[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016139559A1 - 環境センサ、又は半導体装置 - Google Patents

環境センサ、又は半導体装置 Download PDF

Info

Publication number
WO2016139559A1
WO2016139559A1 PCT/IB2016/051019 IB2016051019W WO2016139559A1 WO 2016139559 A1 WO2016139559 A1 WO 2016139559A1 IB 2016051019 W IB2016051019 W IB 2016051019W WO 2016139559 A1 WO2016139559 A1 WO 2016139559A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
transistor
sensor
function
analog
Prior art date
Application number
PCT/IB2016/051019
Other languages
English (en)
French (fr)
Inventor
小山潤
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2017503203A priority Critical patent/JP6554533B2/ja
Priority to US15/554,228 priority patent/US10091563B2/en
Publication of WO2016139559A1 publication Critical patent/WO2016139559A1/ja
Priority to US16/139,934 priority patent/US11044538B2/en
Priority to US17/344,496 priority patent/US11297403B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/404Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with one charge-transfer gate, e.g. MOS transistor, per cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/405Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with three charge-transfer gates, e.g. MOS transistors, per cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4074Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • G11C11/4125Cells incorporating circuit means for protecting against loss of information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/12Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/16Storage of analogue signals in digital stores using an arrangement comprising analogue/digital [A/D] converters, digital memories and digital/analogue [D/A] converters 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/88Providing power supply at the sub-station

Definitions

  • One embodiment of the present invention relates to an environmental sensor or a semiconductor device.
  • one embodiment of the present invention is not limited to the above technical field.
  • the technical field of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method.
  • one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter). Therefore, the technical field of one embodiment of the present invention disclosed in this specification more specifically includes a semiconductor device, a display device, a liquid crystal display device, a light-emitting device, a power storage device, an imaging device, a memory device, a processor, an electronic device, These driving methods, their manufacturing methods, their inspection methods, or their systems can be mentioned as examples.
  • environmental sensors have been used for building safety management, maintenance, and environmental information collection.
  • the environmental sensor is being improved in various aspects such as miniaturization and low power consumption.
  • an oxide semiconductor is used as a semiconductor layer of a transistor used in a semiconductor device (hereinafter sometimes referred to as an active layer, a channel layer, and a channel formation region).
  • an active layer a transistor used in a semiconductor device
  • a channel layer a transistor used in a semiconductor device
  • an oxide containing indium, gallium, and zinc hereinafter may be referred to as In—Ga—Zn oxide
  • Patent Document 1 a transistor in which an oxide containing indium, gallium, and zinc (hereinafter may be referred to as In—Ga—Zn oxide) is used for a channel layer (see Patent Document 1).
  • environmental sensors may be installed in the structure in advance for maintenance.
  • the data acquisition method often uses wireless communication using an environmental sensor with a built-in RFIC (Radio Frequency Integrated Circuit).
  • RFIC Radio Frequency Integrated Circuit
  • RFIC includes passive type and active type.
  • a passive type RFIC refers to one that operates by converting received radio waves into electric power without incorporating a battery.
  • An active type RFIC refers to a device that incorporates a battery and operates by the electromotive force of the battery.
  • an environmental sensor equipped with a passive RFIC performs driving of the environmental sensor and driving of the RFIC with electric power converted from received radio waves, and an environmental sensor equipped with an active RFIC is built in. The environmental sensor and the RFIC are driven by the electromotive force of the battery.
  • An environmental sensor with a built-in passive RFIC does not have a battery, so it can communicate and sense only when receiving radio waves.
  • the operating power of the environmental sensor is obtained by receiving radio waves, the power may be insufficient for long-distance communication.
  • the environmental sensor with built-in active RFIC has a battery, so that sensing can be performed even when radio waves are not received.
  • active RFICs often include not only batteries but also reception amplifiers and transmission amplifiers, and the reception amplifiers and transmission amplifiers enable communication over longer distances than passive RFICs. Can do.
  • an environmental sensor incorporating an active type RFIC must be able to receive radio waves at all times, and therefore it is necessary to keep the reception amplifier constantly operating.
  • off current may be generated even when the transistor is off. For these reasons, the power consumption of an environmental sensor incorporating an active type RFIC increases.
  • the battery is consumed quickly, and the number of times of battery replacement is increased accordingly.
  • environmental sensors may be installed in high places, tunnels, bridge piers, and other dangerous places that are difficult for people to enter, so battery replacement and charging may not be performed safely. Many.
  • the built-in RFIC is an active type or a passive type
  • the use of flash memory, DRAM or the like as a memory for storing programs and data may increase the power consumption of the environmental sensor. Further, as the number of circuits in the environmental sensor increases, the power consumption increases accordingly.
  • An object of one embodiment of the present invention is to provide a novel semiconductor device. Another object of one embodiment of the present invention is to provide an electronic device including a novel semiconductor device. Another object of one embodiment of the present invention is to provide a novel system using an electronic device using a module including a novel semiconductor device. Another object of one embodiment of the present invention is to provide a novel double child device, a novel system, or the like.
  • Another object of one embodiment of the present invention is to provide a semiconductor device capable of sensing even when radio waves are not received. Another object of one embodiment of the present invention is to provide a semiconductor device with a reduced number of circuits. Another object of one embodiment of the present invention is to provide a semiconductor device with low power consumption. Another object of one embodiment of the present invention is to provide a semiconductor device in which the number of battery replacement operations and charging operations can be reduced. Another object of one embodiment of the present invention is to provide a semiconductor device capable of long-distance communication.
  • problems of one embodiment of the present invention are not limited to the problems listed above.
  • the problems listed above do not disturb the existence of other problems.
  • Other issues are issues not mentioned in this section, which are described in the following description. Problems not mentioned in this item can be derived from descriptions of the specification or drawings by those skilled in the art, and can be appropriately extracted from these descriptions.
  • one embodiment of the present invention solves at least one of the above-described description and other problems. Note that according to one embodiment of the present invention, it is not necessary to solve all of the problems described above and at least one of the other problems.
  • One embodiment of the present invention includes a first sensor, a second sensor, a control circuit, a transmission amplifier, a modulation circuit, a memory device, an analog-digital conversion circuit, a first antenna, a battery,
  • a power supply circuit the memory device includes a first transistor and a first holding node, and the analog-digital conversion circuit includes a second transistor and a second holding node.
  • the first transistor includes an oxide semiconductor in the channel formation region
  • the second transistor includes an oxide semiconductor in the channel formation region
  • the first transistor charges and charges the first holding node.
  • the second transistor has a function of controlling charging and discharging of the second holding node
  • the battery includes a first sensor and a second sensor via a power supply circuit.
  • a sensor, a control circuit, a transmission amplifier The second sensor has a function of supplying a power to the control circuit, the storage device, and the analog-digital conversion circuit.
  • the second sensor has a function of outputting a trigger signal to the control circuit when receiving light.
  • the circuit has a function of sending a control signal to the first sensor, the storage device, the analog-digital conversion circuit, the modulation circuit, and the transmission amplifier by receiving an electrical signal.
  • the first sensor It has a function of acquiring the physical quantity or chemical quantity of the outside world as the first sensing data, and the analog-digital conversion circuit has a function of digitally converting the first sensing data to generate second sensing data.
  • the storage device has a function of storing the second sensing data
  • the modulation circuit has a function of modulating the second sensing data
  • the transmission amplifier has the second sensor modulated by the modulation circuit.
  • a first antenna is an environment sensor characterized by having a function of transmitting the second sensing data amplified by the transmission amplifier as a first electromagnetic wave signal.
  • One embodiment of the present invention is a reception circuit, a first sensor, a control circuit, a transmission amplifier, a modulation circuit, a memory device, an analog-digital conversion circuit, a first antenna, a battery, and a power supply circuit.
  • the storage device includes a first transistor and a first holding node
  • the analog-to-digital conversion circuit includes a second transistor and a second holding node.
  • the first transistor includes an oxide semiconductor in the channel formation region
  • the second transistor includes an oxide semiconductor in the channel formation region
  • the first transistor charges and discharges the first holding node.
  • the second transistor has a function of controlling charging and discharging of the second holding node, and the battery controls the first sensor, the receiving circuit, and the control circuit via the power supply circuit.
  • the storage circuit has a function of supplying power to the analog-digital conversion circuit, and the reception circuit has a function of outputting a trigger signal to the control circuit when receiving a signal from the outside.
  • the trigger signal By receiving the trigger signal, it has a function of sending a control signal to the first sensor, the storage device, the analog-digital conversion circuit, the modulation circuit, and the transmission amplifier.
  • the first sensor is an external physical quantity.
  • the analog-digital conversion circuit has a function of digitally converting the first sensing data to generate second sensing data
  • a storage device Has a function of storing the second sensing data
  • the modulation circuit has a function of modulating the second sensing data
  • the transmission amplifier has the second sensor modulated by the modulation circuit.
  • the first antenna is an environment sensor characterized by having a function of transmitting the second sensing data amplified by the transmission amplifier as a first electromagnetic wave signal.
  • the reception circuit includes a detection circuit
  • the battery has a function of supplying power to the detection circuit via the power supply circuit
  • the first antenna includes:
  • the detection circuit is an environmental sensor having a function of demodulating the second electromagnetic wave signal and outputting it as a trigger signal to the control circuit.
  • the reception circuit includes a second antenna and a detection circuit
  • the battery has a function of supplying power to the detection circuit through the power supply circuit.
  • the second antenna has a function of receiving a second electromagnetic wave signal from the outside
  • the detection circuit has a function of demodulating the second electromagnetic wave signal and outputting it as a trigger signal to the control circuit.
  • the environmental sensor is characterized in that the frequency of the first electromagnetic wave signal and the frequency of the second electromagnetic wave signal are different from each other.
  • the senor in any one of the above (1) to (4), has at least stress, strain, temperature, humidity, light quantity, current, voltage, number of particles, and concentration of particles as a physical quantity. It is an environment sensor characterized by having a function of measuring any one of them.
  • the first sensor may have an oxide ion, a sulfide ion, a chloride ion, a bromide ion, an iodide ion,
  • An environmental sensor having a function of measuring at least one of hydroxide ions, sulfate ions, carbonate ions, hydrogen ions, and calcium ions.
  • the memory device further includes a first capacitor, and the first capacitor is a voltage of the first holding node. It is an environment sensor characterized by having a function to hold.
  • the analog-digital conversion circuit further includes a second capacitor element, and the second capacitor element is a second holding node. It is an environment sensor characterized by having a function of holding the voltage of.
  • a novel semiconductor device can be provided.
  • an electronic device including a novel semiconductor device can be provided.
  • Another object of one embodiment of the present invention is to provide a novel system using an electronic device using a module including a novel semiconductor device.
  • a novel electronic device or a novel system can be provided.
  • a semiconductor device capable of sensing even when radio waves are not received can be provided.
  • a semiconductor device with a reduced number of circuits can be provided.
  • a semiconductor device with low power consumption can be provided.
  • a semiconductor device capable of reducing the number of battery replacement operations and charging operations can be provided.
  • a semiconductor device capable of long-distance communication can be provided.
  • the effects of one embodiment of the present invention are not limited to the effects listed above.
  • the effects listed above do not preclude the existence of other effects.
  • the other effects are effects not mentioned in this item described in the following description. Effects not mentioned in this item can be derived from the description of the specification or drawings by those skilled in the art, and can be appropriately extracted from these descriptions.
  • one embodiment of the present invention has at least one of the effects listed above and other effects. Accordingly, one embodiment of the present invention may not have the above-described effects depending on circumstances.
  • FIG. 11 is a block diagram illustrating a semiconductor device.
  • FIG. 11 is a block diagram illustrating a semiconductor device.
  • 8A and 8B illustrate a method for using a semiconductor device.
  • 8A and 8B illustrate a method for using a semiconductor device.
  • FIG. 11 is a block diagram illustrating a semiconductor device.
  • FIG. 11 is a block diagram illustrating a semiconductor device.
  • 8A and 8B illustrate a method for using a semiconductor device.
  • 1 is a block diagram illustrating an example of a storage device.
  • the circuit diagram which shows an example of a memory cell.
  • FIG. 9 is a triangular diagram illustrating a composition of an In—M—Zn oxide.
  • 4A and 4B are a top view and cross-sectional views illustrating a structural example of a transistor.
  • FIG. 10 is a cross-sectional view illustrating a structural example of a transistor.
  • FIG. 4A and 4B are a top view and cross-sectional views illustrating a structural example of a transistor.
  • 4A and 4B are a top view and cross-sectional views illustrating a structural example of a transistor.
  • 4A and 4B are a top view and cross-sectional views illustrating a structural example of a transistor.
  • 4A and 4B are a top view and cross-sectional views illustrating a structural example of a transistor.
  • FIG. 10 is a cross-sectional view illustrating a structural example of a transistor.
  • FIG. 6 is a Cs-corrected high-resolution TEM image in a cross section of a CAAC-OS and a schematic cross-sectional view of the CAAC-OS.
  • 6A and 6B illustrate structural analysis by XRD of a CAAC-OS and a single crystal oxide semiconductor. The figure which shows the electron diffraction pattern of CAAC-OS.
  • FIG. 6 shows changes in crystal parts of an In—Ga—Zn oxide due to electron irradiation.
  • 10A and 10B are a flowchart and a perspective view illustrating an example of a method for manufacturing a semiconductor device.
  • the term “structure” refers to, for example, a tunnel, a bridge, a viaduct, a utility pole, a steel tower, and a building.
  • the building includes, for example, a residence (a single house, an apartment house, etc.), a commercial facility (a department store, a supermarket, a shopping mall, an office building, etc.), a factory, and the like.
  • an oxide semiconductor may be referred to as an OS (Oxide Semiconductor). Therefore, a transistor including an oxide semiconductor in a channel formation region may be referred to as an OS transistor.
  • a memory using an OS transistor may be referred to as an OS memory.
  • An analog-digital conversion circuit using an OS transistor may be referred to as an OS analog-digital conversion circuit.
  • an environmental sensor which is one embodiment of the present invention includes a reception circuit, a transmission circuit, a battery, a power supply circuit, a control circuit, a memory device, an analog-digital conversion circuit, and a sensor that senses a physical quantity or a chemical quantity.
  • This is a semiconductor device. Therefore, the term “environmental sensor” refers to a semiconductor device which is one embodiment of the present invention. Therefore, the environmental sensor may be referred to as a semiconductor device or an electronic device. And when expressed as “sensor”, “first sensor”, “second sensor”, etc., they do not refer to the environmental sensor of one aspect of the present invention but to the sensor that senses a physical quantity or chemical quantity. And In particular, in the case of “optical sensor”, the optical sensor refers to a receiving circuit for driving the environmental sensor with an external laser beam.
  • FIG. 1 shows an example of an environmental sensor of the disclosed invention.
  • the environmental sensor 100a is an active environmental sensor.
  • the environmental sensor 100a includes an antenna 101 and a sensor circuit 110a.
  • the sensor circuit 110 a includes a reception circuit 111, a power supply circuit 112, a battery 113, a control circuit 120, a transmission circuit 130, a storage device 114, an analog / digital conversion circuit 115, and a sensor 116.
  • the control circuit 120 includes a logic circuit 121, a memory controller 122, and a sensor controller 123.
  • the transmission circuit 130 includes a modulation circuit 131 and a transmission amplifier 132.
  • the antenna 101 is electrically connected to the transmission circuit 130.
  • the transmission amplifier 132 is electrically connected to the modulation circuit 131.
  • the logic circuit 121 is electrically connected to the reception circuit 111, the modulation circuit 131, the memory controller 122, and the sensor controller 123.
  • the memory controller 122 is electrically connected to the sensor controller 123 and the storage device 114.
  • the sensor controller 123 is electrically connected to the analog-digital conversion circuit 115 and the sensor 116.
  • the sensor 116 is electrically connected to the analog / digital conversion circuit 115.
  • the battery 113 is electrically connected to the power supply circuit 112.
  • the battery 113 functions as an electromotive force of the environment sensor 100a and supplies a potential to the power supply circuit 112.
  • the power supply circuit 112 generates a stable power supply voltage from the potential input from the battery 113.
  • the power supply circuit 112 is electrically connected to each circuit in order to supply a power supply voltage to each circuit.
  • a reset signal generation circuit may be provided inside the power supply circuit 112.
  • the reset signal generation circuit is a circuit for generating a reset signal of the logic circuit 121 using a stable rise of the power supply voltage.
  • a power storage device such as a capacitor or a secondary battery, a primary battery, or the like can be used.
  • the secondary battery for example, a lead storage battery, a nickel cadmium battery, a nickel metal hydride battery, a lithium ion battery, or the like can be used.
  • the capacitor for example, an electric double layer capacitor or a hybrid capacitor in which one of a pair of electrodes constitutes an electric double layer and the other uses an oxidation-reduction reaction can be used.
  • the hybrid capacitor includes, for example, a lithium ion capacitor in which a positive electrode forms an electric double layer and a negative electrode forms a lithium ion secondary battery.
  • the receiving circuit 111 has a function of receiving an external signal.
  • the receiving circuit 111 can send a driving signal to the logic circuit 121 and drive the environment sensor 100a by receiving an external signal.
  • the antenna 101 is for transmitting sensing data to the outside as a radio signal.
  • the logic circuit 121 is a circuit for driving the environment sensor 100a, and starts operation when receiving a drive signal from the reception circuit 111.
  • the modulation circuit 131 is a circuit for performing modulation according to data output from the antenna 101.
  • the transmission amplifier 132 is a circuit for amplifying data output from the antenna 101. By amplifying the output data, communication over a longer distance than that of the passive RFIC becomes possible.
  • the sensor controller 123 is a circuit that controls the sensor 116 and the analog-digital conversion circuit 115 in accordance with a command signal from the logic circuit 121.
  • the sensor controller 123 also has a function of outputting the obtained sensing data.
  • the analog-digital conversion circuit 115 has a function of digitally converting the sensing data sent from the sensor 116.
  • the memory controller 122 is a circuit that controls the storage device 114 in accordance with a command signal from the logic circuit 121. It also has a function of inputting sensing data to the storage device 114 and outputting sensing data from the storage device 114.
  • the storage device 114 has a function of writing and holding the acquired sensing data. Further, it has a function of reading the written sensing data and sending the data to the logic circuit 121.
  • the storage device 114 also stores an operation program for the environment sensor 100a.
  • the receiving circuit 111 inputs a drive signal to the logic circuit 121 by receiving an external signal.
  • the logic circuit 121 receives the drive signal from the reception circuit 111 and operates the memory controller 122 and the sensor controller 123.
  • the output signal of the receiving circuit 111 becomes a trigger signal for moving the control circuit 120.
  • the receiving circuit does not always operate unlike the receiving amplifier, and operates when receiving a signal. Therefore, the environmental sensor 100a can keep power consumption small.
  • the sensor controller 123 controls the analog / digital conversion circuit 115 and the sensor 116 so that the sensing data acquired by the sensor 116 is digitally converted by the analog / digital conversion circuit 115.
  • the digitized sensing data is stored in the storage device 114 via the memory controller 122.
  • the sensing data stored in the storage device 114 is read.
  • the read sensing data is modulated by the modulation circuit 131 via the memory controller 122 and the logic circuit 121.
  • the modulated sensing data is amplified by the transmission amplifier 132 and transmitted from the antenna 101.
  • a timer (not shown) is provided to periodically perform sensing and AD conversion, store the acquired sensing data in the storage device 114, and transmit the sensing data from the transmission circuit 130 when a trigger signal is received. Also good.
  • sensing data acquired by the sensor 116 can be obtained by sending a signal to the environment sensor 100a and receiving radio waves output from the antenna 101.
  • FIG. 2 shows an example of the environmental sensor of the disclosed invention.
  • the environmental sensor 100b is an active environmental sensor.
  • the environment sensor 100b is an example in which a signal input from the outside is an optical signal and the receiving circuit is an optical sensor 117.
  • the environmental sensor 100b includes an antenna 101 and a sensor circuit 110b.
  • the sensor circuit 110b includes an optical sensor 117, a power supply circuit 112, a battery 113, a control circuit 120, a transmission circuit 130, an OS memory 141, an OS analog-digital conversion circuit 142, and a sensor 116.
  • the control circuit 120 includes a logic circuit 121, a memory controller 122, and a sensor controller 123.
  • the transmission circuit 130 includes a transmission amplifier 132 and a modulation circuit 131.
  • the storage device 114 included in the environmental sensor 100a is an OS memory 141 with low power consumption
  • the analog-digital conversion circuit 115 included in the environmental sensor 100a is an OS analog-digital conversion circuit 142 with low power consumption.
  • the antenna 101 is electrically connected to the transmission amplifier 132.
  • the transmission amplifier 132 is electrically connected to the modulation circuit 131.
  • the logic circuit 121 is electrically connected to the optical sensor 117, the modulation circuit 131, the memory controller 122, and the sensor controller 123.
  • the memory controller 122 is electrically connected to the sensor controller 123 and the OS memory 141.
  • the sensor controller 123 is electrically connected to the OS analog-digital conversion circuit 142 and the sensor 116.
  • the sensor 116 is electrically connected to the OS analog-digital conversion circuit 142.
  • the battery 113 is electrically connected to the power supply circuit 112.
  • the battery 113 functions as an electromotive force of the environment sensor 100b and supplies a potential to the power supply circuit 112.
  • the power supply circuit 112 generates a stable power supply voltage from the potential input from the battery 113.
  • the power supply circuit 112 is electrically connected to each circuit in order to supply a power supply voltage to each circuit.
  • a reset signal generation circuit may be provided inside the power supply circuit 112.
  • the reset signal generation circuit is a circuit for generating a reset signal of the logic circuit 121 using a stable rise of the power supply voltage.
  • a power storage device such as a capacitor or a secondary battery, a primary battery, or the like can be used.
  • the secondary battery for example, a lead storage battery, a nickel cadmium battery, a nickel metal hydride battery, a lithium ion battery, or the like can be used.
  • the capacitor for example, an electric double layer capacitor or a hybrid capacitor in which one of a pair of electrodes constitutes an electric double layer and the other uses an oxidation-reduction reaction can be used.
  • the hybrid capacitor includes, for example, a lithium ion capacitor in which a positive electrode forms an electric double layer and a negative electrode forms a lithium ion secondary battery.
  • the optical sensor 117 has a function of receiving laser light from the outside.
  • the optical sensor 117 can receive a laser beam and send a drive signal to the logic circuit 121 to drive the environment sensor 100b.
  • the antenna 101 is for transmitting sensing data to the outside as a radio signal.
  • the logic circuit 121 is a circuit for driving the environment sensor 100b, and starts operation by receiving a drive signal from the optical sensor 117.
  • the modulation circuit 131 is a circuit for performing modulation according to data output from the antenna 101.
  • the transmission amplifier 132 is a circuit for amplifying data output from the antenna 101. By amplifying the output data, communication over a longer distance than that of the passive RFIC becomes possible.
  • the sensor controller 123 is a circuit that controls the sensor 116 and the OS analog-digital conversion circuit 142 in accordance with a command signal from the logic circuit 121.
  • the sensor controller 123 also has a function of outputting the obtained sensing data.
  • the OS analog-to-digital conversion circuit 142 is an analog-to-digital conversion circuit equipped with a transistor using an oxide semiconductor in a channel formation region.
  • the OS analog-digital conversion circuit 142 has a function of digitally converting the sensing data transmitted from the sensor 116.
  • the memory controller 122 is a circuit that controls the OS memory 141 in accordance with a command signal from the logic circuit 121. Further, it has a function of inputting sensing data to the OS memory 141 and outputting sensing data from the OS memory 141.
  • the OS memory 141 is a memory on which a transistor using an oxide semiconductor for a channel formation region is mounted.
  • the OS memory 141 has a function of writing and holding the acquired sensing data. Further, it has a function of reading the written sensing data and sending the data to the logic circuit 121.
  • the OS memory also stores an operation program for the environment sensor 100b.
  • the optical sensor 117 receives a laser beam from the outside and inputs a drive signal to the logic circuit 121.
  • the logic circuit 121 receives the drive signal from the optical sensor 117 and operates the memory controller 122 and the sensor controller 123. That is, the laser beam to the optical sensor 117 becomes a trigger signal for moving the control circuit 120.
  • the receiving circuit does not operate and does not consume power when no signal is received. Therefore, the environmental sensor 100b can keep power consumption small.
  • the sensor controller 123 controls the OS analog-digital conversion circuit 142 and the sensor 116 so that the sensing data acquired by the sensor 116 is digitally converted by the OS analog-digital conversion circuit 142.
  • the digitized sensing data is stored in the OS memory 141 via the memory controller 122.
  • the sensing data stored in the OS memory 141 is read.
  • the read sensing data is modulated by the modulation circuit 131 via the memory controller 122 and the logic circuit 121.
  • the modulated sensing data is amplified by the transmission amplifier 132 and transmitted from the antenna 101.
  • sensing data acquired by the sensor 116 can be obtained by sending laser light to the environment sensor 100b and receiving radio waves output from the antenna 101.
  • a timer (not shown) is provided to periodically perform sensing and AD conversion, store the acquired sensing data in the OS memory 141, and transmit the sensing data from the transmission circuit 130 when a trigger signal is received. Also good.
  • FIG. 3 shows an example in which the environment sensor 100b is installed in the tunnel.
  • An environmental sensor 100 b-1 is provided on the ceiling 406 of the tunnel, an RF (Radio Frequency) receiver 403 is provided on the roof portion of the automobile 401, and a laser light transmitter 404 is provided near the vehicle window of the automobile 401.
  • RF Radio Frequency
  • the antenna 101 and the optical sensor 117 included in the environmental sensor 100b-1 are provided on the surface of the ceiling 406 of the tunnel.
  • the antenna 101 and the optical sensor 117 may be suspended from the ceiling 406 of the tunnel depending on circumstances or circumstances. Further, only the antenna 101 may be embedded in the wall of the ceiling 406 of the tunnel.
  • the sensor circuit 110b included in the environmental sensor 100b-1 can be appropriately changed according to information to be sensed. For example, when it is desired to know the distortion state, corrosion state, and the like inside the wall of the ceiling 406 of the tunnel, the sensor circuit 110b may be provided inside the wall of the ceiling 406 as shown in FIG. At this time, as the sensor 116 included in the sensor circuit 110b, a sensor that can sense a substance that causes deterioration of the ceiling 406 may be used.
  • the substances that cause deterioration include oxide ions, sulfide ions, chloride ions, bromide ions, iodide ions, hydroxide ions, sulfate ions, sulfate ions, carbonate ions, hydrogen Since ions, calcium ions, and the like can be given, a sensor that can measure the amount of these substances may be used.
  • the sensor circuit 110b may be provided near the surface of the tunnel ceiling 406.
  • a sensor that can sense a substance that causes deterioration of the ceiling 406 may be used as described above.
  • a sensor capable of sensing the amount of light may be used.
  • the air cleanliness inside the tunnel may be measured as an application other than the maintenance survey of the tunnel ceiling 406.
  • the sensor circuit 110b is provided on the surface of the ceiling 406 of the tunnel (not shown), and a sensor capable of measuring the number of particles such as particles or the concentration thereof may be used as the sensor 116 included in the sensor circuit 110b. By measuring the number of particles or their concentration, it can be determined whether the ventilation mechanism inside the tunnel is functioning. In other words, it is possible to investigate the functions of ventilators and jet fans that constitute the tunnel ventilation mechanism.
  • a laser beam is transmitted from the laser beam transmitter 404 to the optical sensor 117.
  • the optical sensor can detect laser light from a light source that is separated by a distance of 100 m or more.
  • the environmental sensor 100b of the present embodiment is an active environmental sensor, it is not necessary to send the power supply separately by radio waves. Since the environmental sensor 100b incorporates the battery 113, sensing can be performed earlier because there is no processing for rectifying the signal received by the antenna in the passive type.
  • the environment sensor 100b only receives the laser beam that triggers the optical sensor (drives the environment sensor). Therefore, after receiving the laser beam once, the environment sensor 100b operates in accordance with a program built in the OS memory 141. Since it can be performed, it is not necessary to receive the laser beam for a long time.
  • the reception of the laser beam to the environmental sensor 100b-1 and the transmission of the radio wave from the environmental sensor 100b-1 are performed.
  • the RF receiver 403 receives the transmitted radio wave, the sensing data measured by the environmental sensor 100b can be acquired.
  • the usage method of the environment sensor 100b which is an aspect of the present invention is not limited to the tunnel of usage example 1.
  • the environmental sensor 100b may be used as a pier maintenance survey.
  • FIG. 4A shows an example in which the environment sensor 100b-2 is provided on the pier 1001 of the bridge 1000.
  • the sensor circuit 110 b is embedded inside the pier 1001, and the optical sensor 117 and the antenna 101 are provided outside the pier 1001.
  • the maintenance survey of the pier 1001 can be easily performed.
  • the environmental sensor 100b may be used as a maintenance survey for utility poles, traffic lights, and the like.
  • FIG. 5 the example which provided the environmental sensor 100b-3 and the environmental sensor 100b-4 in the utility pole 1100 with a signal apparatus is shown.
  • the environmental sensor 100b-3 has a configuration in which a sensor circuit 110b is embedded inside a utility pole 1100, and an optical sensor 117 and an antenna 101 are provided outside the utility pole 1100.
  • the sensor circuit 110b includes the optical sensor 117 and the antenna 101. And a wiring 1101.
  • the information processing terminal 1104 including the laser light transmitter and the RF receiver, sensing data can be acquired by communication between the environmental sensor 100b-3 and the information processing terminal 1104.
  • a maintenance survey of the utility pole 1100 can be performed.
  • the environment sensor 100b-4 has a configuration in which a sensor circuit 110b is provided inside the traffic light 1103, and an optical sensor 117 and an antenna 101 are provided outside the utility pole 1100.
  • the sensor circuit 110b includes the optical sensor 117, and The antenna 101 and the wiring 1102 are electrically connected.
  • a sensor that senses current, voltage, light amount, and the like inside the traffic light 1103 may be used as the sensor 116 included in the sensor circuit 110b.
  • a sensor that senses current, voltage, light amount, and the like inside the traffic light 1103 may be used.
  • the information processing terminal 1104 provided with the laser light transmitter and the RF receiver, it is possible to acquire information on the traffic signal through communication between the environmental sensor 100b-4 and the information processing terminal 1104.
  • the maintenance inspection of the traffic light 1103 can be easily performed.
  • the degree of air cleanliness near the location where the traffic light 1103 is provided can be measured by using a sensor capable of measuring the number of particles or the concentration thereof as the sensor 116. Specifically, the concentration of particles, exhaust gas, pollen, etc. can be measured.
  • the frequency of the electromagnetic wave signal used in the present embodiment may be appropriately selected according to the use situation, environment, and the like.
  • a UHF band frequency specifically, a frequency of 300 MHz or 430 MHz may be used.
  • a frequency in the microwave band for example, a frequency of 2.45 GHz may be used.
  • the receiving circuit is used as an optical sensor, communication is possible even at a distance of 100 m or more, and therefore the configuration using the optical sensor is suitable for the receiving circuit.
  • FIG. 6 illustrates an example of a semiconductor device of the disclosed invention.
  • the environmental sensor 100c is an active environmental sensor.
  • the environment sensor 100c is an example in which an externally input signal is an electromagnetic wave signal, and the reception circuit 111 of the environment sensor 100a is a detection circuit 118.
  • the environmental sensor 100c includes an antenna 102 and a sensor circuit 110c.
  • the sensor circuit 110c includes a power supply circuit 112, a battery 113, a detection circuit 118, a control circuit 120, a transmission circuit 130, an OS memory 141, an OS analog-digital conversion circuit 142, and a sensor 116.
  • the control circuit 120 includes a logic circuit 121, a memory controller 122, and a sensor controller 123.
  • the transmission circuit 130 includes a modulation circuit 131 and a transmission amplifier 132.
  • the storage device 114 included in the environment sensor 100a is an OS memory 141 with low power consumption.
  • the analog-digital conversion circuit 115 included in the environmental sensor 100a is an OS analog-digital conversion circuit 142 with low power consumption.
  • the antenna 102 is electrically connected to the detection circuit 118 and the transmission amplifier 132.
  • the transmission amplifier 132 is electrically connected to the modulation circuit 131.
  • the logic circuit 121 is electrically connected to the detection circuit 118, the modulation circuit 131, the memory controller 122, and the sensor controller 123.
  • the memory controller 122 is electrically connected to the sensor controller 123 and the OS memory 141.
  • the sensor controller 123 is electrically connected to the OS analog-digital conversion circuit 142 and the sensor 116.
  • the battery 113 is electrically connected to the power supply circuit 112.
  • the battery 113 functions as an electromotive force of the environment sensor 100 c and supplies a potential to the power supply circuit 112.
  • the power supply circuit 112 generates a stable power supply voltage from the potential input from the battery 113.
  • the power supply circuit 112 is electrically connected to each circuit in order to supply a power supply voltage to each circuit.
  • a reset signal generation circuit may be provided inside the power supply circuit 112.
  • the reset signal generation circuit is a circuit for generating a reset signal of the logic circuit 121 using a stable rise of the power supply voltage.
  • the antenna 102 is for receiving a radio signal from the outside or transmitting sensing data to the outside as a radio signal.
  • the detection circuit 118 is a circuit for demodulating an input AC signal by detecting an envelope and generating a demodulated signal.
  • the logic circuit 121 is a circuit for decoding and processing the demodulated signal.
  • the modulation circuit 131 is a circuit for performing modulation according to data output from the antenna 102.
  • the transmission amplifier 132 is a circuit for amplifying data output from the antenna 102. By amplifying the output data, communication over a longer distance than that of the passive RFIC becomes possible.
  • the sensor controller 123 is a circuit that controls the sensor 116 and the OS analog-digital conversion circuit 142 in accordance with a command signal from the logic circuit 121.
  • the sensor controller 123 also has a function of outputting the obtained sensing data.
  • the OS analog-to-digital conversion circuit 142 is an analog-to-digital conversion circuit equipped with a transistor using an oxide semiconductor in a channel formation region.
  • the OS analog-digital conversion circuit 142 has a function of digitally converting the sensing data transmitted from the sensor 116.
  • the memory controller 122 is a circuit that controls the OS memory 141 in accordance with a command signal from the logic circuit 121. Further, it has a function of inputting sensing data to the OS memory 141 and outputting sensing data from the OS memory 141.
  • the OS memory 141 is a memory on which a transistor using an oxide semiconductor for a channel formation region is mounted.
  • the OS memory 141 has a function of writing and holding the acquired sensing data. Further, it has a function of reading the written sensing data and sending the data to the logic circuit 121.
  • the OS memory 141 also stores an operation program for the environment sensor 100c.
  • the configuration of the present embodiment is not limited to the configuration example shown in FIG.
  • an environmental sensor 100 d having an antenna 101 and an antenna 103 separately from the antenna 102 may be used.
  • the antenna 103 is electrically connected to the detection circuit 118, and the antenna 101 is electrically connected to the transmission amplifier 132. That is, the antenna 103 is provided as a receiving antenna, and the antenna 101 is provided as a transmitting antenna.
  • the signal for transmission can be used as a radio wave having a frequency different from that of the signal for reception.
  • the environment sensor of this embodiment only receives a signal triggered by the reception antenna (driving the environment sensor), the frequency of the reception signal and the frequency of the transmission signal need not be the same. That is, by providing a reception antenna and a transmission antenna, signals having different frequencies may be used for the reception signal and the transmission signal.
  • the antenna 102 receives an external signal, and the signal is input to the detection circuit 118.
  • the signal is demodulated by the detection circuit 118 and input to the logic circuit 121.
  • the logic circuit 121 reads the demodulated signal and operates the memory controller 122 and the sensor controller 123.
  • the sensor controller 123 controls the OS analog-digital conversion circuit 142 and the sensor 116 so that the sensing data acquired by the sensor 116 is digitally converted by the OS analog-digital conversion circuit 142.
  • the digitized sensing data is stored in the OS memory 141 via the memory controller 122.
  • the sensing data stored in the OS memory 141 is read.
  • the read sensing data is modulated by the modulation circuit 131 via the memory controller 122 and the logic circuit 121.
  • the modulated sensing data is amplified by the transmission amplifier 132 and transmitted from the antenna 102.
  • a timer (not shown) is provided to periodically perform sensing and AD conversion, store the acquired sensing data in the OS memory 141, and transmit the sensing data from the transmission circuit 130 when a trigger signal is received. Also good.
  • sensing data acquired by the sensor 116 can be obtained by transmitting and receiving radio waves to and from the environmental sensor 100c.
  • FIG. 8 shows an example in which the environment sensor 100c is installed in the tunnel.
  • An environmental sensor 100c is provided on the ceiling 406 of the tunnel, and the automobile 401 has an RF transceiver 402 on the roof portion.
  • the antenna 102 included in the environmental sensor 100c is provided on the surface of the ceiling 406 of the tunnel.
  • the antenna 102 may be hung from the tunnel ceiling 406 or may be embedded in the wall of the tunnel ceiling 406 depending on circumstances or circumstances.
  • the sensor circuit 110c included in the environmental sensor 100c can be appropriately changed according to information to be sensed. For example, when it is desired to know the strain state or corrosion state inside the tunnel ceiling 406 wall, a sensor circuit 110c may be provided inside the tunnel ceiling 406 wall as shown in FIG. At this time, as the sensor 116 included in the sensor circuit 110c, a sensor that can sense a substance that causes deterioration of the ceiling 406 may be used.
  • the substances that cause deterioration include oxide ions, sulfide ions, chloride ions, bromide ions, iodide ions, hydroxide ions, sulfate ions, sulfate ions, carbonate ions, hydrogen Since ions, calcium ions, and the like can be given, a sensor that can measure the amount of these substances may be used.
  • the sensor 116 included in the environmental sensor 100c can be appropriately changed according to information to be sensed.
  • the sensor 116 may be provided inside the tunnel ceiling 406 wall as shown in FIG.
  • the state of the surface of the tunnel ceiling 406 it may be provided on the surface of the tunnel ceiling 406.
  • the radio wave 405 is transmitted from the RF transceiver 402 to the antenna 102. Since the automobile 401 passes around the specific antenna for a short time, the environment sensor must be able to sense in a short time.
  • the environmental sensor 100c is an active environmental sensor, there is no need to send power by radio waves. Since the environmental sensor 100c has a built-in battery 113, sensing can be performed immediately by receiving radio waves from the RF transceiver 402. Further, the environment sensor 100c can operate in accordance with a program built in the OS memory 141 after receiving the radio wave once, so it is not necessary to receive the radio wave for a long time. Since sensing does not depend on the communication distance, sensing is possible even if the reception time is short.
  • radio waves can be transmitted / received to / from the environment sensor 100c in a short time when the automobile 401 passes around the specific antenna, and sensing data can be acquired from the environment sensor 100c.
  • the usage method of the environment sensor 100c of the present embodiment is not limited to the tunnel of usage example 2.
  • an information processing terminal provided with an RF transceiver by providing an environmental sensor 100c or an environmental sensor 100d instead of the environmental sensor 100b-2 on the pier 1001 shown in FIG. 1002 may be used to conduct a maintenance survey of the pier 1001.
  • the environmental sensor 100c or the environmental sensor 100d is provided instead of the environmental sensor 100b-3 or the environmental sensor 100b-4 on the electric pole 1100 having the traffic signal shown in FIG. You may go.
  • the frequency of the electromagnetic wave signal used in the present embodiment may be appropriately selected according to the use situation, environment, and the like.
  • a UHF band frequency specifically, a frequency of 300 MHz or 430 MHz may be used.
  • a frequency in the microwave band for example, a frequency of 2.45 GHz may be used.
  • FIG. 9 shows an example of the configuration of the storage device.
  • the memory device 2600 includes a peripheral circuit 2601 and a memory cell array 2610 (denoted in the figure as Memory Cell Array).
  • the peripheral circuit 2601 includes a row decoder 2621 (denoted as Low Decoder in the drawing), a word line driver circuit 2622 (abbreviated as Word Line Driver Cir. In the drawing), and a bit line driver circuit 2630 (denoted in the drawing). , Bit Line Driver Cir.), An output circuit 2640 (abbreviated as Output Cir. In the figure), and a control logic circuit 2660 (abbreviated as Control Logic Cir. In the figure).
  • the bit line driver circuit 2630 includes a column decoder 2631 (abbreviated as “Column Decoder” in the figure), a precharge circuit 2632 (abbreviated as “Precharge Cir.” In the figure), and a sense amplifier 2633 (in the figure, “Sense Amp”). And a writing circuit 2634 (abbreviated as “Write Cir.” In the drawing).
  • the precharge circuit 2632 has a function of precharging the wirings (BL and BLB) and a function of equalizing the voltages of the wirings BL and BLB in the same column.
  • the sense amplifier 2633 has a function of amplifying data signals (D, DB, D1, and D2) read from the wirings (BL and BLB).
  • the amplified data signal is output to the outside of the storage device 2600 through the output circuit 2640 as a digital data signal RDATA.
  • the wiring BL and the wiring BLB indicate wirings connected to the memory cells, and the data signals D, DB, D1, and D2 indicate data signals to be written to the memory cells or read data signals from the memory cells. Details will be described in Embodiment 4.
  • a low power supply voltage (VSS), a high power supply voltage (VDD) for the peripheral circuit 2601, and a high power supply voltage (VIL) for the memory cell array 2610 are supplied from the outside to the memory device 2600.
  • control signals CE, WE, RE
  • an address signal ADDR is input to the storage device 2600 from the outside.
  • the address signal ADDR is input to the row decoder 2621 and the column decoder 2631, and the data signal WDATA is input to the write circuit 2634.
  • the control logic circuit 2660 processes external input signals (CE, WE, RE) and generates control signals for the row decoder 2621 and the column decoder 2631.
  • CE is a chip enable signal
  • WE is a write enable signal
  • RE is a read enable signal.
  • the signal processed by the control logic circuit 2660 is not limited to this, and another control signal may be input as necessary.
  • each above-mentioned circuit or each signal can be suitably discarded as needed.
  • a small memory device 2600 can be provided by using a p-channel Si transistor and a transistor including an oxide semiconductor according to any of the embodiments described later in a channel formation region, and applying the transistor to the memory device 2600.
  • a storage device 2600 that can reduce power consumption can be provided.
  • a storage device 2600 that can improve the operation speed can be provided. In particular, manufacturing costs can be kept low by using only p-channel Si transistors.
  • a memory cell included in the memory cell array 2610 a memory cell according to a fourth embodiment described later can be used.
  • FIG. 10A is a circuit diagram illustrating an example of a structure of a memory cell.
  • the memory cell 1203 includes a transistor Mos3 and a capacitor C103.
  • One of the source and the drain of the transistor Mos3 is electrically connected to the wiring BL, the other of the source and the drain of the transistor Mos3 is electrically connected to one electrode of the capacitor C103, and the gate of the transistor Mos3 is connected to the wiring It is electrically connected to WL.
  • a low power supply potential (VSS) is applied to the other electrode of the capacitor C103.
  • the transistor Mos3 functions as a switch that connects the node FN3 and the wiring BL.
  • a signal D is input to and output from the wiring BL as a writing signal and a reading signal.
  • a signal OSG is input to WL as a memory cell selection signal.
  • Data writing and reading are performed by turning on the transistor Mos3 and connecting the node FN3 to the wiring BL.
  • a structure in which a back gate is provided in the memory cell 1203 is illustrated in a memory cell 1207 in FIG. 11A and a memory cell 1208 in FIG.
  • a memory cell 1207 illustrated in FIG. 11A is a circuit in which a back gate BG and a wiring BGL are provided in the transistor Mos3, and a predetermined potential is applied from the wiring BGL to the back gate BG. By controlling the potential from the wiring BGL, the threshold voltage of the transistor Mos3 can be controlled.
  • a memory cell 1208 illustrated in FIG. 11B is a circuit in which a back gate BG is provided in the transistor Mos3 and is electrically connected to the front gate (or the wiring WL) of the transistor Mos3. With this configuration, since the same potential is applied to the front gate and the back gate BG, the current that flows when the transistor Mos3 is in the on state can be increased.
  • a back gate can be configured for a memory cell 1204, a memory cell 1205, a memory cell 1206, and a memory cell 1200, which will be described later.
  • FIG. 10B is a circuit diagram showing an example of the structure of the memory cell.
  • the memory cell 1204 includes a transistor Mos4, a transistor M104, and a capacitor C104.
  • One of a source and a drain of the transistor Mos4 is electrically connected to the wiring BL, and the other of the source and the drain of the transistor Mos4 is electrically connected to one electrode of the capacitor C104 and the gate of the transistor M104.
  • the gate of Mos4 is electrically connected to the wiring WL.
  • One of a source and a drain of the transistor M104 is electrically connected to the wiring BL, and the other of the source and the drain of the transistor M104 is electrically connected to the wiring SL.
  • the other electrode of the capacitor C104 is electrically connected to the wiring WLC.
  • the transistor Mos4 functions as a switch that connects the node FN4 and the wiring BL.
  • a signal OSG is input to the wiring WL.
  • the capacitor C104 connects the wiring WLC and the node FN4.
  • the wiring WLC is a wiring for supplying a constant voltage to the terminal of the capacitor C104 during a writing operation and a reading operation.
  • the transistor M104 is a p-channel transistor.
  • Data writing is performed by turning on the transistor Mos4 and connecting the node FN4 to the wiring BL with a constant voltage applied to the wirings WLC and SL.
  • a constant voltage is applied to the wirings BL, WLC, and SL.
  • the value of the current flowing between the source electrode and the drain electrode of the transistor M104 varies according to the voltage of the node FN4. Since the wiring BL is charged or discharged by the source-drain current of the transistor M104, the data value held in the memory cell 1204 can be read by detecting the voltage (signal D) of the wiring BL.
  • the transistor M104 can be an n-channel transistor. That is, the voltage applied to the wirings (BL, SL, WLC) may be determined according to the polarity of the transistor M104.
  • FIG. 10C is a circuit diagram illustrating a configuration example of the memory cell.
  • the memory cell 1206 includes a transistor Mos6, a transistor M107, and a transistor M108.
  • One of a source and a drain of the transistor Mos6 is electrically connected to the wiring WBL, the other of the source and the drain of the transistor Mos6 is electrically connected to the gate of the transistor M108, and the gate of the transistor Mos6 is electrically connected to the wiring WWL. Connected.
  • One of a source and a drain of the transistor M107 is electrically connected to the wiring RBL, the other of the source and the drain of the transistor M107 is electrically connected to one of a source and a drain of the transistor M108, and the gate of the transistor M107 is It is electrically connected to the wiring RWL.
  • a low power supply potential (VSS) is applied to the other of the source and the drain of the transistor M108.
  • the transistor Mos6 functions as a switch that connects the node FN6 and the wiring WBL.
  • the transistor M107 functions as a switch that connects the wiring RBL to one of the source and the drain of the transistor.
  • a signal D1 is input to the wiring WBL as a data write signal.
  • a signal OSG is input to the wiring WWL as a memory cell selection signal.
  • Data writing is performed by turning on the transistor Mos6 and connecting the node FN6 to the wiring WBL.
  • the transistor M107 is turned on.
  • the value of the current flowing between the source electrode and the drain electrode of the transistor M108 varies according to the voltage of the node FN6. Since the wiring RBL is charged or discharged by the source-drain current of the transistor M108, the data value held in the memory cell 1206 can be read by detecting the voltage (signal D2) of the wiring RBL.
  • FIG. 10D is a circuit diagram illustrating an example of the structure of the memory cell.
  • the memory cell 1205 includes a transistor Mos5, a transistor M105, a transistor M106, and a capacitor C105.
  • One of a source and a drain of the transistor Mos5 is electrically connected to the wiring BL, and the other of the source and the drain of the transistor Mos5 is electrically connected to the gate of the transistor M106 and one electrode of the capacitor C105.
  • the gate of Mos5 is electrically connected to the wiring WL.
  • One of the source and the drain of the transistor M105 is electrically connected to the wiring BL, the other of the source and the drain of the transistor M105 is electrically connected to one of the source and the drain of the transistor M106, and the gate of the transistor M105 is connected to the wiring.
  • the other of the source and the drain of the transistor M106 is electrically connected to the other electrode of the capacitor C105.
  • a low power supply potential (VSS) is applied to the other of the source and the drain of the transistor M106 and the other electrode of the capacitor C105.
  • the transistor Mos5 functions as a switch that connects the node FN5 and the wiring BL.
  • a signal OSG is input to the wiring WL.
  • Data writing is performed by turning on the transistor Mos5 and connecting the node FN4 to the wiring BL.
  • Data is read by turning on the transistor M105.
  • the value of the current flowing between the source electrode and the drain electrode of the transistor M106 varies according to the voltage of the node FN5. Since the wiring BL is charged or discharged by the source-drain current of the transistor M106, the data value held in the memory cell 1205 can be read by detecting the voltage (signal D) of the wiring BL.
  • the transistors M105 and M106 can be p-channel transistors. That is, a voltage applied to the wiring RWL and a voltage applied to the capacitor C105 may be determined in accordance with the polarities of the transistors M105 and M106.
  • a memory cell 1200 shown in FIG. 10E is an example of an SRAM cell that can be backed up.
  • the memory cell 1200 includes a transistor M101, a transistor M102, a transistor Mos1, a transistor Mos2, an inverter INV101, an inverter INV102, a capacitor C101, and a capacitor C102.
  • the memory cell 1200 is connected to wirings (WL, BL, BLB, BRL).
  • a low power supply voltage (VSS) or the like is supplied to the memory cell 1200 as a power supply voltage.
  • the input terminal and the output terminal of the inverter INV101 and the inverter INV102 are connected to each other, and the memory cell 1200 has a configuration of an inverter loop circuit.
  • the gate electrodes of the transistor M101 and the transistor M102 are connected to the wiring WL.
  • the transistor M101 functions as a switch that connects the wiring BL and the input node of the inverter INV101
  • the transistor M102 functions as a switch that connects the wiring BLB and the input node of the inverter INV102.
  • the wiring WL functions as a write / read word line, and a memory cell selection signal (WLE) is input from the word line driver circuit.
  • the wiring BL and the wiring BLB function as bit lines that transmit the data signals D and DB.
  • the data signal DB is a signal obtained by inverting the logical value of the data signal D.
  • the data signals D and DB are supplied from the bit line driver circuit.
  • the wiring BL and the wiring BLB are wirings for sending data read from the memory cell 1200 to the output circuit.
  • the memory cell 1200 is a circuit in which a volatile memory circuit (inverter INV101, inverter INV102, transistor M101, transistor M102) is provided with a pair of memory circuits (transistor Mos1, capacitor C101) and (transistor Mos2, capacitor C102). It corresponds to.
  • the memory circuits (transistor Mos1, capacitive element C101) and (transistor Mos2, capacitive element C102) back up the data of the volatile storage circuit by storing the potentials held at the nodes NET1 and NET2, respectively. It is a circuit for.
  • These memory circuits turn on the transistors Mos1 and Mos2 to charge or discharge the capacitor C101 and the capacitor C102, write data, and turn the transistors off to turn off the capacitor C101 and the capacitor C102. By holding the charge accumulated in the element C102, data is held without power supply.
  • Data recovery is also performed by turning on the transistors Mos1 and Mos2.
  • the transistors Mos1 and Mos2 are turned on, the node FN1 and the node NET1 are connected, the node FN1 and the node NET1 share charges, and the node FN2
  • the node NET2 is connected, and charges are shared between the node FN2 and the node NET2.
  • the transistors Mos1 and Mos2 are turned off.
  • the gate electrodes of the transistors Mos1 and Mos2 are connected to the wiring BRL.
  • a signal OSG is input to the wiring BRL.
  • the pair of memory circuits (transistor Mos1, capacitor C101) and (transistor Mos2, capacitor C102) are driven by the signal OSG, and backup or recovery is performed.
  • the memory circuits hold the potentials of the nodes FN1 and FN2 by accumulating charges in the capacitive element C101 and the capacitive element C102.
  • the node NET1 and the node FN1 are connected, the potential held in the node NET1 is applied to the node FN1, and by turning on the transistor Mos2, the node NET2 and node FN2 are connected, and the potential held in node NET2 is applied to node FN2.
  • the nodes FN1 and FN2 are electrically floated, the charges accumulated in the capacitor C101 and the capacitor C102 are held, and the memory circuit holds data. It becomes a state.
  • the transistors Mos1 and Mos2 desirably include an oxide semiconductor (preferably an oxide containing In, Ga, and Zn) in a channel formation region.
  • an oxide semiconductor preferably an oxide containing In, Ga, and Zn
  • fluctuation in the voltage of the node FN1 can be suppressed. That is, a circuit including the transistor Mos1 and the capacitor C101 can be operated as a nonvolatile memory circuit or a memory circuit that can hold data for a long time without power supply.
  • the circuit including the transistor Mos2 and the capacitor C102 is also the same, and these circuits can be used as a backup memory circuit for a volatile memory circuit (the inverter INV101, the inverter INV102, the transistor M101, and the transistor M102).
  • the transistors exemplified in Embodiment 6 can be applied to the transistors Mos1 and Mos2. Since the off-state current of the transistors Mos1 and Mos2 is small, the memory cell 1200 can hold information without supplying power for a long time. Since the switching characteristics of the transistors Mos1 and Mos2 are good, the memory cell 1200 can easily perform backup and recovery.
  • the transistor Mos3, the transistor Mos4, the transistor Mos5, and the transistor Mos6 each include an oxide semiconductor (preferably A transistor including an oxide including In, Ga, and Zn in a channel formation region is preferable.
  • the leakage current (off-state current) flowing between the source electrode and the drain electrode in the off state is extremely small, so that fluctuations in voltages at the nodes FN3, FN4, FN5, and FN6 can be suppressed. That is, the memory cell 1203, the memory cell 1204, the memory cell 1205, and the memory cell 1206 can be operated as a memory circuit that can hold data for a long time without power supply.
  • a memory device 2600 having a memory circuit that can hold data for a long time and capable of reducing size, low power consumption, high speed, or fluctuations in power supply voltage can be provided.
  • n-type transistors used in the memory cell may be replaced with transistors including the oxide semiconductor exemplified in Embodiment 6 in a channel formation region. Manufacturing costs can be kept low by using only p-channel Si transistors.
  • FIG. 12 shows an analog-digital conversion circuit.
  • the analog-digital conversion circuit 800 includes a comparator 802 (abbreviated as COMP. In FIG. 12), a successive approximation register 803 (abbreviated as SAR in FIG. 12), a digital-analog conversion circuit 804 (abbreviated as DAC in FIG. 12), a timing controller. 805 (abbreviated as T_con in FIG. 12) and an oscillation circuit 806 (abbreviated as Osci. In FIG. 12).
  • the analog-digital conversion circuit 800 further includes a sample-and-hold circuit 801 (also referred to as a sample-and-hold circuit, abbreviated as S & H in FIG. 12).
  • the sample-and-hold circuit 801 is a circuit having a function of receiving analog data potential (analog potential Vin) and holding charges according to the analog potential Vin in accordance with control of the control signal S1.
  • the control signal S1 is a signal given from the timing controller 805.
  • the sample hold circuit 801 includes a buffer circuit 811, a transistor 812, and a capacitor element 813 as an example.
  • An input terminal of the sample hold circuit 801 is provided on one of a source and a drain of the transistor 812.
  • An output terminal of the sample hold circuit 801 is provided on the other of the source and the drain of the transistor 812. Note that a node on the other of the source and the drain of the transistor 812 is referred to as a node ND for description.
  • the buffer circuit 811 has a function of amplifying and outputting a signal such as analog data input to the sample hold circuit 801.
  • the buffer circuit 811 is provided between the input terminal of the sample hold circuit 801 and one of the source and drain of the transistor 812.
  • the present invention is not limited to this, and the buffer circuit 811 is provided on the gate side of the transistor 812. It is good also as a structure to provide.
  • the transistor 812 has a function of extremely low current flowing between the source and the drain in the off state.
  • An OS transistor is suitable as the transistor having such a function.
  • the OS transistor will be described in detail in Embodiment 6.
  • “OS” is added to the circuit symbol of the OS transistor in order to clearly indicate the OS transistor.
  • One of a source and a drain of the transistor 812 is connected to an input terminal of the sample hold circuit 801.
  • the gate of the transistor 812 is connected to a wiring for supplying the control signal S1.
  • the other of the source and the drain of the transistor 812 is connected to the output terminal of the sample hold circuit 801 or the node ND.
  • the capacitor element 813 has a function of holding charge corresponding to the analog potential Vin by turning off the transistor 812.
  • FIG. 12 illustrates a structure in which the capacitor 813 is provided on the other of the source and the drain of the transistor 812, that is, the node ND side; however, the capacitor 813 is not necessarily provided, and the gate capacitance at the input terminal of the comparator 802 Etc. can be omitted.
  • a circuit including a transistor 812 and a capacitor 813 that holds electric charge corresponding to the analog potential Vin is illustrated as a first circuit 10.
  • the comparator 802 has a function of comparing the magnitude relationship between the analog potential Vin held by the sample hold circuit 801 and the analog potential DACout output from the digital-analog conversion circuit 804, and outputting a signal cmpout according to the magnitude relationship.
  • the successive approximation register 803 has a function of holding and outputting digital data of N bits (N is a natural number of 2 or more) in accordance with a change in the analog potential DACout.
  • Digital data of N bits that is, 0th to (N-1) th bits (abbreviated as value [N-1: 0] in FIG. 12) is output to the outside as Vout, and also is a digital-analog conversion circuit 804. Is output.
  • the successive approximation register 803 is composed of a logic circuit including a register corresponding to each bit, and can output digital data in accordance with control of the control signal S2.
  • the control signal S2 is a signal given from the timing controller 805.
  • the digital-analog conversion circuit 804 has a function of generating and outputting an analog potential DACout according to digital data.
  • the digital-analog conversion circuit 804 may be a capacitive conversion system (C-DAC) or a resistance conversion system (R-DAC).
  • C-DAC capacitive conversion system
  • R-DAC resistance conversion system
  • a C-DAC is preferable because a digital value can be held by using an OS transistor. Note that the configuration of the C-DAC having an OS transistor will be described with reference to a specific circuit configuration in an embodiment described later.
  • the timing controller 805 has a function of generating and outputting control signals S1 and S2 synchronized with the clock signal CLK according to the signal S ADC .
  • the timing controller 805 includes a logic circuit, and can output control signals S1 and S2 according to the clock signal CLK and the signal S ADC .
  • the timing controller 805 configured with a logic circuit can be formed integrally with a successive approximation register 803 configured with a logic circuit.
  • the timing controller may be referred to as a control circuit.
  • the oscillation circuit 806 (abbreviated as Osci. In FIG. 12) has a function of generating and outputting a clock signal CLK.
  • the oscillation circuit 806 may be a clock signal generated by a crystal oscillator or a clock signal generated by a ring oscillator.
  • a sample-and-hold circuit 801 having a transistor 812 with extremely low off-state current.
  • the transistor 812 is turned off, whereby the analog potential Vin is held at the node ND that can hold charges. Accordingly, power supply to the buffer circuit 811 included in the sample hold circuit 801 can be stopped, and power consumption can be reduced.
  • a plurality of sensor circuits for supplying the analog potential Vin to the sample hold circuit 801 may be provided.
  • a sample hold circuit 801A and a sample hold circuit 801B are provided.
  • a selector 822 also referred to as a multiplexer, abbreviated as MPX in FIG. 14 is provided between the sample hold circuit 801A, the sample hold circuit 801B, and the comparator 802.
  • the selector 822 has a function of selecting one of the analog potentials of the sample hold circuit 801A and the sample hold circuit 801B according to the selection signal SEL and outputting the selected analog potential to the comparator 802. Since the sample hold circuit 801A and the sample hold circuit 801B have the same functions as the sample hold circuit 801 described with reference to FIG. 12, the sample hold circuit 801A and the sample hold circuit 801B hold the analog potentials Vin_A and Vin_B obtained by the sensor circuit 821A and the sensor circuit 821B, respectively. The power supply to can be stopped. Therefore, the power consumption can be reduced.
  • the analog potential obtained by the sensor circuit may be constant or constantly fluctuate.
  • the sampling may be performed via a correlated double sampling (CDS: Correlated Double Sampling) circuit.
  • CDS Correlated Double Sampling
  • the correlated double sampling circuit is used for noise removal by obtaining a relative difference between two timings.
  • FIG. 15A shows an example of a correlated double sampling circuit.
  • the correlated double sampling circuit includes sample and hold circuits 831A to 831C.
  • As the sample hold circuits 831A to 831C a circuit equivalent to the sample hold circuit 801 shown in FIG. 12 can be used.
  • a control signal ⁇ 1 is applied to the transistors of the sample hold circuit 831A, and a control signal ⁇ 2 is applied to the transistors of the sample hold circuit 831B and the sample hold circuit 831C.
  • the difference in potential sampled in each capacitor element included in the sample hold circuits 831A to 831C can be reduced in order to take a difference. . Therefore, the accuracy of the correlated double sampling circuit can be increased.
  • power supply to each buffer circuit included in the sample hold circuits 831A to 831C can be stopped, so that power consumption can be reduced.
  • FIG. 15B shows a timing chart as an example of the operation of the correlated double sampling circuit shown in FIG.
  • the potential V Sensor is a fluctuating potential obtained by the sensor circuit 821
  • the potential Vin is an analog potential that has passed through a correlated double sampling circuit.
  • the potential Vin can be obtained as an analog potential that becomes a constant potential at the voltage ⁇ V by sampling at a constant cycle and taking the difference.
  • FIG. 16A illustrates an example of a circuit configuration of the digital-analog conversion circuit 804.
  • FIG. 16A shows a 10-bit C-DAC.
  • a sample hold circuit 801 and a comparator 802 are shown together for the sake of explanation.
  • a digital-analog conversion circuit 804 illustrated in FIG. 16A includes a capacitor 893, selectors 894, 895, 896, and a transistor 897.
  • the capacitor 893 has a capacitance value corresponding to the number of bits.
  • An example of the capacitance value is shown attached to the capacitor 893 in FIG.
  • Selectors 894 and 895 are provided corresponding to the capacitor 893.
  • FIG. 16B illustrates an example of a circuit configuration of the selectors 894, 895, and 896 illustrated in FIG.
  • a control signal S2 is supplied to the terminals SEL of the selectors 895 and 896.
  • the potential selected by the selector 896 is applied to the terminals A of the selectors 894 and 895.
  • the reference potential Vref is applied to the terminal A of the selector 896.
  • a ground potential is applied to the terminal B of the selectors 894, 895, and 896.
  • FIG. 16C shows an example of a more specific circuit configuration of the selector shown in FIG.
  • the selector illustrated in FIG. 16C includes an inverter circuit 898, an n-channel transistor 835, a transistor 836, a p-channel transistor 837, and a transistor 838.
  • FIG. 17 shows an example of an analog-digital conversion circuit different from FIG.
  • 17 includes a sample-and-hold circuit 801, a successive approximation register 803, a digital-to-analog conversion circuit 804, a timing controller 805, and an oscillation circuit 806.
  • the configuration of the analog-digital conversion circuit 900 illustrated in FIG. 17 is different from the analog-digital conversion circuit 800 in FIG. 12 in that the digital-analog conversion circuit 804 includes a transistor 911 and a capacitor 912 for holding digital data. It is in.
  • the timing controller 805 supplies a control signal S3 value [N-1: 0] for controlling on or off to the gate of the transistor 911 corresponding to each bit.
  • S3 value [N-1: 0]
  • the transistor 911 and the capacitor 912 hold digital data by holding the charge corresponding to the potential of the digital data in the node ND DAC by turning off the transistor 911.
  • the transistor 911 is a transistor having a function of extremely low current flowing between the source and the drain in the off state, like the transistor 812, and is preferably an OS transistor. Note that a circuit including a transistor 911 and a capacitor 912 that holds charges corresponding to the potential of digital data is illustrated as a first circuit 20.
  • FIGS. 18A and 18B each illustrate an example of a circuit diagram in which a transistor 911 and a capacitor 912 are added to the selector 894.
  • the control signal S3 value: as [N-1 0] shows an example of giving 0 control signal S3 bit value of [0] to the gate of the transistor 911.
  • power consumption can be reduced by stopping the supply of power to the sample hold circuit 801, the comparator 802, the successive approximation register 803, and the digital-analog conversion circuit 804. Specifically, as shown in FIG. 18, the supply of power to the buffer circuit 811 can be stopped by holding the analog potential Vin in the sample hold circuit 801. Further, the supply of power to the register in the successive approximation register 803 can be stopped every time the digital data in the digital-analog conversion circuit 804 is determined by each bit. Further, power supply to the comparator 802 and the digital-analog converter circuit 804 can be stopped.
  • the potential of analog data or digital data can be held even after the supply of power is stopped using an OS transistor, so that the supply of power to each circuit is stopped and consumed. Electric power can be reduced.
  • power consumption can be reduced until the next analog potential Vin is input.
  • the semiconductor device of this embodiment functioning as an analog-to-digital conversion circuit, as described in the first embodiment, uses a sample-and-hold circuit having a transistor with an extremely low off-current as the analog potential Vin acquired by a sensor or the like. 801 is held. In addition, the determined digital data is held in the digital-analog conversion circuit. In one embodiment of the present invention, power supply to each circuit included in a semiconductor device can be stopped to reduce power consumption.
  • the semiconductor device of this embodiment can reduce power consumption without suppressing the frequency of the driving voltage or the clock signal, the performance of the analog-digital conversion circuit such as the resolution and the sampling rate is not deteriorated. can do.
  • the semiconductor device of this embodiment can hold analog data without using a flash memory or the like, power consumption can be reduced without providing a dedicated high voltage generation circuit or a peripheral circuit. .
  • the transistor according to one embodiment of the present invention preferably includes the nc-OS or the CAAC-OS described in Embodiment 7.
  • 20A and 20B are a top view and a cross-sectional view of a transistor of one embodiment of the present invention.
  • 20A is a top view
  • FIG. 20B is a cross-sectional view corresponding to the dashed-dotted line A1-A2 and the dashed-dotted line A3-A4 illustrated in FIG. Note that in the top view of FIG. 20A, some elements are not illustrated for the sake of clarity.
  • a transistor 1400a illustrated in FIGS. 20A and 20B includes a conductor 1413 over a substrate 1401, an insulator 1402 having protrusions over the substrate 1401 and the conductor 1413, and a protrusion of the insulator 1402.
  • the conductor 1413 is part of the transistor; however, the invention is not limited to this.
  • the conductor 1413 may be a component independent of the transistor.
  • the metal oxide 1406c is in contact with at least the upper surface and the side surface of the metal oxide 1406b in the A3-A4 cross section.
  • the conductor 1404 faces the top surface and the side surface of the metal oxide 1406b through the metal oxide 1406c and the insulator 1412 in the A3-A4 cross section.
  • the conductor 1413 faces the lower surface of the metal oxide 1406b with the insulator 1402 interposed therebetween.
  • the insulator 1402 may not have a convex portion.
  • the transistor 1400a does not necessarily include the metal oxide 1406c.
  • the transistor 1400a does not necessarily include the insulator 1408.
  • the transistor 1400a does not necessarily include the insulator 1418.
  • the metal oxide 1406b functions as a channel formation region of the transistor.
  • the conductor 1404 functions as a first gate electrode (also referred to as a front gate electrode) of the transistor.
  • the conductor 1413 functions as a second gate electrode (also referred to as a back gate electrode) of the transistor.
  • the conductors 1416a and 1416b function as a source electrode and a drain electrode of the transistor.
  • the insulator 1408 functions as a barrier layer.
  • the insulator 1408 has a function of blocking oxygen or / and hydrogen, for example. Alternatively, the insulator 1408 has a higher ability to block oxygen and / or hydrogen than the metal oxide 1406a and / or the metal oxide 1406c, for example.
  • the metal oxide 1406a or the metal oxide 1406c may be classified as a semiconductor depending on the material and ratio described below. As described above, since the metal oxide 1406b functions as a channel formation region of the transistor, carrier movement may not occur inside the metal oxide 1406a and the metal oxide 1406c. Therefore, in this embodiment, even if the metal oxide 1406a or the metal oxide 1406c has a property as a semiconductor, it may be handled as an insulator.
  • the insulator 1402 is preferably an insulator containing excess oxygen.
  • an insulator containing excess oxygen is an insulator having a function of releasing oxygen by heat treatment.
  • a silicon oxide layer containing excess oxygen is a silicon oxide layer from which oxygen can be released by heat treatment or the like. Therefore, the insulator 1402 is an insulator capable of moving oxygen through the film. That is, the insulator 1402 may be an insulator having oxygen permeability. For example, the insulator 1402 may be an insulator having higher oxygen permeability than the metal oxide 1406a.
  • An insulator containing excess oxygen may have a function of reducing oxygen vacancies in the metal oxide 1406b.
  • Oxygen deficiency in the metal oxide 1406b forms DOS and becomes a hole trap or the like. Further, when hydrogen enters an oxygen deficient site, electrons as carriers may be generated. Therefore, by reducing oxygen vacancies in the metal oxide 1406b, stable electrical characteristics can be imparted to the transistor.
  • the insulator from which oxygen is released by heat treatment has a surface temperature of 100 ° C. or higher and 700 ° C. or lower or 100 ° C. or higher and 500 ° C. or lower in TDS analysis (thermal desorption gas analysis).
  • oxygen in terms of the number of oxygen atoms
  • 1 ⁇ 10 18 atoms / cm 3 or more, 1 ⁇ 10 19 atoms / cm 3 or more, or 1 ⁇ 10 20 atoms / cm 3 or more may be released.
  • the total amount of gas released when the measurement sample is subjected to TDS analysis is proportional to the integrated value of the ionic strength of the released gas.
  • the total amount of gas released can be calculated by comparison with a standard sample.
  • the amount of released oxygen molecules (N O2 ) of the measurement sample is obtained by the following formula: Can do.
  • all the gases detected by the mass-to-charge ratio 32 obtained by TDS analysis are derived from oxygen molecules.
  • the mass to charge ratio of CH 3 OH is 32 but is not considered here as it is unlikely to exist.
  • oxygen molecules including oxygen atoms with a mass number of 17 and oxygen atoms with a mass number of 18 that are isotopes of oxygen atoms are not considered because the existence ratio in nature is extremely small.
  • N O2 N H2 / S H2 ⁇ S O2 ⁇ ⁇
  • N H2 is a value obtained by converting hydrogen molecules desorbed from the standard sample by density.
  • SH2 is an integral value of ion intensity when the standard sample is subjected to TDS analysis.
  • the reference value of the standard sample is N H2 / SH 2 .
  • S O2 is an integrated value of ion intensity when the measurement sample is subjected to TDS analysis.
  • is a coefficient that affects the ionic strength in the TDS analysis.
  • the amount of released oxygen is a temperature-programmed desorption analyzer EMD-WA1000S / W manufactured by Electronic Science Co., Ltd., and a silicon substrate containing, for example, 1 ⁇ 10 16 atoms / cm 2 of hydrogen atoms is used as a standard sample. Use to measure.
  • part of oxygen is detected as oxygen atoms.
  • the ratio of oxygen molecules to oxygen atoms can be calculated from the ionization rate of oxygen molecules. Note that since the above ⁇ includes the ionization rate of oxygen molecules, the amount of released oxygen atoms can be estimated by evaluating the amount of released oxygen molecules.
  • NO2 is the amount of released oxygen molecules.
  • the amount of release when converted to oxygen atoms is twice the amount of release of oxygen molecules.
  • the insulator from which oxygen is released by heat treatment may contain peroxide radicals. Specifically, it means that the spin density resulting from the peroxide radical is 5 ⁇ 10 17 spins / cm 3 or more. Note that an insulator including a peroxide radical may have an asymmetric signal with a g value of about 2.01 by ESR (Electron Spin Resonance).
  • the insulator containing excess oxygen may be oxygen-excess silicon oxide (SiO X (X> 2)).
  • Oxygen-excess silicon oxide (SiO X (X> 2)) contains oxygen atoms more than twice the number of silicon atoms per unit volume.
  • the number of silicon atoms and the number of oxygen atoms per unit volume are values measured by Rutherford Backscattering Spectroscopy (RBS: Rutherford Backscattering Spectrometry).
  • the side surface of the metal oxide 1406b is in contact with the conductor 1416a and the conductor 1416b.
  • the metal oxide 1406b can be electrically surrounded by an electric field of the conductor 1404 (a structure of a transistor that electrically surrounds a semiconductor by an electric field generated from the conductor is referred to as a surrounded channel (s-channel) structure). .) Therefore, a channel may be formed in the entire metal oxide 1406b (bulk). In the s-channel structure, a large current can flow between the source electrode and the drain electrode of the transistor, and a current during conduction (on-current) can be increased.
  • the s-channel structure can be said to be a structure suitable for a miniaturized transistor.
  • a semiconductor device including the transistor can be a highly integrated semiconductor device with high integration.
  • the transistor has a region with a channel length of preferably 40 nm or less, more preferably 30 nm or less, more preferably 20 nm or less, and the transistor has a channel width of preferably 40 nm or less, more preferably 30 nm or less, and more.
  • it has a region of 20 nm or less.
  • a voltage lower or higher than that of the source electrode may be applied to the conductor 1413 to change the threshold voltage of the transistor in the positive direction or the negative direction.
  • the threshold voltage of the transistor in the positive direction normally off, in which the transistor is turned off (off state) even when the gate voltage is 0 V, may be realized.
  • the voltage applied to the conductor 1413 may be variable or fixed. In the case where the voltage applied to the conductor 1413 is variable, a circuit for controlling the voltage may be electrically connected to the conductor 1413.
  • metal oxides applicable to the metal oxide 1406a, the metal oxide 1406b, the metal oxide 1406c, and the like will be described.
  • the metal oxide 1406b is an oxide semiconductor containing indium, for example.
  • carrier mobility electron mobility
  • the metal oxide 1406b preferably contains an element M.
  • the element M is preferably aluminum, gallium, yttrium, tin, or the like.
  • Other elements applicable to the element M include boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium.
  • the element M may be a combination of a plurality of the aforementioned elements.
  • the element M is an element having a high binding energy with oxygen, for example.
  • the element M is an element having a function of increasing the energy gap of the oxide semiconductor, for example.
  • the metal oxide 1406b preferably contains zinc. An oxide semiconductor may be easily crystallized when it contains zinc.
  • the metal oxide 1406b is not limited to the oxide semiconductor containing indium.
  • the metal oxide 1406b may be, for example, an oxide semiconductor containing zinc, an oxide semiconductor containing zinc, an oxide semiconductor containing tin, or the like that does not contain indium, such as zinc tin oxide and gallium tin oxide. Absent.
  • the metal oxide 1406b for example, an oxide having a large energy gap is used.
  • the energy gap of the metal oxide 1406b is, for example, not less than 2.5 eV and not more than 4.2 eV, preferably not less than 2.8 eV and not more than 3.8 eV, more preferably not less than 3 eV and not more than 3.5 eV.
  • the metal oxide 1406a and the metal oxide 1406c are oxides composed of one or more elements other than oxygen constituting the metal oxide 1406b, or two or more elements. Since the metal oxide 1406a and the metal oxide 1406c are composed of one or more elements other than oxygen constituting the metal oxide 1406b, or two or more elements, the interface between the metal oxide 1406a and the metal oxide 1406b, and metal oxidation Interface states are unlikely to be formed at the interface between the object 1406b and the metal oxide 1406c.
  • the metal oxide 1406a, the metal oxide 1406b, and the metal oxide 1406c preferably contain at least indium.
  • the metal oxide 1406a is an In—M—Zn oxide
  • the M is higher than 50 atomic%, and more preferably, In is 25 atomic%.
  • % And M is higher than 75 atomic%.
  • the metal oxide 1406b is an In-M-Zn oxide
  • the sum of In and M is 100 atomic%
  • In is preferably higher than 25 atomic%
  • M is less than 75 atomic%, and more preferably In is 34 atomic%.
  • % And M is less than 66 atomic%.
  • the metal oxide 1406c is an In-M-Zn oxide
  • In is preferably less than 50 atomic%
  • M is higher than 50 atomic%, and more preferably, In is 25 atomic%. %, M is higher than 75 atomic%.
  • the metal oxide 1406c may be an oxide of the same type as the metal oxide 1406a.
  • the metal oxide 1406a and / or the metal oxide 1406c may not contain indium in some cases.
  • the metal oxide 1406a and / or the metal oxide 1406c may be gallium oxide.
  • the metal oxide 1406b an oxide having an electron affinity higher than those of the metal oxide 1406a and the metal oxide 1406c is used.
  • the electron affinity of the metal oxide 1406a and the metal oxide 1406c is 0.07 eV or more and 1.3 eV or less, preferably 0.1 eV or more and 0.7 eV or less, more preferably 0.15 eV or more and 0.
  • An oxide larger than 4 eV is used. Note that the electron affinity is the difference between the vacuum level and the energy at the bottom of the conduction band.
  • the metal oxide 1406c preferably contains indium gallium oxide.
  • the gallium atom ratio [Ga / (In + Ga)] is, for example, 70% or more, preferably 80% or more, and more preferably 90% or more.
  • the composition of the metal oxide 1406a is preferably in the vicinity of the thick-line composition shown in FIG.
  • the composition of the metal oxide 1406b is preferably in the vicinity of the thick-line composition shown in FIG.
  • the composition of the metal oxide 1406c is preferably in the vicinity of the thick-line composition shown in FIG.
  • the channel formation region of the transistor can be a region having a single crystal structure.
  • the channel formation region, the source region, and the drain region of the transistor may be a region having a single crystal structure.
  • the channel formation region of the transistor is a region having a single crystal structure, so that the frequency characteristics of the transistor May be higher.
  • a mixed region of the metal oxide 1406a and the metal oxide 1406b may be provided between the metal oxide 1406a and the metal oxide 1406b. Further, in some cases, there is a mixed region of the metal oxide 1406b and the metal oxide 1406c between the metal oxide 1406b and the metal oxide 1406c. In the mixed region, the interface state density is low. Therefore, the stack of the metal oxide 1406a, the metal oxide 1406b, and the metal oxide 1406c has a band structure in which energy continuously changes (also referred to as continuous bonding) in the vicinity of each interface.
  • the on-state current of a transistor can be increased as the factor that hinders the movement of electrons is reduced. For example, when there is no factor that hinders the movement of electrons, it is estimated that electrons move efficiently. Electron movement is inhibited, for example, even when the physical unevenness of the channel formation region is large.
  • the roughness may be less than 1 nm, preferably less than 0.6 nm, more preferably less than 0.5 nm, and more preferably less than 0.4 nm.
  • the average surface roughness (also referred to as Ra) in the range of 1 ⁇ m ⁇ 1 ⁇ m is less than 1 nm, preferably less than 0.6 nm, more preferably less than 0.5 nm, and more preferably less than 0.4 nm.
  • the maximum height difference (also referred to as PV) in the range of 1 ⁇ m ⁇ 1 ⁇ m is less than 10 nm, preferably less than 9 nm, more preferably less than 8 nm, and more preferably less than 7 nm.
  • the RMS roughness, Ra, and PV can be measured using a scanning probe microscope system SPA-500 manufactured by SII Nano Technology.
  • V 2 O 3 oxygen vacancies
  • hydrogen enters the oxygen vacancy site to form a donor level (hereinafter, a state in which hydrogen has entered the oxygen vacancy site).
  • V O H may be indicated). Since V O H scatters electrons, it causes a reduction in the on-state current of the transistor. Note that oxygen deficient sites are more stable when oxygen enters than when hydrogen enters. Therefore, the on-state current of the transistor can be increased by reducing oxygen vacancies in the metal oxide 1406b in some cases.
  • the metal oxide 1406a is preferably a layer having oxygen permeability (a layer through which oxygen passes or permeates).
  • the metal oxide 1406b may have a region with a thickness of 10 nm or more, preferably 20 nm or more, more preferably 40 nm or more, more preferably 60 nm or more, and more preferably 100 nm or more.
  • the thickness of the metal oxide 1406b may be less than 10 nm.
  • the productivity of the semiconductor device may be reduced, for example, the metal oxide 1406b having a region with a thickness of 300 nm or less, preferably 200 nm or less, and more preferably 150 nm or less may be used.
  • the thickness of the metal oxide 1406c is preferably as small as possible.
  • the metal oxide 1406c having a region of less than 10 nm, preferably 5 nm or less, more preferably 3 nm or less may be used.
  • the metal oxide 1406c has a function of blocking entry of elements other than oxygen (such as hydrogen and silicon) included in the adjacent insulator into the metal oxide 1406b where a channel is formed. Therefore, the metal oxide 1406c preferably has a certain thickness.
  • the metal oxide 1406c may have a region with a thickness of 0.3 nm or more, preferably 1 nm or more, and more preferably 2 nm or more.
  • the metal oxide 1406c preferably has a property of blocking oxygen in order to suppress outward diffusion of oxygen released from the insulator 1402 and the like.
  • the metal oxide 1406a is thick and the metal oxide 1406c is thin.
  • the metal oxide 1406a may have a thickness of 10 nm or more, preferably 20 nm or more, more preferably 40 nm or more, more preferably 60 nm or more.
  • the thickness of the metal oxide 1406a By increasing the thickness of the metal oxide 1406a, the distance from the interface between the adjacent insulator and the metal oxide 1406a to the metal oxide 1406b where a channel is formed can be increased.
  • the metal oxide 1406a having a region with a thickness of 200 nm or less, preferably 120 nm or less, and more preferably 80 nm or less may be used.
  • the metal oxide 1406b and the metal oxide 1406a for example, in secondary ion mass spectrometry (SIMS), less than 1 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18
  • the region has a silicon concentration of less than atoms / cm 3 , more preferably less than 2 ⁇ 10 18 atoms / cm 3 .
  • SIMS secondary ion mass spectrometry
  • less than 1 ⁇ 10 19 atoms / cm 3 preferably less than 5 ⁇ 10 18 atoms / cm 3 , more preferably 2 ⁇ 10 18 atoms / cm between the metal oxide 1406b and the metal oxide 1406c.
  • the region has a silicon concentration of less than cm 3 .
  • the metal oxide 1406a and the metal oxide 1406c are 2 ⁇ 10 20 atoms / cm 3 or less, preferably 5 ⁇ 10 19 atoms / cm 3 or less, more preferably 1 ⁇ 10 19 atoms / cm 3 or less, in SIMS.
  • the region has a hydrogen concentration of 5 ⁇ 10 18 atoms / cm 3 or less.
  • the metal oxide 1406a and the metal oxide 1406c are less than 5 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18 atoms / cm 3 or less, more preferably 1 ⁇ 10 18 atoms / cm 3 or less, in SIMS. Preferably, it has a region having a nitrogen concentration of 5 ⁇ 10 17 atoms / cm 3 or less.
  • the above three-layer structure is an example.
  • a two-layer structure without the metal oxide 1406a or the metal oxide 1406c may be used.
  • a four-layer structure including any one of the semiconductors exemplified as the metal oxide 1406a, the metal oxide 1406b, and the metal oxide 1406c over or under the metal oxide 1406a or over or under the metal oxide 1406c I do not care.
  • the metal oxide 1406a, the metal oxide 1406b, and the metal oxide may be provided at any two or more positions over the metal oxide 1406a, under the metal oxide 1406a, over the metal oxide 1406c, and under the metal oxide 1406c.
  • An n-layer structure (n is an integer of 5 or more) including any one of the semiconductors exemplified as 1406c may be used.
  • an insulator substrate, a semiconductor substrate, or a conductor substrate may be used.
  • the insulator substrate include a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (such as a yttria stabilized zirconia substrate), and a resin substrate.
  • the semiconductor substrate include a single semiconductor substrate such as silicon or germanium, or a compound semiconductor substrate made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide.
  • there is a semiconductor substrate having an insulator region inside the semiconductor substrate for example, an SOI (Silicon On Insulator) substrate.
  • the conductor substrate examples include a graphite substrate, a metal substrate, an alloy substrate, and a conductive resin substrate.
  • a substrate including a metal nitride examples include a substrate including a metal oxide, and the like.
  • a substrate in which a conductor or a semiconductor is provided on an insulator substrate examples include a substrate in which a conductor or an insulator is provided on a semiconductor substrate, a substrate in which a semiconductor or an insulator is provided on a conductor substrate, and the like.
  • a substrate in which an element is provided may be used.
  • the element provided on the substrate include a capacitor element, a resistor element, a switch element, a light emitting element, and a memory element.
  • a flexible substrate may be used as the substrate 1401.
  • a method for providing a transistor over a flexible substrate there is a method in which after a transistor is manufactured over a non-flexible substrate, the transistor is peeled off and transferred to a substrate 1401 which is a flexible substrate.
  • a separation layer is preferably provided between the non-flexible substrate and the transistor.
  • a sheet, a film, a foil, or the like in which fibers are knitted may be used as the substrate 1401.
  • the substrate 1401 may have elasticity.
  • the substrate 1401 may have a property of returning to its original shape when bending or pulling is stopped. Or you may have a property which does not return to an original shape.
