[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016125815A1 - 蒸着マスクの製造方法、蒸着マスク製造装置、レーザー用マスクおよび有機半導体素子の製造方法 - Google Patents

蒸着マスクの製造方法、蒸着マスク製造装置、レーザー用マスクおよび有機半導体素子の製造方法 Download PDF

Info

Publication number
WO2016125815A1
WO2016125815A1 PCT/JP2016/053145 JP2016053145W WO2016125815A1 WO 2016125815 A1 WO2016125815 A1 WO 2016125815A1 JP 2016053145 W JP2016053145 W JP 2016053145W WO 2016125815 A1 WO2016125815 A1 WO 2016125815A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
opening
laser
vapor deposition
resin plate
Prior art date
Application number
PCT/JP2016/053145
Other languages
English (en)
French (fr)
Inventor
仁子 宮寺
隆佳 二連木
武田 利彦
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016018161A external-priority patent/JP5994952B2/ja
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to CN202010076403.XA priority Critical patent/CN111172496B/zh
Priority to CN201680006194.3A priority patent/CN107109622B/zh
Priority to KR1020197033389A priority patent/KR102387728B1/ko
Priority to KR1020177019158A priority patent/KR102045933B1/ko
Priority to US15/546,710 priority patent/US20180053894A1/en
Publication of WO2016125815A1 publication Critical patent/WO2016125815A1/ja
Priority to US17/166,370 priority patent/US20210159414A1/en
Priority to US17/930,085 priority patent/US20230006139A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • Embodiments of the present invention relate to a method for manufacturing a vapor deposition mask, a vapor deposition mask manufacturing apparatus, a laser mask, and a method for manufacturing an organic semiconductor element.
  • Patent Document 1 is laminated with a metal mask provided with slits and a resin mask in which openings corresponding to a pattern to be deposited and formed on the surface of the metal mask are arranged in multiple rows vertically and horizontally.
  • a method for manufacturing a vapor deposition mask According to the method of manufacturing a vapor deposition mask proposed in Patent Document 1, it is said that a vapor deposition mask that satisfies both high definition and light weight can be manufactured even when the size is increased.
  • the cross-sectional shape of the opening or the cross-sectional shape of the slit has a shape spreading toward the vapor deposition source in order to suppress the generation of shadows during vapor deposition using a vapor deposition mask.
  • the shadow is a target vapor deposition because a part of the vapor deposition material released from the vapor deposition source does not reach the vapor deposition target by colliding with the slit of the metal mask or the inner wall surface of the opening of the resin mask. This is a phenomenon in which an undeposited portion having a film thickness smaller than the film thickness occurs.
  • the embodiment of the present invention aims to further improve the manufacturing method of the vapor deposition mask proposed in the above-mentioned Patent Document 1, and can reduce the weight even when the size is increased, and suppress the generation of so-called shadows.
  • the conventional deposition mask manufacturing method and deposition mask manufacturing apparatus capable of forming a higher-definition deposition pattern laser masks used in these manufacturing methods and manufacturing apparatuses, and further higher definition than conventional
  • An object of the present invention is to provide a method for producing an organic semiconductor element capable of producing a simple organic semiconductor element.
  • a method of manufacturing a vapor deposition mask according to an embodiment of the present invention includes a step of preparing a metal mask with a resin plate in which a metal mask provided with a slit and a resin plate are laminated, and laser irradiation from the metal mask side.
  • an opening corresponding to a pattern to be deposited on the resin plate Forming an opening corresponding to a pattern to be deposited on the resin plate, and in the step of forming the opening, an opening area corresponding to the opening and a position around the opening area Then, by using a laser mask provided with an attenuation region for attenuating the energy of the irradiated laser, an opening corresponding to a pattern to be deposited on a resin plate by a laser passing through the opening region And a thin portion is formed around the opening of the resin plate by a laser passing through the attenuation region.
  • the laser transmittance in the attenuation region of the laser mask used in the step of forming the opening may be 50% or less.
  • the vapor deposition mask manufacturing apparatus manufactures the vapor deposition mask formed by laminating
  • means for forming an opening corresponding to the pattern to be deposited on the resin plate, and the means for forming the opening is located around the opening area corresponding to the opening and the opening area.
  • a laser mask provided with an attenuation region that attenuates the energy of the irradiated laser is used, and the laser that passes through the opening region, An opening corresponding to the pattern to be deposited on the fat plate is formed, and a thin portion is formed around the opening of the resin plate by the laser passing through the attenuation region.
  • the laser transmittance in the attenuation region of the laser mask used in the step of forming the opening may be 50% or less.
  • the laser mask according to an embodiment of the present invention in manufacturing a vapor deposition mask including a metal mask provided with a slit and a resin mask provided with an opening corresponding to a pattern to be produced by vapor deposition, A laser mask used when forming an opening of the resin mask with a laser, the laser mask being positioned and irradiated around an opening region corresponding to the opening. And an attenuation region that attenuates the energy of the laser.
  • the laser transmittance in the attenuation region may be 50% or less.
  • the manufacturing method of the organic-semiconductor element concerning one Embodiment of this invention includes the vapor deposition pattern formation process which forms a vapor deposition pattern in a vapor deposition target object using a vapor deposition mask, In the said vapor deposition pattern formation process, the said this invention The vapor deposition mask manufactured by the vapor deposition mask manufacturing method is used.
  • the weight can be reduced even when the size is increased.
  • an organic semiconductor element with higher definition than before can be manufactured.
  • FIG. 1 It is process drawing for demonstrating the manufacturing method of the vapor deposition mask concerning one Embodiment of this invention.
  • FIG. 1 It is a front view of the mask for lasers used in the manufacturing method of the vapor deposition mask of one Embodiment of this invention.
  • (A) to (n) are enlarged front views of various types of laser masks for explaining specific embodiments of an opening region and an attenuation region. It is the front view which looked at the vapor deposition mask of embodiment (A) from the metal mask side. It is the front view which looked at the vapor deposition mask of embodiment (A) from the metal mask side. It is the front view which looked at the vapor deposition mask of embodiment (A) from the metal mask side.
  • 2 is a cross-sectional photograph of a resin plate in which an opening and a thin portion are formed using the laser mask of Example 1.
  • 4 is a cross-sectional photograph of a resin plate in which an opening and a thin portion are formed using the laser mask of Example 2. It is a cross-sectional photograph of the resin board in which the opening part and the thin part were formed using the laser mask of Example 3. It is a cross-sectional photograph of the resin board in which the opening part and the thin part were formed using the laser mask of Example 4. It is a cross-sectional photograph of the resin board in which the opening part and the thin part were formed using the laser mask of Example 5. It is a cross-sectional photograph of the resin board in which the opening part and the thin part were formed using the laser mask of Example 6.
  • FIG. 1 is a process diagram for explaining a method of manufacturing a vapor deposition mask according to an embodiment of the present invention. Note that (a) to (d) are all cross-sectional views.
  • the vapor deposition mask manufacturing method includes a step of preparing a metal mask with a resin plate in which a metal mask provided with a slit and a resin plate are laminated, and fixing the prepared metal mask with a resin plate to a frame. And a step of irradiating a laser from the metal mask side and forming an opening corresponding to a pattern to be deposited on the resin plate. Each step will be described below.
  • this step is a step of preparing a metal mask 40 with a resin plate in which a metal mask 10 provided with slits 15 and a resin plate 30 are laminated.
  • the metal mask 10 provided with the slits 15 is prepared. The details of the material and the like of the metal mask 10 and the resin plate 30 will be described together with the description of the vapor deposition mask manufactured by the manufacturing method of the present invention.
  • the metal mask 10 is made of metal and has slits 15 extending in the vertical direction and / or the horizontal direction. An opening 25 is formed at a position overlapping the slit 15 of the resin plate constituting the metal mask with resin plate 40 in a process described later.
  • Examples of the method for forming the metal mask 10 provided with the slits 15 include the following methods.
  • a masking member for example, a resist material is applied to the surface of the metal plate, a predetermined portion is exposed and developed to form a resist pattern that leaves the position where the slit 15 is finally formed.
  • the resist material used as the masking member those having good processability and desired resolution are preferable.
  • etching is performed by an etching method using this resist pattern as an etching resistant mask.
  • the resist pattern is removed by washing. Thereby, the metal mask 10 provided with the slit 15 is obtained. Etching for forming the slit 15 may be performed from one side of the metal plate or from both sides.
  • the slit 15 is formed in the metal plate using a laminate in which the resin plate is provided on the metal plate, a masking member is applied to the surface of the metal plate that is not in contact with the resin plate.
  • the slit 15 may be formed by etching from the side.
  • the resin plate has etching resistance with respect to the etching material of a metal plate, it is not necessary to mask the surface of a resin plate.
  • the resin plate does not have resistance to the etching material of the metal plate, it is necessary to apply a masking member to the surface of the resin plate.
  • the case where a resist material is used as the masking member has been described as an example.
  • the metal mask 10 which comprises the metal mask 40 with a resin plate is not limited to what was formed by the method illustrated above, A commercial item can also be used. Moreover, it can replace with formation of the slit 15 by an etching, and can also form the slit 15 by irradiating a laser beam.
  • the method for bonding the metal mask 10 and the resin plate 30 constituting the metal mask with resin plate 40 and the forming method are not particularly limited.
  • the metal mask 40 with a resin plate is obtained by preparing a laminate in which a resin layer is formed by coating a metal plate to be the metal mask 10 in advance, and forming the slit 15 in the metal plate in the state of the laminate. You can also.
  • the resin plate 30 constituting the metal mask with resin plate 40 includes not only a plate-like resin but also a resin layer or a resin film formed by coating as described above. That is, the resin plate 30 may be prepared in advance or may be formed by a conventionally known coating method or the like.
  • the resin plate 30 is a concept including a resin film and a resin sheet. Further, the hardness of the resin plate 30 is not limited, and may be a hard plate or a soft plate. Moreover, the metal mask 10 and the resin plate 30 may be bonded together using various adhesives, or the resin plate 30 having self-adhesiveness may be used. The metal mask 10 and the resin plate 30 may have the same size. In consideration of fixing the vapor deposition mask 100 manufactured by the manufacturing method of the present embodiment to the frame 50, the size of the resin plate 30 is made smaller than that of the metal plate 10, and the outer peripheral portion of the metal mask 10 is exposed. If it is set as a state, welding with the metal mask 10 and the flame
  • the metal mask 10 constituting the metal mask with resin plate 40 is fixed to the frame 50.
  • this fixing step is an arbitrary step.
  • the vapor deposition mask 100 is often used while being fixed to the frame 50. Therefore, the step is performed at this timing. Is preferred.
  • a fixing step of fixing the metal mask 10 in the previous stage to be the metal mask 40 with a resin plate to the frame may be performed, and then the resin plate 30 may be provided.
  • the method for fixing the metal mask 10 to the frame 50 is not particularly limited. For example, when the frame 50 contains a metal, a conventionally known process method such as spot welding may be appropriately employed.
  • the opening part corresponding to the pattern vapor-deposited preparation is formed in the resin board 30 by irradiating a laser from the metal mask 10 side of the metal mask 10 with a resin board.
  • the present embodiment is characterized in that a laser mask 70 as shown in the drawing is used.
  • the laser mask 70 is disposed with a gap from the metal mask 40 with a resin plate, but is not limited to this figure.
  • a condensing lens 130 is installed between the laser mask 70 and the metal mask 40 with a resin plate, and the opening is formed by a so-called “laser processing method using a reduction projection optical system”. It may be formed.
  • the laser mask 70 is positioned around the opening area 71 corresponding to the pattern to be deposited, that is, corresponding to the finally formed opening, and attenuates the energy of the irradiated laser.
  • An attenuation region 72 is provided.
  • the opening 25 corresponding to the pattern formed by vapor deposition by the laser passing through the opening region 71 can be formed in the resin plate 30.
  • the laser whose energy is attenuated by passing through the attenuation region 72 can simultaneously form the thin-walled portion 26 that does not penetrate the periphery of the opening 25, thereby obtaining the vapor deposition mask 100.
  • FIG. 2 is a front view of a laser mask used in the vapor deposition mask manufacturing method of the present embodiment.
