WO2016125585A1 - Acrylic acid ester derivative, mixture, polymer compound, and photoresist composition - Google Patents
Acrylic acid ester derivative, mixture, polymer compound, and photoresist composition Download PDFInfo
- Publication number
- WO2016125585A1 WO2016125585A1 PCT/JP2016/051585 JP2016051585W WO2016125585A1 WO 2016125585 A1 WO2016125585 A1 WO 2016125585A1 JP 2016051585 W JP2016051585 W JP 2016051585W WO 2016125585 A1 WO2016125585 A1 WO 2016125585A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carbon atoms
- general formula
- hydrogen atom
- alkyl group
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/10—Esters
- C08F20/38—Esters containing sulfur
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
Definitions
- the present invention relates to an acrylate derivative, a mixture, a polymer compound and a photoresist composition.
- a chemically amplified resist containing a base material component whose solubility in an alkaline developer is changed by the action of an acid and an acid generator that generates an acid upon exposure is used.
- a base component of the chemically amplified resist a resin (hereinafter referred to as a base resin) is mainly used.
- a positive chemically amplified resist contains, as a base resin, a resin whose solubility in an alkaline developer is increased by the action of an acid. When a photoresist pattern is formed, an acid is generated from an acid generator by exposure. The solubility of the base resin in an alkaline developer is increased by the action of the acid (see, for example, Patent Document 1).
- a base resin that contains a resin soluble in an alkali developer (alkali-soluble resin) and further contains a crosslinking agent is generally used.
- the base resin when an acid is generated from an acid generator by exposure at the time of forming a photoresist pattern, the base resin reacts with the crosslinking agent by the action of the acid, and the solubility of the base resin in an alkaline developer is lowered.
- a resin having a structural unit derived from (meth) acrylic acid ester in the main chain is excellent in transparency near a wavelength of 193 nm. Resin) is mainly used.
- a polymer compound for a photoresist composition a polymer compound formed from a structural unit having a norbornane lactone skeleton or a norbornane sultone skeleton through a linking group from an acryloyloxy group has also been proposed (Patent Literature). 2 and 3).
- an object of the present invention is to provide a photoresist composition that can improve the LWR and form a high-resolution photoresist pattern, and to provide a polymer compound that can produce the photoresist composition.
- Another object of the present invention is to provide an acrylate derivative and a mixture capable of producing the polymer compound.
- a photoresist composition containing a polymer compound having a structural unit derived from an acrylate derivative having a specific structure or a mixture thereof has improved LWR and high resolution. It has been found that a photoresist pattern is formed.
- R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
- R 2 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms.
- X 1 represents —S ( ⁇ O) — or —S ( ⁇ O) 2 —
- X 2 represents —O—, —S ( ⁇ O) — or —S ( ⁇ O) 2 —.
- U 1 and U 2 each independently represent a single bond or an alkylene group selected from the group consisting of a methylene group and an ethylene group, and the alkylene group has an alkyl group having 1 to 10 carbon atoms and a carbon number It may be substituted with at least one substituent selected from the group consisting of 3 to 10 cycloalkyl groups.
- U 3 represents an alkylene group selected from the group consisting of a methylene group, an ethylene group, a trimethylene group and a tetramethylene group, or a cycloalkylene group having 3 to 10 carbon atoms, and the alkylene group and the cycloalkylene group have It may be substituted with at least one substituent selected from the group consisting of 1 to 10 alkyl groups and cycloalkyl groups having 3 to 10 carbon atoms.
- a 1 represents a single bond or a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms.
- a 2 represents a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, and the alicyclic hydrocarbon group is an alkyl group having 1 to 10 carbon atoms. May be substituted.
- k represents an integer of 0-2.
- R 1 , R 2 , X 1 , X 2 , A 2 and k are as described in [1] above.
- R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms.
- R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- z represents 0 or 1;
- R 1 , R 2 , X 1 , X 2 , A 2 and k are as described in [1] above.
- R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms.
- R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- z represents 0 or 1;
- R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms.
- R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- z represents 0 or 1;
- the mixing ratio [(2) :( 3)] of the acrylic ester derivative represented by the general formula (2) and the acrylic ester derivative represented by the general formula (3) is 50: The mixture of [8] above, which is 50 to 95: 5.
- X 1 is —S ( ⁇ O) 2 — and X 2 is —O—. blend.
- k is 0 in both of the general formulas (2) and (3).
- a photoresist composition comprising a photoacid generator, a solvent, and a polymer compound of any one of the above [12] to [14].
- the photoresist composition containing a polymer compound having a structural unit derived from the acrylate derivative of the present invention or a mixture thereof, LWR is improved and a high-resolution photoresist pattern is formed.
- the acrylic ester derivative of the present invention is represented by the following general formula (1).
- the acrylic ester derivative represented by the general formula (1) is referred to as an acrylic ester derivative (1).
- the acrylate derivative (1) has a ring structure containing a specific polar group at the molecular end. If a photoresist composition using a polymer compound obtained by using the acrylate derivative (1) (that is, a polymer compound having a structural unit derived from the acrylate derivative (1)), the LWR is An improved and high resolution photoresist pattern is formed.
- R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
- R 2 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms.
- X 1 represents —S ( ⁇ O) — or —S ( ⁇ O) 2 —
- X 2 represents —O—, —S ( ⁇ O) — or —S ( ⁇ O) 2 —.
- U 1 and U 2 each independently represent a single bond or an alkylene group selected from the group consisting of a methylene group and an ethylene group, and the alkylene group has an alkyl group having 1 to 10 carbon atoms and a carbon number It may be substituted with at least one substituent selected from the group consisting of 3 to 10 cycloalkyl groups.
- U 3 represents an alkylene group selected from the group consisting of a methylene group, an ethylene group, a trimethylene group and a tetramethylene group, or a cycloalkylene group having 3 to 10 carbon atoms, and the alkylene group and the cycloalkylene group have It may be substituted with at least one substituent selected from the group consisting of 1 to 10 alkyl groups and cycloalkyl groups having 3 to 10 carbon atoms.
- a 1 represents a single bond or a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms.
- a 2 represents a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, and the alicyclic hydrocarbon group is an alkyl group having 1 to 10 carbon atoms. May be substituted.
- k represents an integer of 0-2.
- R 1 is preferably a hydrogen atom or a methyl group.
- alkyl group having 1 to 10 carbon atoms represented by R 2 include, for example, a methyl group, an ethyl group, and various propyl groups (“various” means linear and all branched chains, the same shall apply hereinafter). ), Various butyl groups, various hexyl groups, various octyl groups, various decyl groups, and the like.
- the alkyl group is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
- Examples of the cycloalkyl group having 3 to 10 carbon atoms represented by R 2 include a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and a cyclodecyl group.
- the cycloalkyl group is preferably a cycloalkyl group having 4 to 8 carbon atoms, more preferably a cycloalkyl group having 4 to 6 carbon atoms.
- R 2 is preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and further preferably a hydrogen atom from the viewpoint of resolution and LWR. .
- X 1 is preferably —S ( ⁇ O) 2 — from the viewpoint of resolution and LWR.
- X 2 is preferably —O— or —S ( ⁇ O) 2 — from the viewpoint of resolution and LWR.
- the alkylene group represented by U 1 and U 2 is substituted with at least one substituent selected from the group consisting of an alkyl group having 1 to 10 carbon atoms and a cycloalkyl group having 3 to 10 carbon atoms. May be.
- substituents include the same as the alkyl group and cycloalkyl group represented by R 2 , and the preferred ones are also the same.
- U 1 is preferably an alkylene group selected from the group consisting of a methylene group and an ethylene group, and more preferably a methylene group, from the viewpoints of resolution and LWR.
- U 2 is preferably a single bond or a methylene group, more preferably a single bond, and more preferably a methylene group.
- Examples of the cycloalkylene group having 3 to 10 carbon atoms represented by U 3 include 1,2-cyclobutylene group, 1,2-cyclopentylene group, 1,2-cyclohexylene group, 1,2-cyclooctylene. Group, 1,2-cyclodecylene group and the like.
- the alkylene group and cycloalkylene group represented by U 3 are substituted with at least one substituent selected from the group consisting of an alkyl group having 1 to 10 carbon atoms and a cycloalkyl group having 3 to 10 carbon atoms. May be.
- alkyl group and cycloalkyl group as the substituent include the same as the alkyl group and cycloalkyl group represented by R 2 , and the preferred ones are also the same.
- U 3 is preferably an alkylene group selected from the group consisting of a methylene group, an ethylene group, a trimethylene group and a tetramethylene group from the viewpoint of resolution and LWR, and an alkylene group selected from the group consisting of a methylene group and an ethylene group. More preferred is an ethylene group. Further, these are preferably substituted with an alkyl group having 1 to 10 carbon atoms, more preferably substituted with a methyl group, but these are also preferably unsubstituted.
- Examples of the chain aliphatic hydrocarbon group having 1 to 10 carbon atoms represented by A 1 and A 2 include a methylene group, an ethylene group, a 1-methylethylene group, a trimethylene group, and an isopropylidene group.
- the chain aliphatic hydrocarbon group may be linear or branched.
- the chain aliphatic hydrocarbon group is preferably a chain aliphatic hydrocarbon group having 1 to 5 carbon atoms, more preferably a chain aliphatic hydrocarbon group having 1 to 3 carbon atoms, and still more preferably a methylene group.
- Examples of the alicyclic hydrocarbon group having 3 to 10 carbon atoms represented by A 2 include a cyclobutylidene group, 1,2-cyclobutylene group, cyclopentylidene group, 1,2-cyclopentylene group, cyclohexylene, and the like. Den group, 1,2-cyclohexylene group, 1,4-cyclohexylene group and the like.
- the alicyclic hydrocarbon group is preferably an alicyclic hydrocarbon group having 4 to 6 carbon atoms.
- the alicyclic hydrocarbon group may be substituted with an alkyl group having 1 to 10 carbon atoms, and examples of the alkyl group as the substituent include the same alkyl groups represented by R 2 above. The preferred ones are the same.
- a 1 is preferably a single bond, a methylene group, or a 1-methylethylene group, more preferably a single bond or a methylene group, still more preferably a single bond, and even more preferably a methylene group.
- K represents an integer of 0 to 2, preferably 0 or 1, and more preferably 0.
- the term “single bond” means that they are directly bonded without any group.
- the acrylate derivative represented by the general formula (1) Is represented by the following general formula (1 ′). (In the general formula (1 ′), R 1 , R 2 , X 1 , X 2 , U 1 , U 2 , U 3 , A 2 and k are the same as those in the general formula (1). .)
- acrylic ester derivatives (1) of the present invention from the viewpoint of resolution and LWR, an acrylic ester derivative represented by the following general formula (2) or (3) is more preferable, and the following general formula (2-1) ) Or (3-1) is more preferred.
- R 1 , R 2 , X 1 , X 2 , A 2 and k are the same as those in the general formula (1).
- R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms.
- R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- z represents 0 or 1;
- Preferable ones of R 1 , R 2 , X 1 , X 2 , A 2 and k in the general formula (2) are the same as those described in the general formula (1).
- R 3 to R 10 are each preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and further preferably a hydrogen atom.
- R 11 and R 12 include a methyl group, an ethyl group, and various propyl groups. Among these, an alkyl group having 1 or 2 carbon atoms is preferable, and a methyl group is more preferable.
- R 11 and R 12 are preferably a hydrogen atom. z is preferably 0.
- R 1 , R 2 , X 1 , X 2 , A 2 and k are the same as those in the general formula (1).
- R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms.
- R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- z represents 0 or 1;
- Preferable ones of R 1 , R 2 , X 1 , X 2 , A 2 and k in the general formula (3) are the same as those described in the general formula (1).
- R 3 to R 10 are each preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and further preferably a hydrogen atom.
- R 11 and R 12 include a methyl group, an ethyl group, and various propyl groups. Among these, an alkyl group having 1 or 2 carbon atoms is preferable, and a methyl group is more preferable.
- R 11 and R 12 are preferably a hydrogen atom. z is preferably 0.
- R 1 , R 2 , X 1 , X 2 , A 2 and k are the same as those in general formula (1).
- Preferable ones of R 1 , R 2 , X 1 , X 2 , A 2 and k in the general formula (2-1) are the same as those described in the general formula (1).
- R 1 , R 2 , X 1 , X 2 , A 2 and k are the same as those in general formula (1).
- Preferable R 1 , R 2 , X 1 , X 2 , A 2 and k in the general formula (3-1) are the same as those described in the general formula (1).
- the present invention also provides a mixture obtained by mixing two or more of the acrylate derivative (1).
- the mixture includes an acrylic ester derivative represented by the general formula (2) [hereinafter referred to as an acrylic ester derivative (2). ] And an acrylate derivative represented by the general formula (3) [hereinafter referred to as an acrylate derivative (3). And a mixture thereof is preferred.
- preferred groups are as described above.
- a mixture in which X 1 is —S ( ⁇ O) 2 — and X 2 is —O— is preferable.
- the mixture whose k is 0 is preferable in both the acrylic ester derivative (2) and the acrylic ester derivative (3).
- the mixing ratio of the acrylate derivative (2) and the acrylate derivative (3) [acrylate derivative (2): acrylate derivative (3)] is preferably a molar ratio from the viewpoint of resolution and LWR. Is 50:50 to 95: 5, more preferably 60:40 to 95: 5, still more preferably 60:40 to 90:10, and particularly preferably 70:30 to 90:10. If the photoresist composition uses a polymer compound obtained by using the mixture (that is, a polymer compound having a structural unit derived from the mixture), the LWR is improved and a high-resolution photoresist pattern is formed. Is done.
- the “structural unit derived from the mixture” refers to all the structural units derived from the acrylate derivative of the present invention contained in the mixture.
- R 1 , R 2 , A 1 , A 2 , U 1 , U 2 , U 3 , X 1 , X 2 and k are the same as those in the general formula (1). The preferred ones are the same.
- X 5 represents —O— or —S—.
- X 5 in the alcohol derivative (a) is —O—
- X 2 in the alcohol derivative (b) is —O—.
- X 5 in the alcohol derivative (a) is —S—
- X 2 in the alcohol derivative (b) is —S ( ⁇ O) — or —S ( ⁇ O) 2 —.
- Y 1 represents a halogen atom, a hydroxyl group, or R 13 —C ( ⁇ O) —O—.
- the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. From the viewpoint of ease of handling, a chlorine atom is preferable.
- R 13 represents an alkyl group having 1 to 10 (preferably 1 to 5) carbon atoms, a cycloalkyl group having 3 to 10 (preferably 4 to 6) carbon atoms, or an aryl having 6 to 12 (preferably 6) carbon atoms.
- R 13 is preferably an alkyl group having 1 to 10 carbon atoms, a vinyl group, a 1-methylvinyl group, a methoxy group or an ethoxy group, and a t-butyl group, a vinyl group, a 1-methylvinyl group, a methoxy group or an ethoxy group. Is more preferable.
- Reaction (i) is a reaction in which the alcohol derivative (a) is oxidized with an oxidizing agent, and the alcohol derivative (b) is obtained.
- the oxidizing agent used in the reaction (i) include peracids and peroxides.
- the peracid include organic peracids such as performic acid, peracetic acid, trifluoroperacetic acid, perbenzoic acid, m-chloroperbenzoic acid, and percarboxylic acids such as monoperoxyphthalic acid; inorganics such as permanganic acid Peracids; and their salts.
- the salt include alkali metal salts such as lithium salt, sodium salt and potassium salt.
- the organic peracid may use an equilibrium peracid such as equilibrium formic acid or equilibrium peracetic acid.
- an acid corresponding to a desired peracid for example, formic acid corresponding to performic acid, acetic acid corresponding to peracetic acid
- hydrogen peroxide is combined and reacted. What is necessary is just to add to a system.
- a desired organic peracid for example, performic acid, peracetic acid, etc.
- a strong acid such as sulfuric acid may be used as a catalyst.
- peroxide examples include hydrogen peroxide, peroxide, hydroperoside, and peroxo acid and its salt.
- Hydrogen peroxide may be used as it is without being diluted. However, from the viewpoint of ease of handling, it is diluted with a suitable solvent (for example, water) and is diluted with, for example, 20 to 65% by mass of hydrogen peroxide, preferably 20 It can also be used as ⁇ 40 mass% hydrogen peroxide solution.
- the oxidizing agent is preferably organic peracid, more preferably equilibrium peracid, and still more preferably formic acid obtained as equilibrium peracid.
- the amount of the oxidizing agent used is not particularly limited, but from the viewpoint of economy and ease of post-treatment, it is preferably 0.5 to 10 moles, more preferably 0.8 moles per mole of the alcohol derivative (a). ⁇ 4 moles.
- Reaction (i) can be carried out in the presence or absence of a solvent, but is preferably carried out in the presence of a solvent.
- the solvent is not particularly limited as long as it does not inhibit the reaction.
- water aliphatic hydrocarbons such as hexane, heptane, and octane; aromatic hydrocarbons such as toluene, xylene, and cymene; halogens such as methylene chloride and dichloroethane.
- Hydrocarbons ethers such as tetrahydrofuran and diisopropyl ether; carboxylic acids such as formic acid and acetic acid.
- a solvent may be used individually by 1 type and may use 2 or more types together.
- the amount of the solvent used is preferably 0.1 to 20 with respect to 1 part by mass of the alcohol derivative (a) from the viewpoint of economy and ease of post-treatment. Part by mass, more preferably 0.3 to 10 parts by mass.
- a solvent contains water from a viewpoint of reaction rate and a yield, and it is more preferable to use water alone as a solvent.
- the reaction temperature in the reaction (i) is not particularly limited, and can be appropriately determined in consideration of a desired reaction rate, reaction selectivity, type of oxidizing agent, etc., preferably ⁇ 40 to 100 ° C., more preferably The temperature is 10 to 80 ° C, more preferably 15 to 50 ° C.
- an acid corresponding to the peracid for example, formic acid corresponding to performic acid, acetic acid corresponding to peracetic acid
- an alcohol derivative in the presence or absence of a solvent
- a method of adding (preferably dropping) hydrogen peroxide into the mixed solution containing a) is preferable.
- the addition time (dropping time) is not particularly limited, and may be appropriately adjusted within a range of, for example, 30 minutes to 24 hours.
- Reaction (i) can be carried out by any method such as a batch method, a semi-batch method, and a continuous method.
- the reducing agent is not particularly limited, and examples thereof include sulfites such as sodium sulfite and sodium bisulfite; sulfides such as dimethyl sulfide and diphenyl sulfide.
- the amount of the reducing agent used for quenching the oxidant remaining without reacting is not particularly limited, but is preferably 1 to 5 equivalents with respect to the oxidant remaining in the reaction system.
- Reaction (ii) is a reaction between the alcohol derivative (b) and the ester derivative (c), and the acrylate derivative (1) is obtained.
- Specific examples of the ester derivative (c) used in the reaction (ii) include carboxylic acid halides such as acrylic acid chloride, methacrylic acid chloride, 2-trifluoromethylacrylic acid chloride; acrylic acid, methacrylic acid, 2-trifluoro Carboxylic acids such as methyl acrylic acid; acrylic acid anhydride, methacrylic acid anhydride, acrylic acid pivalic acid anhydride, acrylic acid 2,4,6-trichlorobenzoic acid anhydride, methacrylic acid pivalic acid anhydride, methacrylic acid 2, 4,6-trichlorobenzoic anhydride, 2-trifluoromethylacrylic anhydride, 2-trifluoromethylacrylic acid pivalic anhydride, 2-trifluoromethylacrylic acid 2,4,6-trichlorobenzoic anhydride And acid anhydrides.
- Reaction (ii) is preferably carried out in the presence of an acidic compound or a basic compound.
- the acidic compound include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, and hydrofluoric acid; formic acid, acetic acid, trichloroacetic acid, propionic acid, butanoic acid, chloroacetic acid, methanesulfonic acid, p-toluenesulfonic acid, trifluoromethane
- organic acids such as sulfonic acid. Among these, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, and trifluoromethanesulfonic acid are preferable.
- An acidic compound may be used individually by 1 type, and may use 2 or more types together.
- the basic compound include alkali metal hydrides such as sodium hydride and potassium hydride; alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; Alkali metal bicarbonates such as sodium hydrogen and potassium hydrogen carbonate; Tertiary amines such as triethylamine, tributylamine and diazabicyclo [2.2.2] octane; Nitrogen-containing heterocyclic aromatics such as pyridine and 2,6-lutidine Group compounds and the like.
- alkali metal hydrides, alkali metal hydroxides, and tertiary amines are preferred, tertiary amines are more preferred, and triethylamine is even more preferred.
- a basic compound may be used individually by 1 type, and may use 2 or more types together.
- the reaction (ii) is more preferably carried out in the presence of a basic compound.
- the amount of the acidic compound and the basic compound used is preferably from 0.1 to 5 mol, more preferably from 0.1 to 3 mol, from the viewpoints of economy and post-treatment.
- Reaction (ii) can be carried out in the presence or absence of a solvent.
- the solvent is not particularly limited as long as it does not inhibit the reaction.
- aliphatic hydrocarbons such as hexane, heptane, and octane
- aromatic hydrocarbons such as toluene, xylene, and cymene
- halogens such as methylene chloride and dichloroethane.
- Hydrocarbons such as tetrahydrofuran and diisopropyl ether; nitriles such as acetonitrile and benzonitrile; alcohols such as methanol, ethanol, 1-propanol, 2-propanol, t-butanol, s-butanol, and cyclohexanol; dimethyl sulfoxide, dimethyl
- ethers such as tetrahydrofuran and diisopropyl ether
- nitriles such as acetonitrile and benzonitrile
- alcohols such as methanol, ethanol, 1-propanol, 2-propanol, t-butanol, s-butanol, and cyclohexanol
- dimethyl sulfoxide dimethyl
- Examples include aprotic polar solvents such as formamide. These may be used individually by 1 type and may use 2 or more types together.
- the amount of the solvent used is 0.1 to 30 parts by mass with respect to 1 part by mass of the alcohol derivative (b) from the viewpoint of economy and ease of post-treatment.
- 0.1 to 15 parts by mass is more preferable.
- the reaction temperature in the reaction (ii) varies depending on the type of the alcohol derivative (b), but is preferably ⁇ 50 to 150 ° C., more preferably ⁇ 10 to 100 ° C., and further preferably ⁇ 10 to 50 ° C.
- the reaction pressure is not particularly limited, but is usually preferably 0.01 to 0.1 MPa, more preferably normal pressure.
- an ester derivative (c) is added to a solution containing an alcohol derivative (b) and, if necessary, an acidic compound or a basic compound in the presence or absence of a solvent ( The method of preferably dropping) is preferred.
- the addition time is not particularly limited, and may be appropriately adjusted within a range of, for example, 30 minutes to 24 hours.
- Reaction (ii) can be carried out by any method such as a batch method, a semi-batch method, and a continuous method.
- Reaction (ii) can be stopped by adding at least one selected from the group consisting of water and alcohol, if necessary, and it is preferable to do so.
- the alcohol include methanol, ethanol, n-propanol, isopropanol and the like.
- water include ion-exchanged water, distilled water, and RO (Reverse Osmosis) water, but are not particularly limited thereto.
- the amount used remains when an excess of the ester derivative (c) is used relative to the alcohol derivative (b). It is preferable to use 1 mol or more per 1 mol of the ester derivative (c). By completely decomposing the ester derivative (c) remaining in the reaction system in this manner, the production of by-products can be suppressed.
- the acrylate derivative (1) obtained by the reaction (ii) is preferably separated and purified by a conventional method as necessary.
- the reaction mixture can be washed with water, concentrated, and separated and purified by a method used for separation and purification of ordinary organic compounds such as distillation, silica gel column chromatography, and recrystallization.
- a metal such as nitrotriacetic acid, ethylenediaminetetraacetic acid or other chelating agent treatment, or zeta plus (trade name; manufactured by 3M Japan Co., Ltd.) or protego (product name: manufactured by Nihon Microlith Co., Ltd.) It is also possible to reduce the metal content in the obtained acrylic ester derivative (1) by the removal filter treatment.
- the acrylic ester derivative (1) obtained by the above also becomes a 2 or more types of mixture. If necessary, they may be used for the production of a polymer compound described later after separation, or may be used for the production of a polymer compound described later in a mixture.
- a sulfide derivative (f) To obtain a sulfide derivative (f), and then cyclize the sulfide derivative (f) [hereinafter, this reaction is referred to as a raw material synthesis reaction (II).
- the alcohol derivative (a) represented by the following alcohol derivative (g) and alcohol derivative (h) can be manufactured by this.
- R 2 to R 12 and z are the same as those in the general formulas (2) and (3), and preferred ones are also the same.
- X 3 represents a sulfur atom or an oxygen atom.
- X 4 is a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. From the viewpoint of ease of handling, a chlorine atom is preferable.
- X 5 represents —O— or —S—.
- the raw material synthesis reaction (I) is a reaction between the mercaptan derivative (d) and the epoxide derivative (e), and the sulfide derivative (f) is obtained.
- the mercaptan derivative (d) include 2-mercaptoethanol, 3-mercapto-1-propanol, 3-mercapto-2-propanol, 3-mercapto-2-butanol, 4-mercapto-2-methyl-1-ol. 1,2-ethanedithiol, 1,3-propanedithiol and the like.
- 2-mercaptoethanol is preferable from the viewpoint of industrial availability and performance of the finally obtained photoresist composition (for example, dissolution rate in a developing solution and resolution).
- the epoxide derivative (e) include 2- (chloromethyl) oxirane (also known as epichlorohydrin), 2- (bromomethyl) oxirane, 2- (chloromethyl) -2-chlorooxirane, and the like.
- 2- (chloromethyl) oxirane also known as epichlorohydrin
- 2- (chloromethyl) oxirane is preferable from the viewpoint of industrial availability.
- the amount of the epoxide derivative (e) used is not particularly limited, but from the viewpoint of economy and ease of post-treatment, it is preferably 0.8 to 5 moles per mole of the mercaptan derivative (d), 0.8 ⁇ 3 mol is more preferred.
- the raw material synthesis reaction (I) is preferably carried out in the presence of an acidic compound or a basic compound.
- the acidic compound include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, and hydrofluoric acid; formic acid, acetic acid, trichloroacetic acid, propionic acid, butanoic acid, chloroacetic acid, methanesulfonic acid, p-toluenesulfonic acid, trifluoromethane
- examples include organic acids such as sulfonic acid. Among these, hydrochloric acid and sulfuric acid are preferable.
- An acidic compound may be used individually by 1 type, and may use 2 or more types together.
- Examples of the basic compound include alkali metal hydrides such as sodium hydride and potassium hydride; alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; Alkali metal bicarbonates such as sodium hydrogen and potassium hydrogen carbonate; Tertiary amines such as triethylamine, tributylamine and diazabicyclo [2.2.2] octane; Nitrogen-containing heterocyclic aromatics such as pyridine and 2,6-lutidine Group compounds and the like.
- alkali metal hydrides such as sodium hydride and potassium hydride
- alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
- alkali metal carbonates such as sodium carbonate and potassium carbonate
- Alkali metal bicarbonates such as sodium hydrogen and potassium hydrogen carbonate
- Tertiary amines such as triethylamine, tributylamine and diazabicyclo [2.2.2] o
- alkali metal bicarbonates, tertiary amines, and nitrogen-containing heterocyclic aromatic compounds are preferable, nitrogen-containing heterocyclic aromatic compounds are more preferable, and pyridine is more preferable.
- the raw material synthesis reaction (I) is more preferably carried out in the presence of a basic compound.
- the amount of the acidic compound and basic compound used is not particularly limited, but from the viewpoint of economy and ease of post-treatment, 0.01 to 10 mol is preferable with respect to 1 mol of mercaptan derivative (d). More preferred is 01 to 1 mol.
- the raw material synthesis reaction (I) can be carried out in the presence or absence of a solvent.
- the solvent is not particularly limited as long as the reaction is not inhibited.
- the solvent is not particularly limited as long as the reaction is not inhibited.
- water aliphatic hydrocarbons such as hexane, heptane, and octane; aromatic hydrocarbons such as toluene, xylene, and cymene; methylene chloride, dichloroethane, and the like Halogenated hydrocarbons; ethers such as tetrahydrofuran and diisopropyl ether; nitriles such as acetonitrile and benzonitrile; alcohols such as methanol, ethanol, 1-propanol, 2-propanol, t-butanol, s-butanol and cyclohexanol; dimethyl sulfoxide, Examples include aprotic polar solvents such as dimethylform
- water, ether, alcohol, nitrile, and aprotic polar solvent are preferable. These may be used individually by 1 type and may use 2 or more types together.
- the amount of the solvent used is 0.1 to 20 with respect to 1 part by mass of the mercaptan derivative (d) from the viewpoint of economy and ease of post-treatment. Part by mass is preferable, and 0.1 to 10 parts by mass is more preferable.
- the reaction temperature in the raw material synthesis reaction (I) varies depending on the type of mercaptan derivative (d), epoxide derivative (e) and solvent, but is preferably ⁇ 50 to 100 ° C., more preferably ⁇ 10 to 50 ° C., and still more preferably Is 0 to 40 ° C.
- the reaction pressure is not particularly limited, but it is usually preferable to carry out the reaction under normal pressure because it is convenient.
- an epoxide derivative (e) is added to a mixed solution of a mercaptan derivative (d) and an acidic compound or basic compound used as necessary in the presence or absence of a solvent.
- the method of adding preferably dropping
- the addition time is not particularly limited, and may be appropriately adjusted within a range of, for example, 30 minutes to 24 hours.
- the sulfide derivative (f) may be appropriately separated and purified from the reaction mixture containing the sulfide derivative (f) obtained in the raw material synthesis reaction (I), but the next raw material synthesis reaction ( It is also possible to use it as a raw material of II), and it is easier to do so and it is preferable from the viewpoint of production cost.
- the raw material synthesis reaction (II) is a reaction for cyclizing the sulfide derivative (f).
- the raw material synthesis reaction (II) is preferably carried out in the presence of an acidic compound or a basic compound.
- the acidic compound and basic compound the same compounds as the acidic compound and basic compound described in the raw material synthesis reaction (I) can be used.
- Each of the acidic compound and the basic compound may be used alone or in combination of two or more.
- alkali metal hydrides, alkali metal hydroxides, and tertiary amines are preferable, alkali metal hydroxides are more preferable, and sodium hydroxide is more preferable.
- the amount of the acidic compound and basic compound used is not particularly limited, but from the viewpoint of economy and ease of post-treatment, 0.01 to 10 mol is preferable with respect to 1 mol of the sulfide derivative (f). More preferably, 01 to 3 moles.
- the raw material synthesis reaction (II) can be carried out in the presence or absence of a solvent.
- the solvent is not particularly limited as long as the reaction is not inhibited.
- the solvent include the same solvents as described in the raw material synthesis reaction (I). Among these, water, ether, alcohol, nitrile, and aprotic polar solvent are preferable, and water or alcohol is more preferable. These may be used individually by 1 type and may use 2 or more types together.
- the amount of the solvent used is 0.1 to 30 with respect to 1 part by mass of the sulfide derivative (f) from the viewpoint of economy and ease of post-treatment. Part by mass is preferable, and 0.1 to 15 parts by mass is more preferable.
- the reaction temperature in the raw material synthesis reaction (II) varies depending on the type of the sulfide derivative (f) and the solvent, but is preferably ⁇ 50 to 100 ° C., more preferably ⁇ 10 to 70 ° C., still more preferably 15 to 70 ° C. Particularly preferred is 30 to 70 ° C. Moreover, there is no restriction
- a method for carrying out the raw material synthesis reaction (II) a method in which the sulfide derivative (f) is added (preferably dropped) to a mixed solution of an acidic compound or a basic compound and a solvent is preferable. As long as the temperature is not rapidly increased, the addition time (dropping time) is not particularly limited, and may be appropriately adjusted within a range of, for example, 30 minutes to 24 hours.
- Separation and purification of the alcohol derivative (g) and alcohol derivative (h) from the reaction mixture obtained by the raw material synthesis reaction (II) can be performed by a method generally used for separation and purification of organic compounds. For example, after completion of the reaction, it can be separated by adding water to the reaction mixture, extracting with an organic solvent, and concentrating the resulting organic layer. Further, if necessary, the alcohol derivative (g) and the alcohol derivative (h) can be obtained individually or as a mixture by purification by recrystallization, distillation, silica gel column chromatography or the like.
- the polymer obtained by polymerizing the acrylate derivative (1) of the present invention or the mixture of the present invention alone is useful as a polymer compound for a photoresist composition.
- a copolymer obtained by copolymerizing the acrylate derivative (1) of the present invention or the mixture of the present invention and another polymerizable compound is useful as a polymer compound for a photoresist composition.
- the polymer compound of the present invention has a structural unit derived from the acrylate derivative of the present invention.
- the compound of the present invention has a structural unit (a1) represented by the following general formula (a1). (In the formula, R 1 , R 2 , X 1 , X 2 , A 1 , A 2 , U 1 , U 2 , U 3 and k are the same as those in the general formula (1).)
- the polymer compound of the present invention is preferably selected from the group consisting of a structural unit (a2) represented by the following general formula (a2) and a structural unit (a3) represented by the following general formula (a3). Having at least one species. (Wherein R 1 to R 12 , X 1 , X 2 , A 2 , k and z are the same as those in the general formulas (2) and (3)).
- the polymer compound of the present invention is more preferably a structural unit (a2-1) represented by the following general formula (a2-1) and a structural unit (a3-1) represented by the following general formula (a3-1). At least one selected from the group consisting of: (Wherein R 1 , R 2 , X 1 , X 2 , A 2 and k are the same as those in the general formulas (a2) and (a3)).
- the polymer compound of the present invention contains structural units derived from the acrylate derivative of the present invention [for example, structural units (a1), (a2), (a2-1), (a3) and (a3-1)]. From 0 to 100 mol%, from the viewpoint of resolution and LWR, it is preferably 5 to 80 mol%, more preferably 10 to 70 mol%, still more preferably 30 to 70 mol%. As described above, the polymer compound of the present invention may have a structural unit derived from another polymerizable compound that can be copolymerized with the acrylate derivative (1). Specific examples of other polymerizable compounds (hereinafter referred to as copolymerization monomers) that can be copolymerized with the acrylate derivative (1) include compounds represented by the following chemical formulas. However, it is not particularly limited to these.
- R 3a represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a cyclic hydrocarbon group having 3 to 10 carbon atoms
- R 4a represents a polymerizable group-containing group.
- R 5a represents a hydrogen atom or —COOR 6a (R 6a represents an alkyl group having 1 to 3 carbon atoms).
- m represents an integer of 1 to 5.
- Z represents a methylene group, an ethylene group or an oxygen atom.
- Examples of the alkyl group having 1 to 3 carbon atoms represented by R 3a and R 6a in the comonomer include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
- Examples of the cyclic hydrocarbon group having 3 to 10 carbon atoms represented by R 3a include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
- Examples of the polymerizable group in the polymerizable group-containing group represented by R 4a include an acryloyl group, a methacryloyl group, a vinyl group, and a vinylsulfonyl group.
- Examples of the polymerizable group-containing group represented by R 4a include acryloyl group, methacryloyl group, ⁇ -fluoroacryloyl group, trifluoromethacryloyl group, 2- (acryloyloxy) acetyl group, 2- (methacryloyloxy) acetyl group, Examples include 2- (trifluoromethacryloyloxy) acetyl group, vinyl group, vinylsulfonyl group, 2- (vinylsulfonyloxy) acetyl group and the like.
- one arbitrary comonomer can be selected, or two or more can be used in combination.
- the comonomer preferably a comonomer represented by the above general formula (I), (II), (IV), (V) or (IX), more preferably, A copolymer monomer represented by the above general formula (I) or (II), more preferably a copolymer monomer represented by the above general formula (I) and a copolymer monomer represented by the above formula (II). It is combined use with a polymerization monomer.
- the polymer compound of the present invention can be produced by radical polymerization according to a conventional method.
- a method for synthesizing a polymer compound having a small molecular weight distribution includes living radical polymerization.
- a general radical polymerization method includes a radical polymerization initiator, a solvent, and, if necessary, one or more acrylic ester derivatives (1) and, if necessary, one or more of the above-mentioned copolymerization monomers. Accordingly, the polymerization is carried out in the presence of a chain transfer agent.
- radical polymerization there is no restriction
- the usual method used when manufacturing acrylic resin such as solution polymerization method, emulsion polymerization method, suspension polymerization method, block polymerization method, etc. can be used.
- radical polymerization initiator examples include hydroperoxide compounds such as t-butyl hydroperoxide and cumene hydroperoxide; di-t-butyl peroxide, t-butyl- ⁇ -cumyl peroxide, di- ⁇ - Dialkyl peroxide compounds such as cumyl peroxide; diacyl peroxide compounds such as benzoyl peroxide and diisobutyryl peroxide; 2,2′-azobisisobutyronitrile, dimethyl-2,2′-azobisisobutyrate, Examples include azo compounds such as dimethyl azobisisobutyrate.
- the amount of the radical polymerization initiator used can be appropriately selected according to the polymerization conditions such as the acrylic ester derivative of the present invention used in the polymerization reaction, the comonomer, the chain transfer agent, the type and amount of the solvent, and the polymerization temperature.
- the total polymerizable compound [the total amount of the acrylate derivative of the present invention and the comonomer, and so on.
- the amount is usually preferably 0.005 to 0.2 mol, more preferably 0.01 to 0.15 mol per 1 mol.
- the solvent is not particularly limited as long as it does not inhibit the polymerization reaction.
- chain transfer agent examples include thiol compounds such as dodecanethiol, mercaptoethanol, mercaptopropanol, mercaptoacetic acid, and mercaptopropionic acid.
- the amount used is usually preferably 0.005 to 0.2 mol, more preferably 0.01 to 0.15 mol, per 1 mol of all polymerizable compounds.
- the polymerization temperature is usually preferably 40 to 150 ° C., and more preferably 60 to 120 ° C. from the viewpoint of the stability of the produced polymer compound.
- the time for the polymerization reaction varies depending on the polymerization conditions such as the acrylic ester derivative (1), the comonomer, the polymerization initiator, the type and amount of the solvent used, and the temperature of the polymerization reaction. 48 hours, more preferably 1 to 24 hours.