  • the thickness of the substrate 1401 is, for example, 5 ⁇ m to 700 ⁇ m, preferably 10 ⁇ m to 500 ⁇ m, more preferably 15 ⁇ m to 300 ⁇ m.
  • the semiconductor device can be reduced in weight. Further, by making the substrate 1401 thin, it may have elasticity even when glass or the like is used, or may have a property of returning to its original shape when bending or pulling is stopped. Therefore, an impact applied to the semiconductor device over the substrate 1401 due to a drop or the like can be reduced. That is, a durable semiconductor device can be provided.
  • the substrate 1401 that is a flexible substrate for example, a metal, an alloy, a resin, glass, or fiber thereof can be used.
  • the substrate 1401, which is a flexible substrate is preferable as the linear expansion coefficient is lower because deformation due to the environment is suppressed.
  • a material whose linear expansion coefficient is 1 ⁇ 10 ⁇ 3 / K or less, 5 ⁇ 10 ⁇ 5 / K or less, or 1 ⁇ 10 ⁇ 5 / K or less is used.
  • the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic.
  • aramid has a low coefficient of linear expansion, it is suitable as the substrate 1401 that is a flexible substrate.
  • Examples of the conductor 1413 include boron, nitrogen, oxygen, fluorine, silicon, phosphorus, aluminum, titanium, chromium, manganese, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, molybdenum, ruthenium, silver, indium,
  • a conductor containing one or more of tin, tantalum, and tungsten may be used in a single layer or a stacked layer.
  • it may be an alloy or a compound, a conductor containing aluminum, a conductor containing copper and titanium, a conductor containing copper and manganese, a conductor containing indium, tin and oxygen, a conductor containing titanium and nitrogen Etc. may be used.
  • an insulator containing boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium, or tantalum is used.
  • the insulator 1402 includes aluminum oxide, magnesium oxide, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, or oxide Tantalum may be used.
  • the insulator 1402 may have a role of preventing diffusion of impurities from the substrate 1401. In the case where the metal oxide 1406b is an oxide semiconductor, the insulator 1402 can serve to supply oxygen to the metal oxide 1406b.
  • conductor 1416a and the conductor 1416b for example, boron, nitrogen, oxygen, fluorine, silicon, phosphorus, aluminum, titanium, chromium, manganese, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, molybdenum, ruthenium,
  • a conductor including one or more of silver, indium, tin, tantalum, and tungsten may be used in a single layer or a stacked layer.
  • it may be an alloy or a compound, a conductor containing aluminum, a conductor containing copper and titanium, a conductor containing copper and manganese, a conductor containing indium, tin and oxygen, a conductor containing titanium and nitrogen Etc. may be used.
  • a defect may be formed in the metal oxide 1406a, the metal oxide 1406b, or the metal oxide 1406c.
  • the defect may cause the metal oxide 1406a, the metal oxide 1406b, or the metal oxide 1406c to be n-type.
  • ohmic contact is established between the metal oxide 1406a, the metal oxide 1406b, or the metal oxide 1406c, and the conductor 1416a and the conductor 1416b.
  • the metal oxide 1406a, the metal oxide 1406b, or the metal oxide 1406c are reduced by dehydrogenation, oxygenation, or the like, the metal oxide 1406a, the metal oxide 1406b, or the metal oxide 1406c And Schottky contact between the conductor 1416a and the conductor 1416b.
  • the insulator 1412 for example, an insulator containing boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium, or tantalum. , Single layer or stacked layers.
  • the insulator 1412 includes aluminum oxide, magnesium oxide, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, or oxide Tantalum may be used.
  • Examples of the conductor 1404 include boron, nitrogen, oxygen, fluorine, silicon, phosphorus, aluminum, titanium, chromium, manganese, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, molybdenum, ruthenium, silver, indium,
  • a conductor containing one or more of tin, tantalum, and tungsten may be used in a single layer or a stacked layer.
  • it may be an alloy or a compound, a conductor containing aluminum, a conductor containing copper and titanium, a conductor containing copper and manganese, a conductor containing indium, tin and oxygen, a conductor containing titanium and nitrogen Etc. may be used.
  • an insulator containing boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium, or tantalum is used.
  • the insulator 1408 is preferably formed using a single layer or a stack of insulators containing aluminum oxide, silicon nitride oxide, silicon nitride, gallium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, or tantalum oxide. Use it.
  • the insulator 1418 for example, an insulator containing boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium, or tantalum is used. , Single layer or stacked layers.
  • the insulator 1418 includes aluminum oxide, magnesium oxide, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, or oxide Tantalum may be used.
  • FIG. 20 illustrates an example in which the conductor 1404 that is the first gate electrode of the transistor and the conductor 1413 that is the second gate electrode are not electrically connected to each other, according to one embodiment of the present invention.
  • the structure of the transistor is not limited to this.
  • a structure in which the conductor 1404 and the conductor 1413 are electrically connected to each other as in a transistor 1400b illustrated in FIG. With such a structure, since the same potential is supplied to the conductor 1404 and the conductor 1413, the switching characteristics of the transistor can be improved.
  • a structure without the conductor 1413 may be employed as in a transistor 1400c illustrated in FIG.
  • FIG. 22A is an example of a top view of a transistor.
  • FIG. 22B illustrates an example of a cross-sectional view corresponding to the dashed-dotted line F1-F2 and the dashed-dotted line F3-F4 in FIG. Note that in FIG. 22A, part of the insulator and the like is omitted for easy understanding.
  • the conductor 1416a and the conductor 1416b functioning as a source electrode and a drain electrode are in contact with the top and side surfaces of the metal oxide 1406b, the top surface of the insulator 1402, and the like.
  • the structure of the transistor is not limited to this.
  • the conductor 1416a and the conductor 1416b may be in contact with only the top surface of the metal oxide 1406b.
  • an insulator 1428 may be provided over the insulator 1418.
  • the insulator 1428 is preferably an insulator having a flat upper surface.
  • the insulator 1428 is an insulator including, for example, boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium, or tantalum. May be used in a single layer or a stacked layer.
  • the insulator 1428 includes aluminum oxide, magnesium oxide, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, or oxide. Tantalum may be used.
  • planarization treatment may be performed by a chemical mechanical polishing (CMP) method or the like.
  • the insulator 1428 may be a resin.
  • a resin containing polyimide, polyamide, acrylic, silicone, or the like may be used.
  • the top surface of the insulator 1428 may not be planarized in some cases.
  • productivity can be increased.
  • a conductor 1424a and a conductor 1424b may be provided over the insulator 1428.
  • the conductor 1424a and the conductor 1424b have a function as a wiring, for example.
  • the insulator 1428 may have an opening, and the conductor 1416a and the conductor 1424a may be electrically connected through the opening.
  • the insulator 1428 may have another opening, and the conductor 1416b and the conductor 1424b may be electrically connected through the opening.
  • the conductors 1426a and 1426b may be provided in the respective openings.
  • conductor 1424a and the conductor 1424b for example, boron, nitrogen, oxygen, fluorine, silicon, phosphorus, aluminum, titanium, chromium, manganese, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, molybdenum, ruthenium,
  • a conductor including one or more of silver, indium, tin, tantalum, and tungsten may be used in a single layer or a stacked layer.
  • it may be an alloy or a compound, a conductor containing aluminum, a conductor containing copper and titanium, a conductor containing copper and manganese, a conductor containing indium, tin and oxygen, a conductor containing titanium and nitrogen Etc. may be used.
  • the conductor 1416a and the conductor 1416b are not in contact with the side surface of the metal oxide 1406b. Therefore, an electric field applied from the conductor 1404 functioning as the first gate electrode toward the side surface of the metal oxide 1406b is difficult to be shielded by the conductor 1416a and the conductor 1416b.
  • the conductors 1416a and 1416b are not in contact with the top surface of the insulator 1402. Therefore, excess oxygen (oxygen) released from the insulator 1402 is not consumed because the conductor 1416a and the conductor 1416b are oxidized. Therefore, excess oxygen (oxygen) released from the insulator 1402 can be efficiently used to reduce oxygen vacancies in the metal oxide 1406b.
  • the transistor having the structure illustrated in FIGS. 22A and 22B is an excellent electrical characteristic transistor having high on-state current, high field effect mobility, low subthreshold swing value, high reliability, and the like.
  • FIGS. 23A and 23B are a top view and a cross-sectional view of a transistor of one embodiment of the present invention.
  • 23A is a top view
  • FIG. 23B is a cross-sectional view corresponding to the dashed-dotted line G1-G2 and the dashed-dotted line G3-G4 illustrated in FIG. Note that for simplification of the drawing, some components are not illustrated in the top view in FIG.
  • the transistor 1400e does not include the conductor 1416a and the conductor 1416b as illustrated in FIG. 23, and may have a structure in which the conductor 1426a and the conductor 1426b are in contact with the metal oxide 1406b.
  • a low resistance region 1423a (low resistance region 1423b) be provided in a region in contact with at least 426a and the conductor 1426b of the metal oxide 1406b and / or the metal oxide 1406a.
  • the low resistance region 1423a and the low resistance region 1423b may be formed by adding impurities to the metal oxide 1406b and / or the metal oxide 1406a, for example, using the conductor 1404 as a mask.
  • the conductor 1426a and the conductor 1426b may be provided in a hole (through) or a depression (not through) of the metal oxide 1406b. Since the conductor 1426a and the conductor 1426b are provided in the hole or depression of the metal oxide 1406b, the contact area between the conductor 1426a and the conductor 1426b and the metal oxide 1406b is increased. Can be small. That is, the on-state current of the transistor can be increased.
  • 24A and 24B are a top view and a cross-sectional view of a transistor of one embodiment of the present invention.
  • 24A is a top view
  • FIG. 24B is a cross-sectional view corresponding to the dashed-dotted line J1-J2 and the dashed-dotted line J3-J4 shown in FIG. Note that in the top view of FIG. 24A, some elements are omitted for clarity.
  • a transistor 1600a illustrated in FIGS. 24A and 24B includes a conductor 1604 over a substrate 1601, an insulator 1612 over the conductor 1604, a metal oxide 1606a over the insulator 1612, and a metal oxide.
  • the metal oxide 1606b over the metal oxide 1606b, the metal oxide 1606c over the metal oxide 1606b, the metal oxide 1606a, the metal oxide 1606b, and the metal oxide 1606c are in contact with and spaced from each other A body 1616b; and an insulator 1618 over the metal oxide 1606c, the conductor 1616a, and the conductor 1616b.
  • the conductor 1604 faces the lower surface of the metal oxide 1606b with the insulator 1612 interposed therebetween.
  • the insulator 1612 may have a convex portion. Further, an insulator may be provided between the substrate 1601 and the conductor 1604. For the insulator, the description of the insulator 1402 and the insulator 1408 is referred to. Further, the metal oxide 1606a may not be provided. Further, the insulator 1618 is not necessarily provided.
  • the metal oxide 1606b functions as a channel formation region of the transistor.
  • the conductor 1604 functions as a first gate electrode (also referred to as a front gate electrode) of the transistor.
  • the conductors 1616a and 1616b function as a source electrode and a drain electrode of the transistor.
  • the metal oxide 1606a or the metal oxide 1606c may be classified as a semiconductor depending on the material and ratio described below. As described above, since the metal oxide 1606b functions as a channel formation region of the transistor, carrier movement may not occur inside the metal oxide 1606a and the metal oxide 1606c in some cases. Therefore, in this embodiment, even if the metal oxide 1606a or the metal oxide 1606c has properties as a semiconductor, it may be handled as an insulator.
  • the insulator 1618 is preferably an insulator containing excess oxygen.
  • the description of the substrate 1401 is referred to for the substrate 1601.
  • the description of the conductor 1404 is referred to.
  • the description of the conductor 1404 is referred to.
  • the description of the conductor 1404 is referred to.
  • the insulator 1612 the description of the insulator 1412 is referred to.
  • the description of the metal oxide 1406a is referred to.
  • the description of the metal oxide 1406b is referred to.
  • the description of the metal oxide 1406c the description of the metal oxide 1406a is referred to.
  • the conductor 1616a and the conductor 1616b the description of the conductor 1416a and the conductor 1416b is referred to.
  • the description of the insulator 1402 is referred to.
  • a display element may be provided over the insulator 1618.
  • a pixel electrode, a liquid crystal layer, a common electrode, a light emitting layer, an organic EL layer, an anode, a cathode, and the like may be provided.
  • the display element is connected to, for example, a conductor 1616a.
  • FIG. 25A is an example of a top view of a transistor.
  • FIG. 25B illustrates an example of a cross-sectional view corresponding to the dashed-dotted line K1-K2 and the dashed-dotted line K3-K4 in FIG. Note that in FIG. 25A, part of the insulator and the like is omitted for easy understanding.
  • an insulator that can function as a channel protective film may be provided over the semiconductor.
  • an insulator 1620 may be provided between the conductor 1616a and the conductor 1616b and the metal oxide 1606c.
  • the conductor 1616a (conductor 1616b) and the metal oxide 1606c are connected to each other through an opening in the insulator 1620.
  • the description of the insulator 1618 may be referred to.
  • the conductor 1613 may be provided over the insulator 1618 and the insulator 1630 may be provided over the conductor 1613. Examples of such a case are illustrated in a transistor 1600c in FIG. 26A and a transistor 1600d in FIG.
  • the description of the conductor 1413 is referred to.
  • the description of the insulator 1418 is referred to.
  • the conductor 1613 may be supplied with the same potential or the same signal as the conductor 1604, or may be supplied with a different potential or signal.
  • a certain potential may be supplied to the conductor 1613 to control the threshold voltage of the transistor. That is, the conductor 1613 can function as a second gate electrode.
  • an s-channel structure may be formed using the conductor 1613 or the like.
  • the insulator 1630 may not be provided.
  • An oxide semiconductor is classified into a single crystal oxide semiconductor and a non-single crystal oxide semiconductor.
  • a CAAC-OS C Axis Crystalline Oxide Semiconductor
  • a polycrystalline oxide semiconductor an nc-OS (Nanocrystalline Semiconductor)
  • a pseudo-amorphous oxide semiconductor a-liquid oxide OS like Oxide Semiconductor
  • amorphous oxide semiconductor a-liquid oxide OS
  • oxide semiconductors are classified into amorphous oxide semiconductors and other crystalline oxide semiconductors.
  • a crystalline oxide semiconductor include a single crystal oxide semiconductor, a CAAC-OS, a polycrystalline oxide semiconductor, and an nc-OS.
  • the amorphous structure As the definition of the amorphous structure, it is generally known that it is not fixed in a metastable state, isotropic and does not have a heterogeneous structure. Moreover, it can be paraphrased as a structure having a flexible bond angle and short-range order, but not long-range order.
  • an intrinsically stable oxide semiconductor it cannot be called a completely amorphous oxide semiconductor.
  • an oxide semiconductor that is not isotropic eg, has a periodic structure in a minute region
  • a completely amorphous oxide semiconductor e.g., has a periodic structure in a minute region
  • an a-like OS has a periodic structure in a minute region
  • CAAC-OS First, the CAAC-OS will be described.
  • CAAC-OS is one of oxide semiconductors having a plurality of c-axis aligned crystal parts (also referred to as pellets).
  • a plurality of pellets can be confirmed by observing a combined analysis image (also referred to as a high-resolution TEM image) of a CAAC-OS bright field image and a diffraction pattern with a transmission electron microscope (TEM: Transmission Electron Microscope). .
  • TEM Transmission Electron Microscope
  • the boundary between pellets that is, the crystal grain boundary (also referred to as grain boundary) cannot be clearly confirmed. Therefore, it can be said that the CAAC-OS does not easily lower the electron mobility due to the crystal grain boundary.
  • FIG. 27A shows a high-resolution TEM image of a cross section of the CAAC-OS observed from a direction substantially parallel to the sample surface.
  • a spherical aberration correction function was used for observation of the high-resolution TEM image.
  • a high-resolution TEM image using the spherical aberration correction function is particularly referred to as a Cs-corrected high-resolution TEM image.
  • Acquisition of a Cs-corrected high-resolution TEM image can be performed by, for example, an atomic resolution analytical electron microscope JEM-ARM200F manufactured by JEOL Ltd.
  • FIG. 27B shows a Cs-corrected high-resolution TEM image obtained by enlarging the region (1) in FIG.
  • FIG. 27B shows that metal atoms are arranged in a layered manner in a pellet.
  • the arrangement of each layer of metal atoms reflects unevenness on a surface (also referred to as a formation surface) or an upper surface where a CAAC-OS film is formed, and is parallel to the formation surface or the upper surface of the CAAC-OS.
  • the CAAC-OS has a characteristic atomic arrangement.
  • FIG. 27C shows a characteristic atomic arrangement with auxiliary lines.
  • one pellet has a size of 1 nm or more, or 3 nm or more, and the size of the gap caused by the inclination between the pellet and the pellet is about 0.8 nm. I know that there is. Therefore, the pellet can also be referred to as a nanocrystal (nc).
  • the CAAC-OS can also be referred to as an oxide semiconductor including CANC (C-Axis aligned nanocrystals).
  • FIG. 27D is a structure in which bricks or blocks are stacked. reference.).
  • a portion where an inclination occurs between the pellets observed in FIG. 27C corresponds to a region 5161 illustrated in FIG.
  • FIG. 28A shows a Cs-corrected high-resolution TEM image of the plane of the CAAC-OS observed from a direction substantially perpendicular to the sample surface.
  • the Cs-corrected high-resolution TEM images obtained by enlarging the region (1), the region (2), and the region (3) in FIG. 28A are shown in FIGS. 28B, 28C, and 28D, respectively. Show. From FIG. 28 (B), FIG. 28 (C), and FIG. 28 (D), it can be confirmed that the metal atoms are arranged in a triangular shape, a quadrangular shape, or a hexagonal shape in the pellet. However, there is no regularity in the arrangement of metal atoms between different pellets.
  • CAAC-OS analyzed by X-ray diffraction X-ray diffraction
  • XRD X-Ray Diffraction
  • a peak appears at a diffraction angle (2 ⁇ ) of around 31 ° as illustrated in FIG. There is. Since this peak is attributed to the (009) plane of the InGaZnO 4 crystal, the CAAC-OS crystal has c-axis orientation, and the c-axis is oriented in a direction substantially perpendicular to the formation surface or the top surface. It can be confirmed.
  • a peak at 2 ⁇ of around 36 ° may appear in structural analysis by the out-of-plane method of the CAAC-OS.
  • a peak at 2 ⁇ of around 36 ° indicates that a crystal having no c-axis alignment is included in part of the CAAC-OS.
  • 2 ⁇ has a peak in the vicinity of 31 °, and 2 ⁇ has no peak in the vicinity of 36 °.
  • a CAAC-OS analyzed by electron diffraction will be described.
  • a diffraction pattern (a limited-field transmission electron diffraction pattern as illustrated in FIG. Say) may appear.
  • This diffraction pattern includes spots caused by the (009) plane of the InGaZnO 4 crystal. Therefore, electron diffraction shows that the pellets included in the CAAC-OS have c-axis alignment, and the c-axis is in a direction substantially perpendicular to the formation surface or the top surface.
  • FIG. 30B shows a diffraction pattern obtained when an electron beam with a probe diameter of 300 nm is incident on the same sample in a direction perpendicular to the sample surface. From FIG. 30B, a ring-shaped diffraction pattern is confirmed. Therefore, electron diffraction shows that the a-axis and the b-axis of the pellet included in the CAAC-OS have no orientation. Note that the first ring in FIG. 30B is considered to originate from the (010) plane and the (100) plane of the InGaZnO 4 crystal. Further, the second ring in FIG. 30B is considered to be due to the (110) plane or the like.
  • the CAAC-OS is an oxide semiconductor with high crystallinity. Since the crystallinity of an oxide semiconductor may be deteriorated by entry of impurities, generation of defects, or the like, in reverse, the CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies).
  • the impurity means an element other than the main components of the oxide semiconductor, such as hydrogen, carbon, silicon, or a transition metal element.
  • an element such as silicon which has a stronger bonding force with oxygen than a metal element included in an oxide semiconductor, disturbs the atomic arrangement of the oxide semiconductor by depriving the oxide semiconductor of oxygen, thereby reducing crystallinity. It becomes a factor.
  • heavy metals such as iron and nickel, argon, carbon dioxide, and the like have large atomic radii (or molecular radii), which disturbs the atomic arrangement of the oxide semiconductor and decreases crystallinity.
  • an impurity contained in the oxide semiconductor might serve as a carrier trap or a carrier generation source.
  • oxygen vacancies in the oxide semiconductor may serve as carrier traps or may serve as carrier generation sources by capturing hydrogen.
  • a CAAC-OS with few impurities and oxygen vacancies is an oxide semiconductor with low carrier density. Specifically, it is less than 8 ⁇ 10 11 / cm 3 , preferably less than 1 ⁇ 10 11 / cm 3 , more preferably less than 1 ⁇ 10 10 / cm 3 , and a carrier of 1 ⁇ 10 ⁇ 9 / cm 3 or more.
  • a dense oxide semiconductor can be obtained. Such an oxide semiconductor is referred to as a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor.
  • the CAAC-OS has a low impurity concentration and a low density of defect states. That is, it can be said that the oxide semiconductor has stable characteristics.
  • the nc-OS has a region where a crystal part can be confirmed and a region where a clear crystal part cannot be confirmed in a high-resolution TEM image.
  • a crystal part included in the nc-OS has a size of 1 nm to 10 nm, or 1 nm to 3 nm.
  • an oxide semiconductor in which the size of a crystal part is greater than 10 nm and less than or equal to 100 nm is sometimes referred to as a microcrystalline oxide semiconductor.
  • the nc-OS may not be able to clearly confirm a crystal grain boundary in a high-resolution TEM image.
  • the nanocrystal may have the same origin as the pellet in the CAAC-OS. Therefore, the crystal part of nc-OS is sometimes referred to as a pellet below.
  • Nc-OS has periodicity in atomic arrangement in a minute region (for example, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has no regularity in crystal orientation between different pellets. Therefore, orientation is not seen in the whole film. Therefore, the nc-OS may not be distinguished from an a-like OS or an amorphous oxide semiconductor depending on an analysis method. For example, when an X-ray having a diameter larger than that of the pellet is used for nc-OS, a peak indicating a crystal plane is not detected in the analysis by the out-of-plane method.
  • a diffraction pattern such as a halo pattern is observed.
  • nanobeam electron diffraction is performed on the nc-OS using an electron beam having a probe diameter that is close to the pellet size or smaller than the pellet size, spots are observed.
  • a region with high luminance may be observed like a circle (in a ring shape).
  • a plurality of spots may be observed in the ring-shaped region.
  • nc-OS has an oxide semiconductor having RANC (Random Aligned nanocrystals) or NANC (Non-Aligned nanocrystals). It can also be called an oxide semiconductor.
  • Nc-OS is an oxide semiconductor having higher regularity than an amorphous oxide semiconductor. Therefore, the nc-OS has a lower density of defect states than an a-like OS or an amorphous oxide semiconductor. Note that the nc-OS does not have regularity in crystal orientation between different pellets. Therefore, the nc-OS has a higher density of defect states than the CAAC-OS.
  • the a-like OS is an oxide semiconductor having a structure between the nc-OS and an amorphous oxide semiconductor.
  • a void may be observed in a high-resolution TEM image. Moreover, in a high-resolution TEM image, it has the area
  • the a-like OS Since it has a void, the a-like OS has an unstable structure.
  • the a-like OS has an unstable structure as compared with the CAAC-OS and the nc-OS, a change in the structure due to electron irradiation is shown.
  • sample A A-like OS (referred to as sample A), nc-OS (referred to as sample B), and CAAC-OS (referred to as sample C) are prepared as samples to be irradiated with electrons. Each sample is an In—Ga—Zn oxide.
  • the determination of which part is regarded as one crystal part may be performed as follows.
  • the unit cell of an InGaZnO 4 crystal has a structure in which three In—O layers and six Ga—Zn—O layers have a total of nine layers stacked in the c-axis direction.
  • the spacing between these adjacent layers is about the same as the lattice spacing (also referred to as d value) of the (009) plane, and the value is determined to be 0.29 nm from crystal structure analysis. Therefore, a portion where the interval between lattice fringes is 0.28 nm or more and 0.30 nm or less can be regarded as a crystal part of InGaZnO 4 .
  • the lattice fringes correspond to the ab plane of the InGaZnO 4 crystal.
  • FIG. 31 is an example in which the average size of the crystal parts (from 22 to 45) of each sample was examined. However, the length of the lattice fringes described above is the size of the crystal part. From FIG. 31, it can be seen that in the a-like OS, the crystal part becomes larger according to the cumulative dose of electrons. Specifically, as indicated by (1) in FIG. 31, the crystal portion (also referred to as the initial nucleus) which was about 1.2 nm in the initial stage of observation by TEM has a cumulative irradiation dose of 4.2. It can be seen that the film grows to a size of about 2.6 nm at ⁇ 10 8 e ⁇ / nm 2 .
  • the crystal part sizes of the nc-OS and the CAAC-OS are about 1.4 nm, respectively, regardless of the cumulative electron dose. And about 2.1 nm.
  • the crystal part may be grown by electron irradiation.
  • the crystal part is hardly grown by electron irradiation. That is, it can be seen that the a-like OS has an unstable structure compared to the nc-OS and the CAAC-OS.
  • the a-like OS has a lower density than the nc-OS and the CAAC-OS.
  • the density of the a-like OS is 78.6% or more and less than 92.3% of the density of the single crystal having the same composition.
  • the density of the nc-OS and the density of the CAAC-OS are 92.3% or more and less than 100% of the density of the single crystal having the same composition.
  • An oxide semiconductor that is less than 78% of the density of a single crystal is difficult to form.
  • the density of single crystal InGaZnO 4 having a rhombohedral structure is 6.357 g / cm 3 .
  • the density of a-like OS is 5.0 g / cm 3 or more and less than 5.9 g / cm 3.
  • the density of the nc-OS and the density of the CAAC-OS are 5.9 g / cm 3 or more and 6.3 g / cm. less than cm 3 .
  • the density corresponding to the single crystal in a desired composition can be estimated by combining single crystals having different compositions at an arbitrary ratio. What is necessary is just to estimate the density corresponding to the single crystal of a desired composition using a weighted average with respect to the ratio which combines the single crystal from which a composition differs. However, the density is preferably estimated by combining as few kinds of single crystals as possible.
  • oxide semiconductors have various structures and various properties.
  • the oxide semiconductor may be a stacked film including two or more of an amorphous oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS, for example.
  • the semiconductor device (a transistor, a memory cell, or the like) described in the above embodiment is applied to an electronic component (an RFIC, a memory device, or the like), and an electronic device including the electronic component.
  • an electronic component an RFIC, a memory device, or the like
  • the semiconductor device described in the above embodiment is applied to an electronic component.
  • the electronic component is also referred to as a semiconductor package or an IC package.
  • This electronic component has a plurality of standards and names depending on the terminal take-out direction and the shape of the terminal. Therefore, in this embodiment, an example will be described.
  • a semiconductor device including a transistor as shown in the first embodiment and the second embodiment is completed by combining a plurality of detachable parts with a printed circuit board through an assembly process (post process).
  • the post-process can be completed through each process shown in FIG. Specifically, after the element substrate obtained in the previous process is completed (step S1), the back surface of the substrate is ground (step S2). This is because by reducing the thickness of the substrate at this stage, it is possible to reduce the warpage of the substrate in the previous process and to reduce the size of the component.
  • ⁇ Dicing process to separate the substrate into multiple chips by grinding the backside of the substrate. Then, a die bonding process is performed in which the separated chips are individually picked up and mounted on the lead frame and bonded (step S3).
  • a suitable method is appropriately selected according to the product, such as bonding with a resin or bonding with a tape.
  • the die bonding step may be mounted on the interposer and bonded.
  • one surface of the substrate is used as the surface, and the other surface of the substrate (the surface on the side where the elements of the substrate are not formed). ) Is the back side.
  • step S4 wire bonding is performed in which the lead of the lead frame and the electrode on the chip are electrically connected by a thin metal wire (step S4).
  • a silver wire or a gold wire can be used as the metal thin wire.
  • ball bonding or wedge bonding can be used.
  • the wire-bonded chip is sealed with an epoxy resin or the like and subjected to a molding process (step S5).
  • a molding process By performing the molding process, the inside of the electronic component is filled with resin, which can reduce damage to the built-in circuit part and wires due to mechanical external force, and can reduce deterioration of characteristics due to moisture and dust. it can.
  • step S6 lead leads are plated. Then, the lead is cut and molded (step S6). By this plating treatment, rusting of the lead can be prevented, and soldering when mounting on a printed circuit board can be performed more reliably.
  • step S7 a printing process (marking) is performed on the surface of the package (step S7).
  • An electronic component is completed through a final inspection process (step S8) (step S9).
  • the electronic component described above can be configured to include the semiconductor device described in the above embodiment. Therefore, it is possible to realize an electronic component with excellent reliability.
  • FIG. 32B shows a schematic perspective view of a QFP (Quad Flat Package) as an example of an electronic component.
  • An electronic component 1900 illustrated in FIG. 32B illustrates a lead 1901 and a circuit portion 1903.
  • An electronic component 1900 illustrated in FIG. 32B is mounted on a printed board 1902, for example.
  • a plurality of such electronic components 1900 are combined and each is electrically connected on the printed circuit board 1902 so that it can be mounted inside the electronic device.
  • the completed circuit board 1904 is provided inside an electronic device or the like.
  • the content described in one embodiment (may be a part of content) is different from the other content described in the embodiment (may be a part of content) and one or more other implementations.
  • Application, combination, replacement, or the like can be performed on at least one of the contents described in the form (may be part of the contents).
  • a drawing (or a part thereof) described in one embodiment may be different from another part of the drawing, another drawing (may be a part) described in the embodiment, or one or more different drawings.
  • more drawings can be formed.
  • the terms “upper” and “lower” do not limit that the positional relationship between the constituent elements is directly above or directly below and in direct contact with each other.
  • the expression “electrode B on the insulating layer A” does not require the electrode B to be formed in direct contact with the insulating layer A, and another configuration between the insulating layer A and the electrode B. Do not exclude things that contain elements.
  • the constituent elements are classified by function and shown as independent blocks.
  • it is difficult to separate the components for each function and there may be a case where a plurality of functions are involved in one circuit or a case where one function is involved over a plurality of circuits. Therefore, the blocks in the block diagram are not limited to the components described in the specification, and can be appropriately rephrased depending on the situation.
  • the size, the layer thickness, or the region is shown in an arbitrary size for convenience of explanation. Therefore, it is not necessarily limited to the scale. Note that the drawings are schematically shown for the sake of clarity, and are not limited to the shapes or values shown in the drawings. For example, variation in signal, voltage, or current due to noise, variation in signal, voltage, or current due to timing shift can be included.
  • top view also referred to as a plan view or a layout view
  • perspective view in order to clarify the drawing.
  • one of a source and a drain is referred to as “one of a source and a drain” (or a first electrode or a first terminal), and the source and the drain The other is referred to as “the other of the source and the drain” (or the second electrode or the second terminal).
  • the source and drain of a transistor vary depending on the structure or operating conditions of the transistor.
  • the names of the source and the drain of the transistor can be appropriately rephrased depending on the situation, such as a source (drain) terminal or a source (drain) electrode.
  • Electrode and “wiring” do not functionally limit these components.
  • an “electrode” may be used as part of a “wiring” and vice versa.
  • the terms “electrode” and “wiring” include a case where a plurality of “electrodes” and “wirings” are integrally formed.
  • the voltage is a potential difference from a reference potential.
  • the reference potential is a ground potential (ground potential)
  • the voltage can be rephrased as a potential.
  • the ground potential does not necessarily mean 0V. Note that the potential is relative, and the potential applied to the wiring or the like may be changed depending on the reference potential.
  • conductive layer may be changed to the term “conductive film”.
  • insulating film may be changed to the term “insulating layer”.
  • the term “conductive layer” or “conductive film” may be changed to the term “conductor” in some cases.
  • the terms “insulating layer” and “insulating film” may be changed to the term “insulator”.
  • wiring can be interchanged with each other depending on circumstances or circumstances. For example, it may be possible to change the term “wiring” to the term “signal line”. In addition, for example, the term “wiring” may be changed to a term such as “power supply line”. The reverse is also true, and there are cases where terms such as “signal line” and “power supply line” can be changed to the term “wiring”. A term such as “power line” may be changed to a term such as “signal line”. The reverse is also true, and a term such as “signal line” may be changed to a term such as “power line”.
  • the semiconductor device may have characteristics as an “insulator”.
  • the boundary between “semiconductor” and “insulator” is ambiguous and may not be strictly discriminated. Therefore, a “semiconductor” in this specification can be called an “insulator” in some cases.
  • an “insulator” in this specification can be called a “semiconductor” in some cases.
  • semiconductor even when “semiconductor” is described, for example, when the conductivity is sufficiently high, it may have a characteristic as a “conductor”. In addition, the boundary between “semiconductor” and “conductor” is ambiguous, and there are cases where it cannot be strictly distinguished. Therefore, a “semiconductor” in this specification can be called a “conductor” in some cases. Similarly, a “conductor” in this specification can be called a “semiconductor” in some cases.
  • the semiconductor impurity means, for example, a component other than the main component constituting the semiconductor layer.
  • an element having a concentration of less than 0.1 atomic% is an impurity.
  • impurities for example, DOS (Density of State) may be formed in a semiconductor, carrier mobility may be reduced, and crystallinity may be reduced.
  • examples of impurities that change the characteristics of the semiconductor include Group 1 elements, Group 2 elements, Group 13 elements, Group 14 elements, Group 15 elements, and components other than main components Examples include transition metals, and in particular, hydrogen (also included in water), lithium, sodium, silicon, boron, phosphorus, carbon, nitrogen, and the like.
  • oxygen vacancies may be formed by mixing impurities such as hydrogen, for example.
  • impurities such as hydrogen, for example.
  • examples of impurities that change the characteristics of the semiconductor include group 1 elements, group 2 elements, group 13 elements, and group 15 elements excluding oxygen and hydrogen.
  • a transistor is an element having at least three terminals including a gate, a drain, and a source.
  • a channel formation region is provided between the drain (drain terminal, drain region or drain electrode) and the source (source terminal, source region or source electrode), and current is passed through the drain, channel formation region, and source. It can be shed. Note that in this specification and the like, a channel formation region refers to a region through which a current mainly flows.
  • the functions of the source and drain may be switched when transistors with different polarities are used or when the direction of current changes during circuit operation. Therefore, in this specification and the like, the terms source and drain can be used interchangeably.
  • a switch refers to a switch that is in a conductive state (on state) or a non-conductive state (off state) and has a function of controlling whether or not to pass current.
  • the switch refers to a switch having a function of selecting and switching a current flow path.
  • an electrical switch or a mechanical switch can be used. That is, the switch is not limited to a specific one as long as it can control the current.
  • Examples of electrical switches include transistors (eg, bipolar transistors, MOS transistors, etc.), diodes (eg, PN diodes, PIN diodes, Schottky diodes, MIM (Metal Insulator Metal) diodes, MIS (Metal Insulator Semiconductor) diodes. , Diode-connected transistors, etc.), or a logic circuit combining these.
  • transistors eg, bipolar transistors, MOS transistors, etc.
  • diodes eg, PN diodes, PIN diodes, Schottky diodes, MIM (Metal Insulator Metal) diodes, MIS (Metal Insulator Semiconductor) diodes. , Diode-connected transistors, etc.
  • diodes eg, PN diodes, PIN diodes, Schottky diodes, MIM (Metal Insulator Metal) diodes, MIS (Metal Insulator Semiconductor) diodes. , Dio
  • the “conducting state” of the transistor means a state in which the source electrode and the drain electrode of the transistor can be regarded as being electrically short-circuited.
  • the “non-conducting state” of a transistor refers to a state where the source electrode and the drain electrode of the transistor can be regarded as being electrically disconnected. Note that when a transistor is operated as a simple switch, the polarity (conductivity type) of the transistor is not particularly limited.
  • a mechanical switch is a switch using MEMS (micro electro mechanical system) technology such as a digital micromirror device (DMD).
  • MEMS micro electro mechanical system
  • DMD digital micromirror device
  • the switch has an electrode that can be moved mechanically, and operates by controlling conduction and non-conduction by moving the electrode.
  • the channel length refers to, for example, a region where a semiconductor (or a portion where a current flows in the semiconductor when the transistor is on) and a gate electrode overlap with each other or a channel in a top view of the transistor The distance between the source (source region or source electrode) and the drain (drain region or drain electrode) in the region to be formed.
  • the channel length does not always take the same value in all regions. That is, the channel length of one transistor may not be fixed to one value. Therefore, in this specification, the channel length is any one of values, the maximum value, the minimum value, or the average value in a region where a channel is formed.
  • the channel width refers to, for example, a region where a semiconductor (or a portion in which a current flows in the semiconductor when the transistor is on) and a gate electrode overlap in the top view, or a region where a channel is formed The length of the portion where the source and drain face each other.
  • the channel width is not necessarily the same in all regions. That is, the channel width of one transistor may not be fixed to one value. Therefore, in this specification, the channel width is any one of values, the maximum value, the minimum value, or the average value in a region where a channel is formed.
  • the channel width in a region where a channel is actually formed (hereinafter referred to as an effective channel width) and the channel width shown in a top view of the transistor (hereinafter, apparent channel width). May be different).
  • the effective channel width is larger than the apparent channel width shown in the top view of the transistor, and the influence may not be negligible.
  • the ratio of the channel region formed on the side surface of the semiconductor may be large. In that case, the effective channel width in which the channel is actually formed is larger than the apparent channel width shown in the top view.
  • an apparent channel width which is a length of a portion where a source and a drain face each other in a region where a semiconductor and a gate electrode overlap with each other is referred to as an “enclosed channel width (SCW : Surrounded Channel Width) ”.
  • SCW Surrounded Channel Width
  • the simple description of channel width may refer to an enclosed channel width or an apparent channel width.
  • the term “channel width” in the case where the term “channel width” is simply used, it may denote an effective channel width. Note that the channel length, channel width, effective channel width, apparent channel width, enclosed channel width, and the like can be determined by obtaining a cross-sectional TEM image and analyzing the image. it can.
  • the calculation may be performed using the enclosed channel width. In that case, the value may be different from that calculated using the effective channel width.
  • connection relation ⁇ About connection
  • X and Y when X and Y are described as being connected, X and Y are electrically connected and X and Y are functionally connected. And the case where X and Y are directly connected. Therefore, it is not limited to a predetermined connection relation, for example, the connection relation shown in the figure or text, and includes things other than the connection relation shown in the figure or text.
  • X and Y used here are objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
  • an element for example, a switch, a transistor, a capacitive element, an inductor, a resistance element, a diode, a display, etc.
  • the switch has a function of controlling on / off. That is, the switch is in a conductive state (on state) or a non-conductive state (off state), and has a function of controlling whether or not to pass a current.
  • the switch has a function of selecting and switching a current flow path.
  • a circuit for example, a logic circuit (an inverter, a NAND circuit, a NOR circuit, etc.) that enables a functional connection between X and Y, signal conversion, etc.
  • Circuit (DA conversion circuit, AD conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (boost circuit, step-down circuit, etc.), level shifter circuit that changes signal potential level, etc.), voltage source, current source, switching Circuit, amplifier circuit (circuit that can increase signal amplitude or current amount, operational amplifier, differential amplifier circuit, source follower circuit, buffer circuit, etc.), signal generation circuit, memory circuit, control circuit, etc.)
  • One or more can be connected between them.
  • a circuit for example, a logic circuit (an inverter, a NAND circuit, a NOR circuit, etc.) that enables a functional connection between X and Y, signal conversion, etc.
  • Circuit (DA conversion circuit, AD conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power
  • the source (or the first terminal) of the transistor is electrically connected to X through (or not through) Z1, and the drain (or the second terminal or the like) of the transistor is connected to Z2.
  • Y is electrically connected, or the source (or the first terminal, etc.) of the transistor is directly connected to a part of Z1, and another part of Z1 Is directly connected to X, and the drain (or second terminal, etc.) of the transistor is directly connected to a part of Z2, and another part of Z2 is directly connected to Y.
  • X and Y, and the source (or the first terminal or the like) and the drain (or the second terminal or the like) of the transistor are electrically connected to each other.
  • the drain of the transistor (or the second terminal, etc.) and the Y are electrically connected in this order.
  • the source (or the first terminal, etc.) of the transistor is electrically connected to X
  • the drain (or the second terminal, etc.) of the transistor is electrically connected to Y
  • X, the source of the transistor ( Or the first terminal or the like, the drain of the transistor (or the second terminal, or the like) and Y are electrically connected in this order.
  • X is electrically connected to Y through the source (or the first terminal) and the drain (or the second terminal) of the transistor, and X is the source of the transistor (or the first terminal). Terminal, etc.), the drain of the transistor (or the second terminal, etc.), and Y are provided in this connection order.
  • the source (or the first terminal, etc.) and the drain (or the second terminal, etc.) of the transistor are separated. Apart from that, the technical scope can be determined.
  • these expression methods are examples, and are not limited to these expression methods.
  • X, Y, Z1, and Z2 are objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, and the like).
  • the term “electrically connected” in this specification includes in its category such a case where one conductive film has functions of a plurality of components.
  • parallel means a state in which two straight lines are arranged at an angle of ⁇ 10 ° to 10 °. Therefore, the case of -5 ° or more and 5 ° or less is also included.
  • substantially parallel means a state in which two straight lines are arranged at an angle of ⁇ 30 ° to 30 °.
  • Vertical means a state in which two straight lines are arranged at an angle of 80 ° or more and 100 ° or less. Therefore, the case of 85 ° or more and 95 ° or less is also included.
  • substantially vertical means a state in which two straight lines are arranged at an angle of 60 ° or more and 120 ° or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

