WO2016127594A1 - 一种利用太阳能热解碳化技术处理污泥的方法 - Google Patents
一种利用太阳能热解碳化技术处理污泥的方法 Download PDFInfo
- Publication number
- WO2016127594A1 WO2016127594A1 PCT/CN2015/085667 CN2015085667W WO2016127594A1 WO 2016127594 A1 WO2016127594 A1 WO 2016127594A1 CN 2015085667 W CN2015085667 W CN 2015085667W WO 2016127594 A1 WO2016127594 A1 WO 2016127594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- sludge
- pyrolysis carbonization
- solar
- high temperature
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/10—Treatment of sludge; Devices therefor by pyrolysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/13—Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B53/00—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/16—Features of high-temperature carbonising processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Definitions
- the invention belongs to the technical field of sludge treatment and resource regeneration, and particularly relates to a method for treating sludge by using solar pyrolysis carbonization technology.
- the excess sludge of water content is also the secondary pollutant in the sewage treatment process.
- the sludge contains a large number of pathogenic bacteria, parasites, pathogenic microorganisms, and heavy metals such as arsenic, copper, chromium, and mercury, and toxic and harmful substances such as dioxins and radionuclides that are difficult to degrade, due to high moisture content of the sludge. It is bulky and poses difficulties for stacking and transportation. If the urban sludge is improperly disposed or treated irregularly, such as the abandonment of farmland abuse, it will pose a serious potential threat to the ecological environment. On the other hand, the excess sludge contains high organic nutrient and combustion value.
- lime quenching and tempering process lime dosage rate is 20% to 30%, lime dosage is large, sludge is heavier, sludge volume is larger, production cycle is longer, mud cake and filtrate are alkaline, and filtrate is needed. Adjusting the pH value, the equipment has higher anti-corrosion requirements and higher operating costs.
- Sludge dosing modification generally uses chemicals to condition the sludge. There is no substantial change in the sludge. Reducing the moisture content of the sludge depends on the improvement of mechanical equipment. Sludge dosing and modification technology is divided into sludge mold micelle sedimentation performance modification and sludge bacteria micelle bacteria modification.
- sludge dewatering rate can only be reduced to about 65%, and conditioning
- the total addition amount of the agent accounts for more than 20% of the dry basis of the sludge, and the problem of sludge capacity increase is serious. In fact, the sludge reduction is not realized.
- Thermal drying and other pyrolysis technologies Due to the high moisture content of sludge, the calorific value of sludge can not maintain its own sludge drying operation requires the increase of external energy, high energy consumption and high operating costs.
- the electro-osmosis dry method has disadvantages such as high investment in equipment, high operating cost, and high maintenance requirements of equipment. These methods are not required to meet the requirements of the fact that the water content cannot meet the requirements or the operating cost is too high or the sludge capacity is increased.
- the current problem of deep dewatering of sludge is that the existing sludge treatment technology has complicated processes, energy consumption, equipment investment, and high operating cost, and sludge reduction is not realized, which easily affects sludge regeneration or Subsequent use, poor environmental benefits and other shortcomings.
- the object of the present invention is to provide a method for treating sludge by using solar pyrolysis carbonization technology, which has low energy consumption, equipment investment and low operating cost, and can realize harmlessness, stabilization, reduction and resource utilization of sludge. Chemical.
- a method for treating sludge by using a solar pyrolysis carbonization technology comprising the steps of: taking sludge generated by urban sewage treatment and placing it in a pyrolysis carbonization furnace, A series of reactions including vaporization, pyrolysis, dehydrogenation, heat shrinkage and carbonization in a sealed, anaerobic, non-combustion state to produce tail gas, biochar and tar, wherein the pyrolysis carbonization furnace is provided with a heat source by a solar heating system.
- the reaction conditions are high temperature normal pressure or high temperature high pressure or medium high temperature and high pressure, and the high temperature is 500 to 800 ° C, the The medium and high temperature is 200 to 400 ° C, and the high pressure is 1 to 16 MPa.
- the municipal sludge according to the present invention is preferably subjected to dehydration and/or drying treatment before being placed in a pyrolysis carbonization furnace (which may also be referred to as a pyrolysis carbonization furnace, hereinafter the same).
- a pyrolysis carbonization furnace which may also be referred to as a pyrolysis carbonization furnace, hereinafter the same.
- the present invention provides a method for treating sludge by using a solar pyrolysis carbonization technology, which further comprises the following steps:
- Sludge drying drying the sludge produced by urban sewage treatment to obtain dry sludge, and the heat source for drying treatment is the residual temperature of the tail gas generated by the pyrolysis carbonization furnace in step (2), step (2)
- One or more of the heat generated by the combustion of the combustible gas in the exhaust gas generated by the medium pyrolysis carbonization furnace and the heat of the steam generated during the drying process, or the heat source of the drying treatment is an external heat source;
- Combustible gas utilization the product including the combustible gas, biochar and tar produced in the pyrolysis carbonization furnace in step (2) is separated by heat treatment to obtain combustible gas, and the obtained combustible gas is used for the step (1).
- the drying process in the process provides heat.
- the sludge produced by the municipal sewage treatment described in the step (1) is dried, it is preferably subjected to dehydration treatment.
- the drying time in the drying treatment in the step (1) is preferably from 120 to 150 minutes.
- an external heat source may be used, but the heat source generated in the present invention may be used to reuse the heat source, and energy saving and environmental protection. .
- the dehydrated mud cake is directly placed in the drying system, and the drying time can be appropriately adjusted depending on the water content in the sludge, preferably 120 to 150 minutes.
- step (2) a series of reactions including vaporization, pyrolysis, dehydrogenation, heat shrinkage and carbonization are carried out in a sealed, anaerobic and non-combustion state, and when the reaction condition is high temperature and normal pressure, the reaction time is preferably 2 h or more. When the reaction conditions are high temperature and high pressure or medium and high temperature and high pressure, the reaction time is preferably from 1 to 2 hours.
- the present invention it is necessary to ensure a vacuum before the reaction in the pyrolysis carbonization furnace to meet the anaerobic conditions of the reaction, and it is preferable to remove the air in the furnace before the dry sludge enters the pyrolysis carbonization furnace to ensure the vacuum.
- the anaerobic conditions that meet the reaction requirements are then filled with nitrogen to adjust the pressure in the furnace.
- the solar heating system converts the heat into heat by conventional solar energy, converts the heat energy into electric energy, and converts the electric energy into a heating energy supply mode. Heat; or the solar heating system directly supplies heat by a solar energy supply mode that is converted to thermal energy.
- the high temperature condition is above 400 ° C.
- a conventional solar heating system that is, by converting solar energy into heat energy and then converting the heat energy into electric energy
- the electric energy is converted into heat supply mode to supply heat.
- the solar energy utilization rate is extremely low, only 10% utilization rate, and the investment cost is relatively high, and when adopting the present invention (please refer to the following in the fourth embodiment) Description)
- solar energy heating system solar energy can be directly converted into heat energy, the utilization rate of solar energy can be as high as 60-85%, and the investment cost is relatively low.
- the temperature can be arbitrarily adjusted and controlled within the range of 80 to 1000 ° C, and intelligent automatic control can be realized.
- the high pressure described in step (2) is preferably provided by an N 2 pressurization system. It is also possible to pressurize with other inert gases.
- step (2) of the present invention if the reaction is selected under the conditions of high temperature and high pressure, the N 2 pressurization system is turned on to pressurize the furnace, and the pressure parameter is set according to the working condition.
- the temperature of the pyrolysis carbonization furnace described in the step (2) is preferably 25 ° C (or normal temperature) to 1000 ° C (in this temperature range, arbitrarily adjusted according to the requirements of the working condition parameters), the pressure is 0.1-16 MPa ( Within this pressure range, the control can be arbitrarily adjusted according to the needs of the operating parameters.
- the high temperature described in the step (2) is more preferably from 600 to 800 ° C, the intermediate high temperature is more preferably from 350 to 400 ° C, and the high pressure is further preferably from 6 to 12 MPa.
- the inventors have found in a large number of practical explorations that under different pressure conditions, the temperature and reaction time required for carbonization are also different, and the higher the pressure, the lower the temperature required for carbonization.
- carbonization only needs a medium temperature of about 380 °C, the reaction time needs 2 hours; under the pressure of 12MPa, carbonization only needs a medium temperature of about 330 °C, the reaction time takes about 80 minutes.
- the heat exchange treatment described in the step (3) is to supply the heat of the exhaust gas generated in the step (2) to the drying treatment in the step (1).
- the separation is carried out by the heat exchange treatment, and the separation is carried out by using a three-phase separator.
- the tail gas generated in the step (2) of the present invention passes through a heat exchanger (providing heat to the drying system), and then enters the three-phase purifying separator to purify the combustible gas such as methane and hydrogen, and the combustible gas is supplied to the feed drying system. Use it for heat or bottling.
- the invention adopts the environmentally-friendly and high-efficiency treatment process of the sludge produced by the above urban sewage, and can obtain the biochar with the mass percentage of about 10% and the micropores as the main, and the mass percentage is about 1%.
- the tar and the mass percentage of the combustible gas are about 6%, wherein the combustible gas includes methane, hydrogen, etc., and the remaining part is water vapor.
- the invention has been found that the biochar product obtained by the invention (as shown in FIG. 1) can solidify the metal ions on the pore surface of the biochar, so that the effective content of the heavy metals in the sludge biochar is very low, presenting “ “Inert state", so heavy metals in biochar are not easy to migrate and are not easily absorbed by plants.
- the excess sludge in the sewage plant is deep dewatered by solar energy to realize the deep treatment of sludge reduction: the method of the invention uses the heat generated by the solar heating system to supply the pyrolysis carbonization furnace to deeply dewater the sludge and dry the sludge.