- the polymerization reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon.
- the polymer compound thus obtained can be isolated by ordinary operations such as reprecipitation.
- the isolated polymer compound can be dried by vacuum drying or the like.
- the solvent used in the reprecipitation operation include aliphatic hydrocarbons such as pentane, hexane, and heptane; alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons such as benzene and xylene; methylene chloride, chloroform, chlorobenzene, Halogenated hydrocarbons such as dichlorobenzene; nitrated hydrocarbons such as nitromethane; nitriles such as acetonitrile and benzonitrile; ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran and 1,4-dioxane; ketones such as acetone and methyl ethyl ketone; acetic acid Carboxylic acids such as; esters such as ethy
- the amount of solvent used in the reprecipitation operation varies depending on the type of polymer compound and the type of solvent, but it is usually preferably 0.5 to 100 parts by mass with respect to 1 part by mass of the polymer compound. From the viewpoint of properties, the amount is more preferably 1 to 50 parts by mass.
- the weight average molecular weight (Mw) of the polymer compound is not particularly limited, but is preferably 500 to 50,000, more preferably 1,000 to 30,000, still more preferably 4,000 to 15,000, particularly preferably. When it is 4,000 to 10,000, it is highly useful as a component of a photoresist composition described later.
- the weight average molecular weight is a value in terms of standard polystyrene determined by gel permeation chromatograph (GPC) measurement.
- the molecular weight distribution (Mw / Mn) of the polymer compound is not particularly limited, but is preferably 1.0 to 3.0, more preferably 1.0 to 2.0. It is highly useful as a component. Such Mw and Mn are values in terms of standard polystyrene determined by gel permeation chromatograph (GPC) measurement.
- a photoresist composition is prepared by blending the polymer compound of the present invention, a photoacid generator and a solvent, and, if necessary, a basic compound, a surfactant and other additives.
- a photoacid generator and a solvent
- a basic compound e.g., a surfactant, a surfactant, a surfactant, a surfactant, a surfactant, a surfactant, and other additives.
- photoacid generator known photoacid generators conventionally used for chemically amplified resists can be used without particular limitation.
- the photoacid generator include onium salt photoacid generators such as iodonium salts and sulfonium salts; oxime sulfonate photoacid generators; bisalkyl or bisarylsulfonyldiazomethane photoacid generators; Examples include photoacid generators; iminosulfonate photoacid generators; disulfone photoacid generators. These may be used individually by 1 type and may use 2 or more types together.
- an onium salt photoacid generator is preferable, and the following fluorine-containing onium salt containing a fluorine-containing alkyl sulfonate ion as an anion is preferable from the viewpoint that the strength of the generated acid is strong.
- fluorine-containing onium salt examples include, for example, diphenyliodonium trifluoromethanesulfonate or nonafluorobutanesulfonate; bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate or nonafluorobutanesulfonate; triphenylsulfonium trifluoro L-methanesulfonate, heptafluoropropane sulfonate or nonafluorobutane sulfonate; trifluoromethane sulfonate of tri (4-methylphenyl) sulfonium, heptafluoropropane sulfonate or nonafluorobutane sulfonate; trifluoromethane sulfonate of dimethyl (4-hydroxynaphthyl) sulfonium, hepta Fluoropropanesulfonate
- the blending amount of the photoacid generator is usually preferably 0.1 to 30 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the polymer compound from the viewpoint of ensuring the sensitivity and developability of the photoresist composition. 0.5 to 10 parts by mass.
- Solvents blended in the photoresist composition include, for example, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether propionate, ethylene glycol monobutyl ether, ethylene Glycol ethers such as glycol monobutyl ether acetate and diethylene glycol dimethyl ether; esters such as ethyl lactate, methyl 3-methoxypropionate, methyl acetate, ethyl acetate, and propyl acetate; acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl amyl ketone, Cases such as cyclopentanone and cyclohexanone Emissions diethyl ether, diisopropyl ether, dibutyl
- a basic compound is added to the photoresist composition in an amount that does not impair the characteristics of the photoresist composition as necessary. be able to.
- Examples of such basic compounds include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N- (1-adamantyl) acetamide, benzamide, N- Acetylethanolamine, 1-acetyl-3-methylpiperidine, pyrrolidone, N-methylpyrrolidone, ⁇ -caprolactam, ⁇ -valerolactam, 2-pyrrolidinone, acrylamide, methacrylamide, t-butylacrylamide, methylenebisacrylamide, methylenebismethacryl Amides such as amide, N-methylolacrylamide, N-methoxyacrylamide, diacetoneacrylamide; pyridine, 2-methylpyridine, 4-methylpyridine, nicotine, quinoline, Kridine, imidazole, 4-methylimidazole, benzimidazole, pyrazine, pyrazole, pyrrolidine, Nt-butoxycarbon
- the blending amount varies depending on the type of the basic compound used, but is usually preferably 0.01 to 10 moles, more preferably 0.05 to 1 mole of the photoacid generator. ⁇ 1 mole.
- the photoresist composition may further contain a surfactant in an amount that does not impair the characteristics of the photoresist composition, if desired.
- a surfactant examples include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, and the like. These may be used individually by 1 type and may use 2 or more types together.
- the surfactant is blended, the blending amount is usually preferably 2 parts by mass or less with respect to 100 parts by mass of the polymer compound.
- the photoresist composition of the present invention is applied to a substrate, prebaked usually at 70 to 160 ° C. for 1 to 10 minutes, and irradiated (exposed) through a predetermined mask, preferably at 70 to 160 ° C.
- a photoresist pattern can be formed by forming a latent image pattern by post-exposure baking for 1 to 5 minutes and then developing with a developer. The shape of the photoresist pattern thus obtained is good and the LWR is improved. That is, a high-resolution photoresist pattern is formed by using the acrylate derivative of the present invention.
- Exposure is preferably from 0.1 ⁇ 1000mJ / cm 2, and more preferably 1 ⁇ 500mJ / cm 2.
- Examples of the developer include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and aqueous ammonia; alkylamines such as ethylamine, diethylamine and triethylamine; alcohol amines such as dimethylethanolamine and triethanolamine; tetramethylammonium
- examples include alkaline aqueous solutions in which quaternary ammonium salts such as hydroxide and tetraethylammonium hydroxide are dissolved. Among these, it is preferable to use an alkaline aqueous solution in which a quaternary ammonium salt such as tetramethylammonium hydroxide or tetraethylammonium hydroxide is dissolved.
- the concentration of the developer is usually preferably from 0.1 to 20% by mass, and more preferably from 0.1 to 10% by mass.
- Mw / Mn the molecular weight distribution (Mw / Mn) was determined by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn).
- reaction mixture was stirred for 1 hour at 50 ° C. and analyzed by gas chromatography. As a result, 1- (2-hydroxyethylthio) -3-chloro-2-propanol was completely disappeared.
- the reaction mixture was cooled to 25 ° C. and then neutralized with 20% aqueous hydrochloric acid. Extraction was performed twice with 4400 g of ethyl acetate, and the obtained organic layers were combined and concentrated under reduced pressure. The concentrated solution was simply distilled to obtain 392 g of a fraction.
- this fraction was a mixture of the following 1,4-oxathiepan-6-ol and 1,4-oxathian-2-methanol, and its molar ratio (1,4-oxathiepane -6-ol: 1,4-oxathian-2-methanol) was confirmed to be 80:20.
- Synthesis Example 3 Synthesis of 4,4-dioxa-1,4-oxathiepan-6-ol and 4,4-dioxa-1,4-oxathian-2-methanol An internal volume of 5 L equipped with a stirrer and a thermometer In a four-necked flask, 486 g (10.3 mol) of 98% formic acid, 466 g of distilled water and 350 g of a mixture of 1,4-oxathiepan-6-ol and 1,4-oxathian-2-methanol obtained in Synthesis Example 2 (mixing) Molar ratio 80:20, 2.59 mol in total) was added, and the internal temperature was adjusted to 25 ° C. with stirring.
- Example 2 Synthesis of polymer compound (a) In a three-necked flask having an internal volume of 50 ml equipped with a stirrer, a reflux condenser and a thermometer, 4.0 g (17.2 mmol) of 2-methacryloyloxy-2-methyladamantane, Charged with 1.4 g (6.0 mmol) of 3-hydroxy-1-yl methacrylate, 4.6 g (19.8 mmol) of 6-methacryloyloxy-4,4-dioxa-1,4-oxathiepan and 36.0 g of methyl ethyl ketone, Nitrogen bubbling was performed for 10 minutes.
- Example 3 Synthesis of polymer compound (b) In a three-necked flask with an internal volume of 50 ml equipped with a stirrer, a reflux condenser and a thermometer, 4.0 g (17.2 mmol) of 2-methacryloyloxy-2-methyladamantane, Charged with 1.4 g (6.0 mmol) of 3-hydroxy-1-yl methacrylate, 4.6 g (19.8 mmol) of 2-methacryloyloxymethyl-4,4-dioxa-1,4-oxathiane and 36.4 g of methyl ethyl ketone Nitrogen bubbling was performed for 10 minutes.
- photoresist compositions were filtered using a membrane filter having a pore size of 0.2 ⁇ m.
- a cresol novolak resin ("PS-6937” manufactured by Gunei Chemical Industry Co., Ltd.) was applied with a 6% by mass propylene glycol monomethyl ether acetate solution by spin coating, and baked on a hot plate at 200 ° C for 90 seconds.
- Each of the filtrates was applied by spin coating on a silicon wafer having a diameter of 10 cm on which an antireflection film (underlayer film) having a thickness of 100 nm was formed, and pre-baked on a hot plate at 130 ° C. for 90 seconds to have a thickness of 300 nm.
- the resist film was formed.
- This resist film was exposed by a two-beam interference method using an ArF excimer laser having a wavelength of 193 nm. Subsequently, post exposure baking was performed at 130 ° C. for 90 seconds, followed by development with a 2.38 mass% tetramethylammonium hydroxide aqueous solution for 60 seconds to form a 1: 1 line and space pattern.
- the developed wafer was cleaved and observed with a scanning electron microscope (SEM), and the pattern shape observation and line width variation (LWR) of the exposure amount obtained by resolving the line-and-space with a line width of 100 nm at 1: 1. Measurements were made.
- the line width is detected at a plurality of positions in the measurement monitor, and the dispersion (3 ⁇ ) of variations in the detected positions is used as an index.
- the cross-sectional shape of the pattern was observed using a scanning electron microscope (SEM) and evaluated as “ ⁇ ” when the rectangularity was high and “X” when the rectangularity was low. The results are shown in Table 2.
- the resist composition using the polymer compound (polymer compounds (a) to (c)) obtained by polymerizing the raw material containing the acrylate derivative of the present invention is the acrylate ester of the present invention.
- resist compositions that use polymer compounds (polymer compounds (d) to (f)) obtained by polymerization without using derivatives it is possible to form a photoresist pattern with a better shape, and to improve LWR Therefore, it was possible to achieve both formation of a high-resolution photoresist pattern and reduction of LWR.
- the acrylic ester derivative of the present invention is useful as a raw material for a polymer compound for a photoresist composition with improved LWR and forming a high-resolution resist pattern, and is useful in the production of semiconductors and printed boards.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Materials For Photolithography (AREA)
Abstract
Provided are a photoresist composition that can form high-resolution photoresist patterns having improved LWR, a polymer compound that can produce the photoresist composition, and a compound and mixture that can produce the polymer compound. The compound is, specifically, an acrylic acid ester derivative represented by general formula (1). (In general formula (1): R1 represents a hydrogen atom, a methyl group, or a trifluoromethyl group; R2 represents a hydrogen atom, an alkyl group or a cycloalkyl group; X1 represents -S(=O)- or -S(=O)2-; X2 represents -O-, -S(=O)- or -S(=O)2-; U1 and U2 each independently represents a single bond, or an alkylene group selected from the group consisting of a methylene group and an ethylene group, and said alkylene group may be substituted by at least one substituent group selected from the group consisting of an alkyl group and a cycloalkyl group; U3 represents a cycloalkylene group, or an alkylene group selected from the group consisting of a methylene group, an ethylene group, a trimethylene group and a tetramethylene group, and said cycloalkylene group or alkylene group may be substituted by at least one substituent group selected from the group consisting of an alkyl group and a cycloalkyl group; A1 represents a single bond or a linear aliphatic hydrocarbon group; A2 represents a linear aliphatic hydrocarbon group or an alicyclic hydrocarbon group, and said alicyclic hydrocarbon group may be substituted by an alkyl group; and k represents an integer of 0-2.)
Description
本発明は、アクリル酸エステル誘導体、混合物、高分子化合物およびフォトレジスト組成物に関する。
The present invention relates to an acrylate derivative, a mixture, a polymer compound and a photoresist composition.
近年、集積回路素子製造に代表される電子デバイス製造分野においては、電子デバイスの高集積化に対する要求が高まっており、そのため、微細パターン形成のためのフォトリソグラフィー技術が必要とされている。
微細化の手法としては、一般に、露光光源の短波長化が行われている。具体的には、従来は、g線、i線に代表される紫外線が用いられていたが、現在では、KrFエキシマレーザーや、ArFエキシマレーザーを用いた半導体素子の量産が開始されている。また、これらエキシマレーザーより短波長の、F2エキシマレーザー、電子線、EUV(極紫外線)およびX線などについても検討が行われている。
レジスト材料には、これらの露光光源に対する感度、微細な寸法のパターンを再現できる解像性などのリソグラフィー特性が求められる。 In recent years, in the field of electronic device manufacturing typified by integrated circuit element manufacturing, there has been an increasing demand for higher integration of electronic devices, and thus a photolithography technique for forming a fine pattern is required.
As a technique for miniaturization, the wavelength of an exposure light source is generally shortened. Specifically, conventionally, ultraviolet rays typified by g-line and i-line have been used, but at present, mass production of semiconductor elements using a KrF excimer laser or an ArF excimer laser has started. In addition, studies have been made on F 2 excimer lasers, electron beams, EUV (extreme ultraviolet rays), X-rays, and the like having shorter wavelengths than these excimer lasers.
Resist materials are required to have lithography characteristics such as sensitivity to these exposure light sources and resolution capable of reproducing patterns with fine dimensions.
微細化の手法としては、一般に、露光光源の短波長化が行われている。具体的には、従来は、g線、i線に代表される紫外線が用いられていたが、現在では、KrFエキシマレーザーや、ArFエキシマレーザーを用いた半導体素子の量産が開始されている。また、これらエキシマレーザーより短波長の、F2エキシマレーザー、電子線、EUV(極紫外線)およびX線などについても検討が行われている。
レジスト材料には、これらの露光光源に対する感度、微細な寸法のパターンを再現できる解像性などのリソグラフィー特性が求められる。 In recent years, in the field of electronic device manufacturing typified by integrated circuit element manufacturing, there has been an increasing demand for higher integration of electronic devices, and thus a photolithography technique for forming a fine pattern is required.
As a technique for miniaturization, the wavelength of an exposure light source is generally shortened. Specifically, conventionally, ultraviolet rays typified by g-line and i-line have been used, but at present, mass production of semiconductor elements using a KrF excimer laser or an ArF excimer laser has started. In addition, studies have been made on F 2 excimer lasers, electron beams, EUV (extreme ultraviolet rays), X-rays, and the like having shorter wavelengths than these excimer lasers.
Resist materials are required to have lithography characteristics such as sensitivity to these exposure light sources and resolution capable of reproducing patterns with fine dimensions.
このような要求を満たすレジスト材料として、酸の作用によりアルカリ現像液に対する溶解性が変化する基材成分と、露光により酸を発生する酸発生剤とを含有する化学増幅型レジストが用いられている。化学増幅型レジストの基材成分としては、主に、樹脂(以下、ベース樹脂と称する)が用いられている。
たとえばポジ型の化学増幅型レジストは、ベース樹脂として、酸の作用によりアルカリ現像液に対する溶解性が増大する樹脂を含有しており、フォトレジストパターン形成時に、露光により酸発生剤から酸が発生すると、該酸の作用により該ベース樹脂のアルカリ現像液に対する溶解性が増大する(たとえば特許文献1参照)。
また、ネガ型の化学増幅型レジストとしては、ベース樹脂として、アルカリ現像液に可溶性の樹脂(アルカリ可溶性樹脂)を含有し、さらに架橋剤が配合されたものが一般的に用いられている。かかるレジスト組成物は、フォトレジストパターン形成時に、露光により酸発生剤から酸が発生すると、該酸の作用によりベース樹脂と架橋剤とが反応し、該ベース樹脂のアルカリ現像液に対する溶解性が低下する(たとえば非特許文献1および2参照)。 As a resist material satisfying such requirements, a chemically amplified resist containing a base material component whose solubility in an alkaline developer is changed by the action of an acid and an acid generator that generates an acid upon exposure is used. . As a base component of the chemically amplified resist, a resin (hereinafter referred to as a base resin) is mainly used.
For example, a positive chemically amplified resist contains, as a base resin, a resin whose solubility in an alkaline developer is increased by the action of an acid. When a photoresist pattern is formed, an acid is generated from an acid generator by exposure. The solubility of the base resin in an alkaline developer is increased by the action of the acid (see, for example, Patent Document 1).
Further, as the negative chemically amplified resist, a base resin that contains a resin soluble in an alkali developer (alkali-soluble resin) and further contains a crosslinking agent is generally used. In such a resist composition, when an acid is generated from an acid generator by exposure at the time of forming a photoresist pattern, the base resin reacts with the crosslinking agent by the action of the acid, and the solubility of the base resin in an alkaline developer is lowered. (For example, see Non-Patent Documents 1 and 2).
たとえばポジ型の化学増幅型レジストは、ベース樹脂として、酸の作用によりアルカリ現像液に対する溶解性が増大する樹脂を含有しており、フォトレジストパターン形成時に、露光により酸発生剤から酸が発生すると、該酸の作用により該ベース樹脂のアルカリ現像液に対する溶解性が増大する(たとえば特許文献1参照)。
また、ネガ型の化学増幅型レジストとしては、ベース樹脂として、アルカリ現像液に可溶性の樹脂(アルカリ可溶性樹脂)を含有し、さらに架橋剤が配合されたものが一般的に用いられている。かかるレジスト組成物は、フォトレジストパターン形成時に、露光により酸発生剤から酸が発生すると、該酸の作用によりベース樹脂と架橋剤とが反応し、該ベース樹脂のアルカリ現像液に対する溶解性が低下する(たとえば非特許文献1および2参照)。 As a resist material satisfying such requirements, a chemically amplified resist containing a base material component whose solubility in an alkaline developer is changed by the action of an acid and an acid generator that generates an acid upon exposure is used. . As a base component of the chemically amplified resist, a resin (hereinafter referred to as a base resin) is mainly used.
For example, a positive chemically amplified resist contains, as a base resin, a resin whose solubility in an alkaline developer is increased by the action of an acid. When a photoresist pattern is formed, an acid is generated from an acid generator by exposure. The solubility of the base resin in an alkaline developer is increased by the action of the acid (see, for example, Patent Document 1).
Further, as the negative chemically amplified resist, a base resin that contains a resin soluble in an alkali developer (alkali-soluble resin) and further contains a crosslinking agent is generally used. In such a resist composition, when an acid is generated from an acid generator by exposure at the time of forming a photoresist pattern, the base resin reacts with the crosslinking agent by the action of the acid, and the solubility of the base resin in an alkaline developer is lowered. (For example, see Non-Patent Documents 1 and 2).
現在、ArFエキシマレーザーリソグラフィー等において使用されるレジストのベース樹脂としては、波長193nm付近における透明性に優れることから、(メタ)アクリル酸エステルから誘導される構成単位を主鎖に有する樹脂(アクリル系樹脂)が主に用いられている。
また、フォトレジスト組成物用の高分子化合物としては、アクリロイルオキシ基から連結基を介してノルボルナンラクトン骨格やノルボルナンスルトン骨格を有する構成単位から形成される高分子化合物なども提案されている(特許文献2および3参照)。 Currently, as a resist base resin used in ArF excimer laser lithography and the like, a resin having a structural unit derived from (meth) acrylic acid ester in the main chain (acrylic resin) is excellent in transparency near a wavelength of 193 nm. Resin) is mainly used.
Further, as a polymer compound for a photoresist composition, a polymer compound formed from a structural unit having a norbornane lactone skeleton or a norbornane sultone skeleton through a linking group from an acryloyloxy group has also been proposed (Patent Literature). 2 and 3).
また、フォトレジスト組成物用の高分子化合物としては、アクリロイルオキシ基から連結基を介してノルボルナンラクトン骨格やノルボルナンスルトン骨格を有する構成単位から形成される高分子化合物なども提案されている(特許文献2および3参照)。 Currently, as a resist base resin used in ArF excimer laser lithography and the like, a resin having a structural unit derived from (meth) acrylic acid ester in the main chain (acrylic resin) is excellent in transparency near a wavelength of 193 nm. Resin) is mainly used.
Further, as a polymer compound for a photoresist composition, a polymer compound formed from a structural unit having a norbornane lactone skeleton or a norbornane sultone skeleton through a linking group from an acryloyloxy group has also been proposed (Patent Literature). 2 and 3).
前述の通り、近年、半導体素子または液晶表示素子の製造においては、リソグラフィー技術の進歩によってパターンの微細化が急速に進んでいる。そのため、解像性およびラインウィドゥスラフネス(LWR)等の種々のリソグラフィー特性がこれまで以上に改善されるようなレジスト材料の開発が切望されている。そのため、フォトレジスト組成物に含有させる高分子化合物の構成単位となり得る新規な化合物の開発そのものが重要となっている。
そこで、本発明の課題は、LWRが改善され、且つ高解像度のフォトレジストパターンが形成され得るフォトレジスト組成物を提供すること、該フォトレジスト組成物を製造し得る高分子化合物を提供すること、並びに該高分子化合物を製造し得るアクリル酸エステル誘導体および混合物を提供することにある。 As described above, in recent years, in the manufacture of a semiconductor device or a liquid crystal display device, pattern miniaturization has rapidly progressed due to advances in lithography technology. Therefore, development of a resist material that can improve various lithography properties such as resolution and line width roughness (LWR) more than ever is eagerly desired. Therefore, development of a novel compound that can be a structural unit of a polymer compound to be contained in a photoresist composition is important.
Accordingly, an object of the present invention is to provide a photoresist composition that can improve the LWR and form a high-resolution photoresist pattern, and to provide a polymer compound that can produce the photoresist composition. Another object of the present invention is to provide an acrylate derivative and a mixture capable of producing the polymer compound.
そこで、本発明の課題は、LWRが改善され、且つ高解像度のフォトレジストパターンが形成され得るフォトレジスト組成物を提供すること、該フォトレジスト組成物を製造し得る高分子化合物を提供すること、並びに該高分子化合物を製造し得るアクリル酸エステル誘導体および混合物を提供することにある。 As described above, in recent years, in the manufacture of a semiconductor device or a liquid crystal display device, pattern miniaturization has rapidly progressed due to advances in lithography technology. Therefore, development of a resist material that can improve various lithography properties such as resolution and line width roughness (LWR) more than ever is eagerly desired. Therefore, development of a novel compound that can be a structural unit of a polymer compound to be contained in a photoresist composition is important.
Accordingly, an object of the present invention is to provide a photoresist composition that can improve the LWR and form a high-resolution photoresist pattern, and to provide a polymer compound that can produce the photoresist composition. Another object of the present invention is to provide an acrylate derivative and a mixture capable of producing the polymer compound.
本発明者らは鋭意検討した結果、特定構造のアクリル酸エステル誘導体またはその混合物に由来する構成単位を有する高分子化合物を含有するフォトレジスト組成物であれば、LWRが改善され、且つ高解像度のフォトレジストパターンが形成されることを見出した。
As a result of intensive studies, the present inventors have found that a photoresist composition containing a polymer compound having a structural unit derived from an acrylate derivative having a specific structure or a mixture thereof has improved LWR and high resolution. It has been found that a photoresist pattern is formed.
本発明は、下記[1]~[15]に関する。
[1]下記一般式(1)
(一般式(1)中、R1は、水素原子、メチル基またはトリフルオロメチル基を表す。R2は、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。
X1は、-S(=O)-または-S(=O)2-を表し、X2は、-O-、-S(=O)-または-S(=O)2-を表す。
U1およびU2は、それぞれ独立して、単結合、または、メチレン基およびエチレン基からなる群から選択されるアルキレン基を表し、該アルキレン基は、炭素数1~10のアルキル基および炭素数3~10のシクロアルキル基からなる群から選択される少なくとも1つの置換基によって置換されていてもよい。
U3は、メチレン基、エチレン基、トリメチレン基およびテトラメチレン基からなる群から選択されるアルキレン基、または炭素数3~10のシクロアルキレン基を表し、該アルキレン基およびシクロアルキレン基は、炭素数1~10のアルキル基および炭素数3~10のシクロアルキル基からなる群から選択される少なくとも1つの置換基によって置換されていてもよい。
A1は、単結合または炭素数1~10の鎖状脂肪族炭化水素基を表す。
A2は、炭素数1~10の鎖状脂肪族炭化水素基または炭素数3~10の脂環式炭化水素基を表し、該脂環式炭化水素基は、炭素数1~10のアルキル基によって置換されていてもよい。
kは0~2の整数を表す。)
で示されるアクリル酸エステル誘導体。 The present invention relates to the following [1] to [15].
[1] The following general formula (1)
(In the general formula (1), R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group. R 2 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms. Represents.
X 1 represents —S (═O) — or —S (═O) 2 —, and X 2 represents —O—, —S (═O) — or —S (═O) 2 —.
U 1 and U 2 each independently represent a single bond or an alkylene group selected from the group consisting of a methylene group and an ethylene group, and the alkylene group has an alkyl group having 1 to 10 carbon atoms and a carbon number It may be substituted with at least one substituent selected from the group consisting of 3 to 10 cycloalkyl groups.
U 3 represents an alkylene group selected from the group consisting of a methylene group, an ethylene group, a trimethylene group and a tetramethylene group, or a cycloalkylene group having 3 to 10 carbon atoms, and the alkylene group and the cycloalkylene group have It may be substituted with at least one substituent selected from the group consisting of 1 to 10 alkyl groups and cycloalkyl groups having 3 to 10 carbon atoms.
A 1 represents a single bond or a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms.
A 2 represents a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, and the alicyclic hydrocarbon group is an alkyl group having 1 to 10 carbon atoms. May be substituted.
k represents an integer of 0-2. )
An acrylic ester derivative represented by
[1]下記一般式(1)
(一般式(1)中、R1は、水素原子、メチル基またはトリフルオロメチル基を表す。R2は、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。
X1は、-S(=O)-または-S(=O)2-を表し、X2は、-O-、-S(=O)-または-S(=O)2-を表す。
U1およびU2は、それぞれ独立して、単結合、または、メチレン基およびエチレン基からなる群から選択されるアルキレン基を表し、該アルキレン基は、炭素数1~10のアルキル基および炭素数3~10のシクロアルキル基からなる群から選択される少なくとも1つの置換基によって置換されていてもよい。
U3は、メチレン基、エチレン基、トリメチレン基およびテトラメチレン基からなる群から選択されるアルキレン基、または炭素数3~10のシクロアルキレン基を表し、該アルキレン基およびシクロアルキレン基は、炭素数1~10のアルキル基および炭素数3~10のシクロアルキル基からなる群から選択される少なくとも1つの置換基によって置換されていてもよい。
A1は、単結合または炭素数1~10の鎖状脂肪族炭化水素基を表す。
A2は、炭素数1~10の鎖状脂肪族炭化水素基または炭素数3~10の脂環式炭化水素基を表し、該脂環式炭化水素基は、炭素数1~10のアルキル基によって置換されていてもよい。
kは0~2の整数を表す。)
で示されるアクリル酸エステル誘導体。 The present invention relates to the following [1] to [15].
[1] The following general formula (1)
(In the general formula (1), R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group. R 2 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms. Represents.
X 1 represents —S (═O) — or —S (═O) 2 —, and X 2 represents —O—, —S (═O) — or —S (═O) 2 —.
U 1 and U 2 each independently represent a single bond or an alkylene group selected from the group consisting of a methylene group and an ethylene group, and the alkylene group has an alkyl group having 1 to 10 carbon atoms and a carbon number It may be substituted with at least one substituent selected from the group consisting of 3 to 10 cycloalkyl groups.
U 3 represents an alkylene group selected from the group consisting of a methylene group, an ethylene group, a trimethylene group and a tetramethylene group, or a cycloalkylene group having 3 to 10 carbon atoms, and the alkylene group and the cycloalkylene group have It may be substituted with at least one substituent selected from the group consisting of 1 to 10 alkyl groups and cycloalkyl groups having 3 to 10 carbon atoms.
A 1 represents a single bond or a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms.
A 2 represents a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, and the alicyclic hydrocarbon group is an alkyl group having 1 to 10 carbon atoms. May be substituted.
k represents an integer of 0-2. )
An acrylic ester derivative represented by
[2]下記一般式(2)
(一般式(2)中、R1、R2、X1、X2、A2およびkは、上記[1]に記載の通りである。
R3~R10は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。また、R11およびR12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基を表す。
zは0または1を表す。)
で示される、上記[1]のアクリル酸エステル誘導体。 [2] The following general formula (2)
(In General Formula (2), R 1 , R 2 , X 1 , X 2 , A 2 and k are as described in [1] above.
R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms. R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
z represents 0 or 1; )
The acrylate derivative of the above-mentioned [1] represented by
(一般式(2)中、R1、R2、X1、X2、A2およびkは、上記[1]に記載の通りである。
R3~R10は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。また、R11およびR12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基を表す。
zは0または1を表す。)
で示される、上記[1]のアクリル酸エステル誘導体。 [2] The following general formula (2)
(In General Formula (2), R 1 , R 2 , X 1 , X 2 , A 2 and k are as described in [1] above.
R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms. R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
z represents 0 or 1; )
The acrylate derivative of the above-mentioned [1] represented by
[3]下記一般式(2-1)
(一般式(2-1)中、R1、R2、X1、X2、A2およびkは、上記[1]に記載の通りである。)
で示される、上記[2]のアクリル酸エステル誘導体。 [3] The following general formula (2-1)
(In the general formula (2-1), R 1 , R 2 , X 1 , X 2 , A 2 and k are as described in the above [1].)
An acrylate derivative of the above-mentioned [2] represented by
(一般式(2-1)中、R1、R2、X1、X2、A2およびkは、上記[1]に記載の通りである。)
で示される、上記[2]のアクリル酸エステル誘導体。 [3] The following general formula (2-1)
(In the general formula (2-1), R 1 , R 2 , X 1 , X 2 , A 2 and k are as described in the above [1].)
An acrylate derivative of the above-mentioned [2] represented by
[4]下記一般式(3)
(一般式(3)中、R1、R2、X1、X2、A2およびkは、上記[1]に記載の通りである。
R3~R10は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。また、R11およびR12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基を表す。
zは0または1を表す。)
で示される、上記[1]のアクリル酸エステル誘導体。 [4] The following general formula (3)
(In General Formula (3), R 1 , R 2 , X 1 , X 2 , A 2 and k are as described in [1] above.
R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms. R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
z represents 0 or 1; )
The acrylate derivative of the above-mentioned [1] represented by
(一般式(3)中、R1、R2、X1、X2、A2およびkは、上記[1]に記載の通りである。
R3~R10は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。また、R11およびR12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基を表す。
zは0または1を表す。)
で示される、上記[1]のアクリル酸エステル誘導体。 [4] The following general formula (3)
(In General Formula (3), R 1 , R 2 , X 1 , X 2 , A 2 and k are as described in [1] above.
R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms. R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
z represents 0 or 1; )
The acrylate derivative of the above-mentioned [1] represented by
[5]下記一般式(3-1)
(一般式(3-1)中、R1、R2、X1、X2、A2およびkは、上記[1]に記載の通りである。)
で示される、上記[4]のアクリル酸エステル誘導体。 [5] The following general formula (3-1)
(In general formula (3-1), R 1 , R 2 , X 1 , X 2 , A 2 and k are as described in [1] above.)
The acrylic ester derivative of the above-mentioned [4] represented by
(一般式(3-1)中、R1、R2、X1、X2、A2およびkは、上記[1]に記載の通りである。)
で示される、上記[4]のアクリル酸エステル誘導体。 [5] The following general formula (3-1)
(In general formula (3-1), R 1 , R 2 , X 1 , X 2 , A 2 and k are as described in [1] above.)
The acrylic ester derivative of the above-mentioned [4] represented by
[6]X1が-S(=O)2-であり、且つX2が-O-である、上記[1]~[5]のいずれかのアクリル酸エステル誘導体。
[7]kが0である、上記[1]~[6]のいずれかのアクリル酸エステル誘導体。 [6] The acrylate derivative according to any one of [1] to [5] above, wherein X 1 is —S (═O) 2 — and X 2 is —O—.
[7] The acrylic ester derivative according to any one of the above [1] to [6], wherein k is 0.
[7]kが0である、上記[1]~[6]のいずれかのアクリル酸エステル誘導体。 [6] The acrylate derivative according to any one of [1] to [5] above, wherein X 1 is —S (═O) 2 — and X 2 is —O—.
[7] The acrylic ester derivative according to any one of the above [1] to [6], wherein k is 0.
[8]下記一般式(2)
(一般式(2)中、R1、R2、X1、X2、A2およびkは、上記[1]に記載の通りである。
R3~R10は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。また、R11およびR12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基を表す。
zは0または1を表す。)
で示されるアクリル酸エステル誘導体、および下記一般式(3)
(一般式(3)中、R1、R2、X1、X2、A2およびkは、上記[1]に記載の通りである。
R3~R10は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。また、R11およびR12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基を表す。
zは0または1を表す。)
で示されるアクリル酸エステル誘導体の混合物。 [8] The following general formula (2)
(In General Formula (2), R 1 , R 2 , X 1 , X 2 , A 2 and k are as described in [1] above.
R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms. R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
z represents 0 or 1; )
And the following general formula (3):
(In General Formula (3), R 1 , R 2 , X 1 , X 2 , A 2 and k are as described in [1] above.
R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms. R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
z represents 0 or 1; )
A mixture of acrylic ester derivatives represented by
(一般式(2)中、R1、R2、X1、X2、A2およびkは、上記[1]に記載の通りである。
R3~R10は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。また、R11およびR12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基を表す。
zは0または1を表す。)
で示されるアクリル酸エステル誘導体、および下記一般式(3)
(一般式(3)中、R1、R2、X1、X2、A2およびkは、上記[1]に記載の通りである。
R3~R10は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。また、R11およびR12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基を表す。
zは0または1を表す。)
で示されるアクリル酸エステル誘導体の混合物。 [8] The following general formula (2)
(In General Formula (2), R 1 , R 2 , X 1 , X 2 , A 2 and k are as described in [1] above.
R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms. R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
z represents 0 or 1; )
And the following general formula (3):
(In General Formula (3), R 1 , R 2 , X 1 , X 2 , A 2 and k are as described in [1] above.
R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms. R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
z represents 0 or 1; )
A mixture of acrylic ester derivatives represented by
[9]前記一般式(2)で示されるアクリル酸エステル誘導体と前記一般式(3)で示されるアクリル酸エステル誘導体との混合比率[(2):(3)]が、モル比で50:50~95:5である、上記[8]の混合物。
[10]前記一般式(2)および(3)の両方において、X1が-S(=O)2-であり、且つX2が-O-である、上記[8]または[9]の混合物。
[11]前記一般式(2)および(3)の両方においてkが0である、上記[8]~[10]のいずれかの混合物。
[12]上記[1]~[7]のいずれかのアクリル酸エステル誘導体に由来する構成単位を有する高分子化合物。
[13]上記[1]~[7]のいずれかのアクリル酸エステル誘導体に由来する構成単位を2種以上有する高分子化合物。
[14]上記[8]~[11]のいずれかの混合物に由来する構成単位を有する高分子化合物。
[15]光酸発生剤、溶剤、および上記[12]~[14]のいずれかの高分子化合物を含有するフォトレジスト組成物。 [9] The mixing ratio [(2) :( 3)] of the acrylic ester derivative represented by the general formula (2) and the acrylic ester derivative represented by the general formula (3) is 50: The mixture of [8] above, which is 50 to 95: 5.
[10] In both of the above general formulas (2) and (3), X 1 is —S (═O) 2 — and X 2 is —O—. blend.
[11] The mixture according to any one of [8] to [10], wherein k is 0 in both of the general formulas (2) and (3).
[12] A polymer compound having a structural unit derived from the acrylate derivative of any one of [1] to [7].
[13] A polymer compound having two or more structural units derived from the acrylate derivative of any one of [1] to [7].
[14] A polymer compound having a structural unit derived from the mixture of any one of [8] to [11].
[15] A photoresist composition comprising a photoacid generator, a solvent, and a polymer compound of any one of the above [12] to [14].
[10]前記一般式(2)および(3)の両方において、X1が-S(=O)2-であり、且つX2が-O-である、上記[8]または[9]の混合物。
[11]前記一般式(2)および(3)の両方においてkが0である、上記[8]~[10]のいずれかの混合物。
[12]上記[1]~[7]のいずれかのアクリル酸エステル誘導体に由来する構成単位を有する高分子化合物。
[13]上記[1]~[7]のいずれかのアクリル酸エステル誘導体に由来する構成単位を2種以上有する高分子化合物。
[14]上記[8]~[11]のいずれかの混合物に由来する構成単位を有する高分子化合物。
[15]光酸発生剤、溶剤、および上記[12]~[14]のいずれかの高分子化合物を含有するフォトレジスト組成物。 [9] The mixing ratio [(2) :( 3)] of the acrylic ester derivative represented by the general formula (2) and the acrylic ester derivative represented by the general formula (3) is 50: The mixture of [8] above, which is 50 to 95: 5.
[10] In both of the above general formulas (2) and (3), X 1 is —S (═O) 2 — and X 2 is —O—. blend.
[11] The mixture according to any one of [8] to [10], wherein k is 0 in both of the general formulas (2) and (3).
[12] A polymer compound having a structural unit derived from the acrylate derivative of any one of [1] to [7].
[13] A polymer compound having two or more structural units derived from the acrylate derivative of any one of [1] to [7].
[14] A polymer compound having a structural unit derived from the mixture of any one of [8] to [11].
[15] A photoresist composition comprising a photoacid generator, a solvent, and a polymer compound of any one of the above [12] to [14].
本発明のアクリル酸エステル誘導体またはその混合物に由来する構成単位を有する高分子化合物を含有するフォトレジスト組成物によれば、LWRが改善され、且つ高解像度のフォトレジストパターンが形成される。
According to the photoresist composition containing a polymer compound having a structural unit derived from the acrylate derivative of the present invention or a mixture thereof, LWR is improved and a high-resolution photoresist pattern is formed.
[アクリル酸エステル誘導体]
本発明のアクリル酸エステル誘導体は、下記一般式(1)で示される。以下、一般式(1)で示されるアクリル酸エステル誘導体を、アクリル酸エステル誘導体(1)と称する。
アクリル酸エステル誘導体(1)は、下記の通り、分子末端に特定の極性基を含む環構造を有する。該アクリル酸エステル誘導体(1)を用いて得られる高分子化合物(つまり該アクリル酸エステル誘導体(1)に由来する構成単位を有する高分子化合物)を用いたフォトレジスト組成物であれば、LWRが改善され、且つ高解像度のフォトレジストパターンが形成される。
この効果が発現する原因は明らかではないが、本発明のアクリル酸エステル誘導体は、環構造中のX1が、X2と隣接せず、X2とアルキレン基またはシクロアルキレン基を介して結合していることで、アルカリ現像液への溶解性が向上し、さらに環状構造内の極性基と、光酸発生剤から発生した酸とが相互作用し易くなり、酸の拡散長が適度に短くなったことなどが原因ではないかと推定する。 [Acrylic acid ester derivatives]
The acrylic ester derivative of the present invention is represented by the following general formula (1). Hereinafter, the acrylic ester derivative represented by the general formula (1) is referred to as an acrylic ester derivative (1).
As described below, the acrylate derivative (1) has a ring structure containing a specific polar group at the molecular end. If a photoresist composition using a polymer compound obtained by using the acrylate derivative (1) (that is, a polymer compound having a structural unit derived from the acrylate derivative (1)), the LWR is An improved and high resolution photoresist pattern is formed.
This effect is caused is not clear that express, acrylic acid ester derivatives of the present invention, X 1 in the ring structure is not adjacent to X 2, attached via an X 2 and alkylene or cycloalkylene group As a result, the solubility in an alkali developer is improved, the polar group in the cyclic structure and the acid generated from the photoacid generator are likely to interact, and the diffusion length of the acid is appropriately shortened. It is estimated that this is the cause.
本発明のアクリル酸エステル誘導体は、下記一般式(1)で示される。以下、一般式(1)で示されるアクリル酸エステル誘導体を、アクリル酸エステル誘導体(1)と称する。
アクリル酸エステル誘導体(1)は、下記の通り、分子末端に特定の極性基を含む環構造を有する。該アクリル酸エステル誘導体(1)を用いて得られる高分子化合物(つまり該アクリル酸エステル誘導体(1)に由来する構成単位を有する高分子化合物)を用いたフォトレジスト組成物であれば、LWRが改善され、且つ高解像度のフォトレジストパターンが形成される。
この効果が発現する原因は明らかではないが、本発明のアクリル酸エステル誘導体は、環構造中のX1が、X2と隣接せず、X2とアルキレン基またはシクロアルキレン基を介して結合していることで、アルカリ現像液への溶解性が向上し、さらに環状構造内の極性基と、光酸発生剤から発生した酸とが相互作用し易くなり、酸の拡散長が適度に短くなったことなどが原因ではないかと推定する。 [Acrylic acid ester derivatives]
The acrylic ester derivative of the present invention is represented by the following general formula (1). Hereinafter, the acrylic ester derivative represented by the general formula (1) is referred to as an acrylic ester derivative (1).
As described below, the acrylate derivative (1) has a ring structure containing a specific polar group at the molecular end. If a photoresist composition using a polymer compound obtained by using the acrylate derivative (1) (that is, a polymer compound having a structural unit derived from the acrylate derivative (1)), the LWR is An improved and high resolution photoresist pattern is formed.
This effect is caused is not clear that express, acrylic acid ester derivatives of the present invention, X 1 in the ring structure is not adjacent to X 2, attached via an X 2 and alkylene or cycloalkylene group As a result, the solubility in an alkali developer is improved, the polar group in the cyclic structure and the acid generated from the photoacid generator are likely to interact, and the diffusion length of the acid is appropriately shortened. It is estimated that this is the cause.
(一般式(1)中、R1は、水素原子、メチル基またはトリフルオロメチル基を表す。R2は、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。
X1は、-S(=O)-または-S(=O)2-を表し、X2は、-O-、-S(=O)-または-S(=O)2-を表す。
U1およびU2は、それぞれ独立して、単結合、または、メチレン基およびエチレン基からなる群から選択されるアルキレン基を表し、該アルキレン基は、炭素数1~10のアルキル基および炭素数3~10のシクロアルキル基からなる群から選択される少なくとも1つの置換基によって置換されていてもよい。
U3は、メチレン基、エチレン基、トリメチレン基およびテトラメチレン基からなる群から選択されるアルキレン基、または炭素数3~10のシクロアルキレン基を表し、該アルキレン基およびシクロアルキレン基は、炭素数1~10のアルキル基および炭素数3~10のシクロアルキル基からなる群から選択される少なくとも1つの置換基によって置換されていてもよい。
A1は、単結合または炭素数1~10の鎖状脂肪族炭化水素基を表す。
A2は、炭素数1~10の鎖状脂肪族炭化水素基または炭素数3~10の脂環式炭化水素基を表し、該脂環式炭化水素基は、炭素数1~10のアルキル基によって置換されていてもよい。
kは0~2の整数を表す。) (In the general formula (1), R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group. R 2 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms. Represents.
X 1 represents —S (═O) — or —S (═O) 2 —, and X 2 represents —O—, —S (═O) — or —S (═O) 2 —.
U 1 and U 2 each independently represent a single bond or an alkylene group selected from the group consisting of a methylene group and an ethylene group, and the alkylene group has an alkyl group having 1 to 10 carbon atoms and a carbon number It may be substituted with at least one substituent selected from the group consisting of 3 to 10 cycloalkyl groups.
U 3 represents an alkylene group selected from the group consisting of a methylene group, an ethylene group, a trimethylene group and a tetramethylene group, or a cycloalkylene group having 3 to 10 carbon atoms, and the alkylene group and the cycloalkylene group have It may be substituted with at least one substituent selected from the group consisting of 1 to 10 alkyl groups and cycloalkyl groups having 3 to 10 carbon atoms.
A 1 represents a single bond or a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms.
A 2 represents a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, and the alicyclic hydrocarbon group is an alkyl group having 1 to 10 carbon atoms. May be substituted.
k represents an integer of 0-2. )
X1は、-S(=O)-または-S(=O)2-を表し、X2は、-O-、-S(=O)-または-S(=O)2-を表す。
U1およびU2は、それぞれ独立して、単結合、または、メチレン基およびエチレン基からなる群から選択されるアルキレン基を表し、該アルキレン基は、炭素数1~10のアルキル基および炭素数3~10のシクロアルキル基からなる群から選択される少なくとも1つの置換基によって置換されていてもよい。
U3は、メチレン基、エチレン基、トリメチレン基およびテトラメチレン基からなる群から選択されるアルキレン基、または炭素数3~10のシクロアルキレン基を表し、該アルキレン基およびシクロアルキレン基は、炭素数1~10のアルキル基および炭素数3~10のシクロアルキル基からなる群から選択される少なくとも1つの置換基によって置換されていてもよい。
A1は、単結合または炭素数1~10の鎖状脂肪族炭化水素基を表す。
A2は、炭素数1~10の鎖状脂肪族炭化水素基または炭素数3~10の脂環式炭化水素基を表し、該脂環式炭化水素基は、炭素数1~10のアルキル基によって置換されていてもよい。
kは0~2の整数を表す。) (In the general formula (1), R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group. R 2 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms. Represents.
X 1 represents —S (═O) — or —S (═O) 2 —, and X 2 represents —O—, —S (═O) — or —S (═O) 2 —.
U 1 and U 2 each independently represent a single bond or an alkylene group selected from the group consisting of a methylene group and an ethylene group, and the alkylene group has an alkyl group having 1 to 10 carbon atoms and a carbon number It may be substituted with at least one substituent selected from the group consisting of 3 to 10 cycloalkyl groups.
U 3 represents an alkylene group selected from the group consisting of a methylene group, an ethylene group, a trimethylene group and a tetramethylene group, or a cycloalkylene group having 3 to 10 carbon atoms, and the alkylene group and the cycloalkylene group have It may be substituted with at least one substituent selected from the group consisting of 1 to 10 alkyl groups and cycloalkyl groups having 3 to 10 carbon atoms.
A 1 represents a single bond or a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms.
A 2 represents a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, and the alicyclic hydrocarbon group is an alkyl group having 1 to 10 carbon atoms. May be substituted.
k represents an integer of 0-2. )
R1としては、水素原子、メチル基が好ましい。
R2が表す炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、各種プロピル基(「各種」とは、直鎖状およびあらゆる分岐鎖状を含むことを示し、以下同様である。)、各種ブチル基、各種ヘキシル基、各種オクチル基、各種デシル基などが挙げられる。該アルキル基としては、好ましくは炭素数1~5のアルキル基、より好ましくは炭素数1~3のアルキル基である。
R2が表す炭素数3~10のシクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、シクロオクチル基、シクロデシル基などが挙げられる。該シクロアルキル基としては、好ましくは炭素数4~8のシクロアルキル基、より好ましくは炭素数4~6のシクロアルキル基である。
以上の中でも、R2としては、解像度およびLWRの観点から、水素原子、炭素数1~10のアルキル基が好ましく、水素原子、炭素数1~3のアルキル基がより好ましく、水素原子がさらに好ましい。
X1としては、解像度およびLWRの観点から、-S(=O)2-が好ましい。また、X2としては、解像度およびLWRの観点から、-O-、-S(=O)2-が好ましい。さらに、解像度およびLWRの観点から、X1が-S(=O)2-であり、且つX2が-O-、-S(=O)2-であることが好ましく、X1が-S(=O)2-であり、且つX2が-O-であることがより好ましい。 R 1 is preferably a hydrogen atom or a methyl group.
Examples of the alkyl group having 1 to 10 carbon atoms represented by R 2 include, for example, a methyl group, an ethyl group, and various propyl groups (“various” means linear and all branched chains, the same shall apply hereinafter). ), Various butyl groups, various hexyl groups, various octyl groups, various decyl groups, and the like. The alkyl group is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
Examples of the cycloalkyl group having 3 to 10 carbon atoms represented by R 2 include a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and a cyclodecyl group. The cycloalkyl group is preferably a cycloalkyl group having 4 to 8 carbon atoms, more preferably a cycloalkyl group having 4 to 6 carbon atoms.
Among these, R 2 is preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and further preferably a hydrogen atom from the viewpoint of resolution and LWR. .
X 1 is preferably —S (═O) 2 — from the viewpoint of resolution and LWR. X 2 is preferably —O— or —S (═O) 2 — from the viewpoint of resolution and LWR. Further, from the viewpoint of resolution and LWR, X 1 is -S (= O) 2 - and is, and X 2 is -O -, - S (= O ) 2 - is preferably, X 1 is -S More preferably, (═O) 2 — and X 2 is —O—.
R2が表す炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、各種プロピル基(「各種」とは、直鎖状およびあらゆる分岐鎖状を含むことを示し、以下同様である。)、各種ブチル基、各種ヘキシル基、各種オクチル基、各種デシル基などが挙げられる。該アルキル基としては、好ましくは炭素数1~5のアルキル基、より好ましくは炭素数1~3のアルキル基である。
R2が表す炭素数3~10のシクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、シクロオクチル基、シクロデシル基などが挙げられる。該シクロアルキル基としては、好ましくは炭素数4~8のシクロアルキル基、より好ましくは炭素数4~6のシクロアルキル基である。
以上の中でも、R2としては、解像度およびLWRの観点から、水素原子、炭素数1~10のアルキル基が好ましく、水素原子、炭素数1~3のアルキル基がより好ましく、水素原子がさらに好ましい。
X1としては、解像度およびLWRの観点から、-S(=O)2-が好ましい。また、X2としては、解像度およびLWRの観点から、-O-、-S(=O)2-が好ましい。さらに、解像度およびLWRの観点から、X1が-S(=O)2-であり、且つX2が-O-、-S(=O)2-であることが好ましく、X1が-S(=O)2-であり、且つX2が-O-であることがより好ましい。 R 1 is preferably a hydrogen atom or a methyl group.
Examples of the alkyl group having 1 to 10 carbon atoms represented by R 2 include, for example, a methyl group, an ethyl group, and various propyl groups (“various” means linear and all branched chains, the same shall apply hereinafter). ), Various butyl groups, various hexyl groups, various octyl groups, various decyl groups, and the like. The alkyl group is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
Examples of the cycloalkyl group having 3 to 10 carbon atoms represented by R 2 include a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and a cyclodecyl group. The cycloalkyl group is preferably a cycloalkyl group having 4 to 8 carbon atoms, more preferably a cycloalkyl group having 4 to 6 carbon atoms.
Among these, R 2 is preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and further preferably a hydrogen atom from the viewpoint of resolution and LWR. .
X 1 is preferably —S (═O) 2 — from the viewpoint of resolution and LWR. X 2 is preferably —O— or —S (═O) 2 — from the viewpoint of resolution and LWR. Further, from the viewpoint of resolution and LWR, X 1 is -S (= O) 2 - and is, and X 2 is -O -, - S (= O ) 2 - is preferably, X 1 is -S More preferably, (═O) 2 — and X 2 is —O—.
U1およびU2が表す前記アルキレン基は、前述の通り、炭素数1~10のアルキル基および炭素数3~10のシクロアルキル基からなる群から選択される少なくとも1つの置換基によって置換されていてもよい。該置換基としてのアルキル基およびシクロアルキル基としては、前記R2が表すアルキル基およびシクロアルキル基と同じものが挙げられ、好ましいものも同じである。
U1としては、解像度およびLWRの観点から、メチレン基およびエチレン基からなる群から選択されるアルキレン基が好ましく、メチレン基がより好ましい。
また、U2としては、単結合、メチレン基が好ましく、単結合がより好ましく、また、メチレン基もより好ましい。 As described above, the alkylene group represented by U 1 and U 2 is substituted with at least one substituent selected from the group consisting of an alkyl group having 1 to 10 carbon atoms and a cycloalkyl group having 3 to 10 carbon atoms. May be. Examples of the alkyl group and cycloalkyl group as the substituent include the same as the alkyl group and cycloalkyl group represented by R 2 , and the preferred ones are also the same.
U 1 is preferably an alkylene group selected from the group consisting of a methylene group and an ethylene group, and more preferably a methylene group, from the viewpoints of resolution and LWR.
U 2 is preferably a single bond or a methylene group, more preferably a single bond, and more preferably a methylene group.
U1としては、解像度およびLWRの観点から、メチレン基およびエチレン基からなる群から選択されるアルキレン基が好ましく、メチレン基がより好ましい。
また、U2としては、単結合、メチレン基が好ましく、単結合がより好ましく、また、メチレン基もより好ましい。 As described above, the alkylene group represented by U 1 and U 2 is substituted with at least one substituent selected from the group consisting of an alkyl group having 1 to 10 carbon atoms and a cycloalkyl group having 3 to 10 carbon atoms. May be. Examples of the alkyl group and cycloalkyl group as the substituent include the same as the alkyl group and cycloalkyl group represented by R 2 , and the preferred ones are also the same.
U 1 is preferably an alkylene group selected from the group consisting of a methylene group and an ethylene group, and more preferably a methylene group, from the viewpoints of resolution and LWR.
U 2 is preferably a single bond or a methylene group, more preferably a single bond, and more preferably a methylene group.
U3が表す炭素数3~10のシクロアルキレン基としては、例えば、1,2-シクロブチレン基、1,2-シクロペンチレン基、1,2-シクロヘキシレン基、1,2-シクロオクチレン基、1,2-シクロデシレン基などが挙げられる。
前述の通り、U3が表すアルキレン基およびシクロアルキレン基は、炭素数1~10のアルキル基および炭素数3~10のシクロアルキル基からなる群から選択される少なくとも1つの置換基によって置換されていてもよい。該置換基としてのアルキル基およびシクロアルキル基としては、前記R2が表すアルキル基およびシクロアルキル基と同じものが挙げられ、好ましいものも同じである。
U3としては、解像度およびLWRの観点から、メチレン基、エチレン基、トリメチレン基およびテトラメチレン基からなる群から選択されるアルキレン基が好ましく、メチレン基およびエチレン基なる群から選択されるアルキレン基がより好ましく、エチレン基がさらに好ましい。また、これらが炭素数1~10のアルキル基で置換されていることも好ましく、これらがメチル基で置換されていることもより好ましいが、これらが無置換であることも好ましい。 Examples of the cycloalkylene group having 3 to 10 carbon atoms represented by U 3 include 1,2-cyclobutylene group, 1,2-cyclopentylene group, 1,2-cyclohexylene group, 1,2-cyclooctylene. Group, 1,2-cyclodecylene group and the like.
As described above, the alkylene group and cycloalkylene group represented by U 3 are substituted with at least one substituent selected from the group consisting of an alkyl group having 1 to 10 carbon atoms and a cycloalkyl group having 3 to 10 carbon atoms. May be. Examples of the alkyl group and cycloalkyl group as the substituent include the same as the alkyl group and cycloalkyl group represented by R 2 , and the preferred ones are also the same.
U 3 is preferably an alkylene group selected from the group consisting of a methylene group, an ethylene group, a trimethylene group and a tetramethylene group from the viewpoint of resolution and LWR, and an alkylene group selected from the group consisting of a methylene group and an ethylene group. More preferred is an ethylene group. Further, these are preferably substituted with an alkyl group having 1 to 10 carbon atoms, more preferably substituted with a methyl group, but these are also preferably unsubstituted.
前述の通り、U3が表すアルキレン基およびシクロアルキレン基は、炭素数1~10のアルキル基および炭素数3~10のシクロアルキル基からなる群から選択される少なくとも1つの置換基によって置換されていてもよい。該置換基としてのアルキル基およびシクロアルキル基としては、前記R2が表すアルキル基およびシクロアルキル基と同じものが挙げられ、好ましいものも同じである。
U3としては、解像度およびLWRの観点から、メチレン基、エチレン基、トリメチレン基およびテトラメチレン基からなる群から選択されるアルキレン基が好ましく、メチレン基およびエチレン基なる群から選択されるアルキレン基がより好ましく、エチレン基がさらに好ましい。また、これらが炭素数1~10のアルキル基で置換されていることも好ましく、これらがメチル基で置換されていることもより好ましいが、これらが無置換であることも好ましい。 Examples of the cycloalkylene group having 3 to 10 carbon atoms represented by U 3 include 1,2-cyclobutylene group, 1,2-cyclopentylene group, 1,2-cyclohexylene group, 1,2-cyclooctylene. Group, 1,2-cyclodecylene group and the like.
As described above, the alkylene group and cycloalkylene group represented by U 3 are substituted with at least one substituent selected from the group consisting of an alkyl group having 1 to 10 carbon atoms and a cycloalkyl group having 3 to 10 carbon atoms. May be. Examples of the alkyl group and cycloalkyl group as the substituent include the same as the alkyl group and cycloalkyl group represented by R 2 , and the preferred ones are also the same.
U 3 is preferably an alkylene group selected from the group consisting of a methylene group, an ethylene group, a trimethylene group and a tetramethylene group from the viewpoint of resolution and LWR, and an alkylene group selected from the group consisting of a methylene group and an ethylene group. More preferred is an ethylene group. Further, these are preferably substituted with an alkyl group having 1 to 10 carbon atoms, more preferably substituted with a methyl group, but these are also preferably unsubstituted.
A1およびA2が表す炭素数1~10の鎖状脂肪族炭化水素基としては、例えば、メチレン基、エチレン基、1-メチルエチレン基、トリメチレン基、イソプロピリデン基などが挙げられる。該鎖状脂肪族炭化水素基は、直鎖状であってもよいし、分岐鎖状であってもよい。該鎖状脂肪族炭化水素基としては、炭素数1~5の鎖状脂肪族炭化水素基が好ましく、炭素数1~3の鎖状脂肪族炭化水素基がより好ましく、メチレン基がさらに好ましい。
A2が表す炭素数3~10の脂環式炭化水素基としては、例えば、シクロブチリデン基、1,2-シクロブチレン基、シクロペンチリデン基、1,2-シクロペンチレン基、シクロヘキシリデン基、1,2-シクロヘキシレン基、1,4-シクロヘキシレン基などが挙げられる。該脂環式炭化水素基としては、炭素数4~6の脂環式炭化水素基が好ましい。また、該脂環式炭化水素基は、炭素数1~10のアルキル基によって置換されていてもよく、該置換基としてのアルキル基としては、前記R2が表すアルキル基と同じものが挙げられ、好ましいものも同じである。
以上の中でも、A1としては、単結合、メチレン基、1-メチルエチレン基が好ましく、単結合、メチレン基がより好ましく、単結合がさらに好ましく、またメチレン基もさらに好ましい。
また、kは0~2の整数を表し、0または1が好ましく、0がより好ましい。
なお、「単結合である」とは、何ら基を介さずに直接結合していることを意味し、例えばA1が単結合である場合、前記一般式(1)で示されるアクリル酸エステル誘導体は、下記一般式(1’)で示されることになる。
(上記一般式(1’)中、R1、R2、X1、X2、U1、U2、U3、A2およびkは、前記一般式(1)中のものと同じである。) Examples of the chain aliphatic hydrocarbon group having 1 to 10 carbon atoms represented by A 1 and A 2 include a methylene group, an ethylene group, a 1-methylethylene group, a trimethylene group, and an isopropylidene group. The chain aliphatic hydrocarbon group may be linear or branched. The chain aliphatic hydrocarbon group is preferably a chain aliphatic hydrocarbon group having 1 to 5 carbon atoms, more preferably a chain aliphatic hydrocarbon group having 1 to 3 carbon atoms, and still more preferably a methylene group.
Examples of the alicyclic hydrocarbon group having 3 to 10 carbon atoms represented by A 2 include a cyclobutylidene group, 1,2-cyclobutylene group, cyclopentylidene group, 1,2-cyclopentylene group, cyclohexylene, and the like. Den group, 1,2-cyclohexylene group, 1,4-cyclohexylene group and the like. The alicyclic hydrocarbon group is preferably an alicyclic hydrocarbon group having 4 to 6 carbon atoms. Further, the alicyclic hydrocarbon group may be substituted with an alkyl group having 1 to 10 carbon atoms, and examples of the alkyl group as the substituent include the same alkyl groups represented by R 2 above. The preferred ones are the same.
Among these, A 1 is preferably a single bond, a methylene group, or a 1-methylethylene group, more preferably a single bond or a methylene group, still more preferably a single bond, and even more preferably a methylene group.
K represents an integer of 0 to 2, preferably 0 or 1, and more preferably 0.
The term “single bond” means that they are directly bonded without any group. For example, when A 1 is a single bond, the acrylate derivative represented by the general formula (1) Is represented by the following general formula (1 ′).
(In the general formula (1 ′), R 1 , R 2 , X 1 , X 2 , U 1 , U 2 , U 3 , A 2 and k are the same as those in the general formula (1). .)
A2が表す炭素数3~10の脂環式炭化水素基としては、例えば、シクロブチリデン基、1,2-シクロブチレン基、シクロペンチリデン基、1,2-シクロペンチレン基、シクロヘキシリデン基、1,2-シクロヘキシレン基、1,4-シクロヘキシレン基などが挙げられる。該脂環式炭化水素基としては、炭素数4~6の脂環式炭化水素基が好ましい。また、該脂環式炭化水素基は、炭素数1~10のアルキル基によって置換されていてもよく、該置換基としてのアルキル基としては、前記R2が表すアルキル基と同じものが挙げられ、好ましいものも同じである。
以上の中でも、A1としては、単結合、メチレン基、1-メチルエチレン基が好ましく、単結合、メチレン基がより好ましく、単結合がさらに好ましく、またメチレン基もさらに好ましい。
また、kは0~2の整数を表し、0または1が好ましく、0がより好ましい。
なお、「単結合である」とは、何ら基を介さずに直接結合していることを意味し、例えばA1が単結合である場合、前記一般式(1)で示されるアクリル酸エステル誘導体は、下記一般式(1’)で示されることになる。
(上記一般式(1’)中、R1、R2、X1、X2、U1、U2、U3、A2およびkは、前記一般式(1)中のものと同じである。) Examples of the chain aliphatic hydrocarbon group having 1 to 10 carbon atoms represented by A 1 and A 2 include a methylene group, an ethylene group, a 1-methylethylene group, a trimethylene group, and an isopropylidene group. The chain aliphatic hydrocarbon group may be linear or branched. The chain aliphatic hydrocarbon group is preferably a chain aliphatic hydrocarbon group having 1 to 5 carbon atoms, more preferably a chain aliphatic hydrocarbon group having 1 to 3 carbon atoms, and still more preferably a methylene group.
Examples of the alicyclic hydrocarbon group having 3 to 10 carbon atoms represented by A 2 include a cyclobutylidene group, 1,2-cyclobutylene group, cyclopentylidene group, 1,2-cyclopentylene group, cyclohexylene, and the like. Den group, 1,2-cyclohexylene group, 1,4-cyclohexylene group and the like. The alicyclic hydrocarbon group is preferably an alicyclic hydrocarbon group having 4 to 6 carbon atoms. Further, the alicyclic hydrocarbon group may be substituted with an alkyl group having 1 to 10 carbon atoms, and examples of the alkyl group as the substituent include the same alkyl groups represented by R 2 above. The preferred ones are the same.
Among these, A 1 is preferably a single bond, a methylene group, or a 1-methylethylene group, more preferably a single bond or a methylene group, still more preferably a single bond, and even more preferably a methylene group.
K represents an integer of 0 to 2, preferably 0 or 1, and more preferably 0.
The term “single bond” means that they are directly bonded without any group. For example, when A 1 is a single bond, the acrylate derivative represented by the general formula (1) Is represented by the following general formula (1 ′).
(In the general formula (1 ′), R 1 , R 2 , X 1 , X 2 , U 1 , U 2 , U 3 , A 2 and k are the same as those in the general formula (1). .)
また、本発明のアクリル酸エステル誘導体(1)の中でも、解像度およびLWRの観点から、下記一般式(2)または(3)で示されるアクリル酸エステル誘導体がより好ましく、下記一般式(2-1)または(3-1)で示されるアクリル酸エステル誘導体がさらに好ましい。
Among the acrylic ester derivatives (1) of the present invention, from the viewpoint of resolution and LWR, an acrylic ester derivative represented by the following general formula (2) or (3) is more preferable, and the following general formula (2-1) ) Or (3-1) is more preferred.
(一般式(2)中、R1、R2、X1、X2、A2およびkは、前記一般式(1)中のものと同じである。
R3~R10は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。また、R11およびR12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基を表す。
zは0または1を表す。)
一般式(2)中のR1、R2、X1、X2、A2およびkの好ましいものは、一般式(1)中において説明したものと同じである。
R3~R10が表す炭素数1~10のアルキル基および炭素数3~10のシクロアルキル基としてはいずれも、前記した一般式(1)中のR2が表すアルキル基およびシクロアルキル基と同じものが挙げられ、好ましいものも同じである。
R3~R10としては、いずれも、水素原子、炭素数1~10のアルキル基が好ましく、水素原子、炭素数1~3のアルキル基がより好ましく、水素原子がさらに好ましい。
R11およびR12が表す炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、各種プロピル基などが挙げられる。これらの中でも、炭素数1または2のアルキル基が好ましく、メチル基がより好ましい。
R11およびR12としては、水素原子が好ましい。
zとしては0が好ましい。
(In the general formula (2), R 1 , R 2 , X 1 , X 2 , A 2 and k are the same as those in the general formula (1).
R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms. R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
z represents 0 or 1; )
Preferable ones of R 1 , R 2 , X 1 , X 2 , A 2 and k in the general formula (2) are the same as those described in the general formula (1).
The alkyl group having 1 to 10 carbon atoms and the cycloalkyl group having 3 to 10 carbon atoms represented by R 3 to R 10 are both an alkyl group and a cycloalkyl group represented by R 2 in the general formula (1) The same thing is mentioned, A preferable thing is also the same.
R 3 to R 10 are each preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and further preferably a hydrogen atom.
Examples of the alkyl group having 1 to 4 carbon atoms represented by R 11 and R 12 include a methyl group, an ethyl group, and various propyl groups. Among these, an alkyl group having 1 or 2 carbon atoms is preferable, and a methyl group is more preferable.
R 11 and R 12 are preferably a hydrogen atom.
z is preferably 0.
(一般式(3)中、R1、R2、X1、X2、A2およびkは、前記一般式(1)中のものと同じである。
R3~R10は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。また、R11およびR12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基を表す。
zは0または1を表す。)
一般式(3)中のR1、R2、X1、X2、A2およびkの好ましいものは、一般式(1)中において説明したものと同じである。
R3~R10が表す炭素数1~10のアルキル基および炭素数3~10のシクロアルキル基としてはいずれも、前記した一般式(1)中のR2が表すアルキル基およびシクロアルキル基と同じものが挙げられ、好ましいものも同じである。
R3~R10としては、いずれも、水素原子、炭素数1~10のアルキル基が好ましく、水素原子、炭素数1~3のアルキル基がより好ましく、水素原子がさらに好ましい。
R11およびR12が表す炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、各種プロピル基などが挙げられる。これらの中でも、炭素数1または2のアルキル基が好ましく、メチル基がより好ましい。
R11およびR12としては、水素原子が好ましい。
zとしては0が好ましい。
(In the general formula (3), R 1 , R 2 , X 1 , X 2 , A 2 and k are the same as those in the general formula (1).
R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms. R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
z represents 0 or 1; )
Preferable ones of R 1 , R 2 , X 1 , X 2 , A 2 and k in the general formula (3) are the same as those described in the general formula (1).
The alkyl group having 1 to 10 carbon atoms and the cycloalkyl group having 3 to 10 carbon atoms represented by R 3 to R 10 are both an alkyl group and a cycloalkyl group represented by R 2 in the general formula (1) The same thing is mentioned, A preferable thing is also the same.
R 3 to R 10 are each preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and further preferably a hydrogen atom.
Examples of the alkyl group having 1 to 4 carbon atoms represented by R 11 and R 12 include a methyl group, an ethyl group, and various propyl groups. Among these, an alkyl group having 1 or 2 carbon atoms is preferable, and a methyl group is more preferable.
R 11 and R 12 are preferably a hydrogen atom.
z is preferably 0.
(一般式(2-1)中、R1、R2、X1、X2、A2およびkは、前記一般式(1)中のものと同じである。)
一般式(2-1)中のR1、R2、X1、X2、A2およびkの好ましいものは、一般式(1)中において説明したものと同じである。
(In general formula (2-1), R 1 , R 2 , X 1 , X 2 , A 2 and k are the same as those in general formula (1).)
Preferable ones of R 1 , R 2 , X 1 , X 2 , A 2 and k in the general formula (2-1) are the same as those described in the general formula (1).
(一般式(3-1)中、R1、R2、X1、X2、A2およびkは、前記一般式(1)中のものと同じである。)
一般式(3-1)中のR1、R2、X1、X2、A2およびkの好ましいものは、一般式(1)中において説明したものと同じである。
(In general formula (3-1), R 1 , R 2 , X 1 , X 2 , A 2 and k are the same as those in general formula (1).)
Preferable R 1 , R 2 , X 1 , X 2 , A 2 and k in the general formula (3-1) are the same as those described in the general formula (1).
[混合物]
本発明は、前記アクリル酸エステル誘導体(1)を2種以上混合した混合物をも提供する。該混合物としては、前記一般式(2)で示されるアクリル酸エステル誘導体[以下、アクリル酸エステル誘導体(2)と称する。]と、前記一般式(3)で示されるアクリル酸エステル誘導体[以下、アクリル酸エステル誘導体(3)と称する。]との混合物が好ましい。さらに、アクリル酸エステル誘導体(2)およびアクリル酸エステル誘導体(3)それぞれにおいて、各基の好ましいものは前記の通りである。特に、アクリル酸エステル誘導体(2)およびアクリル酸エステル誘導体(3)の両方において、X1が-S(=O)2-であり、且つX2が-O-である混合物が好ましい。また、アクリル酸エステル誘導体(2)およびアクリル酸エステル誘導体(3)の両方において、kが0である混合物が好ましい。
アクリル酸エステル誘導体(2)とアクリル酸エステル誘導体(3)との混合比率[アクリル酸エステル誘導体(2):アクリル酸エステル誘導体(3)]は、解像度およびLWRの観点から、モル比で、好ましくは50:50~95:5、より好ましくは60:40~95:5、さらに好ましくは60:40~90:10、特に好ましくは70:30~90:10である。
該混合物を用いて得られる高分子化合物(つまり該混合物に由来する構成単位を有する高分子化合物)を用いたフォトレジスト組成物であれば、LWRが改善され、且つ高解像度のフォトレジストパターンが形成される。ここで、「混合物に由来する構成単位」とは、混合物が含有する本発明のアクリル酸エステル誘導体に由来する構成単位すべてのことを示す。 [blend]
The present invention also provides a mixture obtained by mixing two or more of the acrylate derivative (1). The mixture includes an acrylic ester derivative represented by the general formula (2) [hereinafter referred to as an acrylic ester derivative (2). ] And an acrylate derivative represented by the general formula (3) [hereinafter referred to as an acrylate derivative (3). And a mixture thereof is preferred. Furthermore, in each of the acrylic ester derivative (2) and the acrylic ester derivative (3), preferred groups are as described above. In particular, in both the acrylic ester derivative (2) and the acrylic ester derivative (3), a mixture in which X 1 is —S (═O) 2 — and X 2 is —O— is preferable. Moreover, the mixture whose k is 0 is preferable in both the acrylic ester derivative (2) and the acrylic ester derivative (3).
The mixing ratio of the acrylate derivative (2) and the acrylate derivative (3) [acrylate derivative (2): acrylate derivative (3)] is preferably a molar ratio from the viewpoint of resolution and LWR. Is 50:50 to 95: 5, more preferably 60:40 to 95: 5, still more preferably 60:40 to 90:10, and particularly preferably 70:30 to 90:10.
If the photoresist composition uses a polymer compound obtained by using the mixture (that is, a polymer compound having a structural unit derived from the mixture), the LWR is improved and a high-resolution photoresist pattern is formed. Is done. Here, the “structural unit derived from the mixture” refers to all the structural units derived from the acrylate derivative of the present invention contained in the mixture.
本発明は、前記アクリル酸エステル誘導体(1)を2種以上混合した混合物をも提供する。該混合物としては、前記一般式(2)で示されるアクリル酸エステル誘導体[以下、アクリル酸エステル誘導体(2)と称する。]と、前記一般式(3)で示されるアクリル酸エステル誘導体[以下、アクリル酸エステル誘導体(3)と称する。]との混合物が好ましい。さらに、アクリル酸エステル誘導体(2)およびアクリル酸エステル誘導体(3)それぞれにおいて、各基の好ましいものは前記の通りである。特に、アクリル酸エステル誘導体(2)およびアクリル酸エステル誘導体(3)の両方において、X1が-S(=O)2-であり、且つX2が-O-である混合物が好ましい。また、アクリル酸エステル誘導体(2)およびアクリル酸エステル誘導体(3)の両方において、kが0である混合物が好ましい。
アクリル酸エステル誘導体(2)とアクリル酸エステル誘導体(3)との混合比率[アクリル酸エステル誘導体(2):アクリル酸エステル誘導体(3)]は、解像度およびLWRの観点から、モル比で、好ましくは50:50~95:5、より好ましくは60:40~95:5、さらに好ましくは60:40~90:10、特に好ましくは70:30~90:10である。
該混合物を用いて得られる高分子化合物(つまり該混合物に由来する構成単位を有する高分子化合物)を用いたフォトレジスト組成物であれば、LWRが改善され、且つ高解像度のフォトレジストパターンが形成される。ここで、「混合物に由来する構成単位」とは、混合物が含有する本発明のアクリル酸エステル誘導体に由来する構成単位すべてのことを示す。 [blend]
The present invention also provides a mixture obtained by mixing two or more of the acrylate derivative (1). The mixture includes an acrylic ester derivative represented by the general formula (2) [hereinafter referred to as an acrylic ester derivative (2). ] And an acrylate derivative represented by the general formula (3) [hereinafter referred to as an acrylate derivative (3). And a mixture thereof is preferred. Furthermore, in each of the acrylic ester derivative (2) and the acrylic ester derivative (3), preferred groups are as described above. In particular, in both the acrylic ester derivative (2) and the acrylic ester derivative (3), a mixture in which X 1 is —S (═O) 2 — and X 2 is —O— is preferable. Moreover, the mixture whose k is 0 is preferable in both the acrylic ester derivative (2) and the acrylic ester derivative (3).
The mixing ratio of the acrylate derivative (2) and the acrylate derivative (3) [acrylate derivative (2): acrylate derivative (3)] is preferably a molar ratio from the viewpoint of resolution and LWR. Is 50:50 to 95: 5, more preferably 60:40 to 95: 5, still more preferably 60:40 to 90:10, and particularly preferably 70:30 to 90:10.
If the photoresist composition uses a polymer compound obtained by using the mixture (that is, a polymer compound having a structural unit derived from the mixture), the LWR is improved and a high-resolution photoresist pattern is formed. Is done. Here, the “structural unit derived from the mixture” refers to all the structural units derived from the acrylate derivative of the present invention contained in the mixture.
本発明のアクリル酸エステル誘導体の具体例を以下に示すが、特にこれらに限定されるものではない。
Specific examples of the acrylate derivative of the present invention are shown below, but are not particularly limited thereto.
Specific examples of the acrylate derivative of the present invention are shown below, but are not particularly limited thereto.
(アクリル酸エステル誘導体(1)の製造方法)
本発明のアクリル酸エステル誘導体(1)の製造方法に特に制限はなく、公知の化学反応を利用および応用することができる。
例えば、下記化学反応式1に示すように、酸化剤によってアルコール誘導体(a)を酸化してアルコール誘導体(b)とし[以下、この反応を反応(i)と称する。]、次いで、アルコール誘導体(b)とエステル誘導体(c)とを反応させる[以下、この反応を反応(ii)と称する。]ことにより、アクリル酸エステル誘導体(1)を製造できる。
(Method for producing acrylic ester derivative (1))
There is no restriction | limiting in particular in the manufacturing method of acrylic ester derivative (1) of this invention, A well-known chemical reaction can be utilized and applied.
For example, as shown in the following chemical reaction formula 1, an alcohol derivative (a) is oxidized with an oxidizing agent to form an alcohol derivative (b) [hereinafter, this reaction is referred to as reaction (i). Then, the alcohol derivative (b) and the ester derivative (c) are reacted [hereinafter, this reaction is referred to as reaction (ii). The acrylic ester derivative (1) can be produced.
本発明のアクリル酸エステル誘導体(1)の製造方法に特に制限はなく、公知の化学反応を利用および応用することができる。
例えば、下記化学反応式1に示すように、酸化剤によってアルコール誘導体(a)を酸化してアルコール誘導体(b)とし[以下、この反応を反応(i)と称する。]、次いで、アルコール誘導体(b)とエステル誘導体(c)とを反応させる[以下、この反応を反応(ii)と称する。]ことにより、アクリル酸エステル誘導体(1)を製造できる。
There is no restriction | limiting in particular in the manufacturing method of acrylic ester derivative (1) of this invention, A well-known chemical reaction can be utilized and applied.
For example, as shown in the following chemical reaction formula 1, an alcohol derivative (a) is oxidized with an oxidizing agent to form an alcohol derivative (b) [hereinafter, this reaction is referred to as reaction (i). Then, the alcohol derivative (b) and the ester derivative (c) are reacted [hereinafter, this reaction is referred to as reaction (ii). The acrylic ester derivative (1) can be produced.
上記化学反応式1中、R1、R2、A1、A2、U1、U2、U3、X1、X2およびkは、前記一般式(1)中のものと同じであり、好ましいものも同じである。
X5は、-O-または-S-を表す。なお、アルコール誘導体(a)中のX5が-O-である場合、アルコール誘導体(b)中のX2は-O-となる。アルコール誘導体(a)中のX5が-S-である場合、アルコール誘導体(b)中のX2は、-S(=O)-または-S(=O)2-となる。
Y1は、ハロゲン原子、ヒドロキシル基、またはR13-C(=O)-O-を表す。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられるが、取扱い性の容易さなどの観点から、塩素原子が好ましい。該R13は、炭素数1~10(好ましくは1~5)のアルキル基、炭素数3~10(好ましくは4~6)のシクロアルキル基、炭素数6~12(好ましくは6)のアリール基、炭素数6~12(好ましくは6)のハロゲン置換アリール基、ビニル基、アルキル置換ビニル基(アルキル基部位の炭素数は1~10、好ましくは1~5、より好ましくは1~3)、メトキシ基またはエトキシ基である。R13としては、炭素数1~10のアルキル基、ビニル基、1-メチルビニル基、メトキシ基、エトキシ基が好ましく、t-ブチル基、ビニル基、1-メチルビニル基、メトキシ基、エトキシ基がより好ましい。 In the chemical reaction formula 1, R 1 , R 2 , A 1 , A 2 , U 1 , U 2 , U 3 , X 1 , X 2 and k are the same as those in the general formula (1). The preferred ones are the same.
X 5 represents —O— or —S—. When X 5 in the alcohol derivative (a) is —O—, X 2 in the alcohol derivative (b) is —O—. When X 5 in the alcohol derivative (a) is —S—, X 2 in the alcohol derivative (b) is —S (═O) — or —S (═O) 2 —.
Y 1 represents a halogen atom, a hydroxyl group, or R 13 —C (═O) —O—. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. From the viewpoint of ease of handling, a chlorine atom is preferable. R 13 represents an alkyl group having 1 to 10 (preferably 1 to 5) carbon atoms, a cycloalkyl group having 3 to 10 (preferably 4 to 6) carbon atoms, or an aryl having 6 to 12 (preferably 6) carbon atoms. Group, a halogen-substituted aryl group having 6 to 12 carbon atoms (preferably 6), a vinyl group, and an alkyl-substituted vinyl group (the carbon number of the alkyl group moiety is 1 to 10, preferably 1 to 5, more preferably 1 to 3) , A methoxy group or an ethoxy group. R 13 is preferably an alkyl group having 1 to 10 carbon atoms, a vinyl group, a 1-methylvinyl group, a methoxy group or an ethoxy group, and a t-butyl group, a vinyl group, a 1-methylvinyl group, a methoxy group or an ethoxy group. Is more preferable.
X5は、-O-または-S-を表す。なお、アルコール誘導体(a)中のX5が-O-である場合、アルコール誘導体(b)中のX2は-O-となる。アルコール誘導体(a)中のX5が-S-である場合、アルコール誘導体(b)中のX2は、-S(=O)-または-S(=O)2-となる。
Y1は、ハロゲン原子、ヒドロキシル基、またはR13-C(=O)-O-を表す。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられるが、取扱い性の容易さなどの観点から、塩素原子が好ましい。該R13は、炭素数1~10(好ましくは1~5)のアルキル基、炭素数3~10(好ましくは4~6)のシクロアルキル基、炭素数6~12(好ましくは6)のアリール基、炭素数6~12(好ましくは6)のハロゲン置換アリール基、ビニル基、アルキル置換ビニル基(アルキル基部位の炭素数は1~10、好ましくは1~5、より好ましくは1~3)、メトキシ基またはエトキシ基である。R13としては、炭素数1~10のアルキル基、ビニル基、1-メチルビニル基、メトキシ基、エトキシ基が好ましく、t-ブチル基、ビニル基、1-メチルビニル基、メトキシ基、エトキシ基がより好ましい。 In the chemical reaction formula 1, R 1 , R 2 , A 1 , A 2 , U 1 , U 2 , U 3 , X 1 , X 2 and k are the same as those in the general formula (1). The preferred ones are the same.
X 5 represents —O— or —S—. When X 5 in the alcohol derivative (a) is —O—, X 2 in the alcohol derivative (b) is —O—. When X 5 in the alcohol derivative (a) is —S—, X 2 in the alcohol derivative (b) is —S (═O) — or —S (═O) 2 —.
Y 1 represents a halogen atom, a hydroxyl group, or R 13 —C (═O) —O—. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. From the viewpoint of ease of handling, a chlorine atom is preferable. R 13 represents an alkyl group having 1 to 10 (preferably 1 to 5) carbon atoms, a cycloalkyl group having 3 to 10 (preferably 4 to 6) carbon atoms, or an aryl having 6 to 12 (preferably 6) carbon atoms. Group, a halogen-substituted aryl group having 6 to 12 carbon atoms (preferably 6), a vinyl group, and an alkyl-substituted vinyl group (the carbon number of the alkyl group moiety is 1 to 10, preferably 1 to 5, more preferably 1 to 3) , A methoxy group or an ethoxy group. R 13 is preferably an alkyl group having 1 to 10 carbon atoms, a vinyl group, a 1-methylvinyl group, a methoxy group or an ethoxy group, and a t-butyl group, a vinyl group, a 1-methylvinyl group, a methoxy group or an ethoxy group. Is more preferable.
(反応(i))
反応(i)は、酸化剤によってアルコール誘導体(a)を酸化する反応であり、アルコール誘導体(b)が得られる。
反応(i)において用いる酸化剤としては、例えば、過酸、過酸化物が挙げられる。過酸としては、例えば、過ギ酸、過酢酸、トリフルオロ過酢酸、過安息香酸、m-クロロ過安息香酸、モノペルオキシフタル酸等の過カルボン酸などの有機過酸;過マンガン酸などの無機過酸;およびこれらの塩が挙げられる。該塩としては、リチウム塩、ナトリウム塩、カリウム塩などのアルカリ金属塩が挙げられる。
過酸として有機過酸を用いる場合、該有機過酸は、平衡過ギ酸、平衡過酢酸などの平衡過酸を利用してもよい。平衡過酸を利用する場合には、例えば、所望の過酸に対応する酸(例えば、過ギ酸に対応するのはギ酸、過酢酸に対応するのは酢酸)と過酸化水素とを組み合わせて反応系に添加すればよい。これにより、反応系において所望の有機過酸(例えば、過ギ酸、過酢酸など)が生成し、酸化剤として機能する。さらに、平衡過酸を用いる場合には、触媒として、硫酸などの強酸を使用してもよい。
また、過酸化物としては、例えば、過酸化水素、ペルオキシド、ヒドロペルオシド、並びにペルオキソ酸およびその塩などが挙げられる。過酸化水素は希釈せずにそのまま用いてもよいが、取扱い容易性の観点から、適当な溶媒(例えば、水)で希釈して、例えば、20~65質量%過酸化水素水、好ましくは20~40質量%過酸化水素水として用いることもできる。 (Reaction (i))
Reaction (i) is a reaction in which the alcohol derivative (a) is oxidized with an oxidizing agent, and the alcohol derivative (b) is obtained.
Examples of the oxidizing agent used in the reaction (i) include peracids and peroxides. Examples of the peracid include organic peracids such as performic acid, peracetic acid, trifluoroperacetic acid, perbenzoic acid, m-chloroperbenzoic acid, and percarboxylic acids such as monoperoxyphthalic acid; inorganics such as permanganic acid Peracids; and their salts. Examples of the salt include alkali metal salts such as lithium salt, sodium salt and potassium salt.
When an organic peracid is used as the peracid, the organic peracid may use an equilibrium peracid such as equilibrium formic acid or equilibrium peracetic acid. When using an equilibrium peracid, for example, an acid corresponding to a desired peracid (for example, formic acid corresponding to performic acid, acetic acid corresponding to peracetic acid) and hydrogen peroxide are combined and reacted. What is necessary is just to add to a system. Thereby, a desired organic peracid (for example, performic acid, peracetic acid, etc.) is generated in the reaction system and functions as an oxidizing agent. Further, when an equilibrium peracid is used, a strong acid such as sulfuric acid may be used as a catalyst.
Examples of the peroxide include hydrogen peroxide, peroxide, hydroperoside, and peroxo acid and its salt. Hydrogen peroxide may be used as it is without being diluted. However, from the viewpoint of ease of handling, it is diluted with a suitable solvent (for example, water) and is diluted with, for example, 20 to 65% by mass of hydrogen peroxide, preferably 20 It can also be used as ˜40 mass% hydrogen peroxide solution.
反応(i)は、酸化剤によってアルコール誘導体(a)を酸化する反応であり、アルコール誘導体(b)が得られる。
反応(i)において用いる酸化剤としては、例えば、過酸、過酸化物が挙げられる。過酸としては、例えば、過ギ酸、過酢酸、トリフルオロ過酢酸、過安息香酸、m-クロロ過安息香酸、モノペルオキシフタル酸等の過カルボン酸などの有機過酸;過マンガン酸などの無機過酸;およびこれらの塩が挙げられる。該塩としては、リチウム塩、ナトリウム塩、カリウム塩などのアルカリ金属塩が挙げられる。
過酸として有機過酸を用いる場合、該有機過酸は、平衡過ギ酸、平衡過酢酸などの平衡過酸を利用してもよい。平衡過酸を利用する場合には、例えば、所望の過酸に対応する酸(例えば、過ギ酸に対応するのはギ酸、過酢酸に対応するのは酢酸)と過酸化水素とを組み合わせて反応系に添加すればよい。これにより、反応系において所望の有機過酸(例えば、過ギ酸、過酢酸など)が生成し、酸化剤として機能する。さらに、平衡過酸を用いる場合には、触媒として、硫酸などの強酸を使用してもよい。
また、過酸化物としては、例えば、過酸化水素、ペルオキシド、ヒドロペルオシド、並びにペルオキソ酸およびその塩などが挙げられる。過酸化水素は希釈せずにそのまま用いてもよいが、取扱い容易性の観点から、適当な溶媒(例えば、水)で希釈して、例えば、20~65質量%過酸化水素水、好ましくは20~40質量%過酸化水素水として用いることもできる。 (Reaction (i))
Reaction (i) is a reaction in which the alcohol derivative (a) is oxidized with an oxidizing agent, and the alcohol derivative (b) is obtained.
Examples of the oxidizing agent used in the reaction (i) include peracids and peroxides. Examples of the peracid include organic peracids such as performic acid, peracetic acid, trifluoroperacetic acid, perbenzoic acid, m-chloroperbenzoic acid, and percarboxylic acids such as monoperoxyphthalic acid; inorganics such as permanganic acid Peracids; and their salts. Examples of the salt include alkali metal salts such as lithium salt, sodium salt and potassium salt.
When an organic peracid is used as the peracid, the organic peracid may use an equilibrium peracid such as equilibrium formic acid or equilibrium peracetic acid. When using an equilibrium peracid, for example, an acid corresponding to a desired peracid (for example, formic acid corresponding to performic acid, acetic acid corresponding to peracetic acid) and hydrogen peroxide are combined and reacted. What is necessary is just to add to a system. Thereby, a desired organic peracid (for example, performic acid, peracetic acid, etc.) is generated in the reaction system and functions as an oxidizing agent. Further, when an equilibrium peracid is used, a strong acid such as sulfuric acid may be used as a catalyst.
Examples of the peroxide include hydrogen peroxide, peroxide, hydroperoside, and peroxo acid and its salt. Hydrogen peroxide may be used as it is without being diluted. However, from the viewpoint of ease of handling, it is diluted with a suitable solvent (for example, water) and is diluted with, for example, 20 to 65% by mass of hydrogen peroxide, preferably 20 It can also be used as ˜40 mass% hydrogen peroxide solution.
なお、過酸化物として過酸化水素が用いられる場合には、金属化合物が併用されることが多い。過酸化水素と共に金属化合物が併用される場合の具体的な形態(金属化合物の種類やその使用量)については、特開2007-31355号公報の段落[0036]~[0041]の記載が適宜参照され得る。
酸化剤としては、好ましくは有機過酸、より好ましくは平衡過酸、さらに好ましくは平衡過酸として得られる過ギ酸である。
酸化剤の使用量に特に制限はないが、経済性および後処理の容易さの観点から、アルコール誘導体(a)1モルに対して、好ましくは0.5~10モル、より好ましくは0.8~4モルである。 When hydrogen peroxide is used as the peroxide, a metal compound is often used in combination. For specific forms in the case where a metal compound is used in combination with hydrogen peroxide (the type of metal compound and the amount used), refer to paragraphs [0036] to [0041] of JP-A-2007-31355 as appropriate. Can be done.
The oxidizing agent is preferably organic peracid, more preferably equilibrium peracid, and still more preferably formic acid obtained as equilibrium peracid.
The amount of the oxidizing agent used is not particularly limited, but from the viewpoint of economy and ease of post-treatment, it is preferably 0.5 to 10 moles, more preferably 0.8 moles per mole of the alcohol derivative (a). ~ 4 moles.
酸化剤としては、好ましくは有機過酸、より好ましくは平衡過酸、さらに好ましくは平衡過酸として得られる過ギ酸である。
酸化剤の使用量に特に制限はないが、経済性および後処理の容易さの観点から、アルコール誘導体(a)1モルに対して、好ましくは0.5~10モル、より好ましくは0.8~4モルである。 When hydrogen peroxide is used as the peroxide, a metal compound is often used in combination. For specific forms in the case where a metal compound is used in combination with hydrogen peroxide (the type of metal compound and the amount used), refer to paragraphs [0036] to [0041] of JP-A-2007-31355 as appropriate. Can be done.
The oxidizing agent is preferably organic peracid, more preferably equilibrium peracid, and still more preferably formic acid obtained as equilibrium peracid.
The amount of the oxidizing agent used is not particularly limited, but from the viewpoint of economy and ease of post-treatment, it is preferably 0.5 to 10 moles, more preferably 0.8 moles per mole of the alcohol derivative (a). ~ 4 moles.
反応(i)は、溶媒の存在下または非存在下で実施できるが、溶媒の存在下で行うことが好ましい。
溶媒としては、反応を阻害しない限り特に制限はないが、例えば、水;ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素;トルエン、キシレン、シメンなどの芳香族炭化水素;塩化メチレン、ジクロロエタンなどのハロゲン化炭化水素;テトラヒドロフラン、ジイソプロピルエーテルなどのエーテル;ギ酸、酢酸などのカルボン酸等が挙げられる。溶媒は、1種を単独で使用してもよいし、2種以上を併用してもよい。
反応(i)を溶媒の存在下で行う場合、溶媒の使用量は、経済性および後処理の容易さの観点から、アルコール誘導体(a)1質量部に対して、好ましくは0.1~20質量部、より好ましくは0.3~10質量部である。また、平衡過酸を酸化剤として用いる場合、反応速度および収率の観点からは、溶媒は水を含むことが好ましく、溶媒として水を単独で用いることがより好ましい。
反応(i)における反応温度は特に制限されず、所望の反応速度、反応の選択性、および酸化剤の種類などを考慮して適宜決定され得るが、好ましくは-40~100℃、より好ましくは10~80℃、さらに好ましくは15~50℃である。 Reaction (i) can be carried out in the presence or absence of a solvent, but is preferably carried out in the presence of a solvent.
The solvent is not particularly limited as long as it does not inhibit the reaction. For example, water; aliphatic hydrocarbons such as hexane, heptane, and octane; aromatic hydrocarbons such as toluene, xylene, and cymene; halogens such as methylene chloride and dichloroethane. Hydrocarbons; ethers such as tetrahydrofuran and diisopropyl ether; carboxylic acids such as formic acid and acetic acid. A solvent may be used individually by 1 type and may use 2 or more types together.
When reaction (i) is carried out in the presence of a solvent, the amount of the solvent used is preferably 0.1 to 20 with respect to 1 part by mass of the alcohol derivative (a) from the viewpoint of economy and ease of post-treatment. Part by mass, more preferably 0.3 to 10 parts by mass. Moreover, when using equilibrium peracid as an oxidizing agent, it is preferable that a solvent contains water from a viewpoint of reaction rate and a yield, and it is more preferable to use water alone as a solvent.
The reaction temperature in the reaction (i) is not particularly limited, and can be appropriately determined in consideration of a desired reaction rate, reaction selectivity, type of oxidizing agent, etc., preferably −40 to 100 ° C., more preferably The temperature is 10 to 80 ° C, more preferably 15 to 50 ° C.
溶媒としては、反応を阻害しない限り特に制限はないが、例えば、水;ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素;トルエン、キシレン、シメンなどの芳香族炭化水素;塩化メチレン、ジクロロエタンなどのハロゲン化炭化水素;テトラヒドロフラン、ジイソプロピルエーテルなどのエーテル;ギ酸、酢酸などのカルボン酸等が挙げられる。溶媒は、1種を単独で使用してもよいし、2種以上を併用してもよい。
反応(i)を溶媒の存在下で行う場合、溶媒の使用量は、経済性および後処理の容易さの観点から、アルコール誘導体(a)1質量部に対して、好ましくは0.1~20質量部、より好ましくは0.3~10質量部である。また、平衡過酸を酸化剤として用いる場合、反応速度および収率の観点からは、溶媒は水を含むことが好ましく、溶媒として水を単独で用いることがより好ましい。
反応(i)における反応温度は特に制限されず、所望の反応速度、反応の選択性、および酸化剤の種類などを考慮して適宜決定され得るが、好ましくは-40~100℃、より好ましくは10~80℃、さらに好ましくは15~50℃である。 Reaction (i) can be carried out in the presence or absence of a solvent, but is preferably carried out in the presence of a solvent.
The solvent is not particularly limited as long as it does not inhibit the reaction. For example, water; aliphatic hydrocarbons such as hexane, heptane, and octane; aromatic hydrocarbons such as toluene, xylene, and cymene; halogens such as methylene chloride and dichloroethane. Hydrocarbons; ethers such as tetrahydrofuran and diisopropyl ether; carboxylic acids such as formic acid and acetic acid. A solvent may be used individually by 1 type and may use 2 or more types together.
When reaction (i) is carried out in the presence of a solvent, the amount of the solvent used is preferably 0.1 to 20 with respect to 1 part by mass of the alcohol derivative (a) from the viewpoint of economy and ease of post-treatment. Part by mass, more preferably 0.3 to 10 parts by mass. Moreover, when using equilibrium peracid as an oxidizing agent, it is preferable that a solvent contains water from a viewpoint of reaction rate and a yield, and it is more preferable to use water alone as a solvent.
The reaction temperature in the reaction (i) is not particularly limited, and can be appropriately determined in consideration of a desired reaction rate, reaction selectivity, type of oxidizing agent, etc., preferably −40 to 100 ° C., more preferably The temperature is 10 to 80 ° C, more preferably 15 to 50 ° C.
酸化剤として平衡過酸を用いる場合、溶媒の存在下または非存在下、過酸に対応する酸(例えば、過ギ酸に対応するのはギ酸、過酢酸に対応するのは酢酸)とアルコール誘導体(a)を含有する混合溶液中へ、過酸化水素を添加(好ましくは滴下)する方法が好ましい。急激な温度上昇をさせない限り、添加時間(滴下時間)に特に制限はなく、例えば30分~24時間の範囲で適宜調整すればよい。
特に制限されるわけではないが、ガスクロマトグラフィー分析によるアルコール誘導体(a)の消失の確認をもって、反応(i)が終了したと判断できる。
なお、反応(i)は、バッチ方式、セミバッチ方式、連続方式などのいずれの方法でも実施可能である。 When using an equilibrium peracid as the oxidizing agent, an acid corresponding to the peracid (for example, formic acid corresponding to performic acid, acetic acid corresponding to peracetic acid) and an alcohol derivative (in the presence or absence of a solvent) A method of adding (preferably dropping) hydrogen peroxide into the mixed solution containing a) is preferable. As long as the temperature is not rapidly increased, the addition time (dropping time) is not particularly limited, and may be appropriately adjusted within a range of, for example, 30 minutes to 24 hours.
Although not particularly limited, it can be determined that the reaction (i) has been completed by confirming the disappearance of the alcohol derivative (a) by gas chromatography analysis.
Reaction (i) can be carried out by any method such as a batch method, a semi-batch method, and a continuous method.
特に制限されるわけではないが、ガスクロマトグラフィー分析によるアルコール誘導体(a)の消失の確認をもって、反応(i)が終了したと判断できる。
なお、反応(i)は、バッチ方式、セミバッチ方式、連続方式などのいずれの方法でも実施可能である。 When using an equilibrium peracid as the oxidizing agent, an acid corresponding to the peracid (for example, formic acid corresponding to performic acid, acetic acid corresponding to peracetic acid) and an alcohol derivative (in the presence or absence of a solvent) A method of adding (preferably dropping) hydrogen peroxide into the mixed solution containing a) is preferable. As long as the temperature is not rapidly increased, the addition time (dropping time) is not particularly limited, and may be appropriately adjusted within a range of, for example, 30 minutes to 24 hours.
Although not particularly limited, it can be determined that the reaction (i) has been completed by confirming the disappearance of the alcohol derivative (a) by gas chromatography analysis.
Reaction (i) can be carried out by any method such as a batch method, a semi-batch method, and a continuous method.
反応(i)の酸化反応の終了後は、還元剤を添加することにより、反応せずに残存した酸化剤をクエンチすることが好ましい。該還元剤に特に制限はないが、例えば、亜硫酸ナトリウムおよび亜硫酸水素ナトリウムなどの亜硫酸塩;ジメチルスルフィドおよびジフェニルスルフィドなどのスルフィド等が挙げられる。
反応せずに残存した酸化剤をクエンチするための還元剤の使用量に特に制限はないが、反応系内に残存した酸化剤に対して1~5等量であることが好ましい。 After completion of the oxidation reaction of reaction (i), it is preferable to quench the remaining oxidizing agent without reacting by adding a reducing agent. The reducing agent is not particularly limited, and examples thereof include sulfites such as sodium sulfite and sodium bisulfite; sulfides such as dimethyl sulfide and diphenyl sulfide.
The amount of the reducing agent used for quenching the oxidant remaining without reacting is not particularly limited, but is preferably 1 to 5 equivalents with respect to the oxidant remaining in the reaction system.
反応せずに残存した酸化剤をクエンチするための還元剤の使用量に特に制限はないが、反応系内に残存した酸化剤に対して1~5等量であることが好ましい。 After completion of the oxidation reaction of reaction (i), it is preferable to quench the remaining oxidizing agent without reacting by adding a reducing agent. The reducing agent is not particularly limited, and examples thereof include sulfites such as sodium sulfite and sodium bisulfite; sulfides such as dimethyl sulfide and diphenyl sulfide.
The amount of the reducing agent used for quenching the oxidant remaining without reacting is not particularly limited, but is preferably 1 to 5 equivalents with respect to the oxidant remaining in the reaction system.
(反応(ii))
反応(ii)は、アルコール誘導体(b)とエステル誘導体(c)との反応であり、アクリル酸エステル誘導体(1)が得られる。
反応(ii)で用いられるエステル誘導体(c)の具体例としては、アクリル酸クロライド、メタクリル酸クロリド、2-トリフルオロメチルアクリル酸クロリドなどのカルボン酸ハライド;アクリル酸、メタクリル酸、2-トリフルオロメチルアクリル酸などのカルボン酸;アクリル酸無水物、メタクリル酸無水物、アクリル酸ピバリン酸無水物、アクリル酸2,4,6-トリクロロ安息香酸無水物、メタクリル酸ピバリン酸無水物、メタクリル酸2,4,6-トリクロロ安息香酸無水物、2-トリフルオロメチルアクリル酸無水物、2-トリフルオロメチルアクリル酸ピバリン酸無水物、2-トリフルオロメチルアクリル酸2,4,6-トリクロロ安息香酸無水物などの酸無水物等が挙げられる。
エステル誘導体(c)の使用量は、経済性および後処理の容易さの観点から、アルコール誘導体(b)1モルに対して、0.8~5モルが好ましく、0.8~3モルがより好ましい。 (Reaction (ii))
Reaction (ii) is a reaction between the alcohol derivative (b) and the ester derivative (c), and the acrylate derivative (1) is obtained.
Specific examples of the ester derivative (c) used in the reaction (ii) include carboxylic acid halides such as acrylic acid chloride, methacrylic acid chloride, 2-trifluoromethylacrylic acid chloride; acrylic acid, methacrylic acid, 2-trifluoro Carboxylic acids such as methyl acrylic acid; acrylic acid anhydride, methacrylic acid anhydride, acrylic acid pivalic acid anhydride, acrylic acid 2,4,6-trichlorobenzoic acid anhydride, methacrylic acid pivalic acid anhydride, methacrylic acid 2, 4,6-trichlorobenzoic anhydride, 2-trifluoromethylacrylic anhydride, 2-trifluoromethylacrylic acid pivalic anhydride, 2-trifluoromethylacrylic acid 2,4,6-trichlorobenzoic anhydride And acid anhydrides.
The amount of the ester derivative (c) used is preferably from 0.8 to 5 mol, more preferably from 0.8 to 3 mol, based on 1 mol of the alcohol derivative (b), from the viewpoint of economy and ease of post-treatment. preferable.
反応(ii)は、アルコール誘導体(b)とエステル誘導体(c)との反応であり、アクリル酸エステル誘導体(1)が得られる。
反応(ii)で用いられるエステル誘導体(c)の具体例としては、アクリル酸クロライド、メタクリル酸クロリド、2-トリフルオロメチルアクリル酸クロリドなどのカルボン酸ハライド;アクリル酸、メタクリル酸、2-トリフルオロメチルアクリル酸などのカルボン酸;アクリル酸無水物、メタクリル酸無水物、アクリル酸ピバリン酸無水物、アクリル酸2,4,6-トリクロロ安息香酸無水物、メタクリル酸ピバリン酸無水物、メタクリル酸2,4,6-トリクロロ安息香酸無水物、2-トリフルオロメチルアクリル酸無水物、2-トリフルオロメチルアクリル酸ピバリン酸無水物、2-トリフルオロメチルアクリル酸2,4,6-トリクロロ安息香酸無水物などの酸無水物等が挙げられる。
エステル誘導体(c)の使用量は、経済性および後処理の容易さの観点から、アルコール誘導体(b)1モルに対して、0.8~5モルが好ましく、0.8~3モルがより好ましい。 (Reaction (ii))
Reaction (ii) is a reaction between the alcohol derivative (b) and the ester derivative (c), and the acrylate derivative (1) is obtained.
Specific examples of the ester derivative (c) used in the reaction (ii) include carboxylic acid halides such as acrylic acid chloride, methacrylic acid chloride, 2-trifluoromethylacrylic acid chloride; acrylic acid, methacrylic acid, 2-trifluoro Carboxylic acids such as methyl acrylic acid; acrylic acid anhydride, methacrylic acid anhydride, acrylic acid pivalic acid anhydride, acrylic acid 2,4,6-trichlorobenzoic acid anhydride, methacrylic acid pivalic acid anhydride, methacrylic acid 2, 4,6-trichlorobenzoic anhydride, 2-trifluoromethylacrylic anhydride, 2-trifluoromethylacrylic acid pivalic anhydride, 2-trifluoromethylacrylic acid 2,4,6-trichlorobenzoic anhydride And acid anhydrides.
The amount of the ester derivative (c) used is preferably from 0.8 to 5 mol, more preferably from 0.8 to 3 mol, based on 1 mol of the alcohol derivative (b), from the viewpoint of economy and ease of post-treatment. preferable.
反応(ii)は、酸性化合物または塩基性化合物の存在下で実施することが好ましい。
酸性化合物としては、例えば、塩酸、硫酸、燐酸、硝酸、フッ酸等の無機酸;ギ酸、酢酸、トリクロロ酢酸、プロピオン酸、ブタン酸、クロロ酢酸、メタンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸などの有機酸が挙げられる。これらの中でも、硫酸、メタンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸が好ましい。酸性化合物は1種を単独で使用してもよいし、2種以上を併用してもよい。
塩基性化合物としては、例えば、水素化ナトリウム、水素化カリウムなどのアルカリ金属水素化物;水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウムなどのアルカリ金属重炭酸塩;トリエチルアミン、トリブチルアミン、ジアザビシクロ[2.2.2]オクタンなどの第三級アミン;ピリジン、2,6-ルチジンなどの含窒素複素環式芳香族化合物などが挙げられる。これらの中でも、アルカリ金属水素化物、アルカリ金属水酸化物、第三級アミンが好ましく、第三級アミンがより好ましく、トリエチルアミンがさらに好ましい。塩基性化合物は、1種を単独で使用してもよいし、2種以上を併用してもよい。
反応(ii)は、塩基性化合物の存在下に実施することがより好ましい。
酸性化合物および塩基性化合物の使用量は、経済性および後処理の観点から、それぞれ、0.1~5モルが好ましく、0.1~3モルがより好ましい。 Reaction (ii) is preferably carried out in the presence of an acidic compound or a basic compound.
Examples of the acidic compound include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, and hydrofluoric acid; formic acid, acetic acid, trichloroacetic acid, propionic acid, butanoic acid, chloroacetic acid, methanesulfonic acid, p-toluenesulfonic acid, trifluoromethane Examples include organic acids such as sulfonic acid. Among these, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, and trifluoromethanesulfonic acid are preferable. An acidic compound may be used individually by 1 type, and may use 2 or more types together.
Examples of the basic compound include alkali metal hydrides such as sodium hydride and potassium hydride; alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; Alkali metal bicarbonates such as sodium hydrogen and potassium hydrogen carbonate; Tertiary amines such as triethylamine, tributylamine and diazabicyclo [2.2.2] octane; Nitrogen-containing heterocyclic aromatics such as pyridine and 2,6-lutidine Group compounds and the like. Among these, alkali metal hydrides, alkali metal hydroxides, and tertiary amines are preferred, tertiary amines are more preferred, and triethylamine is even more preferred. A basic compound may be used individually by 1 type, and may use 2 or more types together.
The reaction (ii) is more preferably carried out in the presence of a basic compound.
The amount of the acidic compound and the basic compound used is preferably from 0.1 to 5 mol, more preferably from 0.1 to 3 mol, from the viewpoints of economy and post-treatment.
酸性化合物としては、例えば、塩酸、硫酸、燐酸、硝酸、フッ酸等の無機酸;ギ酸、酢酸、トリクロロ酢酸、プロピオン酸、ブタン酸、クロロ酢酸、メタンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸などの有機酸が挙げられる。これらの中でも、硫酸、メタンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸が好ましい。酸性化合物は1種を単独で使用してもよいし、2種以上を併用してもよい。
塩基性化合物としては、例えば、水素化ナトリウム、水素化カリウムなどのアルカリ金属水素化物;水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウムなどのアルカリ金属重炭酸塩;トリエチルアミン、トリブチルアミン、ジアザビシクロ[2.2.2]オクタンなどの第三級アミン;ピリジン、2,6-ルチジンなどの含窒素複素環式芳香族化合物などが挙げられる。これらの中でも、アルカリ金属水素化物、アルカリ金属水酸化物、第三級アミンが好ましく、第三級アミンがより好ましく、トリエチルアミンがさらに好ましい。塩基性化合物は、1種を単独で使用してもよいし、2種以上を併用してもよい。
反応(ii)は、塩基性化合物の存在下に実施することがより好ましい。
酸性化合物および塩基性化合物の使用量は、経済性および後処理の観点から、それぞれ、0.1~5モルが好ましく、0.1~3モルがより好ましい。 Reaction (ii) is preferably carried out in the presence of an acidic compound or a basic compound.
Examples of the acidic compound include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, and hydrofluoric acid; formic acid, acetic acid, trichloroacetic acid, propionic acid, butanoic acid, chloroacetic acid, methanesulfonic acid, p-toluenesulfonic acid, trifluoromethane Examples include organic acids such as sulfonic acid. Among these, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, and trifluoromethanesulfonic acid are preferable. An acidic compound may be used individually by 1 type, and may use 2 or more types together.
Examples of the basic compound include alkali metal hydrides such as sodium hydride and potassium hydride; alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; Alkali metal bicarbonates such as sodium hydrogen and potassium hydrogen carbonate; Tertiary amines such as triethylamine, tributylamine and diazabicyclo [2.2.2] octane; Nitrogen-containing heterocyclic aromatics such as pyridine and 2,6-lutidine Group compounds and the like. Among these, alkali metal hydrides, alkali metal hydroxides, and tertiary amines are preferred, tertiary amines are more preferred, and triethylamine is even more preferred. A basic compound may be used individually by 1 type, and may use 2 or more types together.
The reaction (ii) is more preferably carried out in the presence of a basic compound.
The amount of the acidic compound and the basic compound used is preferably from 0.1 to 5 mol, more preferably from 0.1 to 3 mol, from the viewpoints of economy and post-treatment.
反応(ii)は、溶媒の存在下または非存在下で実施できる。
該溶媒としては、反応を阻害しなければ特に制限はないが、例えば、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素;トルエン、キシレン、シメンなどの芳香族炭化水素;塩化メチレン、ジクロロエタンなどのハロゲン化炭化水素;テトラヒドロフラン、ジイソプロピルエーテルなどのエーテル;アセトニトリル、ベンゾニトリルなどのニトリル;メタノール、エタノール、1-プロパノール、2-プロパノール、t-ブタノール、s-ブタノール、シクロヘキサノールなどのアルコール;ジメチルスルホキシド、ジメチルホルムアミドなどの非プロトン性極性溶媒等が挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
反応(ii)を溶媒の存在下で行う場合、溶媒の使用量は、経済性および後処理の容易さの観点から、アルコール誘導体(b)1質量部に対して0.1~30質量部が好ましく、0.1~15質量部がより好ましい。 Reaction (ii) can be carried out in the presence or absence of a solvent.
The solvent is not particularly limited as long as it does not inhibit the reaction. For example, aliphatic hydrocarbons such as hexane, heptane, and octane; aromatic hydrocarbons such as toluene, xylene, and cymene; halogens such as methylene chloride and dichloroethane. Hydrocarbons; ethers such as tetrahydrofuran and diisopropyl ether; nitriles such as acetonitrile and benzonitrile; alcohols such as methanol, ethanol, 1-propanol, 2-propanol, t-butanol, s-butanol, and cyclohexanol; dimethyl sulfoxide, dimethyl Examples include aprotic polar solvents such as formamide. These may be used individually by 1 type and may use 2 or more types together.
When the reaction (ii) is carried out in the presence of a solvent, the amount of the solvent used is 0.1 to 30 parts by mass with respect to 1 part by mass of the alcohol derivative (b) from the viewpoint of economy and ease of post-treatment. Preferably, 0.1 to 15 parts by mass is more preferable.
該溶媒としては、反応を阻害しなければ特に制限はないが、例えば、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素;トルエン、キシレン、シメンなどの芳香族炭化水素;塩化メチレン、ジクロロエタンなどのハロゲン化炭化水素;テトラヒドロフラン、ジイソプロピルエーテルなどのエーテル;アセトニトリル、ベンゾニトリルなどのニトリル;メタノール、エタノール、1-プロパノール、2-プロパノール、t-ブタノール、s-ブタノール、シクロヘキサノールなどのアルコール;ジメチルスルホキシド、ジメチルホルムアミドなどの非プロトン性極性溶媒等が挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
反応(ii)を溶媒の存在下で行う場合、溶媒の使用量は、経済性および後処理の容易さの観点から、アルコール誘導体(b)1質量部に対して0.1~30質量部が好ましく、0.1~15質量部がより好ましい。 Reaction (ii) can be carried out in the presence or absence of a solvent.
The solvent is not particularly limited as long as it does not inhibit the reaction. For example, aliphatic hydrocarbons such as hexane, heptane, and octane; aromatic hydrocarbons such as toluene, xylene, and cymene; halogens such as methylene chloride and dichloroethane. Hydrocarbons; ethers such as tetrahydrofuran and diisopropyl ether; nitriles such as acetonitrile and benzonitrile; alcohols such as methanol, ethanol, 1-propanol, 2-propanol, t-butanol, s-butanol, and cyclohexanol; dimethyl sulfoxide, dimethyl Examples include aprotic polar solvents such as formamide. These may be used individually by 1 type and may use 2 or more types together.
When the reaction (ii) is carried out in the presence of a solvent, the amount of the solvent used is 0.1 to 30 parts by mass with respect to 1 part by mass of the alcohol derivative (b) from the viewpoint of economy and ease of post-treatment. Preferably, 0.1 to 15 parts by mass is more preferable.
反応(ii)における反応温度は、アルコール誘導体(b)の種類によっても異なるが、好ましくは-50~150℃、より好ましくは-10~100℃、さらに好ましくは-10~50℃である。また、反応圧力に特に制限はないが、通常、0.01~0.1MPaが好ましく、常圧がより好ましい。
The reaction temperature in the reaction (ii) varies depending on the type of the alcohol derivative (b), but is preferably −50 to 150 ° C., more preferably −10 to 100 ° C., and further preferably −10 to 50 ° C. The reaction pressure is not particularly limited, but is usually preferably 0.01 to 0.1 MPa, more preferably normal pressure.
反応(ii)の実施方法としては、溶媒の存在下または非存在下、アルコール誘導体(b)および必要に応じて酸性化合物または塩基性化合物を含有する溶液中へ、エステル誘導体(c)を添加(好ましくは滴下)する方法が好ましい。急激な温度上昇をさせない限り、添加時間(滴下時間)に特に制限はなく、例えば30分~24時間の範囲で適宜調整すればよい。
特に制限されるわけではないが、ガスクロマトグラフィー分析によるアルコール誘導体(b)の消失の確認をもって、反応(ii)が終了したと判断できる。
なお、反応(ii)は、バッチ方式、セミバッチ方式、連続方式などのいずれの方法でも実施可能である。 As a method for carrying out the reaction (ii), an ester derivative (c) is added to a solution containing an alcohol derivative (b) and, if necessary, an acidic compound or a basic compound in the presence or absence of a solvent ( The method of preferably dropping) is preferred. As long as the temperature is not rapidly increased, the addition time (dropping time) is not particularly limited, and may be appropriately adjusted within a range of, for example, 30 minutes to 24 hours.
Although not particularly limited, it can be determined that the reaction (ii) has been completed by confirming the disappearance of the alcohol derivative (b) by gas chromatography analysis.
Reaction (ii) can be carried out by any method such as a batch method, a semi-batch method, and a continuous method.
特に制限されるわけではないが、ガスクロマトグラフィー分析によるアルコール誘導体(b)の消失の確認をもって、反応(ii)が終了したと判断できる。
なお、反応(ii)は、バッチ方式、セミバッチ方式、連続方式などのいずれの方法でも実施可能である。 As a method for carrying out the reaction (ii), an ester derivative (c) is added to a solution containing an alcohol derivative (b) and, if necessary, an acidic compound or a basic compound in the presence or absence of a solvent ( The method of preferably dropping) is preferred. As long as the temperature is not rapidly increased, the addition time (dropping time) is not particularly limited, and may be appropriately adjusted within a range of, for example, 30 minutes to 24 hours.
Although not particularly limited, it can be determined that the reaction (ii) has been completed by confirming the disappearance of the alcohol derivative (b) by gas chromatography analysis.
Reaction (ii) can be carried out by any method such as a batch method, a semi-batch method, and a continuous method.
反応(ii)は、必要に応じて、水およびアルコールからなる群から選択される少なくとも1種を添加することにより停止させることもでき、また、そうすることが好ましい。該アルコールとしては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノールなどが挙げられる。水としては、例えば、イオン交換水、蒸留水、RO(Reverse Osmosis)水などが挙げられるが、特にこれらに制限されない。
水およびアルコールからなる群から選択される少なくとも1種を添加する場合、その使用量は、アルコール誘導体(b)に対して過剰量のエステル誘導体(c)を用いた場合には、残存しているエステル誘導体(c)1モルに対して、1モル以上使用することが好ましい。このようにして反応系内に残存しているエステル誘導体(c)を完全に分解することで、副生物の生成を抑制できる。 Reaction (ii) can be stopped by adding at least one selected from the group consisting of water and alcohol, if necessary, and it is preferable to do so. Examples of the alcohol include methanol, ethanol, n-propanol, isopropanol and the like. Examples of water include ion-exchanged water, distilled water, and RO (Reverse Osmosis) water, but are not particularly limited thereto.
When at least one selected from the group consisting of water and alcohol is added, the amount used remains when an excess of the ester derivative (c) is used relative to the alcohol derivative (b). It is preferable to use 1 mol or more per 1 mol of the ester derivative (c). By completely decomposing the ester derivative (c) remaining in the reaction system in this manner, the production of by-products can be suppressed.
水およびアルコールからなる群から選択される少なくとも1種を添加する場合、その使用量は、アルコール誘導体(b)に対して過剰量のエステル誘導体(c)を用いた場合には、残存しているエステル誘導体(c)1モルに対して、1モル以上使用することが好ましい。このようにして反応系内に残存しているエステル誘導体(c)を完全に分解することで、副生物の生成を抑制できる。 Reaction (ii) can be stopped by adding at least one selected from the group consisting of water and alcohol, if necessary, and it is preferable to do so. Examples of the alcohol include methanol, ethanol, n-propanol, isopropanol and the like. Examples of water include ion-exchanged water, distilled water, and RO (Reverse Osmosis) water, but are not particularly limited thereto.
When at least one selected from the group consisting of water and alcohol is added, the amount used remains when an excess of the ester derivative (c) is used relative to the alcohol derivative (b). It is preferable to use 1 mol or more per 1 mol of the ester derivative (c). By completely decomposing the ester derivative (c) remaining in the reaction system in this manner, the production of by-products can be suppressed.
反応(ii)によって得られたアクリル酸エステル誘導体(1)は、必要に応じて常法により分離精製するのが好ましい。
例えば、反応混合物を水洗した後、濃縮し、蒸留、シリカゲルカラムクロマトグラフィー、再結晶などの通常の有機化合物の分離精製に用いられる方法により分離精製することができる。また、必要に応じて、ニトロ三酢酸、エチレンジアミン四酢酸などのキレート剤処理、または、ゼータプラス(商品名;スリーエムジャパン株式会社製)、プロテゴ(製品名;日本マイクロリス株式会社製)などの金属除去フィルター処理により、得られたアクリル酸エステル誘導体(1)中の金属含有量を減少させることも可能である。
なお、前記反応(i)で原料として使用するアルコール誘導体(a)が2種以上の混合物である場合、以上のようにして得られるアクリル酸エステル誘導体(1)も2種以上の混合物となる。必要に応じて、それぞれ分離してから後述する高分子化合物の製造に利用してもよいし、混合物のまま後述する高分子化合物の製造に利用してもよい。 The acrylate derivative (1) obtained by the reaction (ii) is preferably separated and purified by a conventional method as necessary.
For example, the reaction mixture can be washed with water, concentrated, and separated and purified by a method used for separation and purification of ordinary organic compounds such as distillation, silica gel column chromatography, and recrystallization. In addition, as necessary, a metal such as nitrotriacetic acid, ethylenediaminetetraacetic acid or other chelating agent treatment, or zeta plus (trade name; manufactured by 3M Japan Co., Ltd.) or protego (product name: manufactured by Nihon Microlith Co., Ltd.) It is also possible to reduce the metal content in the obtained acrylic ester derivative (1) by the removal filter treatment.
In addition, when the alcohol derivative (a) used as a raw material by the said reaction (i) is a 2 or more types of mixture, the acrylic ester derivative (1) obtained by the above also becomes a 2 or more types of mixture. If necessary, they may be used for the production of a polymer compound described later after separation, or may be used for the production of a polymer compound described later in a mixture.
例えば、反応混合物を水洗した後、濃縮し、蒸留、シリカゲルカラムクロマトグラフィー、再結晶などの通常の有機化合物の分離精製に用いられる方法により分離精製することができる。また、必要に応じて、ニトロ三酢酸、エチレンジアミン四酢酸などのキレート剤処理、または、ゼータプラス(商品名;スリーエムジャパン株式会社製)、プロテゴ(製品名;日本マイクロリス株式会社製)などの金属除去フィルター処理により、得られたアクリル酸エステル誘導体(1)中の金属含有量を減少させることも可能である。
なお、前記反応(i)で原料として使用するアルコール誘導体(a)が2種以上の混合物である場合、以上のようにして得られるアクリル酸エステル誘導体(1)も2種以上の混合物となる。必要に応じて、それぞれ分離してから後述する高分子化合物の製造に利用してもよいし、混合物のまま後述する高分子化合物の製造に利用してもよい。 The acrylate derivative (1) obtained by the reaction (ii) is preferably separated and purified by a conventional method as necessary.
For example, the reaction mixture can be washed with water, concentrated, and separated and purified by a method used for separation and purification of ordinary organic compounds such as distillation, silica gel column chromatography, and recrystallization. In addition, as necessary, a metal such as nitrotriacetic acid, ethylenediaminetetraacetic acid or other chelating agent treatment, or zeta plus (trade name; manufactured by 3M Japan Co., Ltd.) or protego (product name: manufactured by Nihon Microlith Co., Ltd.) It is also possible to reduce the metal content in the obtained acrylic ester derivative (1) by the removal filter treatment.
In addition, when the alcohol derivative (a) used as a raw material by the said reaction (i) is a 2 or more types of mixture, the acrylic ester derivative (1) obtained by the above also becomes a 2 or more types of mixture. If necessary, they may be used for the production of a polymer compound described later after separation, or may be used for the production of a polymer compound described later in a mixture.
(アルコール誘導体(a)の入手方法および製造方法)
ここで、前記反応(i)の原料として用いるアルコール誘導体(a)の入手方法および製造方法について説明する。
反応(i)において用いられるアルコール誘導体(a)の入手方法に特に制限はない。工業的に入手してもよいし、公知の化学反応を利用および応用することによって合成することもできる。
例えば、アルコール誘導体(a)の中でも下記一般式で示されるアルコール誘導体(g)およびアルコール誘導体(h)の製造方法を下記化学反応式2に示す。下記化学反応式2に示すように、メルカプタン誘導体(d)とエポキシド誘導体(e)を反応[以下、この反応を原料合成反応(I)と称する。]させてスルフィド誘導体(f)を得、その後、スルフィド誘導体(f)を環化させる[以下、この反応を原料合成反応(II)と称する。]ことにより、下記アルコール誘導体(g)およびアルコール誘導体(h)に代表されるアルコール誘導体(a)を製造できる。 (Method for obtaining and producing alcohol derivative (a))
Here, the acquisition method and manufacturing method of alcohol derivative (a) used as a raw material of the said reaction (i) are demonstrated.
There is no restriction | limiting in particular in the acquisition method of alcohol derivative (a) used in reaction (i). They may be obtained industrially or synthesized by utilizing and applying known chemical reactions.
For example, among the alcohol derivatives (a), a method for producing an alcohol derivative (g) and an alcohol derivative (h) represented by the following general formula is shown in the following chemical reaction formula 2. As shown in the following chemical reaction formula 2, the mercaptan derivative (d) and the epoxide derivative (e) are reacted [hereinafter, this reaction is referred to as a raw material synthesis reaction (I). ] To obtain a sulfide derivative (f), and then cyclize the sulfide derivative (f) [hereinafter, this reaction is referred to as a raw material synthesis reaction (II). The alcohol derivative (a) represented by the following alcohol derivative (g) and alcohol derivative (h) can be manufactured by this.
ここで、前記反応(i)の原料として用いるアルコール誘導体(a)の入手方法および製造方法について説明する。
反応(i)において用いられるアルコール誘導体(a)の入手方法に特に制限はない。工業的に入手してもよいし、公知の化学反応を利用および応用することによって合成することもできる。
例えば、アルコール誘導体(a)の中でも下記一般式で示されるアルコール誘導体(g)およびアルコール誘導体(h)の製造方法を下記化学反応式2に示す。下記化学反応式2に示すように、メルカプタン誘導体(d)とエポキシド誘導体(e)を反応[以下、この反応を原料合成反応(I)と称する。]させてスルフィド誘導体(f)を得、その後、スルフィド誘導体(f)を環化させる[以下、この反応を原料合成反応(II)と称する。]ことにより、下記アルコール誘導体(g)およびアルコール誘導体(h)に代表されるアルコール誘導体(a)を製造できる。 (Method for obtaining and producing alcohol derivative (a))
Here, the acquisition method and manufacturing method of alcohol derivative (a) used as a raw material of the said reaction (i) are demonstrated.
There is no restriction | limiting in particular in the acquisition method of alcohol derivative (a) used in reaction (i). They may be obtained industrially or synthesized by utilizing and applying known chemical reactions.
For example, among the alcohol derivatives (a), a method for producing an alcohol derivative (g) and an alcohol derivative (h) represented by the following general formula is shown in the following chemical reaction formula 2. As shown in the following chemical reaction formula 2, the mercaptan derivative (d) and the epoxide derivative (e) are reacted [hereinafter, this reaction is referred to as a raw material synthesis reaction (I). ] To obtain a sulfide derivative (f), and then cyclize the sulfide derivative (f) [hereinafter, this reaction is referred to as a raw material synthesis reaction (II). The alcohol derivative (a) represented by the following alcohol derivative (g) and alcohol derivative (h) can be manufactured by this.
上記化学反応式2中、R2~R12およびzは、前記一般式(2)および(3)中のものと同じであり、好ましいものも同じである。
X3は、硫黄原子または酸素原子を表す。また、X4はハロゲン原子である。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられるが、取扱い容易性の観点などから、塩素原子が好ましい。
また、X5は、-O-または-S-を表す。 In the chemical reaction formula 2, R 2 to R 12 and z are the same as those in the general formulas (2) and (3), and preferred ones are also the same.
X 3 represents a sulfur atom or an oxygen atom. X 4 is a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. From the viewpoint of ease of handling, a chlorine atom is preferable.
X 5 represents —O— or —S—.
X3は、硫黄原子または酸素原子を表す。また、X4はハロゲン原子である。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられるが、取扱い容易性の観点などから、塩素原子が好ましい。
また、X5は、-O-または-S-を表す。 In the chemical reaction formula 2, R 2 to R 12 and z are the same as those in the general formulas (2) and (3), and preferred ones are also the same.
X 3 represents a sulfur atom or an oxygen atom. X 4 is a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. From the viewpoint of ease of handling, a chlorine atom is preferable.
X 5 represents —O— or —S—.
(原料合成反応(I))
原料合成反応(I)は、メルカプタン誘導体(d)とエポキシド誘導体(e)との反応であり、スルフィド誘導体(f)が得られる。
メルカプタン誘導体(d)としては、例えば、2-メルカプトエタノール、3-メルカプト-1-プロパノール、3-メルカプト-2-プロパノール、3-メルカプト-2-ブタノール、4-メルカプト-2-メチル-1-オール、1,2-エタンジチオール、1,3-プロパンジチオールなどが挙げられる。これらの中でも、工業的な入手容易性および最終的に得られるフォトレジスト組成物の性能(例えば、現像溶液への溶解速度および解像性など)の観点から、2-メルカプトエタノールが好ましい。
また、エポキシド誘導体(e)としては、例えば、2-(クロロメチル)オキシラン(別名:エピクロロヒドリン)、2-(ブロモメチル)オキシラン、2-(クロロメチル)-2-クロロオキシランなどが挙げられる。これらの中でも、工業的な入手容易性の観点から、2-(クロロメチル)オキシラン(別名:エピクロロヒドリン)が好ましい。
エポキシド誘導体(e)の使用量に特に制限はないが、経済性および後処理の容易さの観点から、メルカプタン誘導体(d)1モルに対して、0.8~5モルが好ましく、0.8~3モルがより好ましい。 (Raw material synthesis reaction (I))
The raw material synthesis reaction (I) is a reaction between the mercaptan derivative (d) and the epoxide derivative (e), and the sulfide derivative (f) is obtained.
Examples of the mercaptan derivative (d) include 2-mercaptoethanol, 3-mercapto-1-propanol, 3-mercapto-2-propanol, 3-mercapto-2-butanol, 4-mercapto-2-methyl-1-ol. 1,2-ethanedithiol, 1,3-propanedithiol and the like. Among these, 2-mercaptoethanol is preferable from the viewpoint of industrial availability and performance of the finally obtained photoresist composition (for example, dissolution rate in a developing solution and resolution).
Examples of the epoxide derivative (e) include 2- (chloromethyl) oxirane (also known as epichlorohydrin), 2- (bromomethyl) oxirane, 2- (chloromethyl) -2-chlorooxirane, and the like. . Among these, 2- (chloromethyl) oxirane (also known as epichlorohydrin) is preferable from the viewpoint of industrial availability.
The amount of the epoxide derivative (e) used is not particularly limited, but from the viewpoint of economy and ease of post-treatment, it is preferably 0.8 to 5 moles per mole of the mercaptan derivative (d), 0.8 ˜3 mol is more preferred.
原料合成反応(I)は、メルカプタン誘導体(d)とエポキシド誘導体(e)との反応であり、スルフィド誘導体(f)が得られる。
メルカプタン誘導体(d)としては、例えば、2-メルカプトエタノール、3-メルカプト-1-プロパノール、3-メルカプト-2-プロパノール、3-メルカプト-2-ブタノール、4-メルカプト-2-メチル-1-オール、1,2-エタンジチオール、1,3-プロパンジチオールなどが挙げられる。これらの中でも、工業的な入手容易性および最終的に得られるフォトレジスト組成物の性能(例えば、現像溶液への溶解速度および解像性など)の観点から、2-メルカプトエタノールが好ましい。
また、エポキシド誘導体(e)としては、例えば、2-(クロロメチル)オキシラン(別名:エピクロロヒドリン)、2-(ブロモメチル)オキシラン、2-(クロロメチル)-2-クロロオキシランなどが挙げられる。これらの中でも、工業的な入手容易性の観点から、2-(クロロメチル)オキシラン(別名:エピクロロヒドリン)が好ましい。
エポキシド誘導体(e)の使用量に特に制限はないが、経済性および後処理の容易さの観点から、メルカプタン誘導体(d)1モルに対して、0.8~5モルが好ましく、0.8~3モルがより好ましい。 (Raw material synthesis reaction (I))
The raw material synthesis reaction (I) is a reaction between the mercaptan derivative (d) and the epoxide derivative (e), and the sulfide derivative (f) is obtained.
Examples of the mercaptan derivative (d) include 2-mercaptoethanol, 3-mercapto-1-propanol, 3-mercapto-2-propanol, 3-mercapto-2-butanol, 4-mercapto-2-methyl-1-ol. 1,2-ethanedithiol, 1,3-propanedithiol and the like. Among these, 2-mercaptoethanol is preferable from the viewpoint of industrial availability and performance of the finally obtained photoresist composition (for example, dissolution rate in a developing solution and resolution).
Examples of the epoxide derivative (e) include 2- (chloromethyl) oxirane (also known as epichlorohydrin), 2- (bromomethyl) oxirane, 2- (chloromethyl) -2-chlorooxirane, and the like. . Among these, 2- (chloromethyl) oxirane (also known as epichlorohydrin) is preferable from the viewpoint of industrial availability.
The amount of the epoxide derivative (e) used is not particularly limited, but from the viewpoint of economy and ease of post-treatment, it is preferably 0.8 to 5 moles per mole of the mercaptan derivative (d), 0.8 ˜3 mol is more preferred.
原料合成反応(I)は、酸性化合物または塩基性化合物の存在下で実施すること好ましい。
酸性化合物としては、例えば、塩酸、硫酸、燐酸、硝酸、フッ酸等の無機酸;ギ酸、酢酸、トリクロロ酢酸、プロピオン酸、ブタン酸、クロロ酢酸、メタンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸などの有機酸が挙げられる。これらの中でも、塩酸、硫酸が好ましい。酸性化合物は1種を単独で使用してもよいし、2種以上を併用してもよい。
塩基性化合物としては、例えば、水素化ナトリウム、水素化カリウムなどのアルカリ金属水素化物;水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウムなどのアルカリ金属重炭酸塩;トリエチルアミン、トリブチルアミン、ジアザビシクロ[2.2.2]オクタンなどの第三級アミン;ピリジン、2,6-ルチジンなどの含窒素複素環式芳香族化合物などが挙げられる。これらの中でも、アルカリ金属重炭酸塩、第三級アミン、含窒素複素環式芳香族化合物が好ましく、含窒素複素環式芳香族化合物がより好ましく、ピリジンがさらに好ましい。
原料合成反応(I)は、塩基性化合物の存在下に実施することがより好ましい。
酸性化合物および塩基性化合物の使用量に特に制限はないが、経済性および後処理の容易さの観点から、メルカプタン誘導体(d)1モルに対して、0.01~10モルが好ましく、0.01~1モルがより好ましい。 The raw material synthesis reaction (I) is preferably carried out in the presence of an acidic compound or a basic compound.
Examples of the acidic compound include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, and hydrofluoric acid; formic acid, acetic acid, trichloroacetic acid, propionic acid, butanoic acid, chloroacetic acid, methanesulfonic acid, p-toluenesulfonic acid, trifluoromethane Examples include organic acids such as sulfonic acid. Among these, hydrochloric acid and sulfuric acid are preferable. An acidic compound may be used individually by 1 type, and may use 2 or more types together.
Examples of the basic compound include alkali metal hydrides such as sodium hydride and potassium hydride; alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; Alkali metal bicarbonates such as sodium hydrogen and potassium hydrogen carbonate; Tertiary amines such as triethylamine, tributylamine and diazabicyclo [2.2.2] octane; Nitrogen-containing heterocyclic aromatics such as pyridine and 2,6-lutidine Group compounds and the like. Among these, alkali metal bicarbonates, tertiary amines, and nitrogen-containing heterocyclic aromatic compounds are preferable, nitrogen-containing heterocyclic aromatic compounds are more preferable, and pyridine is more preferable.
The raw material synthesis reaction (I) is more preferably carried out in the presence of a basic compound.
The amount of the acidic compound and basic compound used is not particularly limited, but from the viewpoint of economy and ease of post-treatment, 0.01 to 10 mol is preferable with respect to 1 mol of mercaptan derivative (d). More preferred is 01 to 1 mol.
酸性化合物としては、例えば、塩酸、硫酸、燐酸、硝酸、フッ酸等の無機酸;ギ酸、酢酸、トリクロロ酢酸、プロピオン酸、ブタン酸、クロロ酢酸、メタンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸などの有機酸が挙げられる。これらの中でも、塩酸、硫酸が好ましい。酸性化合物は1種を単独で使用してもよいし、2種以上を併用してもよい。
塩基性化合物としては、例えば、水素化ナトリウム、水素化カリウムなどのアルカリ金属水素化物;水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウムなどのアルカリ金属重炭酸塩;トリエチルアミン、トリブチルアミン、ジアザビシクロ[2.2.2]オクタンなどの第三級アミン;ピリジン、2,6-ルチジンなどの含窒素複素環式芳香族化合物などが挙げられる。これらの中でも、アルカリ金属重炭酸塩、第三級アミン、含窒素複素環式芳香族化合物が好ましく、含窒素複素環式芳香族化合物がより好ましく、ピリジンがさらに好ましい。
原料合成反応(I)は、塩基性化合物の存在下に実施することがより好ましい。
酸性化合物および塩基性化合物の使用量に特に制限はないが、経済性および後処理の容易さの観点から、メルカプタン誘導体(d)1モルに対して、0.01~10モルが好ましく、0.01~1モルがより好ましい。 The raw material synthesis reaction (I) is preferably carried out in the presence of an acidic compound or a basic compound.
Examples of the acidic compound include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, and hydrofluoric acid; formic acid, acetic acid, trichloroacetic acid, propionic acid, butanoic acid, chloroacetic acid, methanesulfonic acid, p-toluenesulfonic acid, trifluoromethane Examples include organic acids such as sulfonic acid. Among these, hydrochloric acid and sulfuric acid are preferable. An acidic compound may be used individually by 1 type, and may use 2 or more types together.
Examples of the basic compound include alkali metal hydrides such as sodium hydride and potassium hydride; alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; Alkali metal bicarbonates such as sodium hydrogen and potassium hydrogen carbonate; Tertiary amines such as triethylamine, tributylamine and diazabicyclo [2.2.2] octane; Nitrogen-containing heterocyclic aromatics such as pyridine and 2,6-lutidine Group compounds and the like. Among these, alkali metal bicarbonates, tertiary amines, and nitrogen-containing heterocyclic aromatic compounds are preferable, nitrogen-containing heterocyclic aromatic compounds are more preferable, and pyridine is more preferable.
The raw material synthesis reaction (I) is more preferably carried out in the presence of a basic compound.
The amount of the acidic compound and basic compound used is not particularly limited, but from the viewpoint of economy and ease of post-treatment, 0.01 to 10 mol is preferable with respect to 1 mol of mercaptan derivative (d). More preferred is 01 to 1 mol.
原料合成反応(I)は、溶媒の存在下または非存在下で実施できる。
該溶媒としては、反応を阻害しなければ特に制限はなく、例えば、水;ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素;トルエン、キシレン、シメンなどの芳香族炭化水素;塩化メチレン、ジクロロエタンなどのハロゲン化炭化水素;テトラヒドロフラン、ジイソプロピルエーテルなどのエーテル;アセトニトリル、ベンゾニトリルなどのニトリル;メタノール、エタノール、1-プロパノール、2-プロパノール、t-ブタノール、s-ブタノール、シクロヘキサノールなどのアルコール;ジメチルスルホキシド、ジメチルホルムアミドなどの非プロトン性極性溶媒等が挙げられる。これらの中でも、水、エーテル、アルコール、ニトリル、非プロトン性極性溶媒が好ましい。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
原料合成反応(I)を溶媒の存在下で実施する場合、溶媒の使用量は、経済性および後処理の容易さの観点から、メルカプタン誘導体(d)1質量部に対して0.1~20質量部が好ましく、0.1~10質量部がより好ましい。 The raw material synthesis reaction (I) can be carried out in the presence or absence of a solvent.
The solvent is not particularly limited as long as the reaction is not inhibited. For example, water; aliphatic hydrocarbons such as hexane, heptane, and octane; aromatic hydrocarbons such as toluene, xylene, and cymene; methylene chloride, dichloroethane, and the like Halogenated hydrocarbons; ethers such as tetrahydrofuran and diisopropyl ether; nitriles such as acetonitrile and benzonitrile; alcohols such as methanol, ethanol, 1-propanol, 2-propanol, t-butanol, s-butanol and cyclohexanol; dimethyl sulfoxide, Examples include aprotic polar solvents such as dimethylformamide. Among these, water, ether, alcohol, nitrile, and aprotic polar solvent are preferable. These may be used individually by 1 type and may use 2 or more types together.
When the raw material synthesis reaction (I) is carried out in the presence of a solvent, the amount of the solvent used is 0.1 to 20 with respect to 1 part by mass of the mercaptan derivative (d) from the viewpoint of economy and ease of post-treatment. Part by mass is preferable, and 0.1 to 10 parts by mass is more preferable.
該溶媒としては、反応を阻害しなければ特に制限はなく、例えば、水;ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素;トルエン、キシレン、シメンなどの芳香族炭化水素;塩化メチレン、ジクロロエタンなどのハロゲン化炭化水素;テトラヒドロフラン、ジイソプロピルエーテルなどのエーテル;アセトニトリル、ベンゾニトリルなどのニトリル;メタノール、エタノール、1-プロパノール、2-プロパノール、t-ブタノール、s-ブタノール、シクロヘキサノールなどのアルコール;ジメチルスルホキシド、ジメチルホルムアミドなどの非プロトン性極性溶媒等が挙げられる。これらの中でも、水、エーテル、アルコール、ニトリル、非プロトン性極性溶媒が好ましい。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
原料合成反応(I)を溶媒の存在下で実施する場合、溶媒の使用量は、経済性および後処理の容易さの観点から、メルカプタン誘導体(d)1質量部に対して0.1~20質量部が好ましく、0.1~10質量部がより好ましい。 The raw material synthesis reaction (I) can be carried out in the presence or absence of a solvent.
The solvent is not particularly limited as long as the reaction is not inhibited. For example, water; aliphatic hydrocarbons such as hexane, heptane, and octane; aromatic hydrocarbons such as toluene, xylene, and cymene; methylene chloride, dichloroethane, and the like Halogenated hydrocarbons; ethers such as tetrahydrofuran and diisopropyl ether; nitriles such as acetonitrile and benzonitrile; alcohols such as methanol, ethanol, 1-propanol, 2-propanol, t-butanol, s-butanol and cyclohexanol; dimethyl sulfoxide, Examples include aprotic polar solvents such as dimethylformamide. Among these, water, ether, alcohol, nitrile, and aprotic polar solvent are preferable. These may be used individually by 1 type and may use 2 or more types together.
When the raw material synthesis reaction (I) is carried out in the presence of a solvent, the amount of the solvent used is 0.1 to 20 with respect to 1 part by mass of the mercaptan derivative (d) from the viewpoint of economy and ease of post-treatment. Part by mass is preferable, and 0.1 to 10 parts by mass is more preferable.
原料合成反応(I)における反応温度は、メルカプタン誘導体(d)、エポキシド誘導体(e)および溶媒の種類によっても異なるが、好ましくは-50~100℃、より好ましくは-10~50℃、さらに好ましくは0~40℃である。また、反応圧力に特に制限はないが、通常、常圧下で実施することが簡便であり好ましい。
原料合成反応(I)の実施方法としては、溶媒の存在下または非存在下、メルカプタン誘導体(d)と必要に応じて使用する酸性化合物または塩基性化合物との混合溶液へ、エポキシド誘導体(e)を添加(好ましくは滴下)する方法が好ましい。急激な温度上昇をさせない限り、添加時間(滴下時間)に特に制限はなく、例えば30分~24時間の範囲で適宜調整すればよい。 The reaction temperature in the raw material synthesis reaction (I) varies depending on the type of mercaptan derivative (d), epoxide derivative (e) and solvent, but is preferably −50 to 100 ° C., more preferably −10 to 50 ° C., and still more preferably Is 0 to 40 ° C. The reaction pressure is not particularly limited, but it is usually preferable to carry out the reaction under normal pressure because it is convenient.
As a method for carrying out the raw material synthesis reaction (I), an epoxide derivative (e) is added to a mixed solution of a mercaptan derivative (d) and an acidic compound or basic compound used as necessary in the presence or absence of a solvent. The method of adding (preferably dropping) is preferable. As long as the temperature is not rapidly increased, the addition time (dropping time) is not particularly limited, and may be appropriately adjusted within a range of, for example, 30 minutes to 24 hours.
原料合成反応(I)の実施方法としては、溶媒の存在下または非存在下、メルカプタン誘導体(d)と必要に応じて使用する酸性化合物または塩基性化合物との混合溶液へ、エポキシド誘導体(e)を添加(好ましくは滴下)する方法が好ましい。急激な温度上昇をさせない限り、添加時間(滴下時間)に特に制限はなく、例えば30分~24時間の範囲で適宜調整すればよい。 The reaction temperature in the raw material synthesis reaction (I) varies depending on the type of mercaptan derivative (d), epoxide derivative (e) and solvent, but is preferably −50 to 100 ° C., more preferably −10 to 50 ° C., and still more preferably Is 0 to 40 ° C. The reaction pressure is not particularly limited, but it is usually preferable to carry out the reaction under normal pressure because it is convenient.
As a method for carrying out the raw material synthesis reaction (I), an epoxide derivative (e) is added to a mixed solution of a mercaptan derivative (d) and an acidic compound or basic compound used as necessary in the presence or absence of a solvent. The method of adding (preferably dropping) is preferable. As long as the temperature is not rapidly increased, the addition time (dropping time) is not particularly limited, and may be appropriately adjusted within a range of, for example, 30 minutes to 24 hours.
原料合成反応(I)で得られるスルフィド誘導体(f)を含んだ反応混合液から適宜、スルフィド誘導体(f)を分離精製してもよいが、分離精製することなく、そのまま次の原料合成反応(II)の原料として用いることも可能であり、またそうする方が簡便であり、製造コストの観点からも好ましい。
The sulfide derivative (f) may be appropriately separated and purified from the reaction mixture containing the sulfide derivative (f) obtained in the raw material synthesis reaction (I), but the next raw material synthesis reaction ( It is also possible to use it as a raw material of II), and it is easier to do so and it is preferable from the viewpoint of production cost.
(原料合成反応(II))
原料合成反応(II)は、スルフィド誘導体(f)を環化させる反応である。
原料合成反応(II)は、酸性化合物または塩基性化合物の存在下に実施することが好ましい。該酸性化合物および塩基性化合物としては、前記原料合成反応(I)で説明した酸性化合物および塩基性化合物と同じものが使用できる。酸性化合物および塩基性化合物はそれぞれ、1種を単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、アルカリ金属水素化物、アルカリ金属水酸化物、第三級アミンが好ましく、アルカリ金属水酸化物がより好ましく、水酸化ナトリウムがさらに好ましい。
酸性化合物および塩基性化合物の使用量に特に制限はないが、経済性および後処理の容易さの観点から、スルフィド誘導体(f)1モルに対して、0.01~10モルが好ましく、0.01~3モルがより好ましい。 (Raw material synthesis reaction (II))
The raw material synthesis reaction (II) is a reaction for cyclizing the sulfide derivative (f).
The raw material synthesis reaction (II) is preferably carried out in the presence of an acidic compound or a basic compound. As the acidic compound and basic compound, the same compounds as the acidic compound and basic compound described in the raw material synthesis reaction (I) can be used. Each of the acidic compound and the basic compound may be used alone or in combination of two or more. Among these, alkali metal hydrides, alkali metal hydroxides, and tertiary amines are preferable, alkali metal hydroxides are more preferable, and sodium hydroxide is more preferable.
The amount of the acidic compound and basic compound used is not particularly limited, but from the viewpoint of economy and ease of post-treatment, 0.01 to 10 mol is preferable with respect to 1 mol of the sulfide derivative (f). More preferably, 01 to 3 moles.
原料合成反応(II)は、スルフィド誘導体(f)を環化させる反応である。
原料合成反応(II)は、酸性化合物または塩基性化合物の存在下に実施することが好ましい。該酸性化合物および塩基性化合物としては、前記原料合成反応(I)で説明した酸性化合物および塩基性化合物と同じものが使用できる。酸性化合物および塩基性化合物はそれぞれ、1種を単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、アルカリ金属水素化物、アルカリ金属水酸化物、第三級アミンが好ましく、アルカリ金属水酸化物がより好ましく、水酸化ナトリウムがさらに好ましい。
酸性化合物および塩基性化合物の使用量に特に制限はないが、経済性および後処理の容易さの観点から、スルフィド誘導体(f)1モルに対して、0.01~10モルが好ましく、0.01~3モルがより好ましい。 (Raw material synthesis reaction (II))
The raw material synthesis reaction (II) is a reaction for cyclizing the sulfide derivative (f).
The raw material synthesis reaction (II) is preferably carried out in the presence of an acidic compound or a basic compound. As the acidic compound and basic compound, the same compounds as the acidic compound and basic compound described in the raw material synthesis reaction (I) can be used. Each of the acidic compound and the basic compound may be used alone or in combination of two or more. Among these, alkali metal hydrides, alkali metal hydroxides, and tertiary amines are preferable, alkali metal hydroxides are more preferable, and sodium hydroxide is more preferable.
The amount of the acidic compound and basic compound used is not particularly limited, but from the viewpoint of economy and ease of post-treatment, 0.01 to 10 mol is preferable with respect to 1 mol of the sulfide derivative (f). More preferably, 01 to 3 moles.
原料合成反応(II)は、溶媒の存在下または非存在下で実施できる。該溶媒としては、反応を阻害しなければ特に制限はない。溶媒としては、前記原料合成反応(I)で説明した溶媒と同じものが挙げられる。これらの中でも、水、エーテル、アルコール、ニトリル、非プロトン性極性溶媒が好ましく、水またはアルコールがより好ましい。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
原料合成反応(II)を溶媒の存在下に実施する場合、溶媒の使用量は、経済性および後処理の容易さの観点から、スルフィド誘導体(f)1質量部に対して0.1~30質量部が好ましく、0.1~15質量部がより好ましい。 The raw material synthesis reaction (II) can be carried out in the presence or absence of a solvent. The solvent is not particularly limited as long as the reaction is not inhibited. Examples of the solvent include the same solvents as described in the raw material synthesis reaction (I). Among these, water, ether, alcohol, nitrile, and aprotic polar solvent are preferable, and water or alcohol is more preferable. These may be used individually by 1 type and may use 2 or more types together.
When the raw material synthesis reaction (II) is carried out in the presence of a solvent, the amount of the solvent used is 0.1 to 30 with respect to 1 part by mass of the sulfide derivative (f) from the viewpoint of economy and ease of post-treatment. Part by mass is preferable, and 0.1 to 15 parts by mass is more preferable.
原料合成反応(II)を溶媒の存在下に実施する場合、溶媒の使用量は、経済性および後処理の容易さの観点から、スルフィド誘導体(f)1質量部に対して0.1~30質量部が好ましく、0.1~15質量部がより好ましい。 The raw material synthesis reaction (II) can be carried out in the presence or absence of a solvent. The solvent is not particularly limited as long as the reaction is not inhibited. Examples of the solvent include the same solvents as described in the raw material synthesis reaction (I). Among these, water, ether, alcohol, nitrile, and aprotic polar solvent are preferable, and water or alcohol is more preferable. These may be used individually by 1 type and may use 2 or more types together.
When the raw material synthesis reaction (II) is carried out in the presence of a solvent, the amount of the solvent used is 0.1 to 30 with respect to 1 part by mass of the sulfide derivative (f) from the viewpoint of economy and ease of post-treatment. Part by mass is preferable, and 0.1 to 15 parts by mass is more preferable.
原料合成反応(II)における反応温度は、スルフィド誘導体(f)および溶媒の種類によっても異なるが、好ましくは-50~100℃、より好ましくは-10~70℃、さらに好ましくは15~70℃、特に好ましくは30~70℃である。また、反応圧力に特に制限はないが、常圧下で実施することが好ましい。
原料合成反応(II)の実施方法としては、酸性化合物または塩基性化合物と溶媒の混合溶液へ、スルフィド誘導体(f)を添加(好ましくは滴下)する方法が好ましい。急激な温度上昇をさせない限り、添加時間(滴下時間)に特に制限はなく、例えば30分~24時間の範囲で適宜調整すればよい。 The reaction temperature in the raw material synthesis reaction (II) varies depending on the type of the sulfide derivative (f) and the solvent, but is preferably −50 to 100 ° C., more preferably −10 to 70 ° C., still more preferably 15 to 70 ° C. Particularly preferred is 30 to 70 ° C. Moreover, there is no restriction | limiting in particular in reaction pressure, However, Implementing under a normal pressure is preferable.
As a method for carrying out the raw material synthesis reaction (II), a method in which the sulfide derivative (f) is added (preferably dropped) to a mixed solution of an acidic compound or a basic compound and a solvent is preferable. As long as the temperature is not rapidly increased, the addition time (dropping time) is not particularly limited, and may be appropriately adjusted within a range of, for example, 30 minutes to 24 hours.
原料合成反応(II)の実施方法としては、酸性化合物または塩基性化合物と溶媒の混合溶液へ、スルフィド誘導体(f)を添加(好ましくは滴下)する方法が好ましい。急激な温度上昇をさせない限り、添加時間(滴下時間)に特に制限はなく、例えば30分~24時間の範囲で適宜調整すればよい。 The reaction temperature in the raw material synthesis reaction (II) varies depending on the type of the sulfide derivative (f) and the solvent, but is preferably −50 to 100 ° C., more preferably −10 to 70 ° C., still more preferably 15 to 70 ° C. Particularly preferred is 30 to 70 ° C. Moreover, there is no restriction | limiting in particular in reaction pressure, However, Implementing under a normal pressure is preferable.
As a method for carrying out the raw material synthesis reaction (II), a method in which the sulfide derivative (f) is added (preferably dropped) to a mixed solution of an acidic compound or a basic compound and a solvent is preferable. As long as the temperature is not rapidly increased, the addition time (dropping time) is not particularly limited, and may be appropriately adjusted within a range of, for example, 30 minutes to 24 hours.
原料合成反応(II)によって得られた反応混合物からのアルコール誘導体(g)およびアルコール誘導体(h)の分離精製は、有機化合物の分離精製に一般的に用いられる方法により行うことができる。例えば、反応終了後、反応混合物に水を添加した後、有機溶媒で抽出し、得られた有機層を濃縮することにより分離することができる。さらに必要に応じて、再結晶、蒸留、シリカゲルカラムクロマトグラフィーなどで精製することにより、アルコール誘導体(g)およびアルコール誘導体(h)をそれぞれ単独で、または混合物として得ることができる。
Separation and purification of the alcohol derivative (g) and alcohol derivative (h) from the reaction mixture obtained by the raw material synthesis reaction (II) can be performed by a method generally used for separation and purification of organic compounds. For example, after completion of the reaction, it can be separated by adding water to the reaction mixture, extracting with an organic solvent, and concentrating the resulting organic layer. Further, if necessary, the alcohol derivative (g) and the alcohol derivative (h) can be obtained individually or as a mixture by purification by recrystallization, distillation, silica gel column chromatography or the like.
[高分子化合物]
本発明のアクリル酸エステル誘導体(1)もしくは本発明の混合物を単独で重合してなる重合体は、フォトレジスト組成物用の高分子化合物として有用である。さらに、本発明のアクリル酸エステル誘導体(1)もしくは本発明の混合物と、他の重合性化合物とを共重合してなる共重合体は、フォトレジスト組成物用の高分子化合物として有用である。
本発明の高分子化合物は、本発明の前記アクリル酸エステル誘導体に由来する構成単位を有する。
例えば、本発明の化合物は、下記一般式(a1)で表される構成単位(a1)を有する。
(式中、R1、R2、X1、X2、A1、A2、U1、U2、U3およびkは、前記一般式(1)中のものと同じである。) [Polymer compound]
The polymer obtained by polymerizing the acrylate derivative (1) of the present invention or the mixture of the present invention alone is useful as a polymer compound for a photoresist composition. Furthermore, a copolymer obtained by copolymerizing the acrylate derivative (1) of the present invention or the mixture of the present invention and another polymerizable compound is useful as a polymer compound for a photoresist composition.
The polymer compound of the present invention has a structural unit derived from the acrylate derivative of the present invention.
For example, the compound of the present invention has a structural unit (a1) represented by the following general formula (a1).
(In the formula, R 1 , R 2 , X 1 , X 2 , A 1 , A 2 , U 1 , U 2 , U 3 and k are the same as those in the general formula (1).)
本発明のアクリル酸エステル誘導体(1)もしくは本発明の混合物を単独で重合してなる重合体は、フォトレジスト組成物用の高分子化合物として有用である。さらに、本発明のアクリル酸エステル誘導体(1)もしくは本発明の混合物と、他の重合性化合物とを共重合してなる共重合体は、フォトレジスト組成物用の高分子化合物として有用である。
本発明の高分子化合物は、本発明の前記アクリル酸エステル誘導体に由来する構成単位を有する。
例えば、本発明の化合物は、下記一般式(a1)で表される構成単位(a1)を有する。
(式中、R1、R2、X1、X2、A1、A2、U1、U2、U3およびkは、前記一般式(1)中のものと同じである。) [Polymer compound]
The polymer obtained by polymerizing the acrylate derivative (1) of the present invention or the mixture of the present invention alone is useful as a polymer compound for a photoresist composition. Furthermore, a copolymer obtained by copolymerizing the acrylate derivative (1) of the present invention or the mixture of the present invention and another polymerizable compound is useful as a polymer compound for a photoresist composition.
The polymer compound of the present invention has a structural unit derived from the acrylate derivative of the present invention.
For example, the compound of the present invention has a structural unit (a1) represented by the following general formula (a1).
(In the formula, R 1 , R 2 , X 1 , X 2 , A 1 , A 2 , U 1 , U 2 , U 3 and k are the same as those in the general formula (1).)
また、本発明の高分子化合物は、好ましくは、下記一般式(a2)で表される構成単位(a2)および下記一般式(a3)で表される構成単位(a3)からなる群から選択される少なくとも1種を有する。
(式中、R1~R12、X1、X2、A2、kおよびzは、前記一般式(2)および(3)中のものと同じである。) The polymer compound of the present invention is preferably selected from the group consisting of a structural unit (a2) represented by the following general formula (a2) and a structural unit (a3) represented by the following general formula (a3). Having at least one species.
(Wherein R 1 to R 12 , X 1 , X 2 , A 2 , k and z are the same as those in the general formulas (2) and (3)).
(式中、R1~R12、X1、X2、A2、kおよびzは、前記一般式(2)および(3)中のものと同じである。) The polymer compound of the present invention is preferably selected from the group consisting of a structural unit (a2) represented by the following general formula (a2) and a structural unit (a3) represented by the following general formula (a3). Having at least one species.
(Wherein R 1 to R 12 , X 1 , X 2 , A 2 , k and z are the same as those in the general formulas (2) and (3)).
本発明の高分子化合物は、より好ましくは、下記一般式(a2-1)で表される構成単位(a2-1)および下記一般式(a3-1)で表される構成単位(a3-1)からなる群から選択される少なくとも1種を有する。
(式中、R1、R2、X1、X2、A2およびkは、前記一般式(a2)および(a3)中のものと同じである。) The polymer compound of the present invention is more preferably a structural unit (a2-1) represented by the following general formula (a2-1) and a structural unit (a3-1) represented by the following general formula (a3-1). At least one selected from the group consisting of:
(Wherein R 1 , R 2 , X 1 , X 2 , A 2 and k are the same as those in the general formulas (a2) and (a3)).
(式中、R1、R2、X1、X2、A2およびkは、前記一般式(a2)および(a3)中のものと同じである。) The polymer compound of the present invention is more preferably a structural unit (a2-1) represented by the following general formula (a2-1) and a structural unit (a3-1) represented by the following general formula (a3-1). At least one selected from the group consisting of:
(Wherein R 1 , R 2 , X 1 , X 2 , A 2 and k are the same as those in the general formulas (a2) and (a3)).
本発明の高分子化合物は、本発明のアクリル酸エステル誘導体に由来する構成単位[例えば、構成単位(a1)、(a2)、(a2-1)、(a3)および(a3-1)]を、0モル%を超え100モル%以下含有し、解像度およびLWRの観点から、好ましくは5~80モル%、より好ましくは10~70モル%、さらに好ましくは30~70モル%含有する。本発明の高分子化合物は、前述の通り、アクリル酸エステル誘導体(1)と共重合させることができる他の重合性化合物に由来する構成単位を有していてもよい。
アクリル酸エステル誘導体(1)と共重合させることができる他の重合性化合物(以下、共重合単量体と称する。)の具体例としては、例えば下記の化学式で示される化合物などが挙げられるが、特にこれらに限定されない。 The polymer compound of the present invention contains structural units derived from the acrylate derivative of the present invention [for example, structural units (a1), (a2), (a2-1), (a3) and (a3-1)]. From 0 to 100 mol%, from the viewpoint of resolution and LWR, it is preferably 5 to 80 mol%, more preferably 10 to 70 mol%, still more preferably 30 to 70 mol%. As described above, the polymer compound of the present invention may have a structural unit derived from another polymerizable compound that can be copolymerized with the acrylate derivative (1).
Specific examples of other polymerizable compounds (hereinafter referred to as copolymerization monomers) that can be copolymerized with the acrylate derivative (1) include compounds represented by the following chemical formulas. However, it is not particularly limited to these.
アクリル酸エステル誘導体(1)と共重合させることができる他の重合性化合物(以下、共重合単量体と称する。)の具体例としては、例えば下記の化学式で示される化合物などが挙げられるが、特にこれらに限定されない。 The polymer compound of the present invention contains structural units derived from the acrylate derivative of the present invention [for example, structural units (a1), (a2), (a2-1), (a3) and (a3-1)]. From 0 to 100 mol%, from the viewpoint of resolution and LWR, it is preferably 5 to 80 mol%, more preferably 10 to 70 mol%, still more preferably 30 to 70 mol%. As described above, the polymer compound of the present invention may have a structural unit derived from another polymerizable compound that can be copolymerized with the acrylate derivative (1).
Specific examples of other polymerizable compounds (hereinafter referred to as copolymerization monomers) that can be copolymerized with the acrylate derivative (1) include compounds represented by the following chemical formulas. However, it is not particularly limited to these.
上記一般式(I)~(IX)中、R3aは水素原子、炭素数1~3のアルキル基または炭素数3~10の環状炭化水素基を表し、R4aは重合性基含有基を表す。R5aは水素原子または-COOR6a(R6aは炭素数1~3のアルキル基を表す。)を表す。mは、1~5の整数を表す。Zは、メチレン基、エチレン基または酸素原子を表す。
共重合単量体において、R3aおよびR6aが表す炭素数1~3のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。R3aが表す炭素数3~10の環状炭化水素基としては、例えばシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基などが挙げられる。また、R4aが表す重合性基含有基中の重合性基としては、例えばアクリロイル基、メタクリロイル基、ビニル基、ビニルスルホニル基などが挙げられる。また、R4aが表す重合性基含有基としては、例えばアクリロイル基、メタクリロイル基、α-フルオロアクリロイル基、トリフルオロメタクリロイル基、2-(アクリロイルオキシ)アセチル基、2-(メタクリロイルオキシ)アセチル基、2-(トリフルオロメタクリロイルオキシ)アセチル基、ビニル基、ビニルスルホニル基、2-(ビニルスルホニルオキシ)アセチル基などが挙げられる。
In the above general formulas (I) to (IX), R 3a represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a cyclic hydrocarbon group having 3 to 10 carbon atoms, and R 4a represents a polymerizable group-containing group. . R 5a represents a hydrogen atom or —COOR 6a (R 6a represents an alkyl group having 1 to 3 carbon atoms). m represents an integer of 1 to 5. Z represents a methylene group, an ethylene group or an oxygen atom.
Examples of the alkyl group having 1 to 3 carbon atoms represented by R 3a and R 6a in the comonomer include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. Examples of the cyclic hydrocarbon group having 3 to 10 carbon atoms represented by R 3a include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group. Examples of the polymerizable group in the polymerizable group-containing group represented by R 4a include an acryloyl group, a methacryloyl group, a vinyl group, and a vinylsulfonyl group. Examples of the polymerizable group-containing group represented by R 4a include acryloyl group, methacryloyl group, α-fluoroacryloyl group, trifluoromethacryloyl group, 2- (acryloyloxy) acetyl group, 2- (methacryloyloxy) acetyl group, Examples include 2- (trifluoromethacryloyloxy) acetyl group, vinyl group, vinylsulfonyl group, 2- (vinylsulfonyloxy) acetyl group and the like.
上記一般式(I)で示される化合物の具体例を以下に示すが、特にこれらに限定されない。
Specific examples of the compound represented by the general formula (I) are shown below, but are not particularly limited thereto.
上記一般式(II)で示される化合物の具体例を以下に示すが、特にこれらに限定されない。
Specific examples of the compound represented by the general formula (II) are shown below, but are not particularly limited thereto.
上記一般式(III)で示される化合物の具体例を以下に示すが、特にこれらに限定されない。
Specific examples of the compound represented by the general formula (III) are shown below, but are not particularly limited thereto.
上記一般式(IV)で示される化合物の具体例を以下に示すが、特にこれらに限定されない。
Specific examples of the compound represented by the general formula (IV) are shown below, but are not particularly limited thereto.
上記一般式(V)で示される化合物の具体例を以下に示すが、特にこれらに限定されない。
Specific examples of the compound represented by the general formula (V) are shown below, but are not particularly limited thereto.
上記一般式(VI)で示される化合物の具体例を以下に示すが、特にこれらに限定されない。
Specific examples of the compound represented by the general formula (VI) are shown below, but are not particularly limited thereto.
上記一般式(VII)で示される化合物の具体例を以下に示すが、特にこれらに限定されない。
Specific examples of the compound represented by the general formula (VII) are shown below, but are not particularly limited thereto.
上記一般式(VIII)で示される化合物の具体例を以下に示すが、特にこれらに限定されない。
Specific examples of the compound represented by the general formula (VIII) are shown below, but are not particularly limited thereto.
上記一般式(IX)で示される化合物の具体例を以下に示すが、特にこれらに限定されない。
Specific examples of the compound represented by the general formula (IX) are shown below, but are not particularly limited thereto.
以上の共重合単量体は、任意の共重合単量体1種を選択することもできるし、任意の組合せで2種以上を併用することもできる。
以上の中でも、共重合単量体としては、好ましくは上記一般式(I)、(II)、(IV)、(V)または(IX)で表される共重合単量体、より好ましくは、上記一般式(I)または(II)で表される共重合単量体、さらに好ましくは、上記一般式(I)で表される共重合単量体と上記式(II)で表される共重合単量体との併用である。 As the above comonomer, one arbitrary comonomer can be selected, or two or more can be used in combination.
Among the above, as the comonomer, preferably a comonomer represented by the above general formula (I), (II), (IV), (V) or (IX), more preferably, A copolymer monomer represented by the above general formula (I) or (II), more preferably a copolymer monomer represented by the above general formula (I) and a copolymer monomer represented by the above formula (II). It is combined use with a polymerization monomer.
以上の中でも、共重合単量体としては、好ましくは上記一般式(I)、(II)、(IV)、(V)または(IX)で表される共重合単量体、より好ましくは、上記一般式(I)または(II)で表される共重合単量体、さらに好ましくは、上記一般式(I)で表される共重合単量体と上記式(II)で表される共重合単量体との併用である。 As the above comonomer, one arbitrary comonomer can be selected, or two or more can be used in combination.
Among the above, as the comonomer, preferably a comonomer represented by the above general formula (I), (II), (IV), (V) or (IX), more preferably, A copolymer monomer represented by the above general formula (I) or (II), more preferably a copolymer monomer represented by the above general formula (I) and a copolymer monomer represented by the above formula (II). It is combined use with a polymerization monomer.
《高分子化合物の製造》
本発明の高分子化合物は、常法に従って、ラジカル重合により製造することができる。特に、分子量分布が小さい高分子化合物を合成する方法としては、リビングラジカル重合などを挙げることができる。
一般的なラジカル重合方法は、必要に応じて1種以上のアクリル酸エステル誘導体(1)および必要に応じて1種以上の上記共重合単量体を、ラジカル重合開始剤および溶媒、並びに必要に応じて連鎖移動剤の存在下に重合させる。
ラジカル重合の実施方法には特に制限はなく、溶液重合法、乳化重合法、懸濁重合法、塊状重合法など、例えばアクリル系樹脂を製造する際に用いる慣用の方法を使用できる。 << Manufacture of polymer compounds >>
The polymer compound of the present invention can be produced by radical polymerization according to a conventional method. In particular, a method for synthesizing a polymer compound having a small molecular weight distribution includes living radical polymerization.
A general radical polymerization method includes a radical polymerization initiator, a solvent, and, if necessary, one or more acrylic ester derivatives (1) and, if necessary, one or more of the above-mentioned copolymerization monomers. Accordingly, the polymerization is carried out in the presence of a chain transfer agent.
There is no restriction | limiting in particular in the implementation method of radical polymerization, For example, the usual method used when manufacturing acrylic resin, such as solution polymerization method, emulsion polymerization method, suspension polymerization method, block polymerization method, etc. can be used.
本発明の高分子化合物は、常法に従って、ラジカル重合により製造することができる。特に、分子量分布が小さい高分子化合物を合成する方法としては、リビングラジカル重合などを挙げることができる。
一般的なラジカル重合方法は、必要に応じて1種以上のアクリル酸エステル誘導体(1)および必要に応じて1種以上の上記共重合単量体を、ラジカル重合開始剤および溶媒、並びに必要に応じて連鎖移動剤の存在下に重合させる。
ラジカル重合の実施方法には特に制限はなく、溶液重合法、乳化重合法、懸濁重合法、塊状重合法など、例えばアクリル系樹脂を製造する際に用いる慣用の方法を使用できる。 << Manufacture of polymer compounds >>
The polymer compound of the present invention can be produced by radical polymerization according to a conventional method. In particular, a method for synthesizing a polymer compound having a small molecular weight distribution includes living radical polymerization.
A general radical polymerization method includes a radical polymerization initiator, a solvent, and, if necessary, one or more acrylic ester derivatives (1) and, if necessary, one or more of the above-mentioned copolymerization monomers. Accordingly, the polymerization is carried out in the presence of a chain transfer agent.
There is no restriction | limiting in particular in the implementation method of radical polymerization, For example, the usual method used when manufacturing acrylic resin, such as solution polymerization method, emulsion polymerization method, suspension polymerization method, block polymerization method, etc. can be used.
前記ラジカル重合開始剤としては、例えば、t-ブチルヒドロパーオキシド、クメンヒドロパーオキシドなどのヒドロパーオキシド化合物;ジ-t-ブチルパーオキシド、t-ブチル-α-クミルパーオキシド、ジ-α-クミルパーオキシドなどのジアルキルパーオキシド化合物;ベンゾイルパーオキシド、ジイソブチリルパーオキシドなどのジアシルパーオキシド化合物;2,2’-アゾビスイソブチロニトリル、ジメチル-2,2’-アゾビスイソブチレート、アゾビスイソ酪酸ジメチルなどのアゾ化合物などが挙げられる。
ラジカル重合開始剤の使用量は、重合反応に用いる本発明のアクリル酸エステル誘導体、共重合単量体、連鎖移動剤、溶媒の種類および使用量、重合温度などの重合条件に応じて適宜選択できるが、全重合性化合物[本発明のアクリル酸エステル誘導体と共重合単量体の合計量であり、以下同様である。]1モルに対して、通常、好ましくは0.005~0.2モル、より好ましくは0.01~0.15モルである。 Examples of the radical polymerization initiator include hydroperoxide compounds such as t-butyl hydroperoxide and cumene hydroperoxide; di-t-butyl peroxide, t-butyl-α-cumyl peroxide, di-α- Dialkyl peroxide compounds such as cumyl peroxide; diacyl peroxide compounds such as benzoyl peroxide and diisobutyryl peroxide; 2,2′-azobisisobutyronitrile, dimethyl-2,2′-azobisisobutyrate, Examples include azo compounds such as dimethyl azobisisobutyrate.
The amount of the radical polymerization initiator used can be appropriately selected according to the polymerization conditions such as the acrylic ester derivative of the present invention used in the polymerization reaction, the comonomer, the chain transfer agent, the type and amount of the solvent, and the polymerization temperature. Is the total polymerizable compound [the total amount of the acrylate derivative of the present invention and the comonomer, and so on. The amount is usually preferably 0.005 to 0.2 mol, more preferably 0.01 to 0.15 mol per 1 mol.
ラジカル重合開始剤の使用量は、重合反応に用いる本発明のアクリル酸エステル誘導体、共重合単量体、連鎖移動剤、溶媒の種類および使用量、重合温度などの重合条件に応じて適宜選択できるが、全重合性化合物[本発明のアクリル酸エステル誘導体と共重合単量体の合計量であり、以下同様である。]1モルに対して、通常、好ましくは0.005~0.2モル、より好ましくは0.01~0.15モルである。 Examples of the radical polymerization initiator include hydroperoxide compounds such as t-butyl hydroperoxide and cumene hydroperoxide; di-t-butyl peroxide, t-butyl-α-cumyl peroxide, di-α- Dialkyl peroxide compounds such as cumyl peroxide; diacyl peroxide compounds such as benzoyl peroxide and diisobutyryl peroxide; 2,2′-azobisisobutyronitrile, dimethyl-2,2′-azobisisobutyrate, Examples include azo compounds such as dimethyl azobisisobutyrate.
The amount of the radical polymerization initiator used can be appropriately selected according to the polymerization conditions such as the acrylic ester derivative of the present invention used in the polymerization reaction, the comonomer, the chain transfer agent, the type and amount of the solvent, and the polymerization temperature. Is the total polymerizable compound [the total amount of the acrylate derivative of the present invention and the comonomer, and so on. The amount is usually preferably 0.005 to 0.2 mol, more preferably 0.01 to 0.15 mol per 1 mol.
前記溶媒としては、重合反応を阻害しなければ特に制限はなく、例えば、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテルプロピオネート、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテルなどのグリコールエーテル;乳酸エチル、3-メトキシプロピオン酸メチル、酢酸メチル、酢酸エチル、酢酸プロピルなどのエステル;アセトン、メチルエチルケトン、メチルイプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロペンタノン、シクロヘキサノンなどのケトン;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテルなどが挙げられる。
溶媒の使用量は、全重合性化合物1質量部に対して、通常、好ましくは0.5~20質量部、経済性の観点からは、より好ましくは1~10質量部である。 The solvent is not particularly limited as long as it does not inhibit the polymerization reaction. For example, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether propionate, Glycol ethers such as ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol dimethyl ether; esters such as ethyl lactate, methyl 3-methoxypropionate, methyl acetate, ethyl acetate, propyl acetate; acetone, methyl ethyl ketone, methyl ipropyl ketone, methyl Isobutyl ketone, methyl amyl ketone, cyclopentanone, cyclohexa Ketones, such as emissions diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, ethers such as 1,4-dioxane.
The amount of the solvent used is usually preferably 0.5 to 20 parts by mass and more preferably 1 to 10 parts by mass from the viewpoint of economy with respect to 1 part by mass of the total polymerizable compound.
溶媒の使用量は、全重合性化合物1質量部に対して、通常、好ましくは0.5~20質量部、経済性の観点からは、より好ましくは1~10質量部である。 The solvent is not particularly limited as long as it does not inhibit the polymerization reaction. For example, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether propionate, Glycol ethers such as ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol dimethyl ether; esters such as ethyl lactate, methyl 3-methoxypropionate, methyl acetate, ethyl acetate, propyl acetate; acetone, methyl ethyl ketone, methyl ipropyl ketone, methyl Isobutyl ketone, methyl amyl ketone, cyclopentanone, cyclohexa Ketones, such as emissions diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, ethers such as 1,4-dioxane.
The amount of the solvent used is usually preferably 0.5 to 20 parts by mass and more preferably 1 to 10 parts by mass from the viewpoint of economy with respect to 1 part by mass of the total polymerizable compound.
前記連鎖移動剤としては、例えばドデカンチオール、メルカプトエタノール、メルカプトプロパノール、メルカプト酢酸、メルカプトプロピオン酸などのチオール化合物が挙げられる。連鎖移動剤を使用する場合、その使用量は、全重合性化合物1モルに対して、通常、好ましくは0.005~0.2モル、より好ましくは0.01~0.15モルである。
Examples of the chain transfer agent include thiol compounds such as dodecanethiol, mercaptoethanol, mercaptopropanol, mercaptoacetic acid, and mercaptopropionic acid. When a chain transfer agent is used, the amount used is usually preferably 0.005 to 0.2 mol, more preferably 0.01 to 0.15 mol, per 1 mol of all polymerizable compounds.
重合温度は、通常、好ましくは40~150℃であり、生成する高分子化合物の安定性の観点から、より好ましくは60~120℃である。
重合反応の時間は、アクリル酸エステル誘導体(1)、共重合単量体、重合開始剤、溶媒の種類および使用量、重合反応の温度などの重合条件により異なるが、通常、好ましくは30分~48時間、より好ましくは1時間~24時間である。
重合反応は、窒素やアルゴンなどの不活性ガス雰囲気下に実施することが好ましい。 The polymerization temperature is usually preferably 40 to 150 ° C., and more preferably 60 to 120 ° C. from the viewpoint of the stability of the produced polymer compound.
The time for the polymerization reaction varies depending on the polymerization conditions such as the acrylic ester derivative (1), the comonomer, the polymerization initiator, the type and amount of the solvent used, and the temperature of the polymerization reaction. 48 hours, more preferably 1 to 24 hours.
The polymerization reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon.
重合反応の時間は、アクリル酸エステル誘導体(1)、共重合単量体、重合開始剤、溶媒の種類および使用量、重合反応の温度などの重合条件により異なるが、通常、好ましくは30分~48時間、より好ましくは1時間~24時間である。
重合反応は、窒素やアルゴンなどの不活性ガス雰囲気下に実施することが好ましい。 The polymerization temperature is usually preferably 40 to 150 ° C., and more preferably 60 to 120 ° C. from the viewpoint of the stability of the produced polymer compound.
The time for the polymerization reaction varies depending on the polymerization conditions such as the acrylic ester derivative (1), the comonomer, the polymerization initiator, the type and amount of the solvent used, and the temperature of the polymerization reaction. 48 hours, more preferably 1 to 24 hours.
The polymerization reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon.
こうして得られる高分子化合物は、再沈殿などの通常の操作により単離することが可能である。単離した高分子化合物は真空乾燥などで乾燥することもできる。
再沈殿の操作で用いる溶媒としては、例えば、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素;シクロヘキサンなどの脂環式炭化水素;ベンゼン、キシレンなどの芳香族炭化水素;塩化メチレン、クロロホルム、クロロベンゼン、ジクロロベンゼンなどのハロゲン化炭化水素;ニトロメタンなどのニトロ化炭化水素;アセトニトリル、ベンゾニトリルなどのニトリル;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル;アセトン、メチルエチルケトンなどのケトン;酢酸などのカルボン酸;酢酸エチル、酢酸ブチルなどのエステル;ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネートなどのカーボネート;メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノールなどのアルコール;水が挙げられる。これらは1種を単独でまたは2種以上を併用してもよい。
再沈殿の操作で用いる溶媒の使用量は、高分子化合物の種類、溶媒の種類により異なるが、通常、高分子化合物1質量部に対して0.5~100質量部であるのが好ましく、経済性の観点からは、1~50質量部であるのがより好ましい。 The polymer compound thus obtained can be isolated by ordinary operations such as reprecipitation. The isolated polymer compound can be dried by vacuum drying or the like.
Examples of the solvent used in the reprecipitation operation include aliphatic hydrocarbons such as pentane, hexane, and heptane; alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons such as benzene and xylene; methylene chloride, chloroform, chlorobenzene, Halogenated hydrocarbons such as dichlorobenzene; nitrated hydrocarbons such as nitromethane; nitriles such as acetonitrile and benzonitrile; ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran and 1,4-dioxane; ketones such as acetone and methyl ethyl ketone; acetic acid Carboxylic acids such as; esters such as ethyl acetate and butyl acetate; carbonates such as dimethyl carbonate, diethyl carbonate, and ethylene carbonate; methanol, ethanol, propanol, isopropyl Include water; alcohols, alcohols such as butanol. These may be used alone or in combination of two or more.
The amount of solvent used in the reprecipitation operation varies depending on the type of polymer compound and the type of solvent, but it is usually preferably 0.5 to 100 parts by mass with respect to 1 part by mass of the polymer compound. From the viewpoint of properties, the amount is more preferably 1 to 50 parts by mass.
再沈殿の操作で用いる溶媒としては、例えば、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素;シクロヘキサンなどの脂環式炭化水素;ベンゼン、キシレンなどの芳香族炭化水素;塩化メチレン、クロロホルム、クロロベンゼン、ジクロロベンゼンなどのハロゲン化炭化水素;ニトロメタンなどのニトロ化炭化水素;アセトニトリル、ベンゾニトリルなどのニトリル;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル;アセトン、メチルエチルケトンなどのケトン;酢酸などのカルボン酸;酢酸エチル、酢酸ブチルなどのエステル;ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネートなどのカーボネート;メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノールなどのアルコール;水が挙げられる。これらは1種を単独でまたは2種以上を併用してもよい。
再沈殿の操作で用いる溶媒の使用量は、高分子化合物の種類、溶媒の種類により異なるが、通常、高分子化合物1質量部に対して0.5~100質量部であるのが好ましく、経済性の観点からは、1~50質量部であるのがより好ましい。 The polymer compound thus obtained can be isolated by ordinary operations such as reprecipitation. The isolated polymer compound can be dried by vacuum drying or the like.
Examples of the solvent used in the reprecipitation operation include aliphatic hydrocarbons such as pentane, hexane, and heptane; alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons such as benzene and xylene; methylene chloride, chloroform, chlorobenzene, Halogenated hydrocarbons such as dichlorobenzene; nitrated hydrocarbons such as nitromethane; nitriles such as acetonitrile and benzonitrile; ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran and 1,4-dioxane; ketones such as acetone and methyl ethyl ketone; acetic acid Carboxylic acids such as; esters such as ethyl acetate and butyl acetate; carbonates such as dimethyl carbonate, diethyl carbonate, and ethylene carbonate; methanol, ethanol, propanol, isopropyl Include water; alcohols, alcohols such as butanol. These may be used alone or in combination of two or more.
The amount of solvent used in the reprecipitation operation varies depending on the type of polymer compound and the type of solvent, but it is usually preferably 0.5 to 100 parts by mass with respect to 1 part by mass of the polymer compound. From the viewpoint of properties, the amount is more preferably 1 to 50 parts by mass.
高分子化合物の重量平均分子量(Mw)に特に制限は無いが、好ましくは500~50,000、より好ましくは1,000~30,000、さらに好ましくは4,000~15,000、特に好ましくは4,000~10,000であると、後述するフォトレジスト組成物の成分としての有用性が高い。かかる重量平均分子量は、ゲル浸透クロマトグラフ(GPC)測定により求めた標準ポリスチレン換算の値である。
また、高分子化合物の分子量分布(Mw/Mn)に特に制限は無いが、好ましくは1.0~3.0、より好ましくは1.0~2.0であると、後述するフォトレジスト組成物の成分としての有用性が高い。かかるMwおよびMnは、ゲル浸透クロマトグラフ(GPC)測定により求めた標準ポリスチレン換算の値である。 The weight average molecular weight (Mw) of the polymer compound is not particularly limited, but is preferably 500 to 50,000, more preferably 1,000 to 30,000, still more preferably 4,000 to 15,000, particularly preferably. When it is 4,000 to 10,000, it is highly useful as a component of a photoresist composition described later. The weight average molecular weight is a value in terms of standard polystyrene determined by gel permeation chromatograph (GPC) measurement.
The molecular weight distribution (Mw / Mn) of the polymer compound is not particularly limited, but is preferably 1.0 to 3.0, more preferably 1.0 to 2.0. It is highly useful as a component. Such Mw and Mn are values in terms of standard polystyrene determined by gel permeation chromatograph (GPC) measurement.
また、高分子化合物の分子量分布(Mw/Mn)に特に制限は無いが、好ましくは1.0~3.0、より好ましくは1.0~2.0であると、後述するフォトレジスト組成物の成分としての有用性が高い。かかるMwおよびMnは、ゲル浸透クロマトグラフ(GPC)測定により求めた標準ポリスチレン換算の値である。 The weight average molecular weight (Mw) of the polymer compound is not particularly limited, but is preferably 500 to 50,000, more preferably 1,000 to 30,000, still more preferably 4,000 to 15,000, particularly preferably. When it is 4,000 to 10,000, it is highly useful as a component of a photoresist composition described later. The weight average molecular weight is a value in terms of standard polystyrene determined by gel permeation chromatograph (GPC) measurement.
The molecular weight distribution (Mw / Mn) of the polymer compound is not particularly limited, but is preferably 1.0 to 3.0, more preferably 1.0 to 2.0. It is highly useful as a component. Such Mw and Mn are values in terms of standard polystyrene determined by gel permeation chromatograph (GPC) measurement.
[フォトレジスト組成物]
本発明の高分子化合物、光酸発生剤および溶剤、並びに必要に応じて塩基性化合物、界面活性剤およびその他の添加物を配合することにより、フォトレジスト組成物を調製する。以下、各成分について説明する。 [Photoresist composition]
A photoresist composition is prepared by blending the polymer compound of the present invention, a photoacid generator and a solvent, and, if necessary, a basic compound, a surfactant and other additives. Hereinafter, each component will be described.
本発明の高分子化合物、光酸発生剤および溶剤、並びに必要に応じて塩基性化合物、界面活性剤およびその他の添加物を配合することにより、フォトレジスト組成物を調製する。以下、各成分について説明する。 [Photoresist composition]
A photoresist composition is prepared by blending the polymer compound of the present invention, a photoacid generator and a solvent, and, if necessary, a basic compound, a surfactant and other additives. Hereinafter, each component will be described.
<光酸発生剤>
光酸発生剤としては、従来、化学増幅型レジストに通常用いられる公知の光酸発生剤を特に制限なく用いることができる。該光酸発生剤としては、例えば、ヨードニウム塩やスルホニウム塩などのオニウム塩系光酸発生剤;オキシムスルホネート系光酸発生剤;ビスアルキルまたはビスアリールスルホニルジアゾメタン系光酸発生剤;ニトロベンジルスルホネート系光酸発生剤;イミノスルホネート系光酸発生剤;ジスルホン系光酸発生剤などが挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、オニウム塩系光酸発生剤が好ましく、さらに、発生する酸の強度が強いという観点から、フッ素含有アルキルスルホン酸イオンをアニオンとして含む下記の含フッ素オニウム塩が好ましい。 <Photo acid generator>
As the photoacid generator, known photoacid generators conventionally used for chemically amplified resists can be used without particular limitation. Examples of the photoacid generator include onium salt photoacid generators such as iodonium salts and sulfonium salts; oxime sulfonate photoacid generators; bisalkyl or bisarylsulfonyldiazomethane photoacid generators; Examples include photoacid generators; iminosulfonate photoacid generators; disulfone photoacid generators. These may be used individually by 1 type and may use 2 or more types together. Among these, an onium salt photoacid generator is preferable, and the following fluorine-containing onium salt containing a fluorine-containing alkyl sulfonate ion as an anion is preferable from the viewpoint that the strength of the generated acid is strong.
光酸発生剤としては、従来、化学増幅型レジストに通常用いられる公知の光酸発生剤を特に制限なく用いることができる。該光酸発生剤としては、例えば、ヨードニウム塩やスルホニウム塩などのオニウム塩系光酸発生剤;オキシムスルホネート系光酸発生剤;ビスアルキルまたはビスアリールスルホニルジアゾメタン系光酸発生剤;ニトロベンジルスルホネート系光酸発生剤;イミノスルホネート系光酸発生剤;ジスルホン系光酸発生剤などが挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、オニウム塩系光酸発生剤が好ましく、さらに、発生する酸の強度が強いという観点から、フッ素含有アルキルスルホン酸イオンをアニオンとして含む下記の含フッ素オニウム塩が好ましい。 <Photo acid generator>
As the photoacid generator, known photoacid generators conventionally used for chemically amplified resists can be used without particular limitation. Examples of the photoacid generator include onium salt photoacid generators such as iodonium salts and sulfonium salts; oxime sulfonate photoacid generators; bisalkyl or bisarylsulfonyldiazomethane photoacid generators; Examples include photoacid generators; iminosulfonate photoacid generators; disulfone photoacid generators. These may be used individually by 1 type and may use 2 or more types together. Among these, an onium salt photoacid generator is preferable, and the following fluorine-containing onium salt containing a fluorine-containing alkyl sulfonate ion as an anion is preferable from the viewpoint that the strength of the generated acid is strong.
上記含フッ素オニウム塩の具体例としては、例えば、ジフェニルヨードニウムのトリフルオロメタンスルホネートまたはノナフルオロブタンスルホネート;ビス(4-tert-ブチルフェニル)ヨードニウムのトリフルオロメタンスルホネートまたはノナフルオロブタンスルホネート;トリフェニルスルホニウムのトリフルオロメタンスルホネート、ヘプタフルオロプロパンスルホネートまたはノナフルオロブタンスルホネート;トリ(4-メチルフェニル)スルホニウムのトリフルオロメタンスルホネート、ヘプタフルオロプロパンスルホネートまたはノナフルオロブタンスルホネート;ジメチル(4-ヒドロキシナフチル)スルホニウムのトリフルオロメタンスルホネート、ヘプタフルオロプロパンスルホネートまたはノナフルオロブタンスルホネート;モノフェニルジメチルスルホニウムのトリフルオロンメタンスルホネート、ヘプタフルオロプロパンスルホネートまたはノナフルオロブタンスルホネート;ジフェニルモノメチルスルホニウムのトリフルオロメタンスルホネート、ヘプタフルオロプロパンスルホネートまたはノナフルオロブタンスルホネート;(4-メチルフェニル)ジフェニルスルホニウムのトリフルオロメタンスルホネート、ヘプタフルオロプロパンスルホネートまたはノナフルオロブタンスルホネート;(4-メトキシフェニル)ジフェニルスルホニウムのトリフルオロメタンスルホネート、ヘプタフルオロプロパンスルホネートまたはノナフルオロブタンスルホネート;トリ(4-tert-ブチル)フェニルスルホニウムのトリフルオロメタンスルホネート、ヘプタフルオロプロパンスルホネートまたはノナフルオロブタンスルホネートなどが挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
光酸発生剤の配合量は、フォトレジスト組成物の感度および現像性を確保する観点から、前記高分子化合物100質量部に対して、通常、好ましくは0.1~30質量部、より好ましくは0.5~10質量部である。 Specific examples of the fluorine-containing onium salt include, for example, diphenyliodonium trifluoromethanesulfonate or nonafluorobutanesulfonate; bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate or nonafluorobutanesulfonate; triphenylsulfonium trifluoro L-methanesulfonate, heptafluoropropane sulfonate or nonafluorobutane sulfonate; trifluoromethane sulfonate of tri (4-methylphenyl) sulfonium, heptafluoropropane sulfonate or nonafluorobutane sulfonate; trifluoromethane sulfonate of dimethyl (4-hydroxynaphthyl) sulfonium, hepta Fluoropropanesulfonate or nonafluorobut Sulfonate; monophenyldimethylsulfonium trifluoromethane sulfonate, heptafluoropropane sulfonate or nonafluorobutane sulfonate; diphenyl monomethylsulfonium trifluoromethane sulfonate, heptafluoropropane sulfonate or nonafluorobutane sulfonate; (4-methylphenyl) diphenylsulfonium Trifluoromethanesulfonate, heptafluoropropanesulfonate or nonafluorobutanesulfonate; (4-methoxyphenyl) diphenylsulfonium trifluoromethanesulfonate, heptafluoropropanesulfonate or nonafluorobutanesulfonate; tri (4-tert-butyl) phenylsulfonium trifluoromethane Sulfonates, such as heptafluoropropane or nonafluorobutanesulfonate thereof. These may be used individually by 1 type and may use 2 or more types together.
The blending amount of the photoacid generator is usually preferably 0.1 to 30 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the polymer compound from the viewpoint of ensuring the sensitivity and developability of the photoresist composition. 0.5 to 10 parts by mass.
光酸発生剤の配合量は、フォトレジスト組成物の感度および現像性を確保する観点から、前記高分子化合物100質量部に対して、通常、好ましくは0.1~30質量部、より好ましくは0.5~10質量部である。 Specific examples of the fluorine-containing onium salt include, for example, diphenyliodonium trifluoromethanesulfonate or nonafluorobutanesulfonate; bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate or nonafluorobutanesulfonate; triphenylsulfonium trifluoro L-methanesulfonate, heptafluoropropane sulfonate or nonafluorobutane sulfonate; trifluoromethane sulfonate of tri (4-methylphenyl) sulfonium, heptafluoropropane sulfonate or nonafluorobutane sulfonate; trifluoromethane sulfonate of dimethyl (4-hydroxynaphthyl) sulfonium, hepta Fluoropropanesulfonate or nonafluorobut Sulfonate; monophenyldimethylsulfonium trifluoromethane sulfonate, heptafluoropropane sulfonate or nonafluorobutane sulfonate; diphenyl monomethylsulfonium trifluoromethane sulfonate, heptafluoropropane sulfonate or nonafluorobutane sulfonate; (4-methylphenyl) diphenylsulfonium Trifluoromethanesulfonate, heptafluoropropanesulfonate or nonafluorobutanesulfonate; (4-methoxyphenyl) diphenylsulfonium trifluoromethanesulfonate, heptafluoropropanesulfonate or nonafluorobutanesulfonate; tri (4-tert-butyl) phenylsulfonium trifluoromethane Sulfonates, such as heptafluoropropane or nonafluorobutanesulfonate thereof. These may be used individually by 1 type and may use 2 or more types together.
The blending amount of the photoacid generator is usually preferably 0.1 to 30 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the polymer compound from the viewpoint of ensuring the sensitivity and developability of the photoresist composition. 0.5 to 10 parts by mass.
<溶剤>
フォトレジスト組成物に配合する溶剤としては、例えば、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテルプロピオネート、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテルなどのグリコールエーテル;乳酸エチル、3-メトキシプロピオン酸メチル、酢酸メチル、酢酸エチル、酢酸プロピルなどのエステル;アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロペンタノン、シクロヘキサノンなどのケトン;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテルなどが挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
溶剤の配合量は、高分子化合物1質量部に対して、通常、1~50質量部であるのが好ましく、2~25質量部であるのが好ましい。 <Solvent>
Solvents blended in the photoresist composition include, for example, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether propionate, ethylene glycol monobutyl ether, ethylene Glycol ethers such as glycol monobutyl ether acetate and diethylene glycol dimethyl ether; esters such as ethyl lactate, methyl 3-methoxypropionate, methyl acetate, ethyl acetate, and propyl acetate; acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl amyl ketone, Cases such as cyclopentanone and cyclohexanone Emissions diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, ethers such as 1,4-dioxane. These may be used individually by 1 type and may use 2 or more types together.
The amount of the solvent is usually preferably 1 to 50 parts by mass, and preferably 2 to 25 parts by mass with respect to 1 part by mass of the polymer compound.
フォトレジスト組成物に配合する溶剤としては、例えば、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテルプロピオネート、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテルなどのグリコールエーテル;乳酸エチル、3-メトキシプロピオン酸メチル、酢酸メチル、酢酸エチル、酢酸プロピルなどのエステル;アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロペンタノン、シクロヘキサノンなどのケトン;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテルなどが挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
溶剤の配合量は、高分子化合物1質量部に対して、通常、1~50質量部であるのが好ましく、2~25質量部であるのが好ましい。 <Solvent>
Solvents blended in the photoresist composition include, for example, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether propionate, ethylene glycol monobutyl ether, ethylene Glycol ethers such as glycol monobutyl ether acetate and diethylene glycol dimethyl ether; esters such as ethyl lactate, methyl 3-methoxypropionate, methyl acetate, ethyl acetate, and propyl acetate; acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl amyl ketone, Cases such as cyclopentanone and cyclohexanone Emissions diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, ethers such as 1,4-dioxane. These may be used individually by 1 type and may use 2 or more types together.
The amount of the solvent is usually preferably 1 to 50 parts by mass, and preferably 2 to 25 parts by mass with respect to 1 part by mass of the polymer compound.
<塩基性化合物>
フォトレジスト組成物には、フォトレジスト膜中における酸の拡散速度を抑制して解像度を向上するために、必要に応じて塩基性化合物をフォトレジスト組成物の特性が阻害されない範囲の量で配合することができる。かかる塩基性化合物としては、例えば、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-(1-アダマンチル)アセトアミド、ベンズアミド、N-アセチルエタノールアミン、1-アセチル-3-メチルピペリジン、ピロリドン、N-メチルピロリドン、ε-カプロラクタム、δ-バレロラクタム、2-ピロリジノン、アクリルアミド、メタクリルアミド、t-ブチルアクリルアミド、メチレンビスアクリルアミド、メチレンビスメタクリルアミド、N-メチロールアクリルアミド、N-メトキシアクリルアミド、ジアセトンアクリルアミドなどのアミド;ピリジン、2-メチルピリジン、4-メチルピリジン、ニコチン、キノリン、アクリジン、イミダゾール、4-メチルイミダゾール、ベンズイミダゾール、ピラジン、ピラゾール、ピロリジン、N-t-ブトキシカルボニルピロリジン、ピペリジン、テトラゾール、モルホリン、4-メチルモルホリン、ピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリエタノールアミンなどのアミンを挙げることができる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
塩基性化合物を配合する場合、その配合量は使用する塩基性化合物の種類により異なるが、光酸発生剤1モルに対して、通常、好ましくは0.01~10モル、より好ましくは0.05~1モルである。 <Basic compound>
In order to improve the resolution by suppressing the acid diffusion rate in the photoresist film, a basic compound is added to the photoresist composition in an amount that does not impair the characteristics of the photoresist composition as necessary. be able to. Examples of such basic compounds include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N- (1-adamantyl) acetamide, benzamide, N- Acetylethanolamine, 1-acetyl-3-methylpiperidine, pyrrolidone, N-methylpyrrolidone, ε-caprolactam, δ-valerolactam, 2-pyrrolidinone, acrylamide, methacrylamide, t-butylacrylamide, methylenebisacrylamide, methylenebismethacryl Amides such as amide, N-methylolacrylamide, N-methoxyacrylamide, diacetoneacrylamide; pyridine, 2-methylpyridine, 4-methylpyridine, nicotine, quinoline, Kridine, imidazole, 4-methylimidazole, benzimidazole, pyrazine, pyrazole, pyrrolidine, Nt-butoxycarbonylpyrrolidine, piperidine, tetrazole, morpholine, 4-methylmorpholine, piperazine, 1,4-diazabicyclo [2.2.2 ] Amines such as octane, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine and triethanolamine can be mentioned. These may be used individually by 1 type and may use 2 or more types together.
When a basic compound is blended, the blending amount varies depending on the type of the basic compound used, but is usually preferably 0.01 to 10 moles, more preferably 0.05 to 1 mole of the photoacid generator. ~ 1 mole.
フォトレジスト組成物には、フォトレジスト膜中における酸の拡散速度を抑制して解像度を向上するために、必要に応じて塩基性化合物をフォトレジスト組成物の特性が阻害されない範囲の量で配合することができる。かかる塩基性化合物としては、例えば、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-(1-アダマンチル)アセトアミド、ベンズアミド、N-アセチルエタノールアミン、1-アセチル-3-メチルピペリジン、ピロリドン、N-メチルピロリドン、ε-カプロラクタム、δ-バレロラクタム、2-ピロリジノン、アクリルアミド、メタクリルアミド、t-ブチルアクリルアミド、メチレンビスアクリルアミド、メチレンビスメタクリルアミド、N-メチロールアクリルアミド、N-メトキシアクリルアミド、ジアセトンアクリルアミドなどのアミド;ピリジン、2-メチルピリジン、4-メチルピリジン、ニコチン、キノリン、アクリジン、イミダゾール、4-メチルイミダゾール、ベンズイミダゾール、ピラジン、ピラゾール、ピロリジン、N-t-ブトキシカルボニルピロリジン、ピペリジン、テトラゾール、モルホリン、4-メチルモルホリン、ピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリエタノールアミンなどのアミンを挙げることができる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
塩基性化合物を配合する場合、その配合量は使用する塩基性化合物の種類により異なるが、光酸発生剤1モルに対して、通常、好ましくは0.01~10モル、より好ましくは0.05~1モルである。 <Basic compound>
In order to improve the resolution by suppressing the acid diffusion rate in the photoresist film, a basic compound is added to the photoresist composition in an amount that does not impair the characteristics of the photoresist composition as necessary. be able to. Examples of such basic compounds include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N- (1-adamantyl) acetamide, benzamide, N- Acetylethanolamine, 1-acetyl-3-methylpiperidine, pyrrolidone, N-methylpyrrolidone, ε-caprolactam, δ-valerolactam, 2-pyrrolidinone, acrylamide, methacrylamide, t-butylacrylamide, methylenebisacrylamide, methylenebismethacryl Amides such as amide, N-methylolacrylamide, N-methoxyacrylamide, diacetoneacrylamide; pyridine, 2-methylpyridine, 4-methylpyridine, nicotine, quinoline, Kridine, imidazole, 4-methylimidazole, benzimidazole, pyrazine, pyrazole, pyrrolidine, Nt-butoxycarbonylpyrrolidine, piperidine, tetrazole, morpholine, 4-methylmorpholine, piperazine, 1,4-diazabicyclo [2.2.2 ] Amines such as octane, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine and triethanolamine can be mentioned. These may be used individually by 1 type and may use 2 or more types together.
When a basic compound is blended, the blending amount varies depending on the type of the basic compound used, but is usually preferably 0.01 to 10 moles, more preferably 0.05 to 1 mole of the photoacid generator. ~ 1 mole.
<界面活性剤>
フォトレジスト組成物には、塗布性を向上させるため、所望により、さらに界面活性剤をフォトレジスト組成物の特性が阻害されない範囲の量で配合することができる。
かかる界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテルなどが挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
界面活性剤を配合する場合、その配合量は、高分子化合物100質量部に対して、通常、好ましくは2質量部以下である。 <Surfactant>
In order to improve applicability, the photoresist composition may further contain a surfactant in an amount that does not impair the characteristics of the photoresist composition, if desired.
Examples of such surfactants include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, and the like. These may be used individually by 1 type and may use 2 or more types together.
When the surfactant is blended, the blending amount is usually preferably 2 parts by mass or less with respect to 100 parts by mass of the polymer compound.
フォトレジスト組成物には、塗布性を向上させるため、所望により、さらに界面活性剤をフォトレジスト組成物の特性が阻害されない範囲の量で配合することができる。
かかる界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテルなどが挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
界面活性剤を配合する場合、その配合量は、高分子化合物100質量部に対して、通常、好ましくは2質量部以下である。 <Surfactant>
In order to improve applicability, the photoresist composition may further contain a surfactant in an amount that does not impair the characteristics of the photoresist composition, if desired.
Examples of such surfactants include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, and the like. These may be used individually by 1 type and may use 2 or more types together.
When the surfactant is blended, the blending amount is usually preferably 2 parts by mass or less with respect to 100 parts by mass of the polymer compound.
<その他の添加剤>
さらに、フォトレジスト組成物には、その他の添加剤として、増感剤、ハレーション防止剤、形状改良剤、保存安定剤、消泡剤などを、フォトレジスト組成物の特性が阻害されない範囲の量で配合することができる。 <Other additives>
Furthermore, in the photoresist composition, as other additives, a sensitizer, an antihalation agent, a shape improver, a storage stabilizer, an antifoaming agent, etc. are added in an amount that does not impair the characteristics of the photoresist composition. Can be blended.
さらに、フォトレジスト組成物には、その他の添加剤として、増感剤、ハレーション防止剤、形状改良剤、保存安定剤、消泡剤などを、フォトレジスト組成物の特性が阻害されない範囲の量で配合することができる。 <Other additives>
Furthermore, in the photoresist composition, as other additives, a sensitizer, an antihalation agent, a shape improver, a storage stabilizer, an antifoaming agent, etc. are added in an amount that does not impair the characteristics of the photoresist composition. Can be blended.
(フォトレジストパターンの形成方法)
本発明のフォトレジスト組成物を基板に塗布し、通常、好ましくは70~160℃で1~10分間プリベークし、所定のマスクを介して放射線を照射(露光)後、好ましくは70~160℃で1~5分間ポストエクスポージャーベークして潜像パターンを形成し、次いで現像液を用いて現像することにより、フォトレジストパターンを形成することができる。こうして得られるフォトレジストパターンの形状は良好であり、且つLWRは改善されている。つまり、本発明のアクリル酸エステル誘導体を用いることにより、高解像度のフォトレジストパターンが形成される。 (Photoresist pattern formation method)
The photoresist composition of the present invention is applied to a substrate, prebaked usually at 70 to 160 ° C. for 1 to 10 minutes, and irradiated (exposed) through a predetermined mask, preferably at 70 to 160 ° C. A photoresist pattern can be formed by forming a latent image pattern by post-exposure baking for 1 to 5 minutes and then developing with a developer. The shape of the photoresist pattern thus obtained is good and the LWR is improved. That is, a high-resolution photoresist pattern is formed by using the acrylate derivative of the present invention.
本発明のフォトレジスト組成物を基板に塗布し、通常、好ましくは70~160℃で1~10分間プリベークし、所定のマスクを介して放射線を照射(露光)後、好ましくは70~160℃で1~5分間ポストエクスポージャーベークして潜像パターンを形成し、次いで現像液を用いて現像することにより、フォトレジストパターンを形成することができる。こうして得られるフォトレジストパターンの形状は良好であり、且つLWRは改善されている。つまり、本発明のアクリル酸エステル誘導体を用いることにより、高解像度のフォトレジストパターンが形成される。 (Photoresist pattern formation method)
The photoresist composition of the present invention is applied to a substrate, prebaked usually at 70 to 160 ° C. for 1 to 10 minutes, and irradiated (exposed) through a predetermined mask, preferably at 70 to 160 ° C. A photoresist pattern can be formed by forming a latent image pattern by post-exposure baking for 1 to 5 minutes and then developing with a developer. The shape of the photoresist pattern thus obtained is good and the LWR is improved. That is, a high-resolution photoresist pattern is formed by using the acrylate derivative of the present invention.
露光には、種々の波長の放射線、例えば、紫外線、X線などが利用でき、半導体レジスト用では、通常、g線、i線、XeCl、KrF、KrCl、ArF、ArClなどのエキシマレーザーが使用されるが、これらの中でも、微細加工の観点から、ArFエキシマレーザーを使用するのが好ましい。
露光量は、0.1~1000mJ/cm2であるのが好ましく、1~500mJ/cm2であるのがより好ましい。 For exposure, various wavelengths of radiation, such as ultraviolet rays and X-rays, can be used. For semiconductor resists, excimer lasers such as g-line, i-line, XeCl, KrF, KrCl, ArF, and ArCl are usually used. However, among these, it is preferable to use an ArF excimer laser from the viewpoint of fine processing.
Exposure is preferably from 0.1 ~ 1000mJ / cm 2, and more preferably 1 ~ 500mJ / cm 2.
露光量は、0.1~1000mJ/cm2であるのが好ましく、1~500mJ/cm2であるのがより好ましい。 For exposure, various wavelengths of radiation, such as ultraviolet rays and X-rays, can be used. For semiconductor resists, excimer lasers such as g-line, i-line, XeCl, KrF, KrCl, ArF, and ArCl are usually used. However, among these, it is preferable to use an ArF excimer laser from the viewpoint of fine processing.
Exposure is preferably from 0.1 ~ 1000mJ / cm 2, and more preferably 1 ~ 500mJ / cm 2.
現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア水などの無機塩基;エチルアミン、ジエチルアミン、トリエチルアミンなどのアルキルアミン;ジメチルエタノールアミン、トリエタノールアミンなどのアルコールアミン;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシドなどの第四級アンモニウム塩などを溶解したアルカリ性水溶液などが挙げられる。これらの中でも、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシドなどの第四級アンモニウム塩を溶解したアルカリ性水溶液を使用するのが好ましい。
現像液の濃度は、通常、0.1~20質量%であるのが好ましく、0.1~10質量%であるのがより好ましい。 Examples of the developer include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and aqueous ammonia; alkylamines such as ethylamine, diethylamine and triethylamine; alcohol amines such as dimethylethanolamine and triethanolamine; tetramethylammonium Examples include alkaline aqueous solutions in which quaternary ammonium salts such as hydroxide and tetraethylammonium hydroxide are dissolved. Among these, it is preferable to use an alkaline aqueous solution in which a quaternary ammonium salt such as tetramethylammonium hydroxide or tetraethylammonium hydroxide is dissolved.
The concentration of the developer is usually preferably from 0.1 to 20% by mass, and more preferably from 0.1 to 10% by mass.
現像液の濃度は、通常、0.1~20質量%であるのが好ましく、0.1~10質量%であるのがより好ましい。 Examples of the developer include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and aqueous ammonia; alkylamines such as ethylamine, diethylamine and triethylamine; alcohol amines such as dimethylethanolamine and triethanolamine; tetramethylammonium Examples include alkaline aqueous solutions in which quaternary ammonium salts such as hydroxide and tetraethylammonium hydroxide are dissolved. Among these, it is preferable to use an alkaline aqueous solution in which a quaternary ammonium salt such as tetramethylammonium hydroxide or tetraethylammonium hydroxide is dissolved.
The concentration of the developer is usually preferably from 0.1 to 20% by mass, and more preferably from 0.1 to 10% by mass.
以下、実施例により本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。なお、重量平均分子量(Mw)および数平均分子量(Mn)の測定並びに分子量分布の算出は、以下の通りに行なった。
(MwおよびMnの測定並びに分子量分布の算出方法)
重量平均分子量(Mw)および数平均分子量(Mn)は、検出器として示差屈折率計を用い、溶離液としてテトラヒドロフラン(THF)を用いたゲル浸透クロマトグラフィー(GPC)測定を下記条件にて行ない、標準ポリスチレンで作成した検量線による換算値として求めた。また、重量平均分子量(Mw)を数平均分子量(Mn)で除することにより、分子量分布(Mw/Mn)を求めた。
GPC測定:カラムとして、「TSK-gel SUPER HZM-H」(商品名:東ソー株式会社製、4.6mm×150mm)2本および「TSK-gel SUPER HZ2000」(商品名:東ソー株式会社製、4.6mm×150mm)3本を直列に連結したものを使用し、カラム温度40℃、示差屈折率計温度40℃、溶離液の流速0.35mL/分の条件で測定した。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these examples. The weight average molecular weight (Mw) and number average molecular weight (Mn) were measured and the molecular weight distribution was calculated as follows.
(Measurement of Mw and Mn and calculation method of molecular weight distribution)
The weight average molecular weight (Mw) and number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) using a differential refractometer as a detector and tetrahydrofuran (THF) as an eluent under the following conditions. It calculated | required as a conversion value by the calibration curve created with the standard polystyrene. Further, the molecular weight distribution (Mw / Mn) was determined by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn).
GPC measurement: As a column, two “TSK-gel SUPER HZM-H” (trade name: manufactured by Tosoh Corporation, 4.6 mm × 150 mm) and “TSK-gel SUPER HZ2000” (trade name: manufactured by Tosoh Corporation, 4 .6 mm × 150 mm) were used, which were connected in series, and measured under conditions of a column temperature of 40 ° C., a differential refractometer temperature of 40 ° C., and an eluent flow rate of 0.35 mL / min.
(MwおよびMnの測定並びに分子量分布の算出方法)
重量平均分子量(Mw)および数平均分子量(Mn)は、検出器として示差屈折率計を用い、溶離液としてテトラヒドロフラン(THF)を用いたゲル浸透クロマトグラフィー(GPC)測定を下記条件にて行ない、標準ポリスチレンで作成した検量線による換算値として求めた。また、重量平均分子量(Mw)を数平均分子量(Mn)で除することにより、分子量分布(Mw/Mn)を求めた。
GPC測定:カラムとして、「TSK-gel SUPER HZM-H」(商品名:東ソー株式会社製、4.6mm×150mm)2本および「TSK-gel SUPER HZ2000」(商品名:東ソー株式会社製、4.6mm×150mm)3本を直列に連結したものを使用し、カラム温度40℃、示差屈折率計温度40℃、溶離液の流速0.35mL/分の条件で測定した。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these examples. The weight average molecular weight (Mw) and number average molecular weight (Mn) were measured and the molecular weight distribution was calculated as follows.
(Measurement of Mw and Mn and calculation method of molecular weight distribution)
The weight average molecular weight (Mw) and number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) using a differential refractometer as a detector and tetrahydrofuran (THF) as an eluent under the following conditions. It calculated | required as a conversion value by the calibration curve created with the standard polystyrene. Further, the molecular weight distribution (Mw / Mn) was determined by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn).
GPC measurement: As a column, two “TSK-gel SUPER HZM-H” (trade name: manufactured by Tosoh Corporation, 4.6 mm × 150 mm) and “TSK-gel SUPER HZ2000” (trade name: manufactured by Tosoh Corporation, 4 .6 mm × 150 mm) were used, which were connected in series, and measured under conditions of a column temperature of 40 ° C., a differential refractometer temperature of 40 ° C., and an eluent flow rate of 0.35 mL / min.
<合成例1>1-(2-ヒドロキシエチルチオ)-3-クロロ-2-プロパノールの合成
温度計、滴下ロート、および攪拌機を備えた内容積2Lの4口フラスコに、2-メルカプトエタノール515g(6.59mol)およびピリジン105g(1.33mol)を加えた。この溶液に、室温にてエピクロロヒドリン616g(6.66mol)を2時間かけ滴下した。
滴下終了後、室温にて2時間にわたり撹拌し、1240gの無色溶液を得た。この溶液を1H-NMRにて分析したところ、下記の1-(2-ヒドロキシエチルチオ)-3-クロロ-2-プロパノールを1100g(メルカプトエタノール基準で収率97.8%)含んでいることを確認した。
<Synthesis Example 1> Synthesis of 1- (2-hydroxyethylthio) -3-chloro-2-propanol Into a 2 L four-necked flask equipped with a thermometer, a dropping funnel, and a stirrer, 515 g of 2-mercaptoethanol ( 6.59 mol) and 105 g (1.33 mol) of pyridine were added. To this solution, 616 g (6.66 mol) of epichlorohydrin was added dropwise at room temperature over 2 hours.
After completion of the dropwise addition, the mixture was stirred at room temperature for 2 hours to obtain 1240 g of a colorless solution. When this solution was analyzed by 1 H-NMR, it contained 1100 g of the following 1- (2-hydroxyethylthio) -3-chloro-2-propanol (yield 97.8% based on mercaptoethanol). It was confirmed.
温度計、滴下ロート、および攪拌機を備えた内容積2Lの4口フラスコに、2-メルカプトエタノール515g(6.59mol)およびピリジン105g(1.33mol)を加えた。この溶液に、室温にてエピクロロヒドリン616g(6.66mol)を2時間かけ滴下した。
滴下終了後、室温にて2時間にわたり撹拌し、1240gの無色溶液を得た。この溶液を1H-NMRにて分析したところ、下記の1-(2-ヒドロキシエチルチオ)-3-クロロ-2-プロパノールを1100g(メルカプトエタノール基準で収率97.8%)含んでいることを確認した。
After completion of the dropwise addition, the mixture was stirred at room temperature for 2 hours to obtain 1240 g of a colorless solution. When this solution was analyzed by 1 H-NMR, it contained 1100 g of the following 1- (2-hydroxyethylthio) -3-chloro-2-propanol (yield 97.8% based on mercaptoethanol). It was confirmed.
<合成例2>1,4-オキサチエパン-6-オールおよび1,4-オキサチアン-2-メタノールの合成
撹拌装置、温度計を取り付けた内容積5Lの4口フラスコに、水酸化ナトリウム283g(7.07mol)および蒸留水1950gを加え、撹拌しながら内温を50℃に調節した。
合成例1で得られた1-(2-ヒドロキシエチルチオ)-3-クロロ-2-プロパノール1096g(6.42mol)を含む無色溶液1200gを、滴下ロートより、内温45~55℃で、3時間かけて滴下した。滴下終了後50℃で1時間撹拌後、反応混合液をガスクロマトグラフィーにて分析したところ、1-(2-ヒドロキシエチルチオ)-3-クロロ-2-プロパノールは完全に消失していた。
反応混合液を25℃に冷却した後、20%塩酸水溶液にて中和した。酢酸エチル4400gで2回抽出を行い、得られた有機層を合わせて減圧下に濃縮した。濃縮液を単蒸留し、留分392gを得た。
1H-NMRおよびGC-MS分析により、この留分は下記の1,4-オキサチエパン-6-オールおよび1,4-オキサチアン-2-メタノールの混合物であり、そのモル比率(1,4-オキサチエパン-6-オール:1,4-オキサチアン-2-メタノール)が80:20であることを確認した。 <Synthesis Example 2> Synthesis of 1,4-oxathiepan-6-ol and 1,4-oxathian-2-methanol 283 g (7. 7) of sodium hydroxide was added to a 5 L 4-neck flask equipped with a stirrer and a thermometer. 07 mol) and 1950 g of distilled water were added, and the internal temperature was adjusted to 50 ° C. while stirring.
From a dropping funnel, 1200 g of a colorless solution containing 1096 g (6.42 mol) of 1- (2-hydroxyethylthio) -3-chloro-2-propanol obtained in Synthesis Example 1 was added at an internal temperature of 45 to 55 ° C. It was added dropwise over time. After completion of the dropwise addition, the reaction mixture was stirred for 1 hour at 50 ° C. and analyzed by gas chromatography. As a result, 1- (2-hydroxyethylthio) -3-chloro-2-propanol was completely disappeared.
The reaction mixture was cooled to 25 ° C. and then neutralized with 20% aqueous hydrochloric acid. Extraction was performed twice with 4400 g of ethyl acetate, and the obtained organic layers were combined and concentrated under reduced pressure. The concentrated solution was simply distilled to obtain 392 g of a fraction.
According to 1 H-NMR and GC-MS analysis, this fraction was a mixture of the following 1,4-oxathiepan-6-ol and 1,4-oxathian-2-methanol, and its molar ratio (1,4-oxathiepane -6-ol: 1,4-oxathian-2-methanol) was confirmed to be 80:20.
撹拌装置、温度計を取り付けた内容積5Lの4口フラスコに、水酸化ナトリウム283g(7.07mol)および蒸留水1950gを加え、撹拌しながら内温を50℃に調節した。
合成例1で得られた1-(2-ヒドロキシエチルチオ)-3-クロロ-2-プロパノール1096g(6.42mol)を含む無色溶液1200gを、滴下ロートより、内温45~55℃で、3時間かけて滴下した。滴下終了後50℃で1時間撹拌後、反応混合液をガスクロマトグラフィーにて分析したところ、1-(2-ヒドロキシエチルチオ)-3-クロロ-2-プロパノールは完全に消失していた。
反応混合液を25℃に冷却した後、20%塩酸水溶液にて中和した。酢酸エチル4400gで2回抽出を行い、得られた有機層を合わせて減圧下に濃縮した。濃縮液を単蒸留し、留分392gを得た。
1H-NMRおよびGC-MS分析により、この留分は下記の1,4-オキサチエパン-6-オールおよび1,4-オキサチアン-2-メタノールの混合物であり、そのモル比率(1,4-オキサチエパン-6-オール:1,4-オキサチアン-2-メタノール)が80:20であることを確認した。 <Synthesis Example 2> Synthesis of 1,4-oxathiepan-6-ol and 1,4-oxathian-2-methanol 283 g (7. 7) of sodium hydroxide was added to a 5 L 4-neck flask equipped with a stirrer and a thermometer. 07 mol) and 1950 g of distilled water were added, and the internal temperature was adjusted to 50 ° C. while stirring.
From a dropping funnel, 1200 g of a colorless solution containing 1096 g (6.42 mol) of 1- (2-hydroxyethylthio) -3-chloro-2-propanol obtained in Synthesis Example 1 was added at an internal temperature of 45 to 55 ° C. It was added dropwise over time. After completion of the dropwise addition, the reaction mixture was stirred for 1 hour at 50 ° C. and analyzed by gas chromatography. As a result, 1- (2-hydroxyethylthio) -3-chloro-2-propanol was completely disappeared.
The reaction mixture was cooled to 25 ° C. and then neutralized with 20% aqueous hydrochloric acid. Extraction was performed twice with 4400 g of ethyl acetate, and the obtained organic layers were combined and concentrated under reduced pressure. The concentrated solution was simply distilled to obtain 392 g of a fraction.
According to 1 H-NMR and GC-MS analysis, this fraction was a mixture of the following 1,4-oxathiepan-6-ol and 1,4-oxathian-2-methanol, and its molar ratio (1,4-oxathiepane -6-ol: 1,4-oxathian-2-methanol) was confirmed to be 80:20.
(1,4-オキサチエパン-6-オール)
1H-NMR(400MHz、CDCl3、TMS、ppm):2.74-2.81(2H,m)、2.77(1H,dd,J=4.8,7.6Hz)、2.92(1H,dd,J=4.0Hz,14.8Hz)、3.04(1H,d,J=9.6Hz)、3.83-3.93(4H,m)、4.08(1H,m)
GC-MS m/z:134(95)、116(91)、90(50)、75(61)、60(100)、46(65)、45(64)
(1,4-oxathiepan-6-ol)
1 H-NMR (400 MHz, CDCl 3 , TMS, ppm): 2.74-2.81 (2H, m), 2.77 (1H, dd, J = 4.8, 7.6 Hz), 2.92 (1H, dd, J = 4.0 Hz, 14.8 Hz), 3.04 (1H, d, J = 9.6 Hz), 3.83-3.93 (4H, m), 4.08 (1H, m)
GC-MS m / z: 134 (95), 116 (91), 90 (50), 75 (61), 60 (100), 46 (65), 45 (64)
(1,4-オキサチアン-2-メタノール)
1H-NMR(400MHz、CDCl3、TMS、ppm):2.26-2.30(1H,m)、2.62-2.65(1H,m)、2.70(1H,dd,J=2.8Hz,10.8Hz)、2.83-2.87(1H,m)、2.89-2.94(1H,m)、3.53-3.59(1H,m)、3.67-3.73(1H,m)、3.77(1H,dd,J=2.0Hz,11.6Hz)、3.83(1H,dd,J=1.2Hz,10.0Hz)、4.23-4.29(1H,m)
GC-MS m/z:134(80)、103(100)、75(19)、59(18)、46(38)
(1,4-oxathian-2-methanol)
1 H-NMR (400 MHz, CDCl 3 , TMS, ppm): 2.26-2.30 (1H, m), 2.62-2.65 (1H, m), 2.70 (1H, dd, J = 2.8 Hz, 10.8 Hz), 2.83-2.87 (1H, m), 2.89-2.94 (1H, m), 3.53-3.59 (1H, m), 3 .67-3.73 (1H, m), 3.77 (1H, dd, J = 2.0 Hz, 11.6 Hz), 3.83 (1H, dd, J = 1.2 Hz, 10.0 Hz), 4.23-4.29 (1H, m)
GC-MS m / z: 134 (80), 103 (100), 75 (19), 59 (18), 46 (38)
<合成例3>4,4-ジオキサ-1,4-オキサチエパン-6-オールおよび4,4-ジオキサ-1,4-オキサチアン-2-メタノールの合成
撹拌装置、温度計を取り付けた内容積5Lの4口フラスコに、98%ギ酸486g(10.3mol)、蒸留水466gおよび合成例2で得られた1,4-オキサチエパン-6-オールおよび1,4-オキサチアン-2-メタノールの混合物350g(混合モル比80:20、合わせて2.59mol)を加え、撹拌しながら内温を25℃に調節した。これに、30%過酸化水素水溶液601g(5.30mol)を滴下ロートより、内温30~35℃で4時間かけて滴下した。滴下終了後35℃で4時間撹拌後、反応混合液をガスクロマトグラフィーにて分析したところ、1,4-オキサチエパン-6-オールおよび1,4-オキサチアン-2-メタノールは完全に消失していた。
反応混合液を25℃に冷却後、飽和亜硫酸ナトリウム水を滴下し、系内の過剰な過酸化物をクエンチし、その後、炭酸水素カリウムにて中和した。2-ブタノン2800gで2回抽出を行い、得られた有機層を合わせて減圧下に濃縮し、濃縮液を284g得た。
GC-MS分析により、濃縮液中に下記の4,4-ジオキサ-1,4-オキサチエパン-6-オールおよび4,4-ジオキサ-1,4-オキサチアン-2-メタノールがモル比率(4,4-ジオキサ-1,4-オキサチエパン-6-オール:4,4-ジオキサ-1,4-オキサチアン-2-メタノール)81:19で生成していることを確認した。 Synthesis Example 3 Synthesis of 4,4-dioxa-1,4-oxathiepan-6-ol and 4,4-dioxa-1,4-oxathian-2-methanol An internal volume of 5 L equipped with a stirrer and a thermometer In a four-necked flask, 486 g (10.3 mol) of 98% formic acid, 466 g of distilled water and 350 g of a mixture of 1,4-oxathiepan-6-ol and 1,4-oxathian-2-methanol obtained in Synthesis Example 2 (mixing) Molar ratio 80:20, 2.59 mol in total) was added, and the internal temperature was adjusted to 25 ° C. with stirring. To this, 601 g (5.30 mol) of 30% aqueous hydrogen peroxide was added dropwise from an addition funnel at an internal temperature of 30 to 35 ° C. over 4 hours. After the completion of the dropwise addition, the mixture was stirred at 35 ° C. for 4 hours, and the reaction mixture was analyzed by gas chromatography. .
After cooling the reaction mixture to 25 ° C., saturated aqueous sodium sulfite was added dropwise to quench excess peroxide in the system, and then neutralized with potassium bicarbonate. Extraction was performed twice with 2800 g of 2-butanone, and the obtained organic layers were combined and concentrated under reduced pressure to obtain 284 g of a concentrated solution.
According to GC-MS analysis, the following 4,4-dioxa-1,4-oxathiepan-6-ol and 4,4-dioxa-1,4-oxathian-2-methanol were mixed in a molar ratio (4,4 -Dioxa-1,4-oxathiepan-6-ol: 4,4-dioxa-1,4-oxathian-2-methanol) 81:19.
撹拌装置、温度計を取り付けた内容積5Lの4口フラスコに、98%ギ酸486g(10.3mol)、蒸留水466gおよび合成例2で得られた1,4-オキサチエパン-6-オールおよび1,4-オキサチアン-2-メタノールの混合物350g(混合モル比80:20、合わせて2.59mol)を加え、撹拌しながら内温を25℃に調節した。これに、30%過酸化水素水溶液601g(5.30mol)を滴下ロートより、内温30~35℃で4時間かけて滴下した。滴下終了後35℃で4時間撹拌後、反応混合液をガスクロマトグラフィーにて分析したところ、1,4-オキサチエパン-6-オールおよび1,4-オキサチアン-2-メタノールは完全に消失していた。
反応混合液を25℃に冷却後、飽和亜硫酸ナトリウム水を滴下し、系内の過剰な過酸化物をクエンチし、その後、炭酸水素カリウムにて中和した。2-ブタノン2800gで2回抽出を行い、得られた有機層を合わせて減圧下に濃縮し、濃縮液を284g得た。
GC-MS分析により、濃縮液中に下記の4,4-ジオキサ-1,4-オキサチエパン-6-オールおよび4,4-ジオキサ-1,4-オキサチアン-2-メタノールがモル比率(4,4-ジオキサ-1,4-オキサチエパン-6-オール:4,4-ジオキサ-1,4-オキサチアン-2-メタノール)81:19で生成していることを確認した。 Synthesis Example 3 Synthesis of 4,4-dioxa-1,4-oxathiepan-6-ol and 4,4-dioxa-1,4-oxathian-2-methanol An internal volume of 5 L equipped with a stirrer and a thermometer In a four-necked flask, 486 g (10.3 mol) of 98% formic acid, 466 g of distilled water and 350 g of a mixture of 1,4-oxathiepan-6-ol and 1,4-oxathian-2-methanol obtained in Synthesis Example 2 (mixing) Molar ratio 80:20, 2.59 mol in total) was added, and the internal temperature was adjusted to 25 ° C. with stirring. To this, 601 g (5.30 mol) of 30% aqueous hydrogen peroxide was added dropwise from an addition funnel at an internal temperature of 30 to 35 ° C. over 4 hours. After the completion of the dropwise addition, the mixture was stirred at 35 ° C. for 4 hours, and the reaction mixture was analyzed by gas chromatography. .
After cooling the reaction mixture to 25 ° C., saturated aqueous sodium sulfite was added dropwise to quench excess peroxide in the system, and then neutralized with potassium bicarbonate. Extraction was performed twice with 2800 g of 2-butanone, and the obtained organic layers were combined and concentrated under reduced pressure to obtain 284 g of a concentrated solution.
According to GC-MS analysis, the following 4,4-dioxa-1,4-oxathiepan-6-ol and 4,4-dioxa-1,4-oxathian-2-methanol were mixed in a molar ratio (4,4 -Dioxa-1,4-oxathiepan-6-ol: 4,4-dioxa-1,4-oxathian-2-methanol) 81:19.
(4,4-ジオキサ-1,4-オキサチエパン-6-オール)
GC-MS m/z:166(1)、123(100)、93(91)、58(94)、44(93)
(4,4-dioxa-1,4-oxathiepan-6-ol)
GC-MS m / z: 166 (1), 123 (100), 93 (91), 58 (94), 44 (93)
(4,4-ジオキサ-1,4-オキサチアン-2-メタノール)
GC-MS m/z:166(1)、135(100)、107(80)、72(60)、57(29)、44(65)
(4,4-dioxa-1,4-oxathian-2-methanol)
GC-MS m / z: 166 (1), 135 (100), 107 (80), 72 (60), 57 (29), 44 (65)
<実施例1>6-メタクリロイルオキシ-4,4-ジオキサ-1,4-オキサチエパンおよび2-メタクリロイルオキシメチル-4,4-ジオキサ-1,4-オキサチアンの合成
撹拌装置、温度計、および滴下ロートを取り付けた内容積3Lの4口フラスコに、合成例3で得られた4,4-ジオキサ-1,4-オキサチエパン-6-オールおよび4,4-ジオキサ-1,4-オキサチアン-2-メタノールの混合物275g(混合モル比=81:19、正味量250g、1.50mol)、トリエチルアミン251g(2.48mol)およびアセトニトリル750gを加え、撹拌しながら内温を25℃に調節した。これにメタクリロイルクロリド173g(1.65mol)を滴下ロートより、内温25~30℃で3時間かけて滴下した。滴下終了後、30℃で4時間撹拌した後、反応混合液をガスクロマトグラフィーにて分析し、4,4-ジオキサ-1,4-オキサチエパン-6-オールおよび4,4-ジオキサ-1,4-オキサチアン-2-メタノールが消失したことを確認した。
次に、反応液を撹拌しながら、蒸留水183gを内温25~30℃で1時間かけて滴下した。酢酸エチル1000gで2回抽出を行い、得られた有機層を合わせて、2%塩酸水300g、蒸留水300gでそれぞれ洗浄後、減圧下に濃縮し、濃縮液350gを得た。濃縮液を蒸留分離精製することで、下記の6-メタクリロイルオキシ-4,4-ジオキサ-1,4-オキサチエパン180g(0.768mol、収率51%)および2-メタクリロイルオキシメチル-4,4-ジオキサ-1,4-オキサチアン45.0g(0.192mol、収率13%)それぞれを得た。 Example 1 Synthesis of 6-methacryloyloxy-4,4-dioxa-1,4-oxathiepane and 2-methacryloyloxymethyl-4,4-dioxa-1,4-oxathiane Stirrer, thermometer, and dropping funnel Into a 4 L flask having an internal volume of 3 L, 4,4-dioxa-1,4-oxathiepan-6-ol and 4,4-dioxa-1,4-oxathian-2-methanol obtained in Synthesis Example 3 275 g (mixing molar ratio = 81: 19, net amount 250 g, 1.50 mol), 251 g (2.48 mol) of triethylamine and 750 g of acetonitrile were added, and the internal temperature was adjusted to 25 ° C. with stirring. To this, 173 g (1.65 mol) of methacryloyl chloride was added dropwise from an addition funnel at an internal temperature of 25 to 30 ° C. over 3 hours. After completion of the dropwise addition, the mixture was stirred at 30 ° C. for 4 hours, and then the reaction mixture was analyzed by gas chromatography, and 4,4-dioxa-1,4-oxathiepan-6-ol and 4,4-dioxa-1,4 were analyzed. It was confirmed that -oxathian-2-methanol disappeared.
Next, 183 g of distilled water was added dropwise at an internal temperature of 25 to 30 ° C. over 1 hour while stirring the reaction solution. Extraction was performed twice with 1000 g of ethyl acetate, and the obtained organic layers were combined, washed with 300 g of 2% hydrochloric acid water and 300 g of distilled water, and then concentrated under reduced pressure to obtain 350 g of a concentrated solution. By distilling and purifying the concentrated solution, 180 g (0.768 mol, 51% yield) of 6-methacryloyloxy-4,4-dioxa-1,4-oxathiepan described below and 2-methacryloyloxymethyl-4,4- 45.0 g (0.192 mol, 13% yield) of dioxa-1,4-oxathiane was obtained.
撹拌装置、温度計、および滴下ロートを取り付けた内容積3Lの4口フラスコに、合成例3で得られた4,4-ジオキサ-1,4-オキサチエパン-6-オールおよび4,4-ジオキサ-1,4-オキサチアン-2-メタノールの混合物275g(混合モル比=81:19、正味量250g、1.50mol)、トリエチルアミン251g(2.48mol)およびアセトニトリル750gを加え、撹拌しながら内温を25℃に調節した。これにメタクリロイルクロリド173g(1.65mol)を滴下ロートより、内温25~30℃で3時間かけて滴下した。滴下終了後、30℃で4時間撹拌した後、反応混合液をガスクロマトグラフィーにて分析し、4,4-ジオキサ-1,4-オキサチエパン-6-オールおよび4,4-ジオキサ-1,4-オキサチアン-2-メタノールが消失したことを確認した。
次に、反応液を撹拌しながら、蒸留水183gを内温25~30℃で1時間かけて滴下した。酢酸エチル1000gで2回抽出を行い、得られた有機層を合わせて、2%塩酸水300g、蒸留水300gでそれぞれ洗浄後、減圧下に濃縮し、濃縮液350gを得た。濃縮液を蒸留分離精製することで、下記の6-メタクリロイルオキシ-4,4-ジオキサ-1,4-オキサチエパン180g(0.768mol、収率51%)および2-メタクリロイルオキシメチル-4,4-ジオキサ-1,4-オキサチアン45.0g(0.192mol、収率13%)それぞれを得た。 Example 1 Synthesis of 6-methacryloyloxy-4,4-dioxa-1,4-oxathiepane and 2-methacryloyloxymethyl-4,4-dioxa-1,4-oxathiane Stirrer, thermometer, and dropping funnel Into a 4 L flask having an internal volume of 3 L, 4,4-dioxa-1,4-oxathiepan-6-ol and 4,4-dioxa-1,4-oxathian-2-methanol obtained in Synthesis Example 3 275 g (mixing molar ratio = 81: 19, net amount 250 g, 1.50 mol), 251 g (2.48 mol) of triethylamine and 750 g of acetonitrile were added, and the internal temperature was adjusted to 25 ° C. with stirring. To this, 173 g (1.65 mol) of methacryloyl chloride was added dropwise from an addition funnel at an internal temperature of 25 to 30 ° C. over 3 hours. After completion of the dropwise addition, the mixture was stirred at 30 ° C. for 4 hours, and then the reaction mixture was analyzed by gas chromatography, and 4,4-dioxa-1,4-oxathiepan-6-ol and 4,4-dioxa-1,4 were analyzed. It was confirmed that -oxathian-2-methanol disappeared.
Next, 183 g of distilled water was added dropwise at an internal temperature of 25 to 30 ° C. over 1 hour while stirring the reaction solution. Extraction was performed twice with 1000 g of ethyl acetate, and the obtained organic layers were combined, washed with 300 g of 2% hydrochloric acid water and 300 g of distilled water, and then concentrated under reduced pressure to obtain 350 g of a concentrated solution. By distilling and purifying the concentrated solution, 180 g (0.768 mol, 51% yield) of 6-methacryloyloxy-4,4-dioxa-1,4-oxathiepan described below and 2-methacryloyloxymethyl-4,4- 45.0 g (0.192 mol, 13% yield) of dioxa-1,4-oxathiane was obtained.
(6-メタクリロイルオキシ-4,4-ジオキサ-1,4-オキサチエパン)
1H-NMR(400MHz、DMSO-d6、TMS、ppm):1.88(3H,s)、3.40-3.47(1H,m)、3.60-3.67(1H、m)、3.70-3.73(2H,m)、3.77-3.82(1H,m)、3.98(1H,dd,J=4.4,13.6Hz)、4.02-4.06(1H,m)、4.07(1H,dd,J=4.8,13.6Hz)、5.11(1H,m)、5.73(1H,brs)、6.07(1H,brs)
(6-Methacryloyloxy-4,4-dioxa-1,4-oxathiepan)
1 H-NMR (400 MHz, DMSO-d 6 , TMS, ppm): 1.88 (3H, s), 3.40-3.47 (1H, m), 3.60-3.67 (1H, m ), 3.70-3.73 (2H, m), 3.77-3.82 (1H, m), 3.98 (1H, dd, J = 4.4, 13.6 Hz), 4.02 -4.06 (1H, m), 4.07 (1H, dd, J = 4.8, 13.6 Hz), 5.11 (1H, m), 5.73 (1H, brs), 6.07 (1H, brs)
(2-メタクリロイルオキシメチル-4,4-ジオキサ-1,4-オキサチアン)
1H-NMR(400MHz、DMSO-d6、TMS、ppm):1.89(3H,s)、3.14-3.21(2H,m)、3.22-3.27(1H、m)、3.29-3.34(1H,m)、3.75-3.77(1H,m)、3.83-3.87(1H,m)、3.95-4.05(1H,m)、4.09-4.12(1H,m)、4.25-4.31(1H,m)、5.71(1H,brs)、6.09(1H,brs)
(2-methacryloyloxymethyl-4,4-dioxa-1,4-oxathiane)
1 H-NMR (400 MHz, DMSO-d 6 , TMS, ppm): 1.89 (3H, s), 3.14-3.21 (2H, m), 3.22-3.27 (1H, m ), 3.29-3.34 (1H, m), 3.75-3.77 (1H, m), 3.83-3.87 (1H, m), 3.95-4.05 (1H) M), 4.09-4.12 (1H, m), 4.25-4.31 (1H, m), 5.71 (1H, brs), 6.09 (1H, brs)
<実施例2>高分子化合物(a)の合成
攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシ-1-イル=メタクリレート1.4g(6.0mmol)、6-メタクリロイルオキシ-4,4-ジオキサ-1,4-オキサチエパン4.6g(19.8mmol)およびメチルエチルケトン36.0gを仕込み、窒素バブリングを10分間行なった。窒素雰囲気下で2,2’-アゾビスイソブチロニトリル0.54g(3mmol)を仕込み、80℃にて4時間重合反応を行なった。
得られた反応混合液を、室温下、メタノール500gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.0Pa)下、50℃で8時間乾燥し、下記構成単位(但し、括弧の右下に記載された数値は構成単位のモル比を表し、以下、同様である。)を有する高分子化合物(a)を6.0g得た。得られた高分子化合物(a)の重量平均分子量(Mw)は6,200、分子量分布は1.60であった。
<Example 2> Synthesis of polymer compound (a) In a three-necked flask having an internal volume of 50 ml equipped with a stirrer, a reflux condenser and a thermometer, 4.0 g (17.2 mmol) of 2-methacryloyloxy-2-methyladamantane, Charged with 1.4 g (6.0 mmol) of 3-hydroxy-1-yl methacrylate, 4.6 g (19.8 mmol) of 6-methacryloyloxy-4,4-dioxa-1,4-oxathiepan and 36.0 g of methyl ethyl ketone, Nitrogen bubbling was performed for 10 minutes. Under a nitrogen atmosphere, 0.54 g (3 mmol) of 2,2′-azobisisobutyronitrile was charged, and a polymerization reaction was performed at 80 ° C. for 4 hours.
The obtained reaction mixture was added dropwise to 500 g of methanol with stirring at room temperature, and the generated precipitate was collected by filtration. The precipitate is dried under reduced pressure (26.0 Pa) at 50 ° C. for 8 hours, and the following structural units (however, the numerical values described in the lower right of the parentheses represent the molar ratio of the structural units, and the same applies hereinafter). 6.0 g of the polymer compound (a) having. The obtained polymer compound (a) had a weight average molecular weight (Mw) of 6,200 and a molecular weight distribution of 1.60.
攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシ-1-イル=メタクリレート1.4g(6.0mmol)、6-メタクリロイルオキシ-4,4-ジオキサ-1,4-オキサチエパン4.6g(19.8mmol)およびメチルエチルケトン36.0gを仕込み、窒素バブリングを10分間行なった。窒素雰囲気下で2,2’-アゾビスイソブチロニトリル0.54g(3mmol)を仕込み、80℃にて4時間重合反応を行なった。
得られた反応混合液を、室温下、メタノール500gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.0Pa)下、50℃で8時間乾燥し、下記構成単位(但し、括弧の右下に記載された数値は構成単位のモル比を表し、以下、同様である。)を有する高分子化合物(a)を6.0g得た。得られた高分子化合物(a)の重量平均分子量(Mw)は6,200、分子量分布は1.60であった。
The obtained reaction mixture was added dropwise to 500 g of methanol with stirring at room temperature, and the generated precipitate was collected by filtration. The precipitate is dried under reduced pressure (26.0 Pa) at 50 ° C. for 8 hours, and the following structural units (however, the numerical values described in the lower right of the parentheses represent the molar ratio of the structural units, and the same applies hereinafter). 6.0 g of the polymer compound (a) having. The obtained polymer compound (a) had a weight average molecular weight (Mw) of 6,200 and a molecular weight distribution of 1.60.
<実施例3>高分子化合物(b)の合成
攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシ-1-イル=メタクリレート1.4g(6.0mmol)、2-メタクリロイルオキシメチル-4,4-ジオキサ-1,4-オキサチアン4.6g(19.8mmol)およびメチルエチルケトン36.4gを仕込み、窒素バブリングを10分間行なった。窒素雰囲気下で2,2’-アゾビスイソブチロニトリル0.54g(3mmol)を仕込み、80℃にて4時間重合反応を行なった。
得られた反応混合液を、室温下、メタノール500gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.0Pa)下、50℃で8時間乾燥し、下記構成単位を有する高分子化合物(b)を6.5g得た。得られた高分子化合物(b)の重量平均分子量(Mw)は5,860、分子量分布は1.60であった。
<Example 3> Synthesis of polymer compound (b) In a three-necked flask with an internal volume of 50 ml equipped with a stirrer, a reflux condenser and a thermometer, 4.0 g (17.2 mmol) of 2-methacryloyloxy-2-methyladamantane, Charged with 1.4 g (6.0 mmol) of 3-hydroxy-1-yl methacrylate, 4.6 g (19.8 mmol) of 2-methacryloyloxymethyl-4,4-dioxa-1,4-oxathiane and 36.4 g of methyl ethyl ketone Nitrogen bubbling was performed for 10 minutes. Under a nitrogen atmosphere, 0.54 g (3 mmol) of 2,2′-azobisisobutyronitrile was charged, and a polymerization reaction was performed at 80 ° C. for 4 hours.
The obtained reaction mixture was added dropwise to 500 g of methanol with stirring at room temperature, and the generated precipitate was collected by filtration. The precipitate was dried at 50 ° C. under reduced pressure (26.0 Pa) for 8 hours to obtain 6.5 g of a polymer compound (b) having the following structural units. The obtained polymer compound (b) had a weight average molecular weight (Mw) of 5,860 and a molecular weight distribution of 1.60.
攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシ-1-イル=メタクリレート1.4g(6.0mmol)、2-メタクリロイルオキシメチル-4,4-ジオキサ-1,4-オキサチアン4.6g(19.8mmol)およびメチルエチルケトン36.4gを仕込み、窒素バブリングを10分間行なった。窒素雰囲気下で2,2’-アゾビスイソブチロニトリル0.54g(3mmol)を仕込み、80℃にて4時間重合反応を行なった。
得られた反応混合液を、室温下、メタノール500gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.0Pa)下、50℃で8時間乾燥し、下記構成単位を有する高分子化合物(b)を6.5g得た。得られた高分子化合物(b)の重量平均分子量(Mw)は5,860、分子量分布は1.60であった。
The obtained reaction mixture was added dropwise to 500 g of methanol with stirring at room temperature, and the generated precipitate was collected by filtration. The precipitate was dried at 50 ° C. under reduced pressure (26.0 Pa) for 8 hours to obtain 6.5 g of a polymer compound (b) having the following structural units. The obtained polymer compound (b) had a weight average molecular weight (Mw) of 5,860 and a molecular weight distribution of 1.60.
<実施例4>高分子化合物(c)の合成
攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシ-1-イル=メタクリレート1.4g(6.0mmol)、6-メタクリロイルオキシ-4,4-ジオキサ-1,4-オキサチエパン4.6g(19.8mmol)、2-メタクリロイルオキシメチル-4,4-ジオキサ-1,4-オキサチアン1.2g(5.0mmol)およびメチルエチルケトン37.3gを仕込み、窒素バブリングを10分間行なった。窒素雰囲気下で2,2’-アゾビスイソブチロニトリル0.54g(3mmol)を仕込み、80℃にて4時間重合反応を行なった。
得られた反応混合液を、室温下、メタノール500gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.0Pa)下、50℃で8時間乾燥し、下記構成単位を有する高分子化合物(c)を7.1g得た。得られた高分子化合物(c)の重量平均分子量(Mw)は6,300、分子量分布は1.62であった。
<Example 4> Synthesis of polymer compound (c) In a three-necked flask with an internal volume of 50 ml equipped with a stirrer, a reflux condenser and a thermometer, 4.0 g (17.2 mmol) of 2-methacryloyloxy-2-methyladamantane, 3-Hydroxy-1-yl methacrylate 1.4 g (6.0 mmol), 6-methacryloyloxy-4,4-dioxa-1,4-oxathiepan 4.6 g (19.8 mmol), 2-methacryloyloxymethyl-4 , 4-dioxa-1,4-oxathianne (1.2 g, 5.0 mmol) and methyl ethyl ketone (37.3 g) were charged, and nitrogen bubbling was performed for 10 minutes. Under a nitrogen atmosphere, 0.54 g (3 mmol) of 2,2′-azobisisobutyronitrile was charged, and a polymerization reaction was performed at 80 ° C. for 4 hours.
The obtained reaction mixture was added dropwise to 500 g of methanol with stirring at room temperature, and the generated precipitate was collected by filtration. The precipitate was dried under reduced pressure (26.0 Pa) at 50 ° C. for 8 hours to obtain 7.1 g of a polymer compound (c) having the following structural units. The obtained polymer compound (c) had a weight average molecular weight (Mw) of 6,300 and a molecular weight distribution of 1.62.
攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシ-1-イル=メタクリレート1.4g(6.0mmol)、6-メタクリロイルオキシ-4,4-ジオキサ-1,4-オキサチエパン4.6g(19.8mmol)、2-メタクリロイルオキシメチル-4,4-ジオキサ-1,4-オキサチアン1.2g(5.0mmol)およびメチルエチルケトン37.3gを仕込み、窒素バブリングを10分間行なった。窒素雰囲気下で2,2’-アゾビスイソブチロニトリル0.54g(3mmol)を仕込み、80℃にて4時間重合反応を行なった。
得られた反応混合液を、室温下、メタノール500gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.0Pa)下、50℃で8時間乾燥し、下記構成単位を有する高分子化合物(c)を7.1g得た。得られた高分子化合物(c)の重量平均分子量(Mw)は6,300、分子量分布は1.62であった。
The obtained reaction mixture was added dropwise to 500 g of methanol with stirring at room temperature, and the generated precipitate was collected by filtration. The precipitate was dried under reduced pressure (26.0 Pa) at 50 ° C. for 8 hours to obtain 7.1 g of a polymer compound (c) having the following structural units. The obtained polymer compound (c) had a weight average molecular weight (Mw) of 6,300 and a molecular weight distribution of 1.62.
<比較合成例1>高分子化合物(d)の合成
電磁攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに、2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシ-1-イル=メタクリレート1.4g(6.0mmol)、5-(メタクリロイルオキシ)-2,6-ノルボルナンカルボラクトン4.4g(19.8mmol)およびメチルエチルケトン36.0gを仕込み、窒素バブリングを10分間おこなった。窒素雰囲気下で2,2’-アゾビスイソブチロニトリル0.54g(3mmol)を仕込み、80℃にて4時間重合反応を行なった。
得られた反応混合液を、室温下、メタノール500gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.7Pa)下、50℃で8時間乾燥し、下記構成単位を有する高分子化合物(d)を7.0g得た。得られた高分子化合物(d)の重量平均分子量(Mw)は6,100、分子量分布は1.58であった。
<Comparative Synthesis Example 1> Synthesis of Polymer Compound (d) In a three-necked flask having an internal volume of 50 ml equipped with an electromagnetic stirrer, a reflux condenser and a thermometer, 4.0 g of 2-methacryloyloxy-2-methyladamantane (17. 2 mmol), 1.4 g (6.0 mmol) of 3-hydroxy-1-yl methacrylate, 4.4 g (19.8 mmol) of 5- (methacryloyloxy) -2,6-norbornanecarbolactone and 36.0 g of methyl ethyl ketone. Nitrogen bubbling was performed for 10 minutes. Under a nitrogen atmosphere, 0.54 g (3 mmol) of 2,2′-azobisisobutyronitrile was charged, and a polymerization reaction was performed at 80 ° C. for 4 hours.
The obtained reaction mixture was added dropwise to 500 g of methanol with stirring at room temperature, and the generated precipitate was collected by filtration. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 8 hours to obtain 7.0 g of a polymer compound (d) having the following structural units. The obtained polymer compound (d) had a weight average molecular weight (Mw) of 6,100 and a molecular weight distribution of 1.58.
電磁攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに、2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシ-1-イル=メタクリレート1.4g(6.0mmol)、5-(メタクリロイルオキシ)-2,6-ノルボルナンカルボラクトン4.4g(19.8mmol)およびメチルエチルケトン36.0gを仕込み、窒素バブリングを10分間おこなった。窒素雰囲気下で2,2’-アゾビスイソブチロニトリル0.54g(3mmol)を仕込み、80℃にて4時間重合反応を行なった。
得られた反応混合液を、室温下、メタノール500gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.7Pa)下、50℃で8時間乾燥し、下記構成単位を有する高分子化合物(d)を7.0g得た。得られた高分子化合物(d)の重量平均分子量(Mw)は6,100、分子量分布は1.58であった。
The obtained reaction mixture was added dropwise to 500 g of methanol with stirring at room temperature, and the generated precipitate was collected by filtration. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 8 hours to obtain 7.0 g of a polymer compound (d) having the following structural units. The obtained polymer compound (d) had a weight average molecular weight (Mw) of 6,100 and a molecular weight distribution of 1.58.
<比較合成例2>高分子化合物(e)の合成
電磁攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに、2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシ-1-イル=メタクリレート1.4g(6.0mmol)、メタクリル酸=2-オキソ-4-オキサヘキサヒドロ-3,5-メタノ-2H-シクロペンタ[b]フラン-6-イル4.2g(19.0mmol)およびメチルエチルケトン36.0gを仕込み、窒素バブリングを10分間おこなった。窒素雰囲気下で2,2’-アゾビスイソブチロニトリル0.54g(3mmol)を仕込み、80℃にて4時間重合反応を行なった。
得られた反応混合液を、室温下、メタノール500gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.7Pa)下、50℃で8時間乾燥し、下記構成単位を有する高分子化合物(e)を7.0g得た。得られた高分子化合物(e)の重量平均分子量(Mw)は5,950、分子量分布は1.70であった。
Comparative Synthesis Example 2 Synthesis of Polymer Compound (e) In a three-necked flask having an internal volume of 50 ml equipped with an electromagnetic stirrer, a reflux condenser and a thermometer, 4.0 g of 2-methacryloyloxy-2-methyladamantane (17. 2 mmol), 3-hydroxy-1-yl methacrylate 1.4 g (6.0 mmol), methacrylic acid = 2-oxo-4-oxahexahydro-3,5-methano-2H-cyclopenta [b] furan-6- 4.2 g (19.0 mmol) of yl and 36.0 g of methyl ethyl ketone were charged, and nitrogen bubbling was performed for 10 minutes. Under a nitrogen atmosphere, 0.54 g (3 mmol) of 2,2′-azobisisobutyronitrile was charged, and a polymerization reaction was performed at 80 ° C. for 4 hours.
The obtained reaction mixture was added dropwise to 500 g of methanol with stirring at room temperature, and the generated precipitate was collected by filtration. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 8 hours to obtain 7.0 g of a polymer compound (e) having the following structural units. The obtained polymer compound (e) had a weight average molecular weight (Mw) of 5,950 and a molecular weight distribution of 1.70.
電磁攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに、2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシ-1-イル=メタクリレート1.4g(6.0mmol)、メタクリル酸=2-オキソ-4-オキサヘキサヒドロ-3,5-メタノ-2H-シクロペンタ[b]フラン-6-イル4.2g(19.0mmol)およびメチルエチルケトン36.0gを仕込み、窒素バブリングを10分間おこなった。窒素雰囲気下で2,2’-アゾビスイソブチロニトリル0.54g(3mmol)を仕込み、80℃にて4時間重合反応を行なった。
得られた反応混合液を、室温下、メタノール500gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.7Pa)下、50℃で8時間乾燥し、下記構成単位を有する高分子化合物(e)を7.0g得た。得られた高分子化合物(e)の重量平均分子量(Mw)は5,950、分子量分布は1.70であった。
The obtained reaction mixture was added dropwise to 500 g of methanol with stirring at room temperature, and the generated precipitate was collected by filtration. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 8 hours to obtain 7.0 g of a polymer compound (e) having the following structural units. The obtained polymer compound (e) had a weight average molecular weight (Mw) of 5,950 and a molecular weight distribution of 1.70.
<比較合成例3>高分子化合物(f)の合成
電磁攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに、2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシ-1-イル=メタクリレート1.4g(6.0mmol)、5-(メタクリロイルオキシアセトキシ)-2,6-ノルボルナンサルトン6.3g(19.8mmol)およびメチルエチルケトン36.0gを仕込み、窒素バブリングを10分間おこなった。窒素雰囲気下で2,2’-アゾビスイソブチロニトリル0.54g(3mmol)を仕込み、80℃にて4時間重合反応を行なった。
得られた反応混合液を、室温下、メタノール500gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.7Pa)下、50℃で8時間乾燥し、下記構成単位を有する高分子化合物(f)を6.5g得た。得られた高分子化合物(f)の重量平均分子量(Mw)は6,050、分子量分布は1.63であった。
Comparative Synthesis Example 3 Synthesis of Polymer Compound (f) In a three-necked flask having an internal volume of 50 ml equipped with an electromagnetic stirrer, a reflux condenser and a thermometer, 4.0 g of 2-methacryloyloxy-2-methyladamantane (17. 2 mmol), 3-hydroxy-1-yl = methacrylate 1.4 g (6.0 mmol), 5- (methacryloyloxyacetoxy) -2,6-norbornane sultone 6.3 g (19.8 mmol) and methyl ethyl ketone 36.0 g. Preparation and nitrogen bubbling were performed for 10 minutes. Under a nitrogen atmosphere, 0.54 g (3 mmol) of 2,2′-azobisisobutyronitrile was charged, and a polymerization reaction was performed at 80 ° C. for 4 hours.
The obtained reaction mixture was added dropwise to 500 g of methanol with stirring at room temperature, and the generated precipitate was collected by filtration. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 8 hours to obtain 6.5 g of a polymer compound (f) having the following structural units. The obtained polymer compound (f) had a weight average molecular weight (Mw) of 6,050 and a molecular weight distribution of 1.63.
電磁攪拌装置、還流冷却器および温度計を備えた内容積50mlの三口フラスコに、2-メタクリロイルオキシ-2-メチルアダマンタン4.0g(17.2mmol)、3-ヒドロキシ-1-イル=メタクリレート1.4g(6.0mmol)、5-(メタクリロイルオキシアセトキシ)-2,6-ノルボルナンサルトン6.3g(19.8mmol)およびメチルエチルケトン36.0gを仕込み、窒素バブリングを10分間おこなった。窒素雰囲気下で2,2’-アゾビスイソブチロニトリル0.54g(3mmol)を仕込み、80℃にて4時間重合反応を行なった。
得られた反応混合液を、室温下、メタノール500gに撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を、減圧(26.7Pa)下、50℃で8時間乾燥し、下記構成単位を有する高分子化合物(f)を6.5g得た。得られた高分子化合物(f)の重量平均分子量(Mw)は6,050、分子量分布は1.63であった。
The obtained reaction mixture was added dropwise to 500 g of methanol with stirring at room temperature, and the generated precipitate was collected by filtration. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 8 hours to obtain 6.5 g of a polymer compound (f) having the following structural units. The obtained polymer compound (f) had a weight average molecular weight (Mw) of 6,050 and a molecular weight distribution of 1.63.
<実施例5~7および比較例1~3>
実施例2~4または比較合成例1~3で得た高分子化合物(a)~(f)を100質量部、光酸発生剤として「TPS-109」(製品名、成分;ノナフルオロ-n-ブタンスルホン酸トリフェニルスルホニウム、みどり化学株式会社製)4.5質量部、溶剤としてプロピレングリコールモノメチルエーテルアセテート/シクロヘキサノン混合溶剤(質量比=1:1)1896質量部を混合し、フォトレジスト組成物を調製した。
これらのフォトレジスト組成物を孔径0.2μmのメンブランフィルターを用いてろ過した。クレゾールノボラック樹脂(群栄化学工業株式会社製「PS-6937」)6質量%濃度のプロピレングリコールモノメチルエーテルアセテート溶液をスピンコーティング法により塗布して、ホットプレート上で200℃、90秒間焼成することにより膜厚100nmの反射防止膜(下地膜)を形成させた直径10cmのシリコンウェハー上に、該ろ液をそれぞれスピンコーティング法により塗布し、ホットプレート上で130℃、90秒間プリベークして膜厚300nmのレジスト膜を形成させた。このレジスト膜に波長193nmのArFエキシマレーザーを用いて二光束干渉法で露光した。引き続き、130℃、90秒間ポストエクスポージャーベークした後、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液にて60秒間現像処理することにより、1:1のラインアンドスペースパターンを形成させた。現像済みウェハーを割断したものを走査型電子顕微鏡(SEM)で観察し、線幅100nmのラインアンドスペースを1:1で解像した露光量におけるパターンの形状観察と線幅の変動(LWR)の測定を行った。
LWRは、測定モニタ内において、線幅を複数の位置で検出し、その検出位置のバラツキの分散(3σ)を指標とした。また、パターンの断面形状は、走査型電子顕微鏡(SEM)を用いて観察し、矩形性が高いものを「○」、矩形性が低いものを「×」として評価した。結果を表2に示す。 <Examples 5 to 7 and Comparative Examples 1 to 3>
100 parts by mass of the polymer compounds (a) to (f) obtained in Examples 2 to 4 or Comparative Synthesis Examples 1 to 3, “TPS-109” (product name, component; nonafluoro-n—) as a photoacid generator 4.5 parts by mass of triphenylsulfonium butane sulfonate (manufactured by Midori Chemical Co., Ltd.) and 1896 parts by mass of a propylene glycol monomethyl ether acetate / cyclohexanone mixed solvent (mass ratio = 1: 1) as a solvent were mixed to prepare a photoresist composition. Prepared.
These photoresist compositions were filtered using a membrane filter having a pore size of 0.2 μm. A cresol novolak resin ("PS-6937" manufactured by Gunei Chemical Industry Co., Ltd.) was applied with a 6% by mass propylene glycol monomethyl ether acetate solution by spin coating, and baked on a hot plate at 200 ° C for 90 seconds. Each of the filtrates was applied by spin coating on a silicon wafer having a diameter of 10 cm on which an antireflection film (underlayer film) having a thickness of 100 nm was formed, and pre-baked on a hot plate at 130 ° C. for 90 seconds to have a thickness of 300 nm. The resist film was formed. This resist film was exposed by a two-beam interference method using an ArF excimer laser having a wavelength of 193 nm. Subsequently, post exposure baking was performed at 130 ° C. for 90 seconds, followed by development with a 2.38 mass% tetramethylammonium hydroxide aqueous solution for 60 seconds to form a 1: 1 line and space pattern. The developed wafer was cleaved and observed with a scanning electron microscope (SEM), and the pattern shape observation and line width variation (LWR) of the exposure amount obtained by resolving the line-and-space with a line width of 100 nm at 1: 1. Measurements were made.
In the LWR, the line width is detected at a plurality of positions in the measurement monitor, and the dispersion (3σ) of variations in the detected positions is used as an index. Moreover, the cross-sectional shape of the pattern was observed using a scanning electron microscope (SEM) and evaluated as “◯” when the rectangularity was high and “X” when the rectangularity was low. The results are shown in Table 2.
実施例2~4または比較合成例1~3で得た高分子化合物(a)~(f)を100質量部、光酸発生剤として「TPS-109」(製品名、成分;ノナフルオロ-n-ブタンスルホン酸トリフェニルスルホニウム、みどり化学株式会社製)4.5質量部、溶剤としてプロピレングリコールモノメチルエーテルアセテート/シクロヘキサノン混合溶剤(質量比=1:1)1896質量部を混合し、フォトレジスト組成物を調製した。
これらのフォトレジスト組成物を孔径0.2μmのメンブランフィルターを用いてろ過した。クレゾールノボラック樹脂(群栄化学工業株式会社製「PS-6937」)6質量%濃度のプロピレングリコールモノメチルエーテルアセテート溶液をスピンコーティング法により塗布して、ホットプレート上で200℃、90秒間焼成することにより膜厚100nmの反射防止膜(下地膜)を形成させた直径10cmのシリコンウェハー上に、該ろ液をそれぞれスピンコーティング法により塗布し、ホットプレート上で130℃、90秒間プリベークして膜厚300nmのレジスト膜を形成させた。このレジスト膜に波長193nmのArFエキシマレーザーを用いて二光束干渉法で露光した。引き続き、130℃、90秒間ポストエクスポージャーベークした後、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液にて60秒間現像処理することにより、1:1のラインアンドスペースパターンを形成させた。現像済みウェハーを割断したものを走査型電子顕微鏡(SEM)で観察し、線幅100nmのラインアンドスペースを1:1で解像した露光量におけるパターンの形状観察と線幅の変動(LWR)の測定を行った。
LWRは、測定モニタ内において、線幅を複数の位置で検出し、その検出位置のバラツキの分散(3σ)を指標とした。また、パターンの断面形状は、走査型電子顕微鏡(SEM)を用いて観察し、矩形性が高いものを「○」、矩形性が低いものを「×」として評価した。結果を表2に示す。 <Examples 5 to 7 and Comparative Examples 1 to 3>
100 parts by mass of the polymer compounds (a) to (f) obtained in Examples 2 to 4 or Comparative Synthesis Examples 1 to 3, “TPS-109” (product name, component; nonafluoro-n—) as a photoacid generator 4.5 parts by mass of triphenylsulfonium butane sulfonate (manufactured by Midori Chemical Co., Ltd.) and 1896 parts by mass of a propylene glycol monomethyl ether acetate / cyclohexanone mixed solvent (mass ratio = 1: 1) as a solvent were mixed to prepare a photoresist composition. Prepared.
These photoresist compositions were filtered using a membrane filter having a pore size of 0.2 μm. A cresol novolak resin ("PS-6937" manufactured by Gunei Chemical Industry Co., Ltd.) was applied with a 6% by mass propylene glycol monomethyl ether acetate solution by spin coating, and baked on a hot plate at 200 ° C for 90 seconds. Each of the filtrates was applied by spin coating on a silicon wafer having a diameter of 10 cm on which an antireflection film (underlayer film) having a thickness of 100 nm was formed, and pre-baked on a hot plate at 130 ° C. for 90 seconds to have a thickness of 300 nm. The resist film was formed. This resist film was exposed by a two-beam interference method using an ArF excimer laser having a wavelength of 193 nm. Subsequently, post exposure baking was performed at 130 ° C. for 90 seconds, followed by development with a 2.38 mass% tetramethylammonium hydroxide aqueous solution for 60 seconds to form a 1: 1 line and space pattern. The developed wafer was cleaved and observed with a scanning electron microscope (SEM), and the pattern shape observation and line width variation (LWR) of the exposure amount obtained by resolving the line-and-space with a line width of 100 nm at 1: 1. Measurements were made.
In the LWR, the line width is detected at a plurality of positions in the measurement monitor, and the dispersion (3σ) of variations in the detected positions is used as an index. Moreover, the cross-sectional shape of the pattern was observed using a scanning electron microscope (SEM) and evaluated as “◯” when the rectangularity was high and “X” when the rectangularity was low. The results are shown in Table 2.
以上より、本発明のアクリル酸エステル誘導体を含有する原料を重合して得られた高分子化合物(高分子化合物(a)~(c))を利用したレジスト組成物は、本発明のアクリル酸エステル誘導体を用いず重合して得られた高分子化合物(高分子化合物(d)~(f))を利用したレジスト組成物に比べ、良好な形状のフォトレジストパターンを形成できることに加え、LWRが改善されており、高解像度のフォトレジストパターンの形成とLWRの低減とを両立させることができた。
From the above, the resist composition using the polymer compound (polymer compounds (a) to (c)) obtained by polymerizing the raw material containing the acrylate derivative of the present invention is the acrylate ester of the present invention. Compared to resist compositions that use polymer compