[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016129896A1 - Method and device for channel adaptive random access channel transmission in communication system - Google Patents

Method and device for channel adaptive random access channel transmission in communication system Download PDF

Info

Publication number
WO2016129896A1
WO2016129896A1 PCT/KR2016/001313 KR2016001313W WO2016129896A1 WO 2016129896 A1 WO2016129896 A1 WO 2016129896A1 KR 2016001313 W KR2016001313 W KR 2016001313W WO 2016129896 A1 WO2016129896 A1 WO 2016129896A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
random access
channel
base station
resources
Prior art date
Application number
PCT/KR2016/001313
Other languages
French (fr)
Korean (ko)
Inventor
문희찬
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority claimed from KR1020160014592A external-priority patent/KR101782431B1/en
Publication of WO2016129896A1 publication Critical patent/WO2016129896A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to random access transmission in a mobile communication system, and more particularly, to channel adaptive random access transmission in a broadband communication system.
  • a random access procedure can be performed to perform communication.
  • the random access procedure is a procedure for establishing a link with a base station when the terminal does not have a link with the base station.
  • the contention-based random access procedure and the non-contention based random access procedure, etc. can be carried out by a variety of methods.
  • a UE transmits a random access preamble to a base station through a random access channel, and the base station checks the random access preamble of the UE to transmit a random access response to the UE. It can be performed through.
  • a random access channel is an essential element of various wireless communication systems, and various access channels may be implemented.
  • the conventional random access channel immediately transmits an access probe when an event for random access channel transmission occurs in the upper layer regardless of the channel state of the reverse link.
  • the transmission of the random access channel requires excessive transmission power. This problem may be referred to, for example, by the non-patent document Hichan Moon, Suhan Choi, "Channel adaptive random access for TDD-based wireless system" (IEEE Trans. Vehicular Tech., Pp. 2730-2741, July 2011). Can be.
  • the state of the forward channel is obtained by measuring the state of the forward channel in a time division duplex (TDD) wireless communication system, and the obtained reverse channel state information satisfies a specific condition.
  • TDD time division duplex
  • a method of transmitting a random access channel has been proposed.
  • the transmission output can be greatly reduced by delaying the transmission of the access probe of the random access channel when the channel condition does not satisfy a specific condition.
  • the coverage radius of a communication system can be greatly extended under conditions where the maximum or average transmission power is the same. This may be useful in situations where communication with the outside is performed, such as disaster communication.
  • the time delay required for successfully transmitting the random access can be increased.
  • this time delay may be a problem in services requiring low time delay. If the threshold for allowing transmission of random access channels (e.g., the threshold of channel conditions) is reduced to reduce time delay, this may degrade the performance of random access.
  • the threshold for allowing transmission of random access channels e.g., the threshold of channel conditions
  • the present invention devised in the above-described situation is to provide a method and apparatus for performing channel-adaptive random access channel transmission that can improve random access performance and increase communication distance by allocating a plurality of random access transmission resources.
  • the present invention also provides a method and apparatus for improving random access performance by performing channel measurement using uplink radio resources in a frequency division duplex (FDD) wireless communication system.
  • FDD frequency division duplex
  • a method of transmitting a random access channel of a terminal in a wireless communication system includes receiving one or more pilot signals for measurement of a channel state from a base station. Step, measuring a channel state based on the at least one pilot signal, and whether one of the random access channel transmission and the transmission of one of a plurality of transmission resources allocated for the transmission of the random access channel based on the measured channel state Determining a resource, and if the transmission of the random access channel is determined, transmitting the random access channel to the base station using the determined one transmission resource.
  • a terminal for transmitting a random access channel includes a receiver for receiving a signal from a base station, a transmitter for transmitting a signal to the base station, and the receiver and A control unit configured to control a transmission unit, wherein the control unit receives one or more pilot signals for measuring a channel state from the base station, measures a channel state based on the one or more pilot signals, and measures the measurement. Determining whether one random access channel is transmitted and one transmission resource among a plurality of transmission resources allocated for the transmission of the random access channel, and if the transmission of the random access channel is determined, the determined one Further configured to transmit the random access channel to the base station using a transmission resource of Can.
  • the present invention can provide a more efficient random access channel transmission by allowing the terminal to transmit a random access channel and subsequent messages in some time intervals of the downlink.
  • the present invention has the effect that the base station transmits the response to the pilot channel and the access probe in some time period of the uplink can extend the communication distance while reducing the transmission power of the random access channel of the terminal.
  • FIG. 1 illustrates a signal transmission structure through an uplink RACH in a mobile communication system.
  • FIG. 2 is a diagram exemplarily illustrating a configuration of an access probe.
  • 3 is a diagram illustrating a pilot channel transmitted in CDMA2000 or W-CDMA.
  • FIG. 4 illustrates an uplink channel and a downlink channel in an LTE system.
  • FIG. 5 is a diagram for describing an operation process of a terminal and a base station in a contention-based random access procedure.
  • FIG. 6 is a diagram for describing an operation process of a terminal and a base station in a contention-free random access procedure.
  • FIG 7 shows an example of random access channel transmission in the TDD communication system according to the embodiment 1-1.
  • FIG. 8 illustrates an example of random access channel transmission in a TDD communication system according to embodiment 1-2.
  • 9A illustrates an example of random access channel transmission in the FDD-based communication system according to the embodiment 3-1.
  • 9B illustrates an example of random access channel transmission in the FDD-based communication system according to the embodiment 3-2.
  • 9C illustrates an example of random access channel transmission in the FDD-based communication system according to the embodiment 3-3.
  • FIG. 10 shows an example of random access channel transmission for a base station having two antennas according to the fourth embodiment.
  • 11A illustrates an example of random access channel transmission for a base station having two antennas according to the embodiment 5-1.
  • 11B illustrates an example of random access channel transmission for a base station having two antennas according to embodiment 5-2.
  • 11C shows an example of random access channel transmission for a base station having two antennas according to the embodiment 5-3.
  • FIG. 12 is a diagram illustrating an example of a terminal configuration according to another embodiment of the present invention.
  • FIG. 13 is a diagram illustrating another example of a terminal configuration according to another embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a configuration of a base station according to another embodiment of the present invention.
  • 15A is a schematic diagram of a base station operating in a TDD mode according to an example.
  • 15B is a schematic diagram of a base station operating in an FDD mode according to another example.
  • 16A is a schematic diagram of a base station operating in an FDD mode according to an example.
  • 16B is a schematic diagram of a base station operating in an FDD mode according to another example.
  • a MTC terminal may mean a terminal supporting low cost (or low complexity) or a terminal supporting coverage enhancement.
  • the MTC terminal may mean a terminal supporting low cost (or low complexity) and coverage enhancement.
  • the MTC terminal may mean a terminal defined in a specific category for supporting low cost (or low complexity) and / or coverage enhancement.
  • the MTC terminal may mean a newly defined 3GPP Release-13 low cost (or low complexity) User Equipment (UE) category / type for performing LTE-based MTC related operations.
  • the MTC terminal supports enhanced coverage compared to the existing LTE coverage, or supports UE category / type defined in the existing 3GPP Release-12 or lower, or newly defined Release-13 low cost (or lower power consumption).
  • low complexity can mean UE category / type.
  • the mobile communication system in the present invention is widely deployed to provide various communication services such as voice, packet data, and the like.
  • the mobile communication system includes a user equipment (UE) and a base station (base station, BS, or eNB).
  • a user terminal is a comprehensive concept of a terminal in wireless communication, and may be used in a global system for mobile communication (GSM) as well as user equipment (UE) in WCDMA, LTE, and High Speed Packet Access (HSPA). It should be interpreted as a concept that includes a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a wireless device.
  • GSM global system for mobile communication
  • UE user equipment
  • HSPA High Speed Packet Access
  • a base station or a cell generally refers to a station for communicating with a user terminal, and includes a Node-B, an evolved Node-B, an Sector, a Site, and a BTS. Other terms such as Base Transceiver System, Access Point, Relay Node, Remote Radio Head (RRH), Radio Unit (RU), Macro Cell, Small Cell Can be.
  • RRH Remote Radio Head
  • RU Radio Unit
  • a base station or a cell is interpreted in a comprehensive sense to indicate some areas or functions covered by a base station controller (BSC) in CDMA, a NodeB in WCDMA, an eNB or a sector (site) in LTE, and the like. It is meant to cover various coverage areas such as mega cell, macro cell, micro cell, pico cell, femto cell and relay node, RRH, RU, small cell communication range.
  • BSC base station controller
  • the base station may be interpreted in two senses. i) A device providing a mega cell, a macro cell, a micro cell, a pico cell, a femto cell, a small cell in relation to a wireless area, or ii) may indicate the wireless area itself. In i) all devices which provide a given wireless area are controlled by the same entity or interact with each other to cooperatively configure the wireless area to direct the base station. According to the configuration of the radio region, an eNB, RRH, antenna, RU, LPN (Local Packet Network), point, transmission point, transmission point, reception point, etc. become one embodiment of a base station. In ii), the base station may indicate the radio area itself that receives or transmits a signal from a viewpoint of a user terminal or a neighboring base station.
  • a device providing a mega cell, a macro cell, a micro cell, a pico cell, a femto cell, a small cell in relation to a wireless area or
  • mega cells macro cells, micro cells, pico cells, femto cells, small cells, RRHs, antennas, RUs, low power nodes (LPNs), points, eNBs, transmission / reception points, transmission points, and reception points are collectively referred to the base station.
  • LPNs low power nodes
  • the user terminal and the base station are two transmitting and receiving entities used to implement the technology or technical idea described in this specification in a comprehensive sense and are not limited by the terms or words specifically referred to.
  • the user terminal and the base station are two types of uplink or downlink transmitting / receiving subjects used to implement the technology or the technical idea described in the present invention, and are used in a generic sense and are not limited by the terms or words specifically referred to.
  • the uplink (Uplink, UL, or uplink) refers to a method for transmitting and receiving data to the base station by the user terminal
  • the downlink (Downlink, DL, or downlink) means to transmit and receive data to the user terminal by the base station It means the way.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • OFDM-FDMA OFDM-TDMA
  • UMB Ultra Mobile Broadband
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • a standard is configured by configuring uplink and downlink based on one carrier or a pair of carriers.
  • the uplink and the downlink include a Physical Downlink Control CHannel (PDCCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid ARQ Indicator CHannel (PHICH), a Physical Uplink Control CHannel (PUCCH), an Enhanced Physical Downlink Control CHannel (EPDCCH), and the like.
  • Control information is transmitted through the same control channel, and data is configured by a data channel such as a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • control information may also be transmitted using an enhanced PDCCH (EPDCCH or extended PDCCH).
  • EPDCCH enhanced PDCCH
  • extended PDCCH extended PDCCH
  • a cell means a component carrier having a coverage of a signal transmitted from a transmission / reception point or a signal transmitted from a transmission point or a transmission / reception point, and the transmission / reception point itself. Can be.
  • a mobile communication system to which embodiments are applied includes a coordinated multi-point transmission / reception system (CoMP system) or a coordinated multi-antenna transmission scheme in which two or more transmission / reception points cooperate to transmit a signal.
  • CoMP system coordinated multi-point transmission / reception system
  • antenna transmission system antenna transmission system
  • cooperative multi-cell communication system The CoMP system may include at least two multiple transmission / reception points and terminals.
  • the multiple transmit / receive point includes at least one having a base station or a macro cell (hereinafter referred to as an eNB) and a high transmit power or a low transmit power in a macro cell region, which is wired controlled by an optical cable or an optical fiber to the eNB. May be RRH.
  • an eNB a base station or a macro cell
  • a high transmit power or a low transmit power in a macro cell region which is wired controlled by an optical cable or an optical fiber to the eNB. May be RRH.
  • downlink refers to a communication or communication path from a multiple transmission / reception point to a terminal
  • uplink refers to a communication or communication path from a terminal to multiple transmission / reception points.
  • a transmitter may be part of multiple transmission / reception points, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal, and a receiver may be part of multiple transmission / reception points.
  • a situation in which a signal is transmitted and received through a channel such as PRACH, PUCCH, PUSCH, PDCCH, EPDCCH, and PDSCH may be expressed in the form of 'transmit and receive PRACH, PUCCH, PUSCH, PDCCH, EPDCCH and PDSCH'.
  • transmitting or receiving a PDCCH or transmitting or receiving a signal through a PDCCH may be used to mean transmitting or receiving an EPDCCH or transmitting or receiving a signal through an EPDCCH.
  • the physical downlink control channel described below may mean PDCCH or EPDCCH, and may also be used to include both PDCCH and EPDCCH.
  • the EPDCCH which is an embodiment of the present invention, may be applied to the portion described as the PDCCH, and the EPDCCH may be applied to the portion described as the EPDCCH as an embodiment of the present invention.
  • high layer signaling described below includes RRC signaling for transmitting RRC information including a Radio Resource Control (RRC) parameter.
  • RRC Radio Resource Control
  • the eNB performs downlink transmission to the terminals.
  • the eNB includes downlink control information and an uplink data channel (eg, a physical downlink shared channel (PDSCH), which is a primary physical channel for unicast transmission, and scheduling required to receive the PDSCH.
  • a physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission on a physical uplink shared channel (PUSCH) may be transmitted.
  • PUSCH physical uplink shared channel
  • a terminal may mean a remote station or a remote node
  • a base station may mean a host station or a host node.
  • a host node represents a node transmitting a signal through a forward link (downlink)
  • a remote node represents a node transmitting a signal through a reverse link (uplink).
  • the downlink channel and the uplink channel described below may mean a frequency band of each link channel. That is, the frequency band in which the base station is configured to transmit a signal or a message to the terminal in the FDD mode is described as a downlink or a downlink channel or a frequency band of the downlink channel. Similarly, in the FDD mode, a frequency band in which a terminal is configured to transmit a signal or a message to a base station is described as an uplink or an uplink channel or a frequency band of an uplink channel.
  • the present invention relates to a random access channel transmission technology in a mobile communication system, and can be applied to all mobile communication systems and communication terminals in a frequency division duplex (FDD) scheme.
  • the present invention is also widely applicable to a mobile communication system using frequency division duplex.
  • FDD frequency division duplex
  • it is possible to reduce the transmission power required for the reverse random access channel in the mobile communication field.
  • it can be used to extend the coverage radius of the terminal having the same maximum transmission power or limited average transmission power.
  • the present invention is all communication systems, terminals that need to minimize the power required for communication, such as communication between the sensor network, wireless LAN, machine-to-machine communication (MTC) and medical equipment Applicable to
  • the transmission power of the terminal is limited so that communication with the base station is often impossible.
  • the random access channel is transmitted when the channel is in a good condition, so that communication is possible even in a situation where communication with the base station is impossible by the conventional technology.
  • the present invention can be applied to various mobile communication systems such as W-CDMA of 3GPP, LTE, LTE-A, or cdma2000 of 3GPP2.
  • W-CDMA of 3GPP
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • cdma2000 of 3GPP2.
  • W-CDMA and LTE systems among the aforementioned mobile communication systems, but the same may be applied to cdma2000.
  • random access channel transmission will be described based on a W-CDMA system as an example of a mobile communication system.
  • the terminal transmits a signal through a random access channel as shown in FIG. 2 is a diagram exemplarily illustrating a configuration of an access probe.
  • a forward channel is an access preamble acquisition indication channel (AP-AICH) 130
  • a reverse channel is a random access channel (RACH).
  • the terminal transmits the preamble on a random access channel of the reverse link (uplink) for the initial synchronization of the communication.
  • the terminal transmits an access probe (AP) 0 (100) including a preamble through a random access channel.
  • AP access probe
  • the terminal transmits an access probe configured as a preamble as shown in FIG. 2A through a random access channel.
  • the terminal does not receive a response signal for the AP 0 (100) from the base station during the Tp-p (102) time, the AP 1 (110) that increases the transmission power by ⁇ P 104 than the AP 0 (100) random Retransmit through the access channel.
  • the AP 1 110 includes a preamble configured with the same signature as the AP 0 100.
  • the terminal When the base station receives the AP 1 (110) through a random access channel, after waiting for Tpai 120 time and transmits the same signature as the AP 1 (110) to the base station through the AICH (130). Although not shown, the terminal demodulates the signal provided through the AICH 130 to identify the signature and the Acquisition Indicator (AI). If the acknowledgment (ACK) of the base station is confirmed through the acquisition confirmer, the terminal waits for Tp-mag time and then transmits a message including reverse (uplink) data to the base station through a reverse (uplink) random access channel. send. For example, the terminal transmits an access probe including a message configured as shown in FIG. 2B through a random access channel.
  • the terminal transmits an access probe including a message configured as shown in FIG. 2B through a random access channel.
  • the terminal transmits the access probe at a transmission power corresponding to the AP 1 (110).
  • the terminal transmits a random access message.
  • the length of the message is typically 10ms.
  • the UE transmits an access probe including the message of FIG. 2 (B), and if the UE successfully receives it, it notifies the UE of reception through a forward (downlink) common channel. That is, the AICH is not transmitted and this signal is transmitted as a message on the forward (downlink) common channel.
  • the random access channel is transmitted through an uplink channel, and the base station receives the random access channel and transmits a random access response thereto to the terminal through the downlink channel.
  • Random access procedure similar to the above is performed in the FDD-based LTE system.
  • the difference from random access channel transmission in W-CDMA is that, after receiving an access probe, the base station allocates resources of the reverse channel through the downlink PDCCH instead of allowing access message transmission through the AICH.
  • Another difference between W-CDMA and LTE is that, after receiving the resource allocation or message transmission of the base station, the LTE system transmits the message in the reverse direction through the PUSCH.
  • the length of a PUSCH is generally in units of 1 ms.
  • the above-described reverse link is described as a downlink in which a base station transmits signals and data to a terminal.
  • the forward link is described as an uplink in which a terminal transmits signals and data to a base station.
  • 3 is a diagram illustrating a pilot channel transmitted in cdma2000 or W-CDMA.
  • the pilot channel exists as one code channel and is always transmitted continuously.
  • the terminal can determine the state of the downlink channel by measuring the pilot channel.
  • a random access channel is transmitted as soon as an event that triggers the random access channel occurs in a higher layer.
  • the state of the downlink channel was measured to determine the transmit power during random access channel transmission.
  • the pilot channel transmitted in the downlink is continuously measured and used to determine the transmission power of the random access channel.
  • FIG. 4 illustrates an uplink channel and a downlink channel in an LTE system.
  • an uplink and a downlink channel are physically divided according to frequency bands.
  • a frequency band for another use may be configured between the uplink channel and the downlink channel.
  • FIG. 5 is a diagram illustrating an operation process of a terminal and a base station in a contention-based random access procedure in an LTE system.
  • a terminal randomly selects one random access preamble from a set of random access preambles indicated by system information or a handover command, and transmits the random access preamble (PACH).
  • the resource may be selected and transmitted (S501).
  • the terminal After transmitting the random access preamble as in step S501, the terminal attempts to receive its random access response within the random access response receiving window indicated by the system information or the handover command (S502).
  • the random access response information may be transmitted in the form of a MAC PDU, and the MAC PDU may be transmitted through a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the UE monitors a physical downlink control channel (PDCCH). That is, the PDCCH preferably includes information of a terminal that should receive the PDSCH, frequency and time information of radio resources of the PDSCH, a transmission format of the PDSCH, and the like.
  • the UE can properly receive the random access response transmitted to the PDSCH according to the information of the PDCCH.
  • the random access response includes a random access preamble identifier (ID; for example, a RAPID (Random Access Preamble IDentifier)), an uplink grant indicating an uplink radio resource, a UL grant, and a temporary C-RNTI. (Cell-Radio Network Temporary Identifier)) and Timing Advance Command (TAC).
  • ID random access preamble identifier
  • RAPID Random Access Preamble IDentifier
  • an uplink grant indicating an uplink radio resource
  • a UL grant a temporary C-RNTI.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • TAC Timing Advance Command
  • the reason why the random access preamble identifier is needed in the random access response is that the UL grant and the temporary cell identifier since the random access response information for one or more terminals may be included in one random access response. This is because it is necessary to inform which UE the TAC is valid. In this step, it is assumed that the UE selects a random access preamble identifier that matches the random access preamble selected by the UE in step S502.
  • the terminal When the terminal receives a random access response valid to the terminal, it processes each of the information included in the random access response. That is, the terminal applies the TAC and stores the temporary cell identifier.
  • the data to be transmitted may be stored in the message 3 buffer in response to receiving a valid random access response.
  • the terminal transmits data (that is, a third message) to the base station by using the received UL grant (S503).
  • the third message should include the identifier of the terminal.
  • the base station cannot determine which UE performs the random access procedure, since the UE needs to be identified for future collision resolution.
  • the UE There are two methods for including the identifier of the terminal.
  • the first method if the UE already has a valid cell identifier assigned to the cell before the random access procedure, the UE transmits its cell identifier through an uplink transmission signal corresponding to the UL grant.
  • the terminal if a valid cell identifier has not been assigned before the random access procedure, the terminal includes its own unique identifier (eg, S-TSI or Mobile Random Subscriber Identity (S-TMSI) or Random ID). To transmit. In general, the unique identifier is longer than the cell identifier.
  • CR timer a timer for contention resolution
  • the terminal After the terminal transmits data including its identifier through the UL grant included in the random access response, the terminal waits for instructions from the base station to resolve the collision. That is, an attempt is made to receive a PDCCH in order to receive a specific message (S504).
  • the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
  • the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
  • FIG. 6 is a diagram illustrating an operation process of a terminal and a base station in a contention-free random access procedure in an LTE system.
  • the operation in the non-competitive random access procedure ends the random access procedure only by transmitting the first message and transmitting the second message.
  • the terminal before the terminal transmits the random access preamble to the base station as the first message, the terminal is allocated a random access preamble from the base station, and transmits the allocated random access preamble to the base station as a first message, and sends a random access response from the base station. By receiving the random access procedure is terminated.
  • the non-competition based random access procedure may be performed in the case of a handover procedure or when requested by a command of a base station.
  • the contention-based random access procedure may be performed in both cases.
  • a dedicated random access preamble having no possibility of collision is allocated from the base station (S601).
  • the random access preamble may be indicated from the base station through the handover command or the PDCCH command.
  • the terminal transmits the allocated dedicated random access preamble as a first message to the base station (S602).
  • a remote node eg, a terminal
  • the remote node measures the forward channel (e.g., downlink channel) and transmits a random access channel only if the forward channel satisfies the transmission condition (e.g., when the channel state is above a preset value). Otherwise, the transmission of the random access channel may be delayed. Therefore, by allowing the transmission of the random access channel only when the state of the channel is good, the transmission power for the transmission of the random access channel can be greatly reduced.
  • the forward channel e.g., downlink channel
  • the transmission condition e.g., when the channel state is above a preset value
  • the remote node can measure the channel state of the TDD forward link and estimate the channel state of the reverse link (eg, uplink) based on the channel reciprocity of the communication method. have.
  • the channel gain of the radio channel between the host station (e.g., base station) and the remote station can be used as a reference for measuring the channel state.
  • the transmission power required for the transmission of the random access channel can be greatly reduced by transmitting the random access channel at the time of high channel gain.
  • the time delay required for the successful transmission of the random access channel may increase. In particular, this may render the use of services requiring low time delays impossible.
  • the threshold for transmitting random access is lowered to reduce time delay, the performance of the random access channel may be degraded.
  • the remote station allocates a plurality of resources capable of transmitting a random access channel to the reverse link transmitted in the reverse direction, and the remote station selects one of the plurality of resources to create a random access channel send. Random access channel transmission can be improved by using the frequency selectivity of the channel.
  • FIG 7 shows an example of random access channel transmission in the TDD communication system according to the embodiment 1-1.
  • a plurality of random access transmission resources (eg, 701, 702, and 703) for random access transmission of a terminal are allocated on the uplink resource.
  • a communication link is time-divided into a downlink for transmitting a signal to a terminal by a base station and an uplink for transmitting a signal to a base station according to time division.
  • the terminal measures the channel state of the downlink based on the signal received through the downlink.
  • a pilot signal such as a reference signal is transmitted over the entire downlink band as in the LTE system.
  • the terminal may transmit the random access to the base station by using the resources 701, 702 and / or 703 for random access transmission allocated to the uplink.
  • resources for random access transmission may be allocated on different frequency resources in the same time zone. In the embodiment of Fig. 7, three random access transmission resources 701, 702 and 703 are set in the same time zone.
  • the terminal may select one of the allocated resources and transmit a random access.
  • the UE measures the downlink channel state by measuring a downlink signal (for example, a reference signal), and may transmit a random access when the channel state is good.
  • the channel state may be measured as a value proportional to the channel gain of the downlink.
  • the terminal may transmit a random access by selecting a resource having a good channel state among resources for transmitting a random access allocated to the uplink.
  • the UE can measure the channel state of each resource for random access transmission on the uplink by measuring the channel state of the downlink channel.
  • the terminal may select a resource for one random access transmission.
  • the terminal may transmit the random access to the base station using the selected resource.
  • the terminal may delay the transmission of the random access.
  • the random access transmission condition may be that the channel gain of the downlink is more than the threshold.
  • the channel gain of the band corresponding to the resource allocated for random access transmission is used to determine whether to access random access. Therefore, instead of the channel gain of the downlink full band, the channel gain of the band corresponding to the resource allocated for random access transmission can be calculated.
  • the terminal when a command indicating the transmission of the random access in the upper layer occurs, the terminal is always random Send access.
  • the terminal may transmit a random access by selecting a band having the best channel state through the channel state measurement of the downlink channel.
  • the performance of random access can be improved by using a resource having the highest channel gain according to frequency selectivity among a plurality of random access transmission resources.
  • a pilot signal of a type other than the downlink reference signal may be used.
  • a signal such as a paging message or a beacon frame of WiFi may be used for channel measurement.
  • FIG. 8 illustrates an example of random access channel transmission in a TDD communication system according to embodiment 1-2.
  • a plurality of random access transmission resources 801, 802, and 803 are allocated at the same time of uplink. However, when a plurality of random access transmission resources 801, 802, and 803 are allocated at the same time, the amount of user data that can be transmitted in the uplink can be reduced instantaneously.
  • a plurality of random access transmission resources 801, 802, and 803 are allocated on different times. Referring to FIG. 8, similar to the embodiment of FIG. 7, a plurality of random access transmission resources (eg, 801, 802, and 803) are allocated to an uplink channel. However, random access transmission resources 801, 802, and 803 are allocated at different times.
  • the terminal measures the state of a downlink channel for each random access transmission resource 801, 802, and 803, and based on this, may determine whether to randomly transmit and select a random access transmission resource. . If the UE decides to transmit the random access, the UE may transmit the random access using the resource having the best channel state among the random access transmission resources 801, 802, and 803. On the other hand, if it is determined that the random access is not to be transmitted, the terminal may delay the transmission of the random access and continue performing channel measurement. For example, the terminal may continuously perform channel measurement until the predetermined random access transmission condition is satisfied.
  • Determination of random access transmission and selection of random access transmission resources described above with reference to FIGS. 7 and 8 may be commonly applied to embodiments described later.
  • downlink and uplink are frequency-divided, and uplink and downlink are separated by relatively large frequency intervals. channel reciprocity) does not apply well.
  • transmission of random access of the terminal may be allowed on some downlink time intervals. That is, the terminal may be configured to measure the downlink channel state by using the signal transmitted in the downlink, and transmit a random access using downlink resources of the same frequency band. Since channel measurement and random access transmission are performed on the same frequency band in the FDD communication system, channel interoperability can be satisfied.
  • the base station transmits a signal for channel measurement through the uplink
  • the terminal may measure the state of the channel used as the uplink.
  • a conventional reference signal or a separately designed pilot signal may be used for channel measurement.
  • the terminal does not transmit a signal through the uplink for a predetermined time period, but instead the base station transmits a signal for uplink channel measurement to the terminal, the terminal may perform the channel measurement for random access transmission. .
  • 9A illustrates an example of random access channel transmission in the FDD-based communication system according to the embodiment 3-1.
  • the base station may transmit a broadband pilot signal 911 for channel measurement.
  • the UE can calculate the average gain of the wideband channel using the wideband pilot signal 911 as well as for the random access transmission resources 901, 902, and 903. Narrowband channel gain can also be calculated.
  • the terminal may determine whether to transmit random access based on the calculated wideband channel gain and / or narrowband channel gain, and may select the random access transmission resource based on the calculated narrowband channel gain.
  • 9B illustrates an example of random access channel transmission in the FDD-based communication system according to the embodiment 3-2.
  • the base station transmits narrowband pilot signals 921, 922, 923 corresponding to the random access transmission resources 901, 902, 903 for channel measurement.
  • the base station may calculate narrowband channel gain of the corresponding random access transmission resources 901, 902, 903 using the narrowband pilot signals 921, 922, 923.
  • the terminal may determine whether to transmit random access based on the calculated narrowband channel gain, and may select the random access transmission resource based on the calculated narrowband channel gain.
  • 9C illustrates an example of random access channel transmission in the FDD-based communication system according to the embodiment 3-3.
  • each narrowband pilot signals 921, 922, 923 may be transmitted on different time resources to increase channel measurement accuracy.
  • the narrowband pilot signals 921, 922, 923 are transmitted with different time resources, more accurate channel measurement can be performed because the signal can be transmitted at higher power.
  • the terminal may determine whether to transmit random access based on the calculated narrowband channel gain, and may select the random access transmission resource based on the calculated narrowband channel gain.
  • a pilot signal for channel measurement when a base station uses two or more antennas will be described.
  • different reference signals are transmitted for each antenna, and the terminal performs channel estimation for each antenna.
  • the base station may transmit a pilot signal on the uplink for some time in the FDD communication system. If two or more antennas are used, the terminal needs to measure the channel gain from each antenna and estimate the final channel condition based on all of the measured channel gains (eg, sum the channel gains). .
  • the base station has two antennas for convenience of description, but a person skilled in the art can understand that the following embodiments may be applied even when the base station uses three or more antennas. There will be.
  • FIG. 10 shows an example of random access channel transmission for a base station having two antennas according to the fourth embodiment.
  • a base station transmits pilot signals 1021 for channel measurement simultaneously through two antennas.
  • a plurality of random access transmission resources (1001, 1002, 1003) are allocated.
  • signals (eg, pilot signals) for channel measurement from two antennas may be separated from each other using a method such as code division multiplex (CDM) and / or frequency division multiplex (FDM).
  • CDM code division multiplex
  • FDM frequency division multiplex
  • the pilot signals may be time-divided and transmitted at different times. That is, since the pilot signal for channel measurement transmitted from each antenna is transmitted at different times, the channel measurement pilot signal for the plurality of antennas may be transmitted using only one amplifier.
  • FIGS. 11A-11C correspond to the embodiments of FIGS. 9A, 9B, and 9C described above, respectively, and the same descriptions are omitted for convenience of description.
  • three random access transmission resources 1101, 1102, 1103 are set for illustrative purposes.
  • 11A illustrates an example of random access channel transmission for a base station having two antennas according to the embodiment 5-1.
  • the broadband pilot signal 1111 for antenna 1 and the broadband pilot signal 1121 for antenna 2 are transmitted on different time resources.
  • FIG. 11B shows an example of random access channel transmission for a base station having two antennas according to the embodiment 5-2.
  • FIG. 11B shows an example of random access channel transmission for a base station having two antennas according to the embodiment 5-2.
  • narrowband pilot signals 1131, 1132 and 1133 for antenna 1 and narrowband pilot signals 1141, 1142 and 1143 for antenna 2 are transmitted on different time resources for each antenna.
  • 11C shows an example of random access channel transmission for a base station having two antennas according to the embodiment 5-3.
  • narrowband pilot signals 1131, 1132, and 1133 for antenna 1 and narrowband pilot signals 1141, 1142, and 1143 for antenna 2 are transmitted on different time resources for each narrowband pilot signal. .
  • the terminal may calculate channel gains for each antenna separately. In addition, the terminal may determine whether to transmit a random access (channel) based on the sum of the calculated respective channel gains. In addition, the terminal may select a random access transmission resource.
  • a channel measurement signal for example, a pilot signal
  • the performance of random access is improved and the time delay that occurs in the channel adaptive random access is reduced. Can be reduced.
  • the information about the channel measurement and random access transmission resources may be shared between the terminal and the base station. For example, in which mode the system operates (e.g., whether the base station supports pilot signal transmission using uplink resources) is transmitted to the terminals via broadcasting (e.g., as system information). Can be.
  • related parameters of operations related thereto eg, a transmission time, a period, a length, and / or a band, etc. of the pilot signal
  • FIG. 12 is a diagram illustrating an example of a terminal configuration according to another embodiment of the present invention.
  • a terminal 1200 transmitting a random access channel in a frequency division duplex (FDD) mode receives a reference signal for measuring a quality of a transport channel transmitting a random access channel through a transport channel.
  • the terminal 1200 includes a receiver 1230, a controller 1210, and a transmitter 1220.
  • the receiver 1230 receives control information, data, and a message from a base station through a corresponding channel.
  • the aforementioned reference signal can be received.
  • the reference signal may be received through a transmission channel of a random access channel. That is, according to the above-described embodiments, it may be received through a downlink channel or may be received through an uplink channel.
  • the receiver 1230 may receive a transmission parameter through a broadcast channel.
  • the transmission parameter may include one or more information of transmission section information, transmission resource information, and period information of the transmission section capable of transmitting a random access channel in the downlink channel.
  • the receiver 1230 may receive information about a transmission mode including general mode or disaster mode related information from the base station.
  • the controller 1210 controls the overall operation of the terminal according to the control of the transmission of the channel-adaptive random access channel required to carry out the above-described present invention.
  • the controller 1210 may measure the quality of the transmission channel using the reference signal and determine whether to transmit a random access channel.
  • the controller 1210 may change and control the setting of the transmission mode.
  • the transmitter 1220 transmits control information, data, and messages to the base station through the corresponding channel.
  • the transmitter 1220 may transmit a random access channel to the base station through the corresponding transmission channel.
  • the transport channel may be a downlink channel and may be an uplink channel. It may be set differently according to each of the above-described embodiments.
  • FIG. 13 is a diagram illustrating another example of a terminal configuration according to another embodiment of the present invention.
  • the terminal includes an antenna 1300, a receiver 1310, a channel measurer 1320, a reception frequency oscillator 1330, a controller 1340, a transmitter 1350, and a transmission frequency oscillator 1360. It may be configured to include.
  • the antenna 1300 performs a role of receiving a signal transmitted through a wireless channel and transmitting a signal transmitted by a terminal.
  • the receiver 1310 recovers data from the signal provided from the antenna 1300.
  • the receiver 1310 may be configured to include an RF receiving block, a demodulation block, a channel decoding block, and the like.
  • the RF receiving block is composed of a filter and an RF preprocessor.
  • the channel decoding block includes a demodulator, a deinterleaver and a channel decoder.
  • the channel measurer 1320 estimates a transmission channel using the received signal provided from the receiver 1310. For example, the channel measurer 1320 estimates the received power of the received signal using the pilot or reference signal of the downlink signal.
  • the receive frequency oscillator 1330 generates a frequency for receiving a signal at the receiver 1310. In general, the reception frequency and the transmission frequency are set differently in the FDD mode.
  • the controller 1340 determines whether to transmit a random access channel based on the state information of the transmission channel provided from the channel measurer 1320. That is, the controller 1340 compares the power of the received signal estimated by the channel measurer 1320 with a reference value and determines whether to transmit a random access channel. For example, when the power of the received reference signal estimated by the channel measurer 1320 is less than or equal to the reference value, the controller 1340 determines that the transmission channel state is not suitable for random access channel transmission. Accordingly, the controller 1340 controls the transmitter 1350 not to transmit the random access channel. For another example, when the power of the reference signal estimated by the channel measurer 1320 is greater than the reference value, the controller 1340 determines that the transmission channel state is suitable for random access channel transmission.
  • the controller 1340 controls the transmitter 1350 to transmit the random access channel.
  • the controller 1340 may determine whether to transmit a random access channel using a reference value provided from the base station.
  • the controller 1340 may calculate a reference value in consideration of a quality of service (QoS) of a service requested by a user.
  • QoS quality of service
  • the controller 1340 may control the terminal to measure the channel state of the transport channel only at a predetermined time. That is, the controller 1340 determines the next transmission channel state measurement time and performs measurement of the transmission channel if the current time is that time. Otherwise, the controller 1340 turns off the terminal until the next measurement time to minimize power consumption. When the next measurement time is reached while the power of the terminal is turned off, the controller 1340 may operate the receiver of the terminal to measure the channel state of the transmission channel.
  • the transmitter 1350 generates a signal to be transmitted to the base station through a random access channel under the control of the controller 1340. That is, the transmitter 1350 converts a signal to be transmitted to a base station through a random access channel into a form for transmission through a radio resource and provides it to the antenna 1300 only when the controller 1340 controls to perform random access channel transmission. do.
  • the transmitter 1350 includes a signal generation block, a channel code block, a modulation block, an RF transmission block, and the like.
  • the channel code block is composed of a modulator, an interleaver, a channel encoder, and the like.
  • the RF transmission block is composed of a filter and an RF preprocessor.
  • the transmission frequency oscillator 1360 oscillates a transmission frequency necessary for signal transmission in the transmitter 1350 under the control of the controller 1340.
  • the UE instantaneously sets the frequency of the transmitter to the frequency of the receiver and transmits a random access channel using the downlink radio resources in the FDD mode.
  • the controller 1340 oscillates the frequency of the transmission frequency oscillator 1360 according to the downlink reception frequency.
  • the terminal instantly receives the pilot channel transmitted by the base station using the uplink resources of the FDD mode.
  • the controller 1340 oscillates the frequency of the reception frequency oscillator 1330 according to the uplink transmission frequency.
  • FIG. 14 is a diagram illustrating a configuration of a base station according to another embodiment of the present invention.
  • the base station 1400 receiving a random access channel from a terminal in a frequency division duplex (FDD) mode generates a reference signal for measuring a quality of a transmission channel through which the terminal transmits a random access channel.
  • the control unit 1410 includes a transmitter 1420 for transmitting a reference signal through a transport channel and a receiver 1430 for receiving a random access channel through a transport channel.
  • the base station 1400 includes a controller 1410, a transmitter 1420, and a receiver 1430.
  • the receiver 1430 receives data and a message from a terminal through a corresponding channel.
  • the receiver 1430 may receive the above-described random access channel. That is, the receiver 1430 may transmit a random access channel through the corresponding transmission channel from the terminal.
  • the transport channel may be a downlink channel and may be an uplink channel. It may be set differently according to each of the above-described embodiments.
  • the controller 1410 may generate a reference signal for quality measurement of a transmission channel through which the terminal transmits a random access channel.
  • the controller 1410 controls the overall operation of the base station according to receiving the channel-adaptive random access channel required to carry out the above-described present invention.
  • the controller 1410 may generate a signal for setting a transmission mode, and generate a transmission parameter and a reference signal parameter.
  • the transmitter 1420 may transmit a reference signal through a transmission channel.
  • the reference signal may be transmitted through a transmission channel of a random access channel. That is, according to the above-described embodiments, it may be transmitted through a downlink channel or through an uplink channel.
  • the transmitter 1420 may transmit a transmission parameter through a broadcast channel.
  • the transmission parameter may include one or more information of transmission section information, transmission resource information, and period information of the transmission section capable of transmitting a random access channel in the downlink channel.
  • the transmitter 1420 may transmit information about a transmission mode including general mode or disaster mode related information to the terminal.
  • the transmitter 1420 transmits control information, data, and messages to the terminal through a corresponding channel.
  • the structure of the base station 1400 may be similar to that of the terminal of FIG. 13.
  • the transmitter 1420 may include a transmission frequency oscillator
  • the receiver 1430 may include a reception frequency oscillator.
  • the base station 1400 sets the frequency of the receiver 1430 to be the same as the downlink frequency to receive a random access channel using the downlink radio resources in the FDD mode can do.
  • the controller 1410 may control the frequency of the reception frequency oscillator to oscillate according to the frequency of the downlink.
  • the base station 1400 sets the frequency of the transmitter 1420 to be the same as the uplink frequency to uplink radio resources in the FDD mode Can transmit a pilot channel.
  • the controller 1410 may control the oscillator to oscillate according to the frequency of the uplink frequency.
  • 15A is a schematic diagram of a base station operating in a TDD mode according to an example. Since the structure of the base station 1500a is the same as that described above with reference to FIG. 14, duplicate description thereof will be omitted.
  • the base station 1500b is a schematic diagram of a base station operating in an FDD mode according to another example.
  • the base station 1500b may further include a separate transmitter 1530b for pilot signal transmission on the uplink.
  • the base station 1500b may further include a duplexer 1540b.
  • the base station 1600a is a schematic diagram of a base station operating in an FDD mode according to an example.
  • the base station 1600a includes two antennas 1640a and 1645a, and thus includes ADCs 1620a and 1625a and power amplifiers 1630a and 1635a corresponding to each antenna.
  • 16B is a schematic diagram of a base station operating in an FDD mode according to another example.
  • the base station 1600b transmits pilot signals for one of the two antennas 1650b and 1655b using one power amplifier 1630b.
  • Each pilot signal may be time-divided using the switch 1640b. Therefore, since one power amplifier 1630b and ADC 1620b are used, the implementation cost of the base station 1600b can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present specification relates to the transmission and the reception of a random access channel in a mobile communication system. A random access channel transmission method according to one embodiment of the present specification can comprise the steps of: receiving, from a base station, one or more pilot signals for the measurement of a channel state; measuring the channel state on the basis of the one or more pilot signals, determining, on the basis of the measured channel state, whether to transmit a random access channel, and determining one transmission resource from among a plurality of transmission resources allocated for the transmission of the random access channel; and transmitting the random access channel to the base station by using the one determined transmission resource, when the transmission of the random access channel is determined.