消費電力の低減された環境センサを提供する。 第1のセンサ、第2のセンサ、制御回路、送信アンプ、変調回路、記憶装置、アナログデジタル変換 回路、 及びアンテナを有する半導体装置である。 記憶装置及びアナログデジタル変換回路は、 チャネ ル領域に酸化物半導体が形成されたトランジスタを有している。第2のセンサは、光センサであり、 レーザ光を受光すると、 トリガ信号を制御回路に送信する機能を有する。 制御回路は、 トリガ信号を 受けると、第1のセンサ、送信アンプ、変調回路、記憶装置、及びアナログデジタル変換回路に制御 信号を送信する機能を有する。 第1のセンサは、 物理量又は化学量を計測するセンサであり、 計測さ れたデータは、 アナログデジタル変換回路によって、 デジタル変換され、 記憶装置に記憶される。 ま た、データは、変調回路及び送信アンプを介して、アンテナから電磁波信号として送信される。

Description

環境センサ、又は半導体装置
 本発明の一態様は、環境センサ、又は半導体装置に関する。
 なお本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、又は、製造方法に関するものである。又は、本発明の一態様は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、蓄電装置、撮像装置、記憶装置、プロセッサ、電子機器、それらの駆動方法、それらの製造方法、それらの検査方法、又はそれらのシステムを一例として挙げることができる。
 近年、建造物の安全管理、メンテナンス、環境情報の収集などに環境センサが用いられている。当該環境センサは、微細化、及び低消費電力など様々な面で改良が進められている。
 低消費電力化、微細化などの高性能化を図る方法として、半導体装置に使われているトランジスタの半導体層(以下、活性層、チャネル層、チャネル形成領域という場合がある)を酸化物半導体にする提案がある。例えば、チャネル層にインジウム、ガリウム、及び亜鉛を含む酸化物(以下、In−Ga−Zn酸化物という場合がある)を用いたトランジスタなどが挙げられる(特許文献1参照。)。
特表平11−505377号公報 特開平6−275697号公報
 日本国の高度経済成長期(1950年代から1970年代まで)に建築された構造物は近年寿命を迎えつつあり、その保全が重要な課題となっている。構造物の保全方法は、点検調査、補修や補強の作業などが挙げられる。特に、点検調査では、構造物各所の温度、湿度、歪み、及び劣化起因となる物質の量などの測定が行われ、それらは、今後の管理や保全を行う上で重要なデータとなる。それらのデータを収集する電子機器の一つに環境センサがある。
 また、新規に建造された構造物においても、保全を行うため、あらかじめ構造物に環境センサを設置する場合がある。
 環境センサは、高所やトンネルの中、橋の橋脚など、人の立ち入り難い場所にされることが多い。そのため、データ取得の方法は、RFIC(Radio Frequency Integrated Circuit、高周波集積回路)を内蔵した環境センサを用いて、無線通信を利用している場合が多い。この場合、環境センサと外部の送受信機との間で、相互に無線通信が行われ、環境センサ内に記録されたデータの取得が行われる。
 RFICには、パッシブ型とアクティブ型がある。パッシブ型のRFICとは、電池を内蔵せずに、受信された電波を電力に変換して動作するものを指す。アクティブ型のRFICとは、電池を内蔵して、電池の起電力によって動作するものを指す。つまり、パッシブ型のRFICを搭載した環境センサは、受信された電波を変換した電力で、環境センサの駆動と、RFICの駆動と、を行い、アクティブ型のRFICを搭載した環境センサは、内蔵された電池の起電力で、環境センサの駆動と、RFICの駆動と、を行う。
 パッシブ型のRFICを内蔵した環境センサは、電池を有していないので、電波を受信しているときのみしか、通信ができない、且つセンシングができない。また、環境センサの動作電力は電波を受信することで得られるため、長距離の通信を行うには電力が不足する場合がある。
 アクティブ型のRFICを内蔵した環境センサは、電池を有しているので、電波を受信していないときでも、センシングを行うことができる。また、アクティブ型のRFICは、電池だけでなく、受信アンプ、及び送信アンプを有している場合が多く、受信アンプ、及び送信アンプによって、パッシブ型のRFICよりも長い距離の通信を実現することができる。しかし、アクティブ型のRFICを内蔵した環境センサは、常に電波を受信できる状態でなくてはならないため、受信アンプを常時動作し続ける必要がある。また、環境センサの回路構成において、シリコン(Si)をチャネル形成領域に持つトランジスタを使用したとき、トランジスタがオフ状態であってもオフ電流(リーク電流)が発生する場合がある。それらの理由により、アクティブ型のRFICを内蔵した環境センサの消費電力は高くなる。つまり、電池の消耗が早くなり、その分電池の交換回数も多くなる。特に、環境センサは、高所、トンネルの中、橋の橋脚など、人の立ち入り難い危険な場所に設置される場合があるため、電池の交換作業や充電作業が安全に行うことができないことも多い。
 更に、内蔵するRFICがアクティブ型、パッシブ型を問わず、プログラム、データを格納するメモリにフラッシュメモリ、DRAMなどを用いると環境センサの消費電力が大きくなる場合がある。また、環境センサ内の回路の数が増えると、その分消費電力も大きくなる。
 上述の問題点から、電波を受信していないときでもセンシングが可能で、かつ消費電力の少ない環境センサが求められている。
 本発明の一態様は、新規な半導体装置の提供することを課題の一つとする。又は、本発明の一態様は、新規な半導体装置を有する電子機器を提供することを課題の一とする。又は、本発明の一態様は、新規な半導体装置を有するモジュールを使用した電子機器による新規なシステムを提供することを課題の一とする。又は、本発明の一態様は、新規な重子機器、又は新規なシステムなどを提供することを課題の一とする。
 又は、本発明の一態様は、電波を受信していないときでもセンシングが可能な半導体装置を提供することを課題の一とする。又は、本発明の一態様は、回路の数を低減した半導体装置を提供することを課題の一とする。又は、本発明の一態様は、消費電力の低い半導体装置を提供することを課題の一とする。又は、本発明の一態様は、電池の交換作業や充電作業の回数を低減できる半導体装置を提供することを課題の一とする。又は、本発明の一態様は、長距離通信の可能な半導体装置を提供することを課題の一とする。
 なお本発明の一態様の課題は、上記列挙した課題に限定されない。上記列挙した課題は、他の課題の存在を妨げるものではない。なお他の課題は、以下の記載で述べる、本項目で言及していない課題である。本項目で言及していない課題は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した記載、及び他の課題のうち、少なくとも一つの課題を解決するものである。なお、本発明の一態様は、上記列挙した記載、及び他の課題の少なくとも一つについて、全ての課題を解決する必要はない。
(1)
 本発明の一態様は、第1のセンサと、第2のセンサと、制御回路と、送信アンプと、変調回路と、記憶装置と、アナログデジタル変換回路と、第1のアンテナと、電池と、電源回路と、を有し、記憶装置は、第1のトランジスタと、第1の保持ノードと、を有し、アナログデジタル変換回路は、第2のトランジスタと、第2の保持ノードと、を有し、第1のトランジスタは、チャネル形成領域に酸化物半導体を有し、第2のトランジスタは、チャネル形成領域に酸化物半導体を有し、第1のトランジスタは、第1の保持ノードの充電及び放電を制御する機能を有し、第2のトランジスタは、第2の保持ノードの充電及び放電を制御する機能を有し、電池は、電源回路を介して、第1のセンサと、第2のセンサと、制御回路と、送信アンプと、変調回路と、記憶装置と、アナログデジタル変換回路と、に電力を供給する機能を有し、第2のセンサは、光を受光すると、トリガ信号を前記制御回路に出力する機能を有し、制御回路は、電気信号を受けることにより、第1のセンサと、記憶装置と、アナログデジタル変換回路と、変調回路と、送信アンプと、に制御信号を送る機能を有し、第1のセンサは、外界の物理量、又は化学量を第1のセンシングデータとして取得する機能を有し、アナログデジタル変換回路は、第1のセンシングデータをデジタル変換して、第2のセンシングデータを生成する機能を有し、記憶装置は、第2のセンシングデータを記憶する機能を有し、変調回路は、第2のセンシングデータを変調する機能を有し、送信アンプは、変調回路で変調された第2のセンシングデータを増幅する機能を有し、第1のアンテナは、送信アンプで増幅された第2のセンシングデータを第1の電磁波信号として送信する機能を有することを特徴とする環境センサである。
(2)
 本発明の一態様は、受信回路と、第1のセンサと、制御回路と、送信アンプと、変調回路と、記憶装置と、アナログデジタル変換回路と、第1のアンテナと、電池と、電源回路と、を有し、記憶装置は、第1のトランジスタと、第1の保持ノードと、を有し、アナログデジタル変換回路は、第2のトランジスタと、第2の保持ノードと、を有し、第1のトランジスタは、チャネル形成領域に酸化物半導体を有し、第2のトランジスタは、チャネル形成領域に酸化物半導体を有し、第1のトランジスタは、第1の保持ノードの充電及び放電を制御する機能を有し、第2のトランジスタは、第2の保持ノードの充電及び放電を制御する機能を有し、電池は、電源回路を介して、第1のセンサと、受信回路と、制御回路と、送信アンプと、変調回路と、記憶装置と、アナログデジタル変換回路と、に電力を供給する機能を有し、受信回路は、外部からの信号を受信すると、トリガ信号を制御回路に出力する機能を有し、制御回路は、トリガ信号を受けることにより、第1のセンサと、記憶装置と、アナログデジタル変換回路と、変調回路と、送信アンプと、に制御信号を送る機能を有し、第1のセンサは、外界の物理量、又は化学量を第1のセンシングデータとして取得する機能を有し、アナログデジタル変換回路は、第1のセンシングデータをデジタル変換して、第2のセンシングデータを生成する機能を有し、記憶装置は、第2のセンシングデータを記憶する機能を有し、変調回路は、第2のセンシングデータを変調する機能を有し、送信アンプは、変調回路で変調された第2のセンシングデータを増幅する機能を有し、第1のアンテナは、送信アンプで増幅された第2のセンシングデータを第1の電磁波信号として送信する機能を有することを特徴とする環境センサである。
(3)
 本発明の一態様は、前記(2)において、受信回路は、検波回路を有し、電池は、電源回路を介して、検波回路に電力を供給する機能を有し、第1のアンテナは、外部から第2の電磁波信号を受信する機能を有し、検波回路は、第2の電磁波信号を復調して、トリガ信号として制御回路に出力する機能を有する環境センサである。
(4)
 本発明の一態様は、前記(2)において、受信回路は、第2のアンテナと、検波回路と、を有し、電池は、電源回路を介して、検波回路に電力を供給する機能を有し、第2のアンテナは、外部からの第2の電磁波信号を受信する機能を有し、検波回路は、第2の電磁波信号を復調して、トリガ信号として制御回路に出力する機能を有し、第1の電磁波信号の周波数と、第2の電磁波信号の周波数は、互いに異なることを特徴とする環境センサである。
(5)
 本発明の一態様は、前記(1)乃至(4)のいずれか一において、センサは、物理量として、応力、歪み、温度、湿度、光量、電流、電圧、粒子の数、粒子の濃度の少なくともいずれか一を計測する機能を有することを特徴とする環境センサである。
(6)
 本発明の一態様は、前記(1)乃至(4)のいずれか一において、第1のセンサは、化学量として、酸化物イオン、硫化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、水酸化物イオン、硫酸イオン、炭酸イオン、水素イオン、カルシウムイオンの少なくともいずれか一の量を計測する機能を有することを特徴とする環境センサである。
(7)
 本発明の一態様は、前記(1)乃至(6)のいずれか一において、記憶装置は、更に、第1の容量素子を有し、第1の容量素子は、第1の保持ノードの電圧を保持する機能を有することを特徴とする環境センサである。
(8)
 本発明の一態様は、前記(1)乃至(7)のいずれか一において、アナログデジタル変換回路は、更に、第2の容量素子を有し、第2の容量素子は、第2の保持ノードの電圧を保持する機能を有することを特徴とする環境センサである。
 本発明の一態様によって、新規な半導体装置の提供することができる。又は、本発明の一態様によって、新規な半導体装置を有する電子機器を提供することができる。又は、本発明の一態様によって、新規な半導体装置を有するモジュールを使用した電子機器による新規なシステムを提供することを課題の一とする。又は、本発明の一態様によって、新規な電子機器又は新規なシステムなどを提供することができる。
 又は、本発明の一態様によって、電波を受信していないときでもセンシングが可能な半導体装置を提供することができる。又は、本発明の一態様によって、回路の数を低減した半導体装置を提供することができる。又は、本発明の一態様によって、消費電力の低い半導体装置を提供することができる。又は、本発明の一態様によって、電池の交換作業や充電作業の回数を低減できる半導体装置を提供することができる。又は、本発明の一態様によって、長距離通信の可能な半導体装置を提供するができる。
 なお本発明の一態様の効果は、上記列挙した効果に限定されない。上記列挙した効果は、他の効果の存在を妨げるものではない。なお他の効果は、以下の記載で述べる、本項目で言及していない効果である。本項目で言及していない効果は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した効果、及び他の効果のうち、少なくとも一つの効果を有するものである。従って本発明の一態様は、場合によっては、上記列挙した効果を有さない場合もある。
半導体装置を示すブロック図。 半導体装置を示すブロック図。 半導体装置の利用方法を説明する図。 半導体装置の利用方法を説明する図。 半導体装置の利用方法を説明する図。 半導体装置を示すブロック図。 半導体装置を示すブロック図。 半導体装置の利用方法を説明する図。 記憶装置の一例を示すブロック図。 メモリセルの一例を示す回路図。 メモリセルの一例を示す回路図。 アナログデジタル変換回路の一例を示すブロック図。 アナログデジタル変換回路の一例を示すブロック図。 アナログデジタル変換回路の一部を示すブロック図。 アナログデジタル変換回路の一部を示すブロック図とその動作を示すタイミングチャート。 アナログデジタル変換回路の一部を示す回路図。 アナログデジタル変換回路の一例を示すブロック図。 アナログデジタル変換回路の一部を示す回路図。 In−M−Zn酸化物の組成を説明する三角図。 トランジスタの構成例を示す上面図及び断面図。 トランジスタの構成例を示す断面図。 トランジスタの構成例を示す上面図及び断面図。 トランジスタの構成例を示す上面図及び断面図。 トランジスタの構成例を示す上面図及び断面図。 トランジスタの構成例を示す上面図及び断面図。 トランジスタの構成例を示す断面図。 CAAC−OSの断面におけるCs補正高分解能TEM像、及びCAAC−OSの断面模式図。 CAAC−OSの平面におけるCs補正高分解能TEM像。 CAAC−OS及び単結晶酸化物半導体のXRDによる構造解析を説明する図。 CAAC−OSの電子回折パターンを示す図。 In−Ga−Zn酸化物の電子照射による結晶部の変化を示す図。 半導体装置の作製方法の一例を示すフローチャート及び斜視図。
 本明細書において、構造物とは、例えば、トンネル、橋、高架橋、電柱、鉄塔などを指し、建築物も含まれるものとする。建築物とは、例えば、住居(一軒家、集合住宅など)、商業施設(デパートメントストア、スーパーマーケット、ショッピングモール、オフィスビルなど)、工場などがある。
 本明細書において、酸化物半導体をOS(Oxide Semiconductor)と表記する場合がある。そのため、チャネル形成領域に酸化物半導体を有するトランジスタをOSトランジスタという場合がある。また、OSトランジスタを用いたメモリをOSメモリという場合がある。また、OSトランジスタを用いたアナログデジタル変換回路をOSアナログデジタル変換回路という場合がある。
 本明細書において、本発明の一態様である環境センサは、受信回路、送信回路、電池、電源回路、制御回路、記憶装置、アナログデジタル変換回路に加え、物理量又は化学量をセンシングするセンサによって構成された半導体装置である。したがって、「環境センサ」と表記した場合、本発明の一態様である半導体装置を指す。したがって、環境センサを半導体装置、電子機器などと言い換える場合がある。そして、「センサ」「第1のセンサ」「第2のセンサ」などと表記した場合、それらは本発明の一態様の環境センサを指すものではなく、物理量又は化学量をセンシングするセンサを指すものとする。特に、「光センサ」と表記した場合、光センサは、外部からのレーザ光によって環境センサを駆動させるための受信回路を指すものとする。
(実施の形態1)
 本発明の一態様である環境センサの説明をする。
<構成例1>
 図1に、開示する発明の環境センサの一例を示す。環境センサ100aは、アクティブ型の環境センサである。環境センサ100aは、アンテナ101と、センサ回路110aと、を有している。センサ回路110aは、受信回路111と、電源回路112と、電池113と、制御回路120と、送信回路130と、記憶装置114と、アナログデジタル変換回路115と、センサ116と、を有している。制御回路120は、論理回路121と、メモリコントローラ122と、センサコントローラ123と、を有している。送信回路130は、変調回路131と、送信アンプ132と、を有している。
 アンテナ101は、送信回路130と電気的に接続されている。送信アンプ132は、変調回路131と電気的に接続されている。論理回路121は、受信回路111と、変調回路131と、メモリコントローラ122と、センサコントローラ123と電気的に接続されている。メモリコントローラ122は、センサコントローラ123と、記憶装置114と電気的に接続されている。センサコントローラ123は、アナログデジタル変換回路115と、センサ116と電気的に接続されている。センサ116は、アナログデジタル変換回路115と電気的に接続されている。
 電池113は、電源回路112と電気的に接続されている。電池113は、環境センサ100aの起電力として機能し、電源回路112に電位を供給する。電源回路112は、電池113から入力された電位から、安定した電源電圧を生成する。なお、図1には図示していないが、電源回路112は、各回路に電源電圧を供給するため、各回路と電気的に接続されている。また、電源回路112の内部にリセット信号生成回路を設けてもよい。リセット信号生成回路は、安定した電源電圧の立ち上がりを利用して、論理回路121のリセット信号を生成するための回路である。
 電池113は、キャパシタ又は二次電池などの蓄電装置、一次電池などを用いることができる。二次電池として、例えば、鉛蓄電池、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン電池などを用いることができる。キャパシタとして、例えば、電気二重層キャパシタや、一対の電極のいずれか一方が電気二重層を構成し、他方が酸化還元反応を使用したハイブリッドキャパシタを用いることができる。ハイブリッドキャパシタには、例えば、正極が電気二重層を構成し、負極がリチウムイオン二次電池を構成している、リチウムイオンキャパシタが含まれる。
 受信回路111は、外部からの信号を受信する機能を有する。受信回路111は、外部からの信号を受信することで、論理回路121に駆動信号を送り、環境センサ100aを駆動させることができる。
 アンテナ101は、センシングデータを無線信号として外部へ送信するためのものである。論理回路121は、環境センサ100aを駆動するための回路であり、受信回路111からの駆動信号を受けることで、動作を開始する。変調回路131は、アンテナ101より出力するデータに応じて変調を行うための回路である。
 送信アンプ132は、アンテナ101より出力するデータを増幅するための回路である。出力データを増幅させることにより、パッシブ型RFICよりも長い距離での通信が可能となる。
 センサコントローラ123は、論理回路121からの命令信号に従って、センサ116、及びアナログデジタル変換回路115を制御する回路である。また、センサコントローラ123は、得られたセンシングデータの出力を行う機能も有する。
 アナログデジタル変換回路115は、センサ116から送られてきたセンシングデータをデジタル変換する機能を有する。
 メモリコントローラ122は、論理回路121からの命令信号に従って、記憶装置114を制御する回路である。また、記憶装置114へのセンシングデータの入力、記憶装置114からのセンシングデータの出力を行う機能も有する。
 記憶装置114は、取得したセンシングデータを書き込んで保持する機能を有する。また、書き込んだセンシングデータを読み出して、論理回路121にデータを送る機能を有する。また、記憶装置114には、環境センサ100aの動作プログラムも格納されている。
<動作例1>
 次に、環境センサ100aの動作について説明する。
 受信回路111は外部からの信号を受信することで、論理回路121へ駆動信号の入力を行う。論理回路121は、受信回路111からの駆動信号を受けて、メモリコントローラ122とセンサコントローラ123を動作させる。受信回路111の出力信号は制御回路120を動かすためのトリガ信号となる。また、受信回路は、受信アンプと異なり常時動作せず、信号を受けたときに動作を行う。したがって環境センサ100aは消費電力を小さく抑えることができる。
 センサコントローラ123は、センサ116によって取得したセンシングデータをアナログデジタル変換回路115でデジタル変換するように、アナログデジタル変換回路115及びセンサ116を制御する。デジタル化されたセンシングデータは、メモリコントローラ122を介して、記憶装置114に格納される。
 センシング動作の終了時に、記憶装置114に格納されたセンシングデータの読み出しが行われる。読み出されたセンシングデータは、メモリコントローラ122と論理回路121を介して、変調回路131にて変調される。変調されたセンシングデータは、送信アンプ132によって増幅され、アンテナ101から送信される。また、タイマー(図示せず)を設けて定期的にセンシングやAD変換を行い、取得したセンシングデータを記憶装置114に記憶し、トリガ信号を受けると送信回路130からセンシングデータを送信するようにしてもよい。
 このように、環境センサ100aへ信号を送り、アンテナ101から出力された電波を受信することで、センサ116が取得したセンシングデータを得ることができる。
<構成例2>
 図2に、開示する発明の環境センサの一例を示す。環境センサ100bは、アクティブ型の環境センサである。環境センサ100bは外部より入力される信号を光信号とし、受信回路を光センサ117とした例である。環境センサ100bは、アンテナ101と、センサ回路110bと、を有している。センサ回路110bは、光センサ117と、電源回路112と、電池113と、制御回路120と、送信回路130と、OSメモリ141と、OSアナログデジタル変換回路142と、センサ116と、を有している。制御回路120は、論理回路121と、メモリコントローラ122と、センサコントローラ123と、を有している。送信回路130は、送信アンプ132と、変調回路131と、を有している。図2においては、環境センサ100aの有する記憶装置114を消費電力の低いOSメモリ141とし、環境センサ100aの有するアナログデジタル変換回路115を消費電力の低いOSアナログデジタル変換回路142としている。このような構成にすることによって、更なる低消費電力化を図ることができる。
 アンテナ101は、送信アンプ132と電気的に接続されている。送信アンプ132は、変調回路131と電気的に接続されている。論理回路121は、光センサ117と、変調回路131と、メモリコントローラ122と、センサコントローラ123と電気的に接続されている。メモリコントローラ122は、センサコントローラ123と、OSメモリ141と電気的に接続されている。センサコントローラ123は、OSアナログデジタル変換回路142と、センサ116と電気的に接続されている。センサ116は、OSアナログデジタル変換回路142と電気的に接続されている。
 電池113は、電源回路112と電気的に接続されている。電池113は、環境センサ100bの起電力として機能し、電源回路112に電位を供給する。電源回路112は、電池113から入力された電位から、安定した電源電圧を生成する。なお、図2には図示していないが、電源回路112は、各回路に電源電圧を供給するため、各回路と電気的に接続されている。また、電源回路112の内部にリセット信号生成回路を設けてもよい。リセット信号生成回路は、安定した電源電圧の立ち上がりを利用して、論理回路121のリセット信号を生成するための回路である。
 電池113は、キャパシタ又は二次電池などの蓄電装置、一次電池などを用いることができる。二次電池として、例えば、鉛蓄電池、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン電池などを用いることができる。キャパシタとして、例えば、電気二重層キャパシタや、一対の電極のいずれか一方が電気二重層を構成し、他方が酸化還元反応を使用したハイブリッドキャパシタを用いることができる。ハイブリッドキャパシタには、例えば、正極が電気二重層を構成し、負極がリチウムイオン二次電池を構成している、リチウムイオンキャパシタが含まれる。
 光センサ117は、外部からのレーザ光を受光する機能を有する。光センサ117は、レーザ光を受光することで、論理回路121に駆動信号を送り、環境センサ100bを駆動させることができる。
 アンテナ101は、センシングデータを無線信号として外部へ送信するためのものである。論理回路121は、環境センサ100bを駆動するための回路であり、光センサ117からの駆動信号を受けることで、動作を開始する。変調回路131は、アンテナ101より出力するデータに応じて変調を行うための回路である。
 送信アンプ132は、アンテナ101より出力するデータを増幅するための回路である。出力データを増幅させることにより、パッシブ型RFICよりも長い距離での通信が可能となる。
 センサコントローラ123は、論理回路121からの命令信号に従って、センサ116、及びOSアナログデジタル変換回路142を制御する回路である。また、センサコントローラ123は、得られたセンシングデータの出力を行う機能も有する。
 OSアナログデジタル変換回路142は、酸化物半導体をチャネル形成領域に用いたトランジスタを搭載したアナログデジタル変換回路である。OSアナログデジタル変換回路142は、センサ116から送られてきたセンシングデータをデジタル変換する機能を有する。
 メモリコントローラ122は、論理回路121から命令信号に従って、OSメモリ141を制御する回路である。また、OSメモリ141へのセンシングデータの入力、OSメモリ141からのセンシングデータの出力を行う機能も有する。
 OSメモリ141は、酸化物半導体をチャネル形成領域に用いたトランジスタを搭載したメモリである。OSメモリ141は、取得したセンシングデータを書き込んで保持する機能を有する。また、書き込んだセンシングデータを読み出して、論理回路121にデータを送る機能を有する。また、OSメモリには、環境センサ100bの動作プログラムも格納されている。
<動作例2>
 次に、環境センサ100bの動作について説明する。
 光センサ117は外部からのレーザ光を受光することで、論理回路121へ駆動信号の入力を行う。論理回路121は、光センサ117からの駆動信号を受けて、メモリコントローラ122とセンサコントローラ123を動作させる。つまり、光センサ117へのレーザ光は制御回路120を動かすためのトリガ信号となる。また、受信回路は信号を受けていないときは動作せず電力を消費しない。したがって環境センサ100bは消費電力を小さく抑えることができる。
 センサコントローラ123は、センサ116によって取得したセンシングデータをOSアナログデジタル変換回路142でデジタル変換するように、OSアナログデジタル変換回路142及びセンサ116を制御する。デジタル化されたセンシングデータは、メモリコントローラ122を介して、OSメモリ141に格納される。
 センシング動作の終了時に、OSメモリ141に格納されたセンシングデータの読み出しが行われる。読み出されたセンシングデータは、メモリコントローラ122と論理回路121を介して、変調回路131にて変調される。変調されたセンシングデータは、送信アンプ132によって増幅され、アンテナ101から送信される。
 このように、環境センサ100bへレーザ光を送り、アンテナ101から出力された電波を受信することで、センサ116が取得したセンシングデータを得ることができる。また、タイマー(図示せず)を設けて定期的にセンシングやAD変換を行い、取得したセンシングデータをOSメモリ141に記憶し、トリガ信号を受けると送信回路130からセンシングデータを送信するようにしてもよい。
<利用例1>
 環境センサ100bの利用方法の一例について、説明する。
 図3は、環境センサ100bをトンネル内に設置した例である。環境センサ100b−1がトンネルの天井406に設けられ、自動車401のルーフ部分にRF(Radio Frequency)受信機403が設けられ、自動車401の車窓付近にレーザ光送信機404が設けられている。
 環境センサ100b−1が有するアンテナ101及び光センサ117は、トンネルの天井406の面に設けられている。また、アンテナ101及び光センサ117は、場合によって、又は、状況によって、トンネルの天井406から吊り下げる形式にしてもよい。また、アンテナ101のみをトンネルの天井406の壁の内部に埋め込んでもよい。
 環境センサ100b−1が有するセンサ回路110bは、センシングしたい情報によって取り付ける場所を適宜変更することができる。例えば、トンネルの天井406の壁の内部の歪み状態、腐食状態などを知りたい場合、図3に示す通り、天井406の壁の内部にセンサ回路110bを設ければよい。このとき、センサ回路110bの有するセンサ116としては、天井406の劣化原因となる物質をセンシングできるセンサを用いればよい。天井406がコンクリートで形成されていた場合、劣化原因となる物質としては、酸化物イオン、硫化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、水酸化物イオン、硫酸イオン、炭酸イオン、水素イオン、カルシウムイオンなどが挙げられるので、これらの物質量を測定できるセンサを用いればよい。
 また、例えば、トンネルの天井406の表面のヒビ割れや欠損の状態を知りたい場合は、トンネルの天井406の表面付近にセンサ回路110bを設ければよい。このとき、センサ回路110bの有するセンサ116としては、上述と同様に天井406の劣化原因となる物質をセンシングできるセンサを用いればよい。また、光量をセンシングできるセンサを用いてもよい。天井406にヒビ割れや欠損が起きたとき、外界からの光がヒビ割れや欠損の箇所から天井406の壁の内部に入り込む場合がある。このような場合において、光量をセンシングするセンサを用いることにより、ヒビ割れや欠損をすぐに見つけることができる。
 また、例えば、トンネルの天井406の保全調査以外の用途として、トンネル内部の空気清浄度の測定を行ってもよい。この場合、センサ回路110bは、トンネルの天井406の表面に設け(図示せず)、センサ回路110bの有するセンサ116としては、パーティクルなどの粒子数又はその濃度を測定できるセンサを用いればよい。粒子数又はその濃度の測定を行うことで、トンネル内部の換気機構が機能しているかどうか判定することができる。つまり、トンネルの換気機構を構成する換気機やジェットファンなどの機能調査を行うことができる。
 自動車401がトンネルを通過する時、光センサ117に対してレーザ光送信機404からレーザ光を送信する。なお、光センサは、100m以上の距離が離れた光源からのレーザ光を検出することが可能である。
 本実施の形態の環境センサ100bは、アクティブ型の環境センサであるため、電源を別途電波で送る必要はない。環境センサ100bは、電池113を内蔵しているので、パッシブ型においてアンテナが受信した信号を整流する処理が無い分、より早くセンシングを行うことができる。また、環境センサ100bは、光センサがトリガとなる(環境センサを駆動させる)レーザ光を受信するだけなので、一度レーザ光を受光した後は、OSメモリ141に内蔵されたプログラムに沿って動作を行うことができるため、レーザ光を長く受ける必要はない。
 そのため、自動車401が特定の光センサの周辺を通過する短時間で、環境センサ100b−1へのレーザ光の受光と、環境センサ100b−1からの電波の送信が行われる。RF受信機403が、送信された電波を受信することにより、環境センサ100bの測定したセンシングデータを取得することができる。
 本発明の一態様である環境センサ100bの利用方法は、利用例1のトンネルに限定されない。例えば、橋脚の保全調査として環境センサ100bを用いてもよい。図4(A)では、橋1000の橋脚1001に、環境センサ100b−2を設けた例について示している。具体的には、図4(B)に示すとおり、橋脚1001の内部にセンサ回路110bを埋め込み、橋脚1001の外部に光センサ117とアンテナ101を設けている。このような構成によって、レーザ光送信機とRF受信機を備えた情報処理端末1002を用いることにより、環境センサ100b−2と情報処理端末1002との間の通信でセンシングデータを取得することができ、橋脚1001の保全調査を容易に行うことができる。
 また、例えば、電柱や信号機などの保全調査として環境センサ100bを用いてもよい。図5では、信号機のある電柱1100に環境センサ100b−3及び環境センサ100b−4を設けた例を示している。環境センサ100b−3は、電柱1100の内部にセンサ回路110bを埋め込み、電柱1100の外部に光センサ117とアンテナ101を設けた構成となっており、センサ回路110bは、光センサ117、及びアンテナ101と配線1101で電気的に接続されている。このような構成によって、レーザ光送信機とRF受信機を備えた情報処理端末1104を用いることにより、環境センサ100b−3と情報処理端末1104との間の通信でセンシングデータを取得することができ、電柱1100の保全調査を行うことができる。
 また、環境センサ100b−4は、信号機1103の内部にセンサ回路110bを設け、電柱1100の外部に光センサ117とアンテナ101を設けた構成となっており、センサ回路110bは、光センサ117、及びアンテナ101と配線1102で電気的に接続されている。このとき、センサ回路110bが有するセンサ116としては、信号機1103の内部の電流、電圧、光量などをセンシングするセンサを用いればよい。このような構成によって、レーザ光送信機とRF受信機を備えた情報処理端末1104を用いることにより、環境センサ100b−4と情報処理端末1104との間の通信で信号機の情報を取得することができ、信号機1103の保全調査を容易に行うことができる。
 また、信号機1103の保全調査以外でも、センサ116として、パーティクルなどの粒子数又はその濃度を測定できるセンサを用いることで、信号機1103を設けた箇所付近の空気洗浄度の測定を行うことができる。具体的には、パーティクル、排気ガス、花粉などの濃度の測定を行うことができる。
 上述した以外でも、立ち入りの難しい箇所に環境センサ100bを設けることで、設けられた構造物の保全調査を容易に行うことができる。
 また、本実施の形態で使用する電磁波信号の周波数は、使用する状況、環境などに併せて適宜選択すればよい。例えば、通信距離がおよそ10mで済む場合はUHF帯の周波数、具体的には、300MHz、また430MHzの周波数を用いればよい。また、通信距離がおよそ50m以上かつ70m以下の場合は、マイクロ波帯の周波数、例えば、2.45GHzの周波数を用いればよい。なお、本実施の形態の構成例2において、受信回路を光センサとして用いた場合、100m以上離れた距離でも通信が可能なので、受信回路については、光センサを用いた構成が適している。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態2)
 本発明の一態様である環境センサの説明をする。
<構成例3>
 図6に、開示する発明の半導体装置の一例を示す。環境センサ100cは、アクティブ型の環境センサである。環境センサ100cは外部より入力される信号を電磁波信号とし、環境センサ100aの受信回路111を検波回路118とした例である。環境センサ100cは、アンテナ102と、センサ回路110cと、を有している。センサ回路110cは、電源回路112と、電池113と、検波回路118と、制御回路120と、送信回路130と、OSメモリ141と、OSアナログデジタル変換回路142と、センサ116と、を有している。制御回路120は、論理回路121と、メモリコントローラ122と、センサコントローラ123と、を有している。送信回路130は、変調回路131と、送信アンプ132と、を有している。図6においては、環境センサ100aの有する記憶装置114を消費電力の低いOSメモリ141としている。また、環境センサ100aの有するアナログデジタル変換回路115を消費電力の低いOSアナログデジタル変換回路142としている。このような回路構成にすることによって、更なる低消費電力化を図ることができる。
 アンテナ102は、検波回路118と、送信アンプ132と電気的に接続されている。送信アンプ132は、変調回路131と電気的に接続されている。論理回路121は、検波回路118と、変調回路131と、メモリコントローラ122と、センサコントローラ123と電気的に接続されている。メモリコントローラ122は、センサコントローラ123と、OSメモリ141と電気的に接続されている。センサコントローラ123は、OSアナログデジタル変換回路142と、センサ116と電気的に接続されている。
 電池113は、電源回路112と電気的に接続されている。電池113は、環境センサ100cの起電力として機能し、電源回路112に電位を供給する。電源回路112は、電池113から入力された電位から、安定した電源電圧を生成する。なお、図6には図示していないが、電源回路112は、各回路に電源電圧を供給するため、各回路と電気的に接続されている。また、電源回路112の内部にリセット信号生成回路を設けてもよい。リセット信号生成回路は、安定した電源電圧の立ち上がりを利用して、論理回路121のリセット信号を生成するための回路である。
 アンテナ102は、外部からの無線信号を受信、又はセンシングデータを無線信号として外部へ送信するためのものである。また、検波回路118は、入力交流信号を包絡線検出することにより復調し、復調信号を生成するための回路である。論理回路121は、復調信号を解読し、処理を行うための回路である。変調回路131は、アンテナ102より出力するデータに応じて変調を行うための回路である。
 送信アンプ132は、アンテナ102より出力するデータを増幅するための回路である。出力データを増幅させることにより、パッシブ型RFICよりも長い距離での通信が可能となる。
 センサコントローラ123は、論理回路121からの命令信号に従って、センサ116、及びOSアナログデジタル変換回路142を制御する回路である。また、センサコントローラ123は、得られたセンシングデータの出力を行う機能も有する。
 OSアナログデジタル変換回路142は、酸化物半導体をチャネル形成領域に用いたトランジスタを搭載したアナログデジタル変換回路である。OSアナログデジタル変換回路142は、センサ116から送られてきたセンシングデータをデジタル変換する機能を有する。
 メモリコントローラ122は、論理回路121からの命令信号に従って、OSメモリ141を制御する回路である。また、OSメモリ141へのセンシングデータの入力、OSメモリ141からのセンシングデータの出力を行う機能も有する。
 OSメモリ141は、酸化物半導体をチャネル形成領域に用いたトランジスタを搭載したメモリである。OSメモリ141は、取得したセンシングデータを書き込んで保持する機能を有する。また、書き込んだセンシングデータを読み出して、論理回路121にデータを送る機能を有する。また、OSメモリ141には、環境センサ100cの動作プログラムも格納されている。
 本実施の形態の構成については、図6に示す構成例に限定されない。例えば、図7に示す通り、アンテナ102とは別に、アンテナ101及びアンテナ103を有する環境センサ100dであってもよい。アンテナ103は、検波回路118と電気的に接続され、アンテナ101は送信アンプ132と電気的に接続されている。すなわち、アンテナ103は受信用のアンテナとして、アンテナ101は送信用のアンテナとして設けている。これにより、送信用の信号は、受信用の信号と異なる周波数の電波として使用することができる。
 本実施の形態の環境センサは、受信アンテナがトリガとなる(環境センサを駆動させる)信号を受信するだけなので、受信用の信号と送信用の信号の周波数は同じである必要はない。つまり、受信用のアンテナと送信用のアンテナを設けることで、受信用の信号と送信用の信号と、で異なる周波数の信号を用いてもよい。
<動作例3>
 次に、環境センサ100cの動作について説明する。
 アンテナ102は外部からの信号を受信することで、該信号は検波回路118に入力される。該信号は検波回路118によって復調され、論理回路121に入力される。論理回路121は、復調された該信号を読み出して、メモリコントローラ122とセンサコントローラ123を動作させる。
 センサコントローラ123は、センサ116によって取得したセンシングデータをOSアナログデジタル変換回路142でデジタル変換するように、OSアナログデジタル変換回路142及びセンサ116を制御する。デジタル化されたセンシングデータは、メモリコントローラ122を介して、OSメモリ141に格納される。
 センシング動作の終了時に、OSメモリ141に格納されたセンシングデータの読み出しが行われる。読み出されたセンシングデータは、メモリコントローラ122と論理回路121を介して、変調回路131にて変調される。変調されたセンシングデータは、送信アンプ132によって増幅され、アンテナ102から送信される。また、タイマー(図示せず)を設けて定期的にセンシングやAD変換を行い、取得したセンシングデータをOSメモリ141に記憶し、トリガ信号を受けると送信回路130からセンシングデータを送信するようにしてもよい。
 このように、環境センサ100cと電波の送受信を行うことで、センサ116が取得したセンシングデータを得ることができる。
<利用例2>
 環境センサ100cの利用方法の一例について、説明する。
 図8は、環境センサ100cをトンネル内に設置した例である。環境センサ100cがトンネルの天井406に設けられ、自動車401は、そのルーフ部分にRF送受信機402を有している。
 環境センサ100cが有するアンテナ102は、トンネルの天井406の面に設けられている。またアンテナ102は、場合によって、又は、状況によって、トンネルの天井406から吊り下げる形式にしてもよいし、トンネルの天井406の壁の内部に埋め込んでもよい。
 環境センサ100cが有するセンサ回路110cは、センシングしたい情報によって取り付ける場所を適宜変更することができる。例えば、トンネルの天井406の壁の内部の歪み状態、腐食状態などを知りたい場合、図8に示す通り、トンネルの天井406の壁の内部にセンサ回路110cを設ければよい。このとき、センサ回路110cの有するセンサ116としては、天井406の劣化原因となる物質をセンシングできるセンサを用いればよい。天井406がコンクリートで形成されていた場合、劣化原因となる物質としては、酸化物イオン、硫化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、水酸化物イオン、硫酸イオン、炭酸イオン、水素イオン、カルシウムイオンなどが挙げられるので、これらの物質量を測定できるセンサを用いればよい。
 環境センサ100cが有するセンサ116は、センシングしたい情報によって取り付ける場所を適宜変更することができる。例えば、トンネルの天井406の壁の内部の歪み状態、腐食状態などを知りたい場合、図8に示す通り、トンネルの天井406の壁の内部にセンサ116を設ければよい。また、例えば、トンネルの天井406の表面の状態を知りたい場合は、トンネルの天井406の表面に設けてもよい。
 自動車401がトンネルを通過する時、アンテナ102に対してRF送受信機402から電波405を発信する。なお、自動車401が特定のアンテナの周辺を通過するのは短時間であるので、環境センサは短時間でセンシング出来るものでなくてはならない。
 環境センサ100cは、アクティブ型の環境センサであるため、電源を電波で送る必要はない。環境センサ100cは、電池113を内蔵しているので、RF送受信機402からの電波を受信することで、すぐにセンシングを行うことができる。また、環境センサ100cは、一度電波を受信した後は、OSメモリ141に内蔵されたプログラムに沿って動作を行うことができるため、電波を長く受ける必要はない。センシングは通信距離に依存しないため、受信時間が短時間であってもセンシングが可能である。
 そのため、自動車401が特定のアンテナの周辺を通過する短時間で、環境センサ100cと電波の送受信を行うことができ、環境センサ100cからセンシングデータを取得することができる。
 本実施の形態の環境センサ100cの利用方法は、利用例2のトンネルに限定されない。例えば、実施の形態1と同様に、図4(A)に示した橋脚1001に、環境センサ100b−2の代わりに環境センサ100c又は環境センサ100dを設けて、RF送受信機を備えた情報処理端末1002を用いて、橋脚1001の保全調査を行ってもよい。また、例えば、図5に示した信号機のある電柱1100に、環境センサ100b−3や環境センサ100b−4の代わりに環境センサ100c又は環境センサ100dを設けて、電柱1100や信号機1103の保全調査を行ってもよい。上述した以外でも、立ち入りの難しい箇所に環境センサ100c又は環境センサ100dを設けることで、設けられた構造物の保全調査を容易に行うことができる。
 また、本実施の形態で使用する電磁波信号の周波数は、使用する状況、環境などに併せて適宜選択すればよい。例えば、通信距離がおよそ10mで済む場合はUHF帯の周波数、具体的には、300MHz、また430MHzの周波数を用いればよい。また、通信距離がおよそ50m以上かつ70m以下の場合は、マイクロ波帯の周波数、例えば、2.45GHzの周波数を用いればよい。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態3)
 本発明の一態様に係る記憶装置の構成の一例について、図9を用いて、説明する。
 図9に記憶装置の構成の一例を示す。記憶装置2600は、周辺回路2601、及びメモリセルアレイ2610(図中には、Memory Cell Arrayと表記)を有する。周辺回路2601は、ローデコーダ2621(図中には、Low Decorderと表記)、ワード線ドライバ回路2622(図中には、Word Line Driver Cir.と略記)、ビット線ドライバ回路2630(図中には、Bit Line Driver Cir.と略記)、出力回路2640(図中には、Output Cir.と略記)、コントロールロジック回路2660((図中には、Control Logic Cir.と略記))を有する。
 ビット線ドライバ回路2630は、カラムデコーダ2631(図中には、Column Decorderと略記)、プリチャージ回路2632(図中には、Precharge Cir.と略記)、センスアンプ2633(図中には、Sense Amp.と略記)、及び書き込み回路2634(図中には、Write Cir.と略記)を有する。プリチャージ回路2632は、配線(BL、BLB)をプリチャージする機能、及び同じ列の配線BLと配線BLBの電圧を均等にする機能を有する。センスアンプ2633は、配線(BL、BLB)から読み出されたデータ信号(D、DB、D1、D2)を増幅する機能を有する。増幅されたデータ信号は、出力回路2640を介して、デジタルのデータ信号RDATAとして記憶装置2600の外部に出力される。なお、配線BL、配線BLBは、メモリセルと接続されている配線を示し、また、データ信号D、DB、D1、D2は、メモリセルに書き込むデータ信号、又はメモリセルからの読み出しデータ信号を示しており、詳しくは、実施の形態4で説明する。
 また、記憶装置2600には、外部から電源電圧として低電源電圧(VSS)、周辺回路2601用の高電源電圧(VDD)、メモリセルアレイ2610用の高電源電圧(VIL)が供給される。
 また、記憶装置2600には、制御信号(CE、WE、RE)、アドレス信号ADDR、データ信号WDATAが外部から入力される。アドレス信号ADDRは、ローデコーダ2621及びカラムデコーダ2631に入力され、データ信号WDATAは書き込み回路2634に入力される。
 コントロールロジック回路2660は、外部からの入力信号(CE、WE、RE)を処理して、ローデコーダ2621、カラムデコーダ2631の制御信号を生成する。CEは、チップイネーブル信号であり、WEは、書き込みイネーブル信号であり、REは、読み出しイネーブル信号である。コントロールロジック回路2660が処理する信号は、これに限定されるものではなく、必要に応じて、他の制御信号を入力すればよい。
 なお、上述の各回路あるいは各信号は、必要に応じて、適宜、取捨することができる。
 また、pチャネル型Siトランジスタと、後述する実施の形態の酸化物半導体をチャネル形成領域に含むトランジスタを用い、記憶装置2600に適用することで、小型の記憶装置2600を提供できる。また、消費電力低減することが可能な記憶装置2600を提供できる。また、動作速度を向上することが可能な記憶装置2600を提供できる。特に、Siトランジスタはpチャネル型のみとすることで、製造コストを低く抑えることができる。
 また、メモリセルアレイ2610が有するメモリセルとして、後述の実施の形態4のメモリセルを用いることができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
 本発明の一態様に係るメモリセルの構成の一例について、図10(A)乃至図10(E)、図11(A)、図11(B)を用いて説明する。
 図10(A)は、メモリセルの構成の一例を示す回路図である。メモリセル1203は、トランジスタMos3及び容量素子C103を有する。トランジスタMos3のソース又はドレインの一方は、配線BLと電気的に接続され、トランジスタMos3のソース又はドレインの他方は、容量素子C103の一方の電極と電気的に接続され、トランジスタMos3のゲートは、配線WLと電気的に接続されている。容量素子C103の他方の電極には、低電源電位(VSS)が印加されている。
 トランジスタMos3のソース又はドレインの他方と、容量素子C103の一方の電極と、の間にノードFN3があり、これがデータ保持部となっている。トランジスタMos3は、ノードFN3と配線BLを接続するスイッチとして機能する。配線BLには、書き込み用信号と読み出し用信号として、信号Dが入出力される。WLには、メモリセル選択用信号として、信号OSGが入力される。
 データ書き込み及び読み出しは、トランジスタMos3をオン状態にし、ノードFN3を配線BLに接続することで行われる。
 また、メモリセル1203にバックゲートを設けた構成を図11(A)のメモリセル1207、図11(B)のメモリセル1208に示す。図11(A)に示すメモリセル1207は、トランジスタMos3にバックゲートBG、及び配線BGLを設けた回路となっており、所定の電位を配線BGLからバックゲートBGに印加する構成となっている。配線BGLからの電位を制御することによって、トランジスタMos3のしきい値電圧を制御することができる。図11(B)に示すメモリセル1208は、トランジスタMos3にバックゲートBGを設けた回路となっており、トランジスタMos3のフロントゲート(又は、配線WL)と電気的に接続されている。この構成により、フロントゲートとバックゲートBGには、同じ電位が印加されるため、トランジスタMos3がオン状態の時に流れる電流を増加させることができる。
 なお、バックゲートを設けた構成は、メモリセル1207、及びメモリセル1208に限定されず、他のメモリセルの場合でも適用が可能である。例えば、後述するメモリセル1204、メモリセル1205、メモリセル1206、メモリセル1200についても、バックゲートを構成することができる。
 図10(B)は、メモリセルの構成の一例を示す回路図である。メモリセル1204は、トランジスタMos4、トランジスタM104及び容量素子C104を有する。トランジスタMos4のソース又はドレインの一方は、配線BLと電気的に接続され、トランジスタMos4のソース又はドレインの他方は、容量素子C104の一方の電極と、トランジスタM104のゲートと電気的に接続され、トランジスタMos4のゲートは配線WLと電気的に接続されている。トランジスタM104のソース又はドレインの一方は、配線BLと電気的に接続され、トランジスタM104のソース又はドレインの他方は、配線SLと電気的に接続されている。容量素子C104の他方の電極は、配線WLCと電気的に接続されている。
 トランジスタMos4のソース又はドレインの他方と、トランジスタM104のゲートと、容量素子C104の一方の電極との間にノードFN4があり、これがデータ保持部となっている。トランジスタMos4は、ノードFN4と配線BLを接続するスイッチとして機能する。配線WLに、信号OSGが入力される。容量素子C104は、配線WLCとノードFN4間を接続する。配線WLCは、書き込み動作、及び読み出し動作時に、容量素子C104の端子に一定の電圧を供給するための配線である。トランジスタM104は、pチャネル型トランジスタである。
 データの書き込みは、配線WLC、SLに一定電圧を与えた状態で、トランジスタMos4をオン状態にし、ノードFN4を配線BLに接続することで行われる。データの読み出しは、配線BL、WLC、SLに一定電圧を与える。ノードFN4の電圧に応じて、トランジスタM104のソース電極−ドレイン電極間を流れる電流値が変動する。トランジスタM104のソース−ドレイン電流により、配線BLが充電あるいは放電されるので、配線BLの電圧(信号D)を検出することで、メモリセル1204に保持されているデータ値を読み出すことができる。
 なお、トランジスタM104は、nチャネル型トランジスタとすることができる。つまり、配線(BL、SL、WLC)に印加する電圧は、トランジスタM104の極性に応じて、定めればよい。
