization mechanism. It is a dog clutch.
  • the first engagement clutch C1 When the first engagement clutch C1 is in the left engagement position (Left), the fourth shaft 14 and the thirteenth gear 113 are drivingly connected.
  • the first engagement clutch C1 is in the neutral position (N), the fourth shaft 14 and the twelfth gear 112 are released, and the fourth shaft 14 and the thirteenth gear 113 are released.
  • the first engagement clutch C1 is in the right engagement position (Right), the fourth shaft 14 and the twelfth gear 112 are drivingly connected.
  • the second engagement clutch C2 is interposed between the second gear 102 and the third gear 103 of the first shaft 11, and is not fastened by a meshing stroke in a rotationally synchronized state by having no synchronization mechanism. It is a dog clutch.
  • the second engagement clutch C2 When the second engagement clutch C2 is in the left engagement position (Left), the first shaft 11 and the third gear 103 are drivingly connected.
  • the second engagement clutch C2 When the second engagement clutch C2 is in the neutral position (N), the first shaft 11 and the second gear 102 are released, and the first shaft 11 and the third gear 103 are released.
  • the second engagement clutch C2 is in the right engagement position (Right), the first shaft 11 and the second gear 102 are drivingly connected.
  • the third engagement clutch C3 is interposed between the ninth gear 109 and the tenth gear 110 of the third shaft 13, and is not fastened by a meshing stroke in a rotationally synchronized state by having no synchronization mechanism. It is a dog clutch.
  • the third engagement clutch C3 When the third engagement clutch C3 is in the left side engagement position (Left), the third shaft 13 and the tenth gear 110 are drivingly connected.
  • the third engagement clutch C3 is in the neutral position (N), the third shaft 13 and the ninth gear 109 are released, and the third shaft 13 and the tenth gear 110 are released.
  • the third engagement clutch C3 is in the right engagement position (Right), the third shaft 13 and the ninth gear 109 are drivingly connected.
  • a sixteenth gear 116 meshed with a seventh gear 107 provided integrally (including integral fixing) with the third shaft 13 of the multi-stage gear transmission 1 is left and right via the differential gear 17 and the left and right drive shafts 18. Are connected to the drive wheel 19.
  • the hybrid vehicle control system includes a hybrid control module 21, a motor control unit 22, a transmission control unit 23, and an engine control unit 24.
  • the hybrid control module 21 (abbreviation: “HCM”) is an integrated control means having a function of appropriately managing the energy consumption of the entire vehicle.
  • the hybrid control module 21 is connected to other control units (such as a motor control unit 22, a transmission control unit 23, and an engine control unit 24) via a CAN communication line 25 so that bidirectional information can be exchanged.
  • CAN of the CAN communication line 25 is an abbreviation of “Controller Area Network”.
  • the motor control unit 22 (abbreviation: “MCU”) performs power running control and regenerative control of the first motor generator MG1 and the second motor generator MG2 in accordance with control commands for the first inverter 4 and the second inverter 6.
  • Control modes for the first motor generator MG1 and the second motor generator MG2 include “torque control” and “rotational speed FB control”. “Torque control” performs control for causing the actual motor torque to follow the target motor torque when the target motor torque to be shared with respect to the target driving force is determined.
  • “Rotational speed FB control” determines the target motor rotational speed to synchronize the clutch input / output rotational speed when there is a shift request for meshing and engaging any of the engagement clutches C1, C2, and C3 during travel. Control is performed to output FB torque so that the rotation speed converges to the target motor rotation speed.
  • the transmission control unit 23 (abbreviation: “TMCU”) outputs a current command to the electric actuators 31, 32, 33 (see FIG. 2) based on predetermined input information, thereby shifting the multi-stage gear transmission 1. Shift control for changing gears is performed.
  • the engagement clutches C1, C2, and C3 are selectively meshed and engaged / released, and a gear pair involved in power transmission is selected from a plurality of pairs of gears.
  • the first motor generator MG1 or the first motor is used to ensure mesh engagement by suppressing the differential rotational speed of the clutch input / output.
  • 2-Rotation speed FB control rotation synchronization control
  • the engine control unit 24 (abbreviation: “ECU”) outputs a control command to the motor control unit 22, the ignition plug, the fuel injection actuator, and the like based on predetermined input information, thereby controlling the start-up of the internal combustion engine ICE and the internal combustion engine. Performs engine ICE stop control and fuel cut control.
  • the multi-stage gear transmission 1 is characterized in that efficiency is improved by reducing drag by employing engagement clutches C1, C2, and C3 (dog clutches) by mesh engagement as transmission elements. . If there is a shift request for engaging and engaging any of the engagement clutches C1, C2, and C3, the differential rotational speed of the clutch input / output is set to the first motor generator MG1 (when the engagement clutch C3 is engaged) or the second motor. This is realized by synchronizing the rotation with the generator MG2 (when the engagement clutches C1 and C2 are engaged) and starting the meshing stroke when it is within the synchronization determination rotation speed range.
  • the transmission control system includes a first engagement clutch C1, a second engagement clutch C2, and a third engagement clutch C3 as engagement clutches.
  • a first electric actuator 31 for C2, C3 shift operation, a second electric actuator 32 for C2, C3 selection operation, and a third electric actuator 33 for C3 shift operation are provided.
  • a C1 / C2 select operation mechanism 40, a C1 shift operation mechanism 41, a C2 shift operation mechanism 42, and a C3 shift operation mechanism 43 are provided as shift mechanisms that convert the actuator operation into clutch engagement / release operation.
  • a transmission control unit 23 is provided as a control means for the first electric actuator 31, the second electric actuator 32, and the third electric actuator 33.
  • the first engagement clutch C1, the second engagement clutch C2, and the third engagement clutch C3 are in a neutral position (N: release position), a left engagement position (Left: left clutch engagement engagement position), and a right engagement position. (Right: right clutch meshing engagement position).
  • Each of the engagement clutches C1, C2, and C3 has the same configuration, and includes coupling sleeves 51, 52, and 53, left dog clutch rings 54, 55, and 56, and right dog clutch rings 57, 58, and 59.
  • the coupling sleeves 51, 52, and 53 are provided so as to be capable of stroke in the axial direction by spline coupling via hubs (not shown) fixed to the fourth shaft 14, the first shaft 11, and the third shaft 13.
  • dog teeth 51a, 51b, 52a, 52b, 53a, 53b with flat top surfaces are provided on both sides. Furthermore, fork grooves 51c, 52c, and 53c are provided at the center portions in the circumferential direction of the coupling sleeves 51, 52, and 53.
  • the left dog clutch rings 54, 55, 56 are fixed to the bosses of the respective gears 113, 103, 110, which are the left idle gears of the respective engagement clutches C1, C2, C3, and are flat top surfaces facing the dog teeth 51a, 52a, 53a. Dog teeth 54a, 55a, and 56a.
  • the right dog clutch rings 57, 58, 59 are fixed to the bosses of the respective gears 112, 102, 109, which are the right idle gears of the engagement clutches C1, C2, C3, and are flat top surfaces facing the dog teeth 51b, 52b, 53b. Dog teeth 57b, 58b, 59b.
  • the C1 / C2 select operation mechanism 40 has a first position for selecting connection between the first electric actuator 31 and the C1 shift operation mechanism 41, and a second position for selecting connection between the first electric actuator 31 and the C2 shift operation mechanism 42. And a mechanism for selecting between.
  • first position is selected, the shift rod 62 and the shift rod 64 of the first engagement clutch C1 are connected, and the shift rod 65 of the second engagement clutch C2 is locked at the neutral position.
  • the second position is selected, the shift rod 62 and the shift rod 65 of the second engagement clutch C2 are connected, and the shift rod 64 of the first engagement clutch C1 is locked at the neutral position. That is, when a position for shifting one engagement clutch is selected from the first position and the second position, the other engagement clutch is locked and fixed at the neutral position.
  • the C1 shift operation mechanism 41, the C2 shift operation mechanism 42, and the C3 shift operation mechanism 43 are mechanisms that convert the rotation operation of the electric actuators 31, 33 into the axial stroke operation of the coupling sleeves 51, 52, 53. .
  • Each of the shift operation mechanisms 41, 42, 43 has the same configuration, and includes rotation links 61, 63, shift rods 62, 64, 65, 66, and shift forks 67, 68, 69.
  • One end of each of the rotation links 61 and 63 is provided on the actuator shaft of the electric actuators 31 and 33, and the other end is connected to the shift rod 64 (or the shift rod 65) and 66 so as to be relatively displaceable.
  • the shift rods 64, 65, 66 are provided with springs 64 a, 65 a, 66 a at rod division positions, and can be expanded and contracted according to the magnitude and direction of the rod transmission force.
  • One end of the shift forks 67, 68, 69 is fixed to the shift rods 64, 65, 66, and the other end is disposed in the fork grooves 51c, 52c, 53c of the coupling sleeves 51, 52, 53.
  • the transmission control unit 23 includes a vehicle speed sensor 71, an accelerator opening sensor 72, a transmission output shaft rotational speed sensor 73, an engine rotational speed sensor 74, an MG1 rotational speed sensor 75, an MG2 rotational speed sensor 76, and an inhibitor switch 77. Input sensor signals and switch signals. Furthermore, sensor signals from the battery temperature sensor 78, the motor temperature sensor 79, the inverter temperature sensor 80, the battery SOC sensor 81, and the like are input.
  • the transmission output shaft rotation speed sensor 73 is provided at the shaft end of the third shaft 13 and detects the shaft rotation speed of the third shaft 13.
  • a position servo control unit (for example, a position servo system based on PID control) that controls engagement and disengagement of engagement clutches C1, C2, and C3 determined by the positions of the coupling sleeves 51, 52, and 53 is provided.
  • This position servo control unit inputs sensor signals from the first sleeve position sensor 81, the second sleeve position sensor 82, and the third sleeve position sensor 83. Then, the sensor values of the sleeve position sensors 81, 82, 83 are read, and electric currents are supplied to the electric actuators 31, 32, 33 so that the positions of the coupling sleeves 51, 52, 53 become the fastening position or the releasing position by the meshing stroke. give.
  • the idle gear is set in the engagement state where the dog teeth welded to the coupling sleeves 51, 52, 53 and the dog teeth welded to the idle gear are engaged with each other, so that the idle gear is in the fourth axis. 14, drivingly connected to the first shaft 11 and the third shaft 13.
  • the coupling sleeves 51, 52, 53 are displaced in the axial direction, the dog teeth welded to the coupling sleeves 51, 52, 53 and the dog teeth welded to the idle gear are in the non-engagement position.
  • the idle gear is separated from the fourth shaft 14, the first shaft 11, and the third shaft 13.
  • the multi-stage gear transmission 1 of the first embodiment reduces power transmission loss by not having a rotation difference absorbing element such as a fluid coupling, and reduces the ICE gear stage by assisting the internal combustion engine ICE by motors, thereby reducing the size ( EV shift stage: 1-2 speed, ICE shift stage: 1-4 speed).
  • a rotation difference absorbing element such as a fluid coupling
  • the gear configuration of the multi-stage gear transmission 1 will be described with reference to FIGS. 3 and 4.
  • the concept of the gear position is that, in the starting region where the vehicle speed VSP is equal to or lower than the predetermined vehicle speed VSP0, the multi-stage gear transmission 1 does not have a starting element (sliding element).
  • the motor starts with force alone.
  • the traveling region as shown in FIG. 3, when the demand for the driving force is large, the concept of the shift stage is adopted in which the engine driving force is supported by the “parallel HEV mode” that assists with the motor driving force. That is, as the vehicle speed VSP increases, the ICE shift speed shifts from (ICE1st ⁇ ) ICE2nd ⁇ ICE3rd ⁇ ICE4th, and the EV shift speed shifts from EV1st ⁇ EV2nd. Therefore, a shift map for issuing a shift request for switching the shift stage is created based on the concept of the shift stage shown in FIG.
  • FIG. 4 shows all the speeds that can be theoretically realized by the multi-stage gear transmission 1 having the engagement clutches C1, C2, and C3.
  • “Lock” in FIG. 4 represents an interlock shift stage that is not established as a shift stage
  • “EV-” represents a state in which the first motor generator MG1 is not drivingly connected to the drive wheels 19
  • “ICE” “-” Represents a state in which the internal combustion engine ICE is not drivingly connected to the drive wheels 19.
  • each gear stage will be described.
  • the shift stage of “EV-ICEgen” is selected at the time of MG1 idle power generation by the first motor generator MG1 by the internal combustion engine ICE or double idle power generation by adding MG2 power generation to MG1 power generation while the vehicle is stopped.
  • the “Neutral” gear stage is a gear stage that is selected during MG2 idle power generation by the second motor generator MG2 by the internal combustion engine ICE while the vehicle is stopped.
  • the shift stage of “EV1st ICE-” is set in the “EV mode” in which the internal combustion engine ICE is stopped and the first motor generator MG1 travels, or while the second motor generator MG2 generates power by the internal combustion engine ICE. This is the gear stage selected in the “series HEV mode” in which the first motor generator MG1 performs the first-speed EV traveling.
  • the shift stage of “EV2nd ICE-” is set in the “EV mode” in which the internal combustion engine ICE is stopped and the first motor generator MG1 travels, or while the second motor generator MG2 generates power with the internal combustion engine ICE. This is the gear stage selected in the “series HEV mode” in which the first motor generator MG1 performs the second-speed EV traveling.
  • the multi-stage gear transmission 1 includes two EV shift stages (EV1st, EV2nd) that are shift stages of the first motor generator MG1, a plurality of ICE shift stages (ICE1st to ICE4th) that are shift stages of the internal combustion engine ICE, It has a combination shift stage of EV shift stage and ICE shift stage. Then, the shift speeds obtained by excluding the interlock shift speed (marked with x in FIG. 4) and the shift speed that cannot be selected by the shift mechanism (hatching in FIG. 4) from all the shift speeds based on the engagement combinations of the engagement clutches C1, C2, and C3. A plurality of gear speeds that can be realized by the multi-stage gear transmission 1 are used.
  • the gears that cannot be selected by the shift mechanism include “EV1.5 ICE2nd” in which the first engagement clutch C1 is “Left” and the second engagement clutch C2 is “Left”, “EV2.5 ICE4th” in which the clutch C1 is “Left” and the second engagement clutch C2 is “Right”.
  • the reason why it cannot be selected by the shift mechanism is that one first electric actuator 31 is a shift actuator that is also used for the two engagement clutches C1 and C2, and one engagement clutch by the C1 / C2 selection operation mechanism 40. Is due to being neutral locked.
  • a shift stage having one engagement clutch in the power transmission path from the power source to the drive wheels 19 is selected, and the selected shift stage is set in the normal state.
  • the “normally used gear group” is used for the gear shift control.
  • a gear stage (EV1st ICE-, EV2nd ICE-) in which one engagement clutch exists in the power transmission path is defined as a “normally used gear group”.
  • the gear stage (EV- ICE2nd, EV- ICE3rd, EV- ICE4th) in which one engagement clutch exists in the power transmission path is defined as a “usually used gear group”.
  • a shift stage having two or more engagement clutches in the power transmission path is selected, and the selected shift stage is not used for the shift control in the normal time.
  • a shift stage in which one engagement clutch exists in the power transmission path of the EV shift stage and two engagement clutches exist in the power transmission path of the ICE shift stage. (EV1st ICE1st, EV2nd ICE3rd ') is set as the “normally unused gear group”.
  • the gears of the “normally unused gear group” are not used normally, but when a predetermined condition deviating from the normal time is satisfied. Used or allowed to use.
  • FIG. 5 shows the flow of a shift control process executed by the transmission control unit 23 (shift controller) of the first embodiment.
  • shift controller transmission control unit 23
  • step S1 it is determined whether or not the battery charge capacity (hereinafter referred to as “battery SOC”) exceeds a predetermined capacity SOC1. If YES (battery SOC> SOC1), the process proceeds to step S2, and if NO (battery SOC ⁇ SOC1), the process proceeds to step S5.
  • battery SOC is acquired by the battery SOC sensor 81 that detects the charge capacity of the high-power battery 3.
  • the “predetermined capacity SOC1” includes a first shift schedule map (FIG. 6) that is a normal charge / discharge shift control mode and a second shift schedule map that is a charge-oriented shift control mode during energy management by monitoring the battery SOC. (FIG. 12). If the battery low capacity condition indicating that the battery SOC is equal to or less than the predetermined capacity SOC1 and the battery SOC is insufficient is established, the process proceeds to step S5.
  • step S2 following the determination that battery SOC> SOC1 in step S1, it is determined whether or not the battery temperature is low. If YES (the battery temperature is low), the process proceeds to step S5, and if NO (the battery temperature is not low), the process proceeds to step S3.
  • the “battery temperature” is acquired by the battery temperature sensor 78 that detects the battery temperature of the high-power battery 3. Then, when the battery low temperature condition that the temperature of the high-power battery 3 decreases and is equal to or lower than the first temperature threshold at which a predetermined output cannot be output is determined, it is determined that the battery temperature is low.
  • step S3 following the determination that the battery temperature is not low in step S2, it is determined whether the battery temperature, the motor temperature, and the inverter temperature are high. If YES (first motor generator system temperature is high), the process proceeds to step S5. If NO (first motor generator system temperature is not high), the process proceeds to step S4.
  • the “battery temperature” is acquired by the battery temperature sensor 78
  • the “motor temperature” is acquired by the motor temperature sensor 79 that detects the temperature of the first motor generator MG1.
  • the “inverter temperature” is acquired by an inverter temperature sensor 80 that detects the temperature of the first inverter 4.
  • step S4 following the determination that the first motor generator system temperature is not high in step S3, the use of the normal use shift stage is permitted, and the shift control using the first shift schedule map shown in FIG. 6 is performed. Then, the process proceeds to step S6.
  • the shift control using the first shift schedule map refers to a control for selecting the normal use shift stage assigned to the position of the operating point existing on the first shift schedule map shown in FIG. Therefore, when the normal use shift stage selected by the movement of the operating point changes, the shift stage is changed by up-shifting or down-shifting.
  • step S5 following the determination that the battery SOC is low in step S1, the determination that the battery temperature is low in step S2, or the determination that the first motor generator system temperature is high in step S3, Permits the use of a shift stage obtained by adding the emergency first stage ("EV1st ICE1st"), which is a normal non-use shift stage, to the normal use shift stage, and performs shift control using the second shift schedule map shown in FIG. Implement and go to step S6.
  • “EV1st” is changed to “Series EV1st”, and the first shift stage of emergency 1st “EV1st ICE1st” is added. This is different from the shift stage permitted to be used in the shift control using FIG.
  • step S6 following the permission to use the gear position during normal use in step S4 or the permission to use the first emergency gear in step S5, select the gear position in normal use that has a gear ratio close to the gear speed during failure. Judge whether or not. If YES (when “EV2nd ICE3rd” is selected), the process proceeds to step S7. If NO (when other than “EV2nd ICE3rd” is selected), the process proceeds to return.
  • the gear stage at the time of failure refers to “EV2nd ICE3rd ′”