Description

통신시스템에서의 채널적응형 임의접근채널 전송을 위한 방법 및 장치Method and apparatus for channel adaptive random access channel transmission in communication system
본 발명은 이동통신 시스템에서의 임의접근(Random Access) 전송에 관한 것으로서, 특히, 광대역 통신시스템에서의 채널적응형(Channel Adaptive) 임의접근 전송에 관련된 것이다.The present invention relates to random access transmission in a mobile communication system, and more particularly, to channel adaptive random access transmission in a broadband communication system.
3GPP(3rd Generation Partnership Project)의 W-CDMA(Wideband-Code Division Multiple Access), LTE(Long Term Evolution), LTE-A(Advanced), 또는 3GPP2의 CDMA2000 등의 이동통신 시스템에서 단말은 기지국과의 통신을 수행하기 위하여 임의접근절차(Random Access Procedure)를 수행할 수 있다. 임의접근절차는 단말이 기지국과 링크(link)를 이루고 있지 않은 시점에서 기지국과 링크를 형성하기 위한 절차로서, 경쟁기반(contention based) 임의접근 절차와 비경쟁기반(non-contention based) 임의접근 절차 등의 다양한 방법에 의하여 수행될 수 있다.In a mobile communication system such as a 3GPP W-CDMA (Wideband-Code Division Multiple Access) of (3 rd Generation Partnership Project), LTE (Long Term Evolution), the LTE-A (Advanced), or 3GPP2 CDMA2000 terminal with a base station A random access procedure can be performed to perform communication. The random access procedure is a procedure for establishing a link with a base station when the terminal does not have a link with the base station. The contention-based random access procedure and the non-contention based random access procedure, etc. It can be carried out by a variety of methods.
임의접근절차는 단말이 기지국으로 임의접근프리앰블(Random Access Preamble)을 임의접근채널을 통하여 전송하고, 기지국이 단말의 임의접근프리앰블을 확인하여 단말에게 임의접근응답(Random Access Response)을 전송하는 과정을 통하여 수행될 수 있다.In the random access procedure, a UE transmits a random access preamble to a base station through a random access channel, and the base station checks the random access preamble of the UE to transmit a random access response to the UE. It can be performed through.
상술한 바와 같이, 임의접근채널(Random Access Channel)은 다양한 무선통신시스템의 필수적인 요소로서, 다양한 방식의 임의접근채널이 구현될 수 있다. 그러나, 임의접근채널의 구현 방법과는 무관하게, 종래의 임의접근채널은 역방향 링크의 채널상태와 무관하게 상위계층에서 임의접근채널 전송을 위한 사건이 발생하면 즉시 접근 프로브(probe)를 전송하였다. 그러나 이러한 임의접근채널의 전송은 과도한 전송전력을 요구로 함이 지적된 바 있다. 이러한 문제점은, 예를 들어, 비특허 문헌 Hichan Moon, Suhan Choi, "Channel adaptive random access for TDD-based wireless system" (IEEE Trans. Vehicular Tech., pp. 2730-2741, July 2011)에 의하여 참조될 수 있다. As described above, a random access channel is an essential element of various wireless communication systems, and various access channels may be implemented. However, regardless of the method of implementing the random access channel, the conventional random access channel immediately transmits an access probe when an event for random access channel transmission occurs in the upper layer regardless of the channel state of the reverse link. However, it has been pointed out that the transmission of the random access channel requires excessive transmission power. This problem may be referred to, for example, by the non-patent document Hichan Moon, Suhan Choi, "Channel adaptive random access for TDD-based wireless system" (IEEE Trans. Vehicular Tech., Pp. 2730-2741, July 2011). Can be.
상술한 문제의 해결을 위하여, 상기 논문에서는 TDD(Time Division Duplex) 방식의 무선통신시스템에서 순방향 채널의 상태를 측정하여 역방향 채널의 상태 정보를 획득하고, 획득된 역방향 채널 상태 정보가 특정 조건을 만족하는 경우에만 임의접근채널을 전송하는 방법이 제안되었다. 상술한 방법에 있어서, 채널상태가 특정 조건을 만족하지 못하는 경우 임의접근채널의 접근 프로브의 전송을 지연함으로써 전송출력을 크게 감소될 수 있다. 또한, 최대 또는 평균 전송출력이 동일한 조건하에서 통신시스템의 통달거리(coverage radius)가 크게 확장될 수 있다. 이는 재난 통신과 같이 외부와의 통신이 수행되는 상황에서 유용할 수 있다.In order to solve the above problem, in the paper, the state of the forward channel is obtained by measuring the state of the forward channel in a time division duplex (TDD) wireless communication system, and the obtained reverse channel state information satisfies a specific condition. In this case, a method of transmitting a random access channel has been proposed. In the above-described method, the transmission output can be greatly reduced by delaying the transmission of the access probe of the random access channel when the channel condition does not satisfy a specific condition. In addition, the coverage radius of a communication system can be greatly extended under conditions where the maximum or average transmission power is the same. This may be useful in situations where communication with the outside is performed, such as disaster communication.
그러나, 상술한 바와 같은 채널적응형 임의접근채널 전송에 있어서, 성공적으로 임의접근을 전송하기 위하여 소요되는 시간지연이 증가할 수 있다. 특히, 이러한 시간지연은 낮은 시간지연이 요구되는 서비스에서 문제될 수 있다. 시간지연의 감소를 위하여 임의접근채널의 전송을 허용하는 임계치(예를 들어, 채널 상태의 임계치)를 낮추는 경우, 이는 임의접근의 성능을 열화시킬 수 있다.However, in the channel adaptive random access channel transmission as described above, the time delay required for successfully transmitting the random access can be increased. In particular, this time delay may be a problem in services requiring low time delay. If the threshold for allowing transmission of random access channels (e.g., the threshold of channel conditions) is reduced to reduce time delay, this may degrade the performance of random access.
상술한 상황에서 안출된 본 발명은 복수의 임의접근 전송 자원들을 할당함으로써 임의접근 성능을 향상하고 통달거리를 증가시킬 수 있는 채널적응형 임의접근채널 전송을 수행하는 방법 및 장치를 제공하고자 한다.The present invention devised in the above-described situation is to provide a method and apparatus for performing channel-adaptive random access channel transmission that can improve random access performance and increase communication distance by allocating a plurality of random access transmission resources.
또한, 본 발명은 FDD(Frequency Division Duplex) 무선 통신 시스템에서 상향링크 무선자원을 이용하여 채널측정을 수행함으로써 임의접근 성능을 향상하기 위한 방법 및 장치를 제공하고자 한다. The present invention also provides a method and apparatus for improving random access performance by performing channel measurement using uplink radio resources in a frequency division duplex (FDD) wireless communication system.
본 발명에서 이루고자 하는 기술적 과제들은 상술한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present invention are not limited to the above technical problems, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description. .
상술한 과제를 해결하기 위한 본 발명의 일 실시예에 무선 통신 시스템에서 단말의 임의접근채널(Random Access Channel) 전송 방법은, 기지국으로부터 채널 상태의 측정을 위한 하나 이상의 파일럿(pilot) 신호를 수신하는 단계, 상기 하나 이상의 파일럿 신호에 기초하여 채널 상태를 측정하고, 상기 측정된 채널 상태에 기초하여 임의접근채널의 전송 여부 및 상기 임의접근채널의 전송을 위하여 할당된 복수의 전송 자원들 중에서 하나의 전송 자원을 결정하는 단계, 및 상기 임의접근채널의 전송이 결정되면, 상기 결정된 하나의 전송 자원을 이용하여 상기 기지국으로 상기 임의접근채널을 전송하는 단계를 포함할 수 있다.In one embodiment of the present invention for solving the above problems, a method of transmitting a random access channel of a terminal in a wireless communication system includes receiving one or more pilot signals for measurement of a channel state from a base station. Step, measuring a channel state based on the at least one pilot signal, and whether one of the random access channel transmission and the transmission of one of a plurality of transmission resources allocated for the transmission of the random access channel based on the measured channel state Determining a resource, and if the transmission of the random access channel is determined, transmitting the random access channel to the base station using the determined one transmission resource.
또한, 본 발명의 또 다른 실시예에 따른 무선 통신 시스템에서 임의접근채널(Random Access Channel)을 전송하는 단말은, 기지국으로부터 신호를 수신하는 수신부, 상기 기지국으로 신호를 송신하는 송신부, 및 상기 수신부 및 송신부를 제어하도록 구성된 제어부를 포함하고, 상기 제어부는, 상기 기지국으로부터 채널 상태의 측정을 위한 하나 이상의 파일럿(pilot) 신호를 수신하고, 상기 하나 이상의 파일럿 신호에 기초하여 채널 상태를 측정하고, 상기 측정된 채널 상태에 기초하여 임의접근채널의 전송 여부 및 상기 임의접근채널의 전송을 위하여 할당된 복수의 전송 자원들 중에서 하나의 전송 자원을 결정하며, 상기 임의접근채널의 전송이 결정되면, 상기 결정된 하나의 전송 자원을 이용하여 상기 기지국으로 상기 임의접근채널을 전송하도록 더 구성될 수 있다.In addition, in a wireless communication system according to another embodiment of the present invention, a terminal for transmitting a random access channel (random access channel) includes a receiver for receiving a signal from a base station, a transmitter for transmitting a signal to the base station, and the receiver and A control unit configured to control a transmission unit, wherein the control unit receives one or more pilot signals for measuring a channel state from the base station, measures a channel state based on the one or more pilot signals, and measures the measurement. Determining whether one random access channel is transmitted and one transmission resource among a plurality of transmission resources allocated for the transmission of the random access channel, and if the transmission of the random access channel is determined, the determined one Further configured to transmit the random access channel to the base station using a transmission resource of Can.
본 발명은 하향링크의 일부 시간 구간에서 단말로 하여금 임의접근채널 및 후속하는 메시지를 전송하게 함으로써 보다 효율적인 임의접근채널의 전송을 제공할 수 있다.The present invention can provide a more efficient random access channel transmission by allowing the terminal to transmit a random access channel and subsequent messages in some time intervals of the downlink.
또한, 본 발명은 상향링크의 일부 시간 구간에서 기지국이 파일럿채널 및 접근프로브에 대한 응답을 전송하게 함으로써 단말기의 임의접근채널 전송전력을 낮추면서도 통달거리를 확장할 수 있는 효과가 있다.In addition, the present invention has the effect that the base station transmits the response to the pilot channel and the access probe in some time period of the uplink can extend the communication distance while reducing the transmission power of the random access channel of the terminal.
도 1은 이동통신시스템에서 상향링크 RACH를 통한 신호 전송 구조를 도시한다.1 illustrates a signal transmission structure through an uplink RACH in a mobile communication system.
도 2는 접근 프로브의 구성을 예시적으로 도시한 도면이다.2 is a diagram exemplarily illustrating a configuration of an access probe.
도 3은 CDMA2000 또는 W-CDMA에서 전송하는 파일럿 채널을 도시한 도면이다.3 is a diagram illustrating a pilot channel transmitted in CDMA2000 or W-CDMA.
도 4는 LTE 시스템에서 상향링크 채널과 하향링크 채널을 도시한 도면이다.4 illustrates an uplink channel and a downlink channel in an LTE system.
도 5는 경쟁 기반 임의 접속 과정에서 단말과 기지국의 동작 과정을 설명하기 위한 도면이다.5 is a diagram for describing an operation process of a terminal and a base station in a contention-based random access procedure.
도 6은 비경쟁 기반 임의 접속 과정에서 단말과 기지국의 동작 과정을 설명하기 위한 도면이다.6 is a diagram for describing an operation process of a terminal and a base station in a contention-free random access procedure.
도 7은 실시예 1-1에 따른 TDD 방식의 통신시스템에서의 임의접근채널 전송 의 일 예시를 도시한다.7 shows an example of random access channel transmission in the TDD communication system according to the embodiment 1-1.
도 8은 실시예 1-2에 따른 TDD 방식의 통신시스템에서의 임의접근채널 전송의 일 예시를 도시한다.8 illustrates an example of random access channel transmission in a TDD communication system according to embodiment 1-2.
도 9a는 실시예 3-1에 따른 FDD 방식의 통신시스템에서의 임의접근채널 전송의 일 예시를 도시한다.9A illustrates an example of random access channel transmission in the FDD-based communication system according to the embodiment 3-1.
도 9b는 실시예 3-2에 따른 FDD 방식의 통신시스템에서의 임의접근채널 전송의 일 예시를 도시한다.9B illustrates an example of random access channel transmission in the FDD-based communication system according to the embodiment 3-2.
도 9c는 실시예 3-3에 따른 FDD 방식의 통신시스템에서의 임의접근채널 전송의 일 예시를 도시한다.9C illustrates an example of random access channel transmission in the FDD-based communication system according to the embodiment 3-3.
도 10은 실시예 4에 따른 2개의 안테나를 갖는 기지국에 대한 임의접근채널 전송의 일 예시를 도시한다.10 shows an example of random access channel transmission for a base station having two antennas according to the fourth embodiment.
도 11a는 실시예 5-1에 따른 2개의 안테나를 갖는 기지국에 대한 임의접근채널 전송의 일 예시를 도시한다.11A illustrates an example of random access channel transmission for a base station having two antennas according to the embodiment 5-1.
도 11b 실시예 5-2에 따른 2개의 안테나를 갖는 기지국에 대한 임의접근채널 전송의 일 예시를 도시한다.11B illustrates an example of random access channel transmission for a base station having two antennas according to embodiment 5-2.
도 11c는 실시예 5-3에 따른 2개의 안테나를 갖는 기지국에 대한 임의접근채널 전송의 일 예시를 도시한다.11C shows an example of random access channel transmission for a base station having two antennas according to the embodiment 5-3.
도 12는 본 발명의 또 다른 실시예에 따른 단말 구성의 일 예를 도시한 도면이다. 12 is a diagram illustrating an example of a terminal configuration according to another embodiment of the present invention.
도 13은 본 발명의 또 다른 실시예에 따른 단말 구성의 다른 예를 도시한 도면이다. 13 is a diagram illustrating another example of a terminal configuration according to another embodiment of the present invention.
도 14는 본 발명의 또 다른 실시예에 따른 기지국의 구성을 도시한 도면이다. 14 is a diagram illustrating a configuration of a base station according to another embodiment of the present invention.
도 15a는 일 예시에 따른 TDD 모드에서 동작하는 기지국의 개략도이다. 15A is a schematic diagram of a base station operating in a TDD mode according to an example.
도 15b는 또 다른 예시에 따른 FDD 모드에서 동작하는 기지국의 개략도이다. 15B is a schematic diagram of a base station operating in an FDD mode according to another example.
도 16a는 일 예시에 따른 FDD 모드에서 동작하는 기지국의 개략도이다. 16A is a schematic diagram of a base station operating in an FDD mode according to an example.
도 16b는 또 다른 예시에 따른 FDD 모드에서 동작하는 기지국의 개략도이다.16B is a schematic diagram of a base station operating in an FDD mode according to another example.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 명세서에서 MTC(Machine Type Communication) 단말은 low cost(또는 low complexity)를 지원하는 단말 또는 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및/또는 coverage enhancement를 지원하기 위한 특정 카테고리로 정의된 단말을 의미할 수 있다.In the present specification, a MTC terminal may mean a terminal supporting low cost (or low complexity) or a terminal supporting coverage enhancement. In the present specification, the MTC terminal may mean a terminal supporting low cost (or low complexity) and coverage enhancement. Alternatively, in the present specification, the MTC terminal may mean a terminal defined in a specific category for supporting low cost (or low complexity) and / or coverage enhancement.
다시 말해 본 명세서에서 MTC 단말은 LTE 기반의 MTC 관련 동작을 수행하는 새롭게 정의된 3GPP Release-13 low cost(또는 low complexity) UE(User Equipment) category/type을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 기존의 LTE coverage 대비 향상된 coverage를 지원하거나, 혹은 저전력 소모를 지원하는 기존의 3GPP Release-12 이하에서 정의된 UE category/type, 혹은 새롭게 정의된 Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다.In other words, in the present specification, the MTC terminal may mean a newly defined 3GPP Release-13 low cost (or low complexity) User Equipment (UE) category / type for performing LTE-based MTC related operations. Alternatively, in the present specification, the MTC terminal supports enhanced coverage compared to the existing LTE coverage, or supports UE category / type defined in the existing 3GPP Release-12 or lower, or newly defined Release-13 low cost (or lower power consumption). low complexity) can mean UE category / type.
본 발명에서의 이동통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 이동통신시스템은 사용자 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA(High Speed Packet Access) 등에서의 UE(User Equipment)는 물론, GSM(Global System for Mobile communication)에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.The mobile communication system in the present invention is widely deployed to provide various communication services such as voice, packet data, and the like. The mobile communication system includes a user equipment (UE) and a base station (base station, BS, or eNB). In the present specification, a user terminal is a comprehensive concept of a terminal in wireless communication, and may be used in a global system for mobile communication (GSM) as well as user equipment (UE) in WCDMA, LTE, and High Speed Packet Access (HSPA). It should be interpreted as a concept that includes a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a wireless device.
기지국 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점 (station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit), 매크로 셀(macro cell), 스몰 셀(small cell) 등 다른 용어로 불릴 수 있다.A base station or a cell generally refers to a station for communicating with a user terminal, and includes a Node-B, an evolved Node-B, an Sector, a Site, and a BTS. Other terms such as Base Transceiver System, Access Point, Relay Node, Remote Radio Head (RRH), Radio Unit (RU), Macro Cell, Small Cell Can be.
즉, 본 명세서에서 기지국 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 NodeB, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node), RRH, RU, 스몰 셀 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.That is, in the present specification, a base station or a cell is interpreted in a comprehensive sense to indicate some areas or functions covered by a base station controller (BSC) in CDMA, a NodeB in WCDMA, an eNB or a sector (site) in LTE, and the like. It is meant to cover various coverage areas such as mega cell, macro cell, micro cell, pico cell, femto cell and relay node, RRH, RU, small cell communication range.
상기 나열된 다양한 셀은 각 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. i) 무선 영역과 관련하여 메가셀, 매크로 셀, 마이크로셀, 피코셀, 펨토 셀, 스몰 셀을 제공하는 장치 그 자체이거나, ii)상기 무선영역 그 자체를 지시할 수 있다. i)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 상기 무선 영역을 협업으로 구성하도록 상호작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 eNB, RRH, 안테나, RU, LPN(Local Packet Network), 포인트, 송수신포인트, 전송 포인트, 수신 포인트 등은 기지국의 일 실시예가 된다. ii) 에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 전송하게 되는 무선 영역 그 자체를 기지국으로 지시할 수 있다.Since the various cells listed above have a base station for controlling each cell, the base station may be interpreted in two senses. i) A device providing a mega cell, a macro cell, a micro cell, a pico cell, a femto cell, a small cell in relation to a wireless area, or ii) may indicate the wireless area itself. In i) all devices which provide a given wireless area are controlled by the same entity or interact with each other to cooperatively configure the wireless area to direct the base station. According to the configuration of the radio region, an eNB, RRH, antenna, RU, LPN (Local Packet Network), point, transmission point, transmission point, reception point, etc. become one embodiment of a base station. In ii), the base station may indicate the radio area itself that receives or transmits a signal from a viewpoint of a user terminal or a neighboring base station.
따라서, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토 셀, 스몰 셀, RRH, 안테나, RU, LPN(Low Power Node), 포인트, eNB, 송수신포인트, 전송 포인트, 수신포인트를 통칭하여 기지국으로 지칭한다.Therefore, mega cells, macro cells, micro cells, pico cells, femto cells, small cells, RRHs, antennas, RUs, low power nodes (LPNs), points, eNBs, transmission / reception points, transmission points, and reception points are collectively referred to the base station. Refer.
