[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016137287A1 - Cathode active material, cathode comprising same, and lithium secondary battery - Google Patents

Cathode active material, cathode comprising same, and lithium secondary battery Download PDF

Info

Publication number
WO2016137287A1
WO2016137287A1 PCT/KR2016/001957 KR2016001957W WO2016137287A1 WO 2016137287 A1 WO2016137287 A1 WO 2016137287A1 KR 2016001957 W KR2016001957 W KR 2016001957W WO 2016137287 A1 WO2016137287 A1 WO 2016137287A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
manganese
lithium secondary
secondary battery
nickel
Prior art date
Application number
PCT/KR2016/001957
Other languages
French (fr)
Korean (ko)
Inventor
곽익순
조승범
최상순
채화석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201680007307.1A priority Critical patent/CN107210440A/en
Publication of WO2016137287A1 publication Critical patent/WO2016137287A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium secondary battery, a positive electrode including the same, and a lithium secondary battery capable of achieving high output and high capacity.
  • Such electric vehicles (EVs) and hybrid electric vehicles (HEVs) use nickel-metal hydride (Ni-MH) secondary batteries or lithium secondary batteries with high energy density, high discharge voltage, and output stability as power sources.
  • Ni-MH nickel-metal hydride
  • lithium secondary batteries lithium secondary batteries with high energy density, high discharge voltage, and output stability as power sources.
  • When used in electric vehicles it must be able to be used for 10 years or more under severe conditions as well as high energy density and high output in a short time. Therefore, superior safety and long life characteristics are inevitably superior to conventional small lithium secondary batteries. Is required.
  • secondary batteries used in electric vehicles (EVs) and hybrid electric vehicles (HEVs) require excellent rate characteristics and power characteristics according to vehicle operating conditions.
  • the positive electrode active material of a lithium ion secondary battery includes a lithium-containing cobalt oxide such as LiCoO 2 having a layered structure, a lithium-containing nickel oxide such as LiNiO 2 having a layered structure, and a LiMn 2 O 4 having a spinel crystal structure. Lithium-containing manganese oxide such as is used.
  • LiCoO 2 is widely used because of its excellent physical properties such as excellent cycle characteristics, but it is low in safety and has a limitation in mass use as a power source in electric vehicles such as electric vehicles due to price problems due to resource limitations of cobalt as a raw material. .
  • LiNiO 2 is difficult to apply to the actual mass production process at a reasonable cost, due to the characteristics of the manufacturing method.
  • lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 have a lot of interest as a cathode active material that can replace LiCoO 2 because of the advantage of using abundant raw materials and environmentally friendly manganese. It also has the disadvantage of poor cycle characteristics. Specifically, LiMnO 2 has a disadvantage that the initial capacity is small, dozens of charge and discharge cycles are required until a certain capacity is reached. In addition, LiMn 2 O 4 has a disadvantage in that the capacity deterioration is serious as the cycle continues, and particularly, the cycle characteristics are rapidly deteriorated due to decomposition of the electrolyte, elution of manganese, and the like at a high temperature of 50 ° C. or higher.
  • LiNiO 2 based positive electrode active material has the disadvantage of a sudden phase transition of the crystal structure according to the volume change accompanying the charge and discharge cycle, and the stability is sharply lowered when exposed to air and moisture, but is cheaper than the cobalt oxide When charged to 4.3 V, it has the advantage of showing high discharge capacity.
  • lithium transition metal oxide in which a part of nickel is replaced with another transition metal such as manganese and cobalt has been proposed.
  • nickel-manganese and nickel-cobalt-manganese have been proposed. Attempts and studies have been made to use lithium oxide mixed 1: 1 or 1: 1: 1 in positive electrode active materials.
  • the positive electrode active material prepared by mixing nickel, cobalt or manganese has improved overall physical properties compared to the battery prepared by using the transition metals separately, but still needs improvement in terms of high rate characteristics, and the equivalent of nickel and manganese
  • Ni 2 + formed by Mn 4 + ions induces the formation of Ni 2 + ions moves to the Li site, thereby lowering the electrochemical performance.
  • An object of the present invention is to provide a cathode active material for a lithium secondary battery that can achieve a high output and improved output by adjusting the content of manganese and cobalt.
  • Another object of the present invention to provide a cathode for a lithium secondary battery containing the cathode active material.
  • Still another object of the present invention is to provide a lithium secondary battery including the cathode for a lithium secondary battery.
  • the present invention provides a cathode active material for a lithium secondary battery having the following configuration.
  • a cathode active material for a lithium secondary battery containing lithium nickel-manganese-cobalt oxide represented by the following formula (1):
  • the lithium nickel-manganese-cobalt oxide comprises a transition metal-oxide layer (MO layer) containing a transition metal and a Li-oxide layer (reversible lithium layer) containing lithium, wherein the MO layer is Ni + 2 and Ni + 3, and containing, the Ni 2 + part of cathode active material for a lithium secondary battery according to any one of (1) to (6), which is inserted into the reversible lithium layer of.
  • MO layer transition metal-oxide layer
  • Li-oxide layer reversible lithium layer
  • this invention provides the positive electrode for lithium secondary batteries containing the positive electrode active material for lithium secondary batteries in any one of (11) said (1)-(10).
  • the present invention provides a lithium secondary battery comprising (12) the positive electrode for a lithium secondary battery.
  • the lithium secondary battery may be used for a power source of an electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
  • FIG 1 and 2 are scanning electron microscope (SEM) photographs of lithium nickel-manganese-cobalt oxide prepared in Example 1 and Comparative Example 1, respectively.
  • Example 3 is a graph showing a cycle characteristic evaluation results for the lithium secondary battery prepared in Example 5 and Comparative Example 4, respectively.
  • FIG. 5 is a graph showing the results of resistance measurement experiments of lithium secondary batteries using HPPC for lithium secondary batteries prepared in Example 5 and Comparative Example 4.
  • FIG. 5 is a graph showing the results of resistance measurement experiments of lithium secondary batteries using HPPC for lithium secondary batteries prepared in Example 5 and Comparative Example 4.
  • the cathode active material for a lithium secondary battery according to the present invention includes lithium nickel-manganese-cobalt oxide represented by the following formula (1).
  • the lithium nickel-manganese-cobalt oxide included in the cathode active material for a lithium secondary battery according to the present invention satisfies the relationship of x> y. That is, in one embodiment of the present invention, the lithium nickel-manganese-cobalt oxide may include a relatively large amount of nickel (Ni) than manganese (Mn), and also relative to manganese and cobalt (Co) It may have a composition of nickel excess. Specifically, the nickel content (x) may have a value of 0.4 ⁇ x ⁇ 0.95, preferably of 0.6 ⁇ x ⁇ 0.85, and more preferably of 0.6 ⁇ x ⁇ 0.82. Can have
  • the nickel content is 0.4 or more, a high capacity can be expected, and when the content of nickel is 0.95 or less, a problem of deterioration of safety can be prevented.
  • the lithium nickel-manganese-cobalt oxide included in the cathode active material according to an example of the present invention includes a relatively large amount of nickel (Ni) compared to manganese (Mn), thereby being included in the lithium nickel-manganese-cobalt oxide. of transition metals can reduce the relative amount of Ni + 2.
  • the lithium nickel containing this the positive electrode active material according to an example of the invention - manganese - of cobalt oxide, the amount of nickel corresponding to the manganese content may be in the form of Ni 2 +, the content corresponding to the manganese content the amount of nickel in excess may be in the form of Ni 3 +.
  • the nickel included in the cathode active material may have an average oxidation number of more than +2, and the average oxidation number of nickel, manganese, and cobalt excluding the lithium in the lithium nickel-manganese-cobalt oxide as a whole may exceed +3.0. have.
  • the lithium nickel-manganese-cobalt oxide includes a transition metal oxide layer (MO layer) containing a transition metal and a lithium oxide layer (reversible lithium layer) containing lithium, and the transition metal oxide layer ( MO layer) and has a Ni + 2 and Ni + 3 co-exist, the portion of the Ni + 2 is inserted into the reversible lithium layer may be in the form of cross-coupled with the MO layers.
  • the Ni 3 + is because the size smaller than that of a Ni 2 + having the same size as Li +, the Ni 3 + increases as along the transition transition, which contains the metal the metal-oxide layer (MO layer) and lithium
  • the lithium-oxide layer (reversible lithium layer) containing can be properly separated by the size difference of the ions occupying each layer. That is, since the average oxidation number of the transition metals except lithium is greater than +3, the positive electrode active material has a smaller overall size of the transition metal ions than the case where the average oxidation number is +3, and thus the size difference with the lithium ions Since it becomes large and the separation between layers is performed well, a stable layered crystal structure can be formed.
  • the content of Ni 2 + is inserted into the reversible lithium layer may be may be 5 mol% or less, preferably% 3 mol or less as a percentage of the sites and Ni 2 + occupied in the lithium site, for example, 0.01 to 5 mol %, 0.01 to 3 mol%, 0.1 to 5 mol%, 0.1 to 3 mol% and the like.
  • the content of the Ni 2 + inserted into the reversible lithium layers can exhibit a superior rate characteristics if more than 5 mol% Ni + 2 to be inserted into the reversible lithium layer is to minimize the disturbance to cause the occlusion and release of lithium ions.
  • the amount of Ni 2 + may be 0.1 to 2% by weight, specifically 0.5 to 1.5% by weight, based on the total weight of nickel ions.
  • the average oxidation number of the transition metal may be more than 3 to less than 3.5, preferably more than 3 To 3.3, more preferably greater than 3 to 3.1.
  • the content (a) of lithium satisfies 1 ⁇ a ⁇ 1.2, and when the a value is 1.2 or less, an appropriate high temperature safety may be exhibited and the a value If it is 1 or more, the reversible capacity may not be lowered while exhibiting an appropriate rate characteristic.
  • n may be a natural number except 1, and may be a natural number of 2 to 5. That is, the lithium nickel-manganese-cobalt oxide may have a higher cobalt content than manganese, and the cobalt may be included as a multiple of n of the manganese content.
  • Lithium nickel-manganese-cobalt oxide included in the positive electrode active material according to an embodiment of the present invention includes the cobalt in a larger amount than the manganese, so that the electrical conductivity is relatively increased to improve the rate characteristics, Powder density can be achieved.
  • n may be n> 1.
  • n may be a natural number except 1, and may be a natural number of 2 to 5. That is, the lithium nickel-manganese-cobalt oxide may be more manganese than cobalt, and the manganese may be included as a multiple of n of the cobalt content.
  • Lithium nickel-manganese-cobalt oxide included in the positive electrode active material according to another embodiment of the present invention includes the manganese in a larger amount than the cobalt, lithium nickel-manganese-cobalt oxide containing much cobalt than manganese, or manganese and cobalt are contained in the same amount of lithium nickel-manganese-many content of relatively manganese compared with the cobalt oxide, the effect of the content of Ni 2 + induced by the presence of the manganese also increases relatively and the battery capacity increases in Can exert.
  • manganese contributes to the stabilization of the structure of lithium nickel-manganese-cobalt oxide to properly implement the characteristics required for high-capacity lithium secondary batteries, and the relatively low cobalt content reduces the effect of unstable Co 4+ in the state of charge. Stability can be improved.
  • the transition metals nickel, manganese and cobalt may be partially substituted with other metal elements within a range capable of maintaining a layered crystal structure, for example, a small amount of metal elements and cationic elements within 5 mol%. And some substitutions.
  • the present invention provides a cathode including the cathode active material.
  • the positive electrode can be prepared by conventional methods known in the art.
  • a slurry may be prepared by mixing and stirring a solvent, a binder, a conductive material, and a dispersant in a positive electrode active material, and then applying the coating (coating) to a current collector of a metal material, compressing it, and drying the same to prepare a positive electrode.
  • the current collector of the metallic material is a highly conductive metal, a metal to which the slurry of the positive electrode active material can easily adhere, and any metal may be used as long as it is not reactive in the voltage range of the battery.
  • Non-limiting examples of the positive electrode current collector include a foil made of aluminum, nickel, or a combination thereof.
  • the solvent for forming the positive electrode includes an organic solvent such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents alone or in combination of two or more. Can be mixed and used. The amount of the solvent used is sufficient to dissolve and disperse the positive electrode active material, the binder, and the conductive material in consideration of the coating thickness of the slurry and the production yield.
  • NMP N-methyl pyrrolidone
  • DMF dimethyl formamide
  • acetone dimethyl acetamide or water
  • the binder may be polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile, polymethylmethacrylate, Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), Sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid and polymers in which hydrogen thereof is replaced with Li, Na or Ca, or the like, or Various kinds of binder polymers such as various copolymers can be used.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the dispersant may be an aqueous dispersant or an organic dispersant such as N-methyl-2-pyrrolidone.
  • the present invention also provides a secondary battery including the positive electrode, the negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • a carbon material lithium metal, silicon, tin, or the like, in which lithium ions may be occluded and released, may be used.
  • a carbon material may be used, and as the carbon material, both low crystalline carbon and high crystalline carbon may be used.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is natural graphite, kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber.
  • High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes.
  • the negative electrode current collector is generally made to a thickness of 3 ⁇ m to 500 ⁇ m.
  • Such a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the negative electrode current collector include carbon, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, and carbon on the surface of copper or stainless steel. Surface-treated with nickel, titanium, silver, and the like, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode may be prepared by mixing and stirring the negative electrode active material and the additives to prepare a negative electrode active material slurry, and then coating and compressing the negative electrode active material on a current collector.
  • the separator may be a conventional porous polymer film conventionally used as a separator, for example, polyolefin such as ethylene homopolymer, propylene homopolymer, ethylene-butene copolymer, ethylene-hexene copolymer and ethylene-methacrylate copolymer
  • the porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
  • Examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. no.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, and examples thereof include a cylindrical shape, a square shape, a pouch type or a coin type using a can.
  • the lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device but also preferably used as a unit cell in a medium and large battery module including a plurality of battery cells used as a power source for a medium and large device. have.
  • Preferred examples of the medium-to-large device include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and electric power storage systems.
  • Ni-sulfate, manganese sulfate (Mn-sulfate), and cobalt sulfate (Co-sulfate) were weighed so that the molar ratio of Ni: Mn: Co was 8.2: 0.6: 1.2 and dissolved in water to form an aqueous solution.
  • Ni-sulfate, manganese sulfate (Mn-sulfate), and cobalt sulfate (Co-sulfate) were weighed so that the molar ratio of Ni: Mn: Co was 8.2: 0.6: 1.2 and dissolved in water to form an aqueous solution.
  • To obtain a nickel-manganese-cobalt composite metal hydroxide Li 2 CO 3 was added to the metal hydroxide in such a manner that the molar ratio of Li: nickel-manganese-cobalt was 1: 1 and then heat-treated at 800 ° C. for 20 hours in an electric furnace in an oxygen atmosphere to obtain LiNi
  • Nickel sulfate, manganese sulfate, and cobalt sulfate were weighed so that the molar ratio of Ni: Mn: Co was 8.2: 1.2: 0.6, dissolved in water to form an aqueous solution, and then co-precipitated to obtain a nickel-manganese-cobalt composite metal hydroxide.
  • Li 2 CO 3 was added to the metal hydroxide in such a manner that the molar ratio of Li: nickel-manganese-cobalt was 1: 1 and then heat-treated at 800 ° C. for 20 hours in an electric furnace in an oxygen atmosphere to obtain LiNi 0 . 82 Co 0 . 06 Mn 0 .
  • a lithium nickel-manganese-cobalt oxide having a composition of 12 O 2 was obtained.
  • Nickel sulfate, manganese sulfate, and cobalt sulfate were weighed so that the molar ratio of Ni: Mn: Co was 7.6: 0.6: 1.8, dissolved in water to form an aqueous solution, and then co-precipitated to obtain a nickel-manganese-cobalt composite metal hydroxide.
  • Li 2 CO 3 was added to the metal hydroxide in such a manner that the molar ratio of Li: nickel-manganese-cobalt was 1: 1 and then heat-treated at 800 ° C. for 20 hours in an electric furnace in an oxygen atmosphere to obtain LiNi 0 . 76 Co 0 . 18 Mn 0 .
  • a lithium nickel-manganese-cobalt oxide having a composition of 06 O 2 was obtained.
  • Nickel sulfate, manganese sulfate, and cobalt sulfate were weighed so that the molar ratio of Ni: Mn: Co was 5.2: 1.2: 3.6, dissolved in water to form an aqueous solution, and then co-precipitated to obtain a nickel-manganese-cobalt composite metal hydroxide.
  • Li 2 CO 3 was added to the metal hydroxide in such a manner that the molar ratio of Li: nickel-manganese-cobalt was 1: 1 and then heat-treated at 800 ° C. for 20 hours in an electric furnace in an oxygen atmosphere to obtain LiNi 0 . 52 Co 0 . 36 Mn 0 .
  • a lithium nickel-manganese-cobalt oxide having a composition of 12 O 2 was obtained.
  • the composition of LiNi 0.8 Co 0.1 Mn 0.1 O 2 was prepared in the same manner as in Example 1, except that nickel sulfate, manganese sulfate, and cobalt sulfate were weighed in a molar ratio of 8: 1: 1. Lithium nickel-manganese-cobalt oxide having was obtained.
  • the composition of LiNi 0.85 Co 0.09 Mn 0.06 O 2 was prepared in the same manner as in Example 1, except that nickel sulfate, manganese sulfate, and cobalt sulfate were weighed in a molar ratio of 8.5: 0.6: 0.9 in Example 1. Lithium nickel-manganese-cobalt oxide having was obtained.
  • the composition of LiNi 0.85 Co 0.08 Mn 0.07 O 2 was prepared in the same manner as in Example 1, except that nickel sulfate, manganese sulfate, and cobalt sulfate were weighed in a molar ratio of 8.5: 0.7: 0.8 in Example 1. Lithium nickel-manganese-cobalt oxide having was obtained.
  • a positive electrode mixture slurry was prepared by addition to phosphorus N-methyl-2-pyrrolidone (NMP). The prepared positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then subjected to roll press to prepare a positive electrode.
  • Al aluminum
  • the negative electrode active material slurry was prepared by adding to NMP.
  • the prepared negative electrode active material slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, dried to prepare a negative electrode, and then roll-rolled to prepare a negative electrode.
  • Cu copper
  • LiPF 6 was added to a nonaqueous electrolyte solvent prepared by mixing ethylene carbonate and diethyl carbonate as a electrolyte in a volume ratio of 30:70 to prepare a 1 M LiPF 6 nonaqueous electrolyte.
  • a positive electrode was prepared in the same manner as in Example 5, except that a negative electrode and a non-aqueous electrolyte were prepared in the same manner as in Example 5, and then the positive electrode prepared above, and the negative electrode and the non-aqueous solution.
  • a lithium secondary battery was manufactured using an electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as in Example 5, except that lithium nickel-manganese-cobalt oxide prepared in Comparative Examples 1 to 3 was used.
  • the crystal structure was measured. Is manufactured by the measured Examples 1 to 4 and Comparative Examples 1 to 3, the lithium nickel-manganese-to the a- and c- axis lattice constant, the crystal size, crystal density, and the ratio of Ni 2 + cobalt oxide table 1 is shown respectively.
  • the ratio of Ni 2 + in the above represents the weight of the Ni 2+, based on the total weight of the Ni ions.
  • the lithium secondary batteries prepared in Example 5 and Comparative Example 4 respectively, charged at 45 ° C with a constant current (CC) of 1 C until 4.20 V, and then charged with a constant voltage (CV) of 4.20 V The first charge was performed until the current became 0.05 mAh. After standing for 20 minutes, the battery was discharged to 2.5 V with a constant current of 2C (cut-off proceeded to 0.05C). This was repeated for 1 to 100 cycles. The results are shown in FIG.
  • FIG. 3 is a graph showing the life characteristics of the lithium secondary batteries of Example 5 and Comparative Example 4, as can be seen through Figure 3, in the case of the lithium secondary battery of Example 5 relative capacity up to 1 to 100 cycles It was confirmed that the slope for the gentle compared to the lithium secondary battery of Comparative Example 4, the increase in the slope of the lithium secondary battery of Example 5 was also confirmed that the gentle compared to the lithium secondary battery of Comparative Example 4.
  • the lithium secondary batteries prepared in Examples 6 to 8 and Comparative Examples 4 to 6 were respectively charged at 45 ° C. with a constant current (CC) of 0.5 C until 4.25 V, followed by a constant voltage (CV) of 4.25 V. Charging was carried out for 1st time until charging current became 0.05 mAh. Thereafter, it was left for 20 minutes and discharged until a constant current of 1 C reached 3.0 V (cut-off proceeded to 0.05 C). This was repeated for 1 to 50 cycles. The results are shown in FIG.
  • the lithium secondary battery using the lithium nickel-manganese-cobalt oxide according to Example 1 in both the charging resistance and the discharging resistance uses the lithium nickel-manganese-cobalt oxide according to Comparative Example 1. As compared with the lithium secondary battery, it was confirmed that the low output value would indicate high output.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a cathode active material for a lithium secondary battery comprising a lithium nickel-manganese-cobalt oxide represented by chemical formula 1. The lithium nickel-manganese-cobalt oxide included in the cathode active material according to the present invention contains nickel of which the content is greater than the content of manganese, thereby suppressing generation of Ni2+ and preventing degradation of electrochemical performance caused if Ni2+ moves to a lithium layer. Also, it is possible to appropriately adjust and achieve an increase in output and high capacity, if necessary, by appropriately adjusting the content of manganese and cobalt. Thus, the cathode active material can be usefully used in the manufacture of a cathode for a lithium secondary battery, and the manufacture of a lithium secondary battery comprising the same.