  • the gear position used at normal time whose gear ratio is close to that at the time of failure refers to “EV2nd ICE3rd”.
  • step S7 following the determination that “EV2nd ICE3rd” is selected in step S6, it is determined whether or not a failure has occurred in the normal-use gear that has a gear ratio close to the gear at the time of failure. If YES (failure has occurred), the process proceeds to step S8, and if NO (no failure has occurred), the process proceeds to return.
  • the malfunction of the normal use gear stage “EV2nd ICE3rd” means that, for example, a mechanical or electrical trouble occurs in the shift operation system that strokes the first engagement clutch C1 to “Right”. This refers to a failure where “EV2nd ICE3rd” cannot be selected.
  • step S8 following the determination in step S7 that a failure has occurred, out of the gears in the normal unused gear group, a gear with a gear ratio close to the gear in which the failure has occurred is changed to the gear in the time of failure.
  • a gear with a gear ratio close to the gear in which the failure has occurred is changed to the gear in the time of failure.
  • “use as a gear stage at failure” means that the gear stage of “EV2nd ICE3rd ′” is substituted for the gear stage of “EV2nd ICE3rd” in the gearshift control using the first or second shift schedule map. It means using.
  • the operations in the shift control device of the hybrid vehicle of the first embodiment are the “shift control processing operation”, “normal shift control operation”, “shift control operation by permitting use of emergency 1st”, “failure shift control operation”, The description will be divided into “characteristic effects of shift control”.
  • step S4 the use of the normal use gear position is permitted, and the shift control using the first shift schedule map shown in FIG. 6 is performed.
  • step S1 determines whether the battery SOC is equal to or less than the predetermined capacity SOC1 or less than the predetermined capacity SOC1
  • the process proceeds from step S1 to step S5 in the flowchart of FIG. Even if it is determined in step S1 that the battery SOC exceeds the predetermined capacity SOC1, if it is determined in step S2 that the battery temperature is low, in the flowchart of FIG. 5, the process proceeds from step S1 to step S2 to step S5. move on. If it is determined in step S1 that the battery SOC exceeds the predetermined capacity SOC1, and it is determined in step S2 that the battery temperature is not low, it is determined in step S3 that the first motor generator system temperature is high. In the flowchart of FIG.
  • step S5 the process proceeds from step S1 to step S2 to step S3 to step S5.
  • step S5 the use of the shift stage obtained by adding the emergency use 1st ("EV1st ICE1st") which is the normal non-use shift stage to the normal use shift stage is permitted, and the second shift schedule map shown in FIG. 12 is used. Shift control is performed.
  • step S6 When the process proceeds from step S4 or step S5 to step S6, in a travel scene in which a speed other than “EV2nd ICE3rd” is selected in step S6, the process proceeds from step S6 to return in the flowchart of FIG. Further, in the driving scene in which “EV2nd ICE3rd” is selected in step S6 but no failure has occurred in the normal use gear stage in which the gear ratio is close to that in the fault gear stage in step S7, the flowchart of FIG. In step S6, the process proceeds from step S6 to step S7 to return.
  • step S6 in the driving scene in which it is determined in step S7 that a failure has occurred in the normal use gear position, which has a gear ratio close to the failure gear position
  • step S8 in the driving scene in which it is determined in step S7 that a failure has occurred in the normal use gear position, which has a gear ratio close to the failure gear position
  • step S8 among the shift speeds existing in the normal non-use shift speed group, the shift speed of “EV2nd ICE3rd ′” having a gear ratio close to that of the shift speed at which the failure has occurred is used as the shift speed at the time of failure. That is, during the shift control using the first or second shift schedule map, the shift control is switched to the shift control using the shift stage “EV2nd ICE3rd ′” instead of the shift stage “EV2nd ICE3rd ′”.
  • the “first shift schedule map” used in the normal speed shift control forms the normal use shift speed group on the coordinate plane with the vehicle speed VSP and the required braking / driving force (Driving force) as coordinate axes. It is a map to which a selection region for selecting a plurality of shift speeds is assigned. That is, as a power running area by depressing the accelerator, a selection area of “EV1st”, “EV1st ICE2nd”, “EV1st ICE3rd” is assigned to the low vehicle speed range from the start. Then, a selection area of “EV2nd”, “EV2nd ICE2nd”, “EV2nd ICE3rd”, “EV2nd ICE4th” is assigned to the high vehicle speed range. As a regenerative braking area by decelerating the accelerator pedal, the “EV1st” selection area is assigned to the low vehicle speed range, and the “EV2nd” selection area is assigned to the high vehicle speed area.
  • a downshift that switches the gear stage from “EV2nd” to “EV1st” is performed.
  • This downshift is achieved by causing the coupling sleeve 53 of the third engagement clutch C3 to stroke from the “Right” engagement position to the “Left” engagement position via the “N” position.
  • both the first engagement clutch C1 and the second engagement clutch C2 remain in the “N” position.
  • step S5 the shift control using the second shift schedule map is performed based on the shift stage permission by adding “EV1st ICE1st” which is the first emergency stage to the normal shift stage.
  • action by permission of use of emergency 1st is demonstrated.
  • the “second shift schedule map” used in the shift control with the use permission for emergency 1st uses the vehicle speed VSP and the required braking / driving force (Driving force) as coordinate axes, and the normal-use shift on the coordinate plane
  • This is a map in which a selection area for selecting a gear position with “EV1st ICE1st” added to the gear is assigned.
  • the “Series EV1st” selection region is assigned to the low vehicle speed range from the start as the power running drive region by depressing the accelerator.
  • the EV1st ICE1st, EV1st ICE2nd, and EV1st ICE3rd selection areas are assigned to the medium vehicle speed range, and the EV2nd ICE2nd, EV2nd ICE3rd, and EV2nd ICE4th selection areas are assigned to the high vehicle speed range. It is done. As a regenerative braking area by decelerating the accelerator pedal, the “EV1st” selection area is assigned to the low vehicle speed range, and the “EV2nd” selection area is assigned to the high vehicle speed area.
  • the gear stage by “Series EV1st” is selected, and the second motor generator MG2 is generated by the driving force of the internal combustion engine ICE, and the vehicle starts in “series HEV mode”.
  • the vehicle speed VSP increases to move from the operating point K to the operating point L in FIG. 12
  • a shift request to the emergency 1st is issued. If the first engagement clutch C1 is switched from “N” to “Left” in accordance with this shift request to the 1st emergency, the shift of “EV1st ICE1st” with the 1st EV shift stage and the 1st ICE shift stage is performed.
  • step S8 based on the use of the gear position at the time of failure (“EV2nd ICE3rd ′”), the gear shift control at the time of failure is performed using the first or second shift schedule map. To be implemented. Hereinafter, based on FIG. 14, the shift-time control operation during failure will be described.
  • one third engagement clutch C3 (Right) is provided in the power transmission path from the first motor generator MG1 to the drive wheels 19 as shown in FIG. Exists. Then, there are two engagement clutches of the first engagement clutch C1 (left) and the third engagement clutch C3 (Right) on the power transmission path from the internal combustion engine ICE to the drive wheels 19.
  • a shift speed (EV1st ICE1st, EV2nd ICE3rd ') in which two or more engagement clutches C1, C2, C3 are present in the power transmission path is used.
  • the selected gear is used as a normal unused gear group that is not used for normal gear shift control, and when the specified conditions are met, the gears in the normal unused gear group (EV1st ICE1st, EV2nd ICE3rd ') are used. It was set as the structure which permits.
  • the shift stage of the normal non-use shift stage group has two or more engagement clutches in the power transmission path among the three engagement clutches C1, C2, and C3. It can be used as a shift stage. Therefore, when the predetermined condition is satisfied, by permitting the use of the shift stage of the normal non-use shift stage group, the normal non-use shift stage is effectively used as the backup shift stage of the normal use shift stage. .
  • the shift speed (1st emergency: “EV1st ICE1st”) existing in the normal non-use shift speed group is used. It was set as the structure which permits. That is, when the battery low capacity condition is satisfied, there is a demand for suppressing the taking-out of the battery SOC of the high-power battery 3 as much as possible.
  • the shift stage that reduces the assist load by the first motor generator MG1 in the normal non-use shift stage group it is better to allow the use of the normal non-use shift stage and perform the shift control. This is advantageous in that the battery SOC can be recovered early. Therefore, when the low battery capacity condition is satisfied, the use of the normally unused shift stage for the shift control is permitted, thereby achieving early recovery of the battery SOC in which the high-power battery 3 has decreased.
  • the shift speed (emergency switch) that exists in the normal non-use shift speed group 1st: EV1st ICE1st that is, when the battery low temperature condition is satisfied, the first motor generator MG1 cannot output a predetermined output, and therefore it is necessary to reduce the assist output by the first motor generator MG1 as much as possible.
  • the shift stage that is shared mainly by the internal combustion engine output and that reduces the drive force share due to the MG1 output in the normally unused shift stage group, it is necessary to use that normally unused shift stage. This is preferable in terms of driving force. Therefore, when the battery low-temperature condition is satisfied, a decrease in the actual vehicle driving force with respect to the requested vehicle driving force can be suppressed by using the normally unused shift stage in the shift control.
  • the electric motor system temperature from the high-power battery 3 to the first motor generator MG1 rises and the electric motor system high temperature condition that is equal to or higher than the second temperature threshold at which a predetermined output cannot be output is satisfied, it is not normally used.
  • the configuration allows the use of gears (1st emergency: EV1st ICE1st) in the gear group. That is, when the motor system high temperature condition is satisfied, the first motor generator MG1 cannot output a predetermined output as in the case where the battery low temperature condition is satisfied. Therefore, it is necessary to reduce the assist output by the first motor generator MG1 as much as possible. .
  • a failure has occurred in which a predetermined shift speed (EV2nd ICE3rd) cannot be selected during shift control using the shift speed of the normal use shift speed group.
  • the gear stage (EV2nd ICE3rd ') with a gear ratio close to the predetermined gear stage (EV2nd ICE3rd) where the fault occurred is used as the gear stage at the time of failure.
  • the configuration That is, the shift control is performed using a shift schedule map (FIGS. 6 and 12) in which a shift speed region is set in consideration of fuel efficiency performance and drive performance.
  • the shift stage (EV2nd ICE3rd) is skipped during both the upshift and the downshift. In this case, fuel consumption performance and driving performance are deteriorated.
  • the gear ratio (EV2nd ICE3rd ') with a gear ratio close to that of the gear (EV2nd ICE3rd) where the failure occurred is used as the gear shift at the time of failure, resulting in fuel efficiency and drive performance.
  • the shift control is continued as it is while minimizing the decrease in the shift.
  • the multi-stage gear transmission 1 has an EV shift stage, an ICE shift stage, and a combined shift stage of the EV shift stage and the ICE shift stage.
  • the transmission control unit 23 converts the gear speeds obtained by removing the gear speeds that cannot be selected by the interlock gear speed and the shift mechanism from all the gear speeds by the combination of the engagement clutches C1, C2, and C3.
  • a plurality of shift stages that can be realized by the above.
  • a gear stage that has one engagement clutch C3 in the power transmission path of the EV gear stage and one gear clutch C1 and C2 in the power transmission path of the ICE gear stage is used during normal operation.
  • a corrugated group is used during normal operation.
  • a shift stage in which there is one engagement clutch C3 in the power transmission path of the EV shift stage and two or more engagement clutches C1, C2, C3 in the power transmission path of the ICE shift stage is not normally used.
  • the structure is a corrugated group. That is, the shift control of the multi-stage gear transmission 1 can be divided into control for changing the EV shift stage and control for changing the ICE shift stage. Therefore, the power transmission path is divided into the EV gear stage and the ICE gear stage, and the gear stage where two or more engagement clutches C1, C2, C3 are present in the power transmission path of the ICE gear stage is not normally used. It is a Dan group.
  • the normal use gear stage and the normal non-use gear stage are used to transmit power from among a plurality of gear stages that can be realized by the multi-stage gear transmission 1. It is orderly divided according to the number of engaging clutches in the path.
  • a transmission (multi-stage gear transmission 1) is a hybrid vehicle having a plurality of engagement clutches C1, C2, and C3 engaged and fastened by a stroke from a release position as a shift element for switching a plurality of shift stages.
  • a shift controller (transmission control unit 23) is provided that performs shift control for switching the shift stage realized by the transmission (multi-stage gear transmission 1) by the stroke operation of the engagement clutch based on the shift request.
  • the transmission controller (transmission control unit 23) has one engagement clutch in the power transmission path from the power source to the drive wheels 19 among a plurality of shift stages that can be realized by the transmission (multi-stage gear transmission 1). Select the gear to be used (EV gear: 1-2 speed, ICE gear: 2-4 speed), and set the selected gear to the normal use gear group used for normal gear control. For this reason, when there is a shift request, it is possible to ensure shift response in response to the driver request while achieving good shift quality in the normal shift.
  • the transmission controller includes two or more engagement clutches C1, C2, C3 in the power transmission path among a plurality of shift stages that can be realized by the transmission (multi-stage gear transmission 1). Select an existing gear position (EV1st ICE1st, EV2nd ICE3rd '), and select the selected gear position as a normal unused gear group that is not used for normal gear shift control. Permits the use of gear positions (EV1st ICE1st, EV2nd ICE3rd ') in the gear group. For this reason, in addition to the effect of (1), when the predetermined condition is satisfied, the use of the normal unused gear stage is permitted by permitting the use of the normal unused gear stage. It can be effectively used as a backup gear stage.
  • the speed change controller (transmission control unit 23) is assigned to the normally unused speed change group when the battery low capacity condition that the charge capacity (battery SOC) of the battery (high power battery 3) is equal to or less than the predetermined capacity SOC1 is satisfied.
  • the use of the existing gear position (EV1st ICE1st) is permitted (S1 ⁇ S5 in FIG. 5). For this reason, in addition to the effect of (2), when the low battery capacity condition is satisfied, the use of the normal non-use shift stage for the shift control is permitted, so that the reduced charge capacity of the battery (high-power battery 3) ( Early recovery of battery SOC) can be achieved.
  • the transmission controller (transmission control unit 23) is in a normal state when the battery low temperature condition that the temperature of the battery (high-power battery 3) is lower than the first temperature threshold value at which the predetermined output cannot be output is satisfied.
  • the use of a shift speed (1st emergency: EV1st ICE1st in an emergency) existing in an unused shift speed group is permitted (S2 ⁇ S5 in FIG. 5). For this reason, in addition to the effect of (2) or (3), when the battery low temperature condition is satisfied, the actual vehicle driving force is reduced with respect to the required vehicle driving force by using the normally unused shift stage in the shift control. Can be suppressed.
  • the speed change controller increases the temperature of the motor system from the battery (high power battery 3) to the electric motor (first motor generator MG1) and exceeds the second temperature threshold at which a predetermined output cannot be output.
  • the use of the shift speed (1st emergency: EV1st ICE1st) in the normal non-use shift speed group is permitted (S3 ⁇ S5 in FIG. 5).
  • the motor system high temperature condition is satisfied, the actual vehicle driving force is reduced with respect to the required vehicle driving force by using the normally unused shift stage in the shift control. Can be suppressed.
  • the gear change controller (transmission control unit 23) is normally used when a failure that cannot select a predetermined gear (EV2nd ICE3rd) occurs during gear shift control using the gears of the gear group used in normal operation.
  • the shift stage (EV2nd ICE3rd ') with a gear ratio close to the predetermined shift stage (EV2nd ICE3rd) where the failure occurred is used as the fault shift stage (Fig. 5).
  • the transmission (multi-stage gear transmission 1) includes an EV shift stage that is an electric motor shift stage, a plurality of ICE shift stages that are internal combustion engine shift stages, a combined shift stage of an EV shift stage and an ICE shift stage,
  • the shift controller transmission control unit 23
  • a plurality of shift stages that can be realized by the machine (multi-stage gear transmission 1)
  • a gear stage that has one engagement clutch C3 in the power transmission path of the EV gear stage and one gear clutch C1 and C2 in the power transmission path of the ICE gear stage is used during normal operation.
  • the used gear group is set (FIG. 4).
  • a transmission (multi-stage gear transmission 1) having an EV shift stage and an ICE shift stage, a plurality of speeds that can be realized by the transmission (multi-stage gear transmission 1).
  • the normal use gear stage and the normal non-use gear stage can be orderly separated from the gear stages according to the number of engagement clutches in the power transmission path.
  • the shift control device for a hybrid vehicle has been described based on the first embodiment.
  • the specific configuration is not limited to the first embodiment, and the invention according to each claim of the claims. Design changes and additions are permitted without departing from the gist of the present invention.
  • a speed change controller a speed change stage in which a speed change stage that is not selectable by an interlock speed change stage and a shift mechanism is removed from all speed change stages by a combination of engaging clutches C1, C2, and C3.
  • a plurality of shift speeds that can be realized by the machine 1 is shown.
  • the shift controller may be an example in which the shift speeds that are obtained by removing the interlock shift speed from all the shift speeds based on the combination of engaging clutches are a plurality of shift speeds that can be realized by the transmission.
  • the shift mechanism is a mechanism that causes each of the engagement clutches C1, C2, and C3 to independently perform a stroke operation
  • the “speed stage that cannot be selected by the shift mechanism” is eliminated.
  • the gear stage used as the gear stage at the time of failure increases.
  • the engagement clutches C1, C2, and C3 are used as the transmission, and the EV speed (1-2 speed), the ICE speed (1-4 speed), the EV speed, and the ICE speed are changed.
  • An example of the multi-stage gear transmission 1 having a combination gear stage is shown.
  • the transmission one, two, or four or more engagement clutches are used, and there are an EV shift stage different from that in the first embodiment, an ICE shift stage, and a combined shift stage of the EV shift stage and the ICE shift stage.
  • An example of a multi-stage gear transmission may be used.
  • the transmission may be a combined transmission of an EV transmission using an engagement clutch and an ICE transmission using an engagement clutch.
  • the shift control device of the present invention is applied to a hybrid vehicle equipped with one engine, two motor generators, and a multi-stage gear transmission having three engagement clutches as drive system components.
  • a hybrid vehicle equipped with a transmission having one engine, at least one motor generator, and at least one engagement clutch can be applied to a hybrid vehicle equipped with a transmission having one engine, at least one motor generator, and at least one engagement clutch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

