[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016129465A1 - Lubricating oil composition for internal combustion engine - Google Patents

Lubricating oil composition for internal combustion engine Download PDF

Info

Publication number
WO2016129465A1
WO2016129465A1 PCT/JP2016/053162 JP2016053162W WO2016129465A1 WO 2016129465 A1 WO2016129465 A1 WO 2016129465A1 JP 2016053162 W JP2016053162 W JP 2016053162W WO 2016129465 A1 WO2016129465 A1 WO 2016129465A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
group
lubricating oil
internal combustion
Prior art date
Application number
PCT/JP2016/053162
Other languages
French (fr)
Japanese (ja)
Inventor
慎太郎 楠原
Original Assignee
Jxエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxエネルギー株式会社 filed Critical Jxエネルギー株式会社
Priority to CN201680009980.9A priority Critical patent/CN107406790A/en
Priority to US15/550,219 priority patent/US20180023026A1/en
Publication of WO2016129465A1 publication Critical patent/WO2016129465A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/12Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic compound containing atoms of elements not provided for in groups C10M141/02 - C10M141/10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • C10M159/22Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing phenol radicals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/003Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/066Organic compounds derived from inorganic acids or metal salts derived from Mo or W
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/42Phosphor free or low phosphor content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/68Shear stability
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/74Noack Volatility
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines

Definitions

  • the present invention relates to a lubricating oil composition for an internal combustion engine with improved fuel economy.
  • Patent Document 1 discloses a specific additive (such as a base oil having a kinematic viscosity at 100 ° C. of 2 to 8 mm 2 / s and an aromatic content of 15% by mass).
  • Patent Document 2 discloses a kinematic viscosity at 100 ° C. of 3 to 8 mm 2 / s.
  • Lubricating oil composition for internal combustion engines in which a lubricating base oil containing an ester based lubricating base oil is blended with a molybdenum friction modifier or an ester-based or amine-based ashless friction modifier and an overbased Ca salicylate Furthermore, Patent Document 3 combines sulfurized oxymolybdenum dithiocarbamate with an ashless friction modifier such as an acid amide compound, an aliphatic partial ester compound and / or an aliphatic amine compound. A lubricating oil composition for an internal combustion engine that has been blended is proposed.
  • JP-A-8-302378 Japanese Patent Laid-Open No. 2005-41998 JP 2008-106199 A JP-A-9-316475 JP 2008-179669 A JP 2005-290181 A
  • the present invention solves the above-mentioned problems, and the problem to be solved by the present invention is to provide a lubricating oil composition for an internal combustion engine that further reduces friction and is excellent in fuel efficiency.
  • a lubricating base oil having a kinematic viscosity at 100 ° C. of 2.0 to 5.0 mm 2 / s and (B) a molybdenum-based friction.
  • the present invention has been made based on such findings and is as follows. [1] (A) A lubricant base oil having a kinematic viscosity at 100 ° C. of 2.0 to 5.0 mm 2 / s, and (B) a molybdenum-based friction modifier as 0.005 to molybdenum based on the total amount of the composition.
  • a lubricating oil composition for internal combustion engines which contains 0.01 to 10% by mass of one or more compounds selected from amino acids and / or derivatives thereof.
  • the lubricating oil composition for an internal combustion engine of the present invention has a remarkable effect that it has a low coefficient of friction and excellent fuel efficiency.
  • the lubricating base oil in the present invention is not particularly limited as long as it is a lubricating base oil having a kinematic viscosity at 100 ° C. of 2.0 to 5.0 mm 2 / s. Any mineral oil and synthetic oil can be used as long as they are used as the lubricating base oil of the lubricating oil composition for internal combustion engines.
  • the lubricating base oil has a kinematic viscosity at 100 ° C. of 2.5 mm 2 / s or more, more preferably 3.0 mm 2 / s or more, still more preferably 3.5 mm 2 / s or more, and particularly preferably 3.8 mm.
  • the kinematic viscosity at 100 ° C. is less than 2.0 mm 2 / s, the formation of an oil film at the lubrication point becomes insufficient, resulting in poor lubricity and an increase in evaporation loss of the lubricating base oil. On the other hand, if it exceeds 5.0 mm 2 / s, the fuel saving effect is reduced, and the low-temperature viscosity characteristics are deteriorated.
  • the kinematic viscosity at 100 ° C. is the kinematic viscosity at 100 ° C. as defined in ASTM D-445.
  • the kinematic viscosity at 40 ° C. of the lubricating base oil in the present invention is preferably 14 mm 2 / s or more, more preferably 16 mm 2 / s or more, further preferably 18 mm 2 / s or more, and preferably It is 25 mm 2 / s or less, more preferably 23 mm 2 / s or less, more preferably 22 mm 2 / s or less, still more preferably 21 mm 2 / s or less, and particularly preferably 20 mm 2 / s or less.
  • the kinematic viscosity at 40 ° C. here refers to the kinematic viscosity at 40 ° C. as defined in ASTM D-445.
  • kinematic viscosity By setting the kinematic viscosity at 40 ° C. to 25 mm 2 / s or less, good low-temperature viscosity characteristics can be obtained, and sufficient fuel economy can be obtained, and by setting it to 14 mm 2 / s or more, lubrication can be achieved. Oil film formation at the location is sufficient and good lubricity is obtained, and evaporation loss of the lubricating oil composition can be kept small.
  • the lubricating base oil of the present invention preferably has a viscosity index of 120 or more, more preferably 125 or more, more preferably 130 or more, and particularly preferably 132 or more.
  • a viscosity index of the lubricating base oil By setting the viscosity index of the lubricating base oil to 120 or more, excellent viscosity characteristics from low temperature to high temperature can be obtained, and a lubricating oil composition that hardly evaporates even at low viscosity can be obtained.
  • the upper limit of the viscosity index is not particularly limited, and is about 125 to 180, such as normal paraffin, slack wax, GTL wax, or isoparaffin mineral oil obtained by isomerizing these, complex ester base oil, HVI-PAO, etc.
  • Oils of about 150 to 250 such as base oils can also be used.
  • base oils can also be used.
  • it is preferably 180 or less, more preferably 170 or less, in order to improve low-temperature viscosity characteristics. It is more preferably 160 or less, and particularly preferably 155 or less.
  • the viscosity index means a viscosity index measured in accordance with JIS K2283-1993.
  • the pour point of the lubricating base oil according to this embodiment is preferably ⁇ 10 ° C. or lower, more preferably ⁇ 12.5 ° C. or lower, still more preferably ⁇ 15 ° C. or lower, and particularly preferably ⁇ 17 ° C. or lower.
  • the pour point as used in the present invention means a pour point measured according to JIS K 2269-1987.
  • a mineral base oil or a synthetic base oil can be used alone, or two or more mineral base oils, or It may be a mixture of two or more kinds of synthetic base oils, or may be a mixture of mineral oil base oils and synthetic oil base oils. And the mixing ratio of 2 or more types of base oil in the said mixture can be chosen arbitrarily.
  • mineral base oils lubricating oil fractions obtained by subjecting crude oil to atmospheric distillation and reduced pressure distillation are subjected to solvent deburring, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, sulfuric acid Examples thereof include paraffinic and naphthenic lubricating base oils and the like, which are refined by appropriately combining purification treatments such as washing and clay treatment.
  • Synthetic base oils include poly- ⁇ -olefins (eg polybutene, 1-octene oligomers, 1-decene oligomers, ethylene-propylene oligomers) or their hydrides, isobutene oligomers or their hydrides, isoparaffins, alkylbenzenes, alkyls Naphthalene, diesters (eg, dibutyl maleate, ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridecyl adipate, di-2-ethylhexyl sebacate), co-weight of ⁇ -olefin and diester Coalesced, polyol esters (eg, trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol-2-ethylhexanoate, pentaerythr
  • the lubricating base oil of the present invention is preferably a base oil having a saturated hydrocarbon content of 90% or more in the mineral base oil.
  • this saturated hydrocarbon content means a value measured by ASTM D-2007.
  • the base oils are preferably those classified into group III or higher based on the base oil classification by API (American Petroleum Institute), and base oils obtained by isomerizing wax. There are no particular restrictions on the method for producing this base oil, but atmospheric residual oil obtained by atmospheric distillation of crude oil is desulfurized, hydrocracked and fractionated into a set viscosity grade, or the residual oil. It is preferable to use a base oil obtained by solvent dewaxing or catalytic dewaxing and, if necessary, solvent extraction and hydrogenation. Of these, base oils obtained by catalytic dewaxing are preferred.
  • the above-mentioned lube base oil has been further subjected to distillation under reduced pressure at atmospheric distillation residue, fractionated to the required viscosity grade, and then subjected to processes such as solvent refining and hydrorefining to dewax the solvent.
  • GTL WAX gas Also included are GTL-based wax isomerized lubricating base oils and the like produced by isomerizing (Turi Liquid Wax).
  • the basic production process of the wax isomerized lubricating base oil is the same as that of the hydrocracking base oil.
  • While% C P is not particularly limited in the base oil, preferably 80 or more, more preferably 82 or more, more preferably 85 or more, particularly preferably 86 or more. Further, it is preferably 98 or less, more preferably 95 or less, particularly preferably 90 or less, and most preferably 88 or less.
  • the% C P of the lubricating base oil with more than 80 the viscosity - tends to temperature characteristics, thermal and oxidation stability and frictional properties will be improved, further, additives to the lubricating base oil is blended In some cases, the effectiveness of the additive tends to be improved. Further, by making the% C P of the lubricating base oil and 98 or less, tends to solubility of additives is improved.
  • While% C N is not particularly limited in the base oil, preferably 20 or less, more preferably 15 or less, more preferably 14 or less. Further, it is preferably 3 or more, more preferably 8 or more, and particularly preferably 10 or more.
  • The% C N of the lubricating base oil by 20 or less, the viscosity - temperature characteristic, heat and oxidation stability and frictional properties will tend to be improved. Further, by setting% CN to 3 or more, the solubility of the additive tends to be improved.
  • The% C A of the base oil is not particularly limited, is preferably less than 3, more preferably 2 or less, even more preferably 1 or less, and most preferably substantially zero. If it exceeds 10, the improvement of heat resistance, which is one of the objects of the present invention, becomes insufficient. Note that the% C A means a value measured by a method in accordance with ASTM D3238-85 (n-d-M ring analysis).
  • the saturated content of the base oil is preferably 80 or more, more preferably 90 or more, still more preferably 95 or more, particularly preferably 98 or more, and most preferably 99 or more.
  • the sulfur content of the base oil is not particularly limited, but is preferably 0.03% by mass or less, more preferably 0.01% by mass or less, and particularly preferably one containing substantially no sulfur.
  • the method for measuring the sulfur content is not particularly limited, but JIS K2541-1996 is generally used.
  • the amount of evaporation loss of the base oil is not particularly limited, but the NOACK evaporation amount is preferably 25% by mass or less, more preferably 21% by mass or less, and further preferably 18% by mass or less, It is further preferably 16% by mass or less, particularly preferably 15% by mass or less, and most preferably 14% by mass or less. It is preferable to set the NOACK evaporation amount of the lubricating base oil to 25% by mass or less because the evaporation loss of the lubricating oil is small and causes such as an increase in viscosity can be suppressed.
  • the NOACK evaporation amount is a value obtained by measuring the evaporation amount of the lubricating oil measured in accordance with ASTM D 5800.
  • examples of the molybdenum friction modifier include organic molybdenum friction modifiers containing sulfur such as molybdenum dithiocarbamate (MoDTC) and molybdenum dithiophosphate (MoDTP). it can.
  • molybdenum dithiocarbamate include compounds represented by the following general formula (1).
  • molybdenum dithiophosphate include compounds represented by the following general formula (2).
  • R 1 to R 8 each independently represent a hydrocarbon group having 1 to 24 carbon atoms
  • Preferred examples of the hydrocarbon group having 1 to 24 carbon atoms represented by R 1 to R 8 in the general formulas (1) and (2) are each linear or branched having 1 to 24 carbon atoms.
  • the alkyl group or alkenyl group may be primary, secondary, or tertiary.
  • the molybdenum friction modifier in the lubricating oil composition of the present invention includes, for example, basic nitrogen compounds such as succinimide, acidic molybdenum compounds such as molybdenum trioxide, and sulfur such as hydrogen sulfide and phosphorus pentasulfide.
  • basic nitrogen compounds such as succinimide
  • acidic molybdenum compounds such as molybdenum trioxide
  • sulfur such as hydrogen sulfide and phosphorus pentasulfide.
  • An organic molybdenum complex which is a reaction product with a compound is also a preferred example.
  • the content of the molybdenum-based friction modifier is 0.005% by mass or more, more preferably 0.01% by mass or more, in terms of molybdenum element, based on the total amount of the composition. More preferably, it is 0.03 mass% or more, Most preferably, it is 0.05 mass% or more, 0.2 mass% or less, Preferably it is 0.1 mass% or less.
  • the content of the molybdenum-based friction modifier is less than 0.005% by mass in terms of molybdenum element, a remarkable fuel saving effect cannot be obtained, while the content of the molybdenum-based friction modifier is the elemental molybdenum.
  • the converted amount exceeds 0.2% by mass, it is not preferable because an improvement in the fuel saving effect corresponding to the content cannot be obtained.
  • sulfur-containing organomolybdenum friction modifier is preferably used as the molybdenum friction modifier, and among them, molybdenum dithiophosphate and molybdenum dithiocarbamate are preferably used.
  • Molybdenum dithiocarbamate is particularly preferable because fuel saving performance can be remarkably improved from low temperature to high temperature due to a synergistic effect.
  • (C) Salicylate metal detergent As the salicylate metal detergent referred to in the present invention, any compound usually used in lubricating oil can be used. For example, a linear or branched hydrocarbon group Further, an overbased compound of an oil-soluble metal salt having an OH group and / or a carbonyl group can be used. Also, an overbased metal salt of alkaline earth metal salicylate, an alkaline earth metal hydroxide or oxide, and an overbased metal salt obtainable by reacting boric acid or anhydrous boric acid if necessary Can do. As the salicylate metal detergent, a salicylate metal detergent containing boron is particularly preferable. Examples of alkaline earth metals include magnesium, calcium, barium and the like, with calcium being preferred.
  • the overbased metal salt it is more preferable to use an oil-soluble metal salt of a compound containing an OH group and / or a carbonyl group overbased with an alkaline earth metal borate or an alkaline earth metal carbonate.
  • an alkaline earth metal salicylate from the viewpoint of excellent fuel economy, and it is more preferable to use an alkaline earth metal salicylate overbased with an alkaline earth metal borate.
  • the salicylate-based metal detergent referred to in the present invention preferably has a base number of 50 mgKOH / g or more, more preferably 100 mgKOH / g or more, further preferably 120 mgKOH / g or more, and 140 mgKOH / g.
  • the above is particularly preferable.
  • it is preferable that it is 300 mgKOH / g or less, and it is more preferable that it is 200 mgKOH / g or less.
  • the base number is less than 50 mgKOH / g, the increase in the viscosity is increased, so that the fuel efficiency is deteriorated and the friction reducing effect due to the addition tends to be insufficient.
  • the base number in the present invention is a value measured according to JIS K 2501 5.2.3.
  • the production method of the salicylate-based metal detergent used in the present invention is arbitrary.
  • the oil-soluble metal salt, alkaline earth metal hydroxide or oxide, if necessary, boric acid or boric anhydride, water In the presence of an alcohol such as methanol, ethanol, propanol or butanol and a diluting solvent such as benzene, toluene or xylene, the reaction is carried out at 20 to 200 ° C. for 2 to 8 hours, and then heated to 100 to 200 ° C. for water and necessary. Accordingly, it is obtained by removing the alcohol and the diluting solvent.
  • These detailed reaction conditions are appropriately selected according to the raw materials, the amount of reactants, and the like.
  • the salicylate metal detergent referred to in the present invention preferably has a metal ratio of 4.0 or less, more preferably 3.0 or less, and even more preferably 2.0 or less.
  • the metal ratio is preferably 1.0 or more, more preferably 1.1 or more, and even more preferably 1.5 or more. If the metal ratio is less than 1.0, the kinematic viscosity or low temperature viscosity of the lubricating oil composition for internal combustion engines becomes high, which may cause problems in fuel saving and startability.
  • the metal ratio referred to in the present invention is represented by the valence of the metal element in the metal detergent ⁇ the metal element content (mol%) / the soap group content (mol%), and the metal element is calcium,
  • a soap group such as magnesium means a sulfonic acid group, a phenol group, a salicylic acid group, or the like.
  • the linear or branched hydrocarbon group of the salicylate metal detergent referred to in the present invention is preferably an alkyl group or an alkenyl group, and the alkyl group or alkenyl group preferably has 8 or more carbon atoms, more preferably 10 As mentioned above, More preferably, it is 12 or more, and 19 or less is preferable. A carbon number of less than 8 is not preferable because the oil solubility is not sufficient.
  • it may be linear or branched, but is preferably linear, and these may be a primary alkyl group, alkenyl group, secondary alkyl group, alkenyl group, tertiary alkyl group or alkenyl group, but secondary In the case of an alkyl group, an alkenyl group, a tertiary alkyl group or an alkenyl group, the position of branching is preferably only carbon bonded to an aromatic group.
  • the content of the salicylate metal detergent referred to in the present invention is 0.01% by mass or more, preferably 0.05% by mass or more, and more preferably 0.0% by mass or more in terms of metal element based on the total amount of the lubricating oil composition. 1% by mass or more, particularly preferably 0.15% by mass or more, and 1% by mass or less, preferably 0.5% by mass or less, more preferably 0.4% by mass or less, and further preferably 0.3% by mass. % Or less, particularly preferably 0.25% by mass or less, and most preferably 0.2% by mass or less.
  • the boron content in the lubricating oil composition when using a salicylate-based metallic detergent containing boron as the salicylate-based metallic detergent is preferably in terms of boron element based on the total amount of the lubricating oil composition. Is 0.01% by mass or more, more preferably 0.02% by mass or more, still more preferably 0.03% by mass or more, particularly preferably 0.04% by mass or more, and preferably 0.2% by mass or less. More preferably, it is 0.1 mass% or less, More preferably, it is 0.09 mass% or less, Most preferably, it is 0.08 mass% or less.
  • the content When the content is 0.001% by mass or more, the friction reduction effect due to the addition tends to be sufficient, and the fuel economy, thermal / oxidation stability, and cleanliness of the lubricating oil composition are sufficient. There is a tendency. On the other hand, when the content is 0.2% by mass or less, the friction reduction effect due to the addition tends to be sufficient, and the fuel efficiency of the lubricating oil composition tends to be sufficient.
  • the ashless friction modifier contains at least one amino acid and / or derivative thereof having an alkyl group, alkenyl group or acyl group having 15 to 24 carbon atoms.
  • the compound include compounds represented by the following general formula (3).
  • R 9 is an alkyl group, alkenyl group or acyl group having 15 to 24 carbon atoms
  • R 10 is an alkyl group having 1 to 4 carbon atoms or hydrogen
  • R 11 is hydrogen or one having 1 to 10 carbon atoms. It is an alkyl group.
  • the alkyl group may include a linear, branched or cyclic structure, and the carbon atom may be substituted with a heteroatom, or may be modified with a functional group such as a hydroxyl group, a carboxyl group, or an amino group. Good.
  • R 12 is an alkyl group having 1 to 4 carbon atoms or hydrogen, n is 0 or 1, and X is a functional group having active hydrogen or a hydrocarbon having the functional group and a metal salt or ethanolamine of the functional group A salt or a methoxy group.
  • R 9 in the general formula (3) is more preferably an alkyl group, an alkenyl group, or an acyl group having 16 or more carbon atoms from the viewpoint of solubility in base oil, low friction properties, fuel economy, and the like.
  • An alkyl group, alkenyl group or acyl group having 17 or more carbon atoms is more preferred, and an alkyl group, alkenyl group or acyl group having 18 or more carbon atoms is particularly preferred.
  • the number of carbon atoms is preferably 23 or less, more preferably 20 or less, particularly preferably 19 or less, and most preferably 18 carbon atoms. Furthermore, it is preferable that it is linear from a viewpoint of a friction reduction effect.
  • alkyl groups, alkenyl groups, and acyl groups include, for example, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, heneicosyl group, docosyl group, tricosyl group, tetracosyl group Etc.
  • alkyl groups may be linear or branched
  • pentadecenyl group hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, icocenyl group, heneicosenyl group, dococenyl group, tricocenyl group, tetracocenyl group, etc.
  • the alkenyl group may be linear or branched, and the position of the double bond is arbitrary
  • R 10 in the general formula (3) is more preferably an alkyl group having 4 or less carbon atoms, more preferably 3 or less carbon atoms, and particularly preferably 2 or less carbon atoms from the viewpoint of storage stability.
  • the alkyl group of R 11 may contain a linear, branched or cyclic structure, the carbon atom may be substituted with a hetero atom, and is modified with a functional group such as a hydroxyl group, a carboxyl group or an amino group. May be. From the viewpoint of friction reduction effect and solubility in base oil, an alkyl group having 2 or less carbon atoms is more preferable, 1 or less carbon atoms is more preferable, and hydrogen is particularly preferable.
  • R 12 is more preferably an alkyl group having 4 or less carbon atoms, more preferably 3 or less carbon atoms, particularly preferably 2 or less carbon atoms, and most preferably hydrogen from the viewpoint of storage stability.
  • a hydroxyl group, an amino group and the like are preferable.
  • amino group primary and secondary amines are preferable, and primary amines are particularly preferable.
  • the metal salt of the active hydrogen group include a metal salt of a hydroxyl group.
  • —COX in formula (3) is preferably a carboxyl group.
  • Specific examples of the hydrocarbon having a hydroxyl group which is a functional group having active hydrogen include, for example, ethylene glycol, propylene glycol, 1,4-butanediol, 1,2-butanediol, neopentyl glycol, and 1,6.
  • Examples of the metal of the hydroxyl group metal salt include alkali metal or alkaline earth metal and zinc, and examples of the alkali metal or alkaline earth metal include sodium, potassium, magnesium, calcium and the like. Among these, alkaline earth metals and zinc are preferable from the viewpoint of improving the sustainability of the friction characteristic effect.
  • the metal salt among the general formula (3), a carboxylate in which —COX of the general formula (3) is a carboxy group structure is preferable.
  • the ashless friction modifier of the present invention is preferably at least one compound selected from the general formula (3) from the viewpoint of improving the durability of the friction characteristic effect, and the general formula (3). Only one compound selected from among them may be used alone, or a mixture of two or more compounds may be used.
  • N-acyl sarcosine in particular, R 9 is an acyl group having 18 carbon atoms, R 10 is a methyl group, R 11 is hydrogen, X is a hydroxyl group, N-oleoyl sarcosine where n is 0, R 9 is an acyl group having 18 carbon atoms, R 10 is a methyl group, R 11 is hydrogen, R 12 is hydrogen, X is a hydroxyl group, and n is 1 And oil-N-methyl- ⁇ -alanine.
  • the content of the above ashless friction modifier is 0.01 to 10% by mass, preferably 5% by mass or less, more preferably 2% by mass or less, based on the total amount of the composition.
  • it is preferably 0.05% by mass or more, more preferably 0.1% by mass or less, based on the total amount of the composition. If this content is less than 0.01% by mass, the effect of improving the friction characteristics is not seen, which is not preferable.
  • ZnDTP zinc dialkyldithiophosphate
  • R 13 to R 16 are each independently hydrogen or a linear or branched alkyl group having at least one of 1 to 24 carbon atoms.
  • the first grade, the second grade, or the third grade may be used.
  • these zinc dialkyldithiophosphates may be used alone or in combination of two or more, but zinc dithiophosphate having a primary alkyl group (primary ZnDTP) or second A zinc dithiophosphate (secondary ZnDTP) containing a secondary alkyl group is preferred, and a secondary alkyl group containing zinc dithiophosphate as a main component is particularly preferred because it increases wear resistance.
  • the content of the zinc dialkyldithiophosphate is preferably 0.02 to 0.2% by mass, more preferably 0.03 to 0.1% as the amount of phosphorus, based on the total amount of the composition. It is good to mix
  • a viscosity index improver In the lubricating oil composition for internal combustion engines of the present invention, other additives such as a viscosity index improver, a pour point depressant, an antioxidant, an abrasion resistance are added as necessary, as long as the object of the present invention is not impaired.
  • An agent or extreme pressure agent, a friction reducing agent, a dispersant, a rust inhibitor, a surfactant or a demulsifier, an antifoaming agent, and the like can be appropriately blended.
  • a non-dispersed viscosity index improver or a dispersed viscosity index improver can be used as the viscosity index improver.
  • a non-dispersed or dispersed polymethacrylate or olefin copolymer, or polyisobutene, Polystyrene, ethylene-propylene copolymer, styrene-diene copolymer and hydride thereof can be used.
  • weight average molecular weights are generally 5,000 to 1,000,000, but in order to further improve fuel efficiency, the weight average molecular weight is 100,000 to 1,000,000, preferably 200,000 to It is desirable to use the above viscosity index improvers which are 900,000, particularly preferably 400,000 to 800,000.
  • the proportion of the structural unit represented by the following general formula (5) is 30 to 90 mol%
  • the proportion of the structural unit represented by the following general formula (6) is 0.1 to 50 mol. %
  • a viscosity index improver that is a poly (meth) acrylate viscosity index improver having a hydrocarbon main chain ratio of 0.18 or less is preferable for improving fuel economy.
  • R 17 represents hydrogen or a methyl group
  • R 18 represents a linear or branched hydrocarbon group having 6 or less carbon atoms
  • R 19 in the general formula (6) Represents hydrogen or a methyl group
  • R 20 represents a linear or branched hydrocarbon group having 16 or more carbon atoms.
  • the viscosity index improver preferably has a PSSI (Permanent Cystability Index) in the diesel injector method of 30 or less. When PSSI exceeds 30, the shear stability is poor, and the kinematic viscosity after use and the HTHS viscosity are kept at a certain level or more, so that the initial fuel economy may be deteriorated.
  • PSSI Permanent Cystability Index
  • PSSI in the diesel injector method is based on ASTM D6022-01 (Standard Practice for Calculation of Permanent Shear Stability Index), and ASTM D6278-02 (Test Method for Shear Stability of Polymer Containing Fluids Using a Means the Permanent Shear Stability Index of the polymer calculated on the basis of data measured by the European Diesel Injector Apparatus.
  • a polymethacrylate polymer for example, a polymethacrylate polymer, an alkylated aromatic compound, a fumarate-vinyl acetate copolymer, an ethylene-vinyl acetate copolymer, and the like that are compatible with the lubricating base oil to be used can be used.
  • the detergent / dispersant succinimide, benzylamine, alkylpolyamine, polybuteneamine, modified products of these boron compounds and sulfur compounds, alkenyl succinates, and the like can be used.
  • This detergent-dispersant is preferably a mono-type or bis-type succinimide, and more preferably a bis-type succinimide. Further, a bis-type succinimide containing no boron is particularly preferable. Further, the detergent-dispersant preferably has a molecular weight of 1000 or more, more preferably 5000 or more, more preferably 7000 or more, and further preferably 9000 or more.
  • the molecular weight is 1000 or less, the cleanliness may be insufficient.
  • the molecular weight exceeds 30000, the fuel economy of the engine oil composition may be significantly deteriorated.
  • the content of the cleaning dispersant is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, and still more preferably 1.0 to 8% by mass, based on the total amount of the engine oil composition. is there.
  • the content of the cleaning dispersant is less than 0.1% by mass, the cleanability may be insufficient.
  • the content exceeds 15% by mass the fuel efficiency of the engine oil composition is greatly deteriorated. There is a risk.
  • the N content of the cleaning dispersant is preferably 0.1 or more, more preferably 0.3 or more, more preferably 0.4 or more, and further preferably 0.5 or more.
  • the N content is 0.1 or less, the cleanliness may be insufficient.
  • the N content exceeds 2.0, the fuel economy of the engine oil composition may be significantly deteriorated. is there.
  • any of those generally used in lubricating oils such as phenolic compounds and amine compounds, can be used.
  • 2,6-di-tert-butyl-4 Alkylphenols such as methylphenol, bisphenols such as methylene-4,4-bis (2,6-di-tert-butyl-4-methylphenol), naphthylamines such as phenyl- ⁇ -naphthylamine, dialkyldiphenylamines, Phenothiazines can be used.
  • extreme pressure additives and antiwear agents include phosphorus compounds such as phosphate esters, phosphites and salts thereof, and sulfur compounds such as disulfides, sulfurized olefins and sulfurized fats and oils.
  • phosphorus compounds such as phosphate esters, phosphites and salts thereof
  • sulfur compounds such as disulfides, sulfurized olefins and sulfurized fats and oils.
  • rust inhibitor for example, alkenyl succinic acid, alkenyl succinic acid ester, polyhydric alcohol ester, petroleum sulfonate, dinonyl naphthalene sulfonate and the like can be used.
  • the corrosion inhibitor for example, benzotriazole, thiadiazole, and imidazole compounds can be used.
  • silicone compounds such as a dimethyl silicone and a fluoro silicone, can be used, for example.
  • the additive amount of these additives is arbitrary, but the content of the antifoaming agent is usually 0.0005 to 0.01% by mass and the content of the viscosity index improver is 0.05 to 20 based on the total amount of the composition.
  • the content of the corrosion inhibitor is 0.005 to 0.2% by mass, and the content of other additives is about 0.05 to 10% by mass, respectively.
  • Kinematic viscosity at 100 ° C. for an internal combustion engine lubricating oil composition of the present invention is preferably 4.0 mm 2 / s or more, more preferably 6.0 mm 2 / s or higher, more preferably 6.1 mm 2 / s or more, most preferably 6.2 mm 2 / s or more, preferably 12.5 mm 2 / s or less, more preferably 9.3 mm 2 / s or less, and still more preferably 8.5 mm 2. / S or less.
  • the kinematic viscosity at 100 ° C. here refers to the kinematic viscosity at 100 ° C. as defined in ASTM D-445. If the kinematic viscosity at 100 ° C.
  • the kinematic viscosity at 40 ° C. of the lubricating oil composition is preferably 4 to 50 mm 2 / s, preferably 40 mm 2 / s or less, more preferably 35 mm 2 / s or less.
  • the kinematic viscosity at 40 ° C. is preferably 15 mm 2 / s or more, more preferably 18 mm 2 / s or more, still more preferably 20 mm 2 / s or more, particularly preferably 22 mm 2 / s or more, and most preferably 25 mm 2 / s. s or more.
  • the kinematic viscosity at 40 ° C. here refers to the kinematic viscosity at 40 ° C.
  • kinematic viscosity at 40 ° C. is less than 4 mm 2 / s, there is a risk of insufficient lubricity, and if it exceeds 50 mm 2 / s, the necessary low temperature viscosity and sufficient fuel saving performance may not be obtained. is there.
  • the viscosity index of the lubricating oil composition is 120 or more, preferably 400 or less, preferably 190 or more, more preferably 200 or more, and particularly preferably 210 or more.
  • the viscosity index is less than 120, it may be difficult to improve fuel economy while maintaining the HTHS viscosity at 150 ° C.
  • the viscosity index exceeds 400, the evaporability may be deteriorated, and further, there may be a problem due to insufficient solubility of the additive and compatibility with the sealing material.
  • HTHS viscosity is also called “high temperature high shear viscosity”
  • it is effective to lower the kinematic viscosity at 40 ° C., the kinematic viscosity at 100 ° C., and the HTHS viscosity at 100 ° C., but it has been very difficult to satisfy all these requirements with conventional lubricating oils.
  • the HTHS viscosity at 100 ° C. of the lubricating oil composition is preferably 5.5 mPa ⁇ s or less, more preferably 5.0 mPa ⁇ s or less, still more preferably 4.7 mPa ⁇ s or less, and particularly preferably 4.5 mPa ⁇ s. -S or less. Further, it is preferably 3.0 mPa ⁇ s or more, more preferably 3.5 mPa ⁇ s or more, particularly preferably 4.0 mPa ⁇ s or more, and most preferably 4.1 mPa ⁇ s or more.
  • referred to in the present invention indicates a high temperature and high shear viscosity at 100 ° C. as defined in ASTM D4683. If the HTHS viscosity at 100 ° C. is less than 3.0 mPa ⁇ s, there is a risk of insufficient lubricity, and if it exceeds 5.5 mPa ⁇ s, the necessary low temperature viscosity and sufficient fuel saving performance cannot be obtained. There is a fear.
  • the HTHS viscosity at 150 ° C. of the lubricating oil composition is preferably 1.5 mPa ⁇ s or more, more preferably 1.9 mPa ⁇ s or more, further preferably 2.1 mPa ⁇ s or more, and particularly preferably 2.2 mPa ⁇ s. ⁇ S or more, most preferably 2.3 mPa ⁇ s or more. Further, it is preferably 3.0 mPa ⁇ s or less, more preferably 2.7 mPa ⁇ s or less, particularly preferably 2.5 mPa ⁇ s or less, and most preferably 2.4 mPa ⁇ s or less.
  • referred to in the present invention indicates the high temperature and high shear viscosity at 150 ° C. defined in ASTM D4683.
  • the HTHS viscosity at 150 ° C. to 1.5 mPa ⁇ s or more, sufficient lubricity can be obtained, and by setting it to 3.0 mPa ⁇ s or less, necessary low temperature viscosity and sufficient fuel saving performance can be obtained. It is done.
  • the ratio of the HTHS viscosity at 150 ° C. to the HTHS viscosity at 100 ° C. of the lubricating oil composition of the present invention is preferably 0.45 or more. Preferably it is 0.475 or more, More preferably, it is 0.50 or more. If the ratio is less than 0.45, the necessary low temperature viscosity and sufficient fuel saving performance may not be obtained.
  • the evaporation loss amount of the lubricating oil composition of the present invention is preferably 15% by mass or less in terms of NOACK evaporation, more preferably 14% by mass or less, and further preferably 13% by mass or less.
  • the content is most preferably 12% by mass or less.
  • the alkaline earth metal salicylate detergent containing boron when used as the salicylate metal detergent, the boron content (MB1) and the alkaline earth metal content (in the lubricating oil composition of the present invention) (MB1) / (MB2) of MB2) is preferably 0.1 or more, more preferably 0.15 or more, and further preferably 0.2 or more. (MB1) / (MB2) is preferably 0.5 or less, more preferably 0.4 or less, and still more preferably 0.3 or less.
  • R 1 to R 4 are alkyl groups having 8 or 13 carbon atoms, a and b are 2, and the concentration of molybdenum element is 10% by mass, 11% by mass of sulfur
  • C Salicylate-based metal detergent
  • Ca salicylate metal ratio 2.3, carbon number of alkyl group 14-18, Ca content 6.2 mass%, base number 180 mgKOH / g
  • C-2 Overbased boric acid
  • Ca salicylate metal ratio of 2.5, alkyl group having 14 to 18 carbon atoms, Ca content of 6.8% by mass, B content of 2.7% by mass, base number of 190 mgKOH / g
  • D Ashless friction modifier (D-1) N-oleoyl-N-methyl- ⁇ -alanine (D-2) oleoyl sarcosine (D-3) N-lauroyl-N-methyl- ⁇ -alanine (D-4) N-lauroyl sarcosine
  • E Antiwear agent
  • ZnDTP primary alkyl group, carbon number 8, Zn content 9.0% by mass, P content 7.4% by mass, S content 15% by mass
  • E-2 ZnDTP: secondary alkyl group, 4 and 6 carbon atoms, Zn content 8.0% by mass, P content 7.2% by mass, S content 15% by mass
  • F Other additives
  • F-2) Polybutenyl succinimide: molecular weight 9000, N content 0.7 mass% (F-3)
  • the prepared lubricating oil composition was subjected to a motoring friction test under the following conditions to measure the friction torque.
  • the average friction torque of each lubricating oil composition was calculated, and the improvement rate based on the friction torque of Comparative Examples 1 and 4 was calculated.
  • the obtained results are shown in% in Table 2 together with the physical properties of the lubricating oil composition.
  • the alkyl group, alkenyl group, or acyl group is Those having less than 15 carbon atoms are less effective (Comparative Examples 1 to 4), but contain compounds selected from amino acids having an alkyl group, alkenyl group or acyl group having 15 to 24 carbon atoms and / or derivatives thereof. It is obvious that the lubricating oil composition for internal combustion engines of the present invention exhibits a remarkable effect that the friction coefficient is low and the fuel saving performance is excellent.
  • the lubricating oil composition for an internal combustion engine of the present invention can be suitably used as a fuel-saving engine oil such as a fuel-saving gasoline engine oil or a fuel-saving diesel engine oil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