- the water content in the sludge reaches 25% or less, reaching the national environmental protection standard for direct sanitary landfill, and is in compliance with the “Notice on Strengthening the Prevention and Control of Sludge Pollution in Urban Sewage Treatment Plants” issued by the General Office of the Ministry of Environmental Protection in 2010 (Environmental Office [2010] The provisions in No. 157) can achieve sludge depth treatment reduction;
- the method of the invention can effectively kill pathogens and colonies due to high temperature or medium and high temperature conditions, and there is no problem of pathogens and colony resurrection, and heavy metal ions are effectively solidified in living organisms.
- charcoal it is not easy to migrate and be absorbed by plants; sludge odor is reduced to below 1°; to meet the environmental protection standards for safe disposal and disposal of sludge, since the invention uses solar clean energy, it will not bring two in the process of treatment and disposal.
- the method of the invention does not need to temper the sludge, and does not add additives such as CaO, which affects the calorific value of the sludge, and the biochar combustion value produced is about 1800 kcal, which can be used as a low calorific value fuel.
- the sludge in the present invention can be treated in the sewage treatment plant workshop, so that the sludge treatment is completely independent, and is not affected by any external environment, and can be used as
- the sewage treatment plant with the main body responsible for sludge treatment has controllability for the whole process of sludge treatment, avoiding the joint and several liability for environmental pollution caused by external sludge treatment units.
- the sludge treatment facility covers a small area.
- the process of the invention can treat various sewage sludges without sludge The influence of inclusions is unmatched by other technologies.
- FIG. 2 is a flow chart of a method for treating sludge by solar pyrolysis carbonization technology in Embodiments 1, 3, 4, 5, 6, 7, 8, and 9 of the present invention
- FIG. 3 is a flow chart of a method for treating sludge by using solar pyrolysis carbonization technology in Embodiments 2, 10 and 11 of the present invention
- FIG. 4 is a schematic structural view of a solar heating system used in Embodiments 4, 10, and 11 of the present invention.
- FIG. 5 is a schematic structural view of the heat storage tank of Figure 4.
- Figure 6 is a schematic view of the structure of the heating furnace of Figure 5; wherein, 1, the heat absorber; 2, solar collector; 3, pipeline; 4, heat storage tank; 5, molten salt pump; 6, heating device; 7, flow valve; 8, heater; 9, heating furnace; 10, insulation layer; 11, molten salt pump suction port; 12, molten salt; 13, heated object.
- Example 1 The excess sludge with a water content of 99.7% in the sewage treatment plant of Yangdong Economic Development Zone
- the source is the exhaust gas temperature of the pyrolysis carbonization furnace and the heat generated by the combustion of the combustible gas in the exhaust gas and the heat of the water vapor generated by itself;
- the dried sludge enters the pyrolysis carbonization furnace (a commercially available pyrolysis carbonization furnace), and the aspirator of the pyrolysis carbonization furnace system is turned on to turn on the solar heating system and N when the gas pressure in the furnace is reduced to 0 MPa.
- the solar heating system adopts a traditional solar heating system, which converts heat into heat by conventional solar energy, converts the heat into electrical energy, and converts the electric energy into heat supply mode to supply heat to carbonize the pyrolysis.
- the furnace temperature is controlled at 380 ° C
- the pressure is controlled at 6 MPa
- a series of reactions including vaporization, pyrolysis, dehydrogenation, heat shrinking and carbonization are carried out in a sealed, anaerobic and non-combustion state for 120 min to obtain tail gas, tar and biomass.
- the tail gas generated in the pyrolysis carbonization furnace passes through the heat exchanger (heat is supplied to the feed drying system), and then enters the three-phase purification separator to purify the combustible gas such as methane and hydrogen, and the combustible gas is bottled to dry the feed.
- the system provides heat or other uses.
- the pyrolysis carbonization furnace is turned on, and the biochar is naturally cooled and then used for bagging.
- Example 2 Excess sludge with water content of 99.7% in sewage treatment plant of Yangdong Economic Development Zone
- the heat source of the drying system is the residual temperature of the exhaust gas of the pyrolysis carbonization furnace and the combustion of combustible gas in the exhaust gas. Heat and the heat of the water vapor produced by itself;
- the dried sludge enters the pyrolysis carbonization furnace and opens the aspirator of the pyrolysis carbonization furnace system.
- the gas pressure in the furnace drops to 0 MPa
- the solar heating system and the N 2 pressure system are turned on, wherein the solar heating system passes the conventional
- the solar energy is converted into heat energy, and then the heat energy is converted into electric energy, and then the electric energy is converted into heat supply mode.
- the temperature is controlled at 330 ° C
- the pressure is controlled at 12 MPa
- the gasification and heat are included in the sealed, anaerobic and non-combustion states. a series of reactions of dehydrogenation, dehydrogenation, heat shrinking and charring for 80 minutes to obtain combustible gas, tar and biochar products;
- the exhaust gas generated in the pyrolysis carbonization furnace passes through the heat exchanger (heat is supplied to the feed drying system), and then Into the three-phase purification separator, purifying to obtain combustible gas such as methane and hydrogen, and supplying the combustible gas to the feed drying system to provide heat or other use;
- the pyrolysis carbonization furnace is turned on, and the biochar is naturally cooled and then used for bagging.
- Example 3 Excess sludge with water content of 99.7% in sewage treatment plant of Yangdong Economic Development Zone
- the heat source of the drying system is the residual temperature of the exhaust gas of the pyrolysis carbonization furnace and the heat generated by the combustion of the combustible gas in the exhaust gas and the heat of the water vapor generated by itself;
- the dried sludge enters the pyrolysis carbonization furnace, and the aspirator of the pyrolysis carbonization furnace system is turned on.
- the gas pressure in the furnace drops to 0 MPa
- the solar heating system and the N 2 pressure system are turned on, wherein the solar heating system passes the tradition.
- the solar energy is converted into heat energy, and then the heat energy is converted into electric energy, and then the electric energy is converted into heat supply mode.
- the temperature is controlled at 200 ° C
- the pressure is controlled at 16 MPa
- the gasification is carried out under sealed, anaerobic and non-combustion conditions. a series of reactions of pyrolysis, dehydrogenation, heat shrinkage and charring for 60 minutes to obtain tail gas, tar and biochar products;
- the tail gas generated in the pyrolysis carbonization furnace passes through the heat exchanger (heat is supplied to the feed drying system), and then enters the three-phase purification separator to purify the combustible gas such as methane and hydrogen, and the combustible gas is bottled to dry the feed.
- the system provides heat or other use;
- the pyrolysis carbonization furnace (pyrolysis carbonization furnace) is turned on, and the biochar is naturally cooled and then used for bagging.
- Example 4 surplus sludge with water content of 65% in sewage treatment plant of Yangdong Economic Development Zone
- the heat source of the drying system is the residual temperature of the exhaust gas of the pyrolysis carbonization furnace and the heat generated by the combustion of the combustible gas in the exhaust gas and the heat of the water vapor generated by itself;
- the dried sludge enters the pyrolysis carbonization furnace and opens the aspirator of the pyrolysis carbonization furnace system.
- the solar heating system is turned on, wherein the solar heating system adopts the solar heating design designed in the present invention.
- the system directly converts solar energy into heat energy, the temperature is controlled at 800 ° C, and nitrogen is introduced to raise the pressure in the furnace to normal pressure, and in the sealed, anaerobic, non-combustion state, including vaporization, pyrolysis, dehydrogenation, A series of reactions of heat shrinking and carbonization for more than 2 hours to obtain tail gas, tar and biochar products;
- the exhaust gas generated in the pyrolysis carbonization furnace passes through the heat exchanger (heat is supplied to the feed drying system), and then The three-phase purification separator is purified to obtain combustible gas such as methane and hydrogen, and the combustible gas is supplied to the feed drying system to provide heat or other uses.
- the pyrolysis carbonization furnace is turned on, and the biochar is naturally cooled and then used for bagging.
- the solar heating system in this embodiment has a structure as shown in FIG. 4, and includes a heat absorber 1, a solar collector 2, a heat storage tank 4, a molten salt pump 5, a heat tracing device 6, and a flow valve 7.
- the heater 8 and the heating furnace 9 and the like are connected to each other through the high temperature resistant metal pipe 3, and the outer surfaces of the pipeline 3 and the thermal storage tank 4 are covered with the high temperature resistant heat insulating material 10, and the devices pass through the flange and the card.
- the sleeve is fixedly connected by welding or welding.
- the solar heating system can generate, transport and store a high temperature exceeding 400 ° C.
- the high temperature heat can be transferred from the solar collector to the heating furnace through the continuous circulation of the molten salt, and the heating can be maintained without interruption.
- the solar collector 2 can adopt a dish type or a trough type solar heat collecting method, and a tower type heat collecting method can also be adopted for obtaining a higher heating temperature.
- the solar collector 2 wherein the paraboloid of the solar collector 2 is controlled by the solar tracking device, adjusts the tracking sun angle in real time, and obtains higher heat collecting efficiency.
- the heat absorber 1 is made of a high temperature resistant metal tube, and the length and diameter of the heat absorbing tube are adjusted according to the heat absorption power.
- the heat storage tank 4 is formed by processing a high temperature resistant metal material, the tank body is provided with a molten salt return port and a molten salt pump drive port, and the outer surface of the tank is covered with a high temperature resistant heat insulating material.
- the molten salt pump 5 can withstand high temperature heat above 400 °C.
- the heat tracing device 6 is covered with an electric heating device on the outer surface of the pipeline, and is covered with a high temperature resistant heat insulating material on the outer layer.
- the flow valve 7 which can withstand temperatures above 400 ° C, can adjust the flow rate of the molten salt.
- the heater 8 is made of a high temperature resistant metal tube, and the length and diameter of the heat absorbing tube are adjusted according to the heat absorption power.