変速要求があったとき、通常時変速において良好な変速品質を達成しながら、ドライバ要求に応える変速応答性を確保するハイブリッド車両の変速制御装置を提供すること。 動力源としての第1モータジェネレータ(MG1)と内燃機関(ICE)から駆動輪(19)までの駆動系に複数の変速段を実現する多段歯車変速機(1)が搭載され、多段歯車変速機(1)は、噛み合い締結する係合クラッチ(C1,C2,C3)を変速要素とする。このハイブリッド車両において、変速要求に基づく係合クラッチのストローク動作により、多段歯車変速機(1)により実現される変速段を切り替える変速制御を行う変速機コントロールユニット(23)を設ける。変速機コントロールユニット(23)は、多段歯車変速機(1)により実現可能な複数の変速段のうち、動力源から駆動輪(19)に至る動力伝達経路に係合クラッチが1つ存在する変速段を選択し、選択した変速段を通常時の変速制御に使用する通常時使用変速段グループとする。

Description

ハイブリッド車両の変速制御装置
 本発明は、動力源に電動機と内燃機関を有し、複数の変速段を係合クラッチにより切り替える変速機を備えるハイブリッド車両の変速制御装置に関する。
 従来、変速機は、ENG用変速機と、MG用変速機と、を有し、それぞれの経路を一つ、または複数の締結要素で締結し、複数の変速段を実現する。また、変速機は、一方の変速機の変速段を使用中に他方の変速部の変速段を使用する動力伝達経路を有するハイブリッド車両が知られている(例えば、特許文献1参照)。
特許第5453467号公報
 しかしながら、従来のハイブリッド車両にあっては、複数の締結要素を介した動力伝達経路を、通常の変速制御で使用する変速段とする構成になっている。このため、締結要素を1つのみ経由する場合に比べてバックラッシュが大きく、加速と減速の間を移行する際のガタツキショックや異音が悪化する。また、振動を抑制するため、変速中のトルク増減傾きを緩やかにする必要があり、ドライバの発進要求や加速要求に速やかに応えることができない、という問題がある。
 本発明は、上記問題に着目してなされたもので、変速要求があったとき、通常時変速において良好な変速品質を達成しながら、ドライバ要求に応える変速応答性を確保するハイブリッド車両の変速制御装置を提供することを目的とする。
 上記目的を実現するため、本発明のハイブリッド車両は、動力源として電動機と内燃機関を備え、動力源から駆動輪までの駆動系に複数の変速段を実現する変速機が搭載される。
変速機は、複数の変速段を切り替える変速要素として、解放位置からのストロークにより噛み合い締結する複数の係合クラッチを有する。
このハイブリッド車両において、変速要求に基づく前記係合クラッチのストローク動作により、変速機により実現される変速段を切り替える変速制御を行う変速コントローラを設ける。
変速コントローラは、変速機により実現可能な複数の変速段のうち、動力源から駆動輪に至る動力伝達経路に係合クラッチが1つ存在する変速段を選択し、選択した複数の変速段を通常時の変速制御に使用する通常時使用変速段グループとする。
 よって、変速機により実現可能な複数の変速段のうち、動力源から駆動輪に至る動力伝達経路に係合クラッチが1つ存在する変速段が選択され、選択された複数の変速段が通常時の変速制御に使用する通常時使用変速段グループとされる。
即ち、通常時使用変速段グループとして選択された変速段は、動力伝達経路に係合クラッチが1つ存在するだけである。このため、通常時変速において、噛み合い係合クラッチを変速要素とする場合に特有のガタツキショックや異音が抑えられた良好な変速品質が達成される。そして、通常時使用変速段はショックや異音を抑えた変速段であるため、変速中のトルク増減傾きを緩やかにする振動対策を施す必要がなく、変速に要する時間が短い高い変速応答性が確保される。
この結果、変速要求があったとき、通常時変速において良好な変速品質を達成しながら、ドライバ要求に応える変速応答性を確保することができる。
実施例1の変速制御装置が適用されたハイブリッド車両の駆動系及び制御系を示す全体システム図である。 実施例1の変速制御装置が適用されたハイブリッド車両に搭載された多段歯車変速機の変速制御系の構成を示す制御系構成図である。 実施例1の変速制御装置が適用されたハイブリッド車両に搭載された多段歯車変速機において変速段を切り替える考え方を示す変速マップ概要図である。 実施例1の変速制御装置が適用されたハイブリッド車両に搭載された多段歯車変速機において3つの係合クラッチの切り替え位置による変速段を示す締結表である。 実施例1の変速機コントロールユニットで実行される変速制御処理の流れを示すフローチャートである。 バッテリSOCが通常容量領域であるときに選択されるシフトスケジュール(通常時使用変速段)を示す第1シフトスケジュールマップ図である。 通常時使用変速段(EV1st、ICE2nd)が選択されたときの多段歯車変速機におけるMG1トルク及びICEトルクの伝達経路を示すトルクフロー図である。 通常時使用変速段(EV1st、ICE3rd)が選択されたときの多段歯車変速機におけるMG1トルク及びICEトルクの伝達経路を示すトルクフロー図である。 通常時使用変速段(EV2nd、ICE2nd)が選択されたときの多段歯車変速機におけるMG1トルク及びICEトルクの伝達経路を示すトルクフロー図である。 通常時使用変速段(EV2nd、ICE3rd)が選択されたときの多段歯車変速機におけるMG1トルク及びICEトルクの伝達経路を示すトルクフロー図である。 通常時使用変速段(EV2nd、ICE4th)が選択されたときの多段歯車変速機におけるMG1トルク及びICEトルクの伝達経路を示すトルクフロー図である。 バッテリSOCが低容量領域であるときに選択されるシフトスケジュール(通常時使用変速段+EV1st ICE1st)を示す第2シフトスケジュールマップ図である。 通常時不使用変速段(EV1st、ICE1st:緊急時1st)が選択されたときの多段歯車変速機におけるMG1トルク及びICEトルクの伝達経路を示すトルクフロー図である。 通常時不使用変速段(EV2nd、ICE3rd’:故障時変速段)が選択されたときの多段歯車変速機におけるMG1トルク及びICEトルクの伝達経路を示すトルクフロー図である。
 以下、本発明のハイブリッド車両の変速制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。
 まず、構成を説明する。
実施例1の変速制御装置は、駆動系構成要素として、1つのエンジンと、2つのモータジェネレータと、3つの係合クラッチを有する多段歯車変速機と、を備えたハイブリッド車両(ハイブリッド車両の一例)に適用したものである。以下、実施例1におけるハイブリッド車両の変速制御装置の構成を、「全体システム構成」、「変速制御系構成」、「変速段構成」、「変速制御処理構成」に分けて説明する。
 [全体システム構成]
 図1は、実施例1の変速制御装置が適用されたハイブリッド車両の駆動系及び制御系を示す。以下、図1に基づき、全体システム構成を説明する。
 ハイブリッド車両の駆動系は、図1に示すように、内燃機関ICEと、第1モータジェネレータMG1と、第2モータジェネレータMG2と、3つの係合クラッチC1,C2,C3を有する多段歯車変速機1と、を備えている。なお、「ICE」は「Internal-Combustion Engine」の略称である。
 前記内燃機関ICEは、例えば、クランク軸方向を車幅方向として車両のフロントルームに配置したガソリンエンジンやディーゼルエンジン等である。この内燃機関ICEは、多段歯車変速機1の変速機ケース10に連結されると共に、内燃機関出力軸が、多段歯車変速機1の第1軸11に接続される。なお、内燃機関ICEは、基本的に、第2モータジェネレータMG2をスタータモータとしてMG2始動する。但し、極低温時などのように強電バッテリ3を用いたMG2始動が確保できない場合に備えてスタータモータ2を残している。
 前記第1モータジェネレータMG1及び第2モータジェネレータMG2は、いずれも強電バッテリ3を共通の電源とする三相交流の永久磁石型同期モータである。第1モータジェネレータMG1のステータは、第1モータジェネレータMG1のケースに固定され、そのケースが多段歯車変速機1の変速機ケース10に固定される。そして、第1モータジェネレータMG1のロータに一体の第1モータ軸が、多段歯車変速機1の第2軸12に接続される。第2モータジェネレータMG2のステータは、第2モータジェネレータMG2のケースに固定され、そのケースが多段歯車変速機1の変速機ケース10に固定される。そして、第2モータジェネレータMG2のロータに一体の第2モータ軸が、多段歯車変速機1の第6軸16に接続される。第1モータジェネレータMG1のステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換する第1インバータ4が、第1ACハーネス5を介して接続される。第2モータジェネレータMG2のステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換する第2インバータ6が、第2ACハーネス7を介して接続される。強電バッテリ3と第1インバータ4及び第2インバータ6は、ジャンクションボックス9を介してDCハーネス8により接続される。
 前記多段歯車変速機1は、変速比が異なる複数の歯車対を有する常時噛み合い式変速機であり、変速機ケース10内に互いに平行に配置され、歯車が設けられる6つの歯車軸11~16と、歯車対を選択する3つの係合クラッチC1,C2,C3と、を備える。歯車軸としては、第1軸11と、第2軸12と、第3軸13と、第4軸14と、第5軸15と、第6軸16が設けられる。係合クラッチとしては、第1係合クラッチC1と、第2係合クラッチC2と、第3係合クラッチC3が設けられる。なお、変速機ケース10には、ケース内の軸受け部分や歯車の噛み合い部分に潤滑オイルを供給する電動オイルポンプ20が付設される。
 前記第1軸11は、内燃機関ICEが連結される軸であり、第1軸11には、図1の右側から順に、第1歯車101、第2歯車102、第3歯車103が配置される。第1歯車101は、第1軸11に対して一体(一体化固定を含む)に設けられる。第2歯車102と第3歯車103は、軸方向に突出するボス部が第1軸11の外周に挿入される遊転歯車であり、第2係合クラッチC2を介し第1軸11に対して駆動連結可能に設けられる。
 前記第2軸12は、第1モータジェネレータMG1が連結され、第1軸11の外側位置に軸心を一致させて同軸配置された円筒軸であり、第2軸12には、図1の右側から順に、第4歯車104、第5歯車105が配置される。第4歯車104と第5歯車105は、第2軸12に対して一体(一体化固定を含む)に設けられる。
 前記第3軸13は、多段歯車変速機1の出力側に配置された軸であり、第3軸13には、図1の右側から順に、第6歯車106、第7歯車107、第8歯車108、第9歯車109、第10歯車110が配置される。第6歯車106と第7歯車107と第8歯車108は、第3軸13に対して一体(一体化固定を含む)に設けられる。第9歯車109と第10歯車110は、軸方向に突出するボス部が第3軸13の外周に挿入される遊転歯車であり、第3係合クラッチC3を介し第3軸13に対して駆動連結可能に設けられる。そして、第6歯車106は第1軸11の第2歯車102に噛み合い、第7歯車107はデファレンシャル歯車17の第16歯車116と噛み合い、第8歯車108は第1軸11の第3歯車103に噛み合う。第9歯車109は第2軸12の第4歯車104に噛み合い、第10歯車110は第2軸12の第5歯車105に噛み合う。
 前記第4軸14は、変速機ケース10に両端が支持された軸であり、第4軸14には、図1の右側から順に、第11歯車111、第12歯車112、第13歯車113が配置される。第11歯車111は、第4軸14に対して一体(一体化固定を含む)に設けられる。第12歯車112と第13歯車113は、軸方向に突出するボス部が第4軸14の外周に挿入される遊転歯車であり、第1係合クラッチC1を介し第4軸14に対して駆動連結可能に設けられる。そして、第11歯車111は第1軸11の第1歯車101に噛み合い、第12歯車112は第1軸11の第2歯車102と噛み合い、第13歯車113は第2軸12の第4歯車104と噛み合う。
 前記第5軸15は、変速機ケース10に両端が支持された軸であり、第4軸14の第11歯車111と噛み合う第14歯車114が一体(一体化固定を含む)に設けられる。
 前記第6軸16は、第2モータジェネレータMG2が連結される軸であり、第5軸15の第14歯車114と噛み合う第15歯車115が一体(一体化固定を含む)に設けられる。
 前記第2モータジェネレータMG2と内燃機関ICEは、互いに噛み合う第15歯車115、第14歯車114、第11歯車111、第1歯車101により構成されるギア列により機械的に連結されている。このギア列は、第2モータジェネレータMG2による内燃機関ICEのMG2始動時、MG2回転数を減速する減速ギア列となり、内燃機関ICEの駆動で第2モータジェネレータMG2を発電するMG2発電時、機関回転数を増速する増速ギア列となる。
 前記第1係合クラッチC1は、第4軸14のうち、第12歯車112と第13歯車113の間に介装され、同期機構を持たないことで、回転同期状態での噛み合いストロークにより締結されるドグクラッチである。第1係合クラッチC1が左側締結位置(Left)のとき、第4軸14と第13歯車113を駆動連結する。第1係合クラッチC1が中立位置(N)のとき、第4軸14と第12歯車112を解放すると共に、第4軸14と第13歯車113を解放する。第1係合クラッチC1が右側締結位置(Right)のとき、第4軸14と第12歯車112を駆動連結する。
 前記第2係合クラッチC2は、第1軸11のうち、第2歯車102と第3歯車103の間に介装され、同期機構を持たないことで、回転同期状態での噛み合いストロークにより締結されるドグクラッチである。第2係合クラッチC2が左側締結位置(Left)のとき、第1軸11と第3歯車103を駆動連結する。第2係合クラッチC2が中立位置(N)のとき、第1軸11と第2歯車102を解放すると共に、第1軸11と第3歯車103を解放する。第2係合クラッチC2が右側締結位置(Right)のとき、第1軸11と第2歯車102を駆動連結する。
 前記第3係合クラッチC3は、第3軸13のうち、第9歯車109と第10歯車110の間に介装され、同期機構を持たないことで、回転同期状態での噛み合いストロークにより締結されるドグクラッチである。第3係合クラッチC3が左側締結位置(Left)のとき、第3軸13と第10歯車110を駆動連結する。第3係合クラッチC3が中立位置(N)のとき、第3軸13と第9歯車109を解放すると共に、第3軸13と第10歯車110を解放する。第3係合クラッチC3が右側締結位置(Right)のとき、第3軸13と第9歯車109を駆動連結する。そして、多段歯車変速機1の第3軸13に一体(一体化固定を含む)に設けられた第7歯車107に噛み合う第16歯車116は、デファレンシャル歯車17及び左右のドライブ軸18を介して左右の駆動輪19に接続されている。
 ハイブリッド車両の制御系は、図1に示すように、ハイブリッドコントロールモジュール21と、モータコントロールユニット22と、変速機コントロールユニット23と、エンジンコントロールユニット24と、を備えている。
 前記ハイブリッドコントロールモジュール21(略称:「HCM」)は、車両全体の消費エネルギーを適切に管理する機能を担う統合制御手段である。このハイブリッドコントロールモジュール21は、他のコントロールユニット(モータコントロールユニット22、変速機コントロールユニット23、エンジンコントロールユニット24など)とCAN通信線25により双方向情報交換可能に接続されている。なお、CAN通信線25の「CAN」とは、「Controller Area Network」の略称である。
 前記モータコントロールユニット22(略称:「MCU」)は、第1インバータ4と第2インバータ6に対する制御指令により第1モータジェネレータMG1と第2モータジェネレータMG2の力行制御や回生制御などを行う。第1モータジェネレータMG1及び第2モータジェネレータMG2に対する制御モードとしては、「トルク制御」と「回転数FB制御」がある。「トルク制御」は、目標駆動力に対して分担する目標モータトルクが決まると、実モータトルクを目標モータトルクに追従させる制御を行う。「回転数FB制御」は、走行中に係合クラッチC1,C2,C3の何れかを噛み合い締結する変速要求があると、クラッチ入出力回転数を回転同期させる目標モータ回転数を決め、実モータ回転数を目標モータ回転数に収束させるようにFBトルクを出力する制御を行う。
 前記変速機コントロールユニット23(略称:「TMCU」)は、所定の入力情報に基づいて電動アクチュエータ31,32,33(図2参照)へ電流指令を出力することにより、多段歯車変速機1の変速段を切り替える変速制御を行う。この変速制御では、係合クラッチC1,C2,C3を選択的に噛み合い締結/解放させ、複数対の歯車対から動力伝達に関与する歯車対を選択する。ここで、解放されている係合クラッチC1,C2,C3の何れかを締結する変速要求時には、クラッチ入出力の差回転数を抑えて噛み合い締結を確保するために、第1モータジェネレータMG1又は第2モータジェネレータMG2の回転数FB制御(回転同期制御)を併用する。
 前記エンジンコントロールユニット24(略称:「ECU」)は、所定の入力情報に基づいてモータコントロールユニット22や点火プラグや燃料噴射アクチュエータなどへ制御指令を出力することにより、内燃機関ICEの始動制御や内燃機関ICEの停止制御や燃料カット制御などを行う。
 [変速制御系構成]
 実施例1の多段歯車変速機1は、変速要素として、噛み合い締結による係合クラッチC1,C2,C3(ドグクラッチ)を採用することにより引き摺りを低減することで効率化を図った点を特徴とする。そして、係合クラッチC1,C2,C3のいずれかを噛み合い締結させる変速要求があると、クラッチ入出力の差回転数を、第1モータジェネレータMG1(係合クラッチC3の締結時)又は第2モータジェネレータMG2(係合クラッチC1,C2の締結時)により回転同期させ、同期判定回転数範囲内になると噛み合いストロークを開始することで実現している。又、締結されている係合クラッチC1,C2,C3のいずれかを解放させる変速要求があると、解放クラッチのクラッチ伝達トルクを低下させ、解放トルク判定値以下になると解放ストロークを開始することで実現している。以下、図2に基づき、多段歯車変速機1の変速制御系構成を説明する。
 変速制御系は、図2に示すように、係合クラッチとして、第1係合クラッチC1と第2係合クラッチC2と第3係合クラッチC3を備えている。アクチュエータとして、C2,C3シフト動作用の第1電動アクチュエータ31と、C2,C3セレクト動作用の第2電動アクチュエータ32と、C3シフト動作用の第3電動アクチュエータ33を備えている。そして、アクチュエータ動作をクラッチ係合/解放動作に変換するシフト機構として、C1/C2セレクト動作機構40と、C1シフト動作機構41と、C2シフト動作機構42と、C3シフト動作機構43を備えている。さらに、第1電動アクチュエータ31と第2電動アクチュエータ32と第3電動アクチュエータ33の制御手段として、変速機コントロールユニット23を備えている。
 前記第1係合クラッチC1と第2係合クラッチC2と第3係合クラッチC3は、ニュートラル位置(N:解放位置)と、左側締結位置(Left:左側クラッチ噛み合い締結位置)と、右側締結位置(Right:右側クラッチ噛み合い締結位置)と、を切り替えるドグクラッチである。各係合クラッチC1,C2,C3は何れも同じ構成であり、カップリングスリーブ51,52,53と、左側ドグクラッチリング54,55,56と、右側ドグクラッチリング57,58,59と、を備える。カップリングスリーブ51,52,53は、第4軸14,第1軸11,第3軸13に固定された図外のハブを介してスプライン結合により軸方向にストローク可能に設けられたもので、両側に平らな頂面によるドグ歯51a,51b,52a,52b,53a,53bを有する。さらに、カップリングスリーブ51,52,53の周方向中央部にフォーク溝51c,52c,53cを有する。左側ドグクラッチリング54,55,56は、各係合クラッチC1,C2,C3の左側遊転歯車である各歯車113,103,110のボス部に固定され、ドグ歯51a,52a,53aに対向する平らな頂面によるドグ歯54a,55a,56aを有する。右側ドグクラッチリング57,58,59は、各係合クラッチC1,C2,C3の右側遊転歯車である各歯車112,102,109のボス部に固定され、ドグ歯51b,52b,53bに対向する平らな頂面によるドグ歯57b,58b,59bを有する。
 前記C1/C2セレクト動作機構40は、第1電動アクチュエータ31とC1シフト動作機構41の連結を選択する第1位置と、第1電動アクチュエータ31とC2シフト動作機構42の連結を選択する第2位置と、を選択する機構である。第1位置の選択時には、シフトロッド62と第1係合クラッチC1のシフトロッド64を連結すると共に、第2係合クラッチC2のシフトロッド65をニュートラル位置にロックする。第2位置の選択時には、シフトロッド62と第2係合クラッチC2のシフトロッド65を連結すると共に、第1係合クラッチC1のシフトロッド64をニュートラル位置にロックする。つまり、第1位置と第2位置のうち、一方の係合クラッチをシフト動作する位置を選択すると、他方の係合クラッチはニュートラル位置でロック固定する機構としている。
 前記C1シフト動作機構41とC2シフト動作機構42とC3シフト動作機構43は、電動アクチュエータ31,33の回動動作を、カップリングスリーブ51,52,53の軸方向ストローク動作に変換する機構である。各シフト動作機構41,42,43は何れも同じ構成であり、回動リンク61,63と、シフトロッド62,64,65,66と、シフトフォーク67,68,69と、を備える。回動リンク61,63は、一端が電動アクチュエータ31,33のアクチュエータ軸に設けられ、他端がシフトロッド64(又はシフトロッド65),66に相対変位可能に連結される。シフトロッド64,65,66は、ロッド分割位置にスプリング64a,65a,66aが介装され、ロッド伝達力の大きさと方向に応じて伸縮可能とされている。シフトフォーク67,68,69は、一端がシフトロッド64,65,66に固定され、他端がカップリングスリーブ51,52,53のフォーク溝51c,52c,53cに配置される。
 前記変速機コントロールユニット23は、車速センサ71、アクセル開度センサ72、変速機出力軸回転数センサ73、エンジン回転数センサ74、MG1回転数センサ75、MG2回転数センサ76、インヒビタースイッチ77からのセンサ信号やスイッチ信号を入力する。さらに、バッテリ温度センサ78、モータ温度センサ79、インバータ温度センサ80、バッテリSOCセンサ81などからのセンサ信号を入力する。なお、変速機出力軸回転数センサ73は、第3軸13の軸端部に設けられ、第3軸13の軸回転数を検出する。そして、カップリングスリーブ51,52,53の位置によって決まる係合クラッチC1,C2,C3の噛み合い締結と解放を制御する位置サーボ制御部(例えば、PID制御による位置サーボ系)を備えている。この位置サーボ制御部は、第1スリーブ位置センサ81、第2スリーブ位置センサ82、第3スリーブ位置センサ83からのセンサ信号を入力する。そして、各スリーブ位置センサ81,82,83のセンサ値を読み込み、カップリングスリーブ51,52,53の位置が噛み合いストロークによる締結位置又は解放位置になるように、電動アクチュエータ31,32,33に電流を与える。即ち、カップリングスリーブ51,52,53に溶接されたドグ歯と遊転歯車に溶接されたドグ歯との双方が噛合した噛み合い位置にある締結状態にすることで、遊転歯車を第4軸14,第1軸11,第3軸13に駆動連結する。一方、カップリングスリーブ51,52,53が、軸線方向へ変位することでカップリングスリーブ51,52,53に溶接されたドグ歯と遊転歯車に溶接されたドグ歯が非噛み合い位置にある解放状態にすることで、遊転歯車を第4軸14,第1軸11,第3軸13から切り離す。
 [変速段構成]
 実施例1の多段歯車変速機1は、流体継手などの回転差吸収要素を持たないことで動力伝達損失を低減すると共に、内燃機関ICEをモータアシストすることでICE変速段を減らし、コンパクト化(EV変速段:1-2速、ICE変速段:1-4速)を図った点を特徴とする。以下、図3及び図4に基づき、多段歯車変速機1の変速段構成を説明する。
 変速段の考え方は、図3に示すように、車速VSPが所定車速VSP0以下の発進領域においては、多段歯車変速機1が発進要素(滑り要素)を持たないため、「EVモード」でモータ駆動力のみによるモータ発進とする。そして、走行領域においては、図3に示すように、駆動力の要求が大きいとき、エンジン駆動力をモータ駆動力によりアシストする「パラレルHEVモード」により対応するという変速段の考え方を採る。つまり、車速VSPの上昇に従って、ICE変速段は、(ICE1st→)ICE2nd→ICE3rd→ICE4thへと変速段が移行し、EV変速段は、EV1st→EV2ndへと変速段が移行する。よって、図3に示す変速段の考え方に基づき、変速段を切り替える変速要求を出すための変速マップを作成する。
 係合クラッチC1,C2,C3を有する多段歯車変速機1により理論的に実現可能な全変速段は図4に示す通りである。なお、図4中の「Lock」は、変速段として成立しないインターロック変速段を表し、「EV-」は、第1モータジェネレータMG1が駆動輪19に駆動連結されていない状態を表し、「ICE-」は、内燃機関ICEが駆動輪19に駆動連結されていない状態を表す。以下、各変速段について説明する。
 第2係合クラッチC2が「N」で、第3係合クラッチC3が「N」のとき、第1係合クラッチC1の位置により次の変速段となる。第1係合クラッチC1が「Left」であれば「EV- ICEgen」、第1係合クラッチC1が「N」であれば「Neutral」、第1係合クラッチC1が「Right」であれば「EV- ICE3rd」である。
ここで、「EV- ICEgen」の変速段は、停車中、内燃機関ICEにより第1モータジェネレータMG1で発電するMG1アイドル発電時、又は、MG1発電にMG2発電を加えたダブルアイドル発電時に選択される変速段である。「Neutral」の変速段は、停車中、内燃機関ICEにより第2モータジェネレータMG2で発電するMG2アイドル発電時に選択される変速段である。
 第2係合クラッチC2が「N」で、第3係合クラッチC3が「Left」のとき、第1係合クラッチC1の位置により次の変速段となる。第1係合クラッチC1が「Left」であれば「EV1st ICE1st」、第1係合クラッチC1が「N」であれば「EV1st ICE-」、第1係合クラッチC1が「Right」であれば「EV1st ICE3rd」である。
ここで、「EV1st ICE-」の変速段は、内燃機関ICEを停止して第1モータジェネレータMG1で走行する「EVモード」のとき、又は、内燃機関ICEにより第2モータジェネレータMG2で発電しながら、第1モータジェネレータMG1で1速EV走行を行う「シリーズHEVモード」のときに選択される変速段である。
 第2係合クラッチC2が「Left」で、第3係合クラッチC3が「Left」のとき、第1係合クラッチC1の位置が「N」であれば「EV1st ICE2nd」である。第2係合クラッチC2が「Left」で、第3係合クラッチC3が「N」のとき、第1係合クラッチC1の位置により次の変速段となる。第1係合クラッチC1が「Left」であれば「EV1.5 ICE2nd」、第1係合クラッチC1が「N」であれば「EV- ICE2nd」である。第2係合クラッチC2が「Left」で、第3係合クラッチC3が「Right」のとき、第1係合クラッチC1の位置が「N」であれば「EV2nd ICE2nd」である。
 第2係合クラッチC2が「N」で、第3係合クラッチC3が「Right」のとき、第1係合クラッチC1の位置により次の変速段となる。第1係合クラッチC1が「Left」であれば「EV2nd ICE3rd’」、第1係合クラッチC1が「N」であれば「EV2nd ICE-」、第1係合クラッチC1が「Right」であれば「EV2nd ICE3rd」である。
ここで、「EV2nd ICE-」の変速段は、内燃機関ICEを停止して第1モータジェネレータMG1で走行する「EVモード」のとき、又は、内燃機関ICEにより第2モータジェネレータMG2で発電しながら、第1モータジェネレータMG1で2速EV走行を行う「シリーズHEVモード」のときに選択される変速段である。
 第2係合クラッチC2が「Right」で、第3係合クラッチC3が「Right」のとき、第1係合クラッチC1の位置が「N」であれば「EV2nd ICE4th」である。第2係合クラッチC2が「Right」で、第3係合クラッチC3が「N」のとき、第1係合クラッチC1の位置により次の変速段となる。第1係合クラッチC1が「Left」であれば「EV2.5 ICE4th」、第1係合クラッチC1が「N」であれば「EV- ICE4th」である。第2係合クラッチC2が「Right」で、第3係合クラッチC3が「Left」のとき、第1係合クラッチC1の位置が「N」であれば「EV1st ICE4th」である。
 次に、上記複数の変速段を、「通常時使用変速段グループ」と「通常時不使用変速段グループ」に分ける変速段グループの分け方について説明する。
 まず、多段歯車変速機1は、第1モータジェネレータMG1の変速段である2つのEV変速段(EV1st,EV2nd)、内燃機関ICEの変速段である複数のICE変速段(ICE1st~ICE4th)と、EV変速段とICE変速段の組み合わせ変速段と、を有する。そして、係合クラッチC1,C2,C3の締結組み合わせによる全変速段から、インターロック変速段(図4の×印)とシフト機構により選択できない変速段(図4のハッチング)を除いた変速段を、多段歯車変速機1により実現可能な複数の変速段とする。ここで、シフト機構により選択できない変速段とは、第1係合クラッチC1が「Left」で、かつ、第2係合クラッチC2が「Left」である「EV1.5 ICE2nd」と、第1係合クラッチC1が「Left」で、かつ、第2係合クラッチC2が「Right」である「EV2.5 ICE4th」と、をいう。シフト機構により選択できない理由は、1つの第1電動アクチュエータ31が、2つの係合クラッチC1,C2に対して兼用するシフトアクチュエータであり、かつ、C1/C2セレクト動作機構40により片方の係合クラッチはニュートラルロックされることによる。
 前記多段歯車変速機1により実現可能な複数の変速段のうち、動力源から駆動輪19に至る動力伝達経路に係合クラッチが1つ存在する変速段を選択し、選択した変速段を通常時の変速制御に使用する「通常時使用変速段グループ」とする。EV変速段の場合、動力伝達経路に係合クラッチが1つ存在する変速段(EV1st ICE-、EV2nd ICE-)を「通常時使用変速段グループ」とする。ICE変速段の場合、動力伝達経路に係合クラッチが1つ存在する変速段(EV- ICE2nd、EV- ICE3rd、EV- ICE4th)を「通常時使用変速段グループ」とする。組み合わせ変速段の場合、EV変速段の動力伝達経路に係合クラッチが1つ存在し、ICE変速段の動力伝達経路に係合クラッチが1つ存在する変速段(EV1st ICE2nd、EV1st ICE3rd、EV1st ICE4th、EV2nd ICE2nd、EV2nd ICE3rd、EV2nd ICE4th)を「通常時使用変速段グループ」とする。なお、「通常時使用変速段グループ」は、上記11の変速段に「EV- ICEgen」と「Neutral」を加えて、トータル13の変速段で構成する。
 前記多段歯車変速機1により実現可能な複数の変速段のうち、動力伝達経路に係合クラッチが2つ以上存在する変速段を選択し、選択した変速段を通常時の変速制御に使用しない「通常時不使用変速段グループ」とする。EV変速段とICE変速段の組み合わせ変速段の場合、EV変速段の動力伝達経路に前記係合クラッチが1つ存在し、ICE変速段の動力伝達経路に係合クラッチが2つ存在する変速段(EV1st ICE1st、EV2nd ICE3rd’)を「通常時不使用変速段グループ」とする。なお、「通常時不使用変速段グループ」の変速段は、次の変速制御処理構成で説明するように、通常時は不使用であるが、通常時から外れた所定の条件が成立するときに使用される、又は、使用が許可される。
 [変速制御処理構成]
 図5は、実施例1の変速機コントロールユニット23(変速コントローラ)で実行される変速制御処理の流れを示す。以下、変速制御処理構成をあらわす各ステップについて説明する。
 ステップS1では、バッテリ充電容量(以下、「バッテリSOC」という。)が所定容量SOC1を超えているか否かを判断する。YES(バッテリSOC>SOC1)の場合はステップS2へ進み、NO(バッテリSOC≦SOC1)の場合はステップS5へ進む。