  • the opening area 71 is not particularly mentioned, and the opening area 71 is a through hole corresponding to the pattern to be deposited. Therefore, the shape of the opening region 71 is not limited to the rectangular shape as shown in the figure. If the pattern to be deposited is circular, the shape of the opening region 71 is naturally circular corresponding to this, and vapor deposition is performed. If the pattern to be produced is hexagonal, the shape of the opening region 71 is also hexagonal. Note that the laser transmittance in the opening region 71 is 100% when the opening region 71 is a through-hole, but it is not necessarily 100%, and the laser transmittance in the attenuation region 72 to be described later.
  • the “opening region 71” in the embodiment of the present invention is a region for forming an opening that is finally formed on the vapor deposition mask, and the opening region 71 itself is not necessarily opened like a through hole. It is not necessary to be in the state. Therefore, for example, even if the laser transmittance in the opening region 71 is 70% and the laser transmittance in the attenuation region 72 described later is 50%, the effect can be obtained.
  • the attenuation region 72 is located around the opening region 71 and attenuates the energy of the irradiated laser, so that the laser beam that has passed through the opening region 71 is applied to the resin plate 30 as shown in FIG.
  • the specific mode of the attenuation region 72 is not particularly limited, and the resin plate 30 positioned around the opening 25 is provided at the above-described effect, that is, at the timing when the opening 25 is formed. Any mode that can attenuate the energy of the laser to such an extent that it can be thinned without penetrating it is preferable, and the transmittance of the laser in the attenuation region 72 is preferably 50% or less.
  • a through groove 74 having an opening width smaller than the resolution of the irradiated laser concentrically around the opening region 71, so-called line and space is formed.
  • the portion may be the attenuation region 72.
  • the through groove 74 has an opening width smaller than the product of “the resolution of the laser” and “the reduction ratio of the optical system of the laser processing apparatus”, the laser passing through the through groove 74 is diffracted. As a result, the number of lasers traveling straight is reduced and the energy is attenuated.
  • the reduction ratio of the optical system of the laser processing apparatus is calculated by (size of the opening area on the laser mask) / (size of the opening on the vapor deposition mask).
  • the “laser resolution” in this specification refers to the lower limit of the line and space that can be formed when forming the line and space including the through grooves on the resin plate to be processed.
  • the size of the attenuation region 72 that is, the distance from the edge of the opening region 71 to the edge of the attenuation region 72 is not particularly limited, and is finally formed around the opening of the resin mask.
  • the thickness of the thin portion 26 and the interval between the openings 25 may be appropriately designed.
  • FIG. 3A to FIG. 3N are enlarged front views of various laser masks for explaining specific embodiments of the opening region and the attenuation region.
  • the attenuation region 72 is concentrically around the opening region 71 and penetrates with an opening width smaller than the resolution of the irradiated laser.
  • the grooves 74 may be formed, so-called line and space may be formed. 3A and 3J, two through grooves 74 are provided concentrically.
  • the number of the through grooves 74 is not particularly limited, and is two or more. Also good.
  • each of the through grooves 74 shown in FIGS. 3 (a) to 3 (d) and (j) has a rectangular shape, but is not limited thereto, and is concentric and corrugated. May be.
  • a discontinuous through hole 75 having an opening width smaller than the resolution of the laser irradiated around the opening region is formed. It is good also as the attenuation area
  • both the through groove 74 and the through hole 75 are arranged.
  • the shape of the through groove 74 and the through hole 75 for forming the attenuation region 72 can be designed as appropriate, and is not necessarily formed separately from the opening region 71.
  • the attenuation width of the through groove 74 and the through hole 75 for forming the attenuation region 72 is designed so as to be farther away from the opening region 71, thereby reducing the attenuation.
  • the thickness of the thin portion formed around the opening of the resin mask can be changed stepwise.
  • D / a is larger than 1 ⁇ m and smaller than 20 ⁇ m. Preferably, it is larger than 5 ⁇ m and smaller than 10 ⁇ m.
  • the laser transmittance in the 1 / 3D region from the boundary with the opening region 71 is 40%, and the laser in the 1 / 3D to 2 / 3D region is used.
  • the transmittance may be 40%, and the laser transmittance in the region of 2 / 3D to D may be 30%.
  • the laser transmittance in the 1 / 2L region from the boundary with the opening region 71 is determined from the laser transmittance in the 1 / 2L to 2 / 2L region. It is preferable to reduce the size. Specifically, the laser transmittance in the 1/2 L region from the boundary with the opening region 71 may be 20%, and the laser transmittance in the 1/2 L to 2/2 L region may be 60%. By doing so, the boundary between the opening region 71 and the attenuation region becomes clear, and it becomes possible to obtain a good pattern with high edge linearity of the opening of the vapor deposition mask.
  • the attenuation region 72 is formed by the through groove 74 or the through hole 75 having an opening width smaller than the product value of “the resolution of the laser” and “the reduction ratio of the optical system of the laser processing apparatus”. Although configured, embodiments of the present invention are not limited to this.
  • FIG. 24 is a cross-sectional view of a laser mask according to an embodiment of the present invention.
  • the laser beam irradiated by using a non-penetrating groove or hole instead of the through groove 74 and the through hole 75 described above is used.
  • the energy may be attenuated. That is, the laser mask 70 shown in FIG. 24 (a) has an opening region 71 made of a through-hole and an attenuation region 72 made of a groove or hole that is located around the opening region 71 and does not penetrate. According to such a laser mask 70, the energy of the laser irradiated to the attenuation region 72 is attenuated when passing through the thinned laser mask. As a result, the thin portion 26 is formed on the resin plate 30. Can be formed.
  • the opening region 71 of the laser mask shown in FIG. 24 (a) described above may also be composed of holes that do not penetrate. Even in this case, the opening 25 and the thin portion 26 can be formed in the resin plate 30 by the difference in the energy of the laser transmitted through each of the opening region 71 and the attenuation region 72.
  • the energy of the laser that passes through the attenuation region 72 by applying a paint that attenuates the energy of the laser in place of the through groove 74 and the through hole 75 in the attenuation region 72. May be attenuated. That is, the laser mask 70 is formed of a material that transmits laser to some extent, and the attenuation region 72 is formed by applying a paint that attenuates the energy of the laser in a gradation shape around the opening region 71 formed of the through-hole. As a result, the opening 25 and the thin portion 26 can be formed in the resin plate 30 by the difference in the energy of the laser transmitted through each of the opening region 71 and the attenuation region 72. As the paint that attenuates the energy of the laser, both a paint that absorbs the laser and a paint that reflects the laser can be used.
  • vapor deposition mask below, the preferable form of a vapor deposition mask is demonstrated.
  • the vapor deposition mask described here is not limited to the form described below, and a metal mask in which slits are formed and openings corresponding to the pattern for vapor deposition are formed at positions overlapping the slits. Any form may be used as long as the condition that the resin mask is laminated is satisfied.
  • the slit formed in the metal mask may be striped (not shown).
  • the slit of a metal mask may be provided in the position which does not overlap with the whole screen.
  • This vapor deposition mask may be manufactured by the manufacturing method of the vapor deposition mask concerning one Embodiment of this invention demonstrated above, and may be manufactured by the other method.
  • the vapor deposition mask 100 of the embodiment (A) is a vapor deposition mask for simultaneously forming vapor deposition patterns for a plurality of screens, and a plurality of slits 15 are formed on one surface of the resin mask 20.
  • the resin mask 20 is provided with openings 25 necessary for forming a plurality of screens, and each slit 15 is provided at a position overlapping at least one entire screen. ing.
  • the vapor deposition mask 100 of the embodiment (A) is a vapor deposition mask used for simultaneously forming vapor deposition patterns for a plurality of screens, and the vapor deposition patterns corresponding to a plurality of products are simultaneously formed with one vapor deposition mask 100. Can do.
  • the “opening” referred to in the vapor deposition mask of the embodiment (A) means a pattern to be produced using the vapor deposition mask 100 of the embodiment (A).
  • the vapor deposition mask is an organic layer in an organic EL display.
  • the shape of the opening 25 is the shape of the organic layer.
  • “one screen” includes an assembly of openings 25 corresponding to one product.
  • an aggregate of organic layers that is, an aggregate of openings 25 serving as an organic layer is “one screen”.
  • the “one screen” is arranged on the resin mask 20 for a plurality of screens at predetermined intervals. Yes. That is, the resin mask 20 is provided with openings 25 necessary for forming a plurality of screens.
  • the metal mask 10 provided with a plurality of slits 15 is provided on one surface of the resin mask, and each slit is provided at a position overlapping with at least one entire screen. Yes.
  • the length is the same as the length of the slit 15 in the vertical direction, and is the same as the metal mask 10.
  • metal wire portions having a thickness may be collectively referred to simply as metal wire portions.
  • the vapor deposition mask 100 of the embodiment (A) when the size of the opening 25 necessary to configure one screen or the pitch between the openings 25 configuring one screen is narrowed, for example, exceeds 400 ppi. Even when the size of the openings 25 and the pitch between the openings 25 are extremely small in order to form a screen, it is possible to prevent interference due to the metal line portion and to form a high-definition image. It becomes possible. Therefore, in the manufacturing method of the vapor deposition mask concerning this embodiment, it is preferable to manufacture a vapor deposition mask so that it may become Embodiment (A) finally.
  • FIGS. 4 to 7. a region closed by a broken line is one screen.
  • a small number of openings 25 are aggregated as one screen.
  • the present invention is not limited to this form.
  • one opening 25 is defined as one pixel, one screen There may be an opening 25 of several million pixels.
  • one screen is constituted by an assembly of openings 25 in which a plurality of openings 25 are provided in the vertical and horizontal directions.
  • one screen is constituted by an aggregate of openings 25 in which a plurality of openings 25 are provided in the horizontal direction.
  • one screen is constituted by an assembly of openings 25 in which a plurality of openings 25 are provided in the vertical direction. 4 to 6, a slit 15 is provided at a position overlapping the entire screen.
  • the slit 15 may be provided at a position that overlaps only one screen, and is provided at a position that overlaps two or more entire screens, as shown in FIGS. It may be.
  • a slit 15 is provided at a position overlapping the entire two screens that are continuous in the horizontal direction.
  • the slit 15 is provided at a position overlapping the entire three screens that are continuous in the vertical direction.
  • the pitch between the openings 25 constituting one screen and the pitch between the screens will be described.
  • the pitch between the openings 25 constituting one screen and the size of the openings 25, can be set as appropriate according to the pattern to be deposited.
  • the horizontal pitch (P1) and vertical pitch (P2) of the adjacent openings 25 in the openings 25 constituting one screen are about 60 ⁇ m. It becomes.
  • the size of the opening is about 500 ⁇ m 2 to 1000 ⁇ m 2.
  • one opening 25 is not limited to corresponding to one pixel. For example, depending on the pixel arrangement, a plurality of pixels can be integrated into one opening 25.
  • the horizontal pitch (P3) and the vertical pitch (P4) between the screens are not particularly limited, but as shown in FIG. 4, when one slit 15 is provided at a position overlapping the entire screen, A metal line portion exists between the screens. Accordingly, the vertical pitch (P4) and horizontal pitch (P3) between the screens are smaller than the vertical pitch (P2) and horizontal pitch (P1) of the openings 25 provided in one screen. In this case, or when they are substantially equivalent, the metal wire portion existing between the screens is easily broken. Therefore, in consideration of this point, it is preferable that the pitch (P3, P4) between the screens is wider than the pitch (P1, P2) between the openings 25 constituting one screen. An example of the pitch (P3, P4) between the screens is about 1 mm to 100 mm. Note that the pitch between the screens means a pitch between adjacent openings in one screen and another screen adjacent to the one screen. The same applies to the pitch of the openings 25 and the pitch between the screens in the vapor deposition mask of the embodiment (B) described later.
  • the pitch between two or more screens provided at a position overlapping with one slit 15 may be substantially equal to the pitch between the openings 25 constituting one screen.
  • the vapor deposition mask of embodiment (B) is demonstrated. As shown in FIG. 8, the vapor deposition mask of the embodiment (B) has one slit 16 (one penetration) on one surface of the resin mask 20 provided with a plurality of openings 25 corresponding to the pattern to be produced by vapor deposition.
  • the metal mask 10 provided with holes) is laminated, and all of the plurality of openings 25 are provided at positions overlapping one through-hole provided in the metal mask 10.
  • the opening 25 referred to in the embodiment (B) means an opening necessary for forming a vapor deposition pattern on the vapor deposition target, and an opening not necessary for forming the vapor deposition pattern on the vapor deposition target is: You may provide in the position which does not overlap with one slit 16 (one through-hole).
  • FIG. 8 is a front view of the vapor deposition mask showing an example of the vapor deposition mask of the embodiment (B) as viewed from the metal mask side.
  • the metal mask 10 having one through hole 16 is provided on the resin mask 20 having the plurality of openings 25, and all of the plurality of openings 25 are formed.
  • the first slit 16 (one through hole) is provided at a position overlapping the one slit 16.
  • there is no metal line portion between the openings 25 that is the same as the thickness of the metal mask or thicker than the thickness of the metal mask.
  • the thickness of the metal mask 10 is The thickness can be increased until the durability and handling properties can be sufficiently satisfied, and the durability and handling properties can be improved while enabling the formation of a high-definition deposition pattern. Therefore, in the vapor deposition mask manufacturing method of one embodiment, it is preferable to manufacture the vapor deposition mask so that the final embodiment (B) is obtained.
  • the resin mask 20 in the vapor deposition mask of the embodiment (B) is made of resin, and as shown in FIG. 8, the opening 25 corresponding to a pattern to be vapor deposited at a position overlapping with one slit 16 (one through hole). Are provided.
  • the opening 25 corresponds to a pattern to be produced by vapor deposition, and the vapor deposition material released from the vapor deposition source passes through the opening 25 so that a vapor deposition pattern corresponding to the opening 25 is formed on the vapor deposition target.
  • the openings are arranged in a plurality of rows in the vertical and horizontal directions is described. However, the openings may be arranged only in the vertical or horizontal direction.
  • “One screen” in the vapor deposition mask 100 of the embodiment (B) means an aggregate of the openings 25 corresponding to one product, and one organic product is used when the one product is an organic EL display.
  • An aggregate of organic layers necessary for forming an EL display, that is, an aggregate of openings 25 serving as an organic layer is “one screen”.
  • the vapor deposition mask of the embodiment (B) may be composed of only “one screen” or may be a plurality of “one screen” arranged for a plurality of screens. When the screens are arranged, it is preferable that the openings 25 are provided at predetermined intervals for each screen unit (see FIG. 6 of the vapor deposition mask of the embodiment (A)).
  • the metal mask 10 in the vapor deposition mask 100 of the embodiment (B) is made of metal and has one slit 16 (one through hole).
  • the one slit 16 (one through hole) overlaps with all the openings 25 when viewed from the front of the metal mask 10, in other words, the resin mask. It arrange
  • a metal portion constituting the metal mask 10, that is, a portion other than one slit 16 (one through hole) may be provided along the outer edge of the vapor deposition mask 100 as shown in FIG.
  • the size of the metal mask 10 may be made smaller than that of the resin mask 20 to expose the outer peripheral portion of the resin mask 20.
  • the size of the metal mask 10 may be made larger than that of the resin mask 20, and a part of the metal portion may protrude outward in the horizontal direction or in the vertical direction of the resin mask.
  • the size of one slit 16 (one through hole) is configured to be smaller than the size of the resin mask 20.
  • width (W1) in the horizontal direction and the width (W2) in the vertical direction of the metal portion forming the wall surface of the through hole of the metal mask 10 shown in FIG. 8 the widths of W1 and W2 are reduced. As time goes on, durability and handling properties tend to decrease. Therefore, it is preferable that W1 and W2 have widths that can sufficiently satisfy durability and handling properties.
  • An appropriate width can be appropriately set according to the thickness of the metal mask 10, but as an example of a preferable width, both W1 and W2 are about 1 mm to 100 mm, as in the metal mask of the embodiment (A).
  • each opening part 25 is regularly formed in the resin mask 20, when it sees from the metal mask 10 side of the vapor deposition mask 100, each opening part is shown. 25 may be alternately arranged in the horizontal direction or the vertical direction (not shown). In other words, the openings 25 adjacent in the horizontal direction may be shifted in the vertical direction.
  • a groove (not shown) extending in the vertical direction or the horizontal direction of the resin mask 20 may be formed in the resin mask 20.
  • the resin mask 20 may thermally expand, which may cause changes in the size and position of the opening 25.
  • the expansion of the resin mask can be absorbed. It is possible to prevent the resin mask 20 from expanding in a predetermined direction as a whole and accumulating the thermal expansion that occurs at various portions of the resin mask and changing the size and position of the opening 25.
  • the groove may be provided between the openings 25 constituting one screen or at a position overlapping with the openings 25, but is preferably provided between the screens.
  • the groove may be provided only on one surface of the resin mask, for example, the surface in contact with the metal mask, or may be provided only on the surface not in contact with the metal mask. Alternatively, it may be provided on both surfaces of the resin mask 20.
  • a groove extending in the vertical direction between adjacent screens may be formed, or a groove extending in the horizontal direction may be formed between adjacent screens. Furthermore, it is possible to form the grooves in a combination of these.
  • the depth and width of the groove are not particularly limited. However, when the depth of the groove is too deep or too wide, the rigidity of the resin mask 20 tends to decrease, so this point is taken into consideration. It is necessary to set it. Further, the cross-sectional shape of the groove is not particularly limited, and may be arbitrarily selected in consideration of a processing method such as a U shape or a V shape. The same applies to the vapor deposition mask of the embodiment (B).
  • FIG. 25 is a cross-sectional view of the vapor deposition mask of the embodiment (C).
  • the vapor deposition mask 100 of the embodiment (C) includes a metal mask 10 provided with slits 15 and a resin mask 20 provided with openings 25 corresponding to a pattern to be produced by vapor deposition.
  • a thin portion 26 is formed around the opening 25 in the resin mask 20.
  • the thin-walled portion 26 is characterized in that the cross-sectional shape is an upwardly convex arc shape.
  • the cross-sectional shape of the thin portion 26 is not an upwardly convex clean arc shape, but may include a slight unevenness as shown in FIG. .
  • the cross-sectional shape of the thin portion 26 may be a taper shape formed of a straight line. Even in this case, as shown in FIG. 25 (d). Some irregularities may be included.
  • the cross-sectional shape of the thin portion 26 may be a downwardly convex arc shape, and even in this case, as shown in FIG. 25 (f). Some irregularities may be included. By making the downwardly convex arc shape, the influence of so-called shadow can be reduced.
  • the vapor deposition mask manufacturing apparatus according to the present embodiment is characterized in that the laser mask used in the above-described (vapor deposition mask manufacturing method) is used. Therefore, in other parts, each configuration of a conventionally known vapor deposition mask manufacturing apparatus may be appropriately selected and used. According to the vapor deposition mask manufacturing apparatus according to the present embodiment, as in the above-described (vapor deposition mask manufacturing method), with respect to the metal mask with a resin plate in which the metal mask provided with the slit and the resin plate are laminated.
  • an opening forming machine that forms an opening corresponding to a pattern to be deposited on the resin plate by irradiating a laser from the metal mask side, an opening area corresponding to the opening and a position around the opening area Then, by using a laser mask provided with an attenuation region for attenuating the energy of the irradiated laser, an opening corresponding to a pattern to be deposited on a resin plate by a laser passing through the opening region In addition, a thin portion can be formed around the opening of the resin plate by a laser passing through the attenuation region.
  • the organic semiconductor element manufacturing method according to the present embodiment is characterized in that the vapor deposition mask manufactured by the vapor deposition mask manufacturing method according to the present embodiment described above is used. Therefore, the detailed description here about a vapor deposition mask is abbreviate
  • the manufacturing method of the organic semiconductor element according to the present embodiment includes an electrode forming process for forming an electrode on a substrate, an organic layer forming process, a counter electrode forming process, a sealing layer forming process, and the like.
  • a vapor deposition pattern is formed on the substrate by vapor deposition using a mask. For example, when a vapor deposition method using a vapor deposition mask is applied to the R, G, and B light emitting layer forming steps of the organic EL device, vapor deposition patterns of the respective color light emitting layers are formed on the substrate.
  • the manufacturing method of the organic-semiconductor element concerning this embodiment is not limited to these processes, It can apply to the arbitrary processes in manufacture of the conventionally well-known organic-semiconductor element using a vapor deposition method.
  • the vapor deposition mask 200 with a frame used in the step of forming the vapor deposition pattern may be one in which one vapor deposition mask 100 is fixed to the frame 60 as shown in FIG. 10, and as shown in FIG. A plurality of vapor deposition masks 100 may be fixed to the frame 60.
  • the frame 60 is a substantially rectangular frame member and has a through hole for exposing the opening 25 provided in the resin mask 20 of the vapor deposition mask 100 to be finally fixed to the vapor deposition source side.
  • a metal material having high rigidity for example, SUS, Invar material, ceramic material, or the like can be used.
  • the metal frame is preferable in that it can be easily welded to the metal mask of the vapor deposition mask and the influence of deformation or the like is small.
  • the thickness of the frame is not particularly limited, but is preferably about 10 mm to 30 mm from the viewpoint of rigidity and the like.
  • the width between the inner peripheral end face of the opening of the frame and the outer peripheral end face of the frame is not particularly limited as long as it can fix the frame and the metal mask of the vapor deposition mask, and is, for example, about 10 mm to 70 mm. The width can be exemplified.
  • a reinforcing frame 65 or the like is provided in the through hole region within a range that does not hinder the exposure of the opening 25 of the resin mask 20 constituting the vapor deposition mask 100.
  • a frame 60 may be used.
  • the opening of the frame 60 may be divided by a reinforcing frame or the like.
  • the vapor deposition mask 100 can be fixed to the frame 60 even at a position where the reinforcing frame and the vapor deposition mask overlap. it can.
  • the thin portion 26 is formed around the opening 25 of the vapor deposition mask 100 used, when the pattern is formed by vapor deposition, a so-called shadow is formed. Generation
  • production can be suppressed and a pattern precision can be improved.
  • Examples of the organic semiconductor element manufactured by the method for manufacturing an organic semiconductor element according to this embodiment include an organic layer, a light emitting layer, a cathode electrode, and the like of the organic EL element.
  • the method for manufacturing an organic semiconductor element according to one embodiment can be suitably used for manufacturing R, G, and B light emitting layers of an organic EL element that requires high-definition pattern accuracy.
  • Example 1 A polyimide resin plate having a thickness of about 5 ⁇ m was prepared, and an opening and a thin portion were formed in the polyimide resin plate using the laser mask according to Example 1 having the characteristics shown in Table 1 below.
  • the laser used for forming the opening and the thin portion is an excimer laser having a wavelength of 248 nm.
  • Examples 2 to 9 Using the laser masks according to Examples 2 to 9 having the characteristics shown in Table 1 below in the same manner as in Example 1, openings and thin portions were formed in the polyimide resin plate.
  • (result) 15 to 23 are cross-sectional photographs of polyimide resin plates having openings and thin portions formed using the laser masks according to Examples 1 to 9, respectively.
  • Table 2 summarizes the results of forming openings and thin portions on a polyimide resin plate using the laser masks according to Examples 1 to 9.
  • the “taper angle (°) in the cross section” in Table 2 refers to an angle formed by the side wall and the bottom surface of the opening formed in the polyimide resin plate in each of FIGS.
  • the shape of the side wall of the opening part formed in the polyimide resin board is a curve like a convex arc, it means the angle formed by the tangent line and the bottom surface.
  • the type of the laser mask that is, the position and size of the through groove and the through hole in the attenuation region are shown.
  • the laser transmittance due to these can be arbitrarily designed, and thin portions having various shapes can be formed around the opening according to the design.
  • the cross-sectional shape of the thin-walled portion can be an upwardly convex arc.
  • the cross-sectional shape of the thin-walled portion can be made to be a shape close to a straight line from a downwardly convex arc.
  • the cross-sectional shape of the thin portion can be stepped.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 大型化した場合でも軽量化を図ることができ、且つ従来よりも高精細な蒸着パターンを形成可能な蒸着マスクの製造方法や、従来よりも高精細な有機半導体素子を製造することができる有機半導体素子の製造方法を提供すること。 スリットが設けられた金属マスクと樹脂板とが積層された樹脂板付き金属マスクを準備する工程と、前記金属マスク側からレーザーを照射し、前記樹脂板に蒸着作製するパターンに対応した開口部を形成する工程と、を含み、前記開口部を形成する工程においては、前記開口部に対応する開口領域と、当該開口領域の周囲に位置し、照射されるレーザーのエネルギーを減衰させる減衰領域と、が設けられたレーザー用マスクを用いることで、前記開口領域を通過するレーザーにより、樹脂板に対して蒸着作製するパターンに対応した開口部を形成するとともに、前記減衰領域を通過するレーザーにより、前記樹脂板の開口部の周囲に薄肉部を形成する。