Description

양극 활물질, 이를 포함하는 양극 및 리튬 이차전지Positive electrode active material, positive electrode and lithium secondary battery comprising same
[관련출원과의 상호 인용][Cross-cited with Related Applications]
본 출원은 2015년 02월 27일자 한국 특허 출원 제10-2015-0028378호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2015-0028378 dated February 27, 2015, and all contents disclosed in the literature of that Korean patent application are incorporated as part of this specification.
[기술분야][Technical Field]
본 발명은 출력 향상과 고용량을 달성할 수 있는 리튬 이차전지용 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지에 관한 것이다.The present invention relates to a positive electrode active material for a lithium secondary battery, a positive electrode including the same, and a lithium secondary battery capable of achieving high output and high capacity.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대한 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As the development and demand for mobile devices increases, the demand for secondary batteries as energy sources is rapidly increasing. Among them, lithium secondary batteries exhibiting high energy density and operating potential, long cycle life, and low self-discharge rate. Batteries have been commercialized and widely used.
또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다.Also, as interest in environmental issues has increased recently, electric vehicles (EVs) and hybrid electric vehicles (HEVs), which can replace vehicles using fossil fuels such as gasoline vehicles and diesel vehicles, which are one of the main causes of air pollution, There is a lot of research on the back.
이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등은 동력원으로서 니켈 수소금속(Ni-MH) 이차전지 또는 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지를 사용하고 있는데, 리튬 이차전지를 전기 자동차에 사용할 경우에는 높은 에너지 밀도와 단시간에 큰 출력을 발휘할 수 있는 특성과 더불어, 가혹한 조건 하에서 10년 이상 사용될 수 있어야 하므로, 기존의 소형 리튬 이차전지보다 월등히 우수한 안전성 및 장기 수명 특성이 필연적으로 요구된다. 또한, 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 사용되는 이차전지는 차량의 작동 조건에 따라 우수한 레이트(rate) 특성과 파워(power) 특성이 요구된다.Such electric vehicles (EVs) and hybrid electric vehicles (HEVs) use nickel-metal hydride (Ni-MH) secondary batteries or lithium secondary batteries with high energy density, high discharge voltage, and output stability as power sources. When used in electric vehicles, it must be able to be used for 10 years or more under severe conditions as well as high energy density and high output in a short time. Therefore, superior safety and long life characteristics are inevitably superior to conventional small lithium secondary batteries. Is required. In addition, secondary batteries used in electric vehicles (EVs) and hybrid electric vehicles (HEVs) require excellent rate characteristics and power characteristics according to vehicle operating conditions.
현재, 리튬 이온 이차전지의 양극 활물질로는, 층상 구조(layered structure)의 LiCoO2와 같은 리튬-함유 코발트 산화물, 층상 구조의 LiNiO2와 같은 리튬-함유 니켈 산화물, 스피넬 결정 구조의 LiMn2O4와 같은 리튬-함유 망간 산화물 등이 사용되고 있다.Currently, the positive electrode active material of a lithium ion secondary battery includes a lithium-containing cobalt oxide such as LiCoO 2 having a layered structure, a lithium-containing nickel oxide such as LiNiO 2 having a layered structure, and a LiMn 2 O 4 having a spinel crystal structure. Lithium-containing manganese oxide such as is used.
LiCoO2는 우수한 사이클 특성 등의 제반 물성이 우수하여 현재 많이 사용되고 있지만 안전성이 낮고, 원료인 코발트의 자원적 한계로 인한 가격 상의 문제점으로 인해 전기자동차 등과 같은 분야의 동력원으로 대량 사용하는 데에는 한계가 있다. 또한, LiNiO2는 그 제조방법에 따른 특성상, 합리적인 비용으로 실제 양산 공정에 적용하기에 어려움이 있다.LiCoO 2 is widely used because of its excellent physical properties such as excellent cycle characteristics, but it is low in safety and has a limitation in mass use as a power source in electric vehicles such as electric vehicles due to price problems due to resource limitations of cobalt as a raw material. . In addition, LiNiO 2 is difficult to apply to the actual mass production process at a reasonable cost, due to the characteristics of the manufacturing method.
한편, LiMnO2, LiMn2O4 등의 리튬 망간 산화물은 원료 자원이 풍부하고 환경친화적인 망간을 사용한다는 장점이 있으므로 LiCoO2를 대체할 수 있는 양극 활물질로서 많은 관심을 모으고 있으나, 이들 리튬 망간 산화물 역시 사이클 특성 등이 나쁘다는 단점을 가지고 있다. 구체적으로, LiMnO2는 초기 용량이 작고, 일정한 용량에 이를 때까지 수십 회의 충방전 사이클이 필요하다는 단점이 있다. 또한, LiMn2O4은 사이클이 계속됨에 따라 용량 저하가 심각하고, 특히 50℃ 이상의 고온에서 전해액의 분해, 망간의 용출 등으로 인해 사이클 특성이 급격히 저하되는 단점이 있다.Meanwhile, lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 have a lot of interest as a cathode active material that can replace LiCoO 2 because of the advantage of using abundant raw materials and environmentally friendly manganese. It also has the disadvantage of poor cycle characteristics. Specifically, LiMnO 2 has a disadvantage that the initial capacity is small, dozens of charge and discharge cycles are required until a certain capacity is reached. In addition, LiMn 2 O 4 has a disadvantage in that the capacity deterioration is serious as the cycle continues, and particularly, the cycle characteristics are rapidly deteriorated due to decomposition of the electrolyte, elution of manganese, and the like at a high temperature of 50 ° C. or higher.
한편, LiNiO2계 양극 활물질은 충방전 사이클에 동반하는 체적 변화에 따라 결정 구조의 급격한 상전이가 나타나고, 공기와 습기에 노출되었을 때 안정성이 급격히 저하되는 단점이 있으나, 상기 코발트계 산화물에 비해 저렴하고 4.3 V로 충전되었을 때, 높은 방전 용량을 나타내는 장점을 가진다. On the other hand, LiNiO 2 based positive electrode active material has the disadvantage of a sudden phase transition of the crystal structure according to the volume change accompanying the charge and discharge cycle, and the stability is sharply lowered when exposed to air and moisture, but is cheaper than the cobalt oxide When charged to 4.3 V, it has the advantage of showing high discharge capacity.
이에 LiNiO2계 양극 활물질의 단점을 해결하기 위해, 니켈의 일부를 망간, 코발트 등의 다른 전이금속으로 치환한 형태의 리튬 전이금속 산화물이 제안되었으며, 예컨대 니켈-망간과 니켈-코발트-망간이 각각 1:1 또는 1:1:1로 혼합된 리튬 산화물을 양극 활물질에 사용하기 위한 시도 및 연구가 이루어졌다. In order to solve the shortcomings of the LiNiO 2 based positive electrode active material, a lithium transition metal oxide in which a part of nickel is replaced with another transition metal such as manganese and cobalt has been proposed. For example, nickel-manganese and nickel-cobalt-manganese have been proposed. Attempts and studies have been made to use lithium oxide mixed 1: 1 or 1: 1: 1 in positive electrode active materials.
니켈, 코발트 또는 망간을 혼합하여 제조된 양극 활물질은 각각의 전이금속들을 따로 사용하여 제조한 전지에 비해 제반 물성이 향상되었으나, 고율 특성 면에서는 여전히 개선이 요구되고 있고, 또한 니켈과 망간을 동 당량으로 구성하는 경우, Mn4 +이온이 Ni2 + 이온의 형성을 유도하여 형성된 Ni2 +가 Li 사이트(site)로 이동하여 전기화학적 성능이 낮아진다는 문제점이 있다, The positive electrode active material prepared by mixing nickel, cobalt or manganese has improved overall physical properties compared to the battery prepared by using the transition metals separately, but still needs improvement in terms of high rate characteristics, and the equivalent of nickel and manganese In the case of forming, there is a problem that Ni 2 + formed by Mn 4 + ions induces the formation of Ni 2 + ions moves to the Li site, thereby lowering the electrochemical performance.
따라서, 각각의 양극 활물질이 갖는 결점을 극복 내지 최소화하며, 전지 성능 밸런스가 우수한 활물질로서 층상 구조를 갖는 리튬 니켈-망간-코발트계 복합 산화물의 개발이 요구된다. Accordingly, there is a need to develop a lithium nickel-manganese-cobalt-based composite oxide having a layered structure as an active material having excellent battery performance balance, overcoming or minimizing defects of each positive electrode active material.
본 발명의 목적은 망간과 코발트의 함량을 조절하여 출력 향상과 고용량을 달성할 수 있는 리튬 이차전지용 양극 활물질을 제공하는 것이다. An object of the present invention is to provide a cathode active material for a lithium secondary battery that can achieve a high output and improved output by adjusting the content of manganese and cobalt.
본 발명의 다른 목적은 상기 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공하는 것이다.Another object of the present invention to provide a cathode for a lithium secondary battery containing the cathode active material.
본 발명의 또 다른 목적은 상기 리튬 이차전지용 양극을 포함하는 리튬 이차전지를 제공하는 것이다.Still another object of the present invention is to provide a lithium secondary battery including the cathode for a lithium secondary battery.
상기 목적에 따라, 본 발명은 하기의 구성을 가지는 리튬 이차전지용 양극 활물질을 제공한다.In accordance with the above object, the present invention provides a cathode active material for a lithium secondary battery having the following configuration.
(1) 하기 화학식 1로 표시되는 리튬 니켈-망간-코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질: (1) A cathode active material for a lithium secondary battery containing lithium nickel-manganese-cobalt oxide represented by the following formula (1):
[화학식 1][Formula 1]
LiaNixMnyCozO2 Li a Ni x Mn y Co z O 2
상기 화학식 1에서, In Chemical Formula 1,
1≤a≤1.2, x=1-y-z, 0<y<1, 0<z<1이고,1≤a≤1.2, x = 1-y-z, 0 <y <1, 0 <z <1,
x>y이며,x> y
z=ny 또는 y=nz이고, n>1이다. z = ny or y = nz and n> 1.
(2) 상기 x가 0.4≤x≤0.95의 값을 가지는 상기 (1)에 기재된 리튬 이차전지용 양극 활물질.(2) The positive electrode active material for lithium secondary batteries according to (1), wherein x has a value of 0.4 ≦ x ≦ 0.95.
(3) 상기 리튬 니켈-망간-코발트 산화물이 포함하는 상기 니켈 중, 상기 망간 함량에 대응하는 양의 니켈이 Ni2 +의 형태로 존재하는 상기 (1) 또는 (2)에 기재된 리튬 이차전지용 양극 활물질.3, the lithium-nickel-manganese-of the nickel containing cobalt oxide, a lithium secondary battery positive electrode according to (1) or (2) the amount of nickel corresponding to the manganese content in the form of Ni 2 + Active material.
(4) 상기 리튬 니켈-망간-코발트 산화물이 포함하는 상기 니켈 중, 상기 망간 함량에 대응하는 함량을 초과하는 양의 니켈이 Ni3 +의 형태로 존재하는 상기 (3)에 기재된 리튬 이차전지용 양극 활물질.4, the lithium nickel-manganese-of the nickel containing cobalt oxide, a lithium secondary battery positive electrode according to (3) to the amount of nickel in excess of the amount corresponding to the manganese content in the form of Ni 3 + Active material.
(5) 상기 Ni은 +2 보다 큰 평균 산화수를 가지는 상기 (1) 내지 (4) 중 어느 하나에 기재된 리튬 이차전지용 양극 활물질.(5) The positive electrode active material for lithium secondary batteries according to any one of (1) to (4), wherein the Ni has an average oxidation number greater than +2.
(6) 상기 Li을 제외한 Ni, Mn 및 Co의 평균 산화수가 3.0을 초과하는 상기 (1) 내지 (5) 중 어느 하나에 기재된 리튬 이차전지용 양극 활물질.(6) The positive electrode active material for lithium secondary batteries according to any one of (1) to (5), wherein the average oxidation number of Ni, Mn, and Co except for Li exceeds 3.0.
(7) 상기 리튬 니켈-망간-코발트 산화물이 전이금속을 함유하고 있는 전이금속-산화물층(MO층)과 리튬을 함유하고 있는 Li-산화물층(가역적 리튬층)을 포함하고, 상기 MO층은 Ni2 + 및 Ni3 +를 함유하며, 상기 Ni2 + 중 일부가 상기 가역적 리튬층에 삽입되어 있는 상기 (1) 내지 (6) 중 어느 하나에 기재된 리튬 이차전지용 양극 활물질.(7) the lithium nickel-manganese-cobalt oxide comprises a transition metal-oxide layer (MO layer) containing a transition metal and a Li-oxide layer (reversible lithium layer) containing lithium, wherein the MO layer is Ni + 2 and Ni + 3, and containing, the Ni 2 + part of cathode active material for a lithium secondary battery according to any one of (1) to (6), which is inserted into the reversible lithium layer of.
(8) 상기 가역적 리튬층에 삽입되는 Ni2 +의 함량이, 상기 가역적 리튬층에 포함된 전체 Li 사이트에서 Ni2 +가 점유하고 있는 사이트의 비율로서 5 몰% 이하인 상기 (7)에 기재된 리튬 이차전지용 양극 활물질.8 lithium according to (7) 5 mol% or less, the content of Ni 2 +, across the Li sites in the reversible lithium layer as a percentage of the sites and Ni 2 + is occupied to be inserted into the reversible lithium layer Positive electrode active material for secondary batteries.
(9) 상기 Ni2 +는 니켈 이온의 총 중량을 기준으로 0.1 내지 2 중량%인, 상기 (7)에 기재된 리튬 이차전지용 양극 활물질.9, the Ni + 2 0.1 to 2% by weight of a lithium secondary battery positive electrode active material according to (7), based on the total weight of the nickel ions.
(10) 상기 n이 2 내지 5의 자연수인 상기 (1) 내지 (8) 중 어느 하나에 기재된 리튬 이차전지용 양극 활물질.(10) The positive electrode active material for lithium secondary batteries according to any one of (1) to (8), wherein n is a natural number of 2 to 5.
또한, 본 발명은 (11) 상기 (1) 내지 (10) 중 어느 하나에 기재된 리튬 이차전지용 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공한다.Moreover, this invention provides the positive electrode for lithium secondary batteries containing the positive electrode active material for lithium secondary batteries in any one of (11) said (1)-(10).
나아가, 본 발명은 (12) 상기 리튬 이차전지용 양극을 포함하는 리튬 이차전지를 제공한다. (13) 상기 리튬 이차전지는 전기자동차, 하이브리드 전기자동차, 또는 플러그-인 하이브리드 전기자동차의 전원용으로 이용될 수 있다.Furthermore, the present invention provides a lithium secondary battery comprising (12) the positive electrode for a lithium secondary battery. The lithium secondary battery may be used for a power source of an electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
본 발명에 따른 리튬 이차전지용 양극 활물질이 포함하는 리튬 니켈-망간-코발트 산화물은 망간에 비해 니켈의 함량이 많으므로 Ni2 +의 생성을 억제하여 리튬층에 Ni2 +가 이동하여 전기화학적 성능이 저하하는 것을 방지할 수 있고, 망간과 코발트의 함량을 적절히 조절하여 필요에 따라 출력 향상과 고용량을 적절히 조절하여 달성할 수 있으므로, 리튬 이차전지용 양극의 제조, 및 이를 포함하는 리튬 이차전지의 제조에 유용하게 사용될 수 있다.Lithium nickel containing a cathode active material for a lithium secondary battery according to the present invention - manganese - because cobalt oxide is many a content of nickel as compared to manganese and to suppress the formation of Ni 2 + Ni 2 + moves to the lithium layer electrochemical performance It can be prevented from being lowered and can be achieved by appropriately adjusting the content of manganese and cobalt to improve the output and appropriately adjust the high capacity, if necessary, to manufacture a positive electrode for a lithium secondary battery, and to manufacture a lithium secondary battery including the same. It can be usefully used.
도 1 및 2는 각각 실시예 1 및 비교예 1에서 제조된 리튬 니켈-망간-코발트 산화물의 주사전자현미경(SEM) 사진이다. 1 and 2 are scanning electron microscope (SEM) photographs of lithium nickel-manganese-cobalt oxide prepared in Example 1 and Comparative Example 1, respectively.
도 3은 실시예 5 및 비교예 4에서 각각 제조된 리튬 이차전지에 대한 사이클 특성 평가 실험 결과를 나타낸 그래프이다. 3 is a graph showing a cycle characteristic evaluation results for the lithium secondary battery prepared in Example 5 and Comparative Example 4, respectively.
도 4는 실시예 6 내지 8, 및 비교예 4 내지 6에서 각각 제조된 리튬 이차전지에 대한 사이클 특성 평가 실험 결과를 나타낸 그래프이다. 4 is a graph showing the results of the cycle characteristics evaluation for the lithium secondary battery prepared in Examples 6 to 8 and Comparative Examples 4 to 6, respectively.
도 5는 실시예 5 및 비교예 4에서 각각 제조된 리튬 이차전지에 대한 HPPC를 이용한 리튬 이차전지의 저항 측정 실험 결과를 나타낸 그래프이다.FIG. 5 is a graph showing the results of resistance measurement experiments of lithium secondary batteries using HPPC for lithium secondary batteries prepared in Example 5 and Comparative Example 4. FIG.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명에 따른 리튬 이차전지용 양극 활물질은 하기 화학식 1로 표시되는 리튬 니켈-망간-코발트 산화물을 포함한다. The cathode active material for a lithium secondary battery according to the present invention includes lithium nickel-manganese-cobalt oxide represented by the following formula (1).
[화학식 1] [Formula 1]
LiaNixMnyCozO2 Li a Ni x Mn y Co z O 2
상기 화학식 1에서, 1≤a≤1.2, x=1-y-z, 0<y<1, 0<z<1이고, x>y이며, z=ny 또는 y=nz이고, n>1이다. In Formula 1, 1 ≦ a ≦ 1.2, x = 1-y-z, 0 <y <1, 0 <z <1, x> y, z = ny or y = nz and n> 1.
본 발명에 따른 리튬 이차전지용 양극 활물질이 포함하는 리튬 니켈-망간-코발트 산화물은 x>y의 관계를 만족하는 것이다. 즉, 본 발명의 일 실시예에 있어서, 상기 리튬 니켈-망간-코발트 산화물은 망간(Mn)에 비해 니켈(Ni)을 상대적으로 다량 포함하는 것일 수 있으며, 또한 망간 및 코발트(Co)에 비해 상대적으로 니켈 과잉의 조성을 가질 수 있다. 구체적으로, 상기 니켈의 함량(x)은 0.4≤x≤0.95의 값을 가질 수 있고, 바람직하게는 0.6≤x≤0.85의 값을 가질 수 있으며, 더욱 바람직하게는 0.6≤x≤0.82의 값을 가질 수 있다. The lithium nickel-manganese-cobalt oxide included in the cathode active material for a lithium secondary battery according to the present invention satisfies the relationship of x> y. That is, in one embodiment of the present invention, the lithium nickel-manganese-cobalt oxide may include a relatively large amount of nickel (Ni) than manganese (Mn), and also relative to manganese and cobalt (Co) It may have a composition of nickel excess. Specifically, the nickel content (x) may have a value of 0.4 ≦ x ≦ 0.95, preferably of 0.6 ≦ x ≦ 0.85, and more preferably of 0.6 ≦ x ≦ 0.82. Can have
상기 니켈의 함량이 0.4 이상일 경우에는 높은 용량을 기대할 수 있고, 0.95 이하일 경우에는 안전성이 저하되는 문제를 방지할 수 있다.When the nickel content is 0.4 or more, a high capacity can be expected, and when the content of nickel is 0.95 or less, a problem of deterioration of safety can be prevented.
상기 리튬 니켈-망간-코발트 산화물 내에서 망간과 니켈의 함량이 실질적으로 동일한 경우에는 Mn4 + 이온이 Ni2 + 이온의 형성을 유도하게 되므로, 상기 리튬 니켈-망간-코발트 산화물 내에서 니켈에 대한 상대적인 망간의 함량을 감소시키게 되면 Ni2 + 이온의 형성을 줄일 수 있고, 이에 따라 형성된 Ni2 + 이온이 가역적 Li 사이트(site)로 이동하여 암염 구조를 형성함으로써 전기화학적 성능을 퇴화시키게 되는 가능성을 줄일 수 있다.The lithium-nickel-manganese-If in the cobalt oxide content of manganese and nickel are substantially equal, the Mn 4 + ions, so to induce the formation of Ni 2 + ions, and the lithium nickel-on nickel in the cobalt oxide-manganese Let it reduces the amount of relative manganese can reduce the formation of Ni 2 + ions, whereby Ni 2 + ions formed in accordance with the movement in the reversible Li site (site) and by forming the rock-salt structure, the possibility is thereby degraded electrochemical performance Can be reduced.
따라서, 본 발명의 일례에 따른 상기 양극 활물질이 포함하는 리튬 니켈-망간-코발트 산화물은 망간(Mn)에 비해 니켈(Ni)을 상대적으로 다량 포함함으로써, 상기 리튬 니켈-망간-코발트 산화물에 포함된 전이금속 중 Ni2 +의 상대적인 함량을 줄일 수 있다. Therefore, the lithium nickel-manganese-cobalt oxide included in the cathode active material according to an example of the present invention includes a relatively large amount of nickel (Ni) compared to manganese (Mn), thereby being included in the lithium nickel-manganese-cobalt oxide. of transition metals can reduce the relative amount of Ni + 2.
본 발명의 일례에 따른 상기 양극 활물질이 포함하는 상기 리튬 니켈-망간-코발트 산화물 중, 상기 망간 함량에 대응하는 양의 니켈은 Ni2 +의 형태로 존재할 수 있고, 상기 망간 함량에 대응하는 함량을 초과하는 양의 니켈은 Ni3 +의 형태로 존재할 수 있다. The lithium nickel containing this the positive electrode active material according to an example of the invention - manganese - of cobalt oxide, the amount of nickel corresponding to the manganese content may be in the form of Ni 2 +, the content corresponding to the manganese content the amount of nickel in excess may be in the form of Ni 3 +.
따라서, 상기 양극 활물질이 포함하는 니켈은 +2보다 큰 평균 산화수를 가질 수 있으며, 전체적으로 상기 리튬 니켈-망간-코발트 산화물에서 상기 리튬을 제외한 니켈, 망간 및 코발트의 평균 산화수는 +3.0을 초과할 수 있다. Accordingly, the nickel included in the cathode active material may have an average oxidation number of more than +2, and the average oxidation number of nickel, manganese, and cobalt excluding the lithium in the lithium nickel-manganese-cobalt oxide as a whole may exceed +3.0. have.
상기 리튬 니켈-망간-코발트 산화물은 전이금속을 함유하고 있는 전이금속-산화물층(MO층)과 리튬을 함유하고 있는 리튬-산화물층(가역적 리튬층)을 포함하고, 상기 전이금속-산화물층(MO층)에는 Ni2 +와 Ni3 +가 공존하고 있으며, 상기 Ni2 + 중 일부가 상기 가역적 리튬층에 삽입되어 상기 MO 층들과 상호 결합하는 형태를 가질 수 있다. The lithium nickel-manganese-cobalt oxide includes a transition metal oxide layer (MO layer) containing a transition metal and a lithium oxide layer (reversible lithium layer) containing lithium, and the transition metal oxide layer ( MO layer) and has a Ni + 2 and Ni + 3 co-exist, the portion of the Ni + 2 is inserted into the reversible lithium layer may be in the form of cross-coupled with the MO layers.
한편, 상기 Ni3 +는 Li+와 비슷한 크기를 가지는 Ni2 +에 비해 그 크기가 작으므로, 상기 Ni3 +가 증가함에 따라 전이금속을 함유하고 있는 전이금속-산화물층(MO층)과 리튬을 함유하고 있는 리튬-산화물층(가역적 리튬층)은 각각의 층을 차지하는 이온의 크기 차이에 의해 적절히 분리될 수 있다. 즉, 상기 양극 활물질은 리튬을 제외한 전이금속의 평균 산화수가 +3보다 크므로, 평균 산화수가 +3인 경우에 비해 전이금속 이온의 전반적인 크기가 작아지게 되고, 이에 따라 리튬 이온과의 크기 차이가 커지게 되어 층간 분리가 잘 이루어지므로, 안정적인 층상 결정구조를 형성할 수 있다. On the other hand, the Ni 3 + is because the size smaller than that of a Ni 2 + having the same size as Li +, the Ni 3 + increases as along the transition transition, which contains the metal the metal-oxide layer (MO layer) and lithium The lithium-oxide layer (reversible lithium layer) containing can be properly separated by the size difference of the ions occupying each layer. That is, since the average oxidation number of the transition metals except lithium is greater than +3, the positive electrode active material has a smaller overall size of the transition metal ions than the case where the average oxidation number is +3, and thus the size difference with the lithium ions Since it becomes large and the separation between layers is performed well, a stable layered crystal structure can be formed.
상기 가역적 리튬층에 삽입되는 Ni2 +의 함량은 전체 리튬 사이트에서 Ni2 +가 점유하고 있는 사이트의 비율로서 5 몰% 이하일 수 있고, 바람직하게는 3 몰% 이하일 수 있으며, 예컨대 0.01 내지 5 몰%, 0.01 내지 3 몰%, 0.1 내지 5 몰%, 또는 0.1 내지 3 몰% 등일 수 있다. 상기 가역적 리튬층에 삽입된 Ni2 +의 함량이 5 몰% 이하인 경우 가역적 리튬층에 삽입되는 Ni2 +가 리튬 이온의 흡장 및 방출에 방해를 일으키는 것을 최소화하여 우수한 레이트 특성을 발휘할 수 있다. The content of Ni 2 + is inserted into the reversible lithium layer may be may be 5 mol% or less, preferably% 3 mol or less as a percentage of the sites and Ni 2 + occupied in the lithium site, for example, 0.01 to 5 mol %, 0.01 to 3 mol%, 0.1 to 5 mol%, 0.1 to 3 mol% and the like. The content of the Ni 2 + inserted into the reversible lithium layers can exhibit a superior rate characteristics if more than 5 mol% Ni + 2 to be inserted into the reversible lithium layer is to minimize the disturbance to cause the occlusion and release of lithium ions.