- the heating furnace 9 is made of a high temperature resistant metal material, and a heater and an object to be heated are arranged in the furnace, and the surface of the furnace body is covered with a high temperature resistant heat insulating material.
- a molten salt pump suction hole and a molten salt return hole are respectively disposed at the top of the heat storage tank 4 at a position corresponding to the outer casing of the heat storage tank 4, and are used for fixedly connecting the high temperature molten salt pump 5 and the connecting pipe. 3.
- the outer portion of the heat storage tank 4 is covered with the high temperature resistant heat insulating layer 10.
- the molten salt pump liquid suction port 11 is located 15 to 20 cm above the inner bottom surface of the heat storage tank 4, and the heating time required for filling the inside of the heat storage tank 4 during operation is corresponding. The amount of molten salt.
- the heating furnace 9 is processed from a high temperature resistant metal material, and two openings are provided at the upper and lower ends of the furnace body for the inflow and outflow of the molten salt.
- a heater 8 is placed in the furnace and filled with a desired heating object 13 (molten salt).
- the heat tracing device 6 covering the outside of the pipeline is first started, and the residual solid molten salt in the pipeline 3 is heated to be in a molten state, so that the tube can be driven by the molten salt pump 5 Flows in the road 3.
- the system needs to pass several forced cycles to make the molten salt in the system all in a high temperature molten state.
- the solar collector 2 collects and generates heat of a high temperature exceeding 400 ° C, transfers heat to the heat transfer medium molten salt 12 flowing through the inside of the heat absorber 1, and the molten salt 12 is heated to a high temperature state and driven by the molten salt pump 5.
- the heat storage tank 4 is entered through the line 3. Under the influence of density, the molten salt with higher temperature is located at the upper layer of the heat storage tank 4, and the low-temperature molten salt of the bottom layer is driven by the molten salt pump 5 to flow through the liquid suction port 11 to the heater 8, and finally flows to the heat absorber 1, and is completed. A heating cycle. After several forced circulations, the molten salt in the heat storage tank 4 is all in a high temperature state.
- the heated substance 13 in the heating furnace 9 can be heated, and the molten salt after releasing the high-temperature heat is lowered in temperature, and is driven by the molten salt pump 5 to be absorbed by the heat absorber 1 and recovered. Go to the high temperature state and re-enter the circulation line 3 for the next heating process.
- the system can use the molten salt in the thermal storage tank 4 to be driven by the molten salt pump 5 to the heater 8 to heat the heated substance 13 and return to the thermal storage tank 4 to store heat.
- the molten salt filling amount in the tank 4 is calculated and designed to meet the uninterrupted heating under the heating time requirement of the process.
- Example 5 Excess sludge with a moisture content of 80% in the sewage treatment plant of Yangshan Zhongshan Torch Park
- the heat source of the drying system was the exhaust gas residual temperature of the pyrolysis carbonization furnace. The heat generated by the combustion of combustible gas in the exhaust gas and the heat of the water vapor generated by itself;
- the dried sludge enters the pyrolysis carbonization furnace and opens the aspirator of the pyrolysis carbonization furnace system.
- the gas pressure in the furnace drops to 0 MPa
- the solar heating system and the N 2 pressure system are turned on, wherein the solar heating system directly passes the solar energy.
- the heating mode is converted into heat supply mode.
- the specific structure and usage method are the same as those in the fourth embodiment.
- the temperature is controlled at 400 ° C and the pressure is controlled at 4 MPa.
- the process includes vaporization, pyrolysis and dehydrogenation in a sealed, anaerobic and non-combustion state. a series of reactions of heat shrinking and carbonization for 120 minutes to obtain tail gas, tar and biochar products;
- the exhaust gas generated in the pyrolysis carbonization furnace passes through the heat exchanger (heat is supplied to the feed drying system), and then Into the three-phase purification separator, purifying to obtain combustible gas such as methane and hydrogen, and supplying the combustible gas to the feed drying system to provide heat or other use;
- the pyrolysis carbonization furnace is turned on, and the biochar is naturally cooled and then used for bagging.
- Example 6 excess sludge with water content of 80% in the sewage treatment plant of Yangshan Zhongshan Torch Park
- the heat source of the drying system was the exhaust gas residual temperature of the pyrolysis carbonization furnace. The heat generated by the combustion of combustible gas in the exhaust gas and the heat of the water vapor generated by itself;
- the dried sludge enters the pyrolysis carbonization furnace and opens the aspirator of the pyrolysis carbonization furnace system.
- the gas pressure in the furnace drops to 0 MPa
- the solar heating system and the N 2 pressure system are turned on, and the solar heating system is the same as in the first embodiment.
- the temperature is controlled at 350 ° C
- the pressure is controlled at 8 MPa
- a series of reactions including vaporization, pyrolysis, dehydrogenation, heat shrinking and carbonization are carried out in a sealed, anaerobic and non-combustion state for 100 minutes to obtain exhaust gas, tar and biomass.
- the tail gas generated in the pyrolysis carbonization furnace passes through the heat exchanger (heat is supplied to the feed drying system), and then enters the three-phase purification separator to purify the combustible gas such as methane and hydrogen, and the combustible gas is bottled to dry the feed.
- the system provides heat or other use;
- the pyrolysis carbonization furnace is turned on, and the biochar is naturally cooled and then used for bagging.
- the heat source of the drying system was the exhaust gas residual temperature of the pyrolysis carbonization furnace. The heat generated by the combustion of combustible gas in the exhaust gas and the heat of the water vapor generated by itself;
- the dried sludge enters the pyrolysis carbonization furnace and opens the aspirator of the pyrolysis carbonization furnace system.
- the gas pressure in the furnace drops to 0 MPa
- the solar heating system and the N 2 pressure system are turned on, and the temperature is controlled at 320 ° C.
- the thermal system was the same as in Example 1, the pressure was controlled at 14 MPa, and a series of reactions including vaporization, pyrolysis, dehydrogenation, heat shrinkage and carbonization were carried out in a sealed, oxygen-free, non-combustion state for 80 minutes to obtain exhaust gas, tar and biomass.
- the tail gas generated in the pyrolysis carbonization furnace passes through the heat exchanger (heat is supplied to the feed drying system), and then enters the three-phase purification separator to purify the combustible gas such as methane and hydrogen, and the combustible gas is bottled to dry the feed.
- the system provides heat or other uses.
- the pyrolysis carbonization furnace is turned on, and the biochar is naturally cooled and then used for bagging.
- Example 8 The excess sludge with a water content of 80% in the first sewage treatment plant of Yangjiang City
- the dried sludge enters the pyrolysis carbonization furnace and opens the aspirator of the pyrolysis carbonization furnace system.
- the gas pressure in the furnace drops to 0 MPa
- the solar heating system and the N 2 pressure system are turned on, and the temperature is controlled at 390 ° C.
- the thermal system was the same as in Example 1.
- the pressure was controlled at 5 MPa.
- a series of reactions including vaporization, pyrolysis, dehydrogenation, heat shrinking and carbonization were carried out in a sealed, anaerobic and non-combustible state for 120 minutes to obtain exhaust gas, tar and biomass. Carbon products.
- the exhaust gas generated in the furnace passes through the heat exchanger (heat is supplied to the feed drying system), and then enters the three-phase purification separator to purify the combustible gas such as methane and hydrogen.
- the combustible gas bottle provides heat to the feed drying system. Or he used it.
- the pyrolysis carbonization furnace is turned on, and the biochar is naturally cooled and then used for bagging.
- Example 9 The excess sludge with a water content of 80% in the first sewage treatment plant of Yangjiang City
- the heat source of the drying system was the exhaust gas residual temperature and exhaust gas of the pyrolysis carbonization furnace. The heat generated by the combustion of combustible gas and the heat of the water vapor generated by itself;
- the dried sludge enters the pyrolysis carbonization furnace and opens the aspirator of the pyrolysis carbonization furnace system.
- the gas pressure in the furnace drops to 0 MPa
- the solar heating system and the N 2 pressure system are turned on, and the temperature is controlled at 340 ° C.
- the thermal system was the same as in Example 1, the pressure was controlled at 9 MPa, and a series of reactions including vaporization, pyrolysis, dehydrogenation, heat shrinking and carbonization were carried out in a sealed, anaerobic and non-combustion state for 100 minutes to obtain exhaust gas, tar and biomass.
- the tail gas generated in the pyrolysis carbonization furnace passes through the heat exchanger (heat is supplied to the feed drying system), and then enters the three-phase purification separator to purify the combustible gas such as methane and hydrogen, and the combustible gas is bottled to dry the feed.
- the system provides heat or other use;
- the pyrolysis carbonization furnace is turned on, and the biochar is naturally cooled and then used for bagging.
- Example 10 excess sludge of 80% moisture content of the first sewage treatment plant of Yangjiang City
- the heat source of the drying system is the residual temperature of the exhaust gas of the pyrolysis carbonization furnace and the combustion of combustible gas in the exhaust gas. Heat and the heat of the water vapor produced by itself;
- the dried sludge enters the pyrolysis carbonization furnace and opens the aspirator of the pyrolysis carbonization furnace system.
- the solar heating system is turned on.
- the solar heating system is the same as in the fourth embodiment, and the temperature is controlled at 500 ° C.
- Nitrogen is introduced to raise the pressure in the furnace to 1 MPa.
- a series of reactions including vaporization, pyrolysis, dehydrogenation, heat shrinking and carbonization are carried out in a sealed, anaerobic and non-combustible state for 120 minutes to obtain exhaust gas, tar and Biochar products.
- the exhaust gas generated in the furnace passes through the heat exchanger (heat is supplied to the feed drying system), and then enters the three-phase purification separator to purify the combustible gas such as methane and hydrogen.
- the combustible gas bottle provides heat to the feed drying system. Or he used it.