ここで、「バッテリSOC」は、強電バッテリ3の充電容量を検出するバッテリSOCセンサ81により取得する。「所定容量SOC1」は、バッテリSOCの監視によるエネルギー管理の際、通常充放電の変速制御モードとする第1シフトスケジュールマップ(図6)と、充電重視の変速制御モードとする第2シフトスケジュールマップ(図12)と、の切替閾値として設定される。そして、バッテリSOCが所定容量SOC1以下であり、バッテリSOCが不足状態であることを示すバッテリ低容量条件が成立すると、ステップS5へ進む。
 ステップS2では、ステップS1でのバッテリSOC>SOC1であるとの判断に続き、バッテリ温度が低いか否かを判断する。YES(バッテリ温度が低い)の場合はステップS5へ進み、NO(バッテリ温度が低くない)の場合はステップS3へ進む。
ここで、「バッテリ温度」は、強電バッテリ3のバッテリ温度を検出するバッテリ温度センサ78により取得する。そして、強電バッテリ3の温度が低下し、既定の出力を出せない第1温度閾値以下であるというバッテリ低温条件が成立するとき、バッテリ温度が低いと判断する。
 ステップS3では、ステップS2でのバッテリ温度が低くないとの判断に続き、バッテリ温度、モータ温度、インバータ温度が高いか否かを判断する。YES(第1モータジェネレータ系温度が高い)の場合はステップS5へ進み、NO(第1モータジェネレータ系温度が高くない)の場合はステップS4へ進む。
ここで、「バッテリ温度」はバッテリ温度センサ78により取得し、「モータ温度」は第1モータジェネレータMG1の温度を検出するモータ温度センサ79により取得する。「インバータ温度」は第1インバータ4の温度を検出するインバータ温度センサ80により取得する。そして、強電バッテリ3から第1モータジェネレータMG1までの第1モータジェネレータ系温度が上昇し、既定の出力を出せない第2温度閾値以上であるという第1モータジェネレータ系高温条件が成立するとき、第1モータジェネレータ系温度が高いと判断する。
 ステップS4では、ステップS3での第1モータジェネレータ系温度が高くないとの判断に続き、通常時使用変速段の使用を許可し、図6に示す第1シフトスケジュールマップを用いた変速制御を実施し、ステップS6へ進む。
ここで、第1シフトスケジュールマップを用いた変速制御とは、図6に示す第1シフトスケジュールマップ上に存在する運転点の位置に割り当てられた通常時使用変速段を選択する制御をいう。よって、運転点の移動により選択される通常時使用変速段が変わると、アップ変速又はダウン変速により変速段を変更する。
 ステップS5では、ステップS1でのバッテリSOCが低いとの判断、或いは、ステップS2でのバッテリ温度が低いとの判断、或いは、ステップS3での第1モータジェネレータ系温度が高いとの判断に続き、通常時使用変速段に、通常時不使用変速段である緊急時1st(「EV1st ICE1st」)を加えた変速段の使用を許可し、図12に示す第2シフトスケジュールマップを用いた変速制御を実施し、ステップS6へ進む。
ここで、第2シフトスケジュールマップを用いた変速制御では、「EV1st」を「Series EV1st」とし、さらに、「EV1st ICE1st」という緊急時1stの変速段を追加した点で、第1シフトスケジュールマップ(図6)を用いた変速制御で使用が許可された変速段と相違する。
 ステップS6では、ステップS4での通常使用時の変速段の使用許可、或いは、ステップS5での緊急時1stの使用許可に続き、故障時変速段にギア比が近い通常時使用変速段を選択しているか否かを判断する。YES(「EV2nd ICE3rd」の選択時)の場合はステップS7へ進み、NO(「EV2nd ICE3rd」以外の選択時)の場合はリターンへ進む。
ここで、「故障時変速段」とは「EV2nd ICE3rd’」をいい、故障時変速段にギア比が近い通常時使用変速段とは「EV2nd ICE3rd」をいう。
 ステップS7では、ステップS6での「EV2nd ICE3rd」の選択時であるとの判断に続き、故障時変速段にギア比が近い通常時使用変速段に故障が発生しているか否かを判断する。YES(故障の発生有り)の場合はステップS8へ進み、NO(故障の発生無し)の場合はリターンへ進む。
ここで、通常時使用変速段「EV2nd ICE3rd」の故障とは、例えば、第1係合クラッチC1を「Right」へストロークするシフト動作系に機械的、或いは、電気的なトラブルが発生し、「EV2nd ICE3rd」を選択できないような故障をいう。
 ステップS8では、ステップS7での故障の発生有りとの判断に続き、通常時不使用変速段グループに存在する変速段のうち、故障が発生した変速段に近いギア比による変速段を故障時変速段(「EV2nd ICE3rd’」の変速段)として使用し、リターンへ進む。
ここで、「故障時変速段として使用する」とは、第1又は第2シフトスケジュールマップを用いた変速制御の中で、「EV2nd ICE3rd」の変速段に代え、「EV2nd ICE3rd’」の変速段を使用することをいう。
 次に、作用を説明する。
実施例1のハイブリッド車両の変速制御装置における作用を、「変速制御処理作用」、「通常時変速制御作用」、「緊急時1stの使用許可による変速制御作用」、「故障時変速制御作用」、「変速制御の特徴作用」に分けて説明する。
 [変速制御処理作用]
 以下、図5に示すフローチャートに基づき、各走行シーンでの変速制御処理作用を説明する。
 ステップS1にてバッテリSOCが所定容量SOC1を超えていると判断され、ステップS2にてバッテリ温度が低くないと判断され、ステップS3にて第1モータジェネレータ系温度が高くないと判断されたとする。このときは、図5のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4へと進む。ステップS4では、通常時使用変速段の使用が許可され、図6に示す第1シフトスケジュールマップを用いた変速制御が実施される。
 一方、ステップS1にてバッテリSOCが所定容量SOC1以下であると判断されると、図5のフローチャートにおいて、ステップS1からステップS5へと進む。ステップS1にてバッテリSOCが所定容量SOC1を超えていると判断されても、ステップS2にてバッテリ温度が低いと判断されると、図5のフローチャートにおいて、ステップS1→ステップS2→ステップS5へと進む。ステップS1にてバッテリSOCが所定容量SOC1を超えていると判断され、ステップS2にてバッテリ温度が低くない判断されても、ステップS3にて第1モータジェネレータ系温度が高いと判断されると、図5のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS5へと進む。ステップS5では、通常時使用変速段に、通常時不使用変速段である緊急時1st(「EV1st ICE1st」)を加えた変速段の使用が許可され、図12に示す第2シフトスケジュールマップを用いた変速制御が実施される。
 ステップS4又はステップS5からステップS6へと進んできたとき、ステップS6にて「EV2nd ICE3rd」以外の変速段を選択しての走行シーンでは、図5のフローチャートにおいて、ステップS6からリターンへと進む。又、ステップS6にて「EV2nd ICE3rd」の選択時であるが、ステップS7にて故障時変速段にギア比が近い通常時使用変速段に故障が発生していない走行シーンでは、図5のフローチャートにおいて、ステップS6からステップS7→リターンへと進む。
 一方、ステップS6にて「EV2nd ICE3rd」の選択時であるが、ステップS7にて故障時変速段にギア比が近い通常時使用変速段に故障が発生したと判断される走行シーンでは、図5のフローチャートにおいて、ステップS6からステップS7→ステップS8→リターンへと進む。ステップS8では、通常時不使用変速段グループに存在する変速段のうち、故障が発生した変速段に近いギア比による「EV2nd ICE3rd’」の変速段が故障時変速段として使用される。つまり、第1又は第2シフトスケジュールマップを用いた変速制御中において、「EV2nd ICE3rd」の変速段に代え、「EV2nd ICE3rd’」の変速段を使用する変速制御に切り替えられる。
 [通常時変速制御作用]
 図5のフローチャートにおいてステップS4へと進んだとき、通常時使用変速段の使用許可に基づき、第1シフトスケジュールマップを用いた通常時変速制御が実施される。以下、図6~図11に基づき、通常時変速制御作用を説明する。
 通常時変速制御で用いられる「第1シフトスケジュールマップ」は、図6に示すように、車速VSPと要求制駆動力(Driving force)を座標軸とし、座標面に通常時使用変速段グループを構成する複数の変速段を選択する選択領域が割り当てられたマップである。つまり、アクセル踏み込みによる力行駆動領域として、発進からの低車速域に「EV1st」、「EV1st ICE2nd」、「EV1st ICE3rd」の選択領域が割り当てられる。そして、高車速域に「EV2nd」、「EV2nd ICE2nd」、「EV2nd ICE3rd」、「EV2nd ICE4th」の選択領域が割り当てられる。アクセル足離しのブレーキ減速による回生制動領域として、低車速域に「EV1st」の選択領域が割り当てられ、高車速域に「EV2nd」の選択領域が割り当てられる。
 力行駆動領域の「EV1st」と「EV2nd」の場合、第1モータジェネレータMG1から駆動輪19へ向かう動力伝達経路に1つの第3係合クラッチC3(LeftとRight)が存在する。回生制動領域の「EV1st」と「EV2nd」の場合、駆動輪19から第1モータジェネレータMG1へ向かう動力伝達経路に1つの第3係合クラッチC3(LeftとRight)が存在する。
 通常時使用変速段「EV1st ICE2nd」の場合、図7に示すように、第1モータジェネレータMG1から駆動輪19へ向かう動力伝達経路に1つの第3係合クラッチC3(left)が存在する。そして、内燃機関ICEから駆動輪19へ向かう動力伝達経路に1つの第2係合クラッチC2(left)が存在する。
 通常時使用変速段「EV1st ICE3rd」の場合、図8に示すように、第1モータジェネレータMG1から駆動輪19へ向かう動力伝達経路に1つの第3係合クラッチC3(left)が存在する。そして、内燃機関ICEから駆動輪19へ向かう動力伝達経路に1つの第1係合クラッチC1(Right)が存在する。
 通常時使用変速段「EV2nd ICE2nd」の場合、図9に示すように、第1モータジェネレータMG1から駆動輪19へ向かう動力伝達経路に1つの第3係合クラッチC3(Right)が存在する。そして、内燃機関ICEから駆動輪19へ向かう動力伝達経路に1つの第2係合クラッチC2(Left)が存在する。
 通常時使用変速段「EV2nd ICE3rd」の場合、図10に示すように、第1モータジェネレータMG1から駆動輪19へ向かう動力伝達経路に1つの第3係合クラッチC3(Right)が存在する。そして、内燃機関ICEから駆動輪19へ向かう動力伝達経路に1つの第1係合クラッチC1(Right)が存在する。
 通常時使用変速段「EV2nd ICE4th」の場合、図11に示すように、第1モータジェネレータMG1から駆動輪19へ向かう動力伝達経路に1つの第3係合クラッチC3(Right)が存在する。そして、内燃機関ICEから駆動輪19へ向かう動力伝達経路に1つの第2係合クラッチC2(Right)が存在する。
 従って、例えば、図6の運転点Aから運転点Bへと車速VSPが上昇すると、「EV1st」から「EV2nd」へ変速段を切り替えるアップ変速が実施される。このアップ変速は、第3係合クラッチC3のカップリングスリーブ53を、「Left」の締結位置から「N」位置を経由して「Right」の締結位置までストロークさせることで達成される。このとき、第1係合クラッチC1及び第2係合クラッチC2は、いずれも「N」位置のままである。
 例えば、図6の運転点Cから運転点Dへと車速VSPが低下すると、「EV2nd」から「EV1st」へ変速段を切り替えるダウン変速が実施される。このダウン変速は、第3係合クラッチC3のカップリングスリーブ53を、「Right」の締結位置から「N」位置を経由して「Left」の締結位置までストロークさせることで達成される。このとき、第1係合クラッチC1及び第2係合クラッチC2は、いずれも「N」位置のままである。
 例えば、「EV2nd ICE4th」による変速段を選択しての「パラレルHEVモード」での走行中、アクセル踏み込み操作により図6の運転点Eから運転点Fへと移動すると、ダウン変速要求が出される。このダウン変速要求に従って第2係合クラッチC2を「Right」から「N」を経過して「Left」に切り替えると、ICE変速段を2速段とする「EV2nd ICE2nd」の変速段による「パラレルHEVモード」の走行に移行する。
 例えば、「EV1st ICE2nd」による変速段を選択しての「パラレルHEVモード」での走行中、車速VSPの上昇により図6の運転点Gから運転点Hへと移動すると、アップ変速要求が出される。このアップ変速要求に従って第3係合クラッチC3を「Left」から「N」を経過して「Right」に切り替えると、EV変速段を2速段とする「EV2nd ICE2nd」の変速段による「パラレルHEVモード」の走行に移行する。
 例えば、「EV2nd ICE2nd」による変速段を選択しての「パラレルHEVモード」での走行中、アクセル戻し操作により図6の運転点Iから運転点Jへと移動すると、アップ変速要求が出される。このアップ変速要求に従って、第2係合クラッチC2を「Left」から「N」に切り替え、第1係合クラッチC1を「N」から「Right」に切り替えると、ICE変速段を3速段とする「EV2nd ICE3rd」の変速段による「パラレルHEVモード」の走行に移行する。
 [緊急時1stの使用許可による変速制御作用]
 図5のフローチャートにおいてステップS5へと進んだときは、通常時使用変速段に緊急時1stである「EV1st ICE1st」を加えた変速段使用許可に基づき、第2シフトスケジュールマップを用いた変速制御が実施される。以下、図12及び図13に基づき、緊急時1stの使用許可による変速制御作用を説明する。
 緊急時1stの使用許可による変速制御で用いられる「第2シフトスケジュールマップ」は、図12に示すように、車速VSPと要求制駆動力(Driving force)を座標軸とし、座標面に通常時使用変速段に「EV1st ICE1st」を加えた変速段を選択する選択領域が割り当てられたマップである。つまり、アクセル踏み込みによる力行駆動領域として、発進からの低車速域に「Series EV1st」の選択領域が割り当てられる。そして、中車速域に「EV1st ICE1st」、「EV1st ICE2nd」、「EV1st ICE3rd」の選択領域が割り当てられ、高車速域に「EV2nd ICE2nd」、「EV2nd ICE3rd」、「EV2nd ICE4th」の選択領域が割り当てられる。アクセル足離しのブレーキ減速による回生制動領域として、低車速域に「EV1st」の選択領域が割り当てられ、高車速域に「EV2nd」の選択領域が割り当てられる。
 力行駆動領域の「Series EV1st」の場合、第1モータジェネレータMG1から駆動輪19へ向かう動力伝達経路に1つの第3係合クラッチC3(Left)が存在する。回生制動領域の「EV1st」と「EV2nd」の場合、駆動輪19から第1モータジェネレータMG1へ向かう動力伝達経路に1つの第3係合クラッチC3(LeftとRight)が存在する。
 通常時不使用変速段である緊急時1stの「EV1st ICE1st」が選択された場合、図13に示すように、第1モータジェネレータMG1から駆動輪19へ向かう動力伝達経路に1つの第3係合クラッチC3(left)が存在する。そして、内燃機関ICEから駆動輪19へ向かう動力伝達経路に第1係合クラッチC1(left)と第3係合クラッチC3(left)による2つの係合クラッチが存在する。
 従って、発進時、「Series EV1st」による変速段が選択され、内燃機関ICEによる駆動力で第2モータジェネレータMG2を発電しながら「シリーズHEVモード」で発進する。この発進後であって、「シリーズHEVモード」での走行中、例えば、車速VSPの上昇により図12の運転点Kから運転点Lへと移動すると、緊急時1stへの変速要求が出される。この緊急時1stへの変速要求に従って第1係合クラッチC1を「N」から「Left」に切り替えると、EV変速段が1速段でICE変速段が1速段である「EV1st ICE1st」の変速段による「パラレルHEVモード」の走行に移行する。つまり、緊急時1stの使用許可による変速制御では、発進域において、第2モータジェネレータMG2を発電することにより強電バッテリ3のバッテリSOCを増やす。そして、低速域において、緊急時1stである「EV1st ICE1st」の変速段に移行することで、要求車両駆動力は主に内燃機関ICEにより賄われることになり、第1モータジェネレータMG1による強電バッテリ3のバッテリSOC消費量を抑える。この結果、バッテリ収支として、低下している強電バッテリ3のバッテリSOCを増加させる。