한편, 이때 상기 Ni2 +의 양은 니켈 이온의 총 중량을 기준으로 0.1 내지 2 중량%, 구체적으로 0.5 내지 1.5 중량%일 수 있다. On the other hand, the amount of Ni 2 + may be 0.1 to 2% by weight, specifically 0.5 to 1.5% by weight, based on the total weight of nickel ions.
이와 같이, 상기 양극 활물질의 층상 결정구조가 보다 안정적으로 형성되는 경우, 고율 충방전 특성이 향상될 수 있다. As such, when the layered crystal structure of the cathode active material is more stably formed, high rate charge / discharge characteristics may be improved.
전이금속의 평균 산화수가 지나치게 커지게 되면 리튬 이온을 이동시킬 수 있는 전하의 양이 줄어들게 되어 용량이 감소되는 문제가 있으므로, 전이금속의 평균 산화수는 3 초과 내지 3.5 이하일 수 있고, 바람직하게는 3 초과 내지 3.3일 수 있으며, 더욱 바람직하게는 3 초과 내지 3.1일 수 있다. If the average oxidation number of the transition metal is too large, the amount of charge that can move the lithium ions is reduced and the capacity is reduced, the average oxidation number of the transition metal may be more than 3 to less than 3.5, preferably more than 3 To 3.3, more preferably greater than 3 to 3.1.
한편, 상기 리튬 니켈-망간-코발트 산화물의 조성에 있어서, 상기 리튬의 함량(a)은 1≤a≤1.2를 만족하며, 상기 a 값이 1.2 이하일 경우 적절한 고온 안전성을 발휘할 수 있고, 상기 a 값이 1 이상일 경우 적절한 레이트 특성을 발휘하면서도 가역 용량이 저하되지 않을 수 있다. On the other hand, in the composition of the lithium nickel-manganese-cobalt oxide, the content (a) of lithium satisfies 1 ≦ a ≦ 1.2, and when the a value is 1.2 or less, an appropriate high temperature safety may be exhibited and the a value If it is 1 or more, the reversible capacity may not be lowered while exhibiting an appropriate rate characteristic.
본 발명의 일례에 따른 양극 활물질이 포함하는 리튬 니켈-망간-코발트 산화물의 조성에 있어서, 상기 망간의 함량(y)과 코발트의 함량(z)은 z=ny를 만족할 수 있으며, 이때 상기 n은 n>1일 수 있다. 다르게는 상기 n은 1을 제외한 자연수일 수 있고, 2 내지 5의 자연수일 수 있다. 즉, 상기 리튬 니켈-망간-코발트 산화물은 망간에 비해 코발트의 함량이 많은 것일 수 있고, 상기 코발트는 망간 함량의 n의 배수로 포함될 수 있다. In the composition of the lithium nickel-manganese-cobalt oxide included in the cathode active material according to an embodiment of the present invention, the content of manganese (y) and the content of cobalt (z) may satisfy z = ny, where n is n> 1. Alternatively, n may be a natural number except 1, and may be a natural number of 2 to 5. That is, the lithium nickel-manganese-cobalt oxide may have a higher cobalt content than manganese, and the cobalt may be included as a multiple of n of the manganese content.
본 발명의 일례에 따른 양극 활물질이 포함하는 리튬 니켈-망간-코발트 산화물은 상기 코발트를 상기 망간에 비해 많은 양으로 포함하므로 상대적으로 전기전도도가 증가하여 레이트 특성이 향상될 수 있고, 양극 활물질의 높은 분말 밀도를 달성할 수 있다.Lithium nickel-manganese-cobalt oxide included in the positive electrode active material according to an embodiment of the present invention includes the cobalt in a larger amount than the manganese, so that the electrical conductivity is relatively increased to improve the rate characteristics, Powder density can be achieved.
한편, 본 발명의 또 다른 일례에 따른 양극 활물질이 포함하는 리튬 니켈-망간-코발트 산화물의 조성에 있어서, 상기 망간의 함량(y)과 코발트의 함량(z)은 y=nz를 만족할 수 있으며, 이때 상기 n은 n>1일 수 있다. 다르게는 상기 n은 1을 제외한 자연수일 수 있고, 2 내지 5의 자연수일 수 있다. 즉, 상기 리튬 니켈-망간-코발트 산화물은 코발트에 비해 망간의 함량이 많은 것일 수 있고, 상기 망간은 코발트 함량의 n의 배수로 포함될 수 있다. On the other hand, in the composition of the lithium nickel-manganese-cobalt oxide included in the cathode active material according to another embodiment of the present invention, the content (y) and the content (z) of cobalt (z) may satisfy y = nz, In this case, n may be n> 1. Alternatively, n may be a natural number except 1, and may be a natural number of 2 to 5. That is, the lithium nickel-manganese-cobalt oxide may be more manganese than cobalt, and the manganese may be included as a multiple of n of the cobalt content.
본 발명의 또 다른 일례에 따른 양극 활물질이 포함하는 리튬 니켈-망간-코발트 산화물은 상기 망간을 상기 코발트에 비해 많은 양으로 포함하므로, 망간에 비해 코발트가 많이 포함된 리튬 니켈-망간-코발트 산화물, 또는 망간과 코발트가 동량으로 포함된 리튬 니켈-망간-코발트 산화물에 비해 상대적으로 망간의 함량이 많아서, 상기 망간의 존재로 인해 유도되는 Ni2 +의 함량 역시 상대적으로 증가하여 전지 용량이 증가하는 효과를 발휘할 수 있다. 또한, 망간이 리튬 니켈-망간-코발트 산화물의 구조 안정화에 기여하여 고용량의 리튬 이차전지에 필요한 특성을 적절히 구현할 수 있고, 상대적으로 코발트의 함량이 감소하여 충전 상태에서 불안정한 Co4+의 영향을 줄여 안정성을 높일 수 있다. Lithium nickel-manganese-cobalt oxide included in the positive electrode active material according to another embodiment of the present invention includes the manganese in a larger amount than the cobalt, lithium nickel-manganese-cobalt oxide containing much cobalt than manganese, or manganese and cobalt are contained in the same amount of lithium nickel-manganese-many content of relatively manganese compared with the cobalt oxide, the effect of the content of Ni 2 + induced by the presence of the manganese also increases relatively and the battery capacity increases in Can exert. In addition, manganese contributes to the stabilization of the structure of lithium nickel-manganese-cobalt oxide to properly implement the characteristics required for high-capacity lithium secondary batteries, and the relatively low cobalt content reduces the effect of unstable Co 4+ in the state of charge. Stability can be improved.
본 발명의 리튬 전이금속 산화물에서 전이금속인 니켈, 망간 및 코발트는 층상 결정구조를 유지할 수 있는 범위 내에서 다른 금속원소로 일부 치환될 수 있고, 예컨대 5 몰% 이내의 소량의 금속 원소, 양이온 원소 등으로 일부 치환될 수 있다. In the lithium transition metal oxide of the present invention, the transition metals nickel, manganese and cobalt may be partially substituted with other metal elements within a range capable of maintaining a layered crystal structure, for example, a small amount of metal elements and cationic elements within 5 mol%. And some substitutions.
또한, 본 발명은 상기 양극 활물질을 포함하는 양극을 제공한다.In addition, the present invention provides a cathode including the cathode active material.
상기 양극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예컨대, 양극 활물질에 용매, 필요에 따라 바인더, 도전재, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 양극을 제조할 수 있다.The positive electrode can be prepared by conventional methods known in the art. For example, a slurry may be prepared by mixing and stirring a solvent, a binder, a conductive material, and a dispersant in a positive electrode active material, and then applying the coating (coating) to a current collector of a metal material, compressing it, and drying the same to prepare a positive electrode.
상기 금속 재료의 집전체는 전도성이 높은 금속으로, 상기 양극 활물질의 슬러리가 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있다. The current collector of the metallic material is a highly conductive metal, a metal to which the slurry of the positive electrode active material can easily adhere, and any metal may be used as long as it is not reactive in the voltage range of the battery. Non-limiting examples of the positive electrode current collector include a foil made of aluminum, nickel, or a combination thereof.
상기 양극을 형성하기 위한 용매로는 NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 아세톤, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 바인더, 도전재를 용해 및 분산시킬 수 있는 정도이면 충분하다.The solvent for forming the positive electrode includes an organic solvent such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents alone or in combination of two or more. Can be mixed and used. The amount of the solvent used is sufficient to dissolve and disperse the positive electrode active material, the binder, and the conductive material in consideration of the coating thickness of the slurry and the production yield.
상기 바인더로는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 고분자, 또는 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다. The binder may be polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile, polymethylmethacrylate, Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), Sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid and polymers in which hydrogen thereof is replaced with Li, Na or Ca, or the like, or Various kinds of binder polymers such as various copolymers can be used.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예컨대 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. The conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery. Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 분산제는 수계 분산제 또는 N-메틸-2-피롤리돈 등의 유기 분산제를 사용할 수 있다. The dispersant may be an aqueous dispersant or an organic dispersant such as N-methyl-2-pyrrolidone.
또한, 본 발명은 상기 양극, 음극, 및 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 이차전지를 제공한다. The present invention also provides a secondary battery including the positive electrode, the negative electrode, and a separator interposed between the positive electrode and the negative electrode.
본 발명의 일 실시예에 따른 상기 음극에 사용되는 음극 활물질로는 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬 금속, 규소 또는 주석 등을 사용할 수 있다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연(kish graphite), 열분해 탄소(pyrolytic carbon), 액정피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다. As the negative electrode active material used for the negative electrode according to an embodiment of the present invention, a carbon material, lithium metal, silicon, tin, or the like, in which lithium ions may be occluded and released, may be used. Preferably, a carbon material may be used, and as the carbon material, both low crystalline carbon and high crystalline carbon may be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is natural graphite, kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber. High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes.
또한, 음극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예컨대 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.In addition, the negative electrode current collector is generally made to a thickness of 3 μm to 500 μm. Such a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery. Examples of the negative electrode current collector include carbon, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, and carbon on the surface of copper or stainless steel. Surface-treated with nickel, titanium, silver, and the like, aluminum-cadmium alloy and the like can be used. In addition, like the positive electrode current collector, fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