 図10(C)は、メモリセルの構成例を示す回路図である。メモリセル1206は、トランジスタMos6、トランジスタM107、トランジスタM108を有する。トランジスタMos6のソース又はドレインの一方は、配線WBLと電気的に接続され、トランジスタMos6のソース又はドレインの他方は、トランジスタM108のゲートと電気的に接続され、トランジスタMos6のゲートは、配線WWLと電気的に接続されている。トランジスタM107のソース又はドレインの一方は、配線RBLと電気的に接続され、トランジスタM107のソース又はドレインの他方は、トランジスタM108のソース又はドレインの一方と電気的に接続され、トランジスタM107のゲートは、配線RWLと電気的に接続されている。トランジスタM108のソース又はドレインの他方には、低電源電位(VSS)が印加されている。
 トランジスタMos6のソース又はドレインの他方と、トランジスタM108のゲートとの間にノードFN6があり、これがデータ保持部となっている。トランジスタMos6は、ノードFN6と配線WBLを接続するスイッチとして機能する。トランジスタM107は、配線RBLとトランジスタのソース又はドレインの一方を接続するスイッチとして機能する。配線WBLには、データ書き込み用信号として、信号D1が入力される。配線WWLには、メモリセル選択用信号として、信号OSGが入力される。
 データ書き込みは、トランジスタMos6をオン状態にし、ノードFN6を配線WBLに接続することで行われる。データの読み出しは、事前に配線RBLに一定の電圧を与えた後に、トランジスタM107をオン状態にする。ノードFN6の電圧に応じて、トランジスタM108のソース電極−ドレイン電極間を流れる電流値が変動する。トランジスタM108のソース−ドレイン電流により、配線RBLが充電あるいは放電されるので、配線RBLの電圧(信号D2)を検出することで、メモリセル1206に保持されているデータ値を読み出すことができる。
 図10(D)は、メモリセルの構成の一例を示す回路図である。メモリセル1205は、トランジスタMos5、トランジスタM105、トランジスタM106及び容量素子C105を有する。トランジスタMos5のソース又はドレインの一方は、配線BLと電気的に接続され、トランジスタMos5のソース又はドレインの他方は、トランジスタM106のゲートと、容量素子C105の一方の電極と電気的に接続され、トランジスタMos5のゲートは、配線WLと電気的に接続されている。トランジスタM105のソース又はドレインの一方は、配線BLと電気的に接続され、トランジスタM105のソース又はドレインの他方は、トランジスタM106のソース又はドレインの一方と電気的に接続され、トランジスタM105のゲートは配線RWLと電気的に接続されている。トランジスタM106のソース又はドレインの他方は、容量素子C105の他方の電極と電気的に接続されている。トランジスタM106のソース又はドレインの他方と、容量素子C105の他方の電極には、低電源電位(VSS)が印加されている。
 トランジスタMos5のソース又はドレインの他方と、トランジスタM106のゲートと、容量素子C105の一方の電極との間にノードFN5があり、これがデータ保持部となっている。トランジスタMos5は、ノードFN5と配線BLを接続するスイッチとして機能する。配線WLに、信号OSGが入力される。
 データの書き込みは、トランジスタMos5をオン状態にして、ノードFN4を配線BLに接続することで行われる。データの読み出しは、トランジスタM105をオン状態にすることで行われる。ノードFN5の電圧に応じて、トランジスタM106のソース電極−ドレイン電極間を流れる電流値が変動する。トランジスタM106のソース−ドレイン電流により、配線BLが充電あるいは放電されるので、配線BLの電圧(信号D)を検出することで、メモリセル1205に保持されているデータ値を読み出すことができる。
 なお、トランジスタM105、M106は、pチャネル型トランジスタとすることができる。つまり、配線RWLに印加する電圧、容量素子C105に印加する電圧は、トランジスタM105、M106の極性に応じて、定めればよい。
 図10(E)に示すメモリセル1200は、バックアップ可能なSRAMセルの一例である。メモリセル1200は、トランジスタM101、トランジスタM102、トランジスタMos1、トランジスタMos2、インバータINV101、インバータINV102、及び容量素子C101、容量素子C102を有する。メモリセル1200は、配線(WL、BL、BLB、BRL)に接続されている。また、メモリセル1200には、電源電圧として低電源電圧(VSS)等が供給される。
 インバータINV101とインバータINV102は、入力端子と出力端子が互いに接続されており、メモリセル1200は、インバータループ回路の構成を有している。トランジスタM101、及びトランジスタM102のゲート電極は配線WLに接続されている。トランジスタM101は、配線BLとインバータINV101の入力ノード間を接続するスイッチとして機能し、トランジスタM102は、配線BLBとインバータINV102の入力ノード間を接続するスイッチとして機能する。
 配線WLは、書き込み/読み出し用ワード線として機能し、メモリセルの選択用信号(WLE)がワード線ドライバ回路から入力される。配線BL、配線BLBは、データ信号D、DBを送るビット線として機能する。データ信号DBは、データ信号Dの論理値が反転された信号である。データ信号D、DBは、ビット線ドライバ回路から供給される。また、配線BL、配線BLBは、メモリセル1200から読み出したデータを出力回路に送る配線でもある。
 メモリセル1200は、揮発性の記憶回路(インバータINV101、インバータINV102、トランジスタM101、トランジスタM102)に、一対の記憶回路(トランジスタMos1、容量素子C101)、(トランジスタMos2、容量素子C102)を設けた回路に相当する。記憶回路(トランジスタMos1、容量素子C101)、(トランジスタMos2、容量素子C102)は、それぞれ、ノードNET1、ノードNET2で保持されている電位を記憶することで、揮発性の記憶回路のデータをバックアップするための回路である。これらの記憶回路は、トランジスタMos1、Mos2をオン状態にすることで、容量素子C101、容量素子C102を充電又は放電して、データを書き込み、これをオフ状態にすることで、容量素子C101、容量素子C102に蓄積された電荷を保持することで、電源供給なしにデータを保持するものである。
 データのリカバリも、トランジスタMos1、トランジスタMos2をオン状態にすることで行われる。インバータINV101、インバータINV102への電源供給を停止した状態で、トランジスタMos1、トランジスタMos2をオン状態にして、ノードFN1とノードNET1を接続し、ノードFN1とノードNET1で電荷を共有すると共に、ノードFN2とノードNET2を接続し、ノードFN2とノードNET2で電荷を共有する。その後、インバータINV101、インバータINV102へ電源を供給することで、ノードNET1とノードNET2の電位に応じて、インバータループ回路にデータが復帰される。しかる後、トランジスタMos1、トランジスタMos2をオフ状態にする。
 トランジスタMos1、トランジスタMos2のゲート電極は、配線BRLに接続されている。配線BRLには、信号OSGが入力される。信号OSGにより一対の記憶回路(トランジスタMos1、容量素子C101)、(トランジスタMos2、容量素子C102)が駆動され、バックアップ、又はリカバリが行われる。
 以下、記憶回路(トランジスタMos1、容量素子C101)、(トランジスタMos2、容量素子C102)の構成とその動作について説明する。
 記憶回路(トランジスタMos1、容量素子C101)、(トランジスタMos2、容量素子C102)は、容量素子C101、容量素子C102に電荷を蓄積することで、ノードFN1、FN2の電位を保持する。トランジスタMos1、トランジスタMos2をオン状態にすることで、ノードNET1とノードFN1が接続され、ノードFN1にノードNET1で保持している電位が印加され、また、トランジスタMos2をオン状態にすることで、ノードNET2とノードFN2が接続され、ノードFN2にノードNET2で保持している電位が印加される。そして、トランジスタMos1、トランジスタMos2をオフ状態にすることで、ノードFN1、ノードFN2が電気的に浮遊状態となり、容量素子C101、容量素子C102に蓄積された電荷が保持され、記憶回路はデータ保持の状態となる。
 例えば、ノードFN1が高レベル電位である場合、容量素子C101から電荷がリークして徐々にその電圧が低下してしまうおそれがある。トランジスタMos1、トランジスタMos2は、酸化物半導体(好ましくはIn、Ga、及びZnを含む酸化物)をチャネル形成領域に含むことが望ましい。その結果、オフ状態でのソース電極−ドレイン電極間を流れるリーク電流(オフ電流)が極めて小さいため、ノードFN1の電圧の変動が抑えられる。つまり、トランジスタMos1及び容量素子C101でなる回路を不揮発性の記憶回路、あるいは電源供給なしで長期間データを保持することができる記憶回路として動作させることが可能である。また、トランジスタMos2及び容量素子C102でなる回路も同様であり、これらの回路を、揮発性の記憶回路(インバータINV101、インバータINV102、トランジスタM101、トランジスタM102)のバックアップ用記憶回路として用いることができる。
 トランジスタMos1、トランジスタMos2に実施の形態6で例示するトランジスタを適用することができる。トランジスタMos1、トランジスタMos2のオフ電流が小さいために、メモリセル1200は、長期間電源供給なしに情報を保持することができる。トランジスタMos1、トランジスタMos2のスイッチング特性が良好であるために、メモリセル1200は、バックアップ、及びリカバリを容易に行うことができる。
 図10(E)と同様に、図10(A)乃至図10(D)に示したメモリセルの構成例において、トランジスタMos3、トランジスタMos4、トランジスタMos5、及びトランジスタMos6も、酸化物半導体(好ましくはIn、Ga、及びZnを含む酸化物)をチャネル形成領域に含むトランジスタであることが望ましい。その結果、オフ状態でのソース電極−ドレイン電極間を流れるリーク電流(オフ電流)が極めて小さいため、ノードFN3、ノードFN4、ノードFN5、及びノードFN6の電圧の変動が抑えられる。つまり、メモリセル1203、メモリセル1204、メモリセル1205、及びメモリセル1206を電源供給なしで長期間データを保持することができる記憶回路として動作させることが可能である。
 本実施の形態で説明したメモリセル、及び実施の形態6で例示する酸化物半導体をチャネル形成領域に含むトランジスタを、先の実施の形態で説明した記憶装置2600に適用することで、電源供給なしで長期間データを保持することができる記憶回路を有する、小型、低消費電力、高速、あるいは電源電圧の変動を低減することが可能な記憶装置2600を提供できる。
 また、メモリセルに用いるn型トランジスタを全て、実施の形態6で例示する酸化物半導体をチャネル形成領域に含むトランジスタで置き換えても良い。Siトランジスタはpチャネル型のみとすることで、製造コストを低く抑えることができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
 本発明の一態様に係るアナログデジタル変換回路の構成の一例について、説明する。
 図12は、アナログデジタル変換回路を示している。アナログデジタル変換回路800は、コンパレータ802(図12では、COMP.と略記)、逐次比較レジスタ803(図12では、SARと略記)、デジタルアナログ変換回路804(図12ではDACと略記)、タイミングコントローラ805(図12では、T_conと略記)、及び発振回路806(図12では、Osci.と略記)を有する。
 アナログデジタル変換回路800は、更に、サンプルホールド回路801(サンプルアンドホールド回路ともいう。図12では、S&Hと略記)を有する。サンプルホールド回路801は、アナログデータの電位(アナログ電位Vin)が入力され、制御信号S1の制御に応じてアナログ電位Vinに応じた電荷の保持を行うことができる機能を有する回路である。制御信号S1は、タイミングコントローラ805より与えられる信号である。
 サンプルホールド回路801は、一例として、バッファ回路811、トランジスタ812、及び容量素子813を有する。サンプルホールド回路801の入力端子は、トランジスタ812のソース又はドレインの一方に設けられる。サンプルホールド回路801の出力端子はトランジスタ812のソース又はドレインの他方に設けられる。なお、トランジスタ812のソース又はドレインの他方にあるノードを、説明のため、ノードNDとする。
 バッファ回路811は、サンプルホールド回路801に入力されるアナログデータ等の信号を増幅して出力する機能を有する。なお、図12では、バッファ回路811を、サンプルホールド回路801の入力端子と、トランジスタ812のソース又はドレインの一方の側との間に設ける構成としたが、これに限らずトランジスタ812のゲート側に設ける構成としてもよい。
 トランジスタ812は、オフ状態でのソース−ドレイン間を流れる電流が極めて低い機能を有するトランジスタである。このような機能を有するトランジスタとして、OSトランジスタが好適である。OSトランジスタについては、実施の形態6で詳述する。なお、図12では、OSトランジスタであることを明示するため、OSトランジスタの回路記号に「OS」の記載を付している。トランジスタ812のソース又はドレインの一方は、サンプルホールド回路801の入力端子に接続される。トランジスタ812のゲートは、制御信号S1を与える配線に接続される。トランジスタ812のソース又はドレインの他方は、サンプルホールド回路801の出力端子、又はノードNDに接続される。
 容量素子813は、トランジスタ812をオフにすることで、アナログ電位Vinに応じた電荷を保持する機能を有する。なお、図12では、容量素子813をトランジスタ812のソース又はドレインの他方、すなわちノードND側に設ける構成を示しているが、容量素子813は必ずしも設ける必要はなく、コンパレータ802の入力端子におけるゲート容量などを利用することで省略することができる。なおアナログ電位Vinに応じた電荷を保持する、トランジスタ812及び容量素子813を有する回路を、第1の回路10と図示している。
 コンパレータ802は、サンプルホールド回路801で保持するアナログ電位Vinと、デジタルアナログ変換回路804が出力するアナログ電位DACoutとの大小関係を比較し、大小関係に応じて信号cmpoutを出力する機能を有する。
 逐次比較レジスタ803は、アナログ電位DACoutの変化に応じて、Nビット(Nは2以上の自然数)のデジタルデータを保持し、出力する機能を有する。Nビット、すなわち0ビット目から(N−1)ビット目のデジタルデータ(図12では、value[N−1:0]と略記)は、Voutとして外部に出力される他、デジタルアナログ変換回路804に出力される。逐次比較レジスタ803は、各ビットに対応するレジスタを含む論理回路で構成され、制御信号S2の制御に応じてデジタルデータを出力することができる。制御信号S2は、タイミングコントローラ805より与えられる信号である。
 デジタルアナログ変換回路804は、デジタルデータに従って、アナログ電位DACoutを生成し、出力する機能を有する。デジタルアナログ変換回路804は、容量方式の変換方式(C−DAC)でもよいし、抵抗方式の変換方式(R−DAC)でもよい。特にC−DACであれば、OSトランジスタを用いることで、デジタル値を保持することができるため好ましい。なお、OSトランジスタを有するC−DACの構成については、後述する実施の形態で具体的な回路構成を挙げて説明する。
 タイミングコントローラ805は、信号SADCに応じてクロック信号CLKに同期した制御信号S1、S2を生成し、出力する機能を有する。タイミングコントローラ805は、論理回路で構成され、クロック信号CLK及び信号SADCに応じて制御信号S1、S2を出力することができる。論理回路で構成されるタイミングコントローラ805は、図13に示すように、論理回路で構成される逐次比較レジスタ803と一体に形成することができる。タイミングコントローラは、制御回路という場合がある。
 発振回路806(図12では、Osci.と略記)は、クロック信号CLKを生成し、出力する機能を有する。発振回路806は、水晶発振器で生成されるクロック信号でもよいし、リングオシレーターで生成されるクロック信号でもよい。
 図12に示すアナログデジタル変換回路800は、センサ回路などによって取得したアナログ電位Vinを、オフ電流が極めて低いトランジスタ812を有するサンプルホールド回路801に保持させる。サンプルホールド回路801では、トランジスタ812をオフにすることで、電荷の保持を可能としたノードNDに、アナログ電位Vinを保持させる。これにより、サンプルホールド回路801が有するバッファ回路811などへの電力の供給を停止し、消費電力の低減を図ることができる。
 また、この構成により、駆動電圧やクロック信号の周波数を抑えることなく、消費電力の低減を図ることができるため、分解能とサンプリングレートといった、アナログデジタル変換回路の性能を低下させないようにすることができる。また、この構成により、フラッシュメモリなどを用いることなく、アナログデータを保持することができるため、専用の高電圧生成回路や周辺回路を設けずに、消費電力の低減を図ることができる。
 なおアナログ電位Vinをサンプルホールド回路801に与えるセンサ回路は、複数設けられていてもよい。この場合、図14に示すようにセンサ回路821A、センサ回路821Bと設けられる場合、サンプルホールド回路801A、サンプルホールド回路801Bを設ける。そしてサンプルホールド回路801A、サンプルホールド回路801Bと、コンパレータ802との間にセレクタ822(マルチプレクサともいう。図14では、MPXと略記)を設ける。
 セレクタ822は、選択信号SELにしたがって、サンプルホールド回路801A、サンプルホールド回路801Bのいずれかの一のアナログ電位を選択してコンパレータ802に出力する機能を有する。サンプルホールド回路801A、サンプルホールド回路801Bは、それぞれ図12で説明したサンプルホールド回路801と同様の機能を有するため、センサ回路821A、センサ回路821Bで得られるアナログ電位Vin_A、Vin_Bを保持し、バッファ回路への電源の供給を停止することができる。したがって、消費電力の低減を図るよう動作させることができる。また、サンプルホールド回路801A、サンプルホールド回路801Bで一旦アナログ電位Vin_A、Vin_Bをサンプリングした後は、センサ回路821A、センサ回路821Bからのアナログ電位Vin_A、Vin_Bの供給を停止するために、センサ回路821A、センサ回路821Bへの電源の供給を停止することができる。したがって、センサ回路821A、センサ回路821Bの消費電力を低減することができる。
 なおセンサ回路で得られるアナログ電位は、一定の場合もあれば、常に変動する場合もある。変動するアナログ電位をサンプリングする場合、相関二重サンプリング(CDS:Correlated Double Sampling)回路を介してサンプリングを行えばよい。相関二重サンプリング回路は、2つのタイミングの相対差を得ることで、ノイズ除去の用途に用いられている。
 図15(A)は、相関二重サンプリング回路の一例を示す。相関二重サンプリング回路は、サンプルホールド回路831A乃至831Cを有する。サンプルホールド回路831A乃至831Cは、図12で示したサンプルホールド回路801と同等の回路を用いることができる。サンプルホールド回路831Aのトランジスタには制御信号φ1、サンプルホールド回路831B、サンプルホールド回路831Cのトランジスタには制御信号φ2が与えられる。
 制御信号φ1及びφ2によってオフ状態になるトランジスタにOSトランジスタを用いることで、差を取るために、サンプルホールド回路831A乃至831Cが有するそれぞれの容量素子にサンプリングされた電位の変動を少なくすることができる。そのため、相関二重サンプリング回路の精度を高めることができる。また、また一旦電位をサンプリングした後は、サンプルホールド回路831A乃至831Cが有するそれぞれのバッファ回路への電源の供給を停止することができ、消費電力の低減を図ることができる。
 図15(B)には、図15(A)に示す相関二重サンプリング回路の動作の一例となるタイミングチャートを示す。なお電位VSensorは、センサ回路821で得られる変動する電位であり、電位Vinは、相関二重サンプリング回路を経たアナログ電位である。図15(B)に示すように、電位VSensorが変動しても一定の周期でサンプリングして差をとることで、電位Vinは電圧ΔVで一定の電位となるアナログ電位として得ることができる。
 図16(A)には、デジタルアナログ変換回路804の回路構成の一例を示す。なお図16(A)では10ビットのC−DACを示す。また図16(A)では、説明のため、サンプルホールド回路801、コンパレータ802を併せて図示している。図16(A)に示すデジタルアナログ変換回路804は容量素子893、セレクタ894、895、896及びトランジスタ897で構成される。容量素子893は、ビット数に応じた容量値を有する。容量値の一例は、図16(A)中、容量素子893に付して示している。またセレクタ894,895は、容量素子893に対応して設けられる。
 図16(B)には、図16(A)に示すセレクタ894、895、896の回路構成の一例を示す。セレクタ895、896の端子SELには、制御信号S2が与えられる。なおセレクタ894、895の端子Aには、セレクタ896で選択される電位が与えられる。なおセレクタ896の端子Aには、参照電位Vrefが与えられる。なおセレクタ894、895、896の端子Bには、グラウンド電位が与えられる。
 また図16(C)には、図16(B)に示すセレクタのより具体的な回路構成の一例を示す。図16(C)に示すセレクタは、インバータ回路898、nチャネル型のトランジスタ835、トランジスタ836、pチャネル型のトランジスタ837、トランジスタ838で構成される。
 次に、図12とは異なるアナログデジタル変換回路の一例を図17に示す。
 図17に示すアナログデジタル変換回路900は、サンプルホールド回路801、逐次比較レジスタ803、デジタルアナログ変換回路804、タイミングコントローラ805、及び発振回路806を有する。
 図17に示すアナログデジタル変換回路900の構成において、図12のアナログデジタル変換回路800と異なる点は、デジタルアナログ変換回路804内にデジタルデータを保持するためのトランジスタ911、及び容量素子912を有する点にある。トランジスタ911のゲートには、各ビットに対応して、オン又はオフを制御するための制御信号S3value[N−1:0]がタイミングコントローラ805より与えられる。下記に、図12のアナログデジタル変換回路800と異なる点に関して詳細に説明し、図12のアナログデジタル変換回路800と重複する点に関しては説明を省略する。
 トランジスタ911及び容量素子912は、トランジスタ911をオフにすることで、ノードNDDACにデジタルデータの電位に応じた電荷を保持することで、デジタルデータを保持する。トランジスタ911は、トランジスタ812と同様にオフ状態でのソース−ドレイン間を流れる電流が極めて低い機能を有するトランジスタであり、OSトランジスタであることが好適である。なおデジタルデータの電位に応じた電荷を保持する、トランジスタ911及び容量素子912を有する回路を、第1の回路20と図示している。
 デジタルアナログ変換回路804内において、デジタルデータを保持する場合、図16(A)乃至図16(C)で説明したセレクタ894にトランジスタ911及び容量素子912を追加する構成とすればよい。図18(A)、(B)には、セレクタ894にトランジスタ911及び容量素子912を追加した回路図の一例を示す。なお図18(A)、(B)では、制御信号S3value[N−1:0]として、0ビット目の制御信号S3value[0]をトランジスタ911のゲートに与える例を示している。
 図17の構成とすることで、サンプルホールド回路801、コンパレータ802、逐次比較レジスタ803、及びデジタルアナログ変換回路804への電源の供給を停止することて消費電力の低減を図ることができる。具体的には図18に図示するように、アナログ電位Vinをサンプルホールド回路801内に保持することで、バッファ回路811への電源の供給を停止することができる。また、デジタルアナログ変換回路804内のデジタルデータが各ビットで確定していく毎に逐次比較レジスタ803内のレジスタへの電源の供給を停止することができる。また、コンパレータ802、及びデジタルアナログ変換回路804への電源の供給を停止することができる。
 本実施の形態で開示する構成は、OSトランジスタを用いて電源の供給が停止した後でもアナログデータあるいはデジタルデータの電位を保持することができるので、各回路への電源の供給を停止し、消費電力を低減することができる。また、デジタルデータが確定後に、アナログデジタル変換回路として機能する半導体装置全体の電源の供給を停止することで、次にアナログ電位Vinが入力されるまでの間、消費電力を低減することができる。
 以上説明した、アナログデジタル変換回路として機能する本実施の形態の半導体装置は、上記実施の形態1と同様に、センサ等によって取得したアナログ電位Vinを、オフ電流が極めて低いトランジスタを有するサンプルホールド回路801に保持させる。加えて確定したデジタルデータをデジタルアナログ変換回路内に保持させる。そして本発明の一態様は、半導体装置が有する各回路への電源の供給を停止し、消費電力の低減を図ることができる。
 また本実施の形態の半導体装置は、駆動電圧やクロック信号の周波数を抑えることなく、消費電力の低減を図ることができるため、分解能とサンプリングレートといった、アナログデジタル変換回路の性能を低下させないようにすることができる。また本実施の形態の半導体装置は、フラッシュメモリ等を用いることなくアナログデータを保持することができるため、専用の高電圧生成回路や周辺回路を設けずに、消費電力の低減を図ることができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態6)
 本実施の形態では、開示する発明の一態様に係るトランジスタについて説明する。
 なお、本発明の一態様に係るトランジスタは、実施の形態7で説明するnc−OS又はCAAC−OSを有すると好ましい。
<トランジスタ構造1>
 図20(A)及び図20(B)は、本発明の一態様のトランジスタの上面図及び断面図である。図20(A)は上面図であり、図20(B)は、図20(A)に示す一点鎖線A1−A2、及び一点鎖線A3−A4に対応する断面図である。なお、図20(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 図20(A)及び図20(B)に示すトランジスタ1400aは、基板1401上の導電体1413と、基板1401上及び導電体1413上の凸部を有する絶縁体1402と、絶縁体1402の凸部上の金属酸化物1406aと、金属酸化物1406a上の金属酸化物1406bと、金属酸化物1406bの上面及び側面と接し、間隔を空けて配置された導電体1416a及び導電体1416bと、金属酸化物1406b上、導電体1416a上及び導電体1416b上の金属酸化物1406cと、金属酸化物1406c上の絶縁体1412と、絶縁体1412上の導電体1404と、導電体1416a上、導電体1416b上及び導電体1404上の絶縁体1408と、絶縁体1408上の絶縁体1418と、を有する。なお、ここでは、導電体1413をトランジスタの一部としているが、これに限定されない。例えば、導電体1413がトランジスタとは独立した構成要素であるとしてもよい。
 なお、金属酸化物1406cは、A3−A4断面において、少なくとも金属酸化物1406bの上面及び側面と接する。また、導電体1404は、A3−A4断面において、金属酸化物1406c及び絶縁体1412を介して金属酸化物1406bの上面及び側面と面する。また、導電体1413は、絶縁体1402を介して金属酸化物1406bの下面と面する。また、絶縁体1402が凸部を有さなくても構わない。また、トランジスタ1400aは、金属酸化物1406cを有さなくても構わない。また、トランジスタ1400aは、絶縁体1408を有さなくても構わない。また、トランジスタ1400aは、絶縁体1418を有さなくても構わない。
 なお、金属酸化物1406bは、トランジスタのチャネル形成領域としての機能を有する。また、導電体1404は、トランジスタの第1のゲート電極(フロントゲート電極ともいう。)としての機能を有する。また、導電体1413は、トランジスタの第2のゲート電極(バックゲート電極ともいう。)としての機能を有する。また、導電体1416a及び導電体1416bは、トランジスタのソース電極及びドレイン電極としての機能を有する。また、絶縁体1408は、バリア層としての機能を有する。絶縁体1408は、例えば、酸素又は/及び水素をブロックする機能を有する。又は、絶縁体1408は、例えば、金属酸化物1406a又は/及び金属酸化物1406cよりも、酸素又は/及び水素をブロックする能力が高い。
 なお、金属酸化物1406a、又は金属酸化物1406cは、後述する材料、比率によっては、半導体に分類される場合がある。前述のとおり、金属酸化物1406bがトランジスタのチャネル形成領域として機能するため、金属酸化物1406aと金属酸化物1406cの内部にはキャリアの移動は起こらない場合がある。そのため、本実施の形態では、金属酸化物1406a、又は金属酸化物1406cが半導体としての性質を持っていたとしても、絶縁体として扱う場合がある。
 なお、絶縁体1402は過剰酸素を含む絶縁体であると好ましい。
 例えば、過剰酸素を含む絶縁体は、加熱処理によって酸素を放出する機能を有する絶縁体である。例えば、過剰酸素を含む酸化シリコン層は、加熱処理などによって酸素を放出することができる酸化シリコン層である。したがって、絶縁体1402は膜中を酸素が移動可能な絶縁体である。即ち、絶縁体1402は酸素透過性を有する絶縁体とすればよい。例えば、絶縁体1402は、金属酸化物1406aよりも酸素透過性の高い絶縁体とすればよい。
 過剰酸素を含む絶縁体は、金属酸化物1406b中の酸素欠損を低減させる機能を有する場合がある。金属酸化物1406b中で酸素欠損は、DOSを形成し、正孔トラップなどとなる。また、酸素欠損のサイトに水素が入ることによって、キャリアである電子を生成することがある。したがって、金属酸化物1406b中の酸素欠損を低減することで、トランジスタに安定した電気特性を付与することができる。
 ここで、加熱処理によって酸素を放出する絶縁体は、TDS分析(昇温脱離ガス分析:Thermal Desorption Spectroscopy)にて、100℃以上700℃以下又は100℃以上500℃以下の膜の表面温度の範囲で1×1018atoms/cm以上、1×1019atoms/cm以上又は1×1020atoms/cm以上の酸素(酸素原子数換算)を放出することもある。
 ここで、TDS分析を用いた酸素の放出量の測定方法について、以下に説明する。
 測定試料をTDS分析したときの気体の全放出量は、放出ガスのイオン強度の積分値に比例する。そして標準試料との比較により、気体の全放出量を計算することができる。
 例えば、標準試料である所定の密度の水素を含むシリコン基板のTDS分析結果、及び測定試料のTDS分析結果から、測定試料の酸素分子の放出量(NO2)は、下に示す式で求めることができる。ここで、TDS分析で得られる質量電荷比32で検出されるガスの全てが酸素分子由来と仮定する。CHOHの質量電荷比は32であるが、存在する可能性が低いものとしてここでは考慮しない。また、酸素原子の同位体である質量数17の酸素原子及び質量数18の酸素原子を含む酸素分子についても、自然界における存在比率が極微量であるため考慮しない。
 NO2=NH2/SH2×SO2×α
 NH2は、標準試料から脱離した水素分子を密度で換算した値である。SH2は、標準試料をTDS分析したときのイオン強度の積分値である。ここで、標準試料の基準値を、NH2/SH2とする。SO2は、測定試料をTDS分析したときのイオン強度の積分値である。αは、TDS分析におけるイオン強度に影響する係数である。上に示す式の詳細に関しては、特許文献2を参照する。なお、上記酸素の放出量は、電子科学株式会社製の昇温脱離分析装置EMD−WA1000S/Wを用い、標準試料として、例えば1×1016atoms/cmの水素原子を含むシリコン基板を用いて測定する。
 また、TDS分析において、酸素の一部は酸素原子として検出される。酸素分子と酸素原子の比率は、酸素分子のイオン化率から算出することができる。なお、上述のαは酸素分子のイオン化率を含むため、酸素分子の放出量を評価することで、酸素原子の放出量についても見積もることができる。
 なお、NO2は酸素分子の放出量である。酸素原子に換算したときの放出量は、酸素分子の放出量の2倍となる。
 又は、加熱処理によって酸素を放出する絶縁体は、過酸化ラジカルを含むこともある。具体的には、過酸化ラジカルに起因するスピン密度が、5×1017spins/cm以上であることをいう。なお、過酸化ラジカルを含む絶縁体は、ESR(電子スピン共鳴:Electron Spin Resonance)にて、g値が2.01近傍に非対称の信号を有することもある。
 又は、過剰酸素を含む絶縁体は、酸素が過剰な酸化シリコン(SiO(X>2))であってもよい。酸素が過剰な酸化シリコン(SiO(X>2))は、シリコン原子数の2倍より多い酸素原子を単位体積当たりに含むものである。単位体積当たりのシリコン原子数及び酸素原子数は、ラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)により測定した値である。
 図20(B)に示すように、金属酸化物1406bの側面は、導電体1416a及び導電体1416bと接する。また、導電体1404の電界によって、金属酸化物1406bを電気的に取り囲むことができる(導電体から生じる電界によって、半導体を電気的に取り囲むトランジスタの構造を、surrounded channel(s−channel)構造とよぶ。)。そのため、金属酸化物1406bの全体(バルク)にチャネルが形成される場合がある。s−channel構造では、トランジスタのソース電極−ドレイン電極間に大電流を流すことができ、導通時の電流(オン電流)を高くすることができる。
 高いオン電流が得られるため、s−channel構造は、微細化されたトランジスタに適した構造といえる。トランジスタを微細化できるため、該トランジスタを有する半導体装置は、集積度の高い、高密度化された半導体装置とすることが可能となる。例えば、トランジスタは、チャネル長が好ましくは40nm以下、さらに好ましくは30nm以下、より好ましくは20nm以下の領域を有し、かつ、トランジスタは、チャネル幅が好ましくは40nm以下、さらに好ましくは30nm以下、より好ましくは20nm以下の領域を有する。
 また、導電体1413に、ソース電極よりも低い電圧又は高い電圧を印加し、トランジスタのしきい値電圧をプラス方向又はマイナス方向へ変動させてもよい。例えば、トランジスタのしきい値電圧をプラス方向に変動させることで、ゲート電圧が0Vであってもトランジスタが非導通状態(オフ状態)となる、ノーマリオフが実現できる場合がある。なお、導電体1413に印加する電圧は、可変であってもよいし、固定であってもよい。導電体1413に印加する電圧を可変にする場合、電圧を制御する回路を導電体1413と電気的に接続してもよい。
 次に、金属酸化物1406a、金属酸化物1406b、金属酸化物1406cなどに適用可能な金属酸化物について説明する。
 金属酸化物1406bは、例えば、インジウムを含む酸化物半導体である。金属酸化物1406bは、例えば、インジウムを含むと、キャリア移動度(電子移動度)が高くなる。また、金属酸化物1406bは、元素Mを含むと好ましい。元素Mは、好ましくは、アルミニウム、ガリウム、イットリウム又はスズなどとする。そのほかの元素Mに適用可能な元素としては、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。元素Mは、例えば、酸素との結合エネルギーが高い元素である。例えば、酸素との結合エネルギーがインジウムよりも高い元素である。又は、元素Mは、例えば、酸化物半導体のエネルギーギャップを大きくする機能を有する元素である。また、金属酸化物1406bは、亜鉛を含むと好ましい。酸化物半導体は、亜鉛を含むと結晶化しやすくなる場合がある。
 ただし、金属酸化物1406bは、インジウムを含む酸化物半導体に限定されない。金属酸化物1406bは、例えば、亜鉛スズ酸化物、ガリウムスズ酸化物などの、インジウムを含まず、亜鉛を含む酸化物半導体、ガリウムを含む酸化物半導体、スズを含む酸化物半導体などであっても構わない。
 金属酸化物1406bは、例えば、エネルギーギャップが大きい酸化物を用いる。金属酸化物1406bのエネルギーギャップは、例えば、2.5eV以上4.2eV以下、好ましくは2.8eV以上3.8eV以下、さらに好ましくは3eV以上3.5eV以下とする。
 例えば、金属酸化物1406a及び金属酸化物1406cは、金属酸化物1406bを構成する酸素以外の元素一種以上、又は二種以上から構成される酸化物である。金属酸化物1406bを構成する酸素以外の元素一種以上、又は二種以上から金属酸化物1406a及び金属酸化物1406cが構成されるため、金属酸化物1406aと金属酸化物1406bとの界面、及び金属酸化物1406bと金属酸化物1406cとの界面において、界面準位が形成されにくい。
 金属酸化物1406a、金属酸化物1406b及び金属酸化物1406cは、少なくともインジウムを含むと好ましい。なお、金属酸化物1406aがIn−M−Zn酸化物のとき、In及びMの和を100atomic%としたとき、好ましくはInが50atomic%未満、Mが50atomic%より高く、さらに好ましくはInが25atomic%未満、Mが75atomic%より高いとする。また、金属酸化物1406bがIn−M−Zn酸化物のとき、In及びMの和を100atomic%としたとき、好ましくはInが25atomic%より高く、Mが75atomic%未満、さらに好ましくはInが34atomic%より高く、Mが66atomic%未満とする。また、金属酸化物1406cがIn−M−Zn酸化物のとき、In及びMの和を100atomic%としたとき、好ましくはInが50atomic%未満、Mが50atomic%より高く、さらに好ましくはInが25atomic%未満、Mが75atomic%より高くする。なお、金属酸化物1406cは、金属酸化物1406aと同種の酸化物を用いても構わない。ただし、金属酸化物1406a又は/及び金属酸化物1406cがインジウムを含まなくても構わない場合がある。例えば、金属酸化物1406a又は/及び金属酸化物1406cが酸化ガリウムであっても構わない。
 金属酸化物1406bは、金属酸化物1406a及び金属酸化物1406cよりも電子親和力の大きい酸化物を用いる。例えば、金属酸化物1406bとして、金属酸化物1406a及び金属酸化物1406cよりも電子親和力の0.07eV以上1.3eV以下、好ましくは0.1eV以上0.7eV以下、さらに好ましくは0.15eV以上0.4eV以下大きい酸化物を用いる。なお、電子親和力は、真空準位と伝導帯下端のエネルギーとの差である。
 なお、インジウムガリウム酸化物は、小さい電子親和力と、高い酸素ブロック性を有する。そのため、金属酸化物1406cがインジウムガリウム酸化物を含むと好ましい。ガリウム原子割合[Ga/(In+Ga)]は、例えば、70%以上、好ましくは80%以上、さらに好ましくは90%以上とする。
 なお、金属酸化物1406aの組成は、図19に示した太線の組成の近傍であることが好ましい。なお、金属酸化物1406bの組成は、図19に示した太線の組成の近傍であることが好ましい。なお、金属酸化物1406cの組成は、図19に示した太線の組成の近傍であることが好ましい。こうすることで、トランジスタのチャネル形成領域を、単結晶構造を有する領域とすることができる。又は、トランジスタのチャネル形成領域、ソース領域及びドレイン領域を、単結晶構造を有する領域とすることができる場合があるトランジスタのチャネル形成領域が単結晶構造を有する領域とすることで、トランジスタの周波数特性を高くすることができる場合がある。
 このとき、ゲート電圧を印加すると、金属酸化物1406a、金属酸化物1406b、金属酸化物1406cのうち、電子親和力の大きい金属酸化物1406bにチャネルが形成される。
 ここで、金属酸化物1406aと金属酸化物1406bとの間には、金属酸化物1406aと金属酸化物1406bとの混合領域を有する場合がある。また、金属酸化物1406bと金属酸化物1406cとの間には、金属酸化物1406bと金属酸化物1406cとの混合領域を有する場合がある。混合領域は、界面準位密度が低くなる。そのため、金属酸化物1406a、金属酸化物1406b及び金属酸化物1406cの積層体は、それぞれの界面近傍において、エネルギーが連続的に変化する(連続接合ともいう。)バンド構造となる。
 このとき、電子は、金属酸化物1406a中及び金属酸化物1406c中ではなく、金属酸化物1406b中を主として移動する。上述したように、金属酸化物1406a及び金属酸化物1406bの界面における界面準位密度、金属酸化物1406bと金属酸化物1406cとの界面における界面準位密度を低くすることによって、金属酸化物1406b中で電子の移動が阻害されることが少なく、トランジスタのオン電流を高くすることができる。
 トランジスタのオン電流は、電子の移動を阻害する要因を低減するほど、高くすることができる。例えば、電子の移動を阻害する要因のない場合、効率よく電子が移動すると推定される。電子の移動は、例えば、チャネル形成領域の物理的な凹凸が大きい場合にも阻害される。
 トランジスタのオン電流を高くするためには、例えば、金属酸化物1406bの上面又は下面(被形成面、ここでは金属酸化物1406aの上面)の、1μm×1μmの範囲における二乗平均平方根(RMS:Root Mean Square)粗さが1nm未満、好ましくは0.6nm未満、さらに好ましくは0.5nm未満、より好ましくは0.4nm未満とすればよい。また、1μm×1μmの範囲における平均面粗さ(Raともいう。)が1nm未満、好ましくは0.6nm未満、さらに好ましくは0.5nm未満、より好ましくは0.4nm未満とすればよい。また、1μm×1μmの範囲における最大高低差(P−Vともいう。)が10nm未満、好ましくは9nm未満、さらに好ましくは8nm未満、より好ましくは7nm未満とすればよい。RMS粗さ、Ra及びP−Vは、エスアイアイ・ナノテクノロジー株式会社製走査型プローブ顕微鏡システムSPA−500などを用いて測定することができる。
 又は、例えば、チャネルの形成される領域中の欠陥準位密度が高い場合にも、電子の移動は阻害される。
 例えば、金属酸化物1406bが酸素欠損(V)を有する場合、酸素欠損のサイトに水素が入り込むことでドナー準位を形成することがある(以下、酸素欠損のサイトに水素が入り込んだ状態をVHと表記する場合がある)。VHは電子を散乱するため、トランジスタのオン電流を低下させる要因となる。なお、酸素欠損のサイトは、水素が入るよりも酸素が入る方が安定する。したがって、金属酸化物1406b中の酸素欠損を低減することで、トランジスタのオン電流を高くすることができる場合がある。
 金属酸化物1406bの酸素欠損を低減するために、例えば、絶縁体1402に含まれる過剰酸素を、金属酸化物1406aを介して金属酸化物1406bまで移動させる方法などがある。この場合、金属酸化物1406aは、酸素透過性を有する層(酸素を通過又は透過させる層)であることが好ましい。
 なお、トランジスタがs−channel構造を有する場合、金属酸化物1406bの全体にチャネルが形成される。したがって、金属酸化物1406bが厚いほどチャネル領域は大きくなる。即ち、金属酸化物1406bが厚いほど、トランジスタのオン電流を高くすることができる。例えば、10nm以上、好ましくは20nm以上、さらに好ましくは40nm以上、より好ましくは60nm以上、より好ましくは100nm以上の厚さの領域を有する金属酸化物1406bとすればよい。なお、チャネル形成領域が縮小していくと、金属酸化物1406bが薄いほうがトランジスタの電気特性が向上する場合もある。よって金属酸化物1406bの厚さが10nm未満であってもよい。ただし、半導体装置の生産性が低下する場合があるため、例えば、300nm以下、好ましくは200nm以下、さらに好ましくは150nm以下の厚さの領域を有する金属酸化物1406bとすればよい。
 また、トランジスタのオン電流を高くするためには、金属酸化物1406cの厚さは小さいほど好ましい。例えば、10nm未満、好ましくは5nm以下、さらに好ましくは3nm以下の領域を有する金属酸化物1406cとすればよい。一方、金属酸化物1406cは、チャネルの形成される金属酸化物1406bへ、隣接する絶縁体を構成する酸素以外の元素(水素、シリコンなど)が入り込まないようブロックする機能を有する。そのため、金属酸化物1406cは、ある程度の厚さを有することが好ましい。例えば、0.3nm以上、好ましくは1nm以上、さらに好ましくは2nm以上の厚さの領域を有する金属酸化物1406cとすればよい。また、金属酸化物1406cは、絶縁体1402などから放出される酸素の外方拡散を抑制するために、酸素をブロックする性質を有すると好ましい。
 また、信頼性を高くするためには、金属酸化物1406aは厚く、金属酸化物1406cは薄いことが好ましい。例えば、10nm以上、好ましくは20nm以上、さらに好ましくは40nm以上、より好ましくは60nm以上の厚さの領域を有する金属酸化物1406aとすればよい。金属酸化物1406aの厚さを、厚くすることで、隣接する絶縁体と金属酸化物1406aとの界面からチャネルの形成される金属酸化物1406bまでの距離を離すことができる。ただし、半導体装置の生産性が低下する場合があるため、例えば、200nm以下、好ましくは120nm以下、さらに好ましくは80nm以下の厚さの領域を有する金属酸化物1406aとすればよい。
 例えば、金属酸化物1406bと金属酸化物1406aとの間に、例えば、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)において、1×1019atoms/cm未満、好ましくは5×1018atoms/cm未満、さらに好ましくは2×1018atoms/cm未満のシリコン濃度となる領域を有する。また、金属酸化物1406bと金属酸化物1406cとの間に、SIMSにおいて、1×1019atoms/cm未満、好ましくは5×1018atoms/cm未満、さらに好ましくは2×1018atoms/cm未満のシリコン濃度となる領域を有する。
 また、金属酸化物1406bの水素濃度を低減するために、金属酸化物1406a及び金属酸化物1406cの水素濃度を低減すると好ましい。金属酸化物1406a及び金属酸化物1406cは、SIMSにおいて、2×1020atoms/cm以下、好ましくは5×1019atoms/cm以下、より好ましくは1×1019atoms/cm以下、さらに好ましくは5×1018atoms/cm以下の水素濃度となる領域を有する。また、金属酸化物1406bの窒素濃度を低減するために、金属酸化物1406a及び金属酸化物1406cの窒素濃度を低減すると好ましい。金属酸化物1406a及び金属酸化物1406cは、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下の窒素濃度となる領域を有する。
 上述の3層構造は一例である。例えば、金属酸化物1406a又は金属酸化物1406cのない2層構造としても構わない。又は、金属酸化物1406aの上もしくは下、又は金属酸化物1406c上もしくは下に、金属酸化物1406a、金属酸化物1406b及び金属酸化物1406cとして例示した半導体のいずれか一を有する4層構造としても構わない。又は、金属酸化物1406aの上、金属酸化物1406aの下、金属酸化物1406cの上、金属酸化物1406cの下のいずれか二箇所以上に、金属酸化物1406a、金属酸化物1406b及び金属酸化物1406cとして例示した半導体のいずれか一を有するn層構造(nは5以上の整数)としても構わない。
 基板1401としては、例えば、絶縁体基板、半導体基板又は導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの単体半導体基板、又は炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムを材料とした化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えばSOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。又は、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体又は半導体が設けられた基板、半導体基板に導電体又は絶縁体が設けられた基板、導電体基板に半導体又は絶縁体が設けられた基板などがある。又は、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
 また、基板1401として、可とう性基板を用いてもよい。なお、可とう性基板上にトランジスタを設ける方法としては、非可とう性の基板上にトランジスタを作製した後、トランジスタを剥離し、可とう性基板である基板1401に転置する方法もある。その場合には、非可とう性基板とトランジスタとの間に剥離層を設けるとよい。なお、基板1401として、繊維を編みこんだシート、フィルム又は箔などを用いてもよい。また、基板1401が伸縮性を有してもよい。また、基板1401は、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有してもよい。又は、元の形状に戻らない性質を有してもよい。基板1401の厚さは、例えば、5μm以上かつ700μm以下、好ましくは10μm以上かつ500μm以下、さらに好ましくは15μm以上かつ300μm以下とする。基板1401を薄くすると、半導体装置を軽量化することができる。また、基板1401を薄くすることで、ガラスなどを用いた場合にも伸縮性を有する場合や、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有する場合がある。そのため、落下などによって基板1401上の半導体装置に加わる衝撃などを緩和することができる。即ち、丈夫な半導体装置を提供することができる。
 可とう性基板である基板1401としては、例えば、金属、合金、樹脂もしくはガラス、又はそれらの繊維などを用いることができる。可とう性基板である基板1401は、線膨張率が低いほど環境による変形が抑制されて好ましい。可とう性基板である基板1401としては、例えば、線膨張率が1×10−3/K以下、5×10−5/K以下、又は1×10−5/K以下である材質を用いればよい。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、アクリルなどがある。特に、アラミドは、線膨張率が低いため、可とう性基板である基板1401として好適である。
 導電体1413としては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタル及びタングステンを一種以上含む導電体を、単層で、又は積層で用いればよい。例えば、合金や化合物であってもよく、アルミニウムを含む導電体、銅及びチタンを含む導電体、銅及びマンガンを含む導電体、インジウム、スズ及び酸素を含む導電体、チタン及び窒素を含む導電体などを用いてもよい。
 絶縁体1402としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム又はタンタルを含む絶縁体を、単層で、又は積層で用いればよい。例えば、絶縁体1402としては、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム又は酸化タンタルを用いればよい。
 絶縁体1402は、基板1401からの不純物の拡散を防止する役割を有してもよい。また、金属酸化物1406bが酸化物半導体である場合、絶縁体1402は、金属酸化物1406bに酸素を供給する役割を担うことができる。
 導電体1416a及び導電体1416bとしては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタル及びタングステンを一種以上含む導電体を、単層で、又は積層で用いればよい。例えば、合金や化合物であってもよく、アルミニウムを含む導電体、銅及びチタンを含む導電体、銅及びマンガンを含む導電体、インジウム、スズ及び酸素を含む導電体、チタン及び窒素を含む導電体などを用いてもよい。
 導電体1416a及び導電体1416bを有することにより、金属酸化物1406a、金属酸化物1406b又は金属酸化物1406cに欠陥を形成する場合がある。該欠陥は、金属酸化物1406a、金属酸化物1406b又は金属酸化物1406cをn型化させる場合がある。その結果、金属酸化物1406a、金属酸化物1406b又は金属酸化物1406cと、導電体1416a及び導電体1416bとの間がオーム接触となる。例えば、金属酸化物1406a、金属酸化物1406b又は金属酸化物1406cに形成された欠陥を、脱水素化及び加酸素化などによって低減した場合、金属酸化物1406a、金属酸化物1406b又は金属酸化物1406cと、導電体1416a及び導電体1416bとの間がショットキー接触となる。
 絶縁体1412としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム又はタンタルを含む絶縁体を、単層で、又は積層で用いればよい。例えば、絶縁体1412としては、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム又は酸化タンタルを用いればよい。
 導電体1404としては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタル及びタングステンを一種以上含む導電体を、単層で、又は積層で用いればよい。例えば、合金や化合物であってもよく、アルミニウムを含む導電体、銅及びチタンを含む導電体、銅及びマンガンを含む導電体、インジウム、スズ及び酸素を含む導電体、チタン及び窒素を含む導電体などを用いてもよい。
 絶縁体1408としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム又はタンタルを含む絶縁体を、単層で、又は積層で用いればよい。絶縁体1408は、好ましくは酸化アルミニウム、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム又は酸化タンタルを含む絶縁体を、単層で、又は積層で用いればよい。