Description

蒸着マスクの製造方法、蒸着マスク製造装置、レーザー用マスクおよび有機半導体素子の製造方法
  本発明の実施形態は、蒸着マスクの製造方法、蒸着マスク製造装置、レーザー用マスクおよび有機半導体素子の製造方法に関する。
  有機EL素子を用いた製品の大型化或いは基板サイズの大型化にともない、蒸着マスクに対しても大型化の要請が高まりつつある。そして、金属から構成される蒸着マスクの製造に用いられる金属板も大型化している。しかしながら、現在の金属加工技術では、大型の金属板に開口部を精度よく形成することは困難であり、開口部の高精細化への対応はできない。また、金属のみからなる蒸着マスクとした場合には、大型化に伴いその質量も増大し、フレームを含めた総質量も増大することから取り扱いに支障をきたすこととなる。
  このような状況下、特許文献1には、スリットが設けられた金属マスクと、金属マスクの表面に位置し蒸着作製するパターンに対応した開口部が縦横に複数列配置された樹脂マスクとが積層されてなる蒸着マスクの製造方法が提案されている。特許文献1に提案がされている蒸着マスクの製造方法によれば、大型化した場合でも高精細化と軽量化の双方を満たす蒸着マスクを製造することができるとされている。
  また、上記特許文献1には、蒸着マスクを用いた蒸着作製時におけるシャドウの発生を抑制すべく、開口部の断面形状、或いはスリットの断面形状が蒸着源側に広がりを持つ形状であることが好ましい点について開示がされている。なお、シャドウとは、蒸着源から放出された蒸着材の一部が、金属マスクのスリットや、樹脂マスクの開口部の内壁面に衝突して蒸着対象物へ到達しないことにより、目的とする蒸着膜厚よりも薄い膜厚となる未蒸着部分が生ずる現象のことをいう。
特許第5288073号公報
  本発明の実施形態は、上記特許文献1に提案がされている蒸着マスクの製造方法のさらなる改良を目的とし、大型化した場合でも軽量化を図ることができ、かつ、いわゆるシャドウの発生を抑制することで従来よりも高精細な蒸着パターンを形成可能な蒸着マスクの製造方法や蒸着マスク製造装置、加えて、これら製造方法や製造装置において用いられるレーザー用マスク、さらには、従来よりも高精細な有機半導体素子を製造することができる有機半導体素子の製造方法を提供することを主たる課題とする。
  本発明の一実施形態にかかる蒸着マスクの製造方法は、スリットが設けられた金属マスクと樹脂板とが積層された樹脂板付き金属マスクを準備する工程と、前記金属マスク側からレーザーを照射し、前記樹脂板に蒸着作製するパターンに対応した開口部を形成する工程と、を含み、前記開口部を形成する工程においては、前記開口部に対応する開口領域と、当該開口領域の周囲に位置し、照射されるレーザーのエネルギーを減衰させる減衰領域と、が設けられたレーザー用マスクを用いることで、前記開口領域を通過するレーザーにより、樹脂板に対して蒸着作製するパターンに対応した開口部を形成するとともに、前記減衰領域を通過するレーザーにより、前記樹脂板の開口部の周囲に薄肉部を形成する、ことを特徴とする。
  上記の蒸着マスクの製造方法にあっては、前記開口部を形成する工程において用いられるレーザー用マスクの減衰領域におけるレーザーの透過率が50%以下であってもよい。
  また、本発明の一実施形態にかかる蒸着マスク製造装置は、スリットが設けられた金属マスクと、蒸着作製するパターンに対応した開口部が設けられた樹脂マスクとが積層されてなる蒸着マスクを製造するための蒸着マスク製造装置であって、当該蒸着マスク製造装置は、スリットが設けられた金属マスクと樹脂板とが積層された樹脂板付き金属マスクに対して、当該金属マスク側からレーザーを照射し、前記樹脂板に蒸着作製するパターンに対応した開口部を形成する手段を含み、当該開口部を形成する手段においては、前記開口部に対応する開口領域と、当該開口領域の周囲に位置し、照射されるレーザーのエネルギーを減衰させる減衰領域と、が設けられたレーザー用マスクが用いられ、前記開口領域を通過するレーザーにより、樹脂板に対して蒸着作製するパターンに対応した開口部が形成されるとともに、前記減衰領域を通過するレーザーにより、前記樹脂板の開口部の周囲に薄肉部が形成される、ことを特徴とする。
  上記の蒸着マスクの製造装置にあっては、前記開口部を形成する工程において用いられるレーザー用マスクの減衰領域におけるレーザーの透過率が50%以下であってもよい。
  また、本発明の一実施形態にかかるレーザー用マスクは、スリットが設けられた金属マスクと、蒸着作製するパターンに対応した開口部が設けられた樹脂マスクと、を含む蒸着マスクを製造するにあたり、前記樹脂マスクの開口部をレーザーによって形成する際に用いられるレーザー用マスクであって、当該レーザー用マスクは、前記開口部に対応する開口領域と、当該開口領域の周囲に位置し、照射されるレーザーのエネルギーを減衰させる減衰領域と、を含むことを特徴とする。
  上記のレーザー用マスクにあっては、前記減衰領域におけるレーザーの透過率が50%以下であってもよい。
  また、本発明の一実施形態にかかる有機半導体素子の製造方法は、蒸着マスクを用いて蒸着対象物に蒸着パターンを形成する蒸着パターン形成工程を含み、当該蒸着パターン形成工程においては、上記本発明の蒸着マスクの製造方法によって製造された蒸着マスクが用いられることを特徴とする。
  本発明の実施形態にかかる蒸着マスクの製造方法、本発明の実施形態にかかる蒸着マスク製造装置および本発明の実施形態にかかるレーザー用マスクによれば、大型化した場合でも軽量化を図ることができ、かつ、いわゆるシャドウの発生を抑制することで従来よりも高精細な蒸着パターンを形成可能な蒸着マスクを製造することができる。また、本発明の有機半導体素子の製造方法によれば、従来よりも高精細な有機半導体素子を製造することができる。
本発明の一実施形態にかかる蒸着マスクの製造方法を説明するための工程図である。 本発明の一実施形態の蒸着マスクの製造方法において用いられるレーザー用マスクの正面図である。 (a)~(n)は、開口領域と減衰領域の具体的態様を説明するための、種 々のレーザー用マスクの正面拡大図である。 実施形態(A)の蒸着マスクを金属マスク側から見た正面図である。 実施形態(A)の蒸着マスクを金属マスク側から見た正面図である。 実施形態(A)の蒸着マスクを金属マスク側から見た正面図である。 実施形態(A)の蒸着マスクを金属マスク側から見た正面図である。 実施形態(B)の蒸着マスクを金属マスク側から見た正面図である。 実施形態(B)の蒸着マスクを金属マスク側から見た正面図である。 フレーム付き蒸着マスクの一例を示す正面図である。 フレーム付き蒸着マスクの一例を示す正面図である。 フレームの一例を示す正面図である。 縮小投影光学系のマスクイメージング法の説明図である。 開口領域と減衰領域の関係を説明するためのレーザー用マスクの正面拡大図である。 実施例1のレーザー用マスクを用いて開口部と薄肉部が形成された樹脂板の断面写真である。 実施例2のレーザー用マスクを用いて開口部と薄肉部が形成された樹脂板の断面写真である。 実施例3のレーザー用マスクを用いて開口部と薄肉部が形成された樹脂板の断面写真である。 実施例4のレーザー用マスクを用いて開口部と薄肉部が形成された樹脂板の断面写真である。 実施例5のレーザー用マスクを用いて開口部と薄肉部が形成された樹脂板の断面写真である。 実施例6のレーザー用マスクを用いて開口部と薄肉部が形成された樹脂板の断面写真である。 実施例7のレーザー用マスクを用いて開口部と薄肉部が形成された樹脂板の断面写真である。 実施例8のレーザー用マスクを用いて開口部と薄肉部が形成された樹脂板の断面写真である。 実施例9のレーザー用マスクを用いて開口部と薄肉部が形成された樹脂板の断面写真である。 本発明の一実施形態にかかるレーザー用マスクの断面図である。 実施形態(C)の蒸着マスクの断面図である。
  以下、本発明の実施の形態を、図面等を参照しながら説明する。但し、本発明は多くの異なる態様で実施することが可能であり、以下に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。また、説明の便宜上、上方又は下方という語句などを用いて説明する場合があるが、この場合上下方向が逆転してもよい。
  (蒸着マスクの製造方法)
  以下に、本発明の実施形態にかかる蒸着マスクの製造方法について、図面を用いて説明する。
  図1は、本発明の実施形態にかかる蒸着マスクの製造方法を説明するための工程図である。なお、(a)~(d)はすべて断面図である。
  本実施形態にかかる蒸着マスクの製造方法は、スリットが設けられた金属マスクと樹脂板とが積層された樹脂板付き金属マスクを準備する工程と、準備された樹脂板付き金属マスクをフレームに固定する工程と、前記金属マスク側からレーザーを照射し、前記樹脂板に蒸着作製するパターンに対応した開口部を形成する工程と、を含んでいる。以下に各工程について説明する。
  (樹脂板付き金属マスクを準備する工程)
  図1(a)に示すように、この工程は、スリット15が設けられた金属マスク10と樹脂板30とが積層された樹脂板付き金属マスク40を準備する工程である。当該樹脂板付き金属マスク40を準備するにあっては、まず、スリット15が設けられた金属マスク10を準備する。なお、金属マスク10および樹脂板30の材質等の詳細については、本発明の製造方法で製造された蒸着マスクを説明する際に併せて説明する。
  金属マスク10は、金属から構成され、縦方向及び/又は横方向に延びるスリット15が配置されている。樹脂板付き金属マスク40を構成する樹脂板の、スリット15と重なる位置には、後述する工程において開口部25が形成される。
  スリット15が設けられた金属マスク10の形成方法としては、例えば以下のような方法を挙げることができる。
  まず、金属板の表面にマスキング部材、例えば、レジスト材を塗工し、所定の箇所を露光し、現像することで、最終的にスリット15が形成される位置を残したレジストパターンを形成する。マスキング部材として用いるレジスト材としては処理性が良く、所望の解像性があるものが好ましい。次いで、このレジストパターンを耐エッチングマスクとして用いてエッチング法によりエッチング加工する。次いで、エッチングが終了後、レジストパターンを洗浄除去する。これにより、スリット15が設けられた金属マスク10が得られる。スリット15を形成するためのエッチングは、金属板の片面側から行ってもよく、両面から行ってもよい。また、金属板に樹脂板が設けられた積層体を用いて、金属板にスリット15を形成する場合には、金属板の樹脂板と接しない側の表面にマスキング部材を塗工して、片面側からのエッチングによってスリット15を形成してもよい。なお、樹脂板が金属板のエッチング材に対し耐エッチング性を有する場合には、樹脂板の表面をマスキングする必要はない。一方で、樹脂板が金属板のエッチング材に対する耐性を有しない場合には、樹脂板の表面にマスキング部材を塗工しておく必要がある。また、上記では、マスキング部材としてレジスト材を用いた場合を例に挙げて説明を行ったが、レジスト材を塗工する代わりにドライフィルムレジストをラミネートし、同様のパターニングを行ってもよい。なお、樹脂板付き金属マスク40を構成する金属マスク10は、上記で例示した方法によって形成されたものに限定されるものではなく、市販品を用いることもできる。また、エッチングによるスリット15の形成に代えて、レーザー光を照射してスリット15を形成することもできる。
  樹脂板付き金属マスク40を構成する金属マスク10と樹脂板30との貼り合せ方法や、形成方法についても特に限定されない。例えば、予め金属マスク10となる金属板に対して樹脂層をコーティングにより形成した積層体を準備し、積層体の状態で金属板にスリット15を形成することで樹脂板付き金属マスク40を得ることもできる。本実施形態において、樹脂板付き金属マスク40を構成する樹脂板30には、板状の樹脂のみならず、上記のようにコーティングによって形成された樹脂層や樹脂膜も含まれる。つまり、樹脂板30は、予め準備されたものであってもよく、従来公知のコーティング法等によって形成されたものであってもよい。また、樹脂板30は、樹脂フィルムや樹脂シートを含む概念である。また、樹脂板30の硬度についても限定はなく、硬質板であってもよく、軟質板であってもよい。また、金属マスク10と樹脂板30とは各種粘着剤を用いて貼り合わせてもよく、自己粘着性を有する樹脂板30を用いてもよい。なお、金属マスク10と樹脂板30の大きさは同一であってよい。なお、本実施形態の製造方法で製造される蒸着マスク100のフレーム50への固定を考慮して、樹脂板30の大きさを金属板10よりも小さくし、金属マスク10の外周部分が露出された状態としておくと、金属マスク10とフレーム50との溶接が容易となる。
  (フレームに固定する工程)
  次に、図1(b)に示すように、樹脂板付き金属マスク40を構成する金属マスク10をフレーム50に固定する。本実施形態にあって、この固定工程は任意の工程であるが、通常の蒸着装置において蒸着マスク100を用いる場合、フレーム50に固定して用いられることが多いため、当該工程をこのタイミングで行うのが好ましい。一方で図示はしないが、樹脂板付き金属マスク40となる前段階の金属マスク10に対してフレームに固定する固定工程を行い、その後に樹脂板30を設けてもよい。金属マスク10をフレーム50に固定する方法については特に限定されることはなく、例えば、フレーム50が金属を含む場合にはスポット溶接など従来公知の工程方法を適宜採用すればよい。
  (樹脂板に開口部を形成する工程)
  次に、図1(c)に示すように、樹脂板付き金属マスク40の金属マスク10側からレーザーを照射することにより樹脂板30に蒸着作製するパターンに対応した開口部を形成する。本実施形態にあっては、この際に図示するようなレーザー用マスク70が用いられることに特徴を有している。なお、図1(c)においては、レーザー用マスク70が樹脂板付き金属マスク40と間隔を持って配置されているが、この図に限定されることはない。例えば、図13に示すように、レーザー用マスク70と樹脂板付き金属マスク40との間に集光レンズ130を設置して、いわゆる「縮小投影光学系を用いたレーザー加工法」によって開口部を形成してもよい。
  レーザー用マスク70は、蒸着作製するパターンに対応した、つまり最終的に形成される開口部に対応した開口領域71と、当該開口領域71の周囲に位置し、照射されるレーザーのエネルギーを減衰させる減衰領域72とが設けられている。このようなレーザー用マスク70を用いることにより、図1(d)に示すように、開口領域71を通過するレーザーによって蒸着作製するパターンに対応した開口部25を樹脂板30に形成することができるとともに、減衰領域72を通過することでそのエネルギーが減衰したレーザーによって、開口部25の周囲に貫通していない薄肉部26を同時に形成することができ、蒸着マスク100を得る。
  開口部25の周囲に薄肉部26を形成することにより、蒸着マスク100を用いてパターンを蒸着作製した場合において、いわゆるシャドウの発生を抑制することができ、パターン精度を向上することができる。また、本実施形態のように開口部25とその周囲に位置する薄肉部26とを同時に形成することにより、寸法精度を飛躍的に向上することができる。
  以下に、本実施形態の蒸着マスクの製造方法において用いられるレーザー用マスクについて図面を用いて説明する。