음극에 사용되는 바인더 및 도전재는 양극과 마찬가지로 당 분야에 통상적으로 사용될 수 있는 것을 사용할 수 있다. 음극은 음극 활물질 및 상기 첨가제들을 혼합 및 교반하여 음극 활물질 슬러리를 제조한 후, 이를 집전체에 도포하고 압축하여 제조할 수 있다. As the binder and the conductive material used for the negative electrode, those that can be commonly used in the art, like the positive electrode, may be used. The negative electrode may be prepared by mixing and stirring the negative electrode active material and the additives to prepare a negative electrode active material slurry, and then coating and compressing the negative electrode active material on a current collector.
또한, 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체 및 에틸렌-메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.In addition, the separator may be a conventional porous polymer film conventionally used as a separator, for example, polyolefin such as ethylene homopolymer, propylene homopolymer, ethylene-butene copolymer, ethylene-hexene copolymer and ethylene-methacrylate copolymer The porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
본 발명에서 사용되는 전해질로서 포함될 수 있는 리튬염은 리튬 이차전지용 전해질에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예컨대 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-,(SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다. A lithium salt which can be included as an electrolyte used in the present invention can be used without limitation, those which are commonly used in a lithium secondary battery electrolyte, for example the lithium salt of the anion is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 - , BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 may be any one selected from the group consisting of -, CH 3 CO 2 -, SCN - , and (CF 3 CF 2 SO 2) 2 N.
본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다. Examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. no.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등을 들 수 있다.The external shape of the lithium secondary battery of the present invention is not particularly limited, and examples thereof include a cylindrical shape, a square shape, a pouch type or a coin type using a can.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 중대형 디바이스의 전원으로 사용되는 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.The lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device but also preferably used as a unit cell in a medium and large battery module including a plurality of battery cells used as a power source for a medium and large device. have.
상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템 등을 들 수 있지만, 이들 만으로 한정되는 것은 아니다.Preferred examples of the medium-to-large device include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and electric power storage systems.
실시예Example
이하, 본 발명을 구체적으로 설명하기 위해 실시예 및 실험예를 들어 더욱 상세하게 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다. 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples, but the present invention is not limited to these Examples and Experimental Examples. Embodiments according to the present invention can be modified in many different forms, the scope of the invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
실시예 1 : 리튬 니켈-망간-코발트 산화물의 제조Example 1 Preparation of Lithium Nickel-Manganese-Cobalt Oxide
황산 니켈(Ni-sulfate), 황산 망간(Mn-sulfate), 및 황산 코발트(Co-sulfate)를 Ni : Mn : Co의 몰비가 8.2:0.6:1.2가 되도록 칭량하여 물에 녹여 수용액을 만든 후 공침시켜 니켈-망간-코발트 복합 금속수산화물을 얻었다. 상기의 금속수산화물에 Li2CO3를 Li:니켈-망간-코발트의 몰비가 1:1이 되도록 넣어준 후 산소 분위기의 전기로 800℃에서 20시간 열처리하여 LiNi0 . 82Co0 . 12Mn0 . 06O2의 조성을 갖는 리튬 니켈-망간-코발트 산화물을 얻었다.Ni-sulfate, manganese sulfate (Mn-sulfate), and cobalt sulfate (Co-sulfate) were weighed so that the molar ratio of Ni: Mn: Co was 8.2: 0.6: 1.2 and dissolved in water to form an aqueous solution. To obtain a nickel-manganese-cobalt composite metal hydroxide. Li 2 CO 3 was added to the metal hydroxide in such a manner that the molar ratio of Li: nickel-manganese-cobalt was 1: 1 and then heat-treated at 800 ° C. for 20 hours in an electric furnace in an oxygen atmosphere to obtain LiNi 0 . 82 Co 0 . 12 Mn 0 . A lithium nickel-manganese-cobalt oxide having a composition of 06 O 2 was obtained.
실시예 2 : 리튬 니켈-망간-코발트 산화물의 제조Example 2 Preparation of Lithium Nickel-Manganese-Cobalt Oxide
황산 니켈, 황산 망간, 및 황산 코발트를 Ni : Mn : Co의 몰비가 8.2:1.2:0.6이 되도록 칭량하여 물에 녹여 수용액을 만든 후 공침시켜 니켈-망간-코발트 복합 금속수산화물을 얻었다. 상기의 금속수산화물에 Li2CO3를 Li:니켈-망간-코발트의 몰비가 1:1이 되도록 넣어준 후 산소 분위기의 전기로 800℃에서 20시간 열처리하여 LiNi0 . 82Co0 . 06Mn0 . 12O2의 조성을 갖는 리튬 니켈-망간-코발트 산화물을 얻었다.Nickel sulfate, manganese sulfate, and cobalt sulfate were weighed so that the molar ratio of Ni: Mn: Co was 8.2: 1.2: 0.6, dissolved in water to form an aqueous solution, and then co-precipitated to obtain a nickel-manganese-cobalt composite metal hydroxide. Li 2 CO 3 was added to the metal hydroxide in such a manner that the molar ratio of Li: nickel-manganese-cobalt was 1: 1 and then heat-treated at 800 ° C. for 20 hours in an electric furnace in an oxygen atmosphere to obtain LiNi 0 . 82 Co 0 . 06 Mn 0 . A lithium nickel-manganese-cobalt oxide having a composition of 12 O 2 was obtained.
실시예 3 : 리튬 니켈-망간-코발트 산화물의 제조Example 3 Preparation of Lithium Nickel-Manganese-Cobalt Oxide
황산 니켈, 황산 망간, 및 황산 코발트를 Ni : Mn : Co의 몰비가 7.6:0.6:1.8이 되도록 칭량하여 물에 녹여 수용액을 만든 후 공침시켜 니켈-망간-코발트 복합 금속수산화물을 얻었다. 상기의 금속수산화물에 Li2CO3를 Li:니켈-망간-코발트의 몰비가 1:1이 되도록 넣어준 후 산소 분위기의 전기로 800℃에서 20시간 열처리하여 LiNi0 . 76Co0 . 18Mn0 . 06O2의 조성을 갖는 리튬 니켈-망간-코발트 산화물을 얻었다.Nickel sulfate, manganese sulfate, and cobalt sulfate were weighed so that the molar ratio of Ni: Mn: Co was 7.6: 0.6: 1.8, dissolved in water to form an aqueous solution, and then co-precipitated to obtain a nickel-manganese-cobalt composite metal hydroxide. Li 2 CO 3 was added to the metal hydroxide in such a manner that the molar ratio of Li: nickel-manganese-cobalt was 1: 1 and then heat-treated at 800 ° C. for 20 hours in an electric furnace in an oxygen atmosphere to obtain LiNi 0 . 76 Co 0 . 18 Mn 0 . A lithium nickel-manganese-cobalt oxide having a composition of 06 O 2 was obtained.
실시예 4 : 리튬 니켈-망간-코발트 산화물의 제조Example 4 Preparation of Lithium Nickel-Manganese-Cobalt Oxide
황산 니켈, 황산 망간, 및 황산 코발트를 Ni : Mn : Co의 몰비가 5.2:1.2:3.6이 되도록 칭량하여 물에 녹여 수용액을 만든 후 공침시켜 니켈-망간-코발트 복합 금속수산화물을 얻었다. 상기의 금속수산화물에 Li2CO3를 Li:니켈-망간-코발트의 몰비가 1:1이 되도록 넣어준 후 산소 분위기의 전기로 800℃에서 20시간 열처리하여 LiNi0 . 52Co0 . 36Mn0 . 12O2의 조성을 갖는 리튬 니켈-망간-코발트 산화물을 얻었다.Nickel sulfate, manganese sulfate, and cobalt sulfate were weighed so that the molar ratio of Ni: Mn: Co was 5.2: 1.2: 3.6, dissolved in water to form an aqueous solution, and then co-precipitated to obtain a nickel-manganese-cobalt composite metal hydroxide. Li 2 CO 3 was added to the metal hydroxide in such a manner that the molar ratio of Li: nickel-manganese-cobalt was 1: 1 and then heat-treated at 800 ° C. for 20 hours in an electric furnace in an oxygen atmosphere to obtain LiNi 0 . 52 Co 0 . 36 Mn 0 . A lithium nickel-manganese-cobalt oxide having a composition of 12 O 2 was obtained.
비교예 1 : 리튬 니켈-망간-코발트 산화물의 제조Comparative Example 1: Preparation of Lithium Nickel-Manganese-Cobalt Oxide
상기 실시예 1에서 황산 니켈, 황산 망간, 및 황산 코발트를 8:1:1의 몰비가 되도록 칭량하여 사용한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 LiNi0.8Co0.1Mn0.1O2의 조성을 갖는 리튬 니켈-망간-코발트 산화물을 얻었다.The composition of LiNi 0.8 Co 0.1 Mn 0.1 O 2 was prepared in the same manner as in Example 1, except that nickel sulfate, manganese sulfate, and cobalt sulfate were weighed in a molar ratio of 8: 1: 1. Lithium nickel-manganese-cobalt oxide having was obtained.
비교예 2 : 리튬 니켈-망간-코발트 산화물의 제조Comparative Example 2: Preparation of Lithium Nickel-Manganese-Cobalt Oxide
상기 실시예 1에서 황산 니켈, 황산 망간, 및 황산 코발트를 8.5:0.6:0.9의 몰비가 되도록 칭량하여 사용한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 LiNi0.85Co0.09Mn0.06O2의 조성을 갖는 리튬 니켈-망간-코발트 산화물을 얻었다.The composition of LiNi 0.85 Co 0.09 Mn 0.06 O 2 was prepared in the same manner as in Example 1, except that nickel sulfate, manganese sulfate, and cobalt sulfate were weighed in a molar ratio of 8.5: 0.6: 0.9 in Example 1. Lithium nickel-manganese-cobalt oxide having was obtained.
비교예 3 : 리튬 니켈-망간-코발트 산화물의 제조Comparative Example 3: Preparation of Lithium Nickel-Manganese-Cobalt Oxide
상기 실시예 1에서 황산 니켈, 황산 망간, 및 황산 코발트를 8.5:0.7:0.8의 몰비가 되도록 칭량하여 사용한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 LiNi0.85Co0.08Mn0.07O2의 조성을 갖는 리튬 니켈-망간-코발트 산화물을 얻었다.The composition of LiNi 0.85 Co 0.08 Mn 0.07 O 2 was prepared in the same manner as in Example 1, except that nickel sulfate, manganese sulfate, and cobalt sulfate were weighed in a molar ratio of 8.5: 0.7: 0.8 in Example 1. Lithium nickel-manganese-cobalt oxide having was obtained.
실시예 5 : 리튬 이차전지의 제조Example 5 Fabrication of a Lithium Secondary Battery
<양극의 제조><Manufacture of Anode>
양극 활물질로서 상기 실시예 1에서 제조된 리튬 니켈-망간-코발트 산화물 94 중량%, 도전재로서 카본 블랙(carbon black) 3 중량%, 및 바인더로서 폴리비닐리덴 플루오라이드(PVdF) 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 제조된 상기 양극 혼합물 슬러리를 두께 20 ㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.94% by weight of lithium nickel-manganese-cobalt oxide prepared in Example 1 as a cathode active material, 3% by weight of carbon black as a conductive material, and 3% by weight of polyvinylidene fluoride (PVdF) as a binder A positive electrode mixture slurry was prepared by addition to phosphorus N-methyl-2-pyrrolidone (NMP). The prepared positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 μm, dried to prepare a positive electrode, and then subjected to roll press to prepare a positive electrode.
<음극의 제조><Production of Cathode>
음극 활물질로서 탄소 분말 96.3 중량%, 도전재로서 super-p 1.0 중량%, 및 바인더로서 스티렌 부타디엔 고무(SBR) 및 카르복시메틸셀룰로오스(CMC)를 각각 1.5 중량% 및 1.2 중량% 혼합한 다음, 용매인 NMP에 첨가하여 음극 활물질 슬러리를 제조하였다. 제조된 상기 음극 활물질 슬러리를 두께 10 ㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.96.3 wt% of carbon powder as a negative electrode active material, 1.0 wt% of super-p as a conductive material, and 1.5 wt% and 1.2 wt% of styrene butadiene rubber (SBR) and carboxymethylcellulose (CMC) as a binder, respectively, The negative electrode active material slurry was prepared by adding to NMP. The prepared negative electrode active material slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 μm, dried to prepare a negative electrode, and then roll-rolled to prepare a negative electrode.