The present invention provides a lubricating oil composition for internal combustion engines that has excellent fuel-saving performance by further reducing friction. The lubricating oil composition for internal combustion engines contains, in (A) a lubricant base oil with a dynamic viscosity at 100°C of 2.0-5.0 mm2/s, (B) a molybdenum friction modifier in an amount of 0.005-0.2 mass% in terms of molybdenum content relative to the total amount of the composition, (C) a salicylate metal cleaning agent in an amount of 0.01-1 mass% in terms of metal content relative to the total amount of the composition, and (D) at least one compound selected from amino acids with a C15 to C24 alkyl group, alkenyl group or acyl group and/or derivatives thereof in an amount of 0.01-10 mass%.

Description

内燃機関用潤滑油組成物Lubricating oil composition for internal combustion engines
 本発明は、省燃費性を向上させた内燃機関用潤滑油組成物に関する。 The present invention relates to a lubricating oil composition for an internal combustion engine with improved fuel economy.
 石油危機を契機に実施され始めた自動車の低燃費化は、資源保護および環境保護の観点から、依然重要課題の一つであり、そのニーズは近年ますます大きくなってきている。自動車の燃費向上は車体重量の軽量化、エンジンの燃焼改善、およびエンジンや駆動系の低摩擦化により行われてきた。エンジンの低摩擦化には、動弁系機構の改良、摺動部材の表面粗さ低減、および低燃費の内燃機関用潤滑油組成物(エンジン油)の使用などがある。
 これらの中で、低燃費エンジン油の使用は、費用対効果に優れていることから、市場においても一般的になりつつある。エンジン油による低燃費対策としてはピストン系や軸受部などの流体潤滑条件下における摩擦損失の低減を意図した低粘度化が検討されており、また、動弁系などの混合潤滑下および境界潤滑下における摩擦損失の低減を意図した有機モリブデン化合物のような摩擦低減剤の添加が提案されている。
 このような省燃費エンジン油としては、例えば、特許文献1には、100℃での動粘度が2~8mm/sで、芳香族含有量が15質量%の基油に特定の添加剤(アルカリ土類金属サリシレート系清浄剤、モリブデンジチオカーバメート系摩擦低減剤等)を特定量含有するエンジン油組成物が、また、特許文献2には、100℃での動粘度が3~8mm/sのエステル系潤滑油基油を含有する潤滑油基油に、モリブデン系摩擦調整剤またはエステル系やアミン系の無灰系摩擦調整剤と過塩基性Caサリシレートを配合した内燃機関用潤滑油組成物が、さらに、特許文献3には、硫化オキシモリブデンジチオカーバメートと酸アミド化合物及び脂肪族部分エステル化合物及び/または脂肪族アミン化合物などの無灰系摩擦調整剤を組み合わせて配合した内燃機関用潤滑油組成物が提案されている。
Low fuel consumption of automobiles, which has begun to be implemented in the wake of the oil crisis, is still one of the important issues from the viewpoint of resource protection and environmental protection, and its needs have been increasing in recent years. Automobile fuel efficiency has been improved by reducing the weight of the vehicle body, improving the combustion of the engine, and reducing the friction of the engine and drive system. Reduction of the friction of the engine includes improvement of the valve train mechanism, reduction of the surface roughness of the sliding member, and use of a low fuel consumption lubricating oil composition (engine oil) for an internal combustion engine.
Among these, the use of low fuel consumption engine oil is becoming more popular in the market because of its cost effectiveness. As measures to reduce fuel consumption due to engine oil, lowering the viscosity with the aim of reducing friction loss under fluid lubrication conditions such as piston systems and bearings is being studied, and also under mixed lubrication and boundary lubrication such as valve systems. Addition of friction reducing agents such as organic molybdenum compounds intended to reduce friction loss in
As such a fuel-saving engine oil, for example, Patent Document 1 discloses a specific additive (such as a base oil having a kinematic viscosity at 100 ° C. of 2 to 8 mm 2 / s and an aromatic content of 15% by mass). Engine oil compositions containing specific amounts of alkaline earth metal salicylate detergent, molybdenum dithiocarbamate friction reducer, etc., and Patent Document 2 discloses a kinematic viscosity at 100 ° C. of 3 to 8 mm 2 / s. Lubricating oil composition for internal combustion engines in which a lubricating base oil containing an ester based lubricating base oil is blended with a molybdenum friction modifier or an ester-based or amine-based ashless friction modifier and an overbased Ca salicylate Furthermore, Patent Document 3 combines sulfurized oxymolybdenum dithiocarbamate with an ashless friction modifier such as an acid amide compound, an aliphatic partial ester compound and / or an aliphatic amine compound. A lubricating oil composition for an internal combustion engine that has been blended is proposed.
 しかしながら、モリブデン系摩擦調整剤は、配合量を増加させても、摩擦低減効果には限界があり、また沈殿物が発生して不安定となるなどの問題があり、さらにエステル系やアミン系の無灰系摩擦調整剤を併用しても、摩擦低減効果のさらなる向上はほとんど認められなかった。しかも、最近、潤滑油に求められる省燃費性は益々高くなっており、従来のエンジン油では未だに十分な省燃費性は得られていない。
 一方、サルコシンやアスパラギン酸誘導体は無灰系摩擦調整剤として知られているが(例えば、特許文献4~6)、内燃機関用潤滑油組成物に配合することも、モリブデン系摩擦調整剤と併用することにより摩擦低減の相乗効果を奏することも知られておらず、当業者がこの作用効果を予測できるものではなかった。
However, even if the amount of the molybdenum-based friction modifier is increased, there is a limit to the effect of reducing friction, and there is a problem that the precipitate is generated and becomes unstable. Even when an ashless friction modifier was used in combination, there was hardly any further improvement in the friction reducing effect. In addition, recently, fuel efficiency required for lubricating oil has been increased, and sufficient fuel efficiency has not been obtained with conventional engine oils.
On the other hand, sarcosine and aspartic acid derivatives are known as ashless friction modifiers (for example, Patent Documents 4 to 6), but they can also be used in lubricating oil compositions for internal combustion engines in combination with molybdenum friction modifiers. Thus, it is not known that there is a synergistic effect of reducing friction, and it has not been possible for those skilled in the art to predict this effect.
特開平8-302378号公報JP-A-8-302378 特開2005-41998号公報Japanese Patent Laid-Open No. 2005-41998 特開2008-106199号公報JP 2008-106199 A 特開平9-316475号公報JP-A-9-316475 特開2008-179669号公報JP 2008-179669 A 特開2005-290181号公報JP 2005-290181 A
 本発明は上記問題を解決するもので、本発明が解決しようとする課題は、さらなる摩擦低減を図り、省燃費性能に優れた内燃機関用潤滑油組成物を提供することにある。 The present invention solves the above-mentioned problems, and the problem to be solved by the present invention is to provide a lubricating oil composition for an internal combustion engine that further reduces friction and is excellent in fuel efficiency.
 本発明者は上記課題を解決するために鋭意研究を重ねた結果、(A)100℃における動粘度が2.0~5.0mm/sの潤滑油基油に、(B)モリブデン系摩擦調整剤、(C)サリシレート系金属系清浄剤および(D)炭素数15~24のアルキル基又はアルケニル基又はアシル基を有するアミノ酸及び/又はその誘導体から選ばれる1種類以上の化合物をそれぞれ所定量含有する内燃機関用潤滑油組成物により、さらなる摩擦低減および省燃費性能が達成できることを見いだした。 As a result of intensive studies to solve the above problems, the present inventor has obtained (A) a lubricating base oil having a kinematic viscosity at 100 ° C. of 2.0 to 5.0 mm 2 / s, and (B) a molybdenum-based friction. A predetermined amount of each of one or more compounds selected from a conditioning agent, (C) a salicylate-based metal detergent, and (D) an amino acid having an alkyl group, alkenyl group, or acyl group having 15 to 24 carbon atoms and / or a derivative thereof. It has been found that further friction reduction and fuel saving performance can be achieved by the contained lubricating oil composition for an internal combustion engine.
 本発明は、かかる知見に基づきなされたもので、次のとおりである。
[1](A)100℃における動粘度が2.0~5.0mm/sの潤滑油基油に、(B)モリブデン系摩擦調整剤を組成物全量基準でモリブデン量として0.005~0.2質量%、(C)サリシレート系金属系清浄剤を組成物全量基準で金属量として0.01~1質量%および(D)炭素数15~24のアルキル基又はアルケニル基又はアシル基を有するアミノ酸及び/又はその誘導体から選ばれる1種類以上の化合物を0.01~10質量%含有する内燃機関用潤滑油組成物。
[2]前記(C)サリシレート系金属系清浄剤が、ホウ素を含有するサリシレート系金属系清浄剤である上記[1]に記載の内燃機関用潤滑油組成物。
[3]150℃におけるHTHS粘度が1.9~2.7mPa/sである上記[1]又は[2]に記載の内燃機関用潤滑油組成物。
[4]150℃におけるHTHS粘度が1.9~2.4mPa/sである上記[1]~[3]のいずれか1項に記載の内燃機関用潤滑油組成物。
[5]NOACK蒸発量が15質量%以下である上記[1]~[4]のいずれか1項に記載の内燃機関用潤滑油組成物。
[6](E)ジアルキルジチオリン酸亜鉛摩耗防止剤を組成物全量基準で、リン量として、0.02~0.20質量%含有する上記[1]~[5]のいずれか1項に記載の内燃機関用潤滑油組成物。
The present invention has been made based on such findings and is as follows.
[1] (A) A lubricant base oil having a kinematic viscosity at 100 ° C. of 2.0 to 5.0 mm 2 / s, and (B) a molybdenum-based friction modifier as 0.005 to molybdenum based on the total amount of the composition. 0.2% by mass, (C) 0.01 to 1% by mass of a metal based on the total amount of the salicylate-based metal detergent and (D) an alkyl group, alkenyl group or acyl group having 15 to 24 carbon atoms A lubricating oil composition for internal combustion engines, which contains 0.01 to 10% by mass of one or more compounds selected from amino acids and / or derivatives thereof.
[2] The lubricating oil composition for an internal combustion engine according to [1], wherein the (C) salicylate-based metal detergent is a salicylate-based metal detergent containing boron.
[3] The lubricating oil composition for internal combustion engines according to the above [1] or [2], wherein the HTHS viscosity at 150 ° C. is 1.9 to 2.7 mPa / s.
[4] The lubricating oil composition for internal combustion engines according to any one of [1] to [3], wherein the HTHS viscosity at 150 ° C. is 1.9 to 2.4 mPa / s.
[5] The lubricating oil composition for internal combustion engines according to any one of the above [1] to [4], wherein the NOACK evaporation amount is 15% by mass or less.
[6] The composition according to any one of [1] to [5], wherein (E) the zinc dialkyldithiophosphate antiwear agent is contained in an amount of 0.02 to 0.20% by mass based on the total amount of the composition. A lubricating oil composition for internal combustion engines.
 本発明の内燃機関用潤滑油組成物は、摩擦係数が低く、省燃費性能に優れているという顕著な効果を奏する。 The lubricating oil composition for an internal combustion engine of the present invention has a remarkable effect that it has a low coefficient of friction and excellent fuel efficiency.
(A)潤滑油基油
 本発明における潤滑油基油は、100℃における動粘度が2.0~5.0mm/sの潤滑油基油であれば、特に限定されるものではなく、通常の内燃機関用潤滑油組成物の潤滑油基油として用いられているものであれば、鉱油、合成油を問わず使用することができる。
 この潤滑油基油の100℃での動粘度は、2.5mm/s以上、より好ましくは3.0mm/s以上、さらに好ましくは3.5mm2/s以上、特に好ましくは3.8mm2/s以上、最も好ましくは4.0mm2/s以上である。また、4.5mm2/s以下であることが好ましく、4.3mm2/s以下であることがさらに好ましい。
 100℃における動粘度が2.0mm/s未満の場合、潤滑箇所での油膜形成が不十分となるため潤滑性に劣り、また潤滑油基油の蒸発損失が大きくなる。一方、5.0mm/sを超えると省燃費効果が小さくなり、また低温粘度特性が悪化する。
 なお、本発明において、100℃での動粘度とは、ASTM D-445に規定される100℃での動粘度である。
(A) Lubricating base oil The lubricating base oil in the present invention is not particularly limited as long as it is a lubricating base oil having a kinematic viscosity at 100 ° C. of 2.0 to 5.0 mm 2 / s. Any mineral oil and synthetic oil can be used as long as they are used as the lubricating base oil of the lubricating oil composition for internal combustion engines.
The lubricating base oil has a kinematic viscosity at 100 ° C. of 2.5 mm 2 / s or more, more preferably 3.0 mm 2 / s or more, still more preferably 3.5 mm 2 / s or more, and particularly preferably 3.8 mm. 2 / s or more, and most preferably 4.0 mm 2 / s or more. Also, preferably not more than 4.5 mm 2 / s, more preferably not more than 4.3 mm 2 / s.
When the kinematic viscosity at 100 ° C. is less than 2.0 mm 2 / s, the formation of an oil film at the lubrication point becomes insufficient, resulting in poor lubricity and an increase in evaporation loss of the lubricating base oil. On the other hand, if it exceeds 5.0 mm 2 / s, the fuel saving effect is reduced, and the low-temperature viscosity characteristics are deteriorated.
In the present invention, the kinematic viscosity at 100 ° C. is the kinematic viscosity at 100 ° C. as defined in ASTM D-445.
 本発明における潤滑油基油の40℃での動粘度は14mm2/s以上であることが好ましく、より好ましくは16mm2/s以上、さらに好ましくは18mm2/s以上であり、また、好ましくは25mm2/s以下であり、より好ましくは23mm2/s以下、より好ましくは22mm2/s以下、さらに好ましくは21mm2/s以下、特に好ましくは20mm2/s以下である。ここでいう40℃における動粘度とは、ASTM D-445に規定される40℃での動粘度を示す。40℃での動粘度を25mm2/s以下とすることにより、良好な低温粘度特性を得ることができ、また十分な省燃費性を得ることができ、14mm2/s以上とすることにより潤滑箇所での油膜形成が十分となり良好な潤滑性が得られ、また潤滑油組成物の蒸発損失を小さく抑えることができる。 The kinematic viscosity at 40 ° C. of the lubricating base oil in the present invention is preferably 14 mm 2 / s or more, more preferably 16 mm 2 / s or more, further preferably 18 mm 2 / s or more, and preferably It is 25 mm 2 / s or less, more preferably 23 mm 2 / s or less, more preferably 22 mm 2 / s or less, still more preferably 21 mm 2 / s or less, and particularly preferably 20 mm 2 / s or less. The kinematic viscosity at 40 ° C. here refers to the kinematic viscosity at 40 ° C. as defined in ASTM D-445. By setting the kinematic viscosity at 40 ° C. to 25 mm 2 / s or less, good low-temperature viscosity characteristics can be obtained, and sufficient fuel economy can be obtained, and by setting it to 14 mm 2 / s or more, lubrication can be achieved. Oil film formation at the location is sufficient and good lubricity is obtained, and evaporation loss of the lubricating oil composition can be kept small.
 また、本発明の潤滑油基油は、粘度指数が120以上であることが好ましく、125以上であることがさらに好ましく、130以上であることがより好ましく、132以上であることが特に好ましい。潤滑油基油の粘度指数を120以上とすることにより低温から高温まで優れた粘度特性が得られ、また低粘度であっても蒸発しにくい潤滑油組成物を得ることができる。粘度指数の上限については特に制限はなく、ノルマルパラフィン、スラックワックスやGTLワックス等、あるいはこれらを異性化したイソパラフィン系鉱油のような125~180程度のものや、コンプレックスエステル系基油やHVI-PAO系基油のような150~250程度のものも使用することができる。ただし、ノルマルパラフィン、スラックワックスやGTLワックス等、あるいはこれらを異性化したイソパラフィン系鉱油については、低温粘度特性を向上するために、180以下であることが好ましく、170以下であることがより好ましく、160以下であることがさらに好ましく、155以下であることが特に好ましい。なお、本発明において、粘度指数は、JIS K2283-1993に準拠して測定された粘度指数を意味する。 In addition, the lubricating base oil of the present invention preferably has a viscosity index of 120 or more, more preferably 125 or more, more preferably 130 or more, and particularly preferably 132 or more. By setting the viscosity index of the lubricating base oil to 120 or more, excellent viscosity characteristics from low temperature to high temperature can be obtained, and a lubricating oil composition that hardly evaporates even at low viscosity can be obtained. The upper limit of the viscosity index is not particularly limited, and is about 125 to 180, such as normal paraffin, slack wax, GTL wax, or isoparaffin mineral oil obtained by isomerizing these, complex ester base oil, HVI-PAO, etc. Oils of about 150 to 250 such as base oils can also be used. However, for normal paraffin, slack wax, GTL wax and the like, or isoparaffin-based mineral oil obtained by isomerizing these, it is preferably 180 or less, more preferably 170 or less, in order to improve low-temperature viscosity characteristics. It is more preferably 160 or less, and particularly preferably 155 or less. In the present invention, the viscosity index means a viscosity index measured in accordance with JIS K2283-1993.
 本実施形態に係る潤滑油基油の流動点は、好ましくは-10℃以下、より好ましくは-12.5℃以下、更に好ましくは-15℃以下、特に好ましくは-17℃以下である。流動点を-10℃以下とすることにより、その潤滑油基油を用いた潤滑油全体の低温流動性が良化する傾向にある。なお、本発明でいう流動点とは、JIS K 2269-1987に準拠して測定された流動点を意味する。 The pour point of the lubricating base oil according to this embodiment is preferably −10 ° C. or lower, more preferably −12.5 ° C. or lower, still more preferably −15 ° C. or lower, and particularly preferably −17 ° C. or lower. By setting the pour point to −10 ° C. or lower, the low temperature fluidity of the entire lubricating oil using the lubricating base oil tends to be improved. The pour point as used in the present invention means a pour point measured according to JIS K 2269-1987.
 本発明における潤滑油基油は、前述の潤滑油基油の条件を満たす限りにおいて、鉱油系基油または合成系基油を単独で用いることができるほか、2種類以上の鉱油系基油、または2種類以上の合成系基油の混合物であっても差し支えなく、鉱油系基油と合成油系基油の混合物であっても差し支えない。そして、上記混合物における2種類以上の基油の混合比は、任意に選ぶことができる。
 鉱油系基油としては、原油を常圧蒸留及び減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄及び白土処理等の精製処理等を適宜組み合わせて精製したパラフィン系、ナフテン系等の潤滑油基油等が例示できる。
As long as the lubricating base oil in the present invention satisfies the above-described lubricating base oil conditions, a mineral base oil or a synthetic base oil can be used alone, or two or more mineral base oils, or It may be a mixture of two or more kinds of synthetic base oils, or may be a mixture of mineral oil base oils and synthetic oil base oils. And the mixing ratio of 2 or more types of base oil in the said mixture can be chosen arbitrarily.
As mineral base oils, lubricating oil fractions obtained by subjecting crude oil to atmospheric distillation and reduced pressure distillation are subjected to solvent deburring, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, sulfuric acid Examples thereof include paraffinic and naphthenic lubricating base oils and the like, which are refined by appropriately combining purification treatments such as washing and clay treatment.
 合成系基油としては、ポリ‐α‐オレフィン(例えば、ポリブテン、1‐オクテンオリゴマー、1‐デセンオリゴマー、エチレン‐プロピレンオリゴマー等)若しくはその水素化物、イソブテンオリゴマー若しくはその水素化物、イソパラフィン、アルキルベンゼン、アルキルナフタレン、ジエステル類(例えば、ジブチルマレエート、ジトリデシルグルタレート、ジ‐2‐エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ‐2‐エチルヘキシルセバケート等)、α‐オレフィンとジエステル類との共重合体、ポリオールエステル(例えば、トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール‐2‐エチルヘキサノエート、ペンタエリスリトールペラルゴネート等)、ジアルキルジフェニルエーテル、ポリフェニルエーテル等が例示できる。 Synthetic base oils include poly-α-olefins (eg polybutene, 1-octene oligomers, 1-decene oligomers, ethylene-propylene oligomers) or their hydrides, isobutene oligomers or their hydrides, isoparaffins, alkylbenzenes, alkyls Naphthalene, diesters (eg, dibutyl maleate, ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridecyl adipate, di-2-ethylhexyl sebacate), co-weight of α-olefin and diester Coalesced, polyol esters (eg, trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol-2-ethylhexanoate, pentaerythritol pelar Gonates, etc.), dialkyl diphenyl ethers, polyphenyl ethers and the like.
 本発明の潤滑油基油は、鉱油系基油においては、飽和炭化水素分が90%以上である基油が好ましい。なお、本発明において、この飽和炭化水素分は、ASTM D-2007で測定される値を意味する。
 また、この基油は、API(米国石油学会)による基油分類に基づく分類でグループIII以上に分類されるもの、およびワックスを異性化した基油などが好ましい。
 この基油の製造方法については、特に制限はないが、原油を常圧蒸留して得られる常圧残油を、脱硫、水素化分解し、設定された粘度グレードに分留、あるいはその残油を溶剤脱ろう、あるいは接触脱ろうし、必要であればさらに、溶剤抽出、水素化し、基油としたものが好ましい。なかでも接触脱ろうして得られる基油が好ましい。
The lubricating base oil of the present invention is preferably a base oil having a saturated hydrocarbon content of 90% or more in the mineral base oil. In the present invention, this saturated hydrocarbon content means a value measured by ASTM D-2007.
The base oils are preferably those classified into group III or higher based on the base oil classification by API (American Petroleum Institute), and base oils obtained by isomerizing wax.
There are no particular restrictions on the method for producing this base oil, but atmospheric residual oil obtained by atmospheric distillation of crude oil is desulfurized, hydrocracked and fractionated into a set viscosity grade, or the residual oil. It is preferable to use a base oil obtained by solvent dewaxing or catalytic dewaxing and, if necessary, solvent extraction and hydrogenation. Of these, base oils obtained by catalytic dewaxing are preferred.