 [故障時変速制御作用]
 次に、図5のフローチャートにおいて、ステップS8へと進んだときは、故障時変速段(「EV2nd ICE3rd’」)の使用に基づき、第1又は第2シフトスケジュールマップを用いて故障時変速制御が実施される。以下、図14に基づき、故障時変速制御作用を説明する。
 通常時不使用変速段「EV2nd ICE3rd’」が選択された場合、図14に示すように、第1モータジェネレータMG1から駆動輪19へ向かう動力伝達経路に1つの第3係合クラッチC3(Right)が存在する。そして、内燃機関ICEから駆動輪19へ向かう動力伝達経路に第1係合クラッチC1(left)と第3係合クラッチC3(Right)による2つの係合クラッチが存在する。
 従って、故障時変速制御では、第1又は第2シフトスケジュールマップを用いた変速制御中に「EV2nd ICE3rd」の変速段を選択するとき、「EV2nd ICE3rd」の変速段に代え、ギア比が近い「EV2nd ICE3rd’」の変速段を選択する変速制御が行われる。つまり、「EV2nd ICE3rd」の変速段を選択できないような故障モードのときには、「EV2nd ICE3rd’」をバックアップ変速段として用いることで、第1又は第2シフトスケジュールマップを用いた変速制御がそのまま継続される。
 [変速制御の特徴作用]
 実施例1では、多段歯車変速機1により実現可能な複数の変速段のうち、第1モータジェネレータMG1又は内燃機関ICEから駆動輪19に至る動力伝達経路に係合クラッチが1つ存在する変速段が選択される。そして、選択された複数の変速段を通常時の変速制御に使用する「通常時使用変速段グループ」とする構成とした。
即ち、「通常時使用変速段グループ」として選択された変速段は、3つの係合クラッチC1,C2,C3のうち、動力伝達経路に係合クラッチが1つ存在するだけである。このため、通常時変速において、噛み合い係合クラッチC1,C2,C3を変速要素とする場合に特有のガタツキショックや異音が抑えられた良好な変速品質が達成される。そして、通常時使用変速段はショックや異音を抑えた変速段であるため、変速中のトルク増減傾きを緩やかにする振動対策を施す必要がなく、変速に要する時間が短い高い変速応答性が確保される。
この結果、変速要求があったとき、通常時変速において良好な変速品質を達成しながら、ドライバ要求に応える変速応答性が確保される。
 実施例1では、多段歯車変速機1により実現可能な複数の変速段のうち、動力伝達経路に係合クラッチC1,C2,C3が2つ以上存在する変速段(EV1st ICE1st、EV2nd ICE3rd’)を選択する。選択した変速段を通常時の変速制御に使用しない通常時不使用変速段グループとし、所定の条件が成立するとき、通常時不使用変速段グループの変速段(EV1st ICE1st、EV2nd ICE3rd’)の使用を許可する構成とした。
即ち、通常時不使用変速段グループの変速段は、3つの係合クラッチC1,C2,C3のうち、動力伝達経路に係合クラッチが2つ以上存在し、良好な変速品質は望めないが、変速段として用いることは可能である。
従って、所定の条件が成立するとき、通常時不使用変速段グループの変速段の使用を許可することで、通常時不使用変速段が、通常時使用変速段のバックアップ変速段として有効利用される。
 実施例1では、強電バッテリ3のバッテリSOCが所定容量SOC1以下というバッテリ低容量条件が成立するとき、通常時不使用変速段グループに存在する変速段(緊急時1st:「EV1st ICE1st」)の使用を許可する構成とした。
即ち、バッテリ低容量条件が成立するときは、強電バッテリ3のバッテリSOCの持ち出しを出来る限り抑えたいという要求がある。これに対し、通常時不使用変速段グループに第1モータジェネレータMG1によるアシスト負荷を軽減する変速段が存在する場合、通常時不使用変速段の使用を許可して変速制御を実施する方が、バッテリSOCを早期に回復させる点で有利である。
従って、バッテリ低容量条件が成立するとき、通常時不使用変速段の変速制御への使用を許可することで、強電バッテリ3の低下したバッテリSOCの早期回復が達成される。
 実施例1では、強電バッテリ3の温度が低下し、既定の出力を出せない第1温度閾値以下であるというバッテリ低温条件が成立するとき、通常時不使用変速段グループに存在する変速段(緊急時1st:EV1st ICE1st)の使用を許可する構成とした。
即ち、バッテリ低温条件が成立すると、第1モータジェネレータMG1が既定の出力を出せないため、第1モータジェネレータMG1によるアシスト出力を出来る限り軽減する必要がある。これに対し、主に内燃機関出力により分担し、MG1出力による駆動力分担を軽減する変速段が通常時不使用変速段グループに存在する場合、その通常時不使用変速段を用いる方が要求車両駆動力を出せる点で好ましい。
従って、バッテリ低温条件が成立するとき、変速制御において通常時不使用変速段を使用することで、要求車両駆動力に対する実車両駆動力の低下が抑えられる。
 実施例1では、強電バッテリ3から第1モータジェネレータMG1までの電動機系温度が上昇し、既定の出力を出せない第2温度閾値以上であるという電動機系高温条件が成立するとき、通常時不使用変速段グループに存在する変速段(緊急時1st:EV1st ICE1st)の使用を許可する構成とした。
即ち、電動機系高温条件が成立すると、バッテリ低温条件の成立時と同様に、第1モータジェネレータMG1が既定の出力を出せないため、第1モータジェネレータMG1によるアシスト出力を出来る限り軽減する必要がある。これに対し、主に内燃機関出力により分担し、MG1出力による駆動力分担を軽減する変速段が通常時不使用変速段グループに存在する場合、その通常時不使用変速段を用いる方が要求車両駆動力を出せる点で好ましい。
従って、電動機系高温条件が成立するとき、変速制御において通常時不使用変速段を使用することで、要求車両駆動力に対する実車両駆動力の低下が抑えられる。
 実施例1では、通常時使用変速段グループの変速段を使用しての変速制御中に所定の変速段(EV2nd ICE3rd)を選択できない故障が発生した。このとき、通常時不使用変速段グループに存在する変速段のうち、故障が発生した所定の変速段(EV2nd ICE3rd)に近いギア比による変速段(EV2nd ICE3rd’)を故障時変速段として使用する構成とした。
即ち、変速制御は、燃費性能や駆動性能を考慮して変速段領域を設定したシフトスケジュールマップ(図6、図12)を用いて行われる。しかし、領域で設定されている所定の変速段(EV2nd ICE3rd)を選択できない故障が発生すると、アップ変速時もダウン変速時も変速段(EV2nd ICE3rd)を飛ばすことになる。この場合、燃費性能や駆動性能が低下してしまう。
これに対し、変速段故障が発生したとき、故障が発生した変速段(EV2nd ICE3rd)に近いギア比による変速段(EV2nd ICE3rd’)を故障時変速段として使用することで、燃費性能や駆動性能の低下を最小に抑えつつ、変速制御がそのまま継続される。
 実施例1では、多段歯車変速機1は、EV変速段と、ICE変速段と、EV変速段とICE変速段の組み合わせ変速段と、を有する。変速機コントロールユニット23は、複数の係合クラッチC1,C2,C3の締結組み合わせによる全変速段から、インターロック変速段とシフト機構により選択できない変速段を除いた変速段を、多段歯車変速機1により実現可能な複数の変速段とする。組み合わせ変速段の場合、EV変速段の動力伝達経路に係合クラッチC3が1つ存在し、ICE変速段の動力伝達経路に係合クラッチC1,C2が1つ存在する変速段を通常時使用変速段グループとする。そして、EV変速段の動力伝達経路に係合クラッチC3が1つ存在し、ICE変速段の動力伝達経路に係合クラッチC1,C2,C3が2つ以上存在する変速段を通常時不使用変速段グループとする構成とした。
即ち、多段歯車変速機1の変速制御は、EV変速段を変更する制御と、ICE変速段を変更する制御に分けることができる。よって、動力伝達経路をEV変速段とICE変速段のそれぞれに分けて考え、ICE変速段の動力伝達経路に係合クラッチC1,C2,C3が2つ以上存在する変速段を通常時不使用変速段グループとしている。
従って、EV変速段とICE変速段を有する多段歯車変速機1において、多段歯車変速機1により実現可能な複数の変速段の中から、通常時使用変速段と通常時不使用変速段が動力伝達経路中の係合クラッチの数により整然と切り分けられる。
 次に、効果を説明する。
実施例1のハイブリッド車両の変速制御装置にあっては、下記に列挙する効果が得られる。
 (1) 動力源として電動機(第1モータジェネレータMG1)と内燃機関ICEを備え、動力源から駆動輪19までの駆動系に複数の変速段を実現する変速機(多段歯車変速機1)が搭載され、
 変速機(多段歯車変速機1)は、複数の変速段を切り替える変速要素として、解放位置からのストロークにより噛み合い締結する複数の係合クラッチC1,C2,C3を有するハイブリッド車両において、
 変速要求に基づく係合クラッチのストローク動作により、変速機(多段歯車変速機1)により実現される変速段を切り替える変速制御を行う変速コントローラ(変速機コントロールユニット23)を設け、
 変速コントローラ(変速機コントロールユニット23)は、変速機(多段歯車変速機1)により実現可能な複数の変速段のうち、動力源から駆動輪19に至る動力伝達経路に係合クラッチが1つ存在する変速段(EV変速段:1-2速、ICE変速段:2-4速)を選択し、選択した変速段を通常時の変速制御に使用する通常時使用変速段グループとする。
  このため、変速要求があったとき、通常時変速において良好な変速品質を達成しながら、ドライバ要求に応える変速応答性を確保することができる。
 (2) 変速コントローラ(変速機コントロールユニット23)は、変速機(多段歯車変速機1)により実現可能な複数の変速段のうち、動力伝達経路に係合クラッチC1,C2,C3が2つ以上存在する変速段(EV1st ICE1st、EV2nd ICE3rd’)を選択し、選択した変速段を通常時の変速制御に使用しない通常時不使用変速段グループとし、所定の条件が成立するとき、通常時不使用変速段グループの変速段(EV1st ICE1st、EV2nd ICE3rd’)の使用を許可する。
  このため、(1)の効果に加え、所定の条件が成立するとき、通常時不使用変速段グループの変速段の使用を許可することで、通常時不使用変速段を、通常時使用変速段のバックアップ変速段として有効に利用することができる。
 (3) 変速コントローラ(変速機コントロールユニット23)は、バッテリ(強電バッテリ3)の充電容量(バッテリSOC)が所定容量SOC1以下というバッテリ低容量条件が成立するとき、通常時不使用変速段グループに存在する変速段(EV1st ICE1st)の使用を許可する(図5のS1→S5)。
  このため、(2)の効果に加え、バッテリ低容量条件が成立するとき、通常時不使用変速段の変速制御への使用を許可することで、バッテリ(強電バッテリ3)の低下した充電容量(バッテリSOC)の早期回復を達成することができる。
 (4) 変速コントローラ(変速機コントロールユニット23)は、バッテリ(強電バッテリ3)の温度が低下し、既定の出力を出せない第1温度閾値以下であるというバッテリ低温条件が成立するとき、通常時不使用変速段グループに存在する変速段(緊急時1st:EV1st ICE1st)の使用を許可する(図5のS2→S5)。
  このため、(2)又は(3)の効果に加え、バッテリ低温条件が成立するとき、変速制御において通常時不使用変速段を使用することで、要求車両駆動力に対する実車両駆動力の低下を抑えることができる。
 (5) 変速コントローラ(変速機コントロールユニット23)は、バッテリ(強電バッテリ3)から電動機(第1モータジェネレータMG1)までの電動機系温度が上昇し、既定の出力を出せない第2温度閾値以上であるという電動機系高温条件が成立するとき、通常時不使用変速段グループに存在する変速段(緊急時1st:EV1st ICE1st)の使用を許可する(図5のS3→S5)。
  このため、(2)~(4)の効果に加え、電動機系高温条件が成立するとき、変速制御において通常時不使用変速段を使用することで、要求車両駆動力に対する実車両駆動力の低下を抑えることができる。
 (6) 変速コントローラ(変速機コントロールユニット23)は、通常時使用変速段グループの変速段を使用しての変速制御中に所定の変速段(EV2nd ICE3rd)を選択できない故障が発生したとき、通常時不使用変速段グループに存在する変速段のうち、故障が発生した所定の変速段(EV2nd ICE3rd)に近いギア比による変速段(EV2nd ICE3rd’)を故障時変速段として使用する(図5のS6→S7→S8)。
  このため、(2)~(5)の効果に加え、変速段故障が発生したとき、故障が発生した変速段(EV2nd ICE3rd)に近いギア比による変速段(EV2nd ICE3rd’)を故障時変速段として使用することで、燃費性能や駆動性能の低下を最小に抑えつつ、変速制御をそのまま継続することができる。
 (7) 変速機(多段歯車変速機1)は、電動機変速段であるEV変速段と、内燃機関変速段である複数のICE変速段と、EV変速段とICE変速段の組み合わせ変速段と、を有し、
 変速コントローラ(変速機コントロールユニット23)は、複数の係合クラッチC1,C2,C3の締結組み合わせによる全変速段から、インターロック変速段とシフト機構により選択できない変速段を除いた変速段を、変速機(多段歯車変速機1)により実現可能な複数の変速段とし、
 組み合わせ変速段の場合、EV変速段の動力伝達経路に係合クラッチC3が1つ存在し、ICE変速段の動力伝達経路に係合クラッチC1,C2が1つ存在する変速段を通常時使用変速段グループとし、EV変速段の動力伝達経路に係合クラッチC3が1つ存在し、ICE変速段の動力伝達経路に係合クラッチC1,C2,C3が2つ以上存在する変速段を通常時不使用変速段グループとする(図4)。
  このため、(1)~(6)の効果に加え、EV変速段とICE変速段を有する変速機(多段歯車変速機1)において、変速機(多段歯車変速機1)により実現可能な複数の変速段の中から、通常時使用変速段と通常時不使用変速段を、動力伝達経路中の係合クラッチの数により整然と切り分けることができる。
 以上、本発明のハイブリッド車両の変速制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加などは許容される。
 実施例1では、変速コントローラとして、複数の係合クラッチC1,C2,C3の締結組み合わせによる全変速段から、インターロック変速段とシフト機構により選択できない変速段を除いた変速段を、多段歯車変速機1により実現可能な複数の変速段とする例を示した。しかし、変速コントローラとしては、複数の係合クラッチの締結組み合わせによる全変速段から、インターロック変速段を除いた変速段を、変速機により実現可能な複数の変速段とする例としても良い。例えば、シフト機構を、係合クラッチC1,C2,C3のそれぞれを独立にストローク動作させる機構にすると、「シフト機構により選択できない変速段」は無くなる。この場合、故障時変速段として使用する変速段が増加する。
 実施例1では、変速機として、係合クラッチC1,C2,C3を用い、EV変速段(1-2速)と、ICE変速段(1-4速)と、EV変速段とICE変速段の組み合わせ変速段と、を有する多段歯車変速機1の例を示した。しかし、変速機としては、係合クラッチを1又は2又は4以上用い、実施例1とは異なるEV変速段と、ICE変速段と、EV変速段とICE変速段の組み合わせ変速段と、を有する多段歯車変速機の例としても良い。さらに、変速機としては、係合クラッチを用いるEV変速機と、係合クラッチを用いるICE変速機の組み合わせ変速機としても良い。
 実施例1では、本発明の変速制御装置を、駆動系構成要素として、1つのエンジンと、2つのモータジェネレータと、3つの係合クラッチを有する多段歯車変速機と、を搭載したハイブリッド車両に適用する例を示した。しかし、本発明の変速制御装置は、1つのエンジンと、少なくとも1つのモータジェネレータと、少なくとも1つの係合クラッチを有する変速機を搭載したハイブリッド車両に対して適用することができる。