<비수성 전해액의 제조><Production of Non-Aqueous Electrolyte Solution>
전해질로서 에틸렌카보네이트 및 디에틸카보네이트를 30:70의 부피비로 혼합하여 제조된 비수전해액 용매에 LiPF6를 첨가하여 1 M의 LiPF6 비수성 전해액을 제조하였다. LiPF 6 was added to a nonaqueous electrolyte solvent prepared by mixing ethylene carbonate and diethyl carbonate as a electrolyte in a volume ratio of 30:70 to prepare a 1 M LiPF 6 nonaqueous electrolyte.
<리튬 이차전지의 제조><Production of Lithium Secondary Battery>
상기 방법에 따라 제조된 상기 양극과 음극을 이용하여, 폴리에틸렌과 폴리프로필렌의 혼합 세퍼레이터를 개재시킨 후 통상적인 방법으로 폴리머형 전지를 제작한 후, 상기 방법에 따라 제조된 상기 비수성 전해액을 주액하여 리튬 이차전지의 제조를 완성하였다.By using the positive electrode and the negative electrode prepared according to the above method, a mixed battery of polyethylene and polypropylene was interposed, a polymer battery was manufactured by a conventional method, and then the non-aqueous electrolyte solution prepared according to the above method was injected. The manufacture of a lithium secondary battery was completed.
실시예 6 내지 8 : 리튬 이차전지의 제조Examples 6 to 8: Preparation of a lithium secondary battery
상기 실시예 5의 양극의 제조에서 리튬 니켈-망간-코발트 산화물로서 실시예 1의 리튬 니켈-망간-코발트 산화물을 대신하여 실시예 2 내지 4에서 제조된 리튬 니켈-망간-코발트 산화물을 각각 사용한 것을 제외하고는, 실시예 5와 마찬가지의 방법으로 양극을 제조하고, 또한 실시예 5에 기재된 방법과 마찬가지의 방법으로 음극 및 비수성 전해액을 제조한 다음, 상기에서 제조된 양극, 및 음극 및 비수성 전해액을 이용하여 리튬 이차전지를 제조하였다. Lithium nickel-manganese-cobalt oxide prepared in Examples 2 to 4 instead of lithium nickel-manganese-cobalt oxide of Example 1 in the preparation of the positive electrode of Example 5, respectively A positive electrode was prepared in the same manner as in Example 5, except that a negative electrode and a non-aqueous electrolyte were prepared in the same manner as in Example 5, and then the positive electrode prepared above, and the negative electrode and the non-aqueous solution. A lithium secondary battery was manufactured using an electrolyte solution.
비교예 4 내지 6 : 리튬 이차전지의 제조Comparative Examples 4 to 6: Preparation of Lithium Secondary Battery
상기 비교예 1 내지 3에서 제조된 리튬 니켈-망간-코발트 산화물을 각각 사용한 것을 제외하고는, 상기 실시예 5와 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 5, except that lithium nickel-manganese-cobalt oxide prepared in Comparative Examples 1 to 3 was used.
실험예 1 : SEM 현미경 사진Experimental Example 1 SEM Micrograph
주사전자현미경(SEM)을 이용하여, 상기 실시예 1 및 비교예 1에서 제조된 리튬 니켈-망간-코발트 산화물의 사진을 배율을 달리하여 촬영하여 그 결과를 각각 도 1 및 도 2에 각각 나타내었다. Using a scanning electron microscope (SEM), photographs of lithium nickel-manganese-cobalt oxide prepared in Example 1 and Comparative Example 1 were taken at different magnifications, and the results are shown in FIGS. 1 and 2, respectively. .
실험예 2 : 결정 구조 측정Experimental Example 2: Crystal structure measurement
CuKα 방사를 이용한 X-선 회절[XRD, Rigaku, D/MAX-2500(18 kW)]을 이용하여 상기 실시예 1 내지 4, 및 비교예 1 내지 3에서 제조된 리튬 니켈-망간-코발트 산화물의 결정 구조를 측정하였다. 측정된 상기 실시예 1 내지 4, 및 비교예 1 내지 3에서 제조된 리튬 니켈-망간-코발트 산화물의 a- 및 c-축의 격자 상수, 결정 크기, 결정 밀도, 및 Ni2 +의 비율을 하기 표 1에 각각 나타내었다. 상기에서 Ni2 +의 비율은 Ni 이온의 총 중량을 기준으로 한 Ni2+의 중량을 나타낸다.Lithium nickel-manganese-cobalt oxides prepared in Examples 1 to 4 and Comparative Examples 1 to 3 using X-ray diffraction [XRD, Rigaku, D / MAX-2500 (18 kW)] using CuKα radiation. The crystal structure was measured. Is manufactured by the measured Examples 1 to 4 and Comparative Examples 1 to 3, the lithium nickel-manganese-to the a- and c- axis lattice constant, the crystal size, crystal density, and the ratio of Ni 2 + cobalt oxide table 1 is shown respectively. The ratio of Ni 2 + in the above represents the weight of the Ni 2+, based on the total weight of the Ni ions.
aa cc 결정 크기(nm)Crystal size (nm) 결정 밀도(g/cc)Crystal density (g / cc) Ni2 +의 비율 (중량%)The ratio of Ni 2 + (wt%)
실시예 1Example 1 2.87232.8723 14.198014.1980 188188 4.7854.785 1.121.12
실시예 2Example 2 2.87212.8721 14.198214.1982 181181 4.7854.785 1.251.25
실시예 3Example 3 2.87322.8732 14.198514.1985 175175 4.7864.786 1.001.00
실시예 4Example 4 2.87292.8729 14.198114.1981 179179 4.7854.785 1.351.35
비교예 1Comparative Example 1 2.87542.8754 14.216114.2161 126126 4.7614.761 2.572.57
비교예 2Comparative Example 2 2.87552.8755 14.216814.2168 129129 4.7634.763 2.102.10
비교예 3Comparative Example 3 2.87452.8745 14.223614.2236 150150 4.7564.756 2.562.56
상기 표 1을 참조하면, 실시예 1 내지 4의 경우가 비교예 1 내지 3에 비하여 리튬 사이트에 삽입된 Ni2+의 비율이 적음을 확인할 수 있다. Referring to Table 1, it can be confirmed that the case of Examples 1 to 4 is less than the ratio of Ni 2+ inserted into the lithium site compared to Comparative Examples 1 to 3.
실험예 3 : 사이클 특성 평가 실험Experimental Example 3 Cycle Characteristic Evaluation Experiment
실시예 5 내지 8, 및 비교예 4 내지 6에서 각각 얻은 리튬 이차전지에 대하여 사이클 수에 따른 상대 효율을 알아보기 위해 다음과 같이 전기화학 평가 실험을 수행하였다.For the lithium secondary batteries obtained in Examples 5 to 8 and Comparative Examples 4 to 6, electrochemical evaluation experiments were performed as follows to determine the relative efficiency according to the cycle number.
구체적으로, 실시예 5 및 비교예 4에서 각각 제조된 리튬 이차전지를 45 ℃에서 1 C의 정전류(CC)로 4.20 V가 될 때까지 충전하고, 이후 4.20 V의 정전압(CV)으로 충전하여 충전전류가 0.05 mAh가 될 때까지 1회째의 충전을 실시하였다. 이후 20분간 방치한 다음 2C의 정전류로 2.5 V가 될 때까지 방전하였다(cut-off는 0.05 C로 진행하였다). 이를 1 내지 100 회의 사이클로 반복 실시하였다. 그 결과를 도 3에 나타내었다.Specifically, the lithium secondary batteries prepared in Example 5 and Comparative Example 4, respectively, charged at 45 ° C with a constant current (CC) of 1 C until 4.20 V, and then charged with a constant voltage (CV) of 4.20 V The first charge was performed until the current became 0.05 mAh. After standing for 20 minutes, the battery was discharged to 2.5 V with a constant current of 2C (cut-off proceeded to 0.05C). This was repeated for 1 to 100 cycles. The results are shown in FIG.
도 3은 실시예 5 및 비교예 4의 리튬 이차전지의 수명 특성 그래프를 나타낸 것으로, 도 3을 통하여 확인할 수 있는 바와 같이, 실시예 5의 리튬 이차전지의 경우 1 내지 100 회의 사이클까지의 상대 용량에 대한 기울기가 비교예 4의 리튬 이차전지에 비해 완만함을 확인할 수 있었으며, 저항의 증가 기울기 역시 실시예 5의 리튬 이차전지가 비교예 4의 리튬 이차전지에 비해 완만함을 확인할 수 있었다.3 is a graph showing the life characteristics of the lithium secondary batteries of Example 5 and Comparative Example 4, as can be seen through Figure 3, in the case of the lithium secondary battery of Example 5 relative capacity up to 1 to 100 cycles It was confirmed that the slope for the gentle compared to the lithium secondary battery of Comparative Example 4, the increase in the slope of the lithium secondary battery of Example 5 was also confirmed that the gentle compared to the lithium secondary battery of Comparative Example 4.
즉, 망간을 코발트에 비해 적게 사용한 실시예 5의 리튬 이차전지는, 망간과 코발트의 함량이 동일한 비교예 4의 리튬 이차전지보다 수명 특성이 우수함을 확인할 수 있었다. That is, it was confirmed that the lithium secondary battery of Example 5 using less manganese than cobalt had better life characteristics than the lithium secondary battery of Comparative Example 4 having the same content of manganese and cobalt.
또한, 실시예 6 내지 8, 및 비교예 4 내지 6에서 각각 제조된 리튬 이차전지를 45 ℃에서 0.5 C의 정전류(CC)로 4.25 V가 될 때까지 충전하고, 이후 4.25 V의 정전압(CV)으로 충전하여 충전전류가 0.05 mAh가 될 때까지 1회째의 충전을 실시하였다. 이후 20분간 방치한 다음 1 C의 정전류로 3.0 V가 될 때까지 방전하였다(cut-off는 0.05 C로 진행하였다). 이를 1 내지 50 회의 사이클로 반복 실시하였다. 그 결과를 도 4에 나타내었다.In addition, the lithium secondary batteries prepared in Examples 6 to 8 and Comparative Examples 4 to 6 were respectively charged at 45 ° C. with a constant current (CC) of 0.5 C until 4.25 V, followed by a constant voltage (CV) of 4.25 V. Charging was carried out for 1st time until charging current became 0.05 mAh. Thereafter, it was left for 20 minutes and discharged until a constant current of 1 C reached 3.0 V (cut-off proceeded to 0.05 C). This was repeated for 1 to 50 cycles. The results are shown in FIG.
도 4를 통하여 확인할 수 있는 바와 같이, 실시예 6 내지 8의 리튬 이차전지의 경우 1 내지 약 40 회의 사이클까지의 상대 용량에 대한 기울기가 비교예 4 내지 6의 리튬 이차전지에 비해 완만함을 확인할 수 있었다.As can be seen through Figure 4, in the case of the lithium secondary battery of Examples 6 to 8 it can be confirmed that the slope for the relative capacity up to 1 to about 40 cycles is gentle compared to the lithium secondary battery of Comparative Examples 4 to 6 there was.
따라서, 본 발명의 실시예와 같이 코발트를 망간 함량의 n의 배수, 또는 망간을 코발트 함량의 n의 배수로 포함하여 Li 사이트에 삽입된 Ni2 +의 비율이 적은 리튬 니켈-망간-코발트 산화물을 양극 활물질로 이용할 경우, 이차전지의 사이클 퇴화를 완화시켜 장기간 동안 안정한 사이클 특성을 나타낼 수 있음을 확인할 수 있었다. Therefore, a multiple of n in the manganese content of cobalt as in the embodiment of the present invention, or manganese to the low lithium n multiple of the ratio of Ni 2 + into the Li site, including the cobalt content of the nickel-manganese-anode cobalt oxide When used as an active material, it was confirmed that the cycle deterioration of the secondary battery can be alleviated to exhibit stable cycle characteristics for a long time.
실험예 4 : HPPC를 이용한 리튬 이차전지의 저항 측정Experimental Example 4: Measurement of resistance of lithium secondary battery using HPPC
HPPC(hybrid pulse power characterization) 시험을 수행하여 상기 실시예 5 및 비교예 4에서 제조된 리튬 이차전지의 저항을 측정하였다. 1 C(30 mA)로 4.15 V까지 SOC 10부터 완전 충전(SOC=100)까지 충전시키되, 전지를 각각의 1 시간 동안 안정화시킨 다음, HPPC 실험 방법에 따라 리튬 이차전지의 저항을 측정하는 한편, 전지를 SOC 100부터 10까지 방전시키고, 전지를 각각 1시간 동안 안정화시킨 후, 각 SOC 단계마다 HPPC 실험 방법에 의해 리튬 이차전지의 저항을 측정하였다. 충방전시 저항 값을 도 5에 나타내었다. HPPC (hybrid pulse power characterization) test was performed to measure the resistance of the lithium secondary battery prepared in Example 5 and Comparative Example 4. While charging from SOC 10 to full charge (SOC = 100) up to 4.15 V at 1 C (30 mA), the cells were stabilized for 1 hour each, and then the resistance of the lithium secondary battery was measured according to the HPPC test method. After discharging the cells from SOC 100 to 10 and stabilizing the cells for 1 hour, the resistance of the lithium secondary battery was measured by HPPC test method for each SOC step. The resistance values at the time of charging and discharging are shown in FIG. 5.
도 5를 통하여 확인할 수 있는 바와 같이, 충전 저항 및 방전 저항 모두에 있어서 실시예 1에 따른 리튬 니켈-망간-코발트 산화물을 사용한 리튬 이차전지가 비교예 1에 따른 리튬 니켈-망간-코발트 산화물을 사용한 리튬 이차전지에 비하여 낮은 값을 나타내어 높은 출력을 나타낼 것임을 확인할 수 있었다. As can be seen from FIG. 5, the lithium secondary battery using the lithium nickel-manganese-cobalt oxide according to Example 1 in both the charging resistance and the discharging resistance, uses the lithium nickel-manganese-cobalt oxide according to Comparative Example 1. As compared with the lithium secondary battery, it was confirmed that the low output value would indicate high output.