본 명세서에서 사용자 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 사용자 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 사용자 단말로 데이터를 송수신하는 방식을 의미한다. In the present specification, the user terminal and the base station are two transmitting and receiving entities used to implement the technology or technical idea described in this specification in a comprehensive sense and are not limited by the terms or words specifically referred to. The user terminal and the base station are two types of uplink or downlink transmitting / receiving subjects used to implement the technology or the technical idea described in the present invention, and are used in a generic sense and are not limited by the terms or words specifically referred to. Here, the uplink (Uplink, UL, or uplink) refers to a method for transmitting and receiving data to the base station by the user terminal, the downlink (Downlink, DL, or downlink) means to transmit and receive data to the user terminal by the base station It means the way.
이동통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-advanced로 진화하는 비동기 이동통신과, CDMA, CDMA-2000 및 UMB(Ultra Mobile Broadband)로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 이동통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.There is no limitation on the multiple access scheme applied to the mobile communication system. Various multiple access techniques such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA Can be used. One embodiment of the present invention is resource allocation in the fields of asynchronous mobile communication evolving to LTE and LTE-advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and Ultra Mobile Broadband (UMB). Can be applied to The present invention should not be construed as being limited or limited to a specific mobile communication field, but should be interpreted as including all technical fields to which the spirit of the present invention can be applied.
상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
또한, LTE, LTE-A와 같은 시스템에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel), EPDCCH(Enhanced Physical Downlink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다.In addition, in a system such as LTE and LTE-A, a standard is configured by configuring uplink and downlink based on one carrier or a pair of carriers. The uplink and the downlink include a Physical Downlink Control CHannel (PDCCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid ARQ Indicator CHannel (PHICH), a Physical Uplink Control CHannel (PUCCH), an Enhanced Physical Downlink Control CHannel (EPDCCH), and the like. Control information is transmitted through the same control channel, and data is configured by a data channel such as a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH).
한편 EPDCCH(enhanced PDCCH 또는 extended PDCCH)를 이용해서도 제어 정보를 전송할 수 있다.On the other hand, control information may also be transmitted using an enhanced PDCCH (EPDCCH or extended PDCCH).
본 명세서에서 셀(cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다.In the present specification, a cell means a component carrier having a coverage of a signal transmitted from a transmission / reception point or a signal transmitted from a transmission point or a transmission / reception point, and the transmission / reception point itself. Can be.
실시예들이 적용되는 이동통신 시스템은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템일 수 있다. CoMP 시스템은 적어도 두개의 다중 송수신 포인트와 단말들을 포함할 수 있다.A mobile communication system to which embodiments are applied includes a coordinated multi-point transmission / reception system (CoMP system) or a coordinated multi-antenna transmission scheme in which two or more transmission / reception points cooperate to transmit a signal. antenna transmission system), a cooperative multi-cell communication system. The CoMP system may include at least two multiple transmission / reception points and terminals.
다중 송수신 포인트는 기지국 또는 매크로 셀(macro cell, 이하 'eNB'라 함)과, eNB에 광케이블 또는 광섬유로 연결되어 유선 제어되는, 높은 전송 파워를 갖거나 매크로 셀영역 내의 낮은 전송파워를 갖는 적어도 하나의 RRH일 수도 있다.The multiple transmit / receive point includes at least one having a base station or a macro cell (hereinafter referred to as an eNB) and a high transmit power or a low transmit power in a macro cell region, which is wired controlled by an optical cable or an optical fiber to the eNB. May be RRH.
이하에서 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다.In the following, downlink refers to a communication or communication path from a multiple transmission / reception point to a terminal, and uplink refers to a communication or communication path from a terminal to multiple transmission / reception points. In downlink, a transmitter may be part of multiple transmission / reception points, and a receiver may be part of a terminal. In uplink, a transmitter may be part of a terminal, and a receiver may be part of multiple transmission / reception points.
이하에서는 PRACH, PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 ‘PRACH, PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH를 전송, 수신한다’는 형태로 표기하기도 한다.Hereinafter, a situation in which a signal is transmitted and received through a channel such as PRACH, PUCCH, PUSCH, PDCCH, EPDCCH, and PDSCH may be expressed in the form of 'transmit and receive PRACH, PUCCH, PUSCH, PDCCH, EPDCCH and PDSCH'.
또한, 이하에서는 PDCCH를 전송 또는 수신하거나 PDCCH를 통해서 신호를 전송 또는 수신한다는 기재는 EPDCCH를 전송 또는 수신하거나 EPDCCH를 통해서 신호를 전송 또는 수신하는 것을 포함하는 의미로 사용될 수 있다.In addition, hereinafter, a description of transmitting or receiving a PDCCH or transmitting or receiving a signal through a PDCCH may be used to mean transmitting or receiving an EPDCCH or transmitting or receiving a signal through an EPDCCH.
즉, 이하에서 기재하는 물리 하향링크 제어채널은 PDCCH를 의미하거나, EPDCCH를 의미할 수 있으며, PDCCH 및 EPDCCH 모두를 포함하는 의미로도 사용된다.That is, the physical downlink control channel described below may mean PDCCH or EPDCCH, and may also be used to include both PDCCH and EPDCCH.
또한, 설명의 편의를 위하여 PDCCH로 설명한 부분에도 본 발명의 일 실시예인 EPDCCH를 적용할 수 있으며, EPDCCH로 설명한 부분에도 본 발명의 일 실시예로 EPDCCH를 적용할 수 있다.In addition, for convenience of description, the EPDCCH, which is an embodiment of the present invention, may be applied to the portion described as the PDCCH, and the EPDCCH may be applied to the portion described as the EPDCCH as an embodiment of the present invention.
한편, 이하에서 기재하는 상위계층 시그널링(High Layer Signaling)은 RRC(Radio Resource Control) 파라미터를 포함하는 RRC 정보를 전송하는 RRC시그널링을 포함한다.Meanwhile, high layer signaling described below includes RRC signaling for transmitting RRC information including a Radio Resource Control (RRC) parameter.
eNB은 단말들로 하향링크 전송을 수행한다. eNB은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH), 그리고 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH)을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신 되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.The eNB performs downlink transmission to the terminals. The eNB includes downlink control information and an uplink data channel (eg, a physical downlink shared channel (PDSCH), which is a primary physical channel for unicast transmission, and scheduling required to receive the PDSCH. For example, a physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission on a physical uplink shared channel (PUSCH) may be transmitted. Hereinafter, the transmission and reception of signals through each channel will be described in the form of transmission and reception of the corresponding channel.
본 명세서에서의 단말은 리모트 스테이션 또는 리모트 노드를 의미할 수 있고, 기지국은 호스트 스테이션 또는 호스트 노드를 의미할 수 있다. 이하 설명에서 호스트(Host) 노드는 순방향 링크(하향링크)를 통해 신호를 전송하는 노드를 나타내고, 리모트(Remote) 노드는 역방향 링크(상향링크)를 통해 신호를 전송하는 노드를 나타낸다. 또한, 이하에서 설명하는 하향링크 채널 및 상향링크 채널은 각 링크 채널의 주파수 대역을 의미할 수 있다. 즉, FDD 모드에서 기지국이 단말로 신호 또는 메시지를 전송하도록 설정된 주파수 대역을 하향링크 또는 하향링크 채널 또는 하향링크 채널의 주파수 대역으로 기재한다. 마찬가지로, FDD 모드에서 단말이 기지국으로 신호 또는 메시지를 전송하도록 설정된 주파수 대역을 상향링크 또는 상향링크 채널 또는 상향링크 채널의 주파수 대역으로 기재한다.In the present specification, a terminal may mean a remote station or a remote node, and a base station may mean a host station or a host node. In the following description, a host node represents a node transmitting a signal through a forward link (downlink), and a remote node represents a node transmitting a signal through a reverse link (uplink). In addition, the downlink channel and the uplink channel described below may mean a frequency band of each link channel. That is, the frequency band in which the base station is configured to transmit a signal or a message to the terminal in the FDD mode is described as a downlink or a downlink channel or a frequency band of the downlink channel. Similarly, in the FDD mode, a frequency band in which a terminal is configured to transmit a signal or a message to a base station is described as an uplink or an uplink channel or a frequency band of an uplink channel.
본 발명은 이동통신 시스템에서의 임의접근채널 전송 기술에 관한 것으로, 주파수분할 복신(Frequency division duplex, 이하 FDD라 함) 방식의 모든 이동통신 시스템 및 통신 단말기에 적용될 수 있다. 또한, 본 발명은 주파수분할 복신 (Frequency Division Duplex)을 사용하는 이동통신 시스템에 광범위하게 적용가능하다. 우선적으로 이동통신 분야에서 역방향 임의접근채널에 소요되는 송신전력을 절감할 수 있다. 또한, 같은 최대송신출력을 갖거나 평균송신출력이 제한된 단말의 통달거리(coverage radius)를 확장하기 위해 사용할 수 있다. 또한, 본 발명은 센서 네트워크, 무선 랜, 사물통신(machine-to-machine 통신), 기계형태통신(MTC) 및 의료장비 간의 통신 등 통신에 소요되는 전력을 최소화할 필요가 있는 모든 통신 시스템, 단말기에 적용가능하다.The present invention relates to a random access channel transmission technology in a mobile communication system, and can be applied to all mobile communication systems and communication terminals in a frequency division duplex (FDD) scheme. The present invention is also widely applicable to a mobile communication system using frequency division duplex. First of all, it is possible to reduce the transmission power required for the reverse random access channel in the mobile communication field. In addition, it can be used to extend the coverage radius of the terminal having the same maximum transmission power or limited average transmission power. In addition, the present invention is all communication systems, terminals that need to minimize the power required for communication, such as communication between the sensor network, wireless LAN, machine-to-machine communication (MTC) and medical equipment Applicable to
특히, 최근에 많은 관심을 받고 있는 재난통신에 유용하게 사용될 수 있다. 재난시에 단말의 송신전력이 제한되어 기지국과 통신하지 못하는 경우가 많다. 이러한 단말의 송신전력이 제한되어 있는 경우, 채널이 좋은 상황에 임의 접근채널을 전송함으로 종래의 기술로 기지국과 통신이 불가능한 상황에도 통신이 가능해진다.In particular, it can be usefully used for disaster communication, which has received much attention recently. In the event of a disaster, the transmission power of the terminal is limited so that communication with the base station is often impossible. When the transmission power of the terminal is limited, the random access channel is transmitted when the channel is in a good condition, so that communication is possible even in a situation where communication with the base station is impossible by the conventional technology.
본 발명은 3GPP의 W-CDMA, LTE, LTE-A 또는 3GPP2의 cdma2000 등 다양한 이동통신 시스템에서 적용될 수 있다. 이하에서는 전술한 각 이동통신 시스템 중 W-CDMA 및 LTE 시스템을 중심으로 설명하나, cdma2000의 경우에도 동일하게 적용될 수 있다.The present invention can be applied to various mobile communication systems such as W-CDMA of 3GPP, LTE, LTE-A, or cdma2000 of 3GPP2. Hereinafter, a description will be given of W-CDMA and LTE systems among the aforementioned mobile communication systems, but the same may be applied to cdma2000.
도 1에서는 이동통신 시스템의 일 예로 W-CDMA 시스템을 중심으로 임의접근채널 전송에 대해 설명한다. 단말은 도 1에 도시된 바와 같이 임의접근채널을 통해 신호를 전송한다. 도 2는 접근 프로브의 구성을 예시적으로 도시한 도면이다.In FIG. 1, random access channel transmission will be described based on a W-CDMA system as an example of a mobile communication system. The terminal transmits a signal through a random access channel as shown in FIG. 2 is a diagram exemplarily illustrating a configuration of an access probe.
도 1을 참조하면 순방향 채널(하향링크)은 접근 프리앰블 포착 표시 채널(AP-AICH: Access Preamble-Acquisition Indication CHannel, 130)로 가정하고, 역방향 채널(상향링크)은 임의접근채널(RACH)로 가정한다. 도시된 바와 같이, 단말은 통신의 초기 동기를 위해 프리앰블을 역방향 링크(상향링크)의 임의 접근채널을 통해 전송한다. 이때, 단말은 프리앰블을 포함하는 접근 프로브(AP: Access Probe) 0(100)을 임의접근 채널을 통해 전송한다. 예를 들어, 단말은 도 2의 (A)에 도시된 바와 같이 프리앰블로 구성되는 접근 프로브를 임의접근채널을 통해 전송한다.Referring to FIG. 1, it is assumed that a forward channel (downlink) is an access preamble acquisition indication channel (AP-AICH) 130, and that a reverse channel (uplink) is a random access channel (RACH). do. As shown, the terminal transmits the preamble on a random access channel of the reverse link (uplink) for the initial synchronization of the communication. In this case, the terminal transmits an access probe (AP) 0 (100) including a preamble through a random access channel. For example, the terminal transmits an access probe configured as a preamble as shown in FIG. 2A through a random access channel.
단말은 Tp-p(102) 시간 동안 기지국으로부터 AP 0(100)에 대한 응답신호를 수신받지 못한 경우, AP 0(100)보다 전송 전력을 ΔP(104)만큼 증가시킨 AP 1(110)을 임의접근채널을 통해 재전송한다. 이때, AP 1(110)은 AP 0(100)와 동일한 시그너쳐(signature)로 구성된 프리앰블을 포함한다.If the terminal does not receive a response signal for the AP 0 (100) from the base station during the Tp-p (102) time, the AP 1 (110) that increases the transmission power by ΔP 104 than the AP 0 (100) random Retransmit through the access channel. In this case, the AP 1 110 includes a preamble configured with the same signature as the AP 0 100.
기지국은 임의접근채널을 통해 AP 1(110)을 수신받은 경우, Tpai(120) 시간 동안 대기한 후 상기 AP 1(110)과 동일한 시그너쳐를 AICH(130) 통해 기지국으로 전송한다. 미 도시되었지만, 단말은 AICH(130)을 통해 제공받은 신호를 복조하여 시그너쳐와 포착 확인자(AI: Acquisition Indicator)를 확인한다. 만일, 포착 확인자를 통해 기지국의 ACK(Acknowledge)이 확인되는 경우, 단말은 Tp-mag 시간만큼 대기한 후 역방향(상향링크) 임의접근채널을 통해 역방향(상향링크) 데이터를 포함하는 메시지를 기지국으로 전송한다. 예를 들어, 단말은 도 2의 (B)에 도시된 바와 같이 구성되는 메시지를 포함하는 접근 프로브를 임의 접근 채널을 통해 전송한다. 이때, 단말은 AP 1(110)에 상응하는 전송 전력으로 접근 프로브를 전송한다. 실제로 W-CDMA에서 단말기는 AICH를 통해 ACK의 메시지를 수신하게 되면 임의접근 메시지를 전송하게 되는데 이 메시지의 길이는 통상적으로 10ms이다.When the base station receives the AP 1 (110) through a random access channel, after waiting for Tpai 120 time and transmits the same signature as the AP 1 (110) to the base station through the AICH (130). Although not shown, the terminal demodulates the signal provided through the AICH 130 to identify the signature and the Acquisition Indicator (AI). If the acknowledgment (ACK) of the base station is confirmed through the acquisition confirmer, the terminal waits for Tp-mag time and then transmits a message including reverse (uplink) data to the base station through a reverse (uplink) random access channel. send. For example, the terminal transmits an access probe including a message configured as shown in FIG. 2B through a random access channel. At this time, the terminal transmits the access probe at a transmission power corresponding to the AP 1 (110). In fact, in W-CDMA, when a terminal receives a message of ACK through AICH, the terminal transmits a random access message. The length of the message is typically 10ms.
3GPP2의 CDMA2000 임의접근채널은 도 2의 (B)의 메시지가 포함되어있는 접근 프로브를 단말이 전송하며 이를 성공적으로 기지국이 수신한 경우 순방향(하향링크) 공통채널을 통해 수신여부를 단말에 알려준다. 즉, AICH 가 전송되지 않고 이 신호가 순방향(하향링크) 공통채널에 메시지로 전송되는 것이다.In the CDMA2000 random access channel of 3GPP2, the UE transmits an access probe including the message of FIG. 2 (B), and if the UE successfully receives it, it notifies the UE of reception through a forward (downlink) common channel. That is, the AICH is not transmitted and this signal is transmitted as a message on the forward (downlink) common channel.
3GPP의 LTE 또는 LTE-A의 경우 임의접근채널은 상향링크 채널로 전송되며 기지국은 임의접근채널을 수신하여 이에 대한 임의접근응답(Random Access Response)를 하향링크 채널을 통해서 단말로 전송한다. FDD 기반의 LTE 시스템에서도 상기와 유사한 임의접근절차가 진행된다. 그러나, W-CDMA에서의 임의접근 채널전송과 다른 점은 기지국이 접근프로브를 수신한 후, AICH를 통해 접근 메시지 전송을 허락하는 대신 하향링크의 PDCCH를 통해 역방향 채널의 리소스를 할당한다는 점이다. LTE가 W-CDMA와 또 다른 차이점은 이렇게 기지국의 자원할당 또는 메시지 전송을 허락받은 후, LTE 시스템에서는 PUSCH를 통해 역방향으로 메시지를 전송한다는 점이다. PUSCH의 길이는 일반적으로 1ms 단위이다.In case of LTE or LTE-A of 3GPP, the random access channel is transmitted through an uplink channel, and the base station receives the random access channel and transmits a random access response thereto to the terminal through the downlink channel. Random access procedure similar to the above is performed in the FDD-based LTE system. However, the difference from random access channel transmission in W-CDMA is that, after receiving an access probe, the base station allocates resources of the reverse channel through the downlink PDCCH instead of allowing access message transmission through the AICH. Another difference between W-CDMA and LTE is that, after receiving the resource allocation or message transmission of the base station, the LTE system transmits the message in the reverse direction through the PUSCH. The length of a PUSCH is generally in units of 1 ms.
이하에서는 각 이동통신 시스템을 포괄하여 설명하기 위하여 전술한 역방향 링크를 기지국이 단말로 신호 및 데이터를 전송하는 하향링크로 기재한다. 또한, 순방향 링크를 단말이 기지국으로 신호 및 데이터를 전송하는 상향링크로 기재한다.Hereinafter, in order to comprehensively describe each mobile communication system, the above-described reverse link is described as a downlink in which a base station transmits signals and data to a terminal. In addition, the forward link is described as an uplink in which a terminal transmits signals and data to a base station.
도 3은 cdma2000 또는 W-CDMA에서 전송하는 파일럿 채널을 도시한 도면이다.3 is a diagram illustrating a pilot channel transmitted in cdma2000 or W-CDMA.
도 3을 참조하면, 파일럿 채널은 하나의 코드채널로 존재하며 항상 연속적으로 전송된다. 단말은 이 파일럿 채널을 측정하여 하향링크 채널의 상태를 파악할 수 있다. 종래의 cdma2000 또는 W-CDMA 시스템의 임의접근채널의 전송 시, 상위 계층에서 임의접근채널을 트리거링 하는 사건이 발생하는 즉시 임의접근채널을 전송하였다. 그러나, 임의접근채널 전송시 송신전력을 결정하기 위해 하향링크 채널의 상태를 측정하였다. 이 경우, 하향링크로 전송되는 파일럿 채널을 지속적으로 측정하여 임의접근채널의 송신전력을 결정하는데 사용한다.Referring to FIG. 3, the pilot channel exists as one code channel and is always transmitted continuously. The terminal can determine the state of the downlink channel by measuring the pilot channel. When transmitting a random access channel of a conventional cdma2000 or W-CDMA system, a random access channel is transmitted as soon as an event that triggers the random access channel occurs in a higher layer. However, the state of the downlink channel was measured to determine the transmit power during random access channel transmission. In this case, the pilot channel transmitted in the downlink is continuously measured and used to determine the transmission power of the random access channel.
도 4는 LTE 시스템에서 상향링크 채널과 하향링크 채널을 도시한 도면이다.4 illustrates an uplink channel and a downlink channel in an LTE system.