- the pyrolysis carbonization furnace is turned on, and the biochar is naturally cooled and then used for bagging.
- Example 11 excess sludge of 60% moisture content of the first sewage treatment plant of Yangjiang City
- the heat source of the drying system is the residual temperature of the exhaust gas of the pyrolysis carbonization furnace and the combustion of combustible gas in the exhaust gas. Heat and the heat of the water vapor produced by itself;
- the dried sludge enters the pyrolysis carbonization furnace and opens the aspirator of the pyrolysis carbonization furnace system.
- the gas pressure in the furnace drops to 0 MPa
- the solar heating system is turned on, the temperature is controlled at 600 ° C, and nitrogen is introduced into the furnace.
- the pressure was raised to 3 MPa, and the solar heating system was the same as in Example 4.
- a series of reactions including vaporization, pyrolysis, dehydrogenation, heat shrinking and carbonization were carried out for 1.5 h in a sealed, anaerobic and non-combustible state to obtain exhaust gas and tar. And biochar products.
- the exhaust gas generated in the furnace passes through the heat exchanger (heat is supplied to the feed drying system), and then enters the three-phase purification separator to purify the combustible gas such as methane and hydrogen.
- the combustible gas bottle provides heat to the feed drying system. Or he used it.
- the pyrolysis carbonization furnace is turned on, and the biochar is naturally cooled and then used for bagging.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Treatment Of Sludge (AREA)
Abstract
本发明公开了一种利用太阳能热解碳化技术处理污泥的方法,包括以下步骤:取城市污水处理产生的污泥,置于热解碳化炉中,在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应,生成尾气、生物炭和焦油,其中热解碳化炉由太阳能供热系统提供热源,反应条件为高温常压或高温高压或中高温高压,所述的高温为500~800℃,所述的中高温为200~400℃,所述的高压为1~16MPa。本发明方法能实现污泥在污水厂内彻底处理处置,无二次污染,能量利用率高,运行费用极低,回收可再生资源,真正彻底实现污泥处理处置的减量化、稳定化、无害化及资源利用化。
Description
本发明属于污泥处理和资源再生技术领域,具体涉及一种利用太阳能热解碳化技术处理污泥的方法。
近年来,中国城市污水处理事业获得了长足的进步,并且目前还处在加速发展过程中。但与此同时,人们始料未及的一个问题逐渐显示出来:污水处理后产生了大量的活性污泥。据估算,目前中国每天产生的含水80%的污泥,重量上几乎占到城市产生垃圾总量的20%,而且年增长率大于10%。根据预测,到2014年,全国年产生干污泥量将达到2500万吨。污泥中富含营养元素,此外还含有大量的有机质、重金属、病原菌、寄生虫(卵)等一系列的污染物质,很容易对生态环境造成严重的二次污染。
污水处理厂所产生的剩余污泥处理处置是当今世界环保课题的一大难题,有效减低污泥含水率是课题中的一个技术瓶颈。目前,我国的污水处理厂普遍采用的机械脱水方式可将污泥含水率将至75%~80%之间,而环保部办公厅2010年发布的《关于加强城镇污水处理厂污泥污染防治工作的通知》(环办【2010】157号)中规定:污水处理厂以贮存(即不处理处置)为目的将污泥运出厂界的,必须将污泥脱水至50%以下。含水率剩余污泥也是污水处理过程中的二次污染物。一方面,污泥中含有大量的病原菌、寄生虫、致病微生物,以及砷、铜、铬、汞等重金属和二噁英、放射性核素等难以降解的有毒有害物质,由于污泥含水率高、体积大,给堆放和运输带来困难,城市污泥如果处理不当或不规范处理,如随意弃置农地滥用等,将对生态环境会造成严重的潜在威胁。另一方面,剩余污泥含有很高的有机营养质和燃烧值,污泥的土地利用与能量循环利用是一种具有广阔前景的污泥处置方法,而污泥含水率高低直接影响污泥再利用的再生成本。无论是响应国家政策还是资源再生利用,追求低污泥含水率都将势在必行。因此污泥深度脱水一直深受各国重视,污泥作为再生资源的有效利用是世界各国共同重视的问题,代表了人类环境生态效益、社会效益和经济效益均衡发展的方向。
机械脱水仅能使自由水和存在于污泥颗粒间的间隙水去除;毛细水和污泥颗粒
之间的结合力较强,需借助较高的机械作用力和能量;胞内水的含量与污泥中微生物细胞所占的比例有关,使用机械方法去除这部分水是行不通的,而需采用高温加热和冷冻等措施。从破坏污泥水分结合形态的角度来看,可利用堆肥、石灰调质、污泥化学改性、热干化技术及电渗透等工艺。厌氧或含氧堆肥大多采用调理剂调理降低污泥含水率之后再堆肥生产,存在占地面积大,臭味较大,运行周期长,运行费用较高,处理能力较小等不足之处。石灰调质脱水工艺石灰投加率为20%~30%,石灰投加量大污泥增重较大,污泥容积较大,生产周期较长,泥饼和滤液是碱性,滤液还需调节pH值处理,设备的防腐要求也较高,运行费用较高。污泥加药改性一般采用药剂对污泥进行调理,没有对污泥进行本质上的改变,降低污泥的含水率依赖的是机械设备的改进。污泥加药改性技术分污泥菌胶团沉降性能改性和污泥菌胶团细菌改性,针对污泥沉降性能改性,污泥的脱水率只能降到65%左右,且调理剂的总添加量占污泥干基比达到20%以上,污泥增容问题较严重,实际上并未实现污泥的减量化。
热干化及其它热解技术由于污泥含水率较高,污泥热值不能维持自身污泥干化运行需要增加外源能源,能耗很大,运行成本很高。电渗透干法存在设备投资、运行成本费用较高,设备的维护要求很高等不足之处。这些方法不是存在含水率不能达到要求就是存在运行成本过高或增加污泥容量等缺点而不能满足现实所需。
因此,目前污泥深度脱水面临的难题在于,现有的污泥处理技术存在工艺复杂,能耗、设备投资、运行成本过高,并未实现污泥减量化,容易影响污泥的再生或后续利用,环境效益差等缺点。
发明内容
本发明的目的在于提供一种利用太阳能热解碳化技术处理污泥的方法,该方法能耗、设备投资、运行成本低,能实现污泥的无害化、稳定化、减量化和资源利用化。
本发明的上述目的是通过以下技术方案来实现的:一种利用太阳能热解碳化技术处理污泥的方法,包括以下步骤:取城市污水处理产生的污泥,置于热解碳化炉中,在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应,生成尾气、生物炭和焦油,其中热解碳化炉由太阳能供热系统提供热源,反应条件为高温常压或高温高压或中高温高压,所述的高温为500~800℃,所述的
中高温为200~400℃,所述的高压为1~16MPa。
本发明所述的城市污泥置于热解碳化炉(也可以称为热解炭化炉,下文同)之前优选先经脱水和/或干燥处理。
作为本发明的一种改进,本发明提供的一种利用太阳能热解碳化技术处理污泥的方法,进一步包括以下步骤:
(1)污泥干燥:将城市污水处理产生的污泥进行干燥处理,得干燥污泥,干燥处理的热量来源为步骤(2)中热解碳化炉产生的尾气的余温、步骤(2)中热解碳化炉产生的尾气中的可燃气燃烧产生的热量和干燥处理时产生的水蒸气的热量中的一种或几种,或干燥处理的热量来源为外部热源;
(2)热解碳化反应:将步骤(1)中获得的干燥污泥置于热解碳化炉中,在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应,生成尾气、生物炭和焦油,其中热解碳化炉由太阳能供热系统提供热源,反应条件为高温常压或高温高压或中高温高压,所述的高温为500~800℃,所述的中高温为200~400℃,所述的高压为1~16MPa;
(3)可燃气利用:将步骤(2)热解碳化炉产生的包括可燃气、生物炭和焦油的产品,经换热处理后分离,获得可燃气,所得可燃气用于给步骤(1)中的干燥处理提供热量。
在上述利用太阳能热解碳化技术处理污泥的方法中:
步骤(1)中所述的城市污水处理产生的污泥进行干燥前,优选先进行脱水处理。
步骤(1)中干燥处理时干燥时间优选为120~150min。
这里需要说明的是,本发明步骤(1)中干燥处理除了可以采用本发明中产生的热源之外,也可以采用外部的热源,只是采用本发明中产生的热源可以将热源重复利用,节能环保。
如污水处理厂有污泥脱水处理设施的则将脱水后的泥饼直接放进干燥系统,干燥时间随污泥中的含水率不同可以进行适当的调整,优选为120~150min。
步骤(2)中在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应,反应条件为高温常压时,反应时间优选为2h以上,反应条件为高温高压或中高温高压时,反应时间优选为1~2h。