 上記潤滑油基油には、また、近年は、常圧蒸留残油をさらに減圧蒸留し、必要な粘度グレードに分留した後、溶剤精製、水素化精製等のプロセスを経て、溶剤脱ろうして製造する基油製造過程において、脱ろう過程において副性する、石油系ワックスを、水素化異性化した石油系ワックス異性化潤滑油基油や、フィッシャー・トロプシュプロセス等により製造されるGTL WAX(ガストゥリキッドワックス)を異性化する手法で製造されるGTL系ワックス異性化潤滑油基油等も含まれる。この場合のワックス異性化潤滑油基油の基本的な製造過程は水素化分解基油の製造方法と同じである。 In recent years, the above-mentioned lube base oil has been further subjected to distillation under reduced pressure at atmospheric distillation residue, fractionated to the required viscosity grade, and then subjected to processes such as solvent refining and hydrorefining to dewax the solvent. GTL WAX (gas Also included are GTL-based wax isomerized lubricating base oils and the like produced by isomerizing (Turi Liquid Wax). In this case, the basic production process of the wax isomerized lubricating base oil is the same as that of the hydrocracking base oil.
 上記基油の%Cは特に制限はないが、好ましくは80以上、より好ましくは82以上、さらに好ましくは85以上、特に好ましくは86以上である。また、好ましくは98以下、さらに好ましくは95以下、特に好ましくは90以下、最も好ましくは88以下である。潤滑油基油の%Cを80以上とすることにより、粘度-温度特性、熱・酸化安定性及び摩擦特性が良化する傾向にあり、更に、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が良化する傾向にある。また、潤滑油基油の%Cを98以下とすることにより、添加剤の溶解性が良化する傾向にある。 While% C P is not particularly limited in the base oil, preferably 80 or more, more preferably 82 or more, more preferably 85 or more, particularly preferably 86 or more. Further, it is preferably 98 or less, more preferably 95 or less, particularly preferably 90 or less, and most preferably 88 or less. By the% C P of the lubricating base oil with more than 80, the viscosity - tends to temperature characteristics, thermal and oxidation stability and frictional properties will be improved, further, additives to the lubricating base oil is blended In some cases, the effectiveness of the additive tends to be improved. Further, by making the% C P of the lubricating base oil and 98 or less, tends to solubility of additives is improved.
 上記基油の%Cは特に制限はないが、好ましくは20以下、より好ましくは15以下、更に好ましくは14以下である。また、好ましくは3以上、より好ましくは8以上、特に好ましくは10以上である。潤滑油基油の%Cを20以下とすることにより、粘度-温度特性、熱・酸化安定性及び摩擦特性が良化する傾向にある。また、%Cを3以上とすることにより、添加剤の溶解性が良化する傾向にある。 While% C N is not particularly limited in the base oil, preferably 20 or less, more preferably 15 or less, more preferably 14 or less. Further, it is preferably 3 or more, more preferably 8 or more, and particularly preferably 10 or more. The% C N of the lubricating base oil by 20 or less, the viscosity - temperature characteristic, heat and oxidation stability and frictional properties will tend to be improved. Further, by setting% CN to 3 or more, the solubility of the additive tends to be improved.
 上記基油の%Cは、特に制限はないが、3未満が好ましく、より好ましくは2以下であり、より一層好ましくは1以下であり、最も好ましくは実質的に0である。10を超すと本発明の目的の一つである耐熱性の向上が不十分となる。
 なお、上記%Cは、ASTM D3238-85に準拠した方法(n-d-M環分析)で測定した値を意味する。
The% C A of the base oil is not particularly limited, is preferably less than 3, more preferably 2 or less, even more preferably 1 or less, and most preferably substantially zero. If it exceeds 10, the improvement of heat resistance, which is one of the objects of the present invention, becomes insufficient.
Note that the% C A means a value measured by a method in accordance with ASTM D3238-85 (n-d-M ring analysis).
 上記基油の飽和分は、好ましくは80以上、より好ましくは90以上、さらに好ましくは95以上、特に好ましくは98以上、最も好ましくは99以上である。飽和分を80以上とすることにより、粘度-温度特性、熱・酸化安定性及び摩擦特性が良化する傾向にあり、更に、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が良化する傾向にある。 The saturated content of the base oil is preferably 80 or more, more preferably 90 or more, still more preferably 95 or more, particularly preferably 98 or more, and most preferably 99 or more. By setting the saturated content to 80 or more, viscosity-temperature characteristics, thermal / oxidation stability, and friction characteristics tend to be improved, and further, when additives are blended in lubricating base oils, The effect tends to be improved.
 また、上記基油の硫黄分は、特に制限はないが、0.03質量%以下が好ましく、0.01質量%以下がより好ましく、また、実質的に硫黄を含有しないものが、特に好ましい。この硫黄分は少ないほど精製度が高いことを意味し、スラッジの溶解性の問題が発生し難いことになる。
 硫黄分の測定法に特に制限はないが、JIS K2541-1996等が一般に使用される。
The sulfur content of the base oil is not particularly limited, but is preferably 0.03% by mass or less, more preferably 0.01% by mass or less, and particularly preferably one containing substantially no sulfur. The smaller the sulfur content, the higher the degree of purification, and the less the problem of sludge solubility occurs.
The method for measuring the sulfur content is not particularly limited, but JIS K2541-1996 is generally used.
 上記基油の蒸発損失量は特に制限はないが、NOACK蒸発量で25質量%以下であることが好ましく、21質量%以下であることがより好ましく、18質量%以下であることがさらに好ましく、16質量%以下であることがさらに好ましく、15質量%以下であることが特に好ましく、14質量%以下であることが最も好ましい。潤滑油基油のNOACK蒸発量を25質量%以下とすることにより、潤滑油の蒸発損失が小さく、粘度増加等の原因を抑えることができるため好ましい。なお、ここでいうNOACK蒸発量とは、ASTM D 5800に準拠して測定される潤滑油の蒸発量を測定したものである。 The amount of evaporation loss of the base oil is not particularly limited, but the NOACK evaporation amount is preferably 25% by mass or less, more preferably 21% by mass or less, and further preferably 18% by mass or less, It is further preferably 16% by mass or less, particularly preferably 15% by mass or less, and most preferably 14% by mass or less. It is preferable to set the NOACK evaporation amount of the lubricating base oil to 25% by mass or less because the evaporation loss of the lubricating oil is small and causes such as an increase in viscosity can be suppressed. Here, the NOACK evaporation amount is a value obtained by measuring the evaporation amount of the lubricating oil measured in accordance with ASTM D 5800.
(B)モリブデン系摩擦調整剤
 本発明におけるモリブデン系摩擦調整剤としては、例えば、ジチオカルバミン酸モリブデン(MoDTC)およびジチオリン酸モリブデン(MoDTP)等の硫黄を含有する有機モリブデン系摩擦調整剤を挙げることができる。ジチオカルバミン酸モリブデンとしては、具体的には下記の一般式(1)で表される化合物を例示することができる。また、ジチオリン酸モリブデンとしては、具体的には下記の一般式(2)で表される化合物を例示することができる。
(B) Molybdenum friction modifier In the present invention, examples of the molybdenum friction modifier include organic molybdenum friction modifiers containing sulfur such as molybdenum dithiocarbamate (MoDTC) and molybdenum dithiophosphate (MoDTP). it can. Specific examples of molybdenum dithiocarbamate include compounds represented by the following general formula (1). Specific examples of molybdenum dithiophosphate include compounds represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(1)、(2)において、R~Rは、それぞれ個別に、炭素数1~24の炭化水素基を示し、a、b、c、dは、それぞれ個別に、0~4のいずれかで、かつa+b=4、c+d=4である整数を示す。 In the general formulas (1) and (2), R 1 to R 8 each independently represent a hydrocarbon group having 1 to 24 carbon atoms, and a, b, c, and d each independently represent 0 to 4 And an integer where a + b = 4 and c + d = 4.
 一般式(1)、(2)のR~Rで表される炭素数1~24の炭化水素基の好ましい例としては、それぞれ個別に炭素数1~24の直鎖状又は分枝状のアルキル基、炭素数5~13のシクロアルキル基又は直鎖状若しくは分枝状アルキルシクロアルキル基、炭素数3~24の直鎖状又は分枝状のアルケニル基、炭素数6~18のアリール基又は直鎖状若しくは分枝状アルキルアリール基、炭素数7~19のアリールアルキル基等を挙げることができる。上記アルキル基やアルケニル基は、第1級でも、第2級でも、第3級であってもよい。 Preferred examples of the hydrocarbon group having 1 to 24 carbon atoms represented by R 1 to R 8 in the general formulas (1) and (2) are each linear or branched having 1 to 24 carbon atoms. Alkyl group, cycloalkyl group having 5 to 13 carbon atoms or linear or branched alkylcycloalkyl group, linear or branched alkenyl group having 3 to 24 carbon atoms, aryl having 6 to 18 carbon atoms A straight-chain or branched alkylaryl group, an arylalkyl group having 7 to 19 carbon atoms, and the like. The alkyl group or alkenyl group may be primary, secondary, or tertiary.
 本発明の潤滑油組成物におけるモリブデン系摩擦調整剤としては、上記の他に、例えばコハク酸イミド等の塩基性窒素化合物、三酸化モリブデン等の酸性モリブデン化合物及び硫化水素や五硫化リン等の硫黄化合物との反応生成物である有機モリブデン錯体等も好ましい例として挙げられる。 In addition to the above, the molybdenum friction modifier in the lubricating oil composition of the present invention includes, for example, basic nitrogen compounds such as succinimide, acidic molybdenum compounds such as molybdenum trioxide, and sulfur such as hydrogen sulfide and phosphorus pentasulfide. An organic molybdenum complex which is a reaction product with a compound is also a preferred example.
 本発明の潤滑油組成物において、モリブデン系摩擦調整剤の含有量は、組成物全量基準で、モリブデン元素換算量として、0.005質量%以上、より好ましくは0.01質量%以上であり、さらに好ましくは0.03質量%以上であり、特に好ましくは0.05質量%以上であり、0.2質量%以下、好ましくは0.1質量%以下である。モリブデン系摩擦調整剤の含有量が、モリブデン元素換算量で0.005質量%未満である場合は、際立った省燃費効果が得られず、一方、モリブデン系摩擦調整剤の含有量が、モリブデン元素換算量で0.2質量%を超える場合は、含有量に見合うだけの省燃費効果の向上が得られず、好ましくない。 In the lubricating oil composition of the present invention, the content of the molybdenum-based friction modifier is 0.005% by mass or more, more preferably 0.01% by mass or more, in terms of molybdenum element, based on the total amount of the composition. More preferably, it is 0.03 mass% or more, Most preferably, it is 0.05 mass% or more, 0.2 mass% or less, Preferably it is 0.1 mass% or less. When the content of the molybdenum-based friction modifier is less than 0.005% by mass in terms of molybdenum element, a remarkable fuel saving effect cannot be obtained, while the content of the molybdenum-based friction modifier is the elemental molybdenum. When the converted amount exceeds 0.2% by mass, it is not preferable because an improvement in the fuel saving effect corresponding to the content cannot be obtained.
 本発明の潤滑油組成物において、モリブデン系摩擦調整剤としては硫黄を含有する有機モリブデン系摩擦調整剤が好ましく用いられ、中でもジチオリン酸モリブデン、ジチオカルバミン酸モリブデンが好ましく用いられるが、他の成分との相乗効果により低温から高温に渡り省燃費性能を格段に向上できることから、ジチオカルバミン酸モリブデンであることが特に好ましい。 In the lubricating oil composition of the present invention, sulfur-containing organomolybdenum friction modifier is preferably used as the molybdenum friction modifier, and among them, molybdenum dithiophosphate and molybdenum dithiocarbamate are preferably used. Molybdenum dithiocarbamate is particularly preferable because fuel saving performance can be remarkably improved from low temperature to high temperature due to a synergistic effect.
(C)サリシレート系金属系清浄剤
 本発明でいうサリシレート系金属系清浄剤としては、潤滑油に通常用いられる任意の化合物が使用可能であり、例えば、直鎖状もしくは分岐鎖状の炭化水素基を有し、さらにOH基および/またはカルボニル基を有する油溶性金属塩の過塩基性化合物を用いることができる。また、アルカリ土類金属サリシレートの過塩基性金属塩、アルカリ土類金属水酸化物または酸化物、必要によりホウ酸または無水ホウ酸を反応させることによって得ることができる過塩基性金属塩を用いることができる。サリシレート系金属系清浄剤としては、ホウ素を含有するサリシレート系金属系清浄剤が特に好ましい。アルカリ土類金属としては、マグネシウム、カルシウム、バリウムなどがあげられるが、カルシウムが好ましい。過塩基性金属塩としては、アルカリ土類金属ホウ酸塩またはアルカリ土類金属炭酸塩で過塩基化されたOH基および/またはカルボニル基を含有する化合物の油溶性金属塩を用いることがより好ましい。特に、省燃費性に優れる点から、アルカリ土類金属サリシレートを用いることが好ましく、アルカリ土類金属ホウ酸塩で過塩基化されたアルカリ土類金属サリシレートを用いることがより好ましい。
(C) Salicylate metal detergent As the salicylate metal detergent referred to in the present invention, any compound usually used in lubricating oil can be used. For example, a linear or branched hydrocarbon group Further, an overbased compound of an oil-soluble metal salt having an OH group and / or a carbonyl group can be used. Also, an overbased metal salt of alkaline earth metal salicylate, an alkaline earth metal hydroxide or oxide, and an overbased metal salt obtainable by reacting boric acid or anhydrous boric acid if necessary Can do. As the salicylate metal detergent, a salicylate metal detergent containing boron is particularly preferable. Examples of alkaline earth metals include magnesium, calcium, barium and the like, with calcium being preferred. As the overbased metal salt, it is more preferable to use an oil-soluble metal salt of a compound containing an OH group and / or a carbonyl group overbased with an alkaline earth metal borate or an alkaline earth metal carbonate. . In particular, it is preferable to use an alkaline earth metal salicylate from the viewpoint of excellent fuel economy, and it is more preferable to use an alkaline earth metal salicylate overbased with an alkaline earth metal borate.
 本発明でいうサリシレート系金属系清浄剤は、塩基価が50mgKOH/g以上であることが好ましく、100mgKOH/g以上であることがより好ましく、120mgKOH/g以上であることがさらに好ましく、140mgKOH/g以上であることが特に好ましい。また、300mgKOH/g以下であることが好ましく、200mgKOH/g以下であることがより好ましい。塩基価が50mgKOH/g未満の場合は、粘度増加が大きくなることにより省燃費性が悪化すると共に、その添加による摩擦低減効果が不十分となる傾向にある。また、塩基価が300mgKOH/gを超える場合は、耐摩耗性添加剤などの効果が阻害されやすく、また、摩擦低減効果が不十分となる傾向にある。本発明でいう塩基価はJIS K 2501 5.2.3により測定される値である。 The salicylate-based metal detergent referred to in the present invention preferably has a base number of 50 mgKOH / g or more, more preferably 100 mgKOH / g or more, further preferably 120 mgKOH / g or more, and 140 mgKOH / g. The above is particularly preferable. Moreover, it is preferable that it is 300 mgKOH / g or less, and it is more preferable that it is 200 mgKOH / g or less. When the base number is less than 50 mgKOH / g, the increase in the viscosity is increased, so that the fuel efficiency is deteriorated and the friction reducing effect due to the addition tends to be insufficient. On the other hand, when the base number exceeds 300 mgKOH / g, the effect of the antiwear additive or the like tends to be hindered, and the friction reducing effect tends to be insufficient. The base number in the present invention is a value measured according to JIS K 2501 5.2.3.
 本発明で用いるサリシレート系金属系清浄剤の製造法は任意であるが、例えば、上記油溶性金属塩、アルカリ土類金属水酸化物または酸化物,必要によりホウ酸または無水ホウ酸を、水、メタノール、エタノール、プロパノール、ブタノールなどのアルコール及びベンゼン、トルエン、キシレンなどの希釈溶剤の存在下で20~200℃で2~8時間反応させ、つぎに100~200℃に加熱して水および必要に応じてアルコールおよび希釈溶剤を除去することにより得られる。これらの詳細な反応条件は、原料、反応物の量などに応じて適宜選択される。なお、製造法の詳細については、例えば特開昭60-116688号公報、特開昭61-204298号公報などに記載されている。上記方法で製造されたアルカリ土類金属ホウ酸塩で過塩基化させた油溶性金属塩の全塩基価は通常100mgKOH/g以上であるため、本発明の潤滑油組成物において好ましく用いることができる。 The production method of the salicylate-based metal detergent used in the present invention is arbitrary. For example, the oil-soluble metal salt, alkaline earth metal hydroxide or oxide, if necessary, boric acid or boric anhydride, water, In the presence of an alcohol such as methanol, ethanol, propanol or butanol and a diluting solvent such as benzene, toluene or xylene, the reaction is carried out at 20 to 200 ° C. for 2 to 8 hours, and then heated to 100 to 200 ° C. for water and necessary. Accordingly, it is obtained by removing the alcohol and the diluting solvent. These detailed reaction conditions are appropriately selected according to the raw materials, the amount of reactants, and the like. Details of the production method are described in, for example, JP-A-60-116688 and JP-A-61-204298. Since the total base number of the oil-soluble metal salt overbased with the alkaline earth metal borate produced by the above method is usually 100 mgKOH / g or more, it can be preferably used in the lubricating oil composition of the present invention. .
 本発明でいうサリシレート系金属系清浄剤は、金属比が4.0以下であることが好ましく、3.0以下がより好ましく、2.0以下がさらに好ましい。なお、金属比が4.0を超えると摩擦トルクの低減すなわち省燃費性が不十分となる可能性がある。また、金属比は1.0以上であることが好ましく、より好ましく1.1以上、さらに好ましくは1.5以上に調整されてなる金属系清浄剤である。金属比が1.0未満では内燃機関用潤滑油組成物の動粘度や低温粘度が高くなるため省燃費性や始動性に不具合が生じる可能性がある。
 なお、本発明にいう金属比とは、金属系清浄剤における金属元素の価数×金属元素含有量(mol%)/せっけん基含有量(mol%)で表され、金属元素とは、カルシウム、マグネシウム等、せっけん基とはスルホン酸基やフェノール基、サリチル酸基等を意味する。
The salicylate metal detergent referred to in the present invention preferably has a metal ratio of 4.0 or less, more preferably 3.0 or less, and even more preferably 2.0 or less. When the metal ratio exceeds 4.0, there is a possibility that the friction torque is reduced, that is, the fuel saving performance is insufficient. The metal ratio is preferably 1.0 or more, more preferably 1.1 or more, and even more preferably 1.5 or more. If the metal ratio is less than 1.0, the kinematic viscosity or low temperature viscosity of the lubricating oil composition for internal combustion engines becomes high, which may cause problems in fuel saving and startability.
The metal ratio referred to in the present invention is represented by the valence of the metal element in the metal detergent × the metal element content (mol%) / the soap group content (mol%), and the metal element is calcium, A soap group such as magnesium means a sulfonic acid group, a phenol group, a salicylic acid group, or the like.
 本発明でいうサリシレート系金属清浄剤の直鎖状もしくは分岐鎖状の炭化水素基は、アルキル基あるいはアルケニル基が好ましく、かかるアルキル基あるいはアルケニル基は、炭素数8以上が好ましく、より好ましくは10以上、さらに好ましくは12以上であり、また19以下が好ましい。炭素数が8未満では、油溶性が十分でないため好ましくない。また、直鎖でも分枝でもよいが、直鎖であることが好ましく、これらは1級アルキル基あるいはアルケニル基、2級アルキル基あるいはアルケニル基又は3級アルキル基あるいはアルケニル基でもよいが、2級アルキル基あるいはアルケニル基又は3級アルキル基あるいはアルケニル基の場合、分枝の位置は芳香族に結合している炭素のみのものが好ましい。 The linear or branched hydrocarbon group of the salicylate metal detergent referred to in the present invention is preferably an alkyl group or an alkenyl group, and the alkyl group or alkenyl group preferably has 8 or more carbon atoms, more preferably 10 As mentioned above, More preferably, it is 12 or more, and 19 or less is preferable. A carbon number of less than 8 is not preferable because the oil solubility is not sufficient. Further, it may be linear or branched, but is preferably linear, and these may be a primary alkyl group, alkenyl group, secondary alkyl group, alkenyl group, tertiary alkyl group or alkenyl group, but secondary In the case of an alkyl group, an alkenyl group, a tertiary alkyl group or an alkenyl group, the position of branching is preferably only carbon bonded to an aromatic group.
 本発明でいうサリシレート系金属系清浄剤の含有量は、潤滑油組成物全量を基準として、金属元素換算で、0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、特に好ましくは0.15質量%以上であり、また、1質量%以下、好ましくは0.5質量%以下、より好ましくは0.4質量%以下、さらに好ましくは0.3質量%以下、特に好ましくは0.25質量%以下、最も好ましくは0.2質量%以下である。その含有量が0.01質量%未満の場合、その添加による摩擦低減効果が不十分となる傾向にあり、潤滑油組成物の省燃費性、熱・酸化安定性および清浄性が不十分となる傾向にある。一方、含有量が1質量%を超える場合、その添加による摩擦低減効果が不十分となる傾向にあり、潤滑油組成物の省燃費性が不十分となる傾向にある。 The content of the salicylate metal detergent referred to in the present invention is 0.01% by mass or more, preferably 0.05% by mass or more, and more preferably 0.0% by mass or more in terms of metal element based on the total amount of the lubricating oil composition. 1% by mass or more, particularly preferably 0.15% by mass or more, and 1% by mass or less, preferably 0.5% by mass or less, more preferably 0.4% by mass or less, and further preferably 0.3% by mass. % Or less, particularly preferably 0.25% by mass or less, and most preferably 0.2% by mass or less. When the content is less than 0.01% by mass, the friction reduction effect due to the addition tends to be insufficient, and the fuel economy, thermal / oxidation stability and cleanliness of the lubricating oil composition are insufficient. There is a tendency. On the other hand, when the content exceeds 1% by mass, the friction reduction effect due to the addition tends to be insufficient, and the fuel economy of the lubricating oil composition tends to be insufficient.