 絶縁体1418としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム又はタンタルを含む絶縁体を、単層で、又は積層で用いればよい。例えば、絶縁体1418としては、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム又は酸化タンタルを用いればよい。
 なお、図20では、トランジスタの第1のゲート電極である導電体1404と第2のゲート電極である導電体1413とが、電気的に接続しない例を示したが、本発明の一態様に係るトランジスタの構造はこれに限定されない。例えば、図21(A)に示すトランジスタ1400bのように、導電体1404と導電体1413とが電気的に接続する構造であっても構わない。このような構成とすることで、導電体1404と導電体1413とに同じ電位が供給されるため、トランジスタのスイッチング特性を向上させることができる。又は、図21(B)に示すトランジスタ1400cのように、導電体1413を有さない構造であっても構わない。
 また、図22(A)は、トランジスタの上面図の一例である。図22(A)の一点鎖線F1−F2及び一点鎖線F3−F4に対応する断面図の一例を図22(B)に示す。なお、図22(A)では、理解を容易にするため、絶縁体などの一部を省略して示す。
 また、図20などではソース電極及びドレイン電極として機能する導電体1416a及び導電体1416bが金属酸化物1406bの上面及び側面、絶縁体1402の上面などと接する例を示したが、本発明の一態様に係るトランジスタの構造はこれに限定されない。例えば、図22に示すトランジスタ1400dように、導電体1416a及び導電体1416bが金属酸化物1406bの上面のみと接する構造であっても構わない。
 また、図22(B)に示すように、絶縁体1418上に絶縁体1428を有してもよい。絶縁体1428は、上面が平坦な絶縁体であると好ましい。なお、絶縁体1428は、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム又はタンタルを含む絶縁体を、単層で、又は積層で用いればよい。例えば、絶縁体1428としては、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム又は酸化タンタルを用いればよい。絶縁体1428の上面を平坦化するために、化学機械研磨(CMP:Chemical Mechanical Polishing)法などによって平坦化処理を行ってもよい。
 又は、絶縁体1428は、樹脂を用いてもよい。例えば、ポリイミド、ポリアミド、アクリル、シリコーンなどを含む樹脂を用いればよい。樹脂を用いることで、絶縁体1428の上面を平坦化処理しなくてもよい場合がある。また、樹脂は短い時間で厚い膜を成膜することができるため、生産性を高めることができる。
 また、図22(A)及び図22(B)に示すように、絶縁体1428上に導電体1424a及び導電体1424bを有してもよい。導電体1424a及び導電体1424bは、例えば、配線としての機能を有する。また、絶縁体1428が開口部を有し、該開口部を介して導電体1416aと導電体1424aとが電気的に接続しても構わない。また、また、絶縁体1428が別の開口部を有し、該開口部を介して導電体1416bと導電体1424bとが電気的に接続しても構わない。このとき、それぞれの開口部内に導電体1426a、導電体1426bを有しても構わない。
 導電体1424a及び導電体1424bとしては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタル及びタングステンを一種以上含む導電体を、単層で、又は積層で用いればよい。例えば、合金や化合物であってもよく、アルミニウムを含む導電体、銅及びチタンを含む導電体、銅及びマンガンを含む導電体、インジウム、スズ及び酸素を含む導電体、チタン及び窒素を含む導電体などを用いてもよい。
 図22に示すトランジスタは、導電体1416a及び導電体1416bは、金属酸化物1406bの側面と接しない。したがって、第1のゲート電極として機能する導電体1404から金属酸化物1406bの側面に向けて印加される電界が、導電体1416a及び導電体1416bによって遮蔽されにくい構造である。また、導電体1416a及び導電体1416bは、絶縁体1402の上面と接しない。そのため、絶縁体1402から放出される過剰酸素(酸素)が導電体1416a及び導電体1416bを酸化させるために消費されない。したがって、絶縁体1402から放出される過剰酸素(酸素)を、金属酸化物1406bの酸素欠損を低減するために効率的に利用することのできる構造である。即ち、図22に示す構造のトランジスタは、高いオン電流、高い電界効果移動度、低いサブスレッショルドスイング値、高い信頼性などを有する優れた電気特性のトランジスタである。
 図23(A)及び図23(B)は、本発明の一態様のトランジスタの上面図及び断面図である。図23(A)は上面図であり、図23(B)は、図23(A)に示す一点鎖線G1−G2、及び一点鎖線G3−G4に対応する断面図である。なお、図23(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 トランジスタ1400eは、図23に示すように、導電体1416a及び導電体1416bを有さず、導電体1426a及び導電体1426bと、金属酸化物1406bとが接する構造であっても構わない。この場合、金属酸化物1406b又は/及び金属酸化物1406aの、少なくとも426a及び導電体1426bと接する領域に低抵抗領域1423a(低抵抗領域1423b)を設けると好ましい。低抵抗領域1423a及び低抵抗領域1423bは、例えば、導電体1404などをマスクとし、金属酸化物1406b又は/及び金属酸化物1406aに不純物を添加することで形成すればよい。なお、導電体1426a及び導電体1426bが、金属酸化物1406bの孔(貫通しているもの)又は窪み(貫通していないもの)に設けられていても構わない。導電体1426a及び導電体1426bが、金属酸化物1406bの孔又は窪みに設けられることで、導電体1426a及び導電体1426bと、金属酸化物1406bとの接触面積が大きくなるため、接触抵抗の影響を小さくすることができる。即ち、トランジスタのオン電流を大きくすることができる。
<トランジスタ構造2>
 図24(A)及び図24(B)は、本発明の一態様のトランジスタの上面図及び断面図である。図24(A)は上面図であり、図24(B)は、図24(A)に示す一点鎖線J1−J2、及び一点鎖線J3−J4に対応する断面図である。なお、図24(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 図24(A)及び図24(B)に示すトランジスタ1600aは、基板1601上の導電体1604と、導電体1604上の絶縁体1612と、絶縁体1612上の金属酸化物1606aと、金属酸化物1606a上の金属酸化物1606bと、金属酸化物1606b上の金属酸化物1606cと、金属酸化物1606a、金属酸化物1606b及び金属酸化物1606cと接し、間隔を空けて配置された導電体1616a及び導電体1616bと、金属酸化物1606c上、導電体1616a上及び導電体1616b上の絶縁体1618と、を有する。なお、導電体1604は、絶縁体1612を介して金属酸化物1606bの下面と面する。また、絶縁体1612が凸部を有しても構わない。また、基板1601と導電体1604の間に絶縁体を有しても構わない。該絶縁体は、絶縁体1402や絶縁体1408についての記載を参照する。また、金属酸化物1606aを有さなくても構わない。また、絶縁体1618を有さなくても構わない。
 なお、金属酸化物1606bは、トランジスタのチャネル形成領域としての機能を有する。また、導電体1604は、トランジスタの第1のゲート電極(フロントゲート電極ともいう。)としての機能を有する。また、導電体1616a及び導電体1616bは、トランジスタのソース電極及びドレイン電極としての機能を有する。
 なお、金属酸化物1606a、又は金属酸化物1606cは、後述する材料、比率によっては、半導体に分類される場合がある。前述のとおり、金属酸化物1606bがトランジスタのチャネル形成領域として機能するため、金属酸化物1606aと金属酸化物1606cの内部にはキャリアの移動は起こらない場合がある。そのため、本実施の形態では、金属酸化物1606a、又は金属酸化物1606cが半導体としての性質を持っていたとしても、絶縁体として扱う場合がある。
 なお、絶縁体1618は過剰酸素を含む絶縁体であると好ましい。
 なお、基板1601は、基板1401についての記載を参照する。また、導電体1604は、導電体1404についての記載を参照する。また、絶縁体1612は、絶縁体1412についての記載を参照する。また、金属酸化物1606aは、金属酸化物1406cについての記載を参照する。また、金属酸化物1606bは、金属酸化物1406bについての記載を参照する。また、金属酸化物1606cは、金属酸化物1406aについての記載を参照する。また、導電体1616a及び導電体1616bは、導電体1416a及び導電体1416bについての記載を参照する。また、絶縁体1618は、絶縁体1402についての記載を参照する。
 なお、絶縁体1618上には、表示素子が設けられていてもよい。例えば、画素電極、液晶層、共通電極、発光層、有機EL層、陽極、陰極などが設けられていてもよい。表示素子は、例えば、導電体1616aなどと接続されている。
 また、図25(A)は、トランジスタの上面図の一例である。図25(A)の一点鎖線K1−K2及び一点鎖線K3−K4に対応する断面図の一例を図25(B)に示す。なお、図25(A)では、理解を容易にするため、絶縁体などの一部を省略して示す。
 なお、半導体の上に、チャネル保護膜として機能させることができる絶縁体を配置してもよい。例えば、図25のトランジスタ1600bに示すように、導電体1616a及び導電体1616bと、金属酸化物1606cとの間に、絶縁体1620を配置してもよい。その場合、導電体1616a(導電体1616b)と金属酸化物1606cとは、絶縁体1620中の開口部を介して接続される。絶縁体1620は、絶縁体1618についての記載を参照すればよい。
 なお、図24(B)や図25(B)において、絶縁体1618の上に導電体1613を配置し、導電体1613の上に絶縁体1630を配置してもよい。その場合の例を図26(A)のトランジスタ1600c及び図26(B)のトランジスタ1600dに示す。なお、導電体1613については、導電体1413についての記載を参照する。絶縁体1630については、絶縁体1418の記載を参照する。また、導電体1613には、導電体1604と同じ電位や同じ信号が供給されてもよいし、異なる電位や信号が供給されてもよい。例えば、導電体1613に、一定の電位を供給して、トランジスタのしきい値電圧を制御してもよい。つまり、導電体1613は、第2のゲート電極としての機能を有することができる。また、導電体1613などによってs−channel構造を形成していても構わない。また、絶縁体1630は有さなくても構わない。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態7)
<酸化物半導体の構造>
 以下では、酸化物半導体の構造について説明する。
 酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、CAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline Oxide Semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous like Oxide Semiconductor)、非晶質酸化物半導体などがある。
 また別の観点では、酸化物半導体は、非晶質酸化物半導体と、それ以外の結晶性酸化物半導体とに分けられる。結晶性酸化物半導体としては、単結晶酸化物半導体、CAAC−OS、多結晶酸化物半導体、nc−OSなどがある。
 非晶質構造の定義としては、一般に、準安定状態で固定化していないこと、等方的であって不均質構造を持たないことなどが知られている。また、結合角度が柔軟であり、短距離秩序性は有するが、長距離秩序性を有さない構造と言い換えることもできる。
 逆の見方をすると、本質的に安定な酸化物半導体の場合、完全な非晶質(completely amorphous)酸化物半導体と呼ぶことはできない。また、等方的でない(例えば、微小な領域において周期構造を有する)酸化物半導体を、完全な非晶質酸化物半導体と呼ぶことはできない。ただし、a−like OSは、微小な領域において周期構造を有するものの、鬆(ボイドともいう。)を有し、不安定な構造である。そのため、物性的には非晶質酸化物半導体に近いといえる。
<CAAC−OS>
 まずは、CAAC−OSについて説明する。
 CAAC−OSは、c軸配向した複数の結晶部(ペレットともいう。)を有する酸化物半導体の一つである。
 透過型電子顕微鏡(TEM:Transmission Electron Microscope)によって、CAAC−OSの明視野像と回折パターンとの複合解析像(高分解能TEM像ともいう。)を観察すると、複数のペレットを確認することができる。一方、高分解能TEM像ではペレット同士の境界、即ち結晶粒界(グレインバウンダリーともいう。)を明確に確認することができない。そのため、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
 以下では、TEMによって観察したCAAC−OSについて説明する。図27(A)に、試料面と略平行な方向から観察したCAAC−OSの断面の高分解能TEM像を示す。高分解能TEM像の観察には、球面収差補正(Spherical Aberration Corrector)機能を用いた。球面収差補正機能を用いた高分解能TEM像を、特にCs補正高分解能TEM像と呼ぶ。Cs補正高分解能TEM像の取得は、例えば、日本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fなどによって行うことができる。
 図27(A)の領域(1)を拡大したCs補正高分解能TEM像を図27(B)に示す。図27(B)より、ペレットにおいて、金属原子が層状に配列していることを確認できる。金属原子の各層の配列は、CAAC−OSの膜を形成する面(被形成面ともいう。)又は上面の凹凸を反映しており、CAAC−OSの被形成面又は上面と平行となる。
 図27(B)に示すように、CAAC−OSは特徴的な原子配列を有する。図27(C)は、特徴的な原子配列を、補助線で示したものである。図27(B)及び図27(C)より、ペレット一つの大きさは1nm以上のものや、3nm以上のものがあり、ペレットとペレットとの傾きにより生じる隙間の大きさは0.8nm程度であることがわかる。したがって、ペレットを、ナノ結晶(nc:nanocrystal)と呼ぶこともできる。また、CAAC−OSを、CANC(C−Axis Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。
 ここで、Cs補正高分解能TEM像をもとに、基板5120上のCAAC−OSのペレット5100の配置を模式的に示すと、レンガ又はブロックが積み重なったような構造となる(図27(D)参照。)。図27(C)で観察されたペレットとペレットとの間で傾きが生じている箇所は、図27(D)に示す領域5161に相当する。
 また、図28(A)に、試料面と略垂直な方向から観察したCAAC−OSの平面のCs補正高分解能TEM像を示す。図28(A)の領域(1)、領域(2)及び領域(3)を拡大したCs補正高分解能TEM像を、それぞれ図28(B)、図28(C)及び図28(D)に示す。図28(B)、図28(C)及び図28(D)より、ペレットは、金属原子が三角形状、四角形状又は六角形状に配列していることを確認できる。しかしながら、異なるペレット間で、金属原子の配列に規則性は見られない。
 次に、X線回折(XRD:X−Ray Diffraction)によって解析したCAAC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、out−of−plane法による構造解析を行うと、図29(A)に示すように回折角(2θ)が31°近傍にピークが現れる場合がある。このピークは、InGaZnOの結晶の(009)面に帰属されることから、CAAC−OSの結晶がc軸配向性を有し、c軸が被形成面又は上面に略垂直な方向を向いていることが確認できる。
 なお、CAAC−OSのout−of−plane法による構造解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°近傍のピークは、CAAC−OS中の一部に、c軸配向性を有さない結晶が含まれることを示している。より好ましいCAAC−OSは、out−of−plane法による構造解析では、2θが31°近傍にピークを示し、2θが36°近傍にピークを示さない。
 一方、CAAC−OSに対し、c軸に略垂直な方向からX線を入射させるin−plane法による構造解析を行うと、2θが56°近傍にピークが現れる。このピークは、InGaZnOの結晶の(110)面に帰属される。CAAC−OSの場合は、2θを56°近傍に固定し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析(φスキャン)を行っても、図29(B)に示すように明瞭なピークは現れない。これに対し、InGaZnOの単結晶酸化物半導体であれば、2θを56°近傍に固定してφスキャンした場合、図29(C)に示すように(110)面と等価な結晶面に帰属されるピークが6本観察される。したがって、XRDを用いた構造解析から、CAAC−OSは、a軸及びb軸の配向が不規則であることが確認できる。
 次に、電子回折によって解析したCAAC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、試料面に平行にプローブ径が300nmの電子線を入射させると、図30(A)に示すような回折パターン(制限視野透過電子回折パターンともいう。)が現れる場合がある。この回折パターンには、InGaZnOの結晶の(009)面に起因するスポットが含まれる。したがって、電子回折によっても、CAAC−OSに含まれるペレットがc軸配向性を有し、c軸が被形成面又は上面に略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプローブ径が300nmの電子線を入射させたときの回折パターンを図30(B)に示す。図30(B)より、リング状の回折パターンが確認される。したがって、電子回折によっても、CAAC−OSに含まれるペレットのa軸及びb軸は配向性を有さないことがわかる。なお、図30(B)における第1リングは、InGaZnOの結晶の(010)面及び(100)面などに起因すると考えられる。また、図30(B)における第2リングは(110)面などに起因すると考えられる。
 上述したように、CAAC−OSは結晶性の高い酸化物半導体である。酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、逆の見方をするとCAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。
 なお、不純物は、酸化物半導体の主成分以外の元素で、水素、炭素、シリコン、遷移金属元素などがある。例えば、シリコンなどの、酸化物半導体を構成する金属元素よりも酸素との結合力の強い元素は、酸化物半導体から酸素を奪うことで酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径(又は分子半径)が大きいため、酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。
 酸化物半導体が不純物や欠陥を有する場合、光や熱などによって特性が変動する場合がある。例えば、酸化物半導体に含まれる不純物は、キャリアトラップとなる場合や、キャリア発生源となる場合がある。また、酸化物半導体中の酸素欠損は、キャリアトラップとなる場合や、水素を捕獲することによってキャリア発生源となる場合がある。
 不純物及び酸素欠損の少ないCAAC−OSは、キャリア密度の低い酸化物半導体である。具体的には、8×1011/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上のキャリア密度の酸化物半導体とすることができる。そのような酸化物半導体を、高純度真性又は実質的に高純度真性な酸化物半導体と呼ぶ。CAAC−OSは、不純物濃度が低く、欠陥準位密度が低い。即ち、安定な特性を有する酸化物半導体であるといえる。
<nc−OS>
 次に、nc−OSについて説明する。
 nc−OSは、高分解能TEM像において、結晶部を確認することのできる領域と、明確な結晶部を確認することのできない領域と、を有する。nc−OSに含まれる結晶部は、1nm以上10nm以下、又は1nm以上3nm以下の大きさであることが多い。なお、結晶部の大きさが10nmより大きく100nm以下である酸化物半導体を微結晶酸化物半導体と呼ぶことがある。nc−OSは、例えば、高分解能TEM像では、結晶粒界を明確に確認できない場合がある。なお、ナノ結晶は、CAAC−OSにおけるペレットと起源を同じくする可能性がある。そのため、以下ではnc−OSの結晶部をペレットと呼ぶ場合がある。
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OSに対し、ペレットよりも大きい径のX線を用いた場合、out−of−plane法による解析では、結晶面を示すピークは検出されない。また、nc−OSに対し、ペレットよりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子回折を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OSに対し、ペレットの大きさと近いかペレットより小さいプローブ径の電子線を用いるナノビーム電子回折を行うと、スポットが観測される。また、nc−OSに対しナノビーム電子回折を行うと、円を描くように(リング状に)輝度の高い領域が観測される場合がある。さらに、リング状の領域内に複数のスポットが観測される場合がある。
 このように、ペレット(ナノ結晶)間では結晶方位が規則性を有さないことから、nc−OSを、RANC(Random Aligned nanocrystals)を有する酸化物半導体、又はNANC(Non−Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。
 nc−OSは、非晶質酸化物半導体よりも規則性の高い酸化物半導体である。そのため、nc−OSは、a−like OSや非晶質酸化物半導体よりも欠陥準位密度が低くなる。ただし、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、nc−OSは、CAAC−OSと比べて欠陥準位密度が高くなる。
<a−like OS>
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。
 a−like OSは、高分解能TEM像において鬆が観察される場合がある。また、高分解能TEM像において、明確に結晶部を確認することのできる領域と、結晶部を確認することのできない領域と、を有する。
 鬆を有するため、a−like OSは、不安定な構造である。以下では、a−like OSが、CAAC−OS及びnc−OSと比べて不安定な構造であることを示すため、電子照射による構造の変化を示す。
 電子照射を行う試料として、a−like OS(試料Aと表記する。)、nc−OS(試料Bと表記する。)及びCAAC−OS(試料Cと表記する。)を準備する。いずれの試料もIn−Ga−Zn酸化物である。
 まず、各試料の高分解能断面TEM像を取得する。高分解能断面TEM像により、各試料は、いずれも結晶部を有することがわかる。
 なお、どの部分を一つの結晶部と見なすかの判定は、以下のように行えばよい。例えば、InGaZnOの結晶の単位格子は、In−O層を3層有し、またGa−Zn−O層を6層有する、計9層がc軸方向に層状に重なった構造を有することが知られている。これらの近接する層同士の間隔は、(009)面の格子面間隔(d値ともいう。)と同程度であり、結晶構造解析からその値は0.29nmと求められている。したがって、格子縞の間隔が0.28nm以上0.30nm以下である箇所を、InGaZnOの結晶部と見なすことができる。なお、格子縞は、InGaZnOの結晶のa−b面に対応する。
 図31は、各試料の結晶部(22箇所から45箇所)の平均の大きさを調査した例である。ただし、上述した格子縞の長さを結晶部の大きさとしている。図31より、a−like OSは、電子の累積照射量に応じて結晶部が大きくなっていくことがわかる。具体的には、図31中に(1)で示すように、TEMによる観察初期においては1.2nm程度の大きさだった結晶部(初期核ともいう。)が、累積照射量が4.2×10/nmにおいては2.6nm程度の大きさまで成長していることがわかる。一方、nc−OS及びCAAC−OSは、電子照射開始時から電子の累積照射量が4.2×10/nmまでの範囲で、結晶部の大きさに変化が見られないことがわかる。具体的には、図31中の(2)及び(3)で示すように、電子の累積照射量によらず、nc−OS及びCAAC−OSの結晶部の大きさは、それぞれ1.4nm程度及び2.1nm程度であることがわかる。
 このように、a−like OSは、電子照射によって結晶部の成長が見られる場合がある。一方、nc−OS及びCAAC−OSは、電子照射による結晶部の成長がほとんど見られないことがわかる。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、不安定な構造であることがわかる。
 また、鬆を有するため、a−like OSは、nc−OS及びCAAC−OSと比べて密度の低い構造である。具体的には、a−like OSの密度は、同じ組成の単結晶の密度の78.6%以上92.3%未満となる。また、nc−OSの密度及びCAAC−OSの密度は、同じ組成の単結晶の密度の92.3%以上100%未満となる。単結晶の密度の78%未満となる酸化物半導体は、成膜すること自体が困難である。
 例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、菱面体晶構造を有する単結晶InGaZnOの密度は6.357g/cmとなる。よって、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、a−like OSの密度は5.0g/cm以上5.9g/cm未満となる。また、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、nc−OSの密度及びCAAC−OSの密度は5.9g/cm以上6.3g/cm未満となる。
 なお、同じ組成の単結晶が存在しない場合がある。その場合、任意の割合で組成の異なる単結晶を組み合わせることにより、所望の組成における単結晶に相当する密度を見積もることができる。所望の組成の単結晶に相当する密度は、組成の異なる単結晶を組み合わせる割合に対して、加重平均を用いて見積もればよい。ただし、密度は、可能な限り少ない種類の単結晶を組み合わせて見積もることが好ましい。
 以上のように、酸化物半導体は、様々な構造をとり、それぞれが様々な特性を有する。なお、酸化物半導体は、例えば、非晶質酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有する積層膜であってもよい。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態8)
 本実施の形態では、上述の実施の形態で説明した半導体装置(トランジスタ、メモリセルなど)を電子部品(RFIC、記憶装置など)に適用する例、及び該電子部品を具備する電子機器に適用する例について、図32を用いて説明する。
 図32(A)では上述の実施の形態で説明し半導体装置を電子部品に適用する例について説明する。なお電子部品は、半導体パッケージ、又はIC用パッケージともいう。この電子部品は、端子取り出し方向や、端子の形状に応じて、複数の規格や名称が存在する。そこで、本実施の形態では、その一例について説明することにする。
 上記実施の形態1及び実施の形態2に示すようなトランジスタで構成される半導体装置は、組み立て工程(後工程)を経て、プリント基板に脱着可能な部品が複数合わさることで完成する。
 後工程については、図32(A)に示す各工程を経ることで完成させることができる。具体的には、前工程で得られる素子基板が完成(ステップS1)した後、基板の裏面を研削する(ステップS2)。この段階で基板を薄膜化することで、前工程での基板の反り等を低減し、部品としての小型化を図るためである。
 基板の裏面を研削して、基板を複数のチップに分離するダイシング工程を行う。そして、分離したチップを個々にピックアップしてリードフレーム上に搭載し接合する、ダイボンディング工程を行う(ステップS3)。このダイボンディング工程におけるチップとリードフレームとの接着は、樹脂による接着や、テープによる接着等、適宜製品に応じて適した方法を選択する。なお、ダイボンディング工程は、インターポーザ上に搭載し接合してもよい。
 なお、本実施の形態において、基板の一方の面に素子が形成されていたとき、基板の一方の面を表面とし、該基板の他方の面(該基板の素子が形成されていない側の面)を裏面とする。
 次いでリードフレームのリードとチップ上の電極とを、金属の細線(ワイヤー)で電気的に接続する、ワイヤーボンディングを行う(ステップS4)。金属の細線には、銀線や金線を用いることができる。また、ワイヤーボンディングは、ボールボンディングや、ウェッジボンディングを用いることができる。
 ワイヤーボンディングされたチップは、エポキシ樹脂等で封止される、モールド工程が施される(ステップS5)。モールド工程を行うことで電子部品の内部が樹脂で充填され、機械的な外力による内蔵される回路部やワイヤーに対するダメージを低減することができ、また水分や埃による特性の劣化を低減することができる。
 次いでリードフームのリードをメッキ処理する。そしてリードを切断及び成形加工する(ステップS6)。このめっき処理によりリードの錆を防止し、後にプリント基板に実装する際のはんだ付けをより確実に行うことができる。
 次いでパッケージの表面に印字処理(マーキング)を施す(ステップS7)。そして最終的な検査工程(ステップS8)を経て電子部品が完成する(ステップS9)。
 以上説明した電子部品は、上述の実施の形態で説明した半導体装置を含む構成とすることができる。そのため、信頼性に優れた電子部品を実現することができる。
 また、完成した電子部品の斜視模式図を図32(B)に示す。図32(B)では、電子部品の一例として、QFP(Quad Flat Package)の斜視模式図を示している。図32(B)に示す電子部品1900は、リード1901及び回路部1903を示している。図32(B)に示す電子部品1900は、例えばプリント基板1902に実装される。このような電子部品1900が複数組み合わされて、それぞれがプリント基板1902上で電気的に接続されることで電子機器の内部に搭載することができる。完成した回路基板1904は、電子機器等の内部に設けられる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(本明細書等の記載に関する付記)
 以上の実施の形態、及び実施の形態における各構成の説明について、以下に付記する。
<実施の形態で述べた本発明の一態様に関する付記>
 各実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて、本発明の一態様とすることができる。また、1つの実施の形態の中に、複数の構成例が示される場合は、互いに構成例を適宜組み合わせることが可能である。
 なお、ある一つの実施の形態の中で述べる内容(一部の内容でもよい)は、その実施の形態で述べる別の内容(一部の内容でもよい)と、一つ若しくは複数の別の実施の形態で述べる内容(一部の内容でもよい)との少なくとも一つの内容に対して、適用、組み合わせ、又は置き換えなどを行うことができる。
 なお、実施の形態の中で述べる内容とは、各々の実施の形態において、様々な図を用いて述べる内容、又は明細書に記載される文章を用いて述べる内容のことである。
 なお、ある一つの実施の形態において述べる図(一部でもよい)は、その図の別の部分、その実施の形態において述べる別の図(一部でもよい)と、一つ若しくは複数の別の実施の形態において述べる図(一部でもよい)との少なくとも一つの図に対して、組み合わせることにより、さらに多くの図を構成させることができる。
<序数詞に関する付記>
 本明細書等において、「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものである。従って、構成要素の数を限定するものではない。また、構成要素の順序を限定するものではない。また例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素が、他の実施の形態、あるいは特許請求の範囲において「第2」に言及された構成要素とすることもありうる。また例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素を、他の実施の形態、あるいは特許請求の範囲において省略することもありうる。
<図面を説明する記載に関する付記>
 実施の形態について図面を参照しながら説明している。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなく、その形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。
 また、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。構成同士の位置関係は、各構成を描写する方向に応じて適宜変化する。そのため、配置を示す語句は、明細書で説明した記載に限定されず、状況に応じて適切に言い換えることができる。
 また、「上」や「下」の用語は、構成要素の位置関係が直上又は直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。
 また本明細書等において、ブロック図では、構成要素を機能毎に分類し、互いに独立したブロックとして示している。しかしながら実際の回路等においては、構成要素を機能毎に切り分けることが難しく、一つの回路に複数の機能が係わる場合や、複数の回路にわたって一つの機能が関わる場合があり得る。そのため、ブロック図のブロックは、明細書で説明した構成要素に限定されず、状況に応じて適切に言い換えることができる。
 また、図面において、大きさ、層の厚さ、又は領域は、説明の便宜上任意の大きさに示したものである。よって、必ずしもそのスケールに限定されない。なお図面は明確性を期すために模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。
 また、図面において、上面図(平面図、レイアウト図ともいう)や斜視図などにおいて、図面の明確性を期すために、一部の構成要素の記載を省略している場合がある。
 また、図面において、同一の要素又は同様な機能を有する要素、同一の材質の要素、あるいは同時に形成される要素等には同一の符号を付す場合があり、その繰り返しの説明は省略する場合がある。
<言い換え可能な記載に関する付記>
 本明細書等において、トランジスタの接続関係を説明する際、ソースとドレインとの一方を、「ソース又はドレインの一方」(又は第1電極、又は第1端子)と表記し、ソースとドレインとの他方を「ソース又はドレインの他方」(又は第2電極、又は第2端子)と表記している。これは、トランジスタのソースとドレインは、トランジスタの構造又は動作条件等によって変わるためである。なおトランジスタのソースとドレインの呼称については、ソース(ドレイン)端子や、ソース(ドレイン)電極等、状況に応じて適切に言い換えることができる。
 また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって形成されている場合なども含む。
 また、本明細書等において、電圧と電位は、適宜言い換えることができる。電圧は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電位(接地電位)とすると、電圧を電位に言い換えることができる。グラウンド電位は必ずしも0Vを意味するとは限らない。なお電位は相対的なものであり、基準となる電位によっては、配線等に与える電位を変化させる場合がある。
 なお本明細書等において、「膜」、「層」などの語句は、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。又は、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。又は、場合によっては、又は、状況に応じて、「膜」、「層」などの語句を使わずに、別の用語に入れ替えることが可能である。例えば、「導電層」又は「導電膜」という用語を、「導電体」という用語に変更することが可能な場合がある。又は、例えば、「絶縁層」「絶縁膜」という用語を、「絶縁体」という用語に変更することが可能な場合がある。
 なお本明細書等において、「配線」などの用語は、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「配線」という用語を、「信号線」という用語に変更することが可能な場合がある。また、例えば、「配線」という用語を、「電源線」などの用語に変更することが可能な場合がある。また、その逆も同様で、「信号線」「電源線」などの用語を、「配線」という用語に変更することが可能な場合がある。「電源線」などの用語は、「信号線」などの用語に変更することが可能な場合がある。また、その逆も同様で「信号線」などの用語は、「電源線」などの用語に変更することが可能な場合がある。
<語句の定義に関する付記>
 以下では、上記実施の形態中で言及した語句の定義について説明する。
<<半導体について>>
 本明細書において、「半導体」と表記した場合でも、例えば、導電性が十分低い場合は「絶縁体」としての特性を有する場合がある。また、「半導体」と「絶縁体」は境界が曖昧であり、厳密に区別できない場合がある。したがって、本明細書に記載の「半導体」は、「絶縁体」と言い換えることができる場合がある。同様に、本明細書に記載の「絶縁体」は、「半導体」と言い換えることができる場合がある。
 また、「半導体」と表記した場合でも、例えば、導電性が十分高い場合は「導電体」としての特性を有する場合がある。また、「半導体」と「導電体」は境界が曖昧であり、厳密に区別できない場合がある。したがって、本明細書に記載の「半導体」は、「導電体」と言い換えることができる場合がある。同様に、本明細書に記載の「導電体」は、「半導体」と言い換えることができる場合がある。
 なお、半導体の不純物とは、例えば、半導体層を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物である。不純物が含まれることにより、例えば、半導体にDOS(Density of State)が形成されることや、キャリア移動度が低下することや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、主成分以外の遷移金属などがあり、特に、例えば、水素(水にも含まれる)、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、例えば水素などの不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコン層である場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
<<トランジスタについて>>
 本明細書において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域又はドレイン電極)とソース(ソース端子、ソース領域又はソース電極)の間にチャネル形成領域を有しており、ドレインとチャネル形成領域とソースとを介して電流を流すことができるものである。なお、本明細書等において、チャネル形成領域とは、電流が主として流れる領域をいう。
 また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができるものとする。
<<スイッチについて>>
 本明細書等において、スイッチとは、導通状態(オン状態)、又は、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有するものをいう。又は、スイッチとは、電流を流す経路を選択して切り替える機能を有するものをいう。
 一例としては、電気的スイッチ又は機械的なスイッチなどを用いることができる。つまり、スイッチは、電流を制御できるものであればよく、特定のものに限定されない。
 電気的なスイッチの一例としては、トランジスタ(例えば、バイポーラトランジスタ、MOSトランジスタなど)、ダイオード(例えば、PNダイオード、PINダイオード、ショットキーダイオード、MIM(Metal Insulator Metal)ダイオード、MIS(Metal Insulator Semiconductor)ダイオード、ダイオード接続のトランジスタなど)、又はこれらを組み合わせた論理回路などがある。
 なお、スイッチとしてトランジスタを用いる場合、トランジスタの「導通状態」とは、トランジスタのソース電極とドレイン電極が電気的に短絡されているとみなせる状態をいう。また、トランジスタの「非導通状態」とは、トランジスタのソース電極とドレイン電極が電気的に遮断されているとみなせる状態をいう。なおトランジスタを単なるスイッチとして動作させる場合には、トランジスタの極性(導電型)は特に限定されない。
 機械的なスイッチの一例としては、デジタルマイクロミラーデバイス(DMD)のように、MEMS(マイクロ・エレクトロ・メカニカル・システム)技術を用いたスイッチがある。そのスイッチは、機械的に動かすことが可能な電極を有し、その電極が動くことによって、導通と非導通とを制御して動作する。
<<チャネル長について>>
 本明細書等において、チャネル長とは、例えば、トランジスタの上面図において、半導体(又はトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが重なる領域、又はチャネルが形成される領域における、ソース(ソース領域又はソース電極)とドレイン(ドレイン領域又はドレイン電極)との間の距離をいう。
 なお、一つのトランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル長は、チャネルの形成される領域における、いずれか一の値、最大値、最小値又は平均値とする。
<<チャネル幅について>>
 本明細書等において、チャネル幅とは、例えば、上面図において半導体(又はトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが重なる領域、又はチャネルが形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。
 なお、一つのトランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル幅は、チャネルの形成される領域における、いずれか一の値、最大値、最小値又は平均値とする。
 なお、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、実効的なチャネル幅と呼ぶ。)と、トランジスタの上面図において示されるチャネル幅(以下、見かけ上のチャネル幅と呼ぶ。)と、が異なる場合がある。例えば、立体的な構造を有するトランジスタでは、実効的なチャネル幅が、トランジスタの上面図において示される見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつ立体的な構造を有するトランジスタでは、半導体の側面に形成されるチャネル領域の割合が大きくなる場合がある。その場合は、上面図において示される見かけ上のチャネル幅よりも、実際にチャネルの形成される実効的なチャネル幅の方が大きくなる。
 ところで、立体的な構造を有するトランジスタにおいては、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
 そこで、本明細書では、トランジスタの上面図において、半導体とゲート電極とが重なる領域における、ソースとドレインとが向かい合っている部分の長さである見かけ上のチャネル幅を、「囲い込みチャネル幅(SCW:Surrounded Channel Width)」と呼ぶ場合がある。また、本明細書では、単にチャネル幅と記載した場合には、囲い込みチャネル幅又は見かけ上のチャネル幅を指す場合がある。又は、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅、囲い込みチャネル幅などは、断面TEM像などを取得して、その画像を解析することなどによって、値を決定することができる。
 なお、トランジスタの電界効果移動度や、チャネル幅当たりの電流値などを計算して求める場合、囲い込みチャネル幅を用いて計算する場合がある。その場合には、実効的なチャネル幅を用いて計算する場合とは異なる値をとる場合がある。
<<接続について>>
 なお、本明細書等において、XとYとが接続されている、と記載する場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とを含むものとする。したがって、所定の接続関係、例えば、図又は文章に示された接続関係に限定されず、図又は文章に示された接続関係以外のものも含むものとする。
 ここで使用するX、Yなどは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
 XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、又は、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。又は、スイッチは、電流を流す経路を選択して切り替える機能を有している。
 XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(DA変換回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅又は電流量などを大きく出来る回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。
 なお、XとYとが電気的に接続されている、と明示的に記載する場合は、XとYとが電気的に接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟んで接続されている場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの間に別の回路を挟んで機能的に接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟まずに接続されている場合)とを含むものとする。つまり、電気的に接続されている、と明示的に記載する場合は、単に、接続されている、とのみ明示的に記載されている場合と同じであるとする。
 なお、例えば、トランジスタのソース(又は第1の端子など)が、Z1を介して(又は介さず)、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子など)が、Z2を介して(又は介さず)、Yと電気的に接続されている場合や、トランジスタのソース(又は第1の端子など)が、Z1の一部と直接的に接続され、Z1の別の一部がXと直接的に接続され、トランジスタのドレイン(又は第2の端子など)が、Z2の一部と直接的に接続され、Z2の別の一部がYと直接的に接続されている場合では、以下のように表現することが出来る。
 例えば、「XとYとトランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yの順序で電気的に接続されている。」と表現することができる。又は、「トランジスタのソース(又は第1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子など)はYと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この順序で電気的に接続されている」と表現することができる。又は、「Xは、トランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とを介して、Yと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続の順序について規定することにより、トランジスタのソース(又は第1の端子など)と、ドレイン(又は第2の端子など)とを、区別して、技術的範囲を決定することができる。なお、これらの表現方法は、一例であり、これらの表現方法に限定されない。ここで、X、Y、Z1、Z2は、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
 なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されている場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、及び電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。
<<平行、垂直について>>
 本明細書において、「平行」とは、二つの直線が−10°以上かつ10°以下の角度で配置されている状態をいう。したがって、−5°以上かつ5°以下の場合も含まれる。また、「略平行」とは、二つの直線が−30°以上かつ30°以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80°以上かつ100°以下の角度で配置されている状態をいう。したがって、85°以上かつ95°以下の場合も含まれる。また、「略垂直」とは、二つの直線が60°以上かつ120°以下の角度で配置されている状態をいう。
<<三方晶、菱面体晶について>>
 本明細書において、結晶が三方品又は菱面体晶である場合、六方晶系として表す。
BL  配線
BLB  配線
WL  配線
WLC  配線
SL  配線
BGL  配線
RBL  配線
RWL  配線
WBL  配線
WWL  配線
BRL  配線
C101  容量素子
C102  容量素子
C103  容量素子
C104  容量素子
C105  容量素子
M101  トランジスタ
M102  トランジスタ
M104  トランジスタ
M105  トランジスタ
M106  トランジスタ
M107  トランジスタ
M108  トランジスタ
Mos1  トランジスタ
Mos2  トランジスタ
Mos3  トランジスタ
Mos4  トランジスタ
Mos5  トランジスタ
Mos6  トランジスタ
10  回路
20  回路
100a  環境センサ
100b  環境センサ
100b−1  環境センサ
100b−2  環境センサ
100b−3  環境センサ
100b−4  環境センサ
100c  環境センサ
100d  環境センサ
101  アンテナ
102  アンテナ
103  アンテナ
110a  センサ回路
110b  センサ回路
110c  センサ回路
111  受信回路
112  電源回路
113  電池
114  記憶装置
115  アナログデジタル変換回路
116  センサ
117  光センサ
118  検波回路
120  制御回路
121  論理回路
122  メモリコントローラ
123  センサコントローラ
130  送信回路
131  変調回路
132  送信アンプ
141  OSメモリ
142  OSアナログデジタル変換回路
401  自動車
402  RF送受信機
403  RF受信機
404  レーザ光送信機
405  電波
406  天井
800  アナログデジタル変換回路
801  サンプルホールド回路
801A  サンプルホールド回路
801B  サンプルホールド回路
802  コンパレータ
803  逐次比較レジスタ
804  デジタルアナログ変換回路
805  タイミングコントローラ
806  発振回路
811  バッファ回路
812  トランジスタ
813  容量素子
821  センサ回路
821A  センサ回路
821B  センサ回路
822  セレクタ
831A  サンプルホールド回路
831B  サンプルホールド回路
831C  サンプルホールド回路
835  トランジスタ
836  トランジスタ
837  トランジスタ
838  トランジスタ
893  容量素子
894  セレクタ
895  セレクタ
896  セレクタ
897  トランジスタ
898  インバータ回路
900  アナログデジタル変換回路
911  トランジスタ
912  容量素子
1000  橋
1001  橋脚
1002  情報処理端末
1100  電柱
1101  配線
1102  配線
1103  信号機
1104  情報処理端末
1200  メモリセル
1203  メモリセル
1204  メモリセル
1205  メモリセル
1206  メモリセル
1207  メモリセル
1208  メモリセル
1400a  トランジスタ
1400b  トランジスタ
1400c  トランジスタ
1400d  トランジスタ
1400e  トランジスタ
1401  基板
1402  絶縁体
1404  導電体
1406a  金属酸化物
1406b  金属酸化物
1406c  金属酸化物
1408  絶縁体
1412  絶縁体
1413  導電体
1416a  導電体
1416b  導電体
1418  絶縁体
1423a  低抵抗領域
1423b  低抵抗領域
1424a  導電体
1424b  導電体
1426a  導電体
1426b  導電体
1428  絶縁体
1600a  トランジスタ
1600b  トランジスタ
1600c  トランジスタ
1600d  トランジスタ
1601  基板
1604  導電体
1606a  金属酸化物
1606b  金属酸化物
1606c  金属酸化物
1612  絶縁体
1613  導電体
1616a  導電体
1616b  導電体
1618  絶縁体
1620  絶縁体
1630  絶縁体
1900  電子部品
1901  リード
1902  プリント基板
1903  回路部
1904  回路基板
2600  記憶装置
2601  周辺回路
2610  メモリセルアレイ
2621  ローデコーダ
2622  ワード線ドライバ回路
2630  ビット線ドライバ回路
2631  カラムデコーダ
2632  プリチャージ回路
2633  センスアンプ
2634  書き込み回路
2640  出力回路
2660  コントロールロジック回路
5100  ペレット
5120  基板
5161  領域