本发明中在热解碳化炉中的反应前需要保证真空,以满足反应要求的无氧条件,最好是在干燥污泥在进入热解碳化炉之前,需抽走炉内空气,保证真空,满足反应要求的无氧条件,然后充入氮气,调整炉内压力。
干燥污泥在热解碳化炉中的反应后,干燥污泥中剩余水分蒸发,有机物转化为尾气、焦油和生物炭。
步骤(2)中热解碳化炉由太阳能供热系统提供热源时,所述的太阳能供热系统通过传统的太阳能转化为热能、再将热能转化为电能、再将电能转化为热能的供给模式供热;或所述的太阳能供热系统直接通过太阳能转化为热能的供给模式供热。
本发明中采用高温常压或高温高压反应时,高温条件在400℃以上,此时,如果采用传统的太阳能供热系统,即通过传统的将太阳能转化为热能、再将热能转化为电能、再将电能转化为热能的供给模式供热,此时太阳能利用率极低,仅有10%的利用率,投资成本相对较高,而当采用本发明中的(具体请参与下文实施例4中的描述)太阳能供热系统时,可以直接将太阳能转化为热能,太阳光能利用率可高达60~85%,投资成本相对较低。
采用本发明中设计的太阳能供热系统时,温度可在80~1000℃范围内任意调节控制,可实现智能化自动控制。
步骤(2)中所述的高压优选通过N2加压系统提供。也可以采用其他惰性气体进行加压。
本发明步骤(2)中如选择中高温高压条件下反应,则开启N2加压系统给炉内加压,根据工况条件设置压力参数。
步骤(2)中所述的热解碳化炉的温度优选为25℃(或常温)~1000℃(在这温度范围内,根据工况参数的需要,任意调节控制),压力为0.1~16MPa(在这压力范围内,根据工况参数的需要,任意调节控制)。
步骤(2)中所述的高温进一步优选为600~800℃,所述的中高温进一步优选为350~400℃,高压进一步优选为6~12MPa。
为解决现有技术中存在的问题,发明人在大量的实践探索中发现,在压力不同的条件下,碳化所需的温度、反应时间也不同,压力越高,碳化所需的温度越低,反应时间越短,如在常压下,碳化需要600℃以上的高温,反应时间需要2小时以
上;在6MPa压力条件下,碳化只需要380℃左右的中温,反应时间需要2小时;在12MPa压力条件下,碳化只需要330℃左右的中温,反应时间需要80分钟左右。
步骤(3)中所述的换热处理为将步骤(2)中产生的尾气的热量供给步骤(1)中干燥处理。
步骤(3)中经换热处理后分离时分离采用三相分离器进行分离。
本发明步骤(2)中产生的尾气经过热交换器(给干燥系统提供热量),再进入三相净化分离器,净化得出甲烷、氢气等可燃烧气体,可燃气燃烧给进料干燥系统提供热量或装瓶他用。
本发明经过上述城市污水产生的污泥的环保高效处理工艺,可得到质量百分含量为10%左右的以中孔为主、微孔为辅的生物炭、质量百分含量为1%左右的焦油及质量百分含量为6%左右的可燃气,其中可燃气包括甲烷、氢气等,剩余的其它部分为水蒸气。
本发明经过检测发现,本发明获得的生物炭产品(如图1中所示)可使金属离子固化在生物炭的孔隙表面,使污泥生物炭中的重金属的有效态含量非常低,呈现“惰性状态”,因此生物炭中的重金属不容易迁移,也不容易被植物吸收。
本发明具有以下优点:
(1)污水厂剩余污泥利用太阳能进行干燥深度脱水,实现污泥深度处理减量化:本发明方法利用太阳能供热系统提供给热解碳化炉产生的热量对污泥进行了深度脱水,干燥污泥中含水率达到25%以下,达到直接卫生填埋的国家环保标准,符合环保部办公厅2010年发布的《关于加强城镇污水处理厂污泥污染防治工作的通知》(环办【2010】157号)中的规定,可以实现污泥深度处理减量化;
(2)实现污泥处理处置无害化:本发明方法由于在高温或中高温条件下实施,能有效杀死病原体及菌落,也不存在病原体及菌落复活等问题,重金属离子被有效固化在生物炭中,不容易迁移和被植物吸收;污泥臭度下降到1°以下;达到污泥安全处理处置环保标准,由于本发明使用的是太阳能清洁能源,在处理处置过程中不会带来二次污染;
(3)实现资源利用化:本发明方法不需要对污泥进行调质,不添加CaO等影响污泥热值的添加剂,生产出的生物炭燃烧值在1800大卡左右,可作为低热值燃料供给火电厂或水泥厂、砖厂等作为燃料替代物,而焦油及甲烷、氢气等可燃气也
能产生经济效益,灰分可作为轻质建材的生产原料或制作陶粒,具有广泛的应用前景;
(4)技术优势经济效益明显:本发明方法与常见的污泥处理处置技术,如填埋、焚烧等在经济技术指标方面的对比如下:总的来说,本发明方法能处理各种各样的污水污泥,不受污泥内含物的影响,这也是其它技术所不能比拟的,在建设投资方面,其略高于堆肥和填埋,但是相当于焚烧的一半左右;占地面积最小,仅为填埋的1/10,堆肥的1/6;在经营成本方面,由于本发明方法具有盈利的能力,这更不是其它技术所能比拟的;本发明方法的最终产品为10%左右的生物炭(市场价600元/吨),1吨含水率为80%的剩余污泥通过本发明中的工艺得出的产品效益为:产100kg生物炭,价值60元;节约污泥外运填埋成本275元;合计创收价值为335元/吨湿泥;
(5)对处理污泥的全过程具有可控性:本发明中的污泥可以在污水处理厂车间内进行处理,使污泥处理完全独立进行,不受任何外部环境影响,并且能使作为污泥处理责任主体的污水处理厂对污泥处理全过程具备可控能力,避免由于外部处理污泥单位发生的环境污染问题时,负上连带责任,另外,处理污泥设施占地面积小,适合污泥分散处理,避免运输过程中的环境污染问题,节约运输费用,能替代不可再生能源,满足可持续发展的要求,本发明工艺能处理各种各样的污水污泥,不受污泥内含物的影响,这也是其它技术所不能比拟的。
下面通过具体实施方式及附图对本发明作进一步说明。
图1是本发明利用太阳能热解碳化技术处理污泥的方法中产生的生物炭;
图2是本发明实施例1、3、4、5、6、7、8和9中利用太阳能热解碳化技术处理污泥的方法流程图;
图3是本发明实施例2、10和11中利用太阳能热解碳化技术处理污泥的方法流程图;
图4是本发明实施例4、10和11中采用的太阳能供热系统的结构示意图;
图5是图4中的蓄热罐的结构示意图;
图6是图5中的加热炉的结构示意图;其中1、吸热器;2、太阳能集热器;3、管路;4、蓄热罐;5、熔盐泵;6、伴热装置;7、流量阀;8、加热器;9、加热炉;
10、保温层;11、熔盐泵吸液口;12、熔盐;13、被加热物体。
实施例1阳东经济开发区污水处理厂含水率99.7%的剩余污泥
如图2中所示,抽取40kg含水率为99.7%的剩余污泥,经污泥脱水处理设施脱水处理后,将脱水后的泥饼直接进入干燥系统,干燥时间为130分钟,干燥系统的热量来源为热解碳化炉的尾气余温和尾气中的可燃气燃烧产生的热量及自身产生的水蒸气的热量;
干燥后的污泥进入热解碳化炉(可采用市面上出售的热解碳化炉),开启热解碳化炉系统的吸气机,使炉内气压降至0MPa时,开启太阳能供热系统及N2加压系统,其中太阳能供热系统采用传统的太阳能供热系统,其通过传统的太阳能转化为热能、再将热能转化为电能、再将电能转化为热能的供给模式供热,使热解碳化炉内温度控制在380℃,压力控制在6MPa,在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应120min,得到尾气、焦油和生物炭产品;
热解碳化炉内产生的尾气再经过热交换器(给进料干燥系统提供热量),再进入三相净化分离器,净化得出甲烷、氢气等可燃烧气体,可燃气装瓶给进料干燥系统提供热量或他用。
然后开启热解碳化炉,让生物炭自然冷却后装袋利用。
实施例2阳东经济开发区污水处理厂含水率99.7%的剩余污泥
如图3所示,抽取40kg含水率为99.7%的剩余污泥直接进入干燥系统,干燥时间为130分钟,干燥系统的热量来源为热解碳化炉的尾气余温和尾气中的可燃气燃烧产生的热量及自身产生的水蒸气的热量;
干燥后的污泥进入热解碳化炉,开启热解碳化炉系统的吸气机,炉内气压降至0MPa时,开启太阳能供热系统及N2加压系统,其中太阳能供热系统通过传统的太阳能转化为热能、再将热能转化为电能、再将电能转化为热能的供给模式供热,温度控制在330℃,压力控制在12MPa,在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应80分钟,得到可燃气、焦油和生物炭产品;
热解碳化炉内产生的尾气再经过热交换器(给进料干燥系统提供热量),再进
入三相净化分离器,净化得出甲烷、氢气等可燃烧气体,可燃气装瓶给进料干燥系统提供热量或他用;
然后开启热解碳化炉,让生物炭自然冷却后装袋利用。
实施例3阳东经济开发区污水处理厂含水率99.7%的剩余污泥
如图2中所示,抽取40kg含水率99.7%的剩余污泥,经过原污泥脱水处理系统得到含水率为65%的泥饼,将脱水后的泥饼放进干燥系统,干燥时间为120分钟,干燥系统的热量来源为热解碳化炉的尾气余温和尾气中的可燃气燃烧产生的热量及自身产生的水蒸气的热量;
将干燥后的污泥进入热解碳化炉,开启热解碳化炉系统的吸气机,炉内气压降至0MPa时,开启太阳能供热系统及N2加压系统,其中太阳能供热系统通过传统的太阳能转化为热能、再将热能转化为电能、再将电能转化为热能的供给模式供热,温度控制在200℃,压力控制在16MPa,在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应60分钟,得到尾气、焦油和生物炭产品;
热解碳化炉内产生的尾气再经过热交换器(给进料干燥系统提供热量),再进入三相净化分离器,净化得出甲烷、氢气等可燃烧气体,可燃气装瓶给进料干燥系统提供热量或他用;
然后开启热解碳化炉(热解炭化炉),让生物炭自然冷却后装袋利用。
实施例4阳东经济开发区污水处理厂含水率65%的剩余污泥
如图2中所示,抽取40kg含水率为65%的剩余污泥,经过原污泥脱水处理系统得到含水率为50%的脱水泥饼,将脱水泥饼放进干燥系统,干燥时间为120分钟,干燥系统的热量来源为热解碳化炉的尾气余温和尾气中的可燃气燃烧产生的热量及自身产生的水蒸气的热量;
干燥后的污泥进入热解碳化炉,开启热解碳化炉系统的吸气机,炉内气压降至0MPa时,开启太阳能供热系统,其中太阳能供热系统采用本发明中设计的太阳能供热系统,其直接将太阳能转化为热能,温度控制在800℃,并通入氮气,使炉内压力提升到常压,在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应2h以上,得到尾气、焦油和生物炭产品;
热解碳化炉内产生的尾气再经过热交换器(给进料干燥系统提供热量),再进
入三相净化分离器,净化得出甲烷、氢气等可燃烧气体,可燃气装瓶给进料干燥系统提供热量或他用。
然后开启热解碳化炉,让生物炭自然冷却后装袋利用。