 また、サリシレート系金属系清浄剤としてホウ素を含有するサリシレート系金属系清浄剤を用いた場合の潤滑油組成物におけるホウ素の含有量は、潤滑油組成物全量を基準として、ホウ素元素換算で、好ましくは0.01質量%以上、より好ましくは0.02質量%以上、更に好ましくは0.03質量%以上、特に好ましくは0.04質量%以上であり、また、好ましくは0.2質量%以下、より好ましくは0.1質量%以下、さらに好ましくは0.09質量%以下、特に好ましくは0.08質量%以下である。その含有量を0.001質量%以上とすることにより、その添加による摩擦低減効果が十分となる傾向にあり、潤滑油組成物の省燃費性、熱・酸化安定性および清浄性が十分となる傾向にある。一方、含有量を0.2質量%以下とすることにより、その添加による摩擦低減効果が十分となる傾向にあり、潤滑油組成物の省燃費性が十分となる傾向にある。 Further, the boron content in the lubricating oil composition when using a salicylate-based metallic detergent containing boron as the salicylate-based metallic detergent is preferably in terms of boron element based on the total amount of the lubricating oil composition. Is 0.01% by mass or more, more preferably 0.02% by mass or more, still more preferably 0.03% by mass or more, particularly preferably 0.04% by mass or more, and preferably 0.2% by mass or less. More preferably, it is 0.1 mass% or less, More preferably, it is 0.09 mass% or less, Most preferably, it is 0.08 mass% or less. When the content is 0.001% by mass or more, the friction reduction effect due to the addition tends to be sufficient, and the fuel economy, thermal / oxidation stability, and cleanliness of the lubricating oil composition are sufficient. There is a tendency. On the other hand, when the content is 0.2% by mass or less, the friction reduction effect due to the addition tends to be sufficient, and the fuel efficiency of the lubricating oil composition tends to be sufficient.
(D)無灰系摩擦調整剤
 本発明においては、無灰系摩擦調整剤として、炭素数15~24のアルキル基又はアルケニル基又はアシル基を有するアミノ酸及び/又はその誘導体を少なくとも1種類以上含有させるが、例えば、この化合物としては、次の一般式(3)に示す化合物を挙げることができる。
(D) Ashless Friction Modifier In the present invention, the ashless friction modifier contains at least one amino acid and / or derivative thereof having an alkyl group, alkenyl group or acyl group having 15 to 24 carbon atoms. For example, examples of the compound include compounds represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ここで、Rは炭素数15~24のアルキル基又はアルケニル基又はアシル基であり、R10は炭素数1~4のアルキル基または水素であり、R11は水素または炭素数1~10のアルキル基である。このアルキル基は直鎖状又は分岐鎖状又は環状構造を含むものでもよく、炭素原子はヘテロ原子で置換されていてもよく、水酸基、カルボキシル基、アミノ基などの官能基で修飾されていてもよい。R12は炭素数1~4のアルキル基または水素であり、nは0または1であり、Xは活性水素を有する官能基または当該官能基を有する炭化水素および当該官能基の金属塩又はエタノールアミン塩、またはメトキシ基である。 Here, R 9 is an alkyl group, alkenyl group or acyl group having 15 to 24 carbon atoms, R 10 is an alkyl group having 1 to 4 carbon atoms or hydrogen, and R 11 is hydrogen or one having 1 to 10 carbon atoms. It is an alkyl group. The alkyl group may include a linear, branched or cyclic structure, and the carbon atom may be substituted with a heteroatom, or may be modified with a functional group such as a hydroxyl group, a carboxyl group, or an amino group. Good. R 12 is an alkyl group having 1 to 4 carbon atoms or hydrogen, n is 0 or 1, and X is a functional group having active hydrogen or a hydrocarbon having the functional group and a metal salt or ethanolamine of the functional group A salt or a methoxy group.
 なお、一般式(3)中のRは、基油への溶解性、低摩擦性、省燃費性などの点から、炭素数16以上のアルキル基又はアルケニル基又はアシル基がより好ましく、炭素数17以上のアルキル基又はアルケニル基又はアシル基がさらに好ましく、炭素数18以上のアルキル基又はアルケニル基又はアシル基が特に好ましい。また、貯蔵安定性などの点から、炭素数23以下が好ましく、20以下がさらに好ましく、炭素数19以下が特に好ましく、炭素数18が最も好ましい。さらに摩擦低減効果の観点から直鎖状であることが好ましい。このようなアルキル基及びアルケニル基及びアシル基としては、具体的には、例えば、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンエイコシル基、ドコシル基、トリコシル基、テトラコシル基等のアルキル基(これらアルキル基は直鎖状でも分枝状でも良い)、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基、ヘンエイコセニル基、ドコセニル基、トリコセニル基、テトラコセニル基等のアルケニル基(これらアルケニル基は直鎖状でも分枝状でも良く、また二重結合の位置も任意である)、これらのアルキル基又はアルケニル基の末端にケトン基を有するアシル基等が挙げられる。 In addition, R 9 in the general formula (3) is more preferably an alkyl group, an alkenyl group, or an acyl group having 16 or more carbon atoms from the viewpoint of solubility in base oil, low friction properties, fuel economy, and the like. An alkyl group, alkenyl group or acyl group having 17 or more carbon atoms is more preferred, and an alkyl group, alkenyl group or acyl group having 18 or more carbon atoms is particularly preferred. Further, from the viewpoint of storage stability and the like, the number of carbon atoms is preferably 23 or less, more preferably 20 or less, particularly preferably 19 or less, and most preferably 18 carbon atoms. Furthermore, it is preferable that it is linear from a viewpoint of a friction reduction effect. Specific examples of such alkyl groups, alkenyl groups, and acyl groups include, for example, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, heneicosyl group, docosyl group, tricosyl group, tetracosyl group Etc. (these alkyl groups may be linear or branched), pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, icocenyl group, heneicosenyl group, dococenyl group, tricocenyl group, tetracocenyl group, etc. (The alkenyl group may be linear or branched, and the position of the double bond is arbitrary), acyl groups having a ketone group at the terminal of these alkyl groups or alkenyl groups, and the like. .
 一般式(3)中のR10は、貯蔵安定性などの点から、炭素数4以下のアルキル基がより好ましく、炭素数3以下がさらに好ましく、炭素数2以下が特に好ましい。
 R11のアルキル基は直鎖状又は分岐鎖状又は環状構造を含むものでもよく、炭素原子はヘテロ原子で置換されていてもよく、水酸基、カルボキシル基、アミノ基などの官能基で修飾されていてもよい。摩擦低減効果や基油への溶解性などの観点から、炭素数2以下のアルキル基がより好ましく、炭素数1以下がさらに好ましく、水素が特に好ましい。
 R12は、貯蔵安定性などの点から、炭素数4以下のアルキル基がより好ましく、炭素数3以下がさらに好ましく、炭素数2以下が特に好ましく、最も好ましくは水素である。
R 10 in the general formula (3) is more preferably an alkyl group having 4 or less carbon atoms, more preferably 3 or less carbon atoms, and particularly preferably 2 or less carbon atoms from the viewpoint of storage stability.
The alkyl group of R 11 may contain a linear, branched or cyclic structure, the carbon atom may be substituted with a hetero atom, and is modified with a functional group such as a hydroxyl group, a carboxyl group or an amino group. May be. From the viewpoint of friction reduction effect and solubility in base oil, an alkyl group having 2 or less carbon atoms is more preferable, 1 or less carbon atoms is more preferable, and hydrogen is particularly preferable.
R 12 is more preferably an alkyl group having 4 or less carbon atoms, more preferably 3 or less carbon atoms, particularly preferably 2 or less carbon atoms, and most preferably hydrogen from the viewpoint of storage stability.
 一般式(3)中のXの活性水素を有する官能基としては、水酸基、アミノ基などが好適である。アミノ基としては1級および2級アミンが好ましく、特に1級アミンが好ましい。また当該活性水素基の金属塩としては水酸基の金属塩が挙げられる。なかでも一般式(3)中の-COXは、カルボキシル基が好ましい。
 活性水素を有する官能基である水酸基を有する炭化水素としては、具体的には、例えば、エチレングリコール、プロピレングリコール、1,4‐ブタンジオール、1,2‐ブタンジオール、ネオペンチルグリコール、1,6‐ヘキサンジオール、1,2‐オクタンジオール、1,8‐オクタンジオール、イソプレングリコール、3‐メチル‐1,5‐ペンタンジオール、ソルバイト、カテコール、レゾルシン、ヒドロキノン、ビスフェノールA、ビスフェノールF、水添ビスフェノールA、水添ビスフェノールF、ダイマージオール等の2価のアルコール;グリセリン、2‐(ヒドロキシメチル)‐1,3‐プロパンジオール、1,2,3‐ブタントリオール、1,2,3‐ペンタントリオール、2‐メチル‐1,2,3‐プロパントリオール、2‐メチル‐2,3,4‐ブタントリオール、2‐エチル‐1,2,3‐ブタントリオール、2,3,4‐ペンタントリオール、2,3,4‐ヘキサントリオール、4‐プロピル‐3,4,5‐ヘプタントリオール、2,4‐ジメチル‐2,3,4‐ペンタントリオール、1,2,4‐ブタントリオール、1,2,4‐ペンタントリオール、トリメチロールエタン、トリメチロールプロパン等の3価アルコール;ペンタエリスリトール、エリスリトール、1,2,3,4‐ペンタンテトロール、2,3,4,5‐ヘキサンテトロール、1,2,4,5‐ペンタンテトロール、1,3,4,5‐ヘキサンテトロール、ジグリセリン、ソルビタン等の4価アルコール;アドニトール、アラビトール、キシリトール、トリグリセリン等の5価アルコール;ジペンタエリスリトール、ソルビトール、マンニトール、イジトール、イノシトール、ダルシトール、タロース、アロース等の6価アルコール;ポリグリセリン又はこれらの脱水縮合物等が挙げられる。
As the functional group having an active hydrogen of X in the general formula (3), a hydroxyl group, an amino group and the like are preferable. As the amino group, primary and secondary amines are preferable, and primary amines are particularly preferable. Examples of the metal salt of the active hydrogen group include a metal salt of a hydroxyl group. Of these, —COX in formula (3) is preferably a carboxyl group.
Specific examples of the hydrocarbon having a hydroxyl group which is a functional group having active hydrogen include, for example, ethylene glycol, propylene glycol, 1,4-butanediol, 1,2-butanediol, neopentyl glycol, and 1,6. -Hexanediol, 1,2-octanediol, 1,8-octanediol, isoprene glycol, 3-methyl-1,5-pentanediol, sorbite, catechol, resorcin, hydroquinone, bisphenol A, bisphenol F, hydrogenated bisphenol A Dihydric alcohols such as hydrogenated bisphenol F and dimer diol; glycerin, 2- (hydroxymethyl) -1,3-propanediol, 1,2,3-butanetriol, 1,2,3-pentanetriol, 2 -Methyl-1,2,3-propanetriol, 2-methyl-2 , 3,4-butanetriol, 2-ethyl-1,2,3-butanetriol, 2,3,4-pentanetriol, 2,3,4-hexanetriol, 4-propyl-3,4,5-heptane Trivalent alcohols such as triol, 2,4-dimethyl-2,3,4-pentanetriol, 1,2,4-butanetriol, 1,2,4-pentanetriol, trimethylolethane, trimethylolpropane; pentaerythritol Erythritol, 1,2,3,4-pentanetetrol, 2,3,4,5-hexanetetrol, 1,2,4,5-pentanetetrol, 1,3,4,5-hexanetetrol , Diglycerin, sorbitan and other tetrahydric alcohols; adonitol, arabitol, xylitol, triglycerin and other pentahydric alcohols; dipentaerythritol, sorbitol, mannito Le, iditol, inositol, dulcitol, talose, hexavalent alcohols such as allose, polyglycerin or their dehydrated condensates and the like.
 前記水酸基金属塩の金属としてはアルカリ金属またはアルカリ土類金属および亜鉛が挙げられ、アルカリ金属またはアルカリ土類金属としては、例えば、ナトリウム、カリウム、マグネシウム、カルシウム等が挙げられる。これらの中でも、摩擦特性効果の持続性の向上の点から、アルカリ土類金属および亜鉛が好ましい。
 金属塩としては一般式(3)のなかでも一般式(3)の-COXがカルボキシ基構造のカルボン酸塩が好ましい。
Examples of the metal of the hydroxyl group metal salt include alkali metal or alkaline earth metal and zinc, and examples of the alkali metal or alkaline earth metal include sodium, potassium, magnesium, calcium and the like. Among these, alkaline earth metals and zinc are preferable from the viewpoint of improving the sustainability of the friction characteristic effect.
As the metal salt, among the general formula (3), a carboxylate in which —COX of the general formula (3) is a carboxy group structure is preferable.
 本発明の無灰系摩擦調整剤としては、摩擦特性効果の持続性の向上などの点から、一般式(3)の中から選ばれる少なくとも1種の化合物が好ましく、また、一般式(3)の中から選ばれる1種の化合物のみを単独で使用しても良く、2種以上の化合物の混合物を使用しても良い。
 なお、一般式(3)で表される化合物の好適な例として、N‐アシルサルコシン、なかでもRが炭素数18のアシル基、R10がメチル基、R11が水素、Xが水酸基、nが0であるN‐オレオイルサルコシンや、Rが炭素数18のアシル基、R10がメチル基、R11が水素、R12が水素、Xが水酸基、nが1であるN‐オレオイル‐N‐メチル‐β‐アラニンが挙げられる。
The ashless friction modifier of the present invention is preferably at least one compound selected from the general formula (3) from the viewpoint of improving the durability of the friction characteristic effect, and the general formula (3). Only one compound selected from among them may be used alone, or a mixture of two or more compounds may be used.
In addition, as a suitable example of the compound represented by the general formula (3), N-acyl sarcosine, in particular, R 9 is an acyl group having 18 carbon atoms, R 10 is a methyl group, R 11 is hydrogen, X is a hydroxyl group, N-oleoyl sarcosine where n is 0, R 9 is an acyl group having 18 carbon atoms, R 10 is a methyl group, R 11 is hydrogen, R 12 is hydrogen, X is a hydroxyl group, and n is 1 And oil-N-methyl-β-alanine.
 上記無灰系摩擦調整剤の含有量は、組成物全量基準で、0.01~10質量%で、好ましくは5質量%以下、より好ましくは2質量%以下である。含有量が10質量%を越えた場合、含有量に見合うだけの摩擦特性のさらなる向上はみられず、貯蔵安定性が低下することから好ましくない。一方、組成物全量基準で、0.05質量%以上が好ましく、より好ましくは0.1質量%以下である。この含有量が0.01質量%に満たない場合は、摩擦特性の向上効果がみられないため好ましくない。 The content of the above ashless friction modifier is 0.01 to 10% by mass, preferably 5% by mass or less, more preferably 2% by mass or less, based on the total amount of the composition. When the content exceeds 10% by mass, the frictional properties corresponding to the content are not further improved, and the storage stability is lowered, which is not preferable. On the other hand, it is preferably 0.05% by mass or more, more preferably 0.1% by mass or less, based on the total amount of the composition. If this content is less than 0.01% by mass, the effect of improving the friction characteristics is not seen, which is not preferable.
(E)摩耗防止剤
 本発明の内燃機関用潤滑油組成物には、上記添加剤以外にさらに、摩耗防止剤としてジアルキルジチオリン酸亜鉛(ZnDTP)を添加することが好ましいが、例えば、この化合物としては、次の一般式(4)に示す化合物を挙げることができる。
(E) Antiwear agent It is preferable to add zinc dialkyldithiophosphate (ZnDTP) as an antiwear agent to the lubricating oil composition for an internal combustion engine of the present invention in addition to the above additives. Can include compounds represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記一般式(4)中のR13~R16は、それぞれ独立に、水素又は少なくとも1つは炭素数1~24の直鎖状又は分枝状のアルキル基であり、このアルキル基は、第1級でも、第2級でも、第3級であってもよい。
 本発明においては、これらのジアルキルジチオリン酸亜鉛は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよいが、第1級アルキル基を有するジチオリン酸亜鉛(プライマリーZnDTP)又は第2級アルキル基を含有するジチオリン酸亜鉛(セカンダリーZnDTP)が好ましく、特には、第2級のアルキル基のジチオリン酸亜鉛を主成分とするものが、耐摩耗性を高めるため好ましい。
In the general formula (4), R 13 to R 16 are each independently hydrogen or a linear or branched alkyl group having at least one of 1 to 24 carbon atoms. The first grade, the second grade, or the third grade may be used.
In the present invention, these zinc dialkyldithiophosphates may be used alone or in combination of two or more, but zinc dithiophosphate having a primary alkyl group (primary ZnDTP) or second A zinc dithiophosphate (secondary ZnDTP) containing a secondary alkyl group is preferred, and a secondary alkyl group containing zinc dithiophosphate as a main component is particularly preferred because it increases wear resistance.
 本発明の潤滑油組成物において、ジアルキルジチオリン酸亜鉛の含有量は、組成物全量基準で、リン量として、0.02~0.2質量%が好ましく、より好ましくは0.03~0.1質量%になるように配合するとよい。このリン量が0.02質量%未満では、耐摩耗性や高温清浄性が十分でなく、0.2質量%を超えると、排気ガス触媒の触媒被毒が著しくなって好ましくない。 In the lubricating oil composition of the present invention, the content of the zinc dialkyldithiophosphate is preferably 0.02 to 0.2% by mass, more preferably 0.03 to 0.1% as the amount of phosphorus, based on the total amount of the composition. It is good to mix | blend so that it may become a mass%. If the amount of phosphorus is less than 0.02% by mass, the wear resistance and the high-temperature cleanability are not sufficient, and if it exceeds 0.2% by mass, the catalyst poisoning of the exhaust gas catalyst becomes remarkable, which is not preferable.
 本発明の内燃機関用潤滑油組成物には、本発明の目的が損なわれない範囲で、必要に応じて他の添加剤、例えば粘度指数向上剤、流動点降下剤、酸化防止剤、耐摩耗剤又は極圧剤、摩擦低減剤、分散剤、防錆剤、界面活性剤又は抗乳化剤、消泡剤などを適宜配合することができる。 In the lubricating oil composition for internal combustion engines of the present invention, other additives such as a viscosity index improver, a pour point depressant, an antioxidant, an abrasion resistance are added as necessary, as long as the object of the present invention is not impaired. An agent or extreme pressure agent, a friction reducing agent, a dispersant, a rust inhibitor, a surfactant or a demulsifier, an antifoaming agent, and the like can be appropriately blended.
 例えば、粘度指数向上剤としては、非分散型粘度指数向上剤や分散型粘度指数向上剤が使用可能であり、具体的には、非分散型又は分散型のポリメタクリレートやオレフィンコポリマー、あるいはポリイソブテン、ポリスチレン、エチレン‐プロピレン共重合体、スチレン‐ジエン共重合体及びその水素化物等が使用できる。これらの重量平均分子量は、一般に5,000~1,000,000であるが、省燃費性能をより高めるために、重量平均分子量が100,000~1,000,000、好ましくは200,000~900,000、特に好ましくは400,000~800,000である上記粘度指数向上剤を使用することが望ましい。なお、本発明では、特に、下記一般式(5)で表される構造単位の割合が30~90モル%、下記一般式(6)で表される構造単位の割合が0.1~50モル%、炭化水素主鎖比率が0.18以下のポリ(メタ)アクリレート系粘度指数向上剤である粘度指数向上剤であることが省燃費性向上のため、好ましい。 For example, as the viscosity index improver, a non-dispersed viscosity index improver or a dispersed viscosity index improver can be used. Specifically, a non-dispersed or dispersed polymethacrylate or olefin copolymer, or polyisobutene, Polystyrene, ethylene-propylene copolymer, styrene-diene copolymer and hydride thereof can be used. These weight average molecular weights are generally 5,000 to 1,000,000, but in order to further improve fuel efficiency, the weight average molecular weight is 100,000 to 1,000,000, preferably 200,000 to It is desirable to use the above viscosity index improvers which are 900,000, particularly preferably 400,000 to 800,000. In the present invention, in particular, the proportion of the structural unit represented by the following general formula (5) is 30 to 90 mol%, and the proportion of the structural unit represented by the following general formula (6) is 0.1 to 50 mol. %, A viscosity index improver that is a poly (meth) acrylate viscosity index improver having a hydrocarbon main chain ratio of 0.18 or less is preferable for improving fuel economy.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 なお、上記一般式(5)中のR17は水素又はメチル基を示し、R18は炭素数6以下の直鎖状又は分枝状の炭化水素基を、一般式(6)中のR19は水素又はメチル基を示し、R20は炭素数16以上の直鎖状又は分枝状の炭化水素基である。
 また、この粘度指数向上剤は、ディーゼルインジェクター法におけるPSSI(パーマネントシアスタビリティインデックス)が、30以下のものが好ましい。PSSIが30を超える場合にはせん断安定性が悪く、使用後の動粘度やHTHS粘度を一定以上に保つために、初期の省燃費性が悪化するおそれがある。
 なお、ここでいう「ディーゼルインジェクター法におけるPSSI」とは、ASTM D6022-01(Standard Practice for Calculation of Permanent Shear Stability Index)に準拠し、ASTM D6278-02(Test Method for Shear Stability of Polymer Containing Fluids Using a European Diesel Injector Apparatus)により測定されたデータに基づき計算された、ポリマーの永久せん断安定性指数(Permanent Shear Stability Index)を意味する。
In the general formula (5), R 17 represents hydrogen or a methyl group, R 18 represents a linear or branched hydrocarbon group having 6 or less carbon atoms, and R 19 in the general formula (6). Represents hydrogen or a methyl group, and R 20 represents a linear or branched hydrocarbon group having 16 or more carbon atoms.
The viscosity index improver preferably has a PSSI (Permanent Cystability Index) in the diesel injector method of 30 or less. When PSSI exceeds 30, the shear stability is poor, and the kinematic viscosity after use and the HTHS viscosity are kept at a certain level or more, so that the initial fuel economy may be deteriorated.
Here, “PSSI in the diesel injector method” is based on ASTM D6022-01 (Standard Practice for Calculation of Permanent Shear Stability Index), and ASTM D6278-02 (Test Method for Shear Stability of Polymer Containing Fluids Using a Means the Permanent Shear Stability Index of the polymer calculated on the basis of data measured by the European Diesel Injector Apparatus.