도 4를 참조하면, LTE, LTE-A 시스템의 FDD 모드에서는 주파수 밴드에 따라서 상향링크와 하향링크 채널이 물리적으로 나뉘어져 구성된다. 이 경우에 상향링크 채널과 하향링크 채널 사이에 다른 용도의 주파수 밴드가 구성될 수도 있다. Referring to FIG. 4, in the FDD mode of the LTE and LTE-A systems, an uplink and a downlink channel are physically divided according to frequency bands. In this case, a frequency band for another use may be configured between the uplink channel and the downlink channel.
도 5는 LTE 시스템에서의 경쟁 기반 임의 접속 과정에서 단말과 기지국의 동작 과정을 설명하기 위한 도면이다.FIG. 5 is a diagram illustrating an operation process of a terminal and a base station in a contention-based random access procedure in an LTE system.
(1) 제 1 메시지(Msg1) 전송(1) Send the first message (Msg1)
먼저, 단말은 시스템 정보 또는 핸드오버 명령(Handover Command)을 통해 지시된 임의 접속 프리앰블의 집합에서 임의로(randomly) 하나의 임의 접속 프리앰블을 선택하고, 상기 임의 접속 프리앰블을 전송할 수 있는 PRACH(Physical RACH) 자원을 선택하여 전송할 수 있다(S501). First, a terminal randomly selects one random access preamble from a set of random access preambles indicated by system information or a handover command, and transmits the random access preamble (PACH). The resource may be selected and transmitted (S501).
(2) 제 2 메시지(Msg2) 수신(2) Receive the second message (Msg2)
단말은 상기 단계 S501에서와 같이 임의 접속 프리앰블을 전송 후에, 기지국이 시스템 정보 또는 핸드오버 명령을 통해 지시된 임의 접속 응답 수신 윈도우 내에서 자신의 임의 접속 응답의 수신을 시도한다(S502). 좀 더 자세하게, 임의 접속 응답 정보는 MAC PDU의 형식으로 전송될 수 있으며, 상기 MAC PDU는 PDSCH(Physical Downlink Shared CHannel)을 통해 전달될 수 있다. 또한 상기 PDSCH로 전달되는 정보를 단말이 적절하게 수신하기 위해 단말은 PDCCH(Physical Downlink Control CHannel)를 모니터링하는 것이 바람직하다. 즉, PDCCH에는 상기 PDSCH를 수신해야 하는 단말의 정보와, 상기 PDSCH의 무선자원의 주파수 그리고 시간 정보, 그리고 상기 PDSCH의 전송 형식 등이 포함되어 있는 것이 바람직하다. 일단 단말이 자신에게 전송되는 PDCCH의 수신에 성공하면, 상기 PDCCH의 정보들에 따라 PDSCH로 전송되는 임의 접속 응답을 적절히 수신할 수 있다. 그리고 상기 임의 접속 응답에는 임의 접속 프리앰블 구별자(ID; 예를 들어, RAPID (Random Access Preamble IDentifier)), 상향링크 무선자원을 알려주는 상향링크 그랜트 (UL Grant), 임시 셀 식별자 (Temporary C-RNTI(Cell-Radio Network Temporary Identifier)) 그리고 타이밍 어드밴스 명령(Timing Advance Command: TAC)들이 포함될 수 있다. After transmitting the random access preamble as in step S501, the terminal attempts to receive its random access response within the random access response receiving window indicated by the system information or the handover command (S502). In more detail, the random access response information may be transmitted in the form of a MAC PDU, and the MAC PDU may be transmitted through a physical downlink shared channel (PDSCH). In addition, in order for the UE to properly receive the information delivered to the PDSCH, it is preferable that the UE monitors a physical downlink control channel (PDCCH). That is, the PDCCH preferably includes information of a terminal that should receive the PDSCH, frequency and time information of radio resources of the PDSCH, a transmission format of the PDSCH, and the like. Once the UE succeeds in receiving the PDCCH transmitted to the UE, it can properly receive the random access response transmitted to the PDSCH according to the information of the PDCCH. The random access response includes a random access preamble identifier (ID; for example, a RAPID (Random Access Preamble IDentifier)), an uplink grant indicating an uplink radio resource, a UL grant, and a temporary C-RNTI. (Cell-Radio Network Temporary Identifier)) and Timing Advance Command (TAC).
상술한 바와 같이 임의 접속 응답에서 임의 접속 프리앰블 구별자가 필요한 이유는, 하나의 임의 접속 응답에는 하나 이상의 단말들을 위한 임의 접속 응답 정보가 포함될 수 있기 때문에, 상기 상향링크 그랜트(UL Grant), 임시 셀 식별자 그리고 TAC가 어느 단말에게 유효한지를 알려주기 위는 것이 필요하기 때문이다. 본 단계에서 단말은 단계 S502에서 자신이 선택한 임의 접속 프리앰블과 일치하는 임의 접속 프리앰블 식별자를 선택하는 것을 가정한다. As described above, the reason why the random access preamble identifier is needed in the random access response is that the UL grant and the temporary cell identifier since the random access response information for one or more terminals may be included in one random access response. This is because it is necessary to inform which UE the TAC is valid. In this step, it is assumed that the UE selects a random access preamble identifier that matches the random access preamble selected by the UE in step S502.
(3) 제 3 메시지(Msg3) 전송(3) Send the third message (Msg3)
단말이 자신에게 유효한 임의 접속 응답을 수신한 경우에는, 상기 임의 접속 응답에 포함된 정보들을 각각 처리한다. 즉, 단말은 TAC을 적용시키고, 임시 셀 식별자를 저장한다. 또한, 유효한 임의 접속 응답 수신에 대응하여 전송할 데이터를 메시지3 버퍼에 저장할 수 있다. When the terminal receives a random access response valid to the terminal, it processes each of the information included in the random access response. That is, the terminal applies the TAC and stores the temporary cell identifier. In addition, the data to be transmitted may be stored in the message 3 buffer in response to receiving a valid random access response.
한편, 단말은 수신된 UL 그랜트를 이용하여, 데이터(즉, 제 3 메시지)를 기지국으로 전송한다(S503). 제 3 메시지는 단말의 식별자가 포함되어야 한다. 경쟁 기반 임의 접속 과정에서는 기지국에서 어떠한 단말들이 임의 접속 과정을 수행하는지 판단할 수 없는데, 차후에 충돌해결을 하기 위해서는 단말을 식별해야 하기 때문이다. Meanwhile, the terminal transmits data (that is, a third message) to the base station by using the received UL grant (S503). The third message should include the identifier of the terminal. In the contention-based random access procedure, the base station cannot determine which UE performs the random access procedure, since the UE needs to be identified for future collision resolution.
단말의 식별자를 포함시키는 방법으로는 두 가지 방법이 존재한다. 첫 번째 방법은 단말이 임의 접속 과정 이전에 이미 해당 셀에서 할당받은 유효한 셀 식별자를 가지고 있었다면, 단말은 상기 UL 그랜트에 대응하는 상향링크 전송 신호를 통해 자신의 셀 식별자를 전송한다. 반면에, 만약 임의 접속 과정 이전에 유효한 셀 식별자를 할당받지 못하였다면, 단말은 자신의 고유 식별자(예를 들면, S-TMSI(S-Temporary Mobile Subscriber Identity) 또는 임의 ID(Random Id))를 포함하여 전송한다. 일반적으로 상기의 고유 식별자는 셀 식별자보다 길다. 단말은 상기 UL 그랜트에 대응하는 데이터를 전송하였다면, 충돌 해결을 위한 타이머 (contention resolution timer; 이하 "CR 타이머")를 개시한다.There are two methods for including the identifier of the terminal. In the first method, if the UE already has a valid cell identifier assigned to the cell before the random access procedure, the UE transmits its cell identifier through an uplink transmission signal corresponding to the UL grant. On the other hand, if a valid cell identifier has not been assigned before the random access procedure, the terminal includes its own unique identifier (eg, S-TSI or Mobile Random Subscriber Identity (S-TMSI) or Random ID). To transmit. In general, the unique identifier is longer than the cell identifier. If the UE transmits data corresponding to the UL grant, it starts a timer for contention resolution (hereinafter referred to as "CR timer").
(4) 제 4 메시지(Msg4) 수신(4) Receive the fourth message (Msg4)
단말이 임의 접속 응답에 포함된 UL 그랜트를 통해 자신의 식별자를 포함한 데이터를 전송 한 이후, 충돌 해결을 위해 기지국의 지시를 기다린다. 즉, 특정 메시지를 수신하기 위해 PDCCH의 수신을 시도한다(S504). 상기 PDCCH를 수신하는 방법에 있어서도 두 가지 방법이 존재한다. 앞에서 언급한 바와 같이 상기 UL 그랜트에 대응하여 전송된 제 3 메시지에 포함된 자신의 식별자가 셀 식별자인 경우에는 자신의 셀 식별자를 이용하여 PDCCH의 수신을 시도하고, 상기 식별자가 고유 식별자인 경우에는 임의 접속 응답에 포함된 임시 셀 식별자를 이용하여 PDCCH의 수신을 시도할 수 있다. 그 후, 전자의 경우, 만약 상기 충돌 해결 타이머가 만료되기 전에 자신의 셀 식별자를 통해 PDCCH를 수신한 경우에, 단말은 정상적으로 임의 접속 과정이 수행되었다고 판단하고, 임의 접속 과정을 종료한다. 후자의 경우에는 상기 충돌 해결 타이머가 만료되기 전에 임시 셀 식별자를 통해 PDCCH를 수신하였다면, 상기 PDCCH가 지시하는 PDSCH이 전달하는 데이터를 확인한다. 만약 상기 데이터의 내용에 자신의 고유 식별자가 포함되어 있다면, 단말은 정상적으로 임의 접속 과정이 수행되었다고 판단하고, 임의 접속 과정을 종료한다.After the terminal transmits data including its identifier through the UL grant included in the random access response, the terminal waits for instructions from the base station to resolve the collision. That is, an attempt is made to receive a PDCCH in order to receive a specific message (S504). There are two methods for receiving the PDCCH. As mentioned above, when its identifier included in the third message transmitted in response to the UL grant is a cell identifier, it attempts to receive a PDCCH using its cell identifier, and when the identifier is a unique identifier. Attempt to receive a PDCCH using a temporary cell identifier included in the random access response. Then, in the former case, if the PDCCH is received through its cell identifier before the conflict resolution timer expires, the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure. In the latter case, if the PDCCH is received through the temporary cell identifier before the conflict resolution timer expires, the data transmitted by the PDSCH indicated by the PDCCH is checked. If the unique identifier is included in the content of the data, the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
도 6은 LTE 시스템에서의 비경쟁 기반 임의 접속 과정에서 단말과 기지국의 동작 과정을 설명하기 위한 도면이다. FIG. 6 is a diagram illustrating an operation process of a terminal and a base station in a contention-free random access procedure in an LTE system.
비경쟁 기반 임의 접속 과정에서의 동작은 도 5에 도시된 경쟁 기반 임의 접속 과정과 달리 제 1 메시지 전송 및 제 2 메시지 전송만으로 임의 접속 과정이 종료되게 된다. 다만, 제 1 메시지로서 단말이 기지국에 임의 접속 프리앰블을 전송하기 전에 단말은 기지국으로부터 임의 접속 프리앰블을 할당받게 되며, 이 할당받은 임의 접속 프리앰블을 기지국에 제 1 메시지로서 전송하고, 기지국으로부터 임의 접속 응답을 수신함으로써 임의 접속 과정이 종료되게 된다.Unlike the competition-based random access procedure illustrated in FIG. 5, the operation in the non-competitive random access procedure ends the random access procedure only by transmitting the first message and transmitting the second message. However, before the terminal transmits the random access preamble to the base station as the first message, the terminal is allocated a random access preamble from the base station, and transmits the allocated random access preamble to the base station as a first message, and sends a random access response from the base station. By receiving the random access procedure is terminated.
비경쟁 기반 임의 접속 과정은, 핸드오버 과정의 경우 또는 기지국의 명령에 의해 요청되는 경우에서 수행될 수 있다. 물론, 상기 두 경우에서 경쟁 기반 임의 접속 과정이 수행될 수도 있다. The non-competition based random access procedure may be performed in the case of a handover procedure or when requested by a command of a base station. Of course, the contention-based random access procedure may be performed in both cases.
(1) 임의 접속 프리앰블 할당(1) Random Access Preamble Allocation
비경쟁 기반의 임의 접속 과정을 위해서 충돌의 가능성이 없는 전용(dedicated) 임의 접속 프리앰블을 기지국으로부터 할당받는다 (S601). 핸드오버 명령 또는 PDCCH 명령을 통하여 임의 접속 프리앰블을 기지국으로부터 지시받을 수 있다. For the non-competition based random access procedure, a dedicated random access preamble having no possibility of collision is allocated from the base station (S601). The random access preamble may be indicated from the base station through the handover command or the PDCCH command.
(2) 단말은 할당받은 전용 임의 접속 프리앰블을 제 1 메시지로서 기지국으로 전송한다 (S602).(2) The terminal transmits the allocated dedicated random access preamble as a first message to the base station (S602).
(3) 임의 접속 응답 정보를 수신(S603)하는 방법은 경쟁 기반 임의 접속 과정에서와 동일하다.(3) The method of receiving random access response information (S603) is the same as in the contention-based random access procedure.
종래의 채널적응형 임의접근채널 전송방식에서, 리모트 노드(예를 들어, 단말)가 사전에 임의접근채널 전송 접근을 결정하도록 구성될 수 있다. 예를 들어, 리모트 노드는 순방향 채널(예를 들어, 하향링크 채널)을 측정하여 순방향 채널이 전송조건을 만족하는 경우(예를 들어, 채널 상태가 기설정된 값 이상인 경우)에만 임의접근채널을 전송하고 그렇지 않은 경우에는 임의접근채널의 전송을 지연할 수 있다. 따라서, 채널의 상태가 좋은 경우에만 임의접근채널의 전송을 허용함으로써, 임의접근채널의 전송을 위한 송출전력을 크게 감소시킬 수 있다.In a conventional channel adaptive random access channel transmission scheme, a remote node (eg, a terminal) may be configured to determine a random access channel transmission approach in advance. For example, the remote node measures the forward channel (e.g., downlink channel) and transmits a random access channel only if the forward channel satisfies the transmission condition (e.g., when the channel state is above a preset value). Otherwise, the transmission of the random access channel may be delayed. Therefore, by allowing the transmission of the random access channel only when the state of the channel is good, the transmission power for the transmission of the random access channel can be greatly reduced.
채널적응형 임의접근채널 전송에 있어서, 리모트 노드는 TDD 순방향링크의 채널상태를 측정하고 통신 방식의 채널상호성(Channel Reciprocity)에 기초하여 역방향링크(예를 들어 상향링크)의 채널상태를 추정할 수 있다. In the channel adaptive random access channel transmission, the remote node can measure the channel state of the TDD forward link and estimate the channel state of the reverse link (eg, uplink) based on the channel reciprocity of the communication method. have.
이 경우, 호스트 스테이션(예를 들어, 기지국)과 리모트 스테이션 사이의 무선채널의 채널이득이 채널 상태를 측정하는 기준으로써 이용될 수 있다. 페이딩(fading) 채널에서는 무선채널의 채널이득이 시간에 따라서 변화하기 때문에 채널이득이 높은 시점에 임의접근채널을 전송함으로써 임의접근채널의 전송에 필요한 송신전력이 크게 감소될 수 있다.In this case, the channel gain of the radio channel between the host station (e.g., base station) and the remote station can be used as a reference for measuring the channel state. In the fading channel, since the channel gain of the wireless channel changes with time, the transmission power required for the transmission of the random access channel can be greatly reduced by transmitting the random access channel at the time of high channel gain.
그러나, 채널적응형 임의접근채널의 전송시, 성공적인 임의접근채널의 전송에 필요되는 시간지연이 증가할 수 있다. 특히, 이는 낮은 시간지연을 요구하는 서비스의 이용을 불가능하게 할 수도 있다. 한편, 시간지연의 감소를 위하여 임의접근을 전송하기 위한 임계치를 낮추는 경우, 임의접근채널의 성능이 열화될 수 있다.However, in the transmission of the channel adaptive random access channel, the time delay required for the successful transmission of the random access channel may increase. In particular, this may render the use of services requiring low time delays impossible. On the other hand, when the threshold for transmitting random access is lowered to reduce time delay, the performance of the random access channel may be degraded.
이하의 실시예들에 있어서, 리모트 스테이션이 역방향으로 전송하는 역방향링크에 임의접근채널을 전송할 수 있는 복수의 자원들을 할당하고, 리모트 스테이션이 복수의 자원들 중 하나의 자원을 선택하여 임의접근채널을 전송한다. 채널의 주파수 선택성을 이용하여 임의접근채널 전송이 향상될 수 있다.In the following embodiments, the remote station allocates a plurality of resources capable of transmitting a random access channel to the reverse link transmitted in the reverse direction, and the remote station selects one of the plurality of resources to create a random access channel send. Random access channel transmission can be improved by using the frequency selectivity of the channel.
<실시예1-1>Example 1-1
도 7은 실시예 1-1에 따른 TDD 방식의 통신시스템에서의 임의접근채널 전송 의 일 예시를 도시한다.7 shows an example of random access channel transmission in the TDD communication system according to the embodiment 1-1.
도 7의 실시예에 있어서, 단말의 임의접근 전송을 위한 복수의 임의접근 전송 자원(예를 들어, 701, 702 및 703)들은 상향링크 자원 상에 할당된다. 도 7에 있어서, 통신링크는 시분할에 따라서 기지국이 단말로 신호를 전송하는 하향링크와 단말이 기지국으로 신호를 전송하는 상향링크로 시분할된다. 단말은 하향링크를 통하여 수신된 신호에 기초하여 하향링크의 채널상태를 측정한다. 본 실시예에 있어서, LTE 시스템에서와 같이 하향링크의 전 대역에 걸쳐 레퍼런스 신호와 같은 파일럿 신호가 전송되는 것으로 가정될 수 있다. In the embodiment of FIG. 7, a plurality of random access transmission resources (eg, 701, 702, and 703) for random access transmission of a terminal are allocated on the uplink resource. In FIG. 7, a communication link is time-divided into a downlink for transmitting a signal to a terminal by a base station and an uplink for transmitting a signal to a base station according to time division. The terminal measures the channel state of the downlink based on the signal received through the downlink. In this embodiment, it may be assumed that a pilot signal such as a reference signal is transmitted over the entire downlink band as in the LTE system.
단말은 상향링크에 할당된 임의접근 전송을 위한 자원(701, 702 및/또는 703)을 이용하여 기지국으로 임의접근을 전송할 수 있다. 예를 들어, 임의접근 전송을 위한 자원들은 동일한 시간 대의 서로 다른 주파수 자원 상에 할당될 수도 있다. 도 7의 실시예에서는, 동일한 시간대에 3개의 임의접근 전송 자원들(701, 702 및 703)이 설정된다. 또한, 단말은 할당된 자원들 중 하나의 자원을 선택하여 임의접근을 전송할 수 있다.The terminal may transmit the random access to the base station by using the resources 701, 702 and / or 703 for random access transmission allocated to the uplink. For example, resources for random access transmission may be allocated on different frequency resources in the same time zone. In the embodiment of Fig. 7, three random access transmission resources 701, 702 and 703 are set in the same time zone. In addition, the terminal may select one of the allocated resources and transmit a random access.
단말은 하향링크의 신호(예를 들어, 레퍼런스 신호)를 측정하여 하향링크의 채널 상태를 측정하고, 채널 상태가 좋은 경우에 임의접근을 전송할 수도 있다. 본 실시예에서, 채널상태는 하향링크의 채널이득에 비례하는 값으로서 측정될 수도 있다. 단말은, 상향링크에 할당된 각각의 임의접근 전송을 위한 자원들 중에서 채널상태가 좋은 자원을 선택하여 임의접근을 전송할 수 있다. 예를 들어, 단말은 하향링크 채널의 채널상태를 측정함으로써 상향링크 상의 임의접근 전송을 위한 자원들 각각의 채널상태를 측정할 수 있다. 또한, 이러한 측정 결과에 기초하여, 단말은 하나의 임의접근 전송을 위한 자원을 선택할 수 있다.The UE measures the downlink channel state by measuring a downlink signal (for example, a reference signal), and may transmit a random access when the channel state is good. In this embodiment, the channel state may be measured as a value proportional to the channel gain of the downlink. The terminal may transmit a random access by selecting a resource having a good channel state among resources for transmitting a random access allocated to the uplink. For example, the UE can measure the channel state of each resource for random access transmission on the uplink by measuring the channel state of the downlink channel. In addition, based on the measurement result, the terminal may select a resource for one random access transmission.
또한, 단말은, 선택된 자원의 채널상태가 기설정된 임의접근 전송 조건을 만족하는 경우에 임의접근을 해당 선택된 자원을 이용하여 기지국으로 전송할 수도 있다. 또한, 선택된 자원의 채널상태가 기설정된 임의접근 전송 조건을 만족하지 못하는 경우, 단말은 임의접근의 전송을 연기할 수 있다. 예를 들어, 임의접근 전송 조건은 하향링크의 채널이득이 임계치 이상인 것일 수도 있다. In addition, when the channel state of the selected resource satisfies the predetermined random access transmission condition, the terminal may transmit the random access to the base station using the selected resource. In addition, when the channel state of the selected resource does not satisfy the predetermined random access transmission condition, the terminal may delay the transmission of the random access. For example, the random access transmission condition may be that the channel gain of the downlink is more than the threshold.
상술한 바와 같이, 본 실시예에 있어서, 하향링크의 전체대역의 채널이득이 아닌, 임의접근 전송을 위하여 할당된 자원에 대응하는 대역의 채널이득이 임의접근 전송 여부 결정에 이용된다. 따라서, 하향링크 전체대역의 채널이득 대신에 임의접근 전송을 위하여 할당된 자원에 대응하는 대역의 채널이득이 계산될 수 있다.As described above, in this embodiment, the channel gain of the band corresponding to the resource allocated for random access transmission, rather than the channel gain of the downlink full band, is used to determine whether to access random access. Therefore, instead of the channel gain of the downlink full band, the channel gain of the band corresponding to the resource allocated for random access transmission can be calculated.