本实施例中的太阳能供热系统,其结构如图4中所示,包括吸热器1、太阳能集热器2、蓄热罐4、熔盐泵5、伴热装置6、流量阀7、加热器8和加热炉9等装置,各装置通过耐高温金属管路3互相连接,且在管路3和蓄热罐4的外表面覆盖耐有高温保温材料10,各装置通过法兰、卡套或焊接的方式固定连接。
该太阳能供热系统可产生并输送、储存超过400℃高温,可通过熔盐的不断循环将高温热量由太阳能集热器输送至加热炉,并可以维持加热的不间断进行。
其中太阳能集热器2,可采用碟式或槽式太阳能集热方式,为获得更高加热温度,也可采用塔式集热方式。
太阳能集热器2,其中太阳能集热器2的抛物面由太阳能跟踪装置控制,实时调整跟踪太阳角度,获得更高的集热效率。
吸热器1,由耐高温金属管缠绕而成,按照吸热功率不同调整吸热管长度和直径。
蓄热罐4,其罐体由耐高温金属材料加工而成,罐体设置有熔盐回流口和熔盐泵驱动口,罐体外表面覆盖耐高温保温材料。
熔盐泵5,其可承受400℃以上高温热量。
伴热装置6,其采用电热装置覆盖在管路外表面,并在外层覆盖耐高温保温材料。
流量阀7,其可以承受400℃以上高温,并能调整熔盐的流量。
加热器8,其由耐高温金属管缠绕而成,按照吸热功率不同调整吸热管长度和直径。
加热炉9,其炉体由耐高温金属材料加工而成,炉内设置加热器和被加热物,炉体外表面覆盖耐高温保温材料。
如图5所示,蓄热罐4顶部与蓄热罐4的外壳相对应位置处分别设置有熔盐泵吸液孔和熔盐回流孔,用于固定连接高温熔盐泵5和连接管路3,蓄热罐4外部覆盖耐高温保温层10,熔盐泵吸液口11位于蓄热罐4内部底面以上15~20cm处,运行时,在蓄热罐4内部填充所需加热时间所对应的熔盐量。
如图6所示,加热炉9由耐高温金属材料加工而成,炉体上下两端分别设置两个开口用于熔盐的流入和流出。炉内设置加热器8,并填充所需加热物体13(熔盐)。
系统首次运行时,首先启动覆盖于管路外部的伴热装置6,对管路3内的残余固态熔盐进行加热,使其变成熔融状态,从而可以在熔盐泵5的驱动下在管路3内流动。系统需经过数个强制循环使系统内熔盐全部处于高温熔融状态。
太阳能集热器2收集并产生超过400℃高温热量,将热量传递给流经吸热器1内部的载热介质熔盐12,熔盐12升温至高温状态,并在熔盐泵5的驱动下通过管路3进入蓄热罐4。在密度影响下,温度较高的熔盐位于蓄热罐4的上层位置,底层的低温熔盐由熔盐泵5驱动经过吸液口11流向加热器8,并最终流向吸热器1,完成一个加热循环。经过数次强制循环后,蓄热罐4内的熔盐全部处于高温状态。
当熔盐全部处于高温状态时,则可对加热炉9内的被加热物质13进行加热,释放高温热量后的熔盐降低温度,在熔盐泵5的驱动下进入吸热器1吸收后恢复至高温状态,并重新进入循环管路3进行下一次的加热过程。
若外界太阳能辐射量不足时,本系统可利用蓄热罐4内的熔盐在熔盐泵5的驱动下流至加热器8对被加热物质13进行加热,并返回至蓄热罐4,蓄热罐4内的熔盐填充量经过计算设计,可满足工艺要求加热时间条件下的不间断加热。
当不需加热时,管路内的所有熔盐在熔融状态下自动回流至蓄热罐内保温储存,可长期维持熔融状态,可避免上述首次运行时所需的管路伴热装置6加热操作,进一步减少运行难度、降低运行成本。
实施例5阳西中山火炬园污水处理厂含水率80%的剩余污泥
如图2中所示,抽取40kg经过原污泥脱水处理系统得到含水率为80%的泥饼放进干燥系统,干燥时间为125分钟,干燥系统的热量来源为热解碳化炉的尾气余温和尾气中的可燃气燃烧产生的热量及自身产生的水蒸气的热量;
干燥后的污泥进入热解碳化炉,开启热解碳化炉系统的吸气机,炉内气压降至0MPa时,开启太阳能供热系统及N2加压系统,其中太阳能供热系统直接通过太阳能转化为热能的供给模式供热,其具体结构和使用方法同实施例4,温度控制在400℃,压力控制在4MPa,在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应120分钟,得到尾气、焦油和生物炭产品;
热解碳化炉内产生的尾气再经过热交换器(给进料干燥系统提供热量),再进
入三相净化分离器,净化得出甲烷、氢气等可燃烧气体,可燃气装瓶给进料干燥系统提供热量或他用;
然后开启热解碳化炉,让生物炭自然冷却后装袋利用。
实施例6阳西中山火炬园污水处理厂含水率80%的剩余污泥
如图2中所示,抽取40kg经过原污泥脱水处理系统得到含水率为80%的泥饼放进干燥系统,干燥时间为120分钟,干燥系统的热量来源为热解碳化炉的尾气余温和尾气中的可燃气燃烧产生的热量及自身产生的水蒸气的热量;
干燥后的污泥进入热解碳化炉,开启热解碳化炉系统的吸气机,炉内气压降至0MPa时,开启太阳能供热系统及N2加压系统,太阳能供热系统同实施例1,温度控制在350℃,压力控制在8MPa,在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应100分钟,得到尾气、焦油和生物炭产品;
热解碳化炉内产生的尾气再经过热交换器(给进料干燥系统提供热量),再进入三相净化分离器,净化得出甲烷、氢气等可燃烧气体,可燃气装瓶给进料干燥系统提供热量或他用;
然后开启热解碳化炉,让生物炭自然冷却后装袋利用。
实施例7阳西中山火炬园污水处理厂含水率80%的剩余污泥
如图2中所示,抽取40kg经过原污泥脱水处理系统得到含水率为80%的泥饼放进干燥系统,干燥时间为120分钟,干燥系统的热量来源为热解碳化炉的尾气余温和尾气中的可燃气燃烧产生的热量及自身产生的水蒸气的热量;
干燥后的污泥进入热解碳化炉,开启热解碳化炉系统的吸气机,炉内气压降至0MPa时,开启太阳能供热系统及N2加压系统,温度控制在320℃,太阳能供热系统同实施例1,压力控制在14MPa,在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应80分钟,得到尾气、焦油和生物炭产品;
热解碳化炉内产生的尾气再经过热交换器(给进料干燥系统提供热量),再进入三相净化分离器,净化得出甲烷、氢气等可燃烧气体,可燃气装瓶给进料干燥系统提供热量或他用。
然后开启热解碳化炉,让生物炭自然冷却后装袋利用。
实施例8阳江市第一污水处理厂含水率80%的剩余污泥
如图2所示,抽取40kg经过原污泥脱水处理系统得到含水率为80%的泥饼放
进干燥系统(如有污泥脱水处理设施的则将脱水后的泥饼直接放进干燥系统),干燥时间为120分钟,干燥系统的热量来源为专有热解碳化炉的尾气余温和可燃气燃烧产生的热量及自身产生的水蒸气的热量;
干燥后的污泥进入热解碳化炉,开启热解碳化炉系统的吸气机,炉内气压降至0MPa时,开启太阳能供热系统及N2加压系统,温度控制在390℃,太阳能供热系统同实施例1,压力控制在5MPa,在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应120分钟,得到尾气、焦油和生物炭产品。
炉内产生的尾气再经过热交换器(给进料干燥系统提供热量),再进入三相净化分离器,净化得出甲烷、氢气等可燃烧气体,可燃气装瓶给进料干燥系统提供热量或他用。
然后开启热解碳化炉,让生物炭自然冷却后装袋利用。
实施例9阳江市第一污水处理厂含水率80%的剩余污泥
如图2所示,抽取40kg经过原污泥脱水处理系统得到含水率为80%的泥饼放进干燥系统,干燥时间为120分钟,干燥系统的热量来源为热解碳化炉的尾气余温和尾气中的可燃气燃烧产生的热量及自身产生的水蒸气的热量;
干燥后的污泥进入热解碳化炉,开启热解碳化炉系统的吸气机,炉内气压降至0MPa时,开启太阳能供热系统及N2加压系统,温度控制在340℃,太阳能供热系统同实施例1,压力控制在9MPa,在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应100分钟,得到尾气、焦油和生物炭产品;
热解碳化炉内产生的尾气再经过热交换器(给进料干燥系统提供热量),再进入三相净化分离器,净化得出甲烷、氢气等可燃烧气体,可燃气装瓶给进料干燥系统提供热量或他用;
然后开启热解碳化炉,让生物炭自然冷却后装袋利用。
实施例10阳江市第一污水处理厂含水率80%的剩余污泥
如图3所示,抽取40kg含水率为80%的剩余污泥放进干燥系统,干燥时间为150分钟,干燥系统的热量来源为热解碳化炉的尾气余温和尾气中的可燃气燃烧产生的热量及自身产生的水蒸气的热量;
干燥后的污泥进入热解碳化炉,开启热解碳化炉系统的吸气机,炉内气压降至0MPa时,开启太阳能供热系统,太阳能供热系统同实施例4,温度控制在500℃,
并通入氮气,使炉内压力提升到1MPa,在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应120分钟,得到尾气、焦油和生物炭产品。
炉内产生的尾气再经过热交换器(给进料干燥系统提供热量),再进入三相净化分离器,净化得出甲烷、氢气等可燃烧气体,可燃气装瓶给进料干燥系统提供热量或他用。
然后开启热解碳化炉,让生物炭自然冷却后装袋利用。
实施例11阳江市第一污水处理厂含水率60%的剩余污泥
如图3所示,抽取40kg含水率为60%的剩余污泥放进干燥系统,干燥时间为140分钟,干燥系统的热量来源为热解碳化炉的尾气余温和尾气中的可燃气燃烧产生的热量及自身产生的水蒸气的热量;
干燥后的污泥进入热解碳化炉,开启热解碳化炉系统的吸气机,炉内气压降至0MPa时,开启太阳能供热系统,温度控制在600℃,并通入氮气,使炉内压力提升到3MPa,太阳能供热系统同实施例4,在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应1.5h,得到尾气、焦油和生物炭产品。
炉内产生的尾气再经过热交换器(给进料干燥系统提供热量),再进入三相净化分离器,净化得出甲烷、氢气等可燃烧气体,可燃气装瓶给进料干燥系统提供热量或他用。
然后开启热解碳化炉,让生物炭自然冷却后装袋利用。
上面列举一部分具体实施例对本发明进行说明,有必要在此指出的是以上具体实施例只用于对本发明作进一步说明,不代表对本发明保护范围的限制。其他人根据本发明做出的一些非本质的修改和调整仍属于本发明的保护范围。
Claims (10)
- 一种利用太阳能热解碳化技术处理污泥的方法,其特征是包括以下步骤:取城市污水处理产生的污泥,置于热解碳化炉中,在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应,生成尾气、生物炭和焦油,其中热解碳化炉由太阳能供热系统提供热源,反应条件为高温常压或高温高压或中高温高压,所述的高温为500~800℃,所述的中高温为200~400℃,所述的高压为1~16MPa。
- 根据权利要求1所述的利用太阳能热解碳化技术处理污泥的方法,其特征是:所述的污泥置于热解碳化炉之前先经脱水和/或干燥处理。