 流動点降下剤としては、例えば、使用する潤滑油基油に適合するポリメタクリレート系のポリマー、アルキル化芳香族化合物、フマレート‐酢酸ビニル共重合体、エチレン‐酢酸ビニル共重合体等が使用できる。 As the pour point depressant, for example, a polymethacrylate polymer, an alkylated aromatic compound, a fumarate-vinyl acetate copolymer, an ethylene-vinyl acetate copolymer, and the like that are compatible with the lubricating base oil to be used can be used.
 清浄分散剤としては、コハク酸イミド、ベンジルアミン、アルキルポリアミン、ポリブテンアミン又はこれらのホウ素化合物や硫黄化合物による変性品、アルケニルコハク酸エステル等が使用できる。
 この清浄分散剤は、モノタイプ又はビスタイプのコハク酸イミドであることが好ましく、ビスタイプのコハク酸イミドがより好ましい。また、ホウ素非含有のビスタイプのコハク酸イミドであることが特に好ましい。
 さらに、この清浄分散剤は、分子量1000以上であることが好ましく、より好ましくは5000以上、より好ましくは7000以上、さらに好ましくは9000以上であることが好ましい。また、分子量30000以下であることが好ましく、25000以下であることが好ましく、分子量20000以下であることがより好ましい。分子量1000以下の場合は、清浄性が不十分となるおそれがあり、一方、分子量30000を超える場合は、エンジン油組成物の省燃費性が大幅に悪化するおそれがある。
As the detergent / dispersant, succinimide, benzylamine, alkylpolyamine, polybuteneamine, modified products of these boron compounds and sulfur compounds, alkenyl succinates, and the like can be used.
This detergent-dispersant is preferably a mono-type or bis-type succinimide, and more preferably a bis-type succinimide. Further, a bis-type succinimide containing no boron is particularly preferable.
Further, the detergent-dispersant preferably has a molecular weight of 1000 or more, more preferably 5000 or more, more preferably 7000 or more, and further preferably 9000 or more. Moreover, it is preferable that it is molecular weight 30000 or less, it is preferable that it is 25000 or less, and it is more preferable that it is molecular weight 20000 or less. When the molecular weight is 1000 or less, the cleanliness may be insufficient. On the other hand, when the molecular weight exceeds 30000, the fuel economy of the engine oil composition may be significantly deteriorated.
 清浄分散剤の含有量は、エンジン油組成物全量基準で、好ましくは0.1~15質量%、より好ましくは0.5~10質量%であり、さらに好ましくは1.0~8質量%である。清浄分散剤の含有量が0.1質量%未満の場合は、清浄性が不十分となるおそれがあり、一方、15質量%を超える場合は、エンジン油組成物の省燃費性が大幅に悪化するおそれがある。
 また、清浄分散剤のN含有量は、0.1以上であることが好ましく、より好ましくは0.3以上、より好ましくは0.4以上、さらに好ましくは0.5以上であることが好ましい。また、2.0以下であることが好ましく、1.0以下であることが好ましく、0.8以下であることがより好ましい。N含有量0.1以下の場合は、清浄性が不十分となるおそれがあり、一方、N含有量2.0を超える場合は、エンジン油組成物の省燃費性が大幅に悪化するおそれがある。
The content of the cleaning dispersant is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, and still more preferably 1.0 to 8% by mass, based on the total amount of the engine oil composition. is there. When the content of the cleaning dispersant is less than 0.1% by mass, the cleanability may be insufficient. On the other hand, when the content exceeds 15% by mass, the fuel efficiency of the engine oil composition is greatly deteriorated. There is a risk.
Further, the N content of the cleaning dispersant is preferably 0.1 or more, more preferably 0.3 or more, more preferably 0.4 or more, and further preferably 0.5 or more. Moreover, it is preferable that it is 2.0 or less, it is preferable that it is 1.0 or less, and it is more preferable that it is 0.8 or less. When the N content is 0.1 or less, the cleanliness may be insufficient. On the other hand, when the N content exceeds 2.0, the fuel economy of the engine oil composition may be significantly deteriorated. is there.
 酸化防止剤としては、フェノール系化合物やアミン系化合物等、潤滑油に一般的に使用されているものであれば、いずれも使用可能であり、例えば、2,6‐ジ‐tert‐ブチル‐4‐メチルフェノール等のアルキルフェノール類、メチレン‐4,4‐ビス(2,6‐ジ‐tert‐ブチル‐4‐メチルフェノール)等のビスフェノール類、フェニル‐α‐ナフチルアミン等のナフチルアミン類、ジアルキルジフェニルアミン類、フェノチアジン類等が使用できる。 As the antioxidant, any of those generally used in lubricating oils, such as phenolic compounds and amine compounds, can be used. For example, 2,6-di-tert-butyl-4 Alkylphenols such as methylphenol, bisphenols such as methylene-4,4-bis (2,6-di-tert-butyl-4-methylphenol), naphthylamines such as phenyl-α-naphthylamine, dialkyldiphenylamines, Phenothiazines can be used.
 極圧添加剤及び摩耗防止剤としては、例えば、リン酸エステル類、亜リン酸エステル類及びこれらの塩などのリン系化合物やジスルフィド類、硫化オレフィン類及び硫化油脂類などの硫黄系化合物を挙げることができる。
 錆止め剤としては、例えば、アルケニルコハク酸、アルケニルコハク酸エステル、多価アルコールエステル、石油スルホネート、ジノニルナフタレンスルホネート等が使用できる。
 腐食防止剤としては、例えば、ベンゾトリアゾール系、チアジアゾール系、イミダゾール系の化合物等が使用できる。
 また、消泡剤としては、例えば、ジメチルシリコーンやフルオロシリコーン等のシリコーン化合物類が使用できる。
Examples of extreme pressure additives and antiwear agents include phosphorus compounds such as phosphate esters, phosphites and salts thereof, and sulfur compounds such as disulfides, sulfurized olefins and sulfurized fats and oils. be able to.
As the rust inhibitor, for example, alkenyl succinic acid, alkenyl succinic acid ester, polyhydric alcohol ester, petroleum sulfonate, dinonyl naphthalene sulfonate and the like can be used.
As the corrosion inhibitor, for example, benzotriazole, thiadiazole, and imidazole compounds can be used.
Moreover, as an antifoamer, silicone compounds, such as a dimethyl silicone and a fluoro silicone, can be used, for example.
 これらの添加剤の添加量は任意であるが、通常組成物全量基準で、消泡剤の含有量は0.0005~0.01質量%、粘度指数向上剤の含有量は0.05~20質量%、腐食防止剤の含有量は0.005~0.2質量%、その他の添加剤の含有量は、それぞれ0.05~10質量%程度である。 The additive amount of these additives is arbitrary, but the content of the antifoaming agent is usually 0.0005 to 0.01% by mass and the content of the viscosity index improver is 0.05 to 20 based on the total amount of the composition. The content of the corrosion inhibitor is 0.005 to 0.2% by mass, and the content of other additives is about 0.05 to 10% by mass, respectively.
 本発明の内燃機関用潤滑油組成物の100℃における動粘度は、4.0mm/s以上であることが好ましく、より好ましくは6.0mm/s以上、さらに好ましくは6.1mm/s以上、最も好ましくは6.2mm/s以上であり、また12.5mm/s以下であることが好ましく、より好ましくは9.3mm/s以下であり、さらに好ましくは8.5mm/s以下である。ここでいう100℃における動粘度とは、ASTM D-445に規定される100℃での動粘度を示す。100℃における動粘度が4.0mm/s未満の場合には、潤滑性不足を来たすおそれがあり、12.5mm/sを超える場合には必要な低温粘度および十分な省燃費性能が得られないおそれがある。 Kinematic viscosity at 100 ° C. for an internal combustion engine lubricating oil composition of the present invention is preferably 4.0 mm 2 / s or more, more preferably 6.0 mm 2 / s or higher, more preferably 6.1 mm 2 / s or more, most preferably 6.2 mm 2 / s or more, preferably 12.5 mm 2 / s or less, more preferably 9.3 mm 2 / s or less, and still more preferably 8.5 mm 2. / S or less. The kinematic viscosity at 100 ° C. here refers to the kinematic viscosity at 100 ° C. as defined in ASTM D-445. If the kinematic viscosity at 100 ° C. is less than 4.0 mm 2 / s, there is a risk of insufficient lubricity, and if it exceeds 12.5 mm 2 / s, the necessary low temperature viscosity and sufficient fuel saving performance can be obtained. There is a risk of not being able to.
 また、潤滑油組成物の40℃における動粘度は、4~50mm/sであることが好ましく、好ましくは40mm/s以下、より好ましくは35mm/s以下である。また、40℃における動粘度は、好ましくは15mm/s以上、より好ましくは18mm/s以上、さらに好ましくは20mm/s以上、特に好ましくは22mm/s以上、最も好ましくは25mm/s以上である。ここでいう40℃における動粘度とは、ASTM D-445に規定される40℃での動粘度を示す。40℃における動粘度が4mm/s未満の場合には、潤滑性不足を来たすおそれがあり、50mm/sを超える場合には必要な低温粘度および十分な省燃費性能が得られないおそれがある。 The kinematic viscosity at 40 ° C. of the lubricating oil composition is preferably 4 to 50 mm 2 / s, preferably 40 mm 2 / s or less, more preferably 35 mm 2 / s or less. The kinematic viscosity at 40 ° C. is preferably 15 mm 2 / s or more, more preferably 18 mm 2 / s or more, still more preferably 20 mm 2 / s or more, particularly preferably 22 mm 2 / s or more, and most preferably 25 mm 2 / s. s or more. The kinematic viscosity at 40 ° C. here refers to the kinematic viscosity at 40 ° C. as defined in ASTM D-445. If the kinematic viscosity at 40 ° C. is less than 4 mm 2 / s, there is a risk of insufficient lubricity, and if it exceeds 50 mm 2 / s, the necessary low temperature viscosity and sufficient fuel saving performance may not be obtained. is there.
 さらに、潤滑油組成物の粘度指数は、120以上であり、400以下であることが好ましく、好ましくは190以上、さらに好ましくは200以上、特に好ましくは210以上である。粘度指数が120未満の場合には、150℃のHTHS粘度を維持しながら、省燃費性を向上させることが困難となるおそれがある。また、粘度指数が400を超える場合には、蒸発性が悪化するおそれがあり、更に添加剤の溶解性やシール材料との適合性が不足することによる不具合が発生するおそれがある。 Furthermore, the viscosity index of the lubricating oil composition is 120 or more, preferably 400 or less, preferably 190 or more, more preferably 200 or more, and particularly preferably 210 or more. When the viscosity index is less than 120, it may be difficult to improve fuel economy while maintaining the HTHS viscosity at 150 ° C. Further, when the viscosity index exceeds 400, the evaporability may be deteriorated, and further, there may be a problem due to insufficient solubility of the additive and compatibility with the sealing material.
 低粘度化の不具合を防止して耐久性を維持しつつ、省燃費性を付与するためには、150℃におけるHTHS粘度(「HTHS粘度」は「高温高せん断粘度」とも呼ばれる。)を高く、その一方で40℃における動粘度、100℃における動粘度および100℃におけるHTHS粘度を低くすることが有効であるが、従来の潤滑油ではこれらの要件全てを満たすことが非常に困難であった。 In order to prevent the problem of low viscosity and maintain fuel durability while providing fuel economy, the HTHS viscosity at 150 ° C. (“HTHS viscosity” is also called “high temperature high shear viscosity”) is high. On the other hand, it is effective to lower the kinematic viscosity at 40 ° C., the kinematic viscosity at 100 ° C., and the HTHS viscosity at 100 ° C., but it has been very difficult to satisfy all these requirements with conventional lubricating oils.
 潤滑油組成物の100℃におけるHTHS粘度は、5.5mPa・s以下であることが好ましく、より好ましくは5.0mPa・s以下、さらに好ましくは4.7mPa・s以下、特に好ましくは4.5mPa・s以下である。また、好ましくは3.0mPa・s以上、更に好ましくは3.5mPa・s以上、特に好ましくは4.0mPa・s以上、最も好ましくは4.1mPa・s以上である。本発明でいう100℃におけるHTHS粘度とは、ASTM D4683に規定される100℃での高温高せん断粘度を示す。100℃におけるHTHS粘度が3.0mPa・s未満の場合には、潤滑性不足を来たすおそれがあり、5.5mPa・sを超える場合には必要な低温粘度および十分な省燃費性能が得られないおそれがある。 The HTHS viscosity at 100 ° C. of the lubricating oil composition is preferably 5.5 mPa · s or less, more preferably 5.0 mPa · s or less, still more preferably 4.7 mPa · s or less, and particularly preferably 4.5 mPa · s. -S or less. Further, it is preferably 3.0 mPa · s or more, more preferably 3.5 mPa · s or more, particularly preferably 4.0 mPa · s or more, and most preferably 4.1 mPa · s or more. The HTHS viscosity at 100 ° C. referred to in the present invention indicates a high temperature and high shear viscosity at 100 ° C. as defined in ASTM D4683. If the HTHS viscosity at 100 ° C. is less than 3.0 mPa · s, there is a risk of insufficient lubricity, and if it exceeds 5.5 mPa · s, the necessary low temperature viscosity and sufficient fuel saving performance cannot be obtained. There is a fear.
 潤滑油組成物の150℃におけるHTHS粘度は、1.5mPa・s以上であることが好ましく、より好ましくは1.9mPa・s以上、さらに好ましくは2.1mPa・s以上、特に好ましくは2.2mPa・s以上、最も好ましくは2.3mPa・s以上である。また、好ましくは3.0mPa・s以下、更に好ましくは2.7mPa・s以下、特に好ましくは2.5mPa・s以下、最も好ましくは2.4mPa・s以下である。本発明でいう150℃におけるHTHS粘度とは、ASTM D4683に規定される150℃での高温高せん断粘度を示す。150℃におけるHTHS粘度を1.5mPa・s以上とすることにより、十分な潤滑性を得ることができ、3.0mPa・s以下とすることにより、必要な低温粘度および十分な省燃費性能が得られる。 The HTHS viscosity at 150 ° C. of the lubricating oil composition is preferably 1.5 mPa · s or more, more preferably 1.9 mPa · s or more, further preferably 2.1 mPa · s or more, and particularly preferably 2.2 mPa · s. · S or more, most preferably 2.3 mPa · s or more. Further, it is preferably 3.0 mPa · s or less, more preferably 2.7 mPa · s or less, particularly preferably 2.5 mPa · s or less, and most preferably 2.4 mPa · s or less. The HTHS viscosity at 150 ° C. referred to in the present invention indicates the high temperature and high shear viscosity at 150 ° C. defined in ASTM D4683. By setting the HTHS viscosity at 150 ° C. to 1.5 mPa · s or more, sufficient lubricity can be obtained, and by setting it to 3.0 mPa · s or less, necessary low temperature viscosity and sufficient fuel saving performance can be obtained. It is done.
 また、本発明の潤滑油組成物の150℃におけるHTHS粘度と100℃におけるHTHS粘度との比(150℃におけるHTHS粘度/100℃におけるHTHS粘度)は、0.45以上であることが好ましく、より好ましくは0.475以上、さらに好ましくは0.50以上である。当該比が0.45未満であると、必要な低温粘度および十分な省燃費性能が得られないおそれがある。 Further, the ratio of the HTHS viscosity at 150 ° C. to the HTHS viscosity at 100 ° C. of the lubricating oil composition of the present invention (HTHS viscosity at 150 ° C./HTHS viscosity at 100 ° C.) is preferably 0.45 or more. Preferably it is 0.475 or more, More preferably, it is 0.50 or more. If the ratio is less than 0.45, the necessary low temperature viscosity and sufficient fuel saving performance may not be obtained.
 また、本発明の潤滑油組成物の蒸発損失量は、NOACK蒸発量で15質量%以下であることが好ましく、14質量%以下であることがより好ましく、13質量%以下であることがさらに好ましく、12質量%以下であることが最も好ましい。潤滑油基油成分のNOACK蒸発量15質量%以下とすることにより、潤滑油の蒸発損失を小さく抑えることができ、粘度増加等を抑制することができる。なお、ここでいうNOACK蒸発量とは、ASTM D 5800に準拠して測定される潤滑油の蒸発量を測定したものである。 Further, the evaporation loss amount of the lubricating oil composition of the present invention is preferably 15% by mass or less in terms of NOACK evaporation, more preferably 14% by mass or less, and further preferably 13% by mass or less. The content is most preferably 12% by mass or less. By setting the NOACK evaporation amount of the lubricating base oil component to 15% by mass or less, it is possible to suppress the evaporation loss of the lubricating oil and to suppress an increase in viscosity. Here, the NOACK evaporation amount is a value obtained by measuring the evaporation amount of the lubricating oil measured in accordance with ASTM D 5800.
 また、サリシレート系金属系清浄剤としてホウ素を含有するアルカリ土類金属サリシレート清浄剤を用いた場合の、本発明の潤滑油組成物におけるホウ素の含有量(MB1)とアルカリ土類金属の含有量(MB2)の比、(MB1)/(MB2)は、好ましくは0.1以上であり、より好ましくは0.15以上、さらに好ましくは0.2以上である。また(MB1)/(MB2)は好ましくは0.5以下、より好ましくは0.4以下、さらに好ましくは0.3以下である。 Further, when the alkaline earth metal salicylate detergent containing boron is used as the salicylate metal detergent, the boron content (MB1) and the alkaline earth metal content (in the lubricating oil composition of the present invention) ( The ratio (MB1) / (MB2) of MB2) is preferably 0.1 or more, more preferably 0.15 or more, and further preferably 0.2 or more. (MB1) / (MB2) is preferably 0.5 or less, more preferably 0.4 or less, and still more preferably 0.3 or less.
 以下に、本発明の内容を実施例及び比較例によってさらに具体的に説明するが、本発明はこれらの例に何ら限定されるものではない。 Hereinafter, the content of the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
(実施例1~4、比較例1~4)
(A)潤滑油基油
 表1に示す性状を有する水素化分解潤滑油基油を表2に示す割合で配合して用いた。
(Examples 1 to 4, Comparative Examples 1 to 4)
(A) Lubricating base oil A hydrocracked lubricating base oil having the properties shown in Table 1 was blended at a ratio shown in Table 2 and used.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 次の添加剤を表2に示した割合で潤滑油基油に添加し、潤滑油組成物を調製した。 The following additives were added to the lubricating base oil in the proportions shown in Table 2 to prepare a lubricating oil composition.
(B)モリブデン系摩擦調整剤
 ジチオカルバミン酸モリブデン:一般式(1)において、R~Rは、炭素数8又は13のアルキル基、a及びbは2、モリブデン元素の濃度は10質量%、硫黄分11質量%
(C)サリシレート系金属系清浄剤
(C-1)過塩基性Caサリシレート:金属比2.3、アルキル基の炭素数14~18、Ca含有量6.2質量%、塩基価180mgKOH/g
(C-2)過塩基性ホウ酸Caサリシレート:金属比2.5、アルキル基の炭素数14~18、Ca含有量6.8質量%、B含有量2.7質量%、塩基価190mgKOH/g
(B) Molybdenum-based friction modifier molybdenum dithiocarbamate: In general formula (1), R 1 to R 4 are alkyl groups having 8 or 13 carbon atoms, a and b are 2, and the concentration of molybdenum element is 10% by mass, 11% by mass of sulfur
(C) Salicylate-based metal detergent (C-1) Overbased Ca salicylate: metal ratio 2.3, carbon number of alkyl group 14-18, Ca content 6.2 mass%, base number 180 mgKOH / g
(C-2) Overbased boric acid Ca salicylate: metal ratio of 2.5, alkyl group having 14 to 18 carbon atoms, Ca content of 6.8% by mass, B content of 2.7% by mass, base number of 190 mgKOH / g
(D)無灰系摩擦調整剤
(D-1)N-オレオイル‐N‐メチル‐β‐アラニン
(D-2)オレオイルサルコシン
(D-3)N‐ラウロイル‐N‐メチル‐β‐アラニン
(D-4)N‐ラウロイルサルコシン
(D) Ashless friction modifier (D-1) N-oleoyl-N-methyl-β-alanine (D-2) oleoyl sarcosine (D-3) N-lauroyl-N-methyl-β-alanine (D-4) N-lauroyl sarcosine
(E)摩耗防止剤
(E-1)ZnDTP:一級アルキル基、炭素数8、Zn含有量9.0質量%、P含有量7.4質量%、S含有量15質量%
(E-2)ZnDTP:二級アルキル基、炭素数4及び6、Zn含有量8.0質量%、P含有量7.2質量%、S含有量15質量%
(E) Antiwear agent (E-1) ZnDTP: primary alkyl group, carbon number 8, Zn content 9.0% by mass, P content 7.4% by mass, S content 15% by mass
(E-2) ZnDTP: secondary alkyl group, 4 and 6 carbon atoms, Zn content 8.0% by mass, P content 7.2% by mass, S content 15% by mass
(F)その他の添加剤
(F-1)非分散型PMA系粘度指数向上剤(Mw=400,000,PSSI=7)
(F-2)ポリブテニルコハク酸イミド:分子量9000、N含有量0.7質量%
(F-3)酸化防止剤、消泡剤(ジメチルシリコーン)など
(F) Other additives (F-1) Non-dispersed PMA viscosity index improver (Mw = 400,000, PSSI = 7)
(F-2) Polybutenyl succinimide: molecular weight 9000, N content 0.7 mass%
(F-3) Antioxidants, antifoaming agents (dimethyl silicone), etc.
 調製した潤滑油組成物について、下記の条件で、モータリングフリクション試験を行ない、フリクショントルクを測定した。各潤滑油組成物の平均フリクショントルクを算出し、比較例1および4のフリクショントルクを基準としたときの改善率を算出した。得られた結果を、潤滑油組成物の物性とともに表2に%で示す。 The prepared lubricating oil composition was subjected to a motoring friction test under the following conditions to measure the friction torque. The average friction torque of each lubricating oil composition was calculated, and the improvement rate based on the friction torque of Comparative Examples 1 and 4 was calculated. The obtained results are shown in% in Table 2 together with the physical properties of the lubricating oil composition.
(試験条件)
 使用エンジン:3L、DOHCエンジン
 油温:80℃
 回転数:550rpm
(Test conditions)
Engine used: 3L, DOHC engine Oil temperature: 80 ° C
Rotation speed: 550rpm
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以上の結果より、モリブデン系摩擦調整剤と分子内にアルキル基又はアルケニル基又はアシル基を有するアミノ酸及び/又はその誘導体から選ばれる化合物を含有していても、アルキル基又はアルケニル基又はアシル基が炭素数15未満のものでは、その効果が低いが(比較例1~4)、炭素数15~24のアルキル基又はアルケニル基又はアシル基を有するアミノ酸及び/又はその誘導体から選ばれる化合物を含有するものは顕著な摩擦低減効果を示しており、本発明の内燃機関用潤滑油組成物は、摩擦係数が低く、省燃費性能に優れているという顕著な効果を奏することは明らかである。 From the above results, even when the molybdenum-based friction modifier and the compound selected from the amino acid having an alkyl group, alkenyl group, or acyl group in the molecule and / or a derivative thereof are contained, the alkyl group, alkenyl group, or acyl group is Those having less than 15 carbon atoms are less effective (Comparative Examples 1 to 4), but contain compounds selected from amino acids having an alkyl group, alkenyl group or acyl group having 15 to 24 carbon atoms and / or derivatives thereof. It is obvious that the lubricating oil composition for internal combustion engines of the present invention exhibits a remarkable effect that the friction coefficient is low and the fuel saving performance is excellent.
 本発明の内燃機関用潤滑油組成物は、省燃費ガソリンエンジン油、省燃費ディーゼルエンジン油等の省燃費エンジン油として好適に使用することができる。  The lubricating oil composition for an internal combustion engine of the present invention can be suitably used as a fuel-saving engine oil such as a fuel-saving gasoline engine oil or a fuel-saving diesel engine oil.