Claims (7)

  1.  動力源として電動機と内燃機関を備え、前記動力源から駆動輪までの駆動系に複数の変速段を実現する変速機が搭載され、
     前記変速機は、複数の変速段を切り替える変速要素として、解放位置からのストロークにより噛み合い締結する複数の係合クラッチを有するハイブリッド車両において、
     変速要求に基づく前記係合クラッチのストローク動作により、前記変速機により実現される変速段を切り替える変速制御を行う変速コントローラを設け、
     前記変速コントローラは、前記変速機により実現可能な複数の変速段のうち、前記動力源から前記駆動輪に至る動力伝達経路に前記係合クラッチが1つ存在する変速段を選択し、選択した変速段を通常時の変速制御に使用する通常時使用変速段グループとする
     ことを特徴とするハイブリッド車両の変速制御装置。
  2.  請求項1に記載されたハイブリッド車両の変速制御装置において、
     前記変速コントローラは、前記変速機により実現可能な複数の変速段のうち、動力伝達経路に前記係合クラッチが2つ以上存在する変速段を選択し、選択した変速段を通常時の変速制御に使用しない通常時不使用変速段グループとし、所定の条件が成立するとき、前記通常時不使用変速段グループの変速段の使用を許可する
     ことを特徴とするハイブリッド車両の変速制御装置。
  3.  請求項2に記載されたハイブリッド車両の変速制御装置において、
     前記変速コントローラは、バッテリの充電容量が所定容量以下というバッテリ低容量条件が成立するとき、前記通常時不使用変速段グループに存在する変速段の使用を許可する
     ことを特徴とするハイブリッド車両の変速制御装置。
  4.  請求項2又は請求項3に記載されたハイブリッド車両の変速制御装置において、
     前記変速コントローラは、バッテリの温度が低下し、既定の出力を出せない第1温度閾値以下であるというバッテリ低温条件が成立するとき、前記通常時不使用変速段グループに存在する変速段の使用を許可する
     ことを特徴とするハイブリッド車両の変速制御装置。
  5.  請求項2から請求項4までの何れか一項に記載されたハイブリッド車両の変速制御装置において、
     前記変速コントローラは、バッテリから電動機までの電動機系温度が上昇し、既定の出力を出せない第2温度閾値以上であるという電動機系高温条件が成立するとき、前記通常時不使用変速段グループに存在する変速段の使用を許可する
     ことを特徴とするハイブリッド車両の変速制御装置。
  6.  請求項2から請求項5までの何れか一項に記載されたハイブリッド車両の変速制御装置において、
     前記変速コントローラは、前記通常時使用変速段グループの変速段を使用しての変速制御中に所定の変速段を選択できない故障が発生したとき、前記通常時不使用変速段グループに存在する変速段のうち、故障が発生した所定の変速段に近いギア比による変速段を故障時変速段として使用する
     ことを特徴とするハイブリッド車両の変速制御装置。
  7.  請求項1から請求項6までの何れか一項に記載されたハイブリッド車両の変速制御装置において、
     前記変速機は、電動機変速段であるEV変速段と、内燃機関変速段である複数のICE変速段と、前記EV変速段と前記ICE変速段の組み合わせ変速段と、を有し、
     前記変速コントローラは、前記複数の係合クラッチの締結組み合わせによる全変速段から、インターロック変速段とシフト機構により選択できない変速段を除いた変速段を、前記変速機により実現可能な複数の変速段とし、
     前記組み合わせ変速段の場合、前記EV変速段の動力伝達経路に前記係合クラッチが1つ存在し、前記ICE変速段の動力伝達経路に前記係合クラッチが1つ存在する変速段を通常時使用変速段グループとし、前記EV変速段の動力伝達経路に前記係合クラッチが1つ存在し、前記ICE変速段の動力伝達経路に前記係合クラッチが2つ以上存在する変速段を通常時不使用変速段グループとする
     ことを特徴とするハイブリッド車両の変速制御装置。
PCT/JP2015/068320 2015-06-25 2015-06-25 ハイブリッド車両の変速制御装置 WO2016208029A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020187001528A KR101849902B1 (ko) 2015-06-25 2015-06-25 하이브리드 차량의 변속 제어 장치
CA2990557A CA2990557C (en) 2015-06-25 2015-06-25 Transmission control device for a hybrid vehicle
MX2017016211A MX361845B (es) 2015-06-25 2015-06-25 Dispositivo de control de cambios de velocidades para vehículo híbrido.
BR112017027218-0A BR112017027218B1 (pt) 2015-06-25 2015-06-25 Dispositivo de controle de transmissão para um veículo híbrido
JP2017524519A JP6421876B2 (ja) 2015-06-25 2015-06-25 ハイブリッド車両の変速制御装置
RU2017146129A RU2664117C1 (ru) 2015-06-25 2015-06-25 Устройство управления трансмиссией для гибридного транспортного средства
CN201580081208.3A CN107735600B (zh) 2015-06-25 2015-06-25 混合动力车辆的变速控制装置
MYPI2017704967A MY170685A (en) 2015-06-25 2015-06-25 Transmission control device for a hybrid vehicle
PCT/JP2015/068320 WO2016208029A1 (ja) 2015-06-25 2015-06-25 ハイブリッド車両の変速制御装置
EP15896351.2A EP3315822B1 (en) 2015-06-25 2015-06-25 Gear-shift control device for hybrid vehicle
US15/739,195 US10023182B1 (en) 2015-06-25 2015-06-25 Hybrid vehicle transmission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/068320 WO2016208029A1 (ja) 2015-06-25 2015-06-25 ハイブリッド車両の変速制御装置