- 根据权利要求1所述的利用太阳能热解碳化技术处理污泥的方法,其特征是进一步包括以下步骤:(1)污泥干燥:将城市污水处理产生的污泥进行干燥处理,得干燥污泥,干燥处理的热量来源为步骤(2)中热解碳化炉产生的尾气的余温、步骤(2)中热解碳化炉产生的尾气中可燃气燃烧产生的热量和干燥处理时产生的水蒸气的热量中的一种或几种,或干燥处理的热量来源为外部热源;(2)热解碳化反应:将步骤(1)中获得的干燥污泥置于热解碳化炉中,在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应,生成尾气、生物炭和焦油,其中热解碳化炉由太阳能供热系统提供热源,反应条件为高温常压或高温高压或中高温高压,所述的高温为500~800℃,所述的中高温为200~400℃,所述的高压为1~16MPa;(3)可燃气利用:将步骤(2)热解碳化炉产生的尾气,经换热处理后分离,获得可燃气,所得可燃气能用于给步骤(1)中的干燥处理提供热量。
- 根据权利要求3所述的利用太阳能热解碳化技术对污泥进行处理的方法,其特征是:步骤(1)中所述的城市污水处理产生的污泥进行干燥前,先进行脱水处理。
- 根据权利要求3所述的利用太阳能热解碳化技术对污泥进行处理的方法,其特征是:步骤(1)中干燥处理时干燥时间为120~150min。
- 根据权利要求3所述的利用太阳能热解碳化技术处理污泥的方法,其特征是:步骤(2)中在密封、无氧、非燃烧状态下进行包括汽化、热解、脱氢、热缩化和炭化的一系列反应,反应条件为高温常压时,反应时间为2h以上,反应条件为高温高压或中高温高压时,反应时间为1~2h。
- 根据权利要求3所述的利用太阳能热解碳化技术处理污泥的方法,其特征是:步骤(2)中热解碳化炉由太阳能供热系统提供热源时,所述的太阳能供热系统通过传统的太阳能转化为热能、再将热能转化为电能、再将电能转化为热能的供给模式供热;或所述的太阳能供热系统直接通过太阳能转化为热能的供给模式供热。
- 根据权利要求3所述的利用太阳能热解碳化技术处理污泥的方法,其特征是:步骤(2)中所述的高压通过N2加压系统提供。
- 根据权利要求1所述的利用太阳能热解碳化技术处理污泥的方法,其特征是:步骤(3)中所述的换热处理为将步骤(2)中产生的尾气的热量供给步骤(1)中干燥处理。
- 根据权利要求1所述的利用太阳能热解碳化技术处理污泥的方法,其特征是:步骤(3)中经换热处理后分离时分离采用三相分离器进行分离。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510066761.1A CN104671628B (zh) | 2015-02-09 | 2015-02-09 | 一种利用太阳能热解碳化技术处理污泥的方法 |
CN201510066761.1 | 2015-02-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016127594A1 true WO2016127594A1 (zh) | 2016-08-18 |
Family
ID=53307290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/085667 WO2016127594A1 (zh) | 2015-02-09 | 2015-07-31 | 一种利用太阳能热解碳化技术处理污泥的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104671628B (zh) |
WO (1) | WO2016127594A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108249717A (zh) * | 2018-02-27 | 2018-07-06 | 广东梦之禽农业科技股份有限公司 | 一种太阳能鸡粪无害化处理装置 |
CN109575962A (zh) * | 2018-12-12 | 2019-04-05 | 河南理工大学 | 一种基于太阳能供热的生物质裂解液化装置 |
CN112047596A (zh) * | 2020-09-01 | 2020-12-08 | 浙江工业大学 | 太阳能强化污泥生物干化与气化气的综合处理工艺及系统 |
CN112537756A (zh) * | 2020-12-15 | 2021-03-23 | 苏州西热节能环保技术有限公司 | 太阳能供热的新型化学链空分制氧系统、方法及其应用 |
CN113307561A (zh) * | 2021-06-04 | 2021-08-27 | 大连海事大学 | 一种生物炭混凝土鱼礁材料的制备方法 |
CN114774148A (zh) * | 2022-05-09 | 2022-07-22 | 中国地质大学(武汉) | 一种太阳能聚热的生物炭制备装置 |
CN115259131A (zh) * | 2022-06-23 | 2022-11-01 | 长江水利委员会长江科学院 | 一种利用污泥制备多功能生物炭的绿色方法及该生物炭的应用 |
CN115325541A (zh) * | 2022-08-11 | 2022-11-11 | 光大环境科技(中国)有限公司 | 污泥热解炭化尾气协同垃圾焚烧脱硝系统及工艺 |
WO2024047030A1 (en) * | 2022-08-30 | 2024-03-07 | Sintef Tto As | Sludge processing |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104671628B (zh) * | 2015-02-09 | 2017-09-19 | 广东金泥华牛科技有限公司 | 一种利用太阳能热解碳化技术处理污泥的方法 |
CN104910931B (zh) * | 2015-06-09 | 2018-04-27 | 浙江宜可欧环保科技有限公司 | 一种养殖场固体废物连续热解炭化处理方法及装置 |
CN104861998B (zh) * | 2015-06-09 | 2018-04-17 | 浙江宜可欧环保科技有限公司 | 一种生物质连续热解炭化处理方法及装置 |
CN106318416A (zh) * | 2015-06-25 | 2017-01-11 | 中国电力工程顾问集团有限公司 | 一种烘焙设备 |
CN107651684A (zh) * | 2016-07-26 | 2018-02-02 | 广州城辉环保科技有限公司 | 一种用城市污泥热解碳化制造活性炭的方法 |
CN106311191B (zh) * | 2016-08-25 | 2019-06-11 | 合肥百和环保科技有限公司 | 一种复合吸附材料的制备方法 |
CN107448949A (zh) * | 2017-07-11 | 2017-12-08 | 盐城绿城环保科技有限公司 | 一种有机固废热解处理方法 |
CN107986591A (zh) * | 2017-12-11 | 2018-05-04 | 杨明远 | 污泥的处理方法 |
CN108178485B (zh) * | 2018-02-09 | 2018-12-04 | 西安交通大学 | 一种太阳池式太阳能污泥干燥系统及其污泥干燥方法 |
CN109052889B (zh) * | 2018-05-28 | 2021-06-29 | 中健晟(北京)环保科技有限公司 | 间接加热可移动式工业污泥连续热解方法及碳化装置 |
CN108911453A (zh) * | 2018-07-06 | 2018-11-30 | 四川建筑职业技术学院 | 一种利用污泥制备的黑色基料及其制备方法和制备生产线 |
CN109207179A (zh) * | 2018-09-18 | 2019-01-15 | 华中科技大学 | 一种聚光太阳能熔融盐热解含碳物料制合成气的系统 |
US20200339818A1 (en) * | 2019-04-25 | 2020-10-29 | Garrett Foster Benisch | Pigment and pigment production method |
CN110804451A (zh) * | 2019-12-19 | 2020-02-18 | 东北电力大学 | 利用太阳能为油页岩干馏提供热量的系统及工艺 |
CN111635772A (zh) * | 2020-06-04 | 2020-09-08 | 苏州同和环保工程有限公司 | 一种污泥干馏制生物炭的方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001302378A (ja) * | 2000-04-27 | 2001-10-31 | Ueda Joho System:Kk | 肥料生成システム、肥料生成方法、炭化装置および炭化方法 |
CN201575666U (zh) * | 2009-05-31 | 2010-09-08 | 北京智慧剑科技发展有限责任公司 | 一种太阳能低温蓄热型干燥设备 |
US20110315539A1 (en) * | 2009-03-10 | 2011-12-29 | Boaz Zadik | Solar powered method and system for sludge treatment |
CN102633422A (zh) * | 2012-04-22 | 2012-08-15 | 江苏聚慧科技有限公司 | 污泥一体化处理装置 |
CN102678490A (zh) * | 2012-05-09 | 2012-09-19 | 石家庄中大力诺太阳能工程有限公司 | 一种联合发电系统 |
WO2013140225A1 (de) * | 2012-03-19 | 2013-09-26 | DOUDENKOV, Igor, A. | Vorrichtung und verfahren zum beseitigen von festem haushaltsabfall durch hochtemperatur-pyrolyse unter verwendung von solarstrahlung |
CN103693839A (zh) * | 2014-01-07 | 2014-04-02 | 北京神雾环境能源科技集团股份有限公司 | 污泥处理方法及其处理系统 |
CN103756697A (zh) * | 2014-01-07 | 2014-04-30 | 北京神雾环境能源科技集团股份有限公司 | 垃圾和污泥的处理方法及其处理系统 |
CN203927931U (zh) * | 2014-03-04 | 2014-11-05 | 马振青 | 太阳能加热固废气化联合循环系统 |