  (レーザー用マスク)
  図2は、本実施形態の蒸着マスクの製造方法において用いられるレーザー用マスクの正面図である。
  図2に示すように、レーザー用マスク70には、上記にて図1を用いて説明した通り、蒸着作製するパターンに対応した、つまり最終的に形成される開口部に対応した開口領域71と、当該開口領域71の周囲に位置し、照射されるレーザーのエネルギーを減衰させる減衰領域72とが設けられている。
  ここで、開口領域71については特段言及することはなく、蒸着作製するパターンに対応した貫通孔などが開口領域71となる。したがって、開口領域71の形状は図示するような矩形状に限定されることはなく、蒸着作製するパターンが円形状であれば開口領域71の形状もこれに対応して当然に円形状となり、蒸着作製するパターンが六角形状であれば開口領域71の形状も六角形状となる。なお、当該開口領域71におけるレーザーの透過率は、当該開口領域71が貫通孔である場合には100%となるが、必ずしも100%である必要はなく、後述する減衰領域72におけるレーザーの透過率との相対関係において適宜設計可能である。つまり、本発明の実施形態における「開口領域71」とは、蒸着マスクに最終的に形成されるの開口部を形成するための領域であって、当該開口領域71そのものが必ずしも貫通孔のごとく開口した状態である必要はない。したがって、例えば、開口領域71におけるレーザーの透過率が70%であり、後述する減衰領域72におけるレーザーの透過率が50%であっても、作用効果を奏し得る。
  減衰領域72は、前記開口領域71の周囲に位置し、照射されるレーザーのエネルギーを減衰せしめることで、図1(d)に示すように、前記開口領域71を通過したレーザーにより樹脂板30に開口部25が形成されるタイミングにおいて、当該減衰領域72を通過したレーザーにより樹脂板30の開口部25の周囲に薄肉部26を形成することを目的として形成される。したがって、減衰領域72の具体的な態様については、特に限定されることはなく、前記の作用効果、つまり開口部25が形成されるタイミングにおいて、当該開口部25の周囲に位置する樹脂板30を貫通せしめることなく薄肉化できる程度にまでレーザーのエネルギーを減衰することができるような態様であればよく、当該減衰領域72におけるレーザーの透過率を50%以下とすることが好ましい。
  例えば、図2に示すように、開口領域71の周囲に同心状に、照射されるレーザーの解像度よりも小さい開口幅をもった貫通溝74を形成すること、いわゆるラインアンドスペースを形成することで、当該部分を減衰領域72としてもよい。この貫通溝74は、「レーザーの解像度」と「レーザー加工装置の光学系の縮小率」の積の値よりも小さな開口幅を有しているため、当該貫通溝74を通過するレーザーは回折せしめられ、その結果、直進するレーザーが減少し、エネルギーが減衰されることとなる。なお、レーザー加工装置の光学系の縮小率は、(レーザー用マスク上の開口領域のサイズ)/(蒸着マスク上の開口部のサイズ)によって算出される。
  ここで、本明細書における「レーザーの解像度」とは、加工対象となる樹脂板に対して貫通溝からなるラインアンドスペースを形成するにあたり、形成可能なラインアンドスペースの下限値をいう。
  ここで、減衰領域72の大きさ、つまり開口領域71の端辺から減衰領域72の端辺までの距離については特に限定されることはなく、最終的に樹脂マスクの開口部の周囲に形成しようとする薄肉部26の大きさや、開口部25同志の間隔などを考慮して適宜設計すればよい。
  図3(a)~(n)は、開口領域と減衰領域の具体的態様を説明するための、種々のレーザー用マスクの正面拡大図である。
  例えば、図3(a)~(d)および(j)に示すように、減衰領域72は、開口領域71の周囲に同心状に、照射されるレーザーの解像度よりも小さい開口幅をもった貫通溝74を形成すること、いわゆるラインアンドスペースを形成するように配置されていてもよい。なお、図3(a)や(j)においては、貫通溝74が同心状に2本設けられているが、当該貫通溝74の本数は特に限定されることはなく、2本以上であってもよい。また、図3(a)~(d)および(j)に示される貫通溝74は、いずれも矩形を呈しているが、これに限定されることはなく、同心状であってかつ波形であってもよい。
  一方で、例えば、図3(g)~(h)に示すように、照射されるレーザーの解像度よりも小さい開口幅をもった貫通溝74を、開口領域71の周囲に斜めのストライプ状に配置することにより減衰領域72としてもよい。
  さらには、例えば、図3(i)および(k)~(n)に示すように、開口領域の周囲に照射されるレーザーの解像度よりも小さい開口幅をもった、不連続の貫通孔75を配置することにより減衰領域72としてもよい。なお、図3(n)においては、貫通溝74と貫通孔75の双方が配置されている。
  なお、減衰領域72を形成するための貫通溝74や貫通孔75の形状は適宜設計可能であり、また必ずしも開口領域71と隔離されて形成されている必要はなく、図3(f)、(h)および(k)に示すように、開口領域71と貫通溝74や貫通孔75が連続していてもよい。
  また、図3(i)~(n)に示すように、減衰領域72を形成するための貫通溝74や貫通孔75の開口幅を、開口領域71から遠ざかるほど小さく設計することにより、当該減衰領域72によって樹脂マスクの開口部の周囲に形成される薄肉部の厚さを段階的に変化させることができる。
  また、図14に示すように、減衰領域72の幅をDとし、レーザー加工装置の光学系の縮小率がa倍である場合にあっては、D/aを1μmよりも大きく20μmよりも小さくすることが好ましく、5μmよりも大きく10μmよりも小さくすることがさらに好ましい。また、例えば、当該減衰領域72の幅をDとした場合、開口領域71との境界から1/3Dの領域のレーザーの透過率を40%とし、1/3Dから2/3Dの領域のレーザーの透過率を40%とし、2/3DからDの領域のレーザーの透過率を30%としてもよい。
  また、図14における1/3Dの幅をLとした場合、開口領域71との境界から1/2Lの領域のレーザーの透過率を、1/2Lから2/2Lの領域のレーザーの透過率よりも小さくすることが好ましい。具体的には、開口領域71との境界から1/2Lの領域のレーザーの透過率を20%とし、1/2Lから2/2Lの領域のレーザーの透過率を60%としてもよい。このようにすることで開口領域71と減衰領域との境界が明瞭になり、蒸着マスクの開口部のエッジの直線性が高い、良好なパターンを得ることが可能となる。
  また、上記の説明においては、減衰領域72は、「レーザーの解像度」と「レーザー加工装置の光学系の縮小率」の積の値よりも小さな開口幅をもった貫通溝74もしくは貫通孔75によって構成されているが、本発明の実施形態はこれに限定されることはない。
  図24は、本発明の一実施形態にかかるレーザー用マスクの断面図である。
  図24(a)に示すように、当該レーザー用マスク70の減衰領域72においては、上記で説明した貫通溝74や貫通孔75に代えて貫通しない溝または孔を用いることで照射されるレーザーのエネルギーを減衰してもよい。つまり、図24(a)に示すレーザー用マスク70は、貫通した孔からなる開口領域71と、その周囲に位置し、貫通しない溝または孔からなる減衰領域72を有している。このようなレーザー用マスク70によれば、減衰領域72に照射されたレーザーは、薄くなっているレーザー用マスクを透過する際にそのエネルギーが減衰され、その結果、樹脂板30に薄肉部26を形成することができる。
  また一方で、図24(b)に示すように、上記で説明した図24(a)のレーザー用マスクの開口領域71も貫通しない孔から構成されていてもよい。この場合であっても、開口領域71および減衰領域72それぞれの領域を透過するレーザーのエネルギーの差によって樹脂板30に開口部25と薄肉部26を形成することができる。
  さらには、図24(C)に示すように、減衰領域72における貫通溝74や貫通孔75に代えて、レーザーのエネルギーを減衰する塗料を塗布することで当該減衰領域72を透過するレーザーのエネルギーを減衰せしめてもよい。つまり、ある程度レーザーを透過する材料によってレーザー用マスク70を形成し、その貫通した孔からなる開口領域71の周囲にグラデーション状にレーザーのエネルギーを減衰する塗料を塗布することで減衰領域72を形成することににより、当該開口領域71および減衰領域72それぞれの領域を透過するレーザーのエネルギーの差によって樹脂板30に開口部25と薄肉部26を形成することができる。なお、レーザーのエネルギーを減衰する塗料としては、レーザーを吸収する塗料およびレーザーを反射する塗料のいずれも用いる事ができる。
  (蒸着マスク)
  以下に、蒸着マスクの好ましい形態について説明する。なお、ここで説明する蒸着マスクは、以下で説明する形態に限定されるものではなく、スリットが形成された金属マスクと当該スリットと重なる位置に蒸着作製するパターンに対応する開口部が形成された樹脂マスクとが積層されているとの条件を満たすものであれば、いかなる形態であってもよい。例えば、金属マスクに形成されているスリットは、ストライプ状(図示しない)であってもよい。また、1画面全体と重ならない位置に、金属マスクのスリットが設けられていてもよい。この蒸着マスクは、上記で説明した本発明の一実施形態にかかる蒸着マスクの製造方法によって製造されていてもよく、他の方法で製造されていてもよい。
  (実施形態(A)の蒸着マスク)
  図4に示すように、実施形態(A)の蒸着マスク100は、複数画面分の蒸着パターンを同時に形成するための蒸着マスクであって、樹脂マスク20の一方の面上に、複数のスリット15が設けられた金属マスク10が積層されてなり、樹脂マスク20には、複数画面を構成するために必要な開口部25が設けられ、各スリット15が、少なくとも1画面全体と重なる位置に設けられている。
  実施形態(A)の蒸着マスク100は、複数画面分の蒸着パターンを同時に形成するために用いられる蒸着マスクであり、1つの蒸着マスク100で、複数の製品に対応する蒸着パターンを同時に形成することができる。実施形態(A)の蒸着マスクで言う「開口部」とは、実施形態(A)の蒸着マスク100を用いて作製しようとするパターンを意味し、例えば、当該蒸着マスクを有機ELディスプレイにおける有機層の形成に用いる場合には、開口部25の形状は当該有機層の形状となる。また、「1画面」とは、1つの製品に対応する開口部25の集合体からなり、当該1つの製品が有機ELディスプレイである場合には、1つの有機ELディスプレイを形成するのに必要な有機層の集合体、つまり、有機層となる開口部25の集合体が「1画面」となる。そして、実施形態(A)の蒸着マスク100は、複数画面分の蒸着パターンを同時に形成すべく、樹脂マスク20には、上記「1画面」が、所定の間隔をあけて複数画面分配置されている。すなわち、樹脂マスク20には、複数画面を構成するために必要な開口部25が設けられている。
  実施形態(A)の蒸着マスクは、樹脂マスクの一方の面上に、複数のスリット15が設けられた金属マスク10が設けられ、各スリットは、それぞれ少なくとも1画面全体と重なる位置に設けられている。換言すれば、1画面を構成するのに必要な開口部25間において、横方向に隣接する開口部25間に、スリット15の縦方向の長さと同じ長さであって、金属マスク10と同じ厚みを有する金属線部分や、縦方向に隣接する開口部間25に、スリット15の横方向の長さと同じ長さであって、金属マスク10と同じ厚みを有する金属線部分が存在していない。以下、スリット15の縦方向の長さと同じ長さであって、金属マスク10と同じ厚みを有する金属線部分や、スリット15の横方向の長さと同じ長さであって、金属マスク10と同じ厚みを有する金属線部分のことを総称して、単に金属線部分と言う場合がある。
  実施形態(A)の蒸着マスク100によれば、1画面を構成するのに必要な開口部25の大きさや、1画面を構成する開口部25間のピッチを狭くした場合、例えば、400ppiを超える画面の形成を行うべく、開口部25の大きさや、開口部25間のピッチを極めて微小とした場合であっても、金属線部分による干渉を防止することができ、高精細な画像の形成が可能となる。したがって、本実施形態にかかる蒸着マスクの製造方法では、最終的に実施形態(A)となるように、蒸着マスクを製造することが好ましい。なお、1画面が、複数のスリットによって分割されている場合、換言すれば、1画面を構成する開口部25間に金属マスク10と同じ厚みを有する金属線部分が存在している場合には、1画面を構成する開口部25間のピッチが狭くなっていくことにともない、開口部25間に存在する金属線部分が蒸着対象物へ蒸着パターンを形成する際の支障となり高精細な蒸着パターンの形成が困難となる。換言すれば、1画面を構成する開口部25間に金属マスク10と同じ厚みを有する金属線部分が存在している場合には、フレーム付き蒸着マスクとしたときに当該金属線部分が、シャドウの発生を引き起こし高精細な画面の形成が困難となる。
  次に、図4~図7を参照して、1画面を構成する開口部25の一例について説明する。なお、図示する形態において破線で閉じられた領域が1画面となっている。図示する形態では、説明の便宜上少数の開口部25の集合体を1画面としているが、この形態に限定されるものではなく、例えば、1つの開口部25を1画素としたときに、1画面に数百万画素の開口部25が存在していてもよい。
  図4に示す形態では、縦方向、横方向に複数の開口部25が設けられてなる開口部25の集合体によって1画面が構成されている。図5に示す形態では、横方向に複数の開口部25が設けられてなる開口部25の集合体によって1画面が構成されている。また、図6に示す形態では、縦方向に複数の開口部25が設けられてなる開口部25の集合体によって1画面が構成されている。そして、図4~図6では、1画面全体と重なる位置にスリット15が設けられている。
  上記で説明したように、スリット15は、1画面のみと重なる位置に設けられていてもよく、図7(a)、(b)に示すように、2以上の画面全体と重なる位置に設けられていてもよい。図7(a)では、図4に示す樹脂マスク10において、横方向に連続する2画面全体と重なる位置にスリット15が設けられている。図7(b)では、縦方向に連続する3画面全体と重なる位置にスリット15が設けられている。
  次に、図4に示す形態を例に挙げて、1画面を構成する開口部25間のピッチ、画面間のピッチについて説明する。1画面を構成する開口部25間のピッチや、開口部25の大きさについて特に限定はなく、蒸着作製するパターンに応じて適宜設定することができる。例えば、400ppiの高精細な蒸着パターンの形成を行う場合には、1画面を構成する開口部25において隣接する開口部25の横方向のピッチ(P1)、縦方向のピッチ(P2)は60μm程度となる。また、開口部の大きさは、500μm2~1000μm2程度となる。また、1つの開口部25は、1画素に対応していることに限定されることはなく、例えば、画素配列によっては、複数画素を纏めて1つの開口部25とすることもできる。