Claims (6)

  1.  (A)100℃における動粘度が2.0~5.0mm/sの潤滑油基油に、(B)モリブデン系摩擦調整剤を組成物全量基準でモリブデン量として0.005~0.2質量%、(C)サリシレート系金属系清浄剤を組成物全量基準で金属量として0.01~1質量%および(D)炭素数15~24のアルキル基又はアルケニル基又はアシル基を有するアミノ酸及び/又はその誘導体から選ばれる1種類以上の化合物を0.01~10質量%含有する内燃機関用潤滑油組成物。 (A) A lubricant base oil having a kinematic viscosity at 100 ° C. of 2.0 to 5.0 mm 2 / s and (B) a molybdenum-based friction modifier in an amount of molybdenum of 0.005 to 0.2 based on the total amount of the composition. % By weight, (C) 0.01 to 1% by weight of metal based on the total amount of the salicylate-based metal detergent, and (D) an amino acid having an alkyl group, alkenyl group or acyl group having 15 to 24 carbon atoms, and A lubricating oil composition for an internal combustion engine containing 0.01 to 10% by mass of one or more compounds selected from / or derivatives thereof.
  2.  前記(C)サリシレート系金属系清浄剤が、ホウ素を含有するサリシレート系金属系清浄剤である請求項1に記載の内燃機関用潤滑油組成物。 The lubricating oil composition for an internal combustion engine according to claim 1, wherein the (C) salicylate metal detergent is a salicylate metal detergent containing boron.
  3.  150℃におけるHTHS粘度が1.9~2.7mPa/sである請求項1又は2に記載の内燃機関用潤滑油組成物。 The lubricating oil composition for an internal combustion engine according to claim 1 or 2, wherein the HTHS viscosity at 150 ° C is 1.9 to 2.7 mPa / s.
  4.  150℃におけるHTHS粘度が1.9~2.4mPa/sである請求項1~3のいずれか1項に記載の内燃機関用潤滑油組成物。 The lubricating oil composition for an internal combustion engine according to any one of claims 1 to 3, wherein the HTHS viscosity at 150 ° C is 1.9 to 2.4 mPa / s.
  5.  NOACK蒸発量が15質量%以下である請求項1~4のいずれか1項に記載の内燃機関用潤滑油組成物。 The lubricating oil composition for an internal combustion engine according to any one of claims 1 to 4, wherein the NOACK evaporation amount is 15 mass% or less.
  6.  (E)ジアルキルジチオリン酸亜鉛摩耗防止剤を組成物全量基準で、リン量として、0.02~0.20質量%含有する請求項1~5のいずれか1項に記載の内燃機関用潤滑油組成物。  The lubricating oil for internal combustion engines according to any one of claims 1 to 5, which contains (E) 0.02 to 0.20 mass% of a zinc dialkyldithiophosphate antiwear agent based on the total amount of the composition, based on the amount of phosphorus. Composition.
PCT/JP2016/053162 2015-02-13 2016-02-03 Lubricating oil composition for internal combustion engine WO2016129465A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680009980.9A CN107406790A (en) 2015-02-13 2016-02-03 Lubricant composition for internal combustion engine
US15/550,219 US20180023026A1 (en) 2015-02-13 2016-02-03 Lubricating oil composition for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015026905A JP6472262B2 (en) 2015-02-13 2015-02-13 Lubricating oil composition for internal combustion engines
JP2015-026905 2015-02-13