Claims (13)

  1. 하기 화학식 1로 표시되는 리튬 니켈-망간-코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질:A cathode active material for a lithium secondary battery including lithium nickel-manganese-cobalt oxide represented by Formula 1 below:
    [화학식 1] [Formula 1]
    LiaNixMnyCozO2 Li a Ni x Mn y Co z O 2
    상기 화학식 1에서, In Chemical Formula 1,
    1≤a≤1.2, x=1-y-z, 0<y<1, 0<z<1이고,1≤a≤1.2, x = 1-y-z, 0 <y <1, 0 <z <1,
    x>y이며,x> y
    z=ny 또는 y=nz이고, n>1이다.z = ny or y = nz and n> 1.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 x가 0.4≤x≤0.95의 값을 가지는 리튬 이차전지용 양극 활물질.The positive electrode active material for lithium secondary batteries, wherein x has a value of 0.4 ≦ x ≦ 0.95.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 리튬 니켈-망간-코발트 산화물이 포함하는 상기 니켈 중, 상기 망간 함량에 대응하는 양의 니켈이 Ni2+의 형태로 존재하는 리튬 이차전지용 양극 활물질.A cathode active material for a lithium secondary battery, wherein nickel in an amount corresponding to the manganese content is present in the form of Ni 2+ in the nickel included in the lithium nickel-manganese-cobalt oxide.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 리튬 니켈-망간-코발트 산화물이 포함하는 상기 니켈 중, 상기 망간 함량에 대응하는 함량을 초과하는 양의 니켈이 Ni3 +의 형태로 존재하는 리튬 이차전지용 양극 활물질.The positive electrode active material for lithium secondary battery, in which nickel in an amount exceeding the content corresponding to the manganese content is present in the form of Ni 3 + of the nickel included in the lithium nickel-manganese-cobalt oxide.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 Ni은 +2보다 큰 평균 산화수를 가지는 리튬 이차전지용 양극 활물질.The Ni is a cathode active material for a lithium secondary battery having an average oxidation number greater than +2.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 Li을 제외한 Ni, Mn 및 Co의 평균 산화수가 3.0을 초과하는 리튬 이차전지용 양극 활물질.A positive electrode active material for lithium secondary batteries, in which the average oxidation number of Ni, Mn, and Co except for Li exceeds 3.0.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 리튬 니켈-망간-코발트 산화물이 전이금속을 함유하고 있는 전이금속-산화물층(MO층)과 리튬을 함유하고 있는 리튬-산화물층(가역적 리튬층)을 포함하고, The lithium nickel-manganese-cobalt oxide comprises a transition metal-oxide layer (MO layer) containing a transition metal and a lithium-oxide layer (reversible lithium layer) containing lithium,
    상기 MO층은 Ni2+ 및 Ni3+를 함유하며, The MO layer contains Ni 2+ and Ni 3+ ,
    상기 Ni2 + 중 일부가 가역적 리튬층에 삽입되어 있는 리튬 이차전지용 양극 활물질.The Ni 2 + part of cathode active material for a lithium secondary battery, which is inserted into the reversible lithium layer of.
  8. 제 7 항에 있어서, The method of claim 7, wherein
    상기 가역적 리튬층에 삽입되는 Ni2 +의 함량이, 가역적 리튬층에 포함된 전체 Li 사이트에서 Ni2 +가 점유하고 있는 사이트의 비율로서 5 몰% 이하인, 리튬 이차전지용 양극 활물질.The reversible the content of Ni + 2 that is inserted into the lithium layer, the total Li site, that is a ratio of Ni 2 + sites are occupied at 5 mole% or less, a lithium secondary battery positive electrode active material contained in the reversible lithium layer.
  9. 제 7 항에 있어서, The method of claim 7, wherein
    상기 Ni2 +는 니켈 이온의 총 중량을 기준으로 0.1 내지 2 중량%인, 리튬 이차전지용 양극 활물질.The Ni 2 + 0.1 to 2% by weight of a lithium secondary battery positive electrode active material based on the total weight of the nickel ions.
  10. 제 1 항에 있어서, The method of claim 1,
    상기 n이 2 내지 5의 자연수인 리튬 이차전지용 양극 활물질.N is a natural number of 2 to 5 positive electrode active material for lithium secondary batteries.
  11. 제 1 항 내지 제 10 항 중 어느 한 항에 따른 리튬 이차전지용 양극 활물질을 포함하는 리튬 이차전지용 양극.A lithium secondary battery positive electrode comprising the positive electrode active material for lithium secondary battery according to any one of claims 1 to 10.
  12. 제 11 항에 따른 리튬 이차전지용 양극을 포함하는 리튬 이차전지.A lithium secondary battery comprising the anode for lithium secondary battery according to claim 11.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 리튬 이차전지가 전기자동차, 하이브리드 전기자동차, 또는 플러그-인 하이브리드 전기자동차의 전원용인 리튬 이차전지.The lithium secondary battery is an electric vehicle, a hybrid electric vehicle, or a lithium secondary battery for a power supply of a plug-in hybrid electric vehicle.
PCT/KR2016/001957 2015-02-27 2016-02-26 Cathode active material, cathode comprising same, and lithium secondary battery WO2016137287A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680007307.1A CN107210440A (en) 2015-02-27 2016-02-26 Positive active material, positive pole and lithium secondary battery comprising the material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0028378 2015-02-27
KR20150028378 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016137287A1 true WO2016137287A1 (en) 2016-09-01