  画面間の横方向ピッチ(P3)、縦方向ピッチ(P4)についても特に限定はないが、図4に示すように、1つのスリット15が、1画面全体と重なる位置に設けられる場合には、各画面間に金属線部分が存在することとなる。したがって、各画面間の縦方向ピッチ(P4)、横方向のピッチ(P3)が、1画面内に設けられている開口部25の縦方向ピッチ(P2)、横方向ピッチ(P1)よりも小さい場合、或いは略同等である場合には、各画面間に存在している金属線部分が断線しやすくなる。したがって、この点を考慮すると、画面間のピッチ(P3、P4)は、1画面を構成する開口部25間のピッチ(P1、P2)よりも広いことが好ましい。画面間のピッチ(P3、P4)の一例としては、1mm~100mm程度である。なお、画面間のピッチとは、1の画面と、当該1の画面と隣接する他の画面とにおいて、隣接している開口部間のピッチを意味する。このことは、後述する実施形態(B)の蒸着マスクにおける開口部25のピッチ、画面間のピッチについても同様である。
  なお、図7に示すように、1つのスリット15が、2つ以上の画面全体と重なる位置に設けられる場合には、1つのスリット15内に設けられている複数の画面間には、スリットの内壁面を構成する金属線部分が存在しないこととなる。したがって、この場合、1つのスリット15と重なる位置に設けられている2つ以上の画面間のピッチは、1画面を構成する開口部25間のピッチと略同等であってもよい。
  (実施形態(B)の蒸着マスク)
  次に、実施形態(B)の蒸着マスクについて説明する。図8に示すように、実施形態(B)の蒸着マスクは、蒸着作製するパターンに対応した開口部25が複数設けられた樹脂マスク20の一方の面上に、1つのスリット16(1つの貫通孔)が設けられた金属マスク10が積層されてなり、当該複数の開口部25の全てが、金属マスク10に設けられた1つの貫通孔と重なる位置に設けられている。
  実施形態(B)で言う開口部25とは、蒸着対象物に蒸着パターンを形成するために必要な開口部を意味し、蒸着対象物に蒸着パターンを形成するために必要ではない開口部は、1つのスリット16(1つの貫通孔)と重ならない位置に設けられていてもよい。なお、図8は、実施形態(B)の蒸着マスクの一例を示す蒸着マスクを金属マスク側から見た正面図である。
  実施形態(B)の蒸着マスク100は、複数の開口部25を有する樹脂マスク20上に、1つの貫通孔16を有する金属マスク10が設けられており、かつ、複数の開口部25の全ては、当該1つのスリット16(1つの貫通孔)と重なる位置に設けられている。この構成を有する実施形態(B)の蒸着マスク100では、開口部25間に、金属マスクの厚みと同じ厚み、或いは、金属マスクの厚みより厚い金属線部分が存在していないことから、上記実施形態(A)の蒸着マスクで説明したように、金属線部分による干渉を受けることなく樹脂マスク20に設けられている開口部25の寸法通りに高精細な蒸着パターンを形成することが可能となる。
  また、実施形態(B)の蒸着マスクによれば、金属マスク10の厚みを厚くしていった場合であっても、シャドウの影響を殆ど受けることがないことから、金属マスク10の厚みを、耐久性や、ハンドリング性を十分に満足させることができるまで厚くすることができ、高精細な蒸着パターンの形成を可能としつつも、耐久性や、ハンドリング性を向上させることができる。したがって、一実施形態の蒸着マスクの製造方法では、最終的に実施形態(B)となるように、蒸着マスクを製造することが好ましい。
  実施形態(B)の蒸着マスクにおける樹脂マスク20は、樹脂から構成され、図8に示すように、1つのスリット16(1つの貫通孔)と重なる位置に蒸着作製するパターンに対応した開口部25が複数設けられている。開口部25は、蒸着作製するパターンに対応しており、蒸着源から放出された蒸着材が開口部25を通過することで、蒸着対象物には、開口部25に対応する蒸着パターンが形成される。なお、図示する形態では、開口部が縦横に複数列配置された例を挙げて説明をしているが、縦方向、或いは横方向にのみ配置されていてもよい。
  実施形態(B)の蒸着マスク100における「1画面」とは、1つの製品に対応する開口部25の集合体を意味し、当該1つの製品が有機ELディスプレイである場合には、1つの有機ELディスプレイを形成するのに必要な有機層の集合体、つまり、有機層となる開口部25の集合体が「1画面」となる。実施形態(B)の蒸着マスクは、「1画面」のみからなるものであってもよく、当該「1画面」が複数画面分配置されたものであってもよいが、「1画面」が複数画面分配置される場合には、画面単位毎に所定の間隔をあけて開口部25が設けられていることが好ましい(実施形態(A)の蒸着マスクの図6参照)。「1画面」の形態について特に限定はなく、例えば、1つの開口部25を1画素としたときに、数百万個の開口部25によって1画面を構成することもできる。
  実施形態(B)の蒸着マスク100における金属マスク10は、金属から構成され1つのスリット16(1つの貫通孔)を有している。そして、実施形態(B)の蒸着マスクでは、当該1つのスリット16(1つの貫通孔)は、金属マスク10の正面からみたときに、全ての開口部25と重なる位置、換言すれば、樹脂マスク20に配置された全ての開口部25がみえる位置に配置されている。
  金属マスク10を構成する金属部分、すなわち1つのスリット16(1つの貫通孔)以外の部分は、図8に示すように蒸着マスク100の外縁に沿って設けられていてもよく、図9に示すように金属マスク10の大きさを樹脂マスク20よりも小さくし、樹脂マスク20の外周部分を露出させてもよい。また、金属マスク10の大きさを樹脂マスク20よりも大きくして、金属部分の一部を、樹脂マスクの横方向外方、或いは縦方向外方に突出させてもよい。なお、いずれの場合であっても、1つのスリット16(1つの貫通孔)の大きさは、樹脂マスク20の大きさよりも小さく構成されている。
  図8に示される金属マスク10の貫通孔の壁面をなす金属部分の横方向の幅(W1)や、縦方向の幅(W2)について特に限定はないが、W1、W2の幅が狭くなっていくに従い、耐久性や、ハンドリング性が低下していく傾向にある。したがって、W1、W2は、耐久性や、ハンドリング性を十分に満足させることができる幅とすることが好ましい。金属マスク10の厚みに応じて適切な幅を適宜設定することができるが、好ましい幅の一例としては、実施形態(A)の金属マスクと同様、W1、W2ともに1mm~100mm程度である。
  また、上記で説明した各実施形態の蒸着マスクにおいて、樹脂マスク20には、開口部25が規則的に形成されているが、蒸着マスク100の金属マスク10側から見たときに、各開口部25を横方向、或いは縦方向に互い違いに配置してもよい(図示しない)。つまり、横方向に隣り合う開口部25を縦方向にずらして配置してもよい。このように配置することにより、樹脂マスク20が熱膨張した場合にあっても、各所において生じる膨張を開口部25によって吸収することができ、膨張が累積して大きな変形が生じることを防止することができる。
  また、上記で説明した各実施形態の蒸着マスクにおいて、樹脂マスク20には、樹脂マスク20の縦方向、或いは横方向にのびる溝(図示しない)が形成されていてもよい。蒸着時に熱が加わった場合、樹脂マスク20が熱膨張し、これにより開口部25の寸法や位置に変化が生じる可能性があるが、溝を形成することで樹脂マスクの膨張を吸収することができ、樹脂マスクの各所で生じる熱膨張が累積することにより樹脂マスク20が全体として所定の方向に膨張して開口部25の寸法や位置が変化することを防止することができる。溝の形成位置について限定はなく、1画面を構成する開口部25間や、開口部25と重なる位置に設けられていてもよいが、画面間に設けられていることが好ましい。また、溝は、樹脂マスクの一方の面、例えば、金属マスクと接する側の面のみに設けられていてもよく、金属マスクと接しない側の面のみに設けられていてもよい。或いは、樹脂マスク20の両面に設けられていてもよい。
  また、隣接する画面間に縦方向に延びる溝としてもよく、隣接する画面間に横方向に延びる溝を形成してもよい。さらには、これらを組み合わせた態様で溝を形成することも可能である。
  溝の深さやその幅については特に限定はないが、溝の深さが深すぎる場合や、幅が広すぎる場合には、樹脂マスク20の剛性が低下する傾向にあることから、この点を考慮して設定することが必要である。また、溝の断面形状についても特に限定されることはなくU字形状やV字形状など、加工方法などを考慮して任意に選択すればよい。実施形態(B)の蒸着マスクについても同様である。
  (実施形態(C)の蒸着マスク)
  次に、実施形態(C)の蒸着マスクについて説明する。図25は、実施形態(C)の蒸着マスクの断面図である。
  図25(a)に示すように、実施形態(C)の蒸着マスク100は、スリット15が設けられた金属マスク10と、蒸着作製するパターンに対応した開口部25が設けられた樹脂マスク20が積層されてなり、樹脂マスク20における開口部25の周囲には薄肉部26が形成されている。そして、当該薄肉部26の断面形状が上に凸の弧状になっていることに特徴を有している。薄肉部26の断面形状をこのように形成することにより、樹脂マスク20における開口部25の側壁、より正確には当該側壁の接線と当該樹脂マスク20の底面とのなす角θの値を大きくすることができ、当該薄肉部26の耐久性を向上することができ、当該薄肉部26の欠けや変形を防止することが可能となる。
  なお、薄肉部26の断面形状にあっては上に凸のきれいな弧状でなく、図25(b)に示すように、多少の凹凸を含み、全体として上に凸の弧状となっていてもよい。
  また、一方で、図25(c)に示すように、薄肉部26の断面形状が、直線からなるテーパー形状であってもよく、この場合であっても、図25(d)に示すように、多少の凹凸が含まれていてもよい。
  さらに、図25(e)に示すように、薄肉部26の断面形状にあっては、下に凸の弧状であってもよく、この場合であっても、図25(f)に示すように、多少の凹凸が含まれていてもよい。当該下に凸の弧状とすることにより、いわゆるシャドウの影響を小さくすることができる。
  なお、図25(a)から(f)に示した当該実施形態(C)の蒸着マスクを製造する方法については特に限定されないが、上記で説明した本発明の一実施形態にかかる蒸着マスクの製造方法を用い、レーザー用マスク70における減衰領域72の大きさや形状を調整することによって製造することも可能である。
  (蒸着マスク製造装置)
  次に、本発明の実施形態にかかる蒸着マスク製造装置について説明する。本実施形態にかかる蒸着マスク製造装置は、上記で説明した(蒸着マスクの製造方法)において用いられているレーザー用マスクが用いられている点に特徴を有している。したがって、他の部分においては従来公知の蒸着マスク製造装置の各構成を適宜選択して用いればよい。本実施形態にかかる蒸着マスク製造装置によれば、上記で説明した(蒸着マスクの製造方法)と同様、スリットが設けられた金属マスクと樹脂板とが積層された樹脂板付き金属マスクに対して、当該金属マスク側からレーザーを照射し、前記樹脂板に蒸着作製するパターンに対応した開口部を形成する開口部形成機において、前記開口部に対応する開口領域と、当該開口領域の周囲に位置し、照射されるレーザーのエネルギーを減衰させる減衰領域と、が設けられたレーザー用マスクを用いることで、前記開口領域を通過するレーザーにより、樹脂板に対して蒸着作製するパターンに対応した開口部を形成することができるとともに、前記減衰領域を通過するレーザーにより、前記樹脂板の開口部の周囲に薄肉部を形成することができる。
  (有機半導体素子の製造方法)
  次に、本発明の実施形態にかかる有機半導体素子の製造方法について説明する。本実施形態にかかる有機半導体素子の製造方法は、上記で説明した本実施形態にかかる蒸着マスクの製造方法によって製造された蒸着マスクが用いられることを特徴とする。したがって、蒸着マスクについてのここでの詳細な説明は省略する。
  本実施形態にかかる有機半導体素子の製造方法は、基板上に電極を形成する電極形成工程、有機層形成工程、対向電極形成工程、封止層形成工程等を有し、各任意の工程において蒸着マスクを用いた蒸着法により基板上に蒸着パターンが形成される。例えば、有機ELデバイスのR,G,B各色の発光層形成工程に、蒸着マスクを用いた蒸着法をそれぞれ適用する場合には、基板上に各色発光層の蒸着パターンが形成される。なお、本実施形態にかかる有機半導体素子の製造方法は、これらの工程に限定されるものではなく、蒸着法を用いる従来公知の有機半導体素子の製造における任意の工程に適用可能である。
  蒸着パターンを形成する工程で用いられるフレーム付き蒸着マスク200は、図10に示すように、フレーム60に、1つの蒸着マスク100が固定されたものであってもよく、図11に示すように、フレーム60に、複数の蒸着マスク100が固定されたものであってもよい。
  フレーム60は、略矩形形状の枠部材であり、最終的に固定される蒸着マスク100の樹脂マスク20に設けられた開口部25を蒸着源側に露出させるための貫通孔を有する。フレームの材料について特に限定はないが、剛性が大きい金属材料、例えば、SUS、インバー材、セラミック材料などを用いることができる。中でも、金属フレームは、蒸着マスクの金属マスクとの溶接が容易であり、変形等の影響が小さい点で好ましい。
  フレームの厚みについても特に限定はないが、剛性等の点から10mm~30mm程度であることが好ましい。フレームの開口の内周端面と、フレームの外周端面間の幅は、当該フレームと、蒸着マスクの金属マスクとを固定することができる幅であれば特に限定はなく、例えば、10mm~70mm程度の幅を例示することができる。
  また、図12(a)~(c)に示すように、蒸着マスク100を構成する樹脂マスク20の開口部25の露出を妨げない範囲で、貫通孔の領域に補強フレーム65等が設けられたフレーム60を用いてもよい。換言すれば、フレーム60が有する開口が、補強フレーム等によって分割された構成を有していてもよい。補強フレーム65を設けることで、当該補強フレーム65を利用して、フレーム60と蒸着マスク100とを固定することができる。具体的には、上記で説明した蒸着マスク100を縦方向、及び横方向に複数並べて固定するときに、当該補強フレームと蒸着マスクが重なる位置においても、フレーム60に蒸着マスク100を固定することができる。
  本実施形態にかかる有機半導体素子の製造方法によれば、用いられている蒸着マスク100の開口部25の周囲に薄肉部26が形成されているため、パターンを蒸着作製した場合において、いわゆるシャドウの発生を抑制することができ、パターン精度を向上することができる。
  本実施形態にかかる有機半導体素子の製造方法で製造される有機半導体素子としては、例えば、有機EL素子の有機層、発光層や、カソード電極等を挙げることができる。特に、一実施形態の有機半導体素子の製造方法は、高精細なパターン精度が要求される有機EL素子のR、G、B発光層の製造に好適に用いることができる。
  以下に実施例を示す。
  (実施例1)
  厚さ約5μmのポリイミド製樹脂板を準備し、以下の表1に示す特徴を有する実施例1にかかるレーザー用マスクを用いて、前記ポリイミド性樹脂板に開口部と薄肉部とを形成した。なお、開口部と薄肉部を形成するにあたり使用したレーザーは、波長248nmのエキシマレーザーである。
  (実施例2~9)
  上記実施例1と同様の要領で、以下の表1に示す特徴を有する実施例2~9にかかるレーザー用マスクを用いて、前記ポリイミド製樹脂板に開口部と薄肉部とを形成した。
Figure JPOXMLDOC01-appb-T000001
 