CN204224522U (zh) * | 2014-01-07 | 2015-03-25 | 北京神雾环境能源科技集团股份有限公司 | 垃圾和污泥的处理系统 |
CN204281524U (zh) * | 2014-01-07 | 2015-04-22 | 北京神雾环境能源科技集团股份有限公司 | 污泥处理系统 |
CN104671628A (zh) * | 2015-02-09 | 2015-06-03 | 谭修光 | 一种利用太阳能热解碳化技术处理污泥的方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009148710A (ja) * | 2007-12-20 | 2009-07-09 | Toda Kogyo Corp | 有機性廃液の処理方法及び再生燃料炭 |
CN201963504U (zh) * | 2011-03-14 | 2011-09-07 | 张建城 | 槽式太阳能中低温斯特林热发电装置 |
CN102432151A (zh) * | 2012-01-06 | 2012-05-02 | 福建省科辉环保工程有限公司 | 污泥资源化处置工艺 |
CN202470425U (zh) * | 2012-01-19 | 2012-10-03 | 杭州锅炉集团股份有限公司 | 熔盐系统 |
CN102909211A (zh) * | 2012-09-29 | 2013-02-06 | 广州茵绿环境科技发展有限公司 | 一种棕榈渣与生化污泥的环保处理系统 |
CN103172245B (zh) * | 2013-03-21 | 2014-01-29 | 曹玉成 | 污泥快速热解处理及转化物的原位利用方法 |
-
2015
- 2015-02-09 CN CN201510066761.1A patent/CN104671628B/zh active Active
- 2015-07-31 WO PCT/CN2015/085667 patent/WO2016127594A1/zh active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001302378A (ja) * | 2000-04-27 | 2001-10-31 | Ueda Joho System:Kk | 肥料生成システム、肥料生成方法、炭化装置および炭化方法 |
US20110315539A1 (en) * | 2009-03-10 | 2011-12-29 | Boaz Zadik | Solar powered method and system for sludge treatment |
CN201575666U (zh) * | 2009-05-31 | 2010-09-08 | 北京智慧剑科技发展有限责任公司 | 一种太阳能低温蓄热型干燥设备 |
WO2013140225A1 (de) * | 2012-03-19 | 2013-09-26 | DOUDENKOV, Igor, A. | Vorrichtung und verfahren zum beseitigen von festem haushaltsabfall durch hochtemperatur-pyrolyse unter verwendung von solarstrahlung |
CN102633422A (zh) * | 2012-04-22 | 2012-08-15 | 江苏聚慧科技有限公司 | 污泥一体化处理装置 |
CN102678490A (zh) * | 2012-05-09 | 2012-09-19 | 石家庄中大力诺太阳能工程有限公司 | 一种联合发电系统 |
CN103693839A (zh) * | 2014-01-07 | 2014-04-02 | 北京神雾环境能源科技集团股份有限公司 | 污泥处理方法及其处理系统 |
CN103756697A (zh) * | 2014-01-07 | 2014-04-30 | 北京神雾环境能源科技集团股份有限公司 | 垃圾和污泥的处理方法及其处理系统 |
CN204224522U (zh) * | 2014-01-07 | 2015-03-25 | 北京神雾环境能源科技集团股份有限公司 | 垃圾和污泥的处理系统 |
CN204281524U (zh) * | 2014-01-07 | 2015-04-22 | 北京神雾环境能源科技集团股份有限公司 | 污泥处理系统 |
CN203927931U (zh) * | 2014-03-04 | 2014-11-05 | 马振青 | 太阳能加热固废气化联合循环系统 |
CN104671628A (zh) * | 2015-02-09 | 2015-06-03 | 谭修光 | 一种利用太阳能热解碳化技术处理污泥的方法 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108249717A (zh) * | 2018-02-27 | 2018-07-06 | 广东梦之禽农业科技股份有限公司 | 一种太阳能鸡粪无害化处理装置 |
CN109575962A (zh) * | 2018-12-12 | 2019-04-05 | 河南理工大学 | 一种基于太阳能供热的生物质裂解液化装置 |
CN109575962B (zh) * | 2018-12-12 | 2023-11-14 | 河南理工大学 | 一种基于太阳能供热的生物质裂解液化装置 |
CN112047596A (zh) * | 2020-09-01 | 2020-12-08 | 浙江工业大学 | 太阳能强化污泥生物干化与气化气的综合处理工艺及系统 |
CN112537756A (zh) * | 2020-12-15 | 2021-03-23 | 苏州西热节能环保技术有限公司 | 太阳能供热的新型化学链空分制氧系统、方法及其应用 |
CN113307561A (zh) * | 2021-06-04 | 2021-08-27 | 大连海事大学 | 一种生物炭混凝土鱼礁材料的制备方法 |
CN114774148A (zh) * | 2022-05-09 | 2022-07-22 | 中国地质大学(武汉) | 一种太阳能聚热的生物炭制备装置 |
CN114774148B (zh) * | 2022-05-09 | 2023-09-22 | 中国地质大学(武汉) | 一种太阳能聚热的生物炭制备装置 |
CN115259131A (zh) * | 2022-06-23 | 2022-11-01 | 长江水利委员会长江科学院 | 一种利用污泥制备多功能生物炭的绿色方法及该生物炭的应用 |
CN115259131B (zh) * | 2022-06-23 | 2024-04-30 | 长江水利委员会长江科学院 | 一种利用污泥制备多功能生物炭的绿色方法及该生物炭的应用 |
CN115325541A (zh) * | 2022-08-11 | 2022-11-11 | 光大环境科技(中国)有限公司 | 污泥热解炭化尾气协同垃圾焚烧脱硝系统及工艺 |
WO2024047030A1 (en) * | 2022-08-30 | 2024-03-07 | Sintef Tto As | Sludge processing |
Also Published As
Publication number | Publication date |
---|---|
CN104671628B (zh) | 2017-09-19 |
CN104671628A (zh) | 2015-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016127594A1 (zh) | 一种利用太阳能热解碳化技术处理污泥的方法 | |
CN102500604B (zh) | 固体生活垃圾能源化利用及可再生生物碳循环方法 | |
CN103722002B (zh) | 基于厌氧消化和水热碳化的生活垃圾综合处理方法 | |
CN107365593A (zh) | 一种抗生素菌渣制备生物炭的方法 | |
CN112159063A (zh) | 一种污泥热解安全资源化利用工艺 | |
CN103755124A (zh) | 基于水热碳化的污泥处理方法 | |
CN105542808A (zh) | 一种全封闭零排放生活垃圾能源再生及综合利用生产工艺 | |
CN103723899B (zh) | 基于厌氧消化和水热碳化的污泥综合处理方法 | |
CN102531312B (zh) | 一种利用干式厌氧发酵和低温碳化处理污泥的技术 | |
CN102371266A (zh) | 一种餐厨垃圾资源化利用方法 | |
WO2015196502A1 (zh) | 利用生活垃圾制造燃烧值高、无污染的煤的制造方法 | |
CN100571912C (zh) | 沼渣干燥脱水型城市生活垃圾生物与气化处理集成工艺 | |
CN101265009A (zh) | 尾气余热回收利用的清洁节能污泥干化方法 | |
CN204174056U (zh) | 一种污泥两级干化系统 | |
CN103896472B (zh) | 一种污泥微波裂解资源化方法 | |
CN107298517A (zh) | 一种高效节能污泥资源化利用工艺和系统 | |
CN104529107B (zh) | 一种厌氧‑好氧耦联促进污泥深度减量化的方法 | |
CN205347174U (zh) | 一种利用外加生物质的污泥干化和炭化相结合的处理装置 | |
CN207632686U (zh) | 一种高效节能污泥资源化利用系统 | |
WO2023283811A1 (zh) | 一种城市静脉产业园废弃物强耦合协同处理方法 | |
CN101628778B (zh) | 污泥热干化与污泥消化发酵联合应用的方法 | |
WO2014086278A1 (zh) | 一种回收富水生物质中能量的热回收方法和系统 | |
CN104129898B (zh) | 太阳能污泥恒温干化无害化处理装置及方法 | |
CN210796178U (zh) | 一种低能耗资源化污泥低温真空干化和高温碳化处理装置 | |
CN203346241U (zh) | 一种微波强化太阳能中水高温双源热泵干化污泥系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15881753 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15881753 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/01/2018) |