예를 들어, 임의접근 전송 조건이 채널이득이 0 이상인 경우(예를 들어, 모든 채널상태에서 임의접근 전송), 상위 계층에서 임의접근의 전송을 지시하는 명령이 발생하는 경우에, 단말은 항상 임의접근을 전송한다. 이 경우에는 단말은 하향링크채널의 채널상태 측정을 통하여 가장 좋은 채널상태를 갖는 대역을 선택하여 임의접근을 전송할 수 있다. 이 경우, 복수의 임의접근 전송 자원들 중 주파수 선택성에 따라서 채널이득이 가장 높은 자원을 이용함으로써 임의접근의 성능이 향상될 수 있다.For example, if the random access transmission condition is a channel gain of 0 or more (for example, random access transmission in all channel states), when a command indicating the transmission of the random access in the upper layer occurs, the terminal is always random Send access. In this case, the terminal may transmit a random access by selecting a band having the best channel state through the channel state measurement of the downlink channel. In this case, the performance of random access can be improved by using a resource having the highest channel gain according to frequency selectivity among a plurality of random access transmission resources.
또한, 하향링크의 채널측정에 있어서, 하향링크 레퍼런스 신호가 아닌 다른 형태의 파일럿 신호가 이용될 수도 있다. 또한, 페이징 메시지, WiFi의 비콘 프레임(beacon frame)과 같은 신호가 채널측정에 이용될 수도 있다.In addition, in downlink channel measurement, a pilot signal of a type other than the downlink reference signal may be used. In addition, a signal such as a paging message or a beacon frame of WiFi may be used for channel measurement.
<실시예 1-2><Example 1-2>
도 8은 실시예 1-2에 따른 TDD 방식의 통신시스템에서의 임의접근채널 전송의 일 예시를 도시한다.8 illustrates an example of random access channel transmission in a TDD communication system according to embodiment 1-2.
도 7의 실시예에 있어서 상향링크의 동일 시간에 복수의 임의접근 전송 자원들(801, 802, 및 803)이 할당되었다. 그러나, 동일한 시간에 복수의 임의접근 전송 자원들(801, 802, 및 803)이 할당된 경우, 상향링크로 전송할 수 있는 사용자 데이터의 양이 순간적으로 감소할 수 있다. 도 8의 실시예에서는, 이러한 사용자 데이터 전송 양의 일시적 감소를 방지하기 위하여, 복수의 임의접근 전송 자원들(801, 802, 및 803)이 서로 다른 시간 상에 할당된다. 도 8을 참조하면, 도 7의 실시예와 유사하게 복수의 임의접근 전송 자원들(예를 들어, 801, 802, 및 803)이 상향링크 채널에 할당된다. 그러나, 임의접근 전송 자원들(801, 802, 및 803)은 서로 다른 시간상에 할당된다.In the embodiment of FIG. 7, a plurality of random access transmission resources 801, 802, and 803 are allocated at the same time of uplink. However, when a plurality of random access transmission resources 801, 802, and 803 are allocated at the same time, the amount of user data that can be transmitted in the uplink can be reduced instantaneously. In the embodiment of Fig. 8, in order to prevent such a temporary decrease in the amount of user data transmission, a plurality of random access transmission resources 801, 802, and 803 are allocated on different times. Referring to FIG. 8, similar to the embodiment of FIG. 7, a plurality of random access transmission resources (eg, 801, 802, and 803) are allocated to an uplink channel. However, random access transmission resources 801, 802, and 803 are allocated at different times.
도 8에서, 단말은 각각의 임의접근 전송 자원(801, 802, 및 803)에 대한 하향링크채널의 상태를 측정하고, 이에 기초하여 임의접근 전송 여부 및 임의접근 전송 자원의 선택을 동시에 결정할 수 있다. 임의접근을 전송하기로 결정한 경우, 단말은 임의접근 전송 자원들(801, 802, 및 803) 중에서 가장 채널상태가 좋은 자원을 이용하여 임의접근을 전송할 수 있다. 반면, 임의접근을 전송하지 않기로 결정한 경우에, 단말은 임의접근의 전송을 연기하고 채널측정을 계속하여 수행할 수 있다. 예를 들어, 단말은 기설정된 임의접근 전송 조건을 만족할 때까지 채널측정을 계속하여 수행할 수 있다.In FIG. 8, the terminal measures the state of a downlink channel for each random access transmission resource 801, 802, and 803, and based on this, may determine whether to randomly transmit and select a random access transmission resource. . If the UE decides to transmit the random access, the UE may transmit the random access using the resource having the best channel state among the random access transmission resources 801, 802, and 803. On the other hand, if it is determined that the random access is not to be transmitted, the terminal may delay the transmission of the random access and continue performing channel measurement. For example, the terminal may continuously perform channel measurement until the predetermined random access transmission condition is satisfied.
도 7 및 도 8과 관련하여 상술한 임의접근 전송 여부의 결정과 임의접근 전송 자원의 선택은 후술하는 실시예들에 있어서도 공통적으로 적용될 수 있다.Determination of random access transmission and selection of random access transmission resources described above with reference to FIGS. 7 and 8 may be commonly applied to embodiments described later.
<실시예 2><Example 2>
도 7 및 도 8과 관련하여 상술한 TDD 통신시스템과 달리, FDD 통신시스템에서 하향링크와 상향링크는 주파수 분할되며, 상향링크와 하향링크는 상대적으로 큰 주파수의 간격으로 분리되어 있으므로, 채널상호성(channel reciprocity)이 잘 적용되지 않는다.Unlike the TDD communication system described above with reference to FIGS. 7 and 8, in the FDD communication system, downlink and uplink are frequency-divided, and uplink and downlink are separated by relatively large frequency intervals. channel reciprocity) does not apply well.
따라서, FDD 통신시스템에서의 본 실시예에 있어서, 하향링크의 일부 시간구간 상에서 단말의 임의접근의 전송이 허용될 수 있다. 즉, 단말은 하향링크로 전송된 신호를 이용하여 하향링크 채널상태를 측정하고, 동일한 주파수 대역의 하향링크 자원을 이용한 임의접근을 송신하도록 구성될 수 있다. 채널 측정과 임의접근 전송이 FDD 통신시스템에서도 동일한 주파수 대역 상에서 수행되기 때문에, 채널상호성이 만족될 수 있다.Therefore, in this embodiment of the FDD communication system, transmission of random access of the terminal may be allowed on some downlink time intervals. That is, the terminal may be configured to measure the downlink channel state by using the signal transmitted in the downlink, and transmit a random access using downlink resources of the same frequency band. Since channel measurement and random access transmission are performed on the same frequency band in the FDD communication system, channel interoperability can be satisfied.
상술한 실시예 2와 달리, 이하의 실시예들에 있어서, 상향링크를 통하여 기지국이 채널측정을 위한 신호를 전송하고, 단말은 상향링크로 사용되는 채널의 상태를 측정할 수 있다. 이 경우, 채널측정을 위하여 종래의 레퍼런스 신호 또는 별도로 설계된 파일럿 신호가 이용될 수 있다.Unlike Embodiment 2 described above, in the following embodiments, the base station transmits a signal for channel measurement through the uplink, the terminal may measure the state of the channel used as the uplink. In this case, a conventional reference signal or a separately designed pilot signal may be used for channel measurement.
도 9a 내지 도 9c와 관련하여 후술하는 실시예들에 있어서, FDD 통신시스템의 일부시간동안 기지국이 상향링크의 채널측정을 위한 신호를 전송하는 방법이 설명된다. 예를 들어, 단말은 기설정된 시간구간 동안 상향링크를 통하여 신호를 전송하지 않고, 대신 기지국이 단말로 상향링크 채널측정을 위한 신호를 전송함으로써, 단말이 임의접근 전송을 위한 채널측정을 할 수 있다.In the embodiments to be described below with reference to FIGS. 9A to 9C, a method of transmitting a signal for uplink channel measurement by a base station during a portion of an FDD communication system will be described. For example, the terminal does not transmit a signal through the uplink for a predetermined time period, but instead the base station transmits a signal for uplink channel measurement to the terminal, the terminal may perform the channel measurement for random access transmission. .
<실시예 3-1><Example 3-1>
도 9a는 실시예 3-1에 따른 FDD 방식의 통신시스템에서의 임의접근채널 전송의 일 예시를 도시한다.9A illustrates an example of random access channel transmission in the FDD-based communication system according to the embodiment 3-1.
도 9a에서, 기지국은 채널측정을 위하여 광대역 파일럿 신호(911)를 전송할 수 있다. 광대역 파일럿 신호(911)가 전송되는 경우, 단말은 광대역 파일럿 신호(911)를 이용하여 광대역 채널의 평균적인 이득을 계산할 수 있을 뿐만 아니라, 임의접근 전송 자원들(901, 902, 및 903)에 대한 협대역 채널이득도 계산할 수 있다. 또한, 단말은 계산된 광대역 채널이득 및/또는 협대역 채널이득에 기초하여 임의접근의 전송 여부를 결정할 수 있으며, 계산된 협대역 채널이득에 기초하여 임의접근 전송 자원을 선택할 수도 있다.In FIG. 9A, the base station may transmit a broadband pilot signal 911 for channel measurement. When the wideband pilot signal 911 is transmitted, the UE can calculate the average gain of the wideband channel using the wideband pilot signal 911 as well as for the random access transmission resources 901, 902, and 903. Narrowband channel gain can also be calculated. In addition, the terminal may determine whether to transmit random access based on the calculated wideband channel gain and / or narrowband channel gain, and may select the random access transmission resource based on the calculated narrowband channel gain.
<실시예 3-2><Example 3-2>
도 9b는 실시예 3-2에 따른 FDD 방식의 통신시스템에서의 임의접근채널 전송의 일 예시를 도시한다.9B illustrates an example of random access channel transmission in the FDD-based communication system according to the embodiment 3-2.
도 9b에서, 기지국은 채널측정을 위하여 각 임의접근 전송 자원들(901, 902, 903)에 대응하는 협대역 파일럿 신호들(921, 922, 923)을 전송한다. 기지국은 협대역 파일럿 신호들(921, 922, 923)을 이용하여 대응하는 임의접근 전송 자원들(901, 902, 903)의 협대역 채널이득을 계산할 수 있다. 또한, 단말은 계산된 협대역 채널이득에 기초하여 임의접근의 전송 여부를 결정할 수 있으며, 계산된 협대역 채널이득에 기초하여 임의접근 전송 자원을 선택할 수도 있다.In FIG. 9B, the base station transmits narrowband pilot signals 921, 922, 923 corresponding to the random access transmission resources 901, 902, 903 for channel measurement. The base station may calculate narrowband channel gain of the corresponding random access transmission resources 901, 902, 903 using the narrowband pilot signals 921, 922, 923. In addition, the terminal may determine whether to transmit random access based on the calculated narrowband channel gain, and may select the random access transmission resource based on the calculated narrowband channel gain.
<실시예 3-3><Example 3-3>
도 9c는 실시예 3-3에 따른 FDD 방식의 통신시스템에서의 임의접근채널 전송의 일 예시를 도시한다.9C illustrates an example of random access channel transmission in the FDD-based communication system according to the embodiment 3-3.
도 9a 및 도 9b의 실시예들에 있어서, 기지국의 송신전력 부족 등을 이유로 하여 정확한 채널측정이 어려울 수도 있다. 따라서, 도 9c의 실시예에 있어서, 채널측정을 정확성을 높이기 위하여 각각의 협대역 파일럿 신호들(921, 922, 923)이 서로 상이한 시간 자원 상에서 송신될 수 있다. 협대역 파일럿 신호들(921, 922, 923)이 서로 상이한 시간 자원 전송되는 경우, 보다 높은 전력으로 신호가 전송될 수 있기 때문에, 보다 정확한 채널측정이 수행될 수 있다. 또한, 단말은 계산된 협대역 채널이득에 기초하여 임의접근의 전송 여부를 결정할 수 있으며, 계산된 협대역 채널이득에 기초하여 임의접근 전송 자원을 선택할 수도 있다.In the embodiments of FIGS. 9A and 9B, accurate channel measurement may be difficult due to insufficient transmission power of the base station. Thus, in the embodiment of FIG. 9C, each narrowband pilot signals 921, 922, 923 may be transmitted on different time resources to increase channel measurement accuracy. When the narrowband pilot signals 921, 922, 923 are transmitted with different time resources, more accurate channel measurement can be performed because the signal can be transmitted at higher power. In addition, the terminal may determine whether to transmit random access based on the calculated narrowband channel gain, and may select the random access transmission resource based on the calculated narrowband channel gain.
이하의 실시예들에 있어서, 기지국이 2개 이상의 안테나를 사용하는 경우에 대한 채널측정을 위한 파일럿 신호에 대하여 설명한다. LTE 시스템의 하향링크에서는 각 안테나별로 다른 레퍼런스 신호들이 전송되고 단말은 각각의 안테나에 대한 채널추정을 수행한다. 상술한 바와 같이, 이하의 실시예들에 있어서, FDD 통신 시스템에서 일부 시간 동안 기지국은 상향링크를 통한 파일럿 신호를 전송할 수 있다. 두 개 이상의 안테나가 사용되는 경우에는, 단말은 각각의 안테나로부터의 채널이득을 측정하고 측정된 채널이득 모두에 기초하여(예를 들어, 채널 이득들을 합하여) 최종적인 채널상태를 추정할 필요가 있다. 이하의 실시예들에 있어서, 설명의 편의를 위하여 기지국이 2개의 안테나를 갖는 것으로 가정되나, 기지국이 3개 이상의 안테나를 사용하는 경우에도 이하의 실시예들이 적용될 수 있음을 통상의 기술자는 이해할 수 있을 것이다.In the following embodiments, a pilot signal for channel measurement when a base station uses two or more antennas will be described. In downlink of the LTE system, different reference signals are transmitted for each antenna, and the terminal performs channel estimation for each antenna. As described above, in the following embodiments, the base station may transmit a pilot signal on the uplink for some time in the FDD communication system. If two or more antennas are used, the terminal needs to measure the channel gain from each antenna and estimate the final channel condition based on all of the measured channel gains (eg, sum the channel gains). . In the following embodiments, it is assumed that the base station has two antennas for convenience of description, but a person skilled in the art can understand that the following embodiments may be applied even when the base station uses three or more antennas. There will be.
<실시예 4><Example 4>
도 10은 실시예 4에 따른 2개의 안테나를 갖는 기지국에 대한 임의접근채널 전송의 일 예시를 도시한다.10 shows an example of random access channel transmission for a base station having two antennas according to the fourth embodiment.
도 10에서, 기지국은 두 개의 안테나를 통하여 동시에 채널 측정을 위한 파일럿 신호(1021)를 전송한다. 또한, 복수의 임의접근 전송 자원들(1001, 1002, 1003)이 할당된다. 이 경우, 두 개의 안테나로부터의 채널측정을 위한 신호(예를 들어, 파일럿 신호)들은 서로 CDM(Code Division Multiplex) 및/또는 FDM(Frequency Division Multiplex) 등의 방법을 이용하여 분리될 수 있다. 도 10에서는 도 9a의 광대역 파일럿에 대응하는 실시예만이 도시되었으나, 도 9b 및 9c의 파일럿 신호들과 동일한 방식이 본 실시예에도 적용될 수 있다. 도 10의 실시예와 같이 두 개의 안테나를 통하여 동시에 파일럿 신호가 전송되는 경우, 파일럿 신호를 위하여 할당된 자원이 보다 효율적으로 활용될 수 있다.In FIG. 10, a base station transmits pilot signals 1021 for channel measurement simultaneously through two antennas. In addition, a plurality of random access transmission resources (1001, 1002, 1003) are allocated. In this case, signals (eg, pilot signals) for channel measurement from two antennas may be separated from each other using a method such as code division multiplex (CDM) and / or frequency division multiplex (FDM). Although only an embodiment corresponding to the wideband pilot of FIG. 9A is illustrated in FIG. 10, the same method as the pilot signals of FIGS. 9B and 9C may be applied to the present embodiment. When pilot signals are simultaneously transmitted through two antennas as in the embodiment of FIG. 10, resources allocated for pilot signals may be more efficiently utilized.
그러나, 채널측정용 파일럿 신호가 2개의 안테나를 통하여 동시에 전송되면, 각각의 파일럿 신호 전송을 위하여 2개의 증폭기가 필요될 수 있다. 따라서, 이하의 실시예들에 있어서, 파일럿 신호들은 시분할되어 서로 다른 시점에 전송될 수 있다. 즉, 각 안테나에서 전송되는 채널측정을 위한 파일럿 신호는 서로 다른 시간에 전송되므로, 하나의 증폭기만으로 복수의 안테나에 대한 채널측정용 파일럿 신호가 전송될 수 있다.However, if the pilot signal for channel measurement is simultaneously transmitted through two antennas, two amplifiers may be required for each pilot signal transmission. Therefore, in the following embodiments, the pilot signals may be time-divided and transmitted at different times. That is, since the pilot signal for channel measurement transmitted from each antenna is transmitted at different times, the channel measurement pilot signal for the plurality of antennas may be transmitted using only one amplifier.
이하의 도 11a, 11b, 및 11c이 실시예들은 각각 상술한 도 9a, 9b, 및 9c의 실시예에 대응하는 것으로서, 동일한 설명들은 설명의 편의를 위하여 생략되었다. 도 11a 내지 도 11c에 있어서, 설명의 예시를 위하여 3개의 임의접근 전송 자원들(1101, 1102, 1103)이 설정된다.11A, 11B, and 11C below correspond to the embodiments of FIGS. 9A, 9B, and 9C described above, respectively, and the same descriptions are omitted for convenience of description. In FIGS. 11A-11C, three random access transmission resources 1101, 1102, 1103 are set for illustrative purposes.
<실시예 5-1><Example 5-1>
도 11a는 실시예 5-1에 따른 2개의 안테나를 갖는 기지국에 대한 임의접근채널 전송의 일 예시를 도시한다.11A illustrates an example of random access channel transmission for a base station having two antennas according to the embodiment 5-1.
도 11a에서, 안테나 1에 대한 광대역 파일럿 신호(1111) 및 안테나 2에 대한 광대역 파일럿 신호(1121)가 서로 상이한 시간 자원 상에서 전송된다. In FIG. 11A, the broadband pilot signal 1111 for antenna 1 and the broadband pilot signal 1121 for antenna 2 are transmitted on different time resources.
<실시예 5-2><Example 5-2>
도 11b는 실시예 5-2에 따른 2개의 안테나를 갖는 기지국에 대한 임의접근채널 전송의 일 예시를 도시한다.FIG. 11B shows an example of random access channel transmission for a base station having two antennas according to the embodiment 5-2. FIG.
도 11b에서, 안테나 1에 대한 협대역 파일럿 신호들(1131, 1132, 1133)과 안테나 2에 대한 협대역 파일럿 신호들(1141, 1142, 1143)이 안테나 별로 서로 상이한 시간 자원 상에서 전송된다.In FIG. 11B, narrowband pilot signals 1131, 1132 and 1133 for antenna 1 and narrowband pilot signals 1141, 1142 and 1143 for antenna 2 are transmitted on different time resources for each antenna.
<실시예 5-3><Example 5-3>
도 11c는 실시예 5-3에 따른 2개의 안테나를 갖는 기지국에 대한 임의접근채널 전송의 일 예시를 도시한다.11C shows an example of random access channel transmission for a base station having two antennas according to the embodiment 5-3.
도 11c에서, 안테나 1에 대한 협대역 파일럿 신호들(1131, 1132, 1133)과 안테나 2에 대한 협대역 파일럿 신호들(1141, 1142, 1143)이 협대역 파일럿 신호 별로 서로 상이한 시간 자원 상에서 전송된다.In FIG. 11C, narrowband pilot signals 1131, 1132, and 1133 for antenna 1 and narrowband pilot signals 1141, 1142, and 1143 for antenna 2 are transmitted on different time resources for each narrowband pilot signal. .
복수의 안테나로부터 채널측정용 신호(예를 들어, 파일럿 신호)를 수신하는 경우, 단말은 각각의 안테나에 대한 채널이득을 따로 계산할 수 있다. 또한, 단말은 계산된 각각의 채널이득들을 합산한 값에 기초하여 임의접근(채널)의 전송 여부를 결정할 수 있다. 또한, 단말은 임의접근전송 자원을 선택할 수 있다.When receiving a channel measurement signal (for example, a pilot signal) from the plurality of antennas, the terminal may calculate channel gains for each antenna separately. In addition, the terminal may determine whether to transmit a random access (channel) based on the sum of the calculated respective channel gains. In addition, the terminal may select a random access transmission resource.
상술한 실시예들에 있어서, 복수의 상향링크 자원을 임의접근 전송을 위하여 할당함으로써, 또한, 기지국의 복수의 안테나를 이용함으로써 임의접근의 성능이 향상되고 채널적응형 임의접근에 발생하는 시간지연이 감소될 수 있다.In the above embodiments, by allocating a plurality of uplink resources for random access transmission, and also by using a plurality of antennas of the base station, the performance of random access is improved and the time delay that occurs in the channel adaptive random access is reduced. Can be reduced.
상술한 실시예들에 있어서, 채널측정 및 임의접근전송 자원들에 대한 정보는 단말과 기지국 사이에 서로 공유될 수 있다. 예를 들어, 어떠한 모드로 시스템이 동작하는지 여부(예를 들어, 기지국이 상향링크 자원을 이용한 파일럿 신호 전송을 지원하는지 여부)가 브로드캐스팅을 통하여(예를 들어, 시스템 정보로서) 단말들에 전송될 수 있다. 또한, 이와 관련된 동작들의 관련 파라미터들(예를 들어, 파일럿 신호의 전송 시간, 주기, 길이 및/또는 대역 등)이 단말에 브로드캐스팅을 통하여 공유될 수 있다. In the above embodiments, the information about the channel measurement and random access transmission resources may be shared between the terminal and the base station. For example, in which mode the system operates (e.g., whether the base station supports pilot signal transmission using uplink resources) is transmitted to the terminals via broadcasting (e.g., as system information). Can be. In addition, related parameters of operations related thereto (eg, a transmission time, a period, a length, and / or a band, etc. of the pilot signal) may be shared to the terminal through broadcasting.
이하 전술한 본 발명의 임의접근채널 송수신 방법을 모두 수행할 수 있는 단말 및 기지국 각각의 구성을 도면을 참조하여 간략하게 설명한다. Hereinafter, a configuration of each of a terminal and a base station capable of performing all the above-described random access channel transmission / reception methods of the present invention will be described with reference to the accompanying drawings.
도 12는 본 발명의 또 다른 실시예에 따른 단말 구성의 일 예를 도시한 도면이다. 12 is a diagram illustrating an example of a terminal configuration according to another embodiment of the present invention.
본 발명의 또 다른 실시예에 따른 FDD(Frequency Division Duplex)모드에서 임의접근채널을 전송하는 단말(1200)은 임의접근채널을 전송하는 전송채널의 품질 측정을 위한 기준신호를 전송채널을 통해서 수신하는 수신부(1230)와 기준신호를 이용하여 전송채널의 품질을 측정하고, 임의접근채널 전송 여부를 판단하는 제어부(1210) 및 전송채널을 통해 임의접근채널을 전송하는 송신부(1220)를 포함한다.A terminal 1200 transmitting a random access channel in a frequency division duplex (FDD) mode according to another embodiment of the present invention receives a reference signal for measuring a quality of a transport channel transmitting a random access channel through a transport channel. A receiver 1230 and a control unit 1210 for measuring the quality of the transmission channel using the reference signal, and determines whether the random access channel transmission and a transmission unit 1220 for transmitting the random access channel through the transmission channel.