Family

ID=56788981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001957 WO2016137287A1 (en) 2015-02-27 2016-02-26 Cathode active material, cathode comprising same, and lithium secondary battery

Country Status (3)

Country Link
KR (1) KR20160105348A (en)
CN (1) CN107210440A (en)
WO (1) WO2016137287A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4084137A4 (en) * 2019-12-26 2024-01-24 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Fluorine-containing positive electrode active material for lithium secondary battery, and lithium secondary battery including same
KR20240054198A (en) * 2022-10-18 2024-04-25 주식회사 엘지에너지솔루션 A positive electrode and lithium secondary battery comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035492A (en) * 1999-07-23 2001-02-09 Seimi Chem Co Ltd Positive electrode active material for lithium secondary battery
WO2004054017A1 (en) * 2002-12-06 2004-06-24 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
KR101171734B1 (en) * 2009-04-01 2012-08-07 주식회사 엘지화학 Cathode Active Material for Lithium Secondary Battery
KR20130046810A (en) * 2011-10-28 2013-05-08 삼성에스디아이 주식회사 Nickel composite hydroxide for lithium secondary battery, lithium complex oxide for lithium secondary battery prepared therefrom, preparing method thereof, positive electrode including the same, and lithium secondary battery employing the same
KR20130091597A (en) * 2012-02-08 2013-08-19 주식회사 엘지화학 Lithium secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129848A1 (en) * 2006-05-10 2007-11-15 Lg Chem, Ltd. Material for lithium secondary battery of high performance
CN102150305B (en) * 2008-09-10 2014-01-08 株式会社Lg化学 Cathode active material for lithium secondary battery
CN102439765B (en) * 2009-02-13 2015-07-29 株式会社Lg化学 Improve the lithium secondary battery of energy density

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035492A (en) * 1999-07-23 2001-02-09 Seimi Chem Co Ltd Positive electrode active material for lithium secondary battery
WO2004054017A1 (en) * 2002-12-06 2004-06-24 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
KR101171734B1 (en) * 2009-04-01 2012-08-07 주식회사 엘지화학 Cathode Active Material for Lithium Secondary Battery
KR20130046810A (en) * 2011-10-28 2013-05-08 삼성에스디아이 주식회사 Nickel composite hydroxide for lithium secondary battery, lithium complex oxide for lithium secondary battery prepared therefrom, preparing method thereof, positive electrode including the same, and lithium secondary battery employing the same
KR20130091597A (en) * 2012-02-08 2013-08-19 주식회사 엘지화학 Lithium secondary battery

Also Published As

Publication number Publication date
KR20160105348A (en) 2016-09-06
CN107210440A (en) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2015030402A1 (en) Lithium transition metal composite particles, method for preparing same, and positive active materials comprising same
WO2016204565A1 (en) Silicon oxide-carbon-polymer composite, and anode active material comprising same
WO2016175597A1 (en) Cathode active material for secondary battery, preparation method therefor, and secondary battery comprising same
WO2016108384A1 (en) Cathode active material for lithium-ion secondary batteries, method for producing same, and lithium-ion secondary battery comprising same
WO2019168301A1 (en) Positive electrode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019103363A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019078544A1 (en) Negative electrode for lithium secondary battery, and lithium secondary battery comprising same
WO2015034229A1 (en) Transition metal-pyrophosphate anode active material, manufacturing method therefor, and lithium secondary battery or hybrid capacitor comprising same
WO2019083330A2 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery comprising same
KR20180077026A (en) Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same
WO2014193148A1 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
WO2019074306A2 (en) Positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2018160023A1 (en) Cathode active material for lithium secondary battery, production method therefor, and lithium secondary battery comprising same
WO2019216695A1 (en) Lithium secondary battery
WO2016148441A1 (en) Lithium metal oxide, and negative electrode active material for lithium secondary battery having same, and manufaturing method therefor
WO2020040613A1 (en) Anode active material, anode comprising same, and lithium secondary battery
WO2017095081A1 (en) Positive electrode active material for secondary battery, positive electrode, for secondary battery, comprising same, and secondary battery
WO2019017643A9 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019083332A2 (en) Silicon-carbon composite and lithium secondary battery comprising same
WO2020153728A1 (en) Anode active material for lithium secondary battery, and anode and lithium secondary battery which comprise same
WO2014027869A2 (en) Anode active material, production method for same and rechargeable battery comprising same
WO2020153701A1 (en) Method for producing positive electrode active material for secondary batteries
WO2019235890A1 (en) Anode slurry for lithium secondary battery and method for preparing same
WO2021125870A1 (en) Positive electrode active material, method for producing same, and lithium secondary battery including same
WO2021125535A1 (en) Cathode optimized for improving high-temperature lifespan characteristics, and secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755937

Country of ref document: EP

Kind code of ref document: A1