  なお、上記表1におけるDは、減衰領域の幅の長さ(図14参照)である。
  また、上記表1におけるaは、縮小率=(レーザー用マスク上の開口領域のサイズ)/(蒸着マスク上の開口部のサイズ)である。
  (結果)
  図15~23は、上記実施例1~9それぞれにかかるレーザー用マスクを用いて開口部と薄肉部とが形成されたポリイミド製樹脂板の断面写真である。
  また、上記実施例1~9にかかるレーザー用マスクを用いてポリイミド製樹脂板に開口部と薄肉部とを形成した結果を以下の表2にまとめる。
Figure JPOXMLDOC01-appb-T000002
 
  なお、上記表2における「断面におけるテーパー角度(°)」とは、図15~23のそれぞれにおけるポリイミド製樹脂板に形成された開口部の側壁と底面とのなす角をいう。
  なお、ポリイミド製樹脂板に形成された開口部の側壁の形状が上に凸の弧状のような曲線の場合にはその接線と底面とのなす角をいう。
  図15~23の断面写真および上記表2からも明かなように、実施例1~9のレーザー用マスクによれば、レーザー用マスクのタイプ、つまり減衰領域における貫通溝や貫通孔の位置、大きさ、これらに起因するレーザーの透過率を任意に設計可能であり、当該設計に応じて、開口部の回りに種々の形状の薄肉部を形成することが可能となる。
  例えば、図15、16、20および図23に示すように、薄肉部の断面形状を上に凸の弧にすることも可能である。薄肉部をこのような形状とすることにより、当該薄肉部の耐久性を向上することができ、当該薄肉部の欠けや変形を防止することが可能となる。
  一方で、図17~19に示すように、薄肉部の断面形状を下に凸の弧から直線に近い形状とすることも可能である。薄肉部をこのような形状とすることにより、いわゆるシャドウの影響を低く抑えることが可能となる。
  また一方で、図21や22に示すように、薄肉部の断面形状を階段状にすることも可能である。
 10…金属マスク
 15、16…スリット
 20…樹脂マスク
 25…開口部
 26…薄肉部
 30…樹脂板
 40…樹脂板付き金属マスク
 50、60…フレーム
 70…レーザー用マスク
 71…開口領域
 72…減衰領域
 74…貫通溝
 75…貫通孔
 100…蒸着マスク
 

Claims (7)