Claims (8)

  1.  第1のセンサと、第2のセンサと、制御回路と、送信アンプと、変調回路と、記憶装置と、アナログデジタル変換回路と、第1のアンテナと、電池と、電源回路と、を有し、
     前記記憶装置は、第1のトランジスタと、第1の保持ノードと、を有し、
     前記アナログデジタル変換回路は、第2のトランジスタと、第2の保持ノードと、を有し、
     前記第1のトランジスタは、チャネル形成領域に酸化物半導体を有し、
     前記第2のトランジスタは、チャネル形成領域に酸化物半導体を有し、
     前記第1のトランジスタは、前記第1の保持ノードの充電及び放電を制御する機能を有し、
     前記第2のトランジスタは、前記第2の保持ノードの充電及び放電を制御する機能を有し、
     前記電池は、前記電源回路を介して、前記第1のセンサと、前記第2のセンサと、前記制御回路と、前記送信アンプと、前記変調回路と、前記記憶装置と、前記アナログデジタル変換回路と、に電力を供給する機能を有し、
     前記第2のセンサは、光を受光すると、トリガ信号を前記制御回路に出力する機能を有し、
     前記制御回路は、前記トリガ信号を受けることにより、前記第1のセンサと、前記記憶装置と、前記アナログデジタル変換回路と、前記変調回路と、前記送信アンプと、に制御信号を送る機能を有し、
     前記第1のセンサは、外界の物理量、又は化学量を第1のセンシングデータとして取得する機能を有し、
     前記アナログデジタル変換回路は、前記第1のセンシングデータをデジタル変換して、第2のセンシングデータを生成する機能を有し、
     前記記憶装置は、前記第2のセンシングデータを記憶する機能を有し、
     前記変調回路は、前記第2のセンシングデータを変調する機能を有し、
     前記送信アンプは、前記変調回路で変調された前記第2のセンシングデータを増幅する機能を有し、
     前記第1のアンテナは、前記送信アンプで増幅された前記第2のセンシングデータを第1の電磁波信号として送信する機能を有することを特徴とする環境センサ。
  2.  受信回路と、第1のセンサと、制御回路と、送信アンプと、変調回路と、記憶装置と、アナログデジタル変換回路と、第1のアンテナと、電池と、電源回路と、を有し、
     前記記憶装置は、第1のトランジスタと、第1の保持ノードと、を有し、
     前記アナログデジタル変換回路は、第2のトランジスタと、第2の保持ノードと、を有し、
     前記第1のトランジスタは、チャネル形成領域に酸化物半導体を有し、
     前記第2のトランジスタは、チャネル形成領域に酸化物半導体を有し、
     前記第1のトランジスタは、前記第1の保持ノードの充電及び放電を制御する機能を有し、
     前記第2のトランジスタは、前記第2の保持ノードの充電及び放電を制御する機能を有し、
     前記電池は、前記電源回路を介して、前記第1のセンサと、前記受信回路と、前記制御回路と、前記送信アンプと、前記変調回路と、前記記憶装置と、前記アナログデジタル変換回路と、に電力を供給する機能を有し、
     前記受信回路は、外部からの信号を受信すると、トリガ信号を前記制御回路に出力する機能を有し、
     前記制御回路は、前記トリガ信号を受けることにより、前記第1のセンサと、前記記憶装置と、前記アナログデジタル変換回路と、前記変調回路と、前記送信アンプと、に制御信号を送る機能を有し、
     前記第1のセンサは、外界の物理量、又は化学量を第1のセンシングデータとして取得する機能を有し、
     前記アナログデジタル変換回路は、前記第1のセンシングデータをデジタル変換して、第2のセンシングデータを生成する機能を有し、
     前記記憶装置は、前記第2のセンシングデータを記憶する機能を有し、
     前記変調回路は、前記第2のセンシングデータを変調する機能を有し、
     前記送信アンプは、前記変調回路で変調された前記第2のセンシングデータを増幅する機能を有し、
     前記第1のアンテナは、前記送信アンプで増幅された前記第2のセンシングデータを第1の電磁波信号として送信する機能を有することを特徴とする環境センサ。
  3.  請求項2において、
     前記受信回路は、検波回路を有し、
     前記電池は、前記電源回路を介して、前記検波回路に電力を供給する機能を有し、
     前記第1のアンテナは、外部から第2の電磁波信号を受信する機能を有し、
     前記検波回路は、前記第2の電磁波信号を復調して、前記トリガ信号として前記制御回路に出力する機能を有する環境センサ。
  4.  請求項2において、
     前記受信回路は、第2のアンテナと、検波回路と、を有し、
     前記電池は、前記電源回路を介して、前記検波回路に電力を供給する機能を有し、
     前記第2のアンテナは、外部からの第2の電磁波信号を受信する機能を有し、
     前記検波回路は、前記第2の電磁波信号を復調して、前記トリガ信号として前記制御回路に出力する機能を有し、
     前記第1の電磁波信号の周波数と、前記第2の電磁波信号の周波数は、互いに異なることを特徴とする環境センサ。
  5.  請求項1乃至請求項4のいずれか一において、
     前記第1のセンサは、前記物理量として、応力、歪み、温度、湿度、光量、電流、電圧、粒子の数、前記粒子の濃度の少なくともいずれか一を計測する機能を有することを特徴とする環境センサ。
  6.  請求項1乃至請求項4のいずれか一において、
     前記第1のセンサは、前記化学量として、酸化物イオン、硫化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、水酸化物イオン、硫酸イオン、炭酸イオン、水素イオン、カルシウムイオンの少なくともいずれか一の量を計測する機能を有することを特徴とする環境センサ。
  7.  請求項1乃至請求項4のいずれか一において、
     前記記憶装置は、更に、第1の容量素子を有し、
     前記第1の容量素子は、前記第1の保持ノードの電圧を保持する機能を有することを特徴とする環境センサ。
  8.  請求項1乃至請求項4のいずれか一において、
     前記アナログデジタル変換回路は、更に、第2の容量素子を有し、
     前記第2の容量素子は、前記第2の保持ノードの電圧を保持する機能を有することを特徴とする環境センサ。
PCT/IB2016/051019 2015-03-02 2016-02-25 環境センサ、又は半導体装置 WO2016139559A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017503203A JP6554533B2 (ja) 2015-03-02 2016-02-25 環境センサ
US15/554,228 US10091563B2 (en) 2015-03-02 2016-02-25 Environmental sensor or semiconductor device
US16/139,934 US11044538B2 (en) 2015-03-02 2018-09-24 Environmental sensor or semiconductor device
US17/344,496 US11297403B2 (en) 2015-03-02 2021-06-10 Environmental sensor or semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015040494 2015-03-02
JP2015-040494 2015-03-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/554,228 A-371-Of-International US10091563B2 (en) 2015-03-02 2016-02-25 Environmental sensor or semiconductor device
US16/139,934 Continuation US11044538B2 (en) 2015-03-02 2018-09-24 Environmental sensor or semiconductor device

Publications (1)

Publication Number Publication Date
WO2016139559A1 true WO2016139559A1 (ja) 2016-09-09

Family

ID=56849332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/051019 WO2016139559A1 (ja) 2015-03-02 2016-02-25 環境センサ、又は半導体装置

Country Status (3)

Country Link
US (3) US10091563B2 (ja)
JP (5) JP6554533B2 (ja)
WO (1) WO2016139559A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065440A1 (ja) * 2018-09-28 2020-04-02 株式会社半導体エネルギー研究所 半導体装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10091563B2 (en) * 2015-03-02 2018-10-02 Semiconductor Energy Laboratory Co., Ltd. Environmental sensor or semiconductor device
EP3372731B1 (de) * 2017-03-08 2020-07-22 Toll Collect GmbH Verkehrsüberwachungsanordnung
US10276578B2 (en) * 2017-06-25 2019-04-30 United Microelectronics Corp. Dynamic oxide semiconductor random access memory(DOSRAM) having a capacitor electrically connected to the random access memory (SRAM)
US10580475B2 (en) 2018-01-22 2020-03-03 Micron Technology, Inc. Apparatuses and methods for calculating row hammer refresh addresses in a semiconductor device
US11152050B2 (en) 2018-06-19 2021-10-19 Micron Technology, Inc. Apparatuses and methods for multiple row hammer refresh address sequences
WO2020084398A1 (ja) * 2018-10-25 2020-04-30 株式会社半導体エネルギー研究所 蓄電装置及び蓄電装置の動作方法
US10977932B2 (en) 2018-12-04 2021-04-13 At&T Intellectual Property I, L.P. Method and apparatus for electromagnetic wave communications associated with vehicular traffic
CN113287370A (zh) 2019-01-18 2021-08-20 株式会社半导体能源研究所 显示系统、显示装置、发光装置
US10770127B2 (en) 2019-02-06 2020-09-08 Micron Technology, Inc. Apparatuses and methods for managing row access counts
US11043254B2 (en) 2019-03-19 2021-06-22 Micron Technology, Inc. Semiconductor device having cam that stores address signals
US11264096B2 (en) 2019-05-14 2022-03-01 Micron Technology, Inc. Apparatuses, systems, and methods for a content addressable memory cell with latch and comparator circuits
US11158364B2 (en) 2019-05-31 2021-10-26 Micron Technology, Inc. Apparatuses and methods for tracking victim rows
US11158373B2 (en) 2019-06-11 2021-10-26 Micron Technology, Inc. Apparatuses, systems, and methods for determining extremum numerical values
US11139015B2 (en) 2019-07-01 2021-10-05 Micron Technology, Inc. Apparatuses and methods for monitoring word line accesses
US10832792B1 (en) 2019-07-01 2020-11-10 Micron Technology, Inc. Apparatuses and methods for adjusting victim data
US11386946B2 (en) 2019-07-16 2022-07-12 Micron Technology, Inc. Apparatuses and methods for tracking row accesses
US10943636B1 (en) * 2019-08-20 2021-03-09 Micron Technology, Inc. Apparatuses and methods for analog row access tracking
US10964378B2 (en) 2019-08-22 2021-03-30 Micron Technology, Inc. Apparatus and method including analog accumulator for determining row access rate and target row address used for refresh operation
US11200942B2 (en) 2019-08-23 2021-12-14 Micron Technology, Inc. Apparatuses and methods for lossy row access counting
US11222682B1 (en) 2020-08-31 2022-01-11 Micron Technology, Inc. Apparatuses and methods for providing refresh addresses
US11462291B2 (en) 2020-11-23 2022-10-04 Micron Technology, Inc. Apparatuses and methods for tracking word line accesses
US11482275B2 (en) 2021-01-20 2022-10-25 Micron Technology, Inc. Apparatuses and methods for dynamically allocated aggressor detection
US11600314B2 (en) 2021-03-15 2023-03-07 Micron Technology, Inc. Apparatuses and methods for sketch circuits for refresh binning
US11664063B2 (en) 2021-08-12 2023-05-30 Micron Technology, Inc. Apparatuses and methods for countering memory attacks
US11688451B2 (en) 2021-11-29 2023-06-27 Micron Technology, Inc. Apparatuses, systems, and methods for main sketch and slim sketch circuit for row address tracking

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042657A (ja) * 2006-09-28 2013-02-28 Semiconductor Energy Lab Co Ltd 無線センシング装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3298974B2 (ja) 1993-03-23 2002-07-08 電子科学株式会社 昇温脱離ガス分析装置
EP0820644B1 (en) 1995-08-03 2005-08-24 Koninklijke Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP4274453B2 (ja) 2001-07-02 2009-06-10 横浜ゴム株式会社 車両のタイヤ監視システム
US20070123767A1 (en) * 2002-05-31 2007-05-31 Valentino Montegrande Intraocular pressure sensor and method of use
US6950767B2 (en) 2002-11-15 2005-09-27 Renesas Technology Corp. Quality monitoring system for building structure, quality monitoring method for building structure and semiconductor integrated circuit device
JP2005006979A (ja) 2003-06-19 2005-01-13 Canon Inc 放射線撮像装置、放射線撮像方法、及び、放射線撮像プログラム
US6972986B2 (en) * 2004-02-03 2005-12-06 Kilopass Technologies, Inc. Combination field programmable gate array allowing dynamic reprogrammability and non-votatile programmability based upon transistor gate oxide breakdown
US7764958B2 (en) * 2004-03-18 2010-07-27 Microstrain, Inc. Wireless sensor system
EP1763860A4 (en) * 2004-09-03 2012-11-07 Semiconductor Energy Lab SYSTEM FOR COLLECTING HEALTH DATA AND SEMICONDUCTOR ARRANGEMENT
JP2006195502A (ja) 2005-01-11 2006-07-27 Teruya:Kk センサ入力機能付きバッテリーレス型rfidセンサ
JP5179858B2 (ja) * 2007-01-06 2013-04-10 株式会社半導体エネルギー研究所 半導体装置
JP4835534B2 (ja) * 2007-08-07 2011-12-14 株式会社デンソーウェーブ Rfタグシステム,rfタグ,タグリーダ
JP4485568B2 (ja) * 2007-12-07 2010-06-23 株式会社日立製作所 センサシステム用半導体装置
JP5402083B2 (ja) * 2008-09-29 2014-01-29 ソニー株式会社 固体撮像装置とその製造方法、及び電子機器
WO2010038601A1 (en) * 2008-09-30 2010-04-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
EP2491585B1 (en) 2009-10-21 2020-01-22 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device
KR20220153647A (ko) 2009-10-29 2022-11-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US20120302874A1 (en) * 2009-12-01 2012-11-29 Hollstien David S Non-invasive implant rupture detection system
KR101434948B1 (ko) 2009-12-25 2014-08-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP2012174176A (ja) * 2011-02-24 2012-09-10 East Japan Railway Co 無線通信装置、設備情報管理システム、無線通信方法
JP5881979B2 (ja) 2011-06-27 2016-03-09 セイコーインスツル株式会社 端末装置、及び通信システム
US20130027186A1 (en) * 2011-07-26 2013-01-31 Can Cinbis Ultralow-power implantable hub-based wireless implantable sensor communication
JP5816545B2 (ja) * 2011-12-28 2015-11-18 株式会社フジクラ 無線センサシステム
US8836555B2 (en) 2012-01-18 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Circuit, sensor circuit, and semiconductor device using the sensor circuit
US8860023B2 (en) * 2012-05-01 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2016513315A (ja) * 2013-02-07 2016-05-12 ニューポート、デジタル、テクノロジーズ、オーストラリア、プロプライエタリー、リミテッドNewport Digital Technologies Australia Pty Ltd Rfid追跡における改善
KR102282108B1 (ko) * 2013-06-13 2021-07-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101515491B1 (ko) * 2013-11-18 2015-05-06 경북대학교 산학협력단 수소이온 감지센서
KR20150144550A (ko) * 2014-06-17 2015-12-28 삼성전자주식회사 온-칩 저항 측정 회로 및 이를 포함하는 저항성 메모리 장치
US10379155B2 (en) * 2014-10-02 2019-08-13 Xilinx, Inc. In-die transistor characterization in an IC
US10091563B2 (en) * 2015-03-02 2018-10-02 Semiconductor Energy Laboratory Co., Ltd. Environmental sensor or semiconductor device
KR20170061602A (ko) * 2015-11-26 2017-06-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 전자 기기

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042657A (ja) * 2006-09-28 2013-02-28 Semiconductor Energy Lab Co Ltd 無線センシング装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065440A1 (ja) * 2018-09-28 2020-04-02 株式会社半導体エネルギー研究所 半導体装置
JPWO2020065440A1 (ja) * 2018-09-28 2021-10-21 株式会社半導体エネルギー研究所 半導体装置
US11356089B2 (en) 2018-09-28 2022-06-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP7254826B2 (ja) 2018-09-28 2023-04-10 株式会社半導体エネルギー研究所 半導体装置

Also Published As

Publication number Publication date
JP6554533B2 (ja) 2019-07-31
US20180084314A1 (en) 2018-03-22
US20190149895A1 (en) 2019-05-16
JP2019197571A (ja) 2019-11-14
JP2021005416A (ja) 2021-01-14
US11297403B2 (en) 2022-04-05
US11044538B2 (en) 2021-06-22
US20210306721A1 (en) 2021-09-30
JP2024099816A (ja) 2024-07-25
JP6773851B2 (ja) 2020-10-21
JPWO2016139559A1 (ja) 2017-12-14
JP2023002628A (ja) 2023-01-10
US10091563B2 (en) 2018-10-02

Similar Documents

Publication Publication Date Title
JP6773851B2 (ja) 環境センサ
US10500908B2 (en) Semiconductor device, method for manufacturing semiconductor device, tire, and moving object
US11374023B2 (en) Logic circuit, processing unit, electronic component, and electronic device
US9349418B2 (en) Semiconductor device and method for driving the same
US10679017B2 (en) Semiconductor device and system thereof
JP6895265B2 (ja) 半導体装置、電子部品、および電子機器
US9852778B2 (en) Semiconductor device, memory device, and electronic device
TWI775741B (zh) 半導體裝置及感測器系統
JP2016149546A (ja) 半導体装置およびその作製方法
JP2016149177A (ja) 半導体装置、又は該半導体装置を有する電子機器
JP2016157943A (ja) 半導体装置
JP2016110688A (ja) 半導体装置及びその駆動方法
JP2017055338A (ja) 半導体装置、及び電子機器
US12126344B2 (en) Semiconductor device
JP2016110679A (ja) 記憶装置、およびそれを有する半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503203

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15554228

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758522

Country of ref document: EP

Kind code of ref document: A1