도 12를 참조하면, 단말(1200)은 수신부(1230), 제어부(1210) 및 송신부(1220)를 포함한다.Referring to FIG. 12, the terminal 1200 includes a receiver 1230, a controller 1210, and a transmitter 1220.
수신부(1230)는 기지국으로부터 제어정보 및 데이터, 메시지를 해당 채널을 통해 수신한다. 또한, 전술한 기준신호를 수신할 수 있다. 기준신호는 임의접근채널의 전송채널을 통해서 수신될 수 있다. 즉, 전술한 각 실시예에 따라서 하향링크 채널을 통해서 수신되거나, 상향링크 채널을 통해서 수신될 수도 있다. 또한, 수신부(1230)는 전송 파라미터를 브로드캐스트 채널을 통해서 수신할 수도 있다. 전송 파라미터는 전술한 바와 같이 하향링크 채널에서 임의접근채널을 전송할 수 있는 전송구간 정보, 전송자원 정보 및 전송구간의 주기 정보 중 하나 이상의 정보를 포함할 수 있다. 또한, 수신부(1230)는 기지국으로부터 일반모드 또는 재난모드 관련 정보를 포함하는 전송 모드에 관한 정보를 수신할 수 있다.The receiver 1230 receives control information, data, and a message from a base station through a corresponding channel. In addition, the aforementioned reference signal can be received. The reference signal may be received through a transmission channel of a random access channel. That is, according to the above-described embodiments, it may be received through a downlink channel or may be received through an uplink channel. In addition, the receiver 1230 may receive a transmission parameter through a broadcast channel. As described above, the transmission parameter may include one or more information of transmission section information, transmission resource information, and period information of the transmission section capable of transmitting a random access channel in the downlink channel. In addition, the receiver 1230 may receive information about a transmission mode including general mode or disaster mode related information from the base station.
제어부(1210)는 전술한 본 발명을 수행하기에 필요한 채널적응형 임의접근채널의 전송을 제어하는 데에 따른 전반적인 단말의 동작을 제어한다. 또한, 제어부(1210)는 기준신호를 이용하여 전송채널의 품질을 측정하고, 임의접근채널전송 여부를 판단할 수 있다. 또한, 제어부(1210)는 전송모드의 설정을 변경 제어할 수도 있다. The controller 1210 controls the overall operation of the terminal according to the control of the transmission of the channel-adaptive random access channel required to carry out the above-described present invention. In addition, the controller 1210 may measure the quality of the transmission channel using the reference signal and determine whether to transmit a random access channel. In addition, the controller 1210 may change and control the setting of the transmission mode.
송신부(1220)는 기지국에 제어정보 및 데이터, 메시지를 해당 채널을 통해 전송한다. 또한, 송신부(1220)는 기지국으로 임의접근채널을 해당 전송채널을 통해서 전송할 수 있다. 전송채널은 하향링크 채널이 될 수 있고, 상향링크채널이 될 수 있다. 전술한 각 실시예에 따라서 다르게 설정될 수 있다. The transmitter 1220 transmits control information, data, and messages to the base station through the corresponding channel. In addition, the transmitter 1220 may transmit a random access channel to the base station through the corresponding transmission channel. The transport channel may be a downlink channel and may be an uplink channel. It may be set differently according to each of the above-described embodiments.
도 13은 본 발명의 또 다른 실시예에 따른 단말 구성의 다른 예를 도시한 도면이다. 13 is a diagram illustrating another example of a terminal configuration according to another embodiment of the present invention.
도 13에 도시된 바와 같이 단말은 안테나(1300), 수신기(1310), 채널 측정기(1320), 수신용 주파수발진기(1330), 제어기(1340), 송신기(1350), 송신용 주파수 발진기(1360)를 포함하여 구성될 수 있다. 안테나 (1300)는 무선 채널을 통해 전송되는 신호를 수신하는 역할 및 단말이 전송하는 신호를 전송하는 역할을 수행한다.As shown in FIG. 13, the terminal includes an antenna 1300, a receiver 1310, a channel measurer 1320, a reception frequency oscillator 1330, a controller 1340, a transmitter 1350, and a transmission frequency oscillator 1360. It may be configured to include. The antenna 1300 performs a role of receiving a signal transmitted through a wireless channel and transmitting a signal transmitted by a terminal.
수신기(1310)는 안테나(1300)로부터 제공받은 신호로부터 데이터를 복원한다. 예를 들어, 수신기(1310)는 RF 수신블록, 복조블록, 채널복호블록 등을 포함하여 구성될 수 있다. RF수신블록은 필터 및 RF전처리기 등으로 구성된다. 채널복호블록은 복조기, 디인터리버 및 채널디코더 등으로 구성된다.The receiver 1310 recovers data from the signal provided from the antenna 1300. For example, the receiver 1310 may be configured to include an RF receiving block, a demodulation block, a channel decoding block, and the like. The RF receiving block is composed of a filter and an RF preprocessor. The channel decoding block includes a demodulator, a deinterleaver and a channel decoder.
채널 측정기(1320)는 수신기(1310)로부터 제공받은 수신 신호를 이용하여 전송채널을 추정한다. 예를 들어, 채널 측정기(1320)는 하향링크 신호의 파일럿 또는 기준신호를 이용하여 수신 신호의 수신 전력을 추정한다. 수신 주파수 발진기(1330)는 수신기(1310)에서 신호를 수신하기 위한 주파수를 생성한다. 일반적으로 FDD 모드에서 수신주파수와 송신주파수는 다르게 설정된다. The channel measurer 1320 estimates a transmission channel using the received signal provided from the receiver 1310. For example, the channel measurer 1320 estimates the received power of the received signal using the pilot or reference signal of the downlink signal. The receive frequency oscillator 1330 generates a frequency for receiving a signal at the receiver 1310. In general, the reception frequency and the transmission frequency are set differently in the FDD mode.
제어기(1340)는 채널 측정기(1320)로부터 제공받은 전송 채널의 상태 정보를 토대로 임의접근채널을 전송할 것인지 결정한다. 즉, 제어기(1340)는 채널 측정기(1320)에서 추정한 수신 신호의 전력과 기준 값을 비교하여 임의접근채널을 전송할 것인지 결정한다. 예를 들어, 채널 측정기(1320)에서 추정한 수신 기준신호의 전력이 기준 값보다 작거나 같은 경우, 제어기(1340)는 전송 채널 상태가 임의접근채널 전송에 적합하지 않은 것으로 판단한다. 이에 따라, 제어기(1340)는 임의접근채널을 전송하지 않도록 송신기(1350)를 제어한다. 다른 예를 들어, 채널 측정기(1320)에서 추정한 기준 신호의 전력이 기준 값보다 큰 경우, 제어기(1340)는 전송 채널 상태가 임의접근채널 전송에 적합한 것으로 판단한다. 이에 따라, 제어기(1340)는 임의접근채널을 전송하도록 송신기(1350)를 제어한다. 이때, 제어기(1340)는 기지국으로부터 제공받은 기준 값을 이용하여 임의접근채널을 전송할 것인지 결정할 수 있다. 다른 예를 들어, 제어기(1340)는 사용자가 요구하는 서비스의 QoS(Quality of Service)를 고려하여 기준 값을 산출할 수도 있다.The controller 1340 determines whether to transmit a random access channel based on the state information of the transmission channel provided from the channel measurer 1320. That is, the controller 1340 compares the power of the received signal estimated by the channel measurer 1320 with a reference value and determines whether to transmit a random access channel. For example, when the power of the received reference signal estimated by the channel measurer 1320 is less than or equal to the reference value, the controller 1340 determines that the transmission channel state is not suitable for random access channel transmission. Accordingly, the controller 1340 controls the transmitter 1350 not to transmit the random access channel. For another example, when the power of the reference signal estimated by the channel measurer 1320 is greater than the reference value, the controller 1340 determines that the transmission channel state is suitable for random access channel transmission. Accordingly, the controller 1340 controls the transmitter 1350 to transmit the random access channel. At this time, the controller 1340 may determine whether to transmit a random access channel using a reference value provided from the base station. For another example, the controller 1340 may calculate a reference value in consideration of a quality of service (QoS) of a service requested by a user.
본 발명에서 제어기(1340)는 정해진 시간에만 전송채널의 채널상태를 측정하도록 단말을 제어할 수 있다. 즉, 제어기(1340)는 다음 전송채널 상태 측정시간을 결정하고 현재 시점이 그 시간이면 전송채널의 측정을 수행하지만, 그렇지 않다면 다음 측정시간까지 단말의 전원을 꺼서 전력소모를 최소화하도록 한다. 단말의 전원이 꺼져 있는 상태에서 다음 측정시간이 되면 제어기(1340)는 단말의 수신기를 다시 가동시켜 전송채널의 채널상태를 측정할 수 있다. In the present invention, the controller 1340 may control the terminal to measure the channel state of the transport channel only at a predetermined time. That is, the controller 1340 determines the next transmission channel state measurement time and performs measurement of the transmission channel if the current time is that time. Otherwise, the controller 1340 turns off the terminal until the next measurement time to minimize power consumption. When the next measurement time is reached while the power of the terminal is turned off, the controller 1340 may operate the receiver of the terminal to measure the channel state of the transmission channel.
송신기(1350)는 제어기(1340)의 제어에 따라 임의접근채널을 통해 기지국으로 전송할 신호를 생성한다. 즉, 송신기(1350)는 제어기(1340)에서 임의접근채널 전송을 수행하도록 제어하는 경우에만 임의접근채널을 통해 기지국으로 전송할 신호를 무선 자원을 통해 전송을 위한 형태로 변환하여 안테나(1300)로 제공한다. 예를 들어, 송신기(1350)는 신호 생성블록, 채널부호블록, 변조블록, RF 송신블록등을 포함하여 구성된다. 채널부호블록은 변조기, 인터리버 및 채널인코더 등으로 구성된다. RF 송신블록은 필터 및 RF 전처리기 등으로 구성된다. The transmitter 1350 generates a signal to be transmitted to the base station through a random access channel under the control of the controller 1340. That is, the transmitter 1350 converts a signal to be transmitted to a base station through a random access channel into a form for transmission through a radio resource and provides it to the antenna 1300 only when the controller 1340 controls to perform random access channel transmission. do. For example, the transmitter 1350 includes a signal generation block, a channel code block, a modulation block, an RF transmission block, and the like. The channel code block is composed of a modulator, an interleaver, a channel encoder, and the like. The RF transmission block is composed of a filter and an RF preprocessor.
송신주파수 발진기(1360)는 제어기(1340)의 제어에 따라 송신기(1350)에서 신호전송을 위해 필요한 송신주파수를 발진한다. The transmission frequency oscillator 1360 oscillates a transmission frequency necessary for signal transmission in the transmitter 1350 under the control of the controller 1340.
실시예 2와 같이 하향링크 자원을 이용하는 실시예에 있어서, 단말은 순간적으로 송신기의 주파수를 수신기의 주파수와 동일하게 설정하여 FDD 모드의 하향링크 무선 자원을 이용하여 임의접근채널을 전송한다. 이를 위하여 제어기(1340)는 송신주파수 발진기(1360)의 주파수를 하향링크의 수신 주파수에 맞추어 발진한다In the embodiment using the downlink resources as in the second embodiment, the UE instantaneously sets the frequency of the transmitter to the frequency of the receiver and transmits a random access channel using the downlink radio resources in the FDD mode. To this end, the controller 1340 oscillates the frequency of the transmission frequency oscillator 1360 according to the downlink reception frequency.
반면, 실시예 3-1 내지 실시예 5-3에 있어서, 단말은 순간적으로 FDD 모드의 상향링크 자원을 이용하여 기지국이 송신하는 파일럿채널을 수신한다. 이를 위하여, 제어기(1340)는 수신주파수 발진기(1330)의 주파수를 상향링크의 송신주파수에 맞추어 발진한다.On the other hand, in the embodiments 3-1 to 5-3, the terminal instantly receives the pilot channel transmitted by the base station using the uplink resources of the FDD mode. To this end, the controller 1340 oscillates the frequency of the reception frequency oscillator 1330 according to the uplink transmission frequency.
도 14는 본 발명의 또 다른 실시예에 따른 기지국의 구성을 도시한 도면이다. 14 is a diagram illustrating a configuration of a base station according to another embodiment of the present invention.
본 발명의 또 다른 실시예에 따른 FDD(Frequency Division Duplex) 모드의 단말로부터 임의접근채널을 수신하는 기지국(1400)은, 단말이 임의접근채널을 전송하는 전송채널의 품질 측정을 위한 기준신호를 생성하는 제어부(1410)와 기준신호를 전송채널을 통해서 전송하는 송신부(1420) 및 전송채널을 통해 임의접근 채널을 수신하는 수신부(1430)를 포함한다.The base station 1400 receiving a random access channel from a terminal in a frequency division duplex (FDD) mode according to another embodiment of the present invention generates a reference signal for measuring a quality of a transmission channel through which the terminal transmits a random access channel. The control unit 1410 includes a transmitter 1420 for transmitting a reference signal through a transport channel and a receiver 1430 for receiving a random access channel through a transport channel.
도 14를 참조하면, 본 발명의 또 다른 실시예에 의한 기지국(1400)은 제어부(1410)과 송신부(1420), 수신부(1430)를 포함한다.Referring to FIG. 14, the base station 1400 according to another embodiment of the present invention includes a controller 1410, a transmitter 1420, and a receiver 1430.
수신부(1430)는 단말로부터 데이터 및 메시지를 해당 채널을 통해 수신한다. 또한, 수신부(1430)는 전술한 임의접근채널을 수신할 수 있다. 즉, 수신부(1430)는 단말로부터 임의접근채널을 해당 전송채널을 통해서 전송할 수 있다. 전송채널은 하향링크 채널이 될 수 있고, 상향링크 채널이 될 수 있다. 전술한 각 실시예에 따라서 다르게 설정될 수 있다. The receiver 1430 receives data and a message from a terminal through a corresponding channel. In addition, the receiver 1430 may receive the above-described random access channel. That is, the receiver 1430 may transmit a random access channel through the corresponding transmission channel from the terminal. The transport channel may be a downlink channel and may be an uplink channel. It may be set differently according to each of the above-described embodiments.
제어부(1410)는 단말이 임의접근채널을 전송하는 전송채널의 품질측정을 위한 기준신호를 생성할 수 있다. 또한, 제어부(1410)는 전술한 본 발명을 수행하기에 필요한 채널적응형 임의접근채널을 수신하는 데에 따른 전반적인 기지국의 동작을 제어한다. 또한, 제어부(1410)는 전송 모드를 설정하는 신호를 생성할 수 있고, 전송 파라미터 및 기준신호 파라미터를 생성할 수 있다.The controller 1410 may generate a reference signal for quality measurement of a transmission channel through which the terminal transmits a random access channel. In addition, the controller 1410 controls the overall operation of the base station according to receiving the channel-adaptive random access channel required to carry out the above-described present invention. In addition, the controller 1410 may generate a signal for setting a transmission mode, and generate a transmission parameter and a reference signal parameter.
송신부(1420)는 기준신호를 전송채널을 통해서 전송할 수 있다. 기준신호는 임의접근채널의 전송채널을 통해서 전송될 수 있다. 즉, 전술한 각 실시 예에 따라서 하향링크 채널을 통해서 전송되거나, 상향링크 채널을 통해서 전송될 수도 있다. 또한, 송신부(1420)는 전송 파라미터를 브로드캐스트 채널을 통해서 전송할 수도 있다. 전송 파라미터는 전술한 바와 같이 하향링크 채널에서 임의접근채널을 전송할 수 있는 전송구간 정보, 전송자원 정보 및 전송구간의 주기 정보 중 하나 이상의 정보를 포함할 수 있다. 또한, 송신부(1420)는 단말로 일반모드 또는 재난모드 관련 정보를 포함하는 전송 모드에 관한 정보를 전송할 수 있다.The transmitter 1420 may transmit a reference signal through a transmission channel. The reference signal may be transmitted through a transmission channel of a random access channel. That is, according to the above-described embodiments, it may be transmitted through a downlink channel or through an uplink channel. In addition, the transmitter 1420 may transmit a transmission parameter through a broadcast channel. As described above, the transmission parameter may include one or more information of transmission section information, transmission resource information, and period information of the transmission section capable of transmitting a random access channel in the downlink channel. In addition, the transmitter 1420 may transmit information about a transmission mode including general mode or disaster mode related information to the terminal.
이 외에도 송신부(1420)는 단말에 제어정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.In addition, the transmitter 1420 transmits control information, data, and messages to the terminal through a corresponding channel.
기지국(1400)의 구조는 도 13의 단말의 구조와 유사할 수 있다. 예를 들어, 송신부(1420)는 송신주파수 발진기를, 수신부(1430)는 수신주파수 발진기를 포함할 수 있다. 실시예 2와 같이 하향링크 자원을 이용하는 실시예에 있어서, 기지국(1400)은 수신부(1430)의 주파수를 하향링크 주파수와 동일하게 설정하여 FDD 모드의 하향링크 무선 자원을 이용하여 임의접근채널을 수신할 수 있다. 이를 위하여, 제어부(1410)는 수신주파수발진기의 주파수를 하향링크의 주파수에 맞추어 발진하도록 제어할 수 있다. 또한, 실시예 3-1 내지 5-3과 같이 상향링크 자원을 이용하는 실시예에 있어서, 기지국(1400)은 송신부(1420)의 주파수를 상향링크 주파수와 동일하게 설정하여 FDD 모드의 상향링크 무선 자원을 이용하여 파일럿채널을 송신할 수 있다. 이를 위하여, 제어부(1410)는 송신주파수발진기의 주파수를 상향링크의 주파수에 맞추어 발진하도록 제어할 수 있다.The structure of the base station 1400 may be similar to that of the terminal of FIG. 13. For example, the transmitter 1420 may include a transmission frequency oscillator, and the receiver 1430 may include a reception frequency oscillator. In the embodiment using the downlink resources as in the second embodiment, the base station 1400 sets the frequency of the receiver 1430 to be the same as the downlink frequency to receive a random access channel using the downlink radio resources in the FDD mode can do. To this end, the controller 1410 may control the frequency of the reception frequency oscillator to oscillate according to the frequency of the downlink. In addition, in the embodiment using uplink resources as in the embodiments 3-1 to 5-3, the base station 1400 sets the frequency of the transmitter 1420 to be the same as the uplink frequency to uplink radio resources in the FDD mode Can transmit a pilot channel. To this end, the controller 1410 may control the oscillator to oscillate according to the frequency of the uplink frequency.
도 15a는 일 예시에 따른 TDD 모드에서 동작하는 기지국의 개략도이다. 기지국(1500a)의 구조는 도 14와 관련하여 상술한 바와 동일한 구성이므로 중복된 설명은 생략한다.15A is a schematic diagram of a base station operating in a TDD mode according to an example. Since the structure of the base station 1500a is the same as that described above with reference to FIG. 14, duplicate description thereof will be omitted.
도 15b는 또 다른 예시에 따른 FDD 모드에서 동작하는 기지국의 개략도이다. 기지국(1500b)은 상향링크를 통한 파일럿 신호 전송을 위한 별도의 송신기(1530b)를 더 포함할 수도 있다. 또한, 기지국(1500b)은 듀플렉서(1540b)를 더 포함할 수 있다.15B is a schematic diagram of a base station operating in an FDD mode according to another example. The base station 1500b may further include a separate transmitter 1530b for pilot signal transmission on the uplink. In addition, the base station 1500b may further include a duplexer 1540b.
도 16a는 일 예시에 따른 FDD 모드에서 동작하는 기지국의 개략도이다. 기지국(1600a)은 두 개의 안테나(1640a 및 1645a)를 포함하며, 따라서, 각 안테나에 대응하는 ADC (1620a, 1625a) 및 파워앰프(1630a, 1635a)를 포함한다.16A is a schematic diagram of a base station operating in an FDD mode according to an example. The base station 1600a includes two antennas 1640a and 1645a, and thus includes ADCs 1620a and 1625a and power amplifiers 1630a and 1635a corresponding to each antenna.
도 16b는 또 다른 예시에 따른 FDD 모드에서 동작하는 기지국의 개략도이다. 기지국(1600b)은 하나의 2개의 안테나(1650b, 1655b)에 대한 파일럿 신호를 하나의 파워앰프(1630b)를 이용하여 전송한다. 각 파일럿 신호는 스위치(1640b)를 이용하여 시분할 될 수 있다. 따라서, 하나의 파워앰프(1630b) 및 ADC (1620b)를 이용하기 때문에, 기지국(1600b)의 구현 비용이 감소될 수 있다.16B is a schematic diagram of a base station operating in an FDD mode according to another example. The base station 1600b transmits pilot signals for one of the two antennas 1650b and 1655b using one power amplifier 1630b. Each pilot signal may be time-divided using the switch 1640b. Therefore, since one power amplifier 1630b and ADC 1620b are used, the implementation cost of the base station 1600b can be reduced.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2015년 02월 09일 한국에 출원한 특허출원번호 제 10-2015-0019564 호 및 2016년 02월 05일 한국에 출원한 특허출원번호 제 10-2016-0014592호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application is related to the patent application No. 10-2015-0019564 filed in Korea on Feb. 09, 2015 and the patent application No. 10-2016-0014592 filed in Korea on Feb. 05, 2016. Priority is claimed under section (a) (35 USC § 119 (a)), all of which is incorporated by reference in this patent application. In addition, if this patent application claims priority for the same reason for countries other than the United States, all its contents are incorporated into this patent application by reference.