  1.   スリットが設けられた金属マスクと樹脂板とが積層された樹脂板付き金属マスクを準備する工程と、
      前記金属マスク側からレーザーを照射し、前記樹脂板に蒸着作製するパターンに対応した開口部を形成する工程と、を含み、
      前記開口部を形成する工程においては、
      前記開口部に対応する開口領域と、
      当該開口領域の周囲に位置し、照射されるレーザーのエネルギーを減衰させる減衰領域と、が設けられたレーザー用マスクを用いることで、
      前記開口領域を通過するレーザーにより、樹脂板に対して蒸着作製するパターンに対応した開口部を形成するとともに、前記減衰領域を通過するレーザーにより、前記樹脂板の開口部の周囲に薄肉部を形成する、
     ことを特徴とする蒸着マスクの製造方法。
  2.   前記開口部を形成する工程において用いられるレーザー用マスクの減衰領域におけるレーザーの透過率が50%以下であることを特徴とする請求項1に記載の蒸着マスクの製造方法。
  3.   スリットが設けられた金属マスクと、蒸着作製するパターンに対応した開口部が設けられた樹脂マスクとが積層されてなる蒸着マスクを製造するための蒸着マスク製造装置であって、
      当該蒸着マスク製造装置は、
      スリットが設けられた金属マスクと樹脂板とが積層された樹脂板付き金属マスクに対して、当該金属マスク側からレーザーを照射し、前記樹脂板に蒸着作製するパターンに対応した開口部を形成する開口部形成機を含み、
      当該開口部形成機においては、
      前記開口部に対応する開口領域と、当該開口領域の周囲に位置し、照射されるレーザーのエネルギーを減衰させる減衰領域と、が設けられたレーザー用マスクが用いられ、
      前記開口領域を通過するレーザーにより、樹脂板に対して蒸着作製するパターンに対応した開口部が形成されるとともに、前記減衰領域を通過するレーザーにより、前記樹脂板の開口部の周囲に薄肉部が形成される、
     ことを特徴とする蒸着マスク製造装置。
  4.   前記開口部形成機において用いられるレーザー用マスクの減衰領域におけるレーザーの透過率が50%以下であることを特徴とする請求項3に記載の蒸着マスク製造装置。
  5.   スリットが設けられた金属マスクと、蒸着作製するパターンに対応した開口部が設けられた樹脂マスクと、を含む蒸着マスクを製造するにあたり、前記樹脂マスクの開口部をレーザーによって形成する際に用いられるレーザー用マスクであって、
      当該レーザー用マスクは、
      前記開口部に対応する開口領域と、
      当該開口領域の周囲に位置し、照射されるレーザーのエネルギーを減衰させる減衰領域と、
      を含むことを特徴とするレーザー用マスク。
  6.   前記減衰領域におけるレーザーの透過率が50%以下であることを特徴とする請求項5に記載のレーザー用マスク。
  7.   有機半導体素子の製造方法であって、
      蒸着マスクを用いて蒸着対象物に蒸着パターンを形成する蒸着パターン形成工程を含み、
      当該蒸着パターン形成工程においては、前記請求項1に記載の蒸着マスクの製造方法によって製造された蒸着マスクが用いられることを特徴とする有機半導体素子の製造方法。
     
PCT/JP2016/053145 2015-02-03 2016-02-03 蒸着マスクの製造方法、蒸着マスク製造装置、レーザー用マスクおよび有機半導体素子の製造方法 WO2016125815A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202010076403.XA CN111172496B (zh) 2015-02-03 2016-02-03 激光用掩模
CN201680006194.3A CN107109622B (zh) 2015-02-03 2016-02-03 蒸镀掩模的制造方法、蒸镀掩模制造装置、激光用掩模及有机半导体元件的制造方法
KR1020197033389A KR102387728B1 (ko) 2015-02-03 2016-02-03 증착 마스크의 제조 방법, 증착 마스크 제조 장치, 레이저용 마스크 및 유기 반도체 소자의 제조 방법
KR1020177019158A KR102045933B1 (ko) 2015-02-03 2016-02-03 증착 마스크의 제조 방법, 증착 마스크 제조 장치, 레이저용 마스크 및 유기 반도체 소자의 제조 방법
US15/546,710 US20180053894A1 (en) 2015-02-03 2016-02-03 Method for producing vapor deposition mask, vapor deposition mask producing apparatus, laser mask and method for producing organic semiconductor element
US17/166,370 US20210159414A1 (en) 2015-02-03 2021-02-03 Method for producing vapor deposition mask, vapor deposition mask producing apparatus, laser mask and method for producing organic semiconductor element
US17/930,085 US20230006139A1 (en) 2015-02-03 2022-09-07 Method for producing vapor deposition mask, vapor deposition mask producing apparatus, laser mask and method for producing organic semiconductor element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-019665 2015-02-03
JP2015019665 2015-02-03
JP2016018161A JP5994952B2 (ja) 2015-02-03 2016-02-02 蒸着マスクの製造方法、蒸着マスク製造装置、レーザー用マスクおよび有機半導体素子の製造方法
JP2016-018161 2016-02-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/546,710 A-371-Of-International US20180053894A1 (en) 2015-02-03 2016-02-03 Method for producing vapor deposition mask, vapor deposition mask producing apparatus, laser mask and method for producing organic semiconductor element
US17/166,370 Division US20210159414A1 (en) 2015-02-03 2021-02-03 Method for producing vapor deposition mask, vapor deposition mask producing apparatus, laser mask and method for producing organic semiconductor element

Publications (1)

Publication Number Publication Date
WO2016125815A1 true WO2016125815A1 (ja) 2016-08-11

Family

ID=56564155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053145 WO2016125815A1 (ja) 2015-02-03 2016-02-03 蒸着マスクの製造方法、蒸着マスク製造装置、レーザー用マスクおよび有機半導体素子の製造方法

Country Status (5)

Country Link
US (1) US20230006139A1 (ja)
KR (1) KR102387728B1 (ja)
CN (1) CN111172496B (ja)
TW (1) TWI756930B (ja)
WO (1) WO2016125815A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788326A (zh) * 2018-03-05 2020-10-16 堺显示器制品株式会社 蒸镀掩膜、其制造方法以及有机el显示装置的制造方法
TWI749079B (zh) * 2016-10-06 2021-12-11 日商大日本印刷股份有限公司 蒸鍍遮罩之製造方法、有機半導體元件之製造方法、及有機電致發光顯示器之製造方法
TWI772328B (zh) * 2016-09-30 2022-08-01 日商大日本印刷股份有限公司 蒸鍍罩、附有框架之蒸鍍罩、蒸鍍罩準備體、蒸鍍圖案形成方法、有機半導體元件之製造方法、有機電激發光顯示器之製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022163441A (ja) * 2021-04-14 2022-10-26 大船企業日本株式会社 プリント基板におけるレーザー加工による切り抜き部あるいは切り欠き部の形成方法
CN113299859B (zh) * 2021-05-24 2022-08-26 合肥维信诺科技有限公司 显示面板、显示面板制备方法及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356393A (ja) * 1991-05-31 1992-12-10 Hitachi Ltd レーザ加工光学系及びレーザ加工方法
JP2012035294A (ja) * 2010-08-05 2012-02-23 Dainippon Printing Co Ltd テーパ穴形成装置、テーパ穴形成方法、光変調手段および変調マスク
JP2013165058A (ja) * 2012-01-12 2013-08-22 Dainippon Printing Co Ltd 蒸着マスクの製造方法、及び有機半導体素子の製造方法
JP2014065930A (ja) * 2012-09-24 2014-04-17 Dainippon Printing Co Ltd 蒸着マスク材、及び蒸着マスク材の固定方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5440913B2 (ja) * 2009-01-23 2014-03-12 大日本印刷株式会社 テーパ穴形成装置、およびテーパ穴形成装置で用いられる振幅変調マスクまたは位相変調マスク
JP2013144613A (ja) * 2010-04-20 2013-07-25 Asahi Glass Co Ltd 半導体デバイス貫通電極形成用のガラス基板の製造方法
KR101346121B1 (ko) * 2010-12-14 2013-12-31 주식회사 피케이엘 하프톤 패턴 및 광근접보정 패턴을 포함하는 포토 마스크 및 그 제조 방법
WO2013102220A2 (en) * 2011-12-30 2013-07-04 Scrutiny, Inc. Frame (forced recuperation, aggregation and movement of exergy)
TW201422056A (zh) * 2012-07-20 2014-06-01 Hitachi High Tech Corp 雷射轉印方法及使用彼之雷射轉印設備
GB201301543D0 (en) * 2013-01-29 2013-03-13 Univ Aston Sensor
JP6357312B2 (ja) * 2013-12-20 2018-07-11 株式会社ブイ・テクノロジー 成膜マスクの製造方法及び成膜マスク

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356393A (ja) * 1991-05-31 1992-12-10 Hitachi Ltd レーザ加工光学系及びレーザ加工方法
JP2012035294A (ja) * 2010-08-05 2012-02-23 Dainippon Printing Co Ltd テーパ穴形成装置、テーパ穴形成方法、光変調手段および変調マスク
JP2013165058A (ja) * 2012-01-12 2013-08-22 Dainippon Printing Co Ltd 蒸着マスクの製造方法、及び有機半導体素子の製造方法
JP2014065930A (ja) * 2012-09-24 2014-04-17 Dainippon Printing Co Ltd 蒸着マスク材、及び蒸着マスク材の固定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI772328B (zh) * 2016-09-30 2022-08-01 日商大日本印刷股份有限公司 蒸鍍罩、附有框架之蒸鍍罩、蒸鍍罩準備體、蒸鍍圖案形成方法、有機半導體元件之製造方法、有機電激發光顯示器之製造方法
TWI749079B (zh) * 2016-10-06 2021-12-11 日商大日本印刷股份有限公司 蒸鍍遮罩之製造方法、有機半導體元件之製造方法、及有機電致發光顯示器之製造方法
CN111788326A (zh) * 2018-03-05 2020-10-16 堺显示器制品株式会社 蒸镀掩膜、其制造方法以及有机el显示装置的制造方法

Also Published As

Publication number Publication date
CN111172496A (zh) 2020-05-19
US20230006139A1 (en) 2023-01-05
TWI756930B (zh) 2022-03-01
TW202113471A (zh) 2021-04-01
KR102387728B1 (ko) 2022-04-19
KR20190130056A (ko) 2019-11-20
CN111172496B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
JP5994952B2 (ja) 蒸着マスクの製造方法、蒸着マスク製造装置、レーザー用マスクおよび有機半導体素子の製造方法
WO2016125815A1 (ja) 蒸着マスクの製造方法、蒸着マスク製造装置、レーザー用マスクおよび有機半導体素子の製造方法
TWI661071B (zh) 蒸鍍遮罩、蒸鍍遮罩準備體、蒸鍍遮罩之製造方法、圖案之形成方法、及有機半導體元件之製造方法
TWI766381B (zh) 蒸鍍遮罩、附有框架之蒸鍍遮罩、有機半導體元件之製造方法、蒸鍍遮罩之製造方法及圖案之形成方法
WO2013105642A1 (ja) 蒸着マスク、蒸着マスク装置の製造方法、及び有機半導体素子の製造方法
CN104755648B (zh) 成膜掩膜
JP6424521B2 (ja) 蒸着マスク、フレーム付き蒸着マスク、及び有機半導体素子の製造方法
JP6326885B2 (ja) 蒸着マスク、蒸着マスク準備体、及び有機半導体素子の製造方法
TW201816146A (zh) 蒸鍍用金屬遮罩、蒸鍍用金屬遮罩的製造方法、及顯示裝置的製造方法
TW201533266A (zh) 成膜遮罩之製造方法及成膜遮罩
JP6597863B2 (ja) 蒸着マスク、フレーム付き蒸着マスク、有機半導体素子の製造方法、及び蒸着マスクの製造方法
JP6347112B2 (ja) 蒸着マスク、蒸着マスク準備体、蒸着マスクの製造方法、パターンの製造方法、フレーム付き蒸着マスク、及び有機半導体素子の製造方法
JP6521003B2 (ja) 蒸着マスク、蒸着マスクの製造方法、及び有機半導体素子の製造方法
JP6645534B2 (ja) フレーム付き蒸着マスク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177019158

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15546710

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746646

Country of ref document: EP

Kind code of ref document: A1