Publications (1)

Publication Number Publication Date
WO2016129465A1 true WO2016129465A1 (en) 2016-08-18

Family

ID=56614718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053162 WO2016129465A1 (en) 2015-02-13 2016-02-03 Lubricating oil composition for internal combustion engine

Country Status (4)

Country Link
US (1) US20180023026A1 (en)
JP (1) JP6472262B2 (en)
CN (1) CN107406790A (en)
WO (1) WO2016129465A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110892052A (en) * 2017-08-10 2020-03-17 出光兴产株式会社 Lubricating oil composition, internal combustion engine, and method for lubricating internal combustion engine
JP2020164588A (en) * 2019-03-28 2020-10-08 Eneos株式会社 Lubricant composition
JP2021500429A (en) * 2017-10-20 2021-01-07 シェブロンジャパン株式会社 Low viscosity lubricating oil composition
EP3636730A4 (en) * 2017-05-19 2021-01-13 JXTG Nippon Oil & Energy Corporation Internal combustion engine lubricating oil composition
EP3562924B1 (en) 2016-12-30 2022-05-25 ExxonMobil Research and Engineering Company Low viscosity lubricating oil compositions for turbomachines
WO2022138292A1 (en) * 2020-12-21 2022-06-30 出光興産株式会社 Lubricating oil composition

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6235549B2 (en) * 2015-12-07 2017-11-22 Emgルブリカンツ合同会社 Lubricating oil composition
EP3759200B1 (en) * 2018-03-02 2024-04-03 Chevron Oronite Technology B.V. Lubricating oil composition providing wear protection at low viscosity
CN113574146A (en) * 2019-03-29 2021-10-29 出光兴产株式会社 Lubricating oil composition
WO2020262639A1 (en) 2019-06-28 2020-12-30 出光興産株式会社 Lubricating oil composition
JP7304229B2 (en) * 2019-07-18 2023-07-06 出光興産株式会社 lubricating oil composition
JP7442287B2 (en) * 2019-09-26 2024-03-04 Eneos株式会社 Lubricating oil composition for internal combustion engines
US11987766B2 (en) 2020-08-31 2024-05-21 Eneos Corporation Lubricating oil composition for internal combustion engine
US11732207B2 (en) 2020-08-31 2023-08-22 Eneos Corporation Lubricating oil composition for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241396A (en) * 1985-04-19 1986-10-27 Ajinomoto Co Inc Lubricant
JPH08302378A (en) * 1995-04-28 1996-11-19 Nippon Oil Co Ltd Engine oil composition
JP2014132076A (en) * 2012-12-21 2014-07-17 Afton Chemical Corp Additive compositions with plural friction modifiers
JP2015021127A (en) * 2013-07-18 2015-02-02 アフトン・ケミカル・コーポレーションAfton Chemical Corporation Friction modifier for lubricating oil
WO2015022976A1 (en) * 2013-08-16 2015-02-19 Jx日鉱日石エネルギー株式会社 Lubricant oil composition for internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5390738B2 (en) * 2005-11-15 2014-01-15 出光興産株式会社 Lubricating oil composition for internal combustion engines
AR078233A1 (en) * 2009-08-05 2011-10-26 Basf Se LUBRICATING COMPOSITION
JP5841446B2 (en) * 2012-02-07 2016-01-13 Jx日鉱日石エネルギー株式会社 Lubricating oil composition for internal combustion engines
CN104471041A (en) * 2012-06-06 2015-03-25 范德比尔特化学品有限责任公司 Fuel efficient lubricating oils
JP5815809B2 (en) * 2014-07-22 2015-11-17 Jx日鉱日石エネルギー株式会社 Lubricating oil composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241396A (en) * 1985-04-19 1986-10-27 Ajinomoto Co Inc Lubricant
JPH08302378A (en) * 1995-04-28 1996-11-19 Nippon Oil Co Ltd Engine oil composition
JP2014132076A (en) * 2012-12-21 2014-07-17 Afton Chemical Corp Additive compositions with plural friction modifiers
JP2015021127A (en) * 2013-07-18 2015-02-02 アフトン・ケミカル・コーポレーションAfton Chemical Corporation Friction modifier for lubricating oil
WO2015022976A1 (en) * 2013-08-16 2015-02-19 Jx日鉱日石エネルギー株式会社 Lubricant oil composition for internal combustion engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3562924B1 (en) 2016-12-30 2022-05-25 ExxonMobil Research and Engineering Company Low viscosity lubricating oil compositions for turbomachines
EP3636730A4 (en) * 2017-05-19 2021-01-13 JXTG Nippon Oil & Energy Corporation Internal combustion engine lubricating oil composition
US11680221B2 (en) 2017-05-19 2023-06-20 Eneos Corporation Lubricating oil composition for internal combustion engine
CN110892052A (en) * 2017-08-10 2020-03-17 出光兴产株式会社 Lubricating oil composition, internal combustion engine, and method for lubricating internal combustion engine
US11326120B2 (en) 2017-08-10 2022-05-10 Idemitsu Kosan Co., Ltd. Lubricating oil composition, internal combustion engine, and lubrication method for internal combustion engine
CN110892052B (en) * 2017-08-10 2022-08-02 出光兴产株式会社 Lubricating oil composition, internal combustion engine, and method for lubricating internal combustion engine
JP2021500429A (en) * 2017-10-20 2021-01-07 シェブロンジャパン株式会社 Low viscosity lubricating oil composition
JP7387593B2 (en) 2017-10-20 2023-11-28 シェブロンジャパン株式会社 Low viscosity lubricating oil composition
JP2020164588A (en) * 2019-03-28 2020-10-08 Eneos株式会社 Lubricant composition
JP7159097B2 (en) 2019-03-28 2022-10-24 Eneos株式会社 lubricating oil composition
WO2022138292A1 (en) * 2020-12-21 2022-06-30 出光興産株式会社 Lubricating oil composition

Also Published As

Publication number Publication date
CN107406790A (en) 2017-11-28
US20180023026A1 (en) 2018-01-25
JP6472262B2 (en) 2019-02-20
JP2016148004A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP6472262B2 (en) Lubricating oil composition for internal combustion engines
JP6270226B2 (en) Lubricating oil composition for internal combustion engines
JP6716360B2 (en) Lubricating oil composition for internal combustion engine
US7399736B2 (en) Low viscosity, high abrasion resistance engine oil composition
JP2013079406A (en) Lubricating oil composition for internal combustion engine
JP6235549B2 (en) Lubricating oil composition
JP2020525573A (en) Low viscosity engine oil containing isomerized phenolic detergent
JP2016190918A (en) Lubricant composition
JPWO2016181863A1 (en) Lubricating oil composition
JP6444219B2 (en) Lubricating oil composition for gear oil
TWI836351B (en) Lubricating oil composition for internal combustion engine
WO2022250017A1 (en) Lubricant composition for internal combustion engine
JP2018184518A (en) Lubricating oil composition for internal-combustion engine
JPWO2014156325A1 (en) Lubricating oil composition
WO2024224758A1 (en) Lubricating oil composition for internal combustion engines and method for producing same
JP6382749B2 (en) Lubricating oil composition for final reduction gear
JP2024158922A (en) Lubricating oil composition for internal combustion engines
JP2024158923A (en) Lubricating oil composition for internal combustion engines
WO2024224759A1 (en) Lubricating oil composition for internal combustion engines
JP2023004310A (en) Lubricant composition for internal combustion engines
JP2022061754A (en) Lubricant composition
JP2021143309A (en) Lubricant composition
JP2020026447A (en) Lubricant composition
JP2019048910A (en) Lubricant composition for diesel engine, and method for improving base number holding performance or method for improving long-drain performance
JP2017125214A (en) Lubricant composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749109

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15550219

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749109

Country of ref document: EP

Kind code of ref document: A1