Claims (16)

  1. 무선 통신 시스템에서 단말의 임의접근채널(Random Access Channel) 전송 방법으로서,A random access channel transmission method of a terminal in a wireless communication system,
    기지국으로부터 채널 상태의 측정을 위한 하나 이상의 파일럿(pilot) 신호를 수신하는 단계;Receiving one or more pilot signals for measurement of channel conditions from a base station;
    상기 하나 이상의 파일럿 신호에 기초하여 채널 상태를 측정하고, 상기 측정된 채널 상태에 기초하여 임의접근채널의 전송 여부 및 상기 임의접근채널의 전송을 위하여 할당된 복수의 전송 자원들 중에서 하나의 전송 자원을 결정하는 단계; 및A channel state is measured based on the one or more pilot signals, and one transmission resource is selected from among a plurality of transmission resources allocated for transmission of the random access channel and transmission of the random access channel based on the measured channel state. Determining; And
    상기 임의접근채널의 전송이 결정되면, 상기 결정된 하나의 전송 자원을 이용하여 상기 기지국으로 상기 임의접근채널을 전송하는 단계를 포함하는, 임의접근채널 전송 방법.And if the transmission of the random access channel is determined, transmitting the random access channel to the base station using the determined one transmission resource.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 결정된 하나의 전송 자원은 상기 복수의 전송 자원들 중에서 상기 복수의 전송 자원들 중에서 채널이득이 가장 높은 전송 자원인, 임의접근채널 전송 방법.The determined one transmission resource is a transmission resource having the highest channel gain among the plurality of transmission resources among the plurality of transmission resources, random access channel transmission method.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 무선 통신 시스템은 TDD(Time Division Duplex) 방식의 무선 통신 시스템이고, 상기 하나 이상의 파일럿 신호는 하향링크를 통하여 상기 단말에 수신되고, 상기 임의접근채널은 상향링크를 통하여 기지국에 전송되는, 임의접근채널 전송 방법.The wireless communication system is a time division duplex (TDD) wireless communication system, the one or more pilot signals are received to the terminal through the downlink, the random access channel is transmitted to the base station through the uplink, random access Channel transmission method.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 복수의 전송 자원들은 서로 상이한 주파수 자원 상에 할당된, 임의접근채널 전송 방법.And the plurality of transmission resources are allocated on different frequency resources.
  5. 제 3 항에 있어서,The method of claim 3, wherein
    상기 복수의 전송 자원들은 서로 상이한 시간 자원 상에 할당된, 임의접근 채널 전송 방법.And the plurality of transmission resources are allocated on different time resources.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 무선 통신 시스템은 FDD(Frequency Division Duplex) 방식의 무선 통신 시스템이고, 상기 하나 이상의 파일럿 신호는 하향링크에 설정된 자원을 통하여 상기 단말에 수신되고, 상기 복수의 전송 자원들은 상기 하향링크에 설정된 자원들 상에 할당된, 임의접근채널 전송 방법.The wireless communication system is a frequency division duplex (FDD) wireless communication system, the one or more pilot signals are received by the terminal through the resources set in the downlink, the plurality of transmission resources are resources set in the downlink Random access channel transmission method assigned on the network.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 무선 통신 시스템은 FDD(Frequency Division Duplex) 방식의 무선 통신 시스템이고, 상기 하나 이상의 파일럿 신호는 상향링크에 설정된 자원을 통하여 상기 단말에 수신되고, 상기 복수의 전송 자원들 각각은 상기 상향링크에 설정된 자원들 상의 서로 상이한 주파수 자원 상에 할당된, 임의접근채널 전송 방법.The wireless communication system is a frequency division duplex (FDD) wireless communication system, the at least one pilot signal is received by the terminal through a resource configured in the uplink, each of the plurality of transmission resources is configured in the uplink A random access channel transmission method, allocated on different frequency resources on resources.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 하나 이상의 파일럿 신호는 하나의 광대역 파일럿 신호이고,The at least one pilot signal is one broadband pilot signal,
    상기 단말은 상기 광대역 파일럿 신호에 기초하여 상기 복수의 전송 자원들 각각에 대응하는 협대역 채널들의 채널 상태를 측정하고, 상기 복수의 전송 자원들 각각에 대응하는 협대역 채널들의 채널 상태에 기초하여 상기 복수의 전송 자원들 중 상기 임의접근채널 전송을 위한 하나의 전송 자원을 선택하는, 임의접근채널 전송 방법.The terminal measures a channel state of narrowband channels corresponding to each of the plurality of transmission resources based on the wideband pilot signal, and based on the channel state of narrowband channels corresponding to each of the plurality of transmission resources. The random access channel transmission method of selecting one transmission resource for the random access channel transmission of a plurality of transmission resources.
  9. 제 7 항에 있어서,The method of claim 7, wherein
    상기 하나 이상의 파일럿 신호는 상기 복수의 전송 자원들 각각에 대응하는 주파수 자원 상에 할당된, 임의접근채널 전송 방법.And the one or more pilot signals are allocated on frequency resources corresponding to each of the plurality of transmission resources.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 하나 이상의 파일럿 신호는 서로 상이한 시간 자원 상에 할당된, 임의접근채널 전송 방법.And wherein the one or more pilot signals are allocated on different time resources.
  11. 제 7 항에 있어서,The method of claim 7, wherein
    상기 하나 이상의 파일럿 신호는 상기 기지국의 복수의 안테나 각각에 대응하는 복수의 파일럿 신호인, 임의접근채널 전송 방법.And the at least one pilot signal is a plurality of pilot signals corresponding to each of a plurality of antennas of the base station.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 복수의 파일럿 신호는 동일 시간 자원 상에서 수신되고, 상기 복수의 파일럿 신호 각각은 CDM(Code Division Multiplex) 또는 FDM(Frequency Division Multiplex) 기법에 의하여 구분되는, 임의접근채널 전송 방법.The plurality of pilot signals are received on the same time resource, each of the plurality of pilot signals are separated by a Code Division Multiplex (CDM) or Frequency Division Multiplex (FDM) scheme.
  13. 제 11 항에 있어서,The method of claim 11,
    상기 복수의 파일럿 신호 각각은 서로 상이한 시간 자원 상에 할당된, 임의접근채널 전송 방법.Wherein each of the plurality of pilot signals is allocated on different time resources.
  14. 제 11 항에 있어서,The method of claim 11,
    상기 복수의 파일럿 신호 각각은 상기 복수의 전송 자원들 각각의 주파수 대역에 대응하는 복수의 협대역 파일럿 신호들을 포함하는, 임의접근채널 전송 방법.Wherein each of the plurality of pilot signals comprises a plurality of narrowband pilot signals corresponding to a frequency band of each of the plurality of transmission resources.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 복수의 협대역 파일럿 신호들은 서로 상이한 시간 자원 상에 할당된, 임의접근채널 전송 방법.And the plurality of narrowband pilot signals are allocated on different time resources.
  16. 무선 통신 시스템에서 임의접근채널(Random Access Channel)을 전송하는 단말로서,A terminal for transmitting a random access channel in a wireless communication system,
    기지국으로부터 신호를 수신하는 수신부;A receiver for receiving a signal from a base station;
    상기 기지국으로 신호를 송신하는 송신부; 및A transmitter for transmitting a signal to the base station; And
    상기 수신부 및 송신부를 제어하도록 구성된 제어부를 포함하고,A control unit configured to control the receiving unit and the transmitting unit,
    상기 제어부는, The control unit,
    상기 기지국으로부터 채널 상태의 측정을 위한 하나 이상의 파일럿(pilot) 신호를 수신하고, Receive one or more pilot signals for measurement of channel conditions from the base station,
    상기 하나 이상의 파일럿 신호에 기초하여 채널 상태를 측정하고, 상기 측정된 채널 상태에 기초하여 임의접근채널의 전송 여부 및 상기 임의접근채널의 전송을 위하여 할당된 복수의 전송 자원들 중에서 하나의 전송 자원을 결정하며, A channel state is measured based on the one or more pilot signals, and one transmission resource is selected from among a plurality of transmission resources allocated for transmission of the random access channel and transmission of the random access channel based on the measured channel state. Decide,
    상기 임의접근채널의 전송이 결정되면, 상기 결정된 하나의 전송 자원을 이용하여 상기 기지국으로 상기 임의접근채널을 전송하도록 더 구성된, 단말.And if the transmission of the random access channel is determined, transmitting the random access channel to the base station using the determined one transmission resource.
PCT/KR2016/001313 2015-02-09 2016-02-05 Method and device for channel adaptive random access channel transmission in communication system WO2016129896A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150019564 2015-02-09
KR10-2015-0019564 2015-02-09
KR10-2016-0014592 2016-02-05
KR1020160014592A KR101782431B1 (en) 2015-02-09 2016-02-05 Method for transmitting channel adaptive random access channel in communication system and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2016129896A1 true WO2016129896A1 (en) 2016-08-18

Family

ID=56614521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001313 WO2016129896A1 (en) 2015-02-09 2016-02-05 Method and device for channel adaptive random access channel transmission in communication system

Country Status (1)

Country Link
WO (1) WO2016129896A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913491A (en) * 2019-12-17 2020-03-24 惠州Tcl移动通信有限公司 Channel allocation method, device and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090033336A (en) * 2006-06-19 2009-04-02 가부시키가이샤 엔티티 도코모 Mobile station device, base station device, and uplink scheduling request transmission method
KR20100133497A (en) * 2008-04-21 2010-12-21 노텔 네트웍스 리미티드 Method and system for providing an uplink structure and minimizing pilot signal overhead in a wireless communication network
KR20110044155A (en) * 2009-10-22 2011-04-28 삼성전자주식회사 Apparatus and method for random access channel transmission in wireless communication system
KR20130033839A (en) * 2011-09-27 2013-04-04 한양대학교 산학협력단 Apparatus and method of adaptive channel transmission using channel status
KR20140127295A (en) * 2012-01-31 2014-11-03 후아웨이 테크놀러지 컴퍼니 리미티드 Method for selecting transmission time interval and user equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090033336A (en) * 2006-06-19 2009-04-02 가부시키가이샤 엔티티 도코모 Mobile station device, base station device, and uplink scheduling request transmission method
KR20100133497A (en) * 2008-04-21 2010-12-21 노텔 네트웍스 리미티드 Method and system for providing an uplink structure and minimizing pilot signal overhead in a wireless communication network
KR20110044155A (en) * 2009-10-22 2011-04-28 삼성전자주식회사 Apparatus and method for random access channel transmission in wireless communication system
KR20130033839A (en) * 2011-09-27 2013-04-04 한양대학교 산학협력단 Apparatus and method of adaptive channel transmission using channel status
KR20140127295A (en) * 2012-01-31 2014-11-03 후아웨이 테크놀러지 컴퍼니 리미티드 Method for selecting transmission time interval and user equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913491A (en) * 2019-12-17 2020-03-24 惠州Tcl移动通信有限公司 Channel allocation method, device and storage medium

Similar Documents

Publication Publication Date Title
WO2020060371A1 (en) Method and apparatus for supporting multiple message a sizes and uplink coverage for two step random access procedure
WO2021066379A1 (en) Method and apparatus for random access procedure
WO2019022470A1 (en) Method and apparatus for performing sidelink transmissions on multiple carriers in wireless communication system
WO2020045920A1 (en) Method and device for processing channel access failure in unlicensed band
WO2013022285A2 (en) Method and device for random access in wireless communication system supporting multi-carrier wave
WO2013048137A2 (en) Method and apparatus for random access in a wireless communication system that supports multiple carriers
WO2017171322A2 (en) Method for performing random access procedure in next generation wireless communication system and apparatus therefor
WO2019022477A1 (en) Method and apparatus for selecting carrier for sidelink transmission in wireless communication system
WO2019216687A1 (en) Method and apparatus for controlling uplink time alignment in broadband wireless communication system
WO2017023066A1 (en) Method for performing random access and mtc apparatus
WO2019031864A1 (en) Method for performing random access process and device therefor
WO2018084498A1 (en) Method and device for executing multi-beam-based random access procedure in wireless communication
WO2013125890A1 (en) Device and method for effecting random access procedure in multiple component carrier system
WO2016018068A1 (en) Method for transmitting resource information for d2d communication and apparatus therefor in wireless communication system
WO2021141266A1 (en) Apparatus and method of random access procedure
WO2019022480A1 (en) Method and apparatus for allocating resource based on anchor carrier in wireless communication system
WO2022092801A1 (en) Method for controlling sidelink communication and device therefor
WO2020263019A1 (en) Sidelink harq feedback transmission method and apparatus therefor
WO2022191599A1 (en) Method and apparatus for updating rna during sdt in wireless communication system
WO2021125725A1 (en) Method and apparatus for handling system information request in wireless communication system
WO2021133077A1 (en) Method and apparatus for handling configured grant type 1 for vehicle-to-everything (v2x) communication
EP3906745A1 (en) Method and apparatus for indicating two-step random access procedure in wireless communication system
WO2016048003A1 (en) Method and apparatus for transceiving d2d signal of prach resource
WO2020209655A1 (en) Method and device for transmitting and receiving reference signal for positioning
WO2016129896A1 (en) Method and device for channel adaptive random access channel transmission in communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749436

Country of ref document: EP

Kind code of ref document: A1