Publications (1)

Publication Number Publication Date
WO2016208029A1 true WO2016208029A1 (ja) 2016-12-29

Family

ID=57585183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068320 WO2016208029A1 (ja) 2015-06-25 2015-06-25 ハイブリッド車両の変速制御装置

Country Status (10)

Country Link
US (1) US10023182B1 (ja)
EP (1) EP3315822B1 (ja)
JP (1) JP6421876B2 (ja)
KR (1) KR101849902B1 (ja)
CN (1) CN107735600B (ja)
BR (1) BR112017027218B1 (ja)
CA (1) CA2990557C (ja)
MX (1) MX361845B (ja)
RU (1) RU2664117C1 (ja)
WO (1) WO2016208029A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019068727A1 (fr) * 2017-10-05 2019-04-11 Renault S.A.S Procédé de pilotage d'un groupe motopropulseur de véhicule automobile
CN111433065A (zh) * 2017-12-04 2020-07-17 三菱自动车工业株式会社 变速驱动桥的控制装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102417517B1 (ko) * 2016-11-24 2022-07-05 현대자동차주식회사 친환경 차량의 모터시스템 제어 방법
JP6446490B2 (ja) * 2017-03-17 2018-12-26 本田技研工業株式会社 輸送機器の制御装置
JP7003606B2 (ja) * 2017-12-05 2022-01-20 トヨタ自動車株式会社 ハイブリッド自動車およびこれに搭載される制御装置
DE102019202945B4 (de) * 2019-03-05 2024-03-28 Zf Friedrichshafen Ag Verfahren zum Betrieb eines Kraftfahrzeuges, Steuerungseinrichtung sowie Kraftfahrzeug
DE102019202944B4 (de) 2019-03-05 2023-11-02 Zf Friedrichshafen Ag Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug
CN113135176B (zh) * 2020-07-06 2022-05-31 长城汽车股份有限公司 混合动力车辆的模式切换控制方法、装置和车辆
JP2023114123A (ja) * 2022-02-04 2023-08-17 スズキ株式会社 ハイブリッド車両の変速制御装置
KR102578581B1 (ko) * 2023-07-11 2023-09-14 강수정 다기능 스타터-제네레이터를 이용한 플러그인 하이브리드자동차의 파워트레인 및 그 제어방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149120A (ja) * 2007-12-18 2009-07-09 Toyota Motor Corp 車両用動力伝達装置の制御装置
JP2010132014A (ja) * 2008-12-02 2010-06-17 Toyota Motor Corp 車両用動力伝達装置の制御装置
JP2010196766A (ja) * 2009-02-24 2010-09-09 Toyota Motor Corp 車両用自動変速機の変速制御装置
JP2010230124A (ja) * 2009-03-27 2010-10-14 Aisin Aw Co Ltd 動力伝達装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1791174A1 (ru) * 1991-04-26 1993-01-30 Bruss Polt I Способ управления коробкой передач и устройство для его осуществления
JP3749302B2 (ja) * 1996-04-11 2006-02-22 トヨタ自動車株式会社 ハイブリッド車両の駆動制御装置
JPH11270668A (ja) * 1998-03-20 1999-10-05 Nissan Motor Co Ltd ハイブリッド車両の駆動制御装置
JP4252542B2 (ja) * 2005-02-14 2009-04-08 本田技研工業株式会社 ハイブリッド車両の変速制御装置
WO2008138387A1 (de) 2007-05-14 2008-11-20 Fev Motorentechnik Gmbh Verfahren zum betrieb eines hybridantriebssystems sowie hybridantriebssystem mit zwei teilgetrieben
JP4926209B2 (ja) * 2009-06-10 2012-05-09 本田技研工業株式会社 ハイブリッド車両用の自動変速機
DE102010030573A1 (de) 2010-06-28 2011-12-29 Zf Friedrichshafen Ag Hybridantrieb mit einem automatisierten Schaltgetriebe
CN104641156B (zh) * 2012-10-05 2016-06-22 爱信艾达株式会社 车辆用驱动装置的控制装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149120A (ja) * 2007-12-18 2009-07-09 Toyota Motor Corp 車両用動力伝達装置の制御装置
JP2010132014A (ja) * 2008-12-02 2010-06-17 Toyota Motor Corp 車両用動力伝達装置の制御装置
JP2010196766A (ja) * 2009-02-24 2010-09-09 Toyota Motor Corp 車両用自動変速機の変速制御装置
JP2010230124A (ja) * 2009-03-27 2010-10-14 Aisin Aw Co Ltd 動力伝達装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3315822A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019068727A1 (fr) * 2017-10-05 2019-04-11 Renault S.A.S Procédé de pilotage d'un groupe motopropulseur de véhicule automobile
FR3072057A1 (fr) * 2017-10-05 2019-04-12 Renault S.A.S Procede de pilotage d'un groupe motopropulseur de vehicule automobile
KR20200057081A (ko) * 2017-10-05 2020-05-25 르노 에스.아.에스. 차량의 파워 트레인을 제어하는 방법
KR102664250B1 (ko) 2017-10-05 2024-05-10 르노 에스.아.에스. 차량의 파워 트레인을 제어하는 방법
CN111433065A (zh) * 2017-12-04 2020-07-17 三菱自动车工业株式会社 变速驱动桥的控制装置

Also Published As

Publication number Publication date
BR112017027218A2 (ja) 2018-08-21
JPWO2016208029A1 (ja) 2018-02-01
JP6421876B2 (ja) 2018-11-14
EP3315822B1 (en) 2021-01-13
EP3315822A1 (en) 2018-05-02
CN107735600B (zh) 2020-05-08
MX2017016211A (es) 2018-03-01
MX361845B (es) 2018-12-18
KR20180011849A (ko) 2018-02-02
US20180186362A1 (en) 2018-07-05
CA2990557C (en) 2019-01-15
BR112017027218B1 (pt) 2023-04-11
EP3315822A4 (en) 2018-06-13
KR101849902B1 (ko) 2018-04-17
CA2990557A1 (en) 2016-12-29
CN107735600A (zh) 2018-02-23
US10023182B1 (en) 2018-07-17
RU2664117C1 (ru) 2018-08-15

Similar Documents

Publication Publication Date Title
JP6421876B2 (ja) ハイブリッド車両の変速制御装置
US10183569B2 (en) Power generation control device for hybrid vehicle
JP6493517B2 (ja) 電動車両の発進制御装置
JP6327402B2 (ja) ハイブリッド車両の駆動力制御装置
JP6354903B2 (ja) ハイブリッド車両のエネルギ管理制御装置
JP6477874B2 (ja) ハイブリッド車両のモード遷移制御装置
JP6421698B2 (ja) ハイブリッド車両の変速制御装置
JP6372616B2 (ja) ハイブリッド車両の発進制御装置
JP6421699B2 (ja) ハイブリッド車両の回生/変速協調制御装置
JP6657614B2 (ja) 電動車両の制動力制御装置
JP6477272B2 (ja) 車両の停車時制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524519

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/016211

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2990557

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15739195

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187001528

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017146129

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017027218

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017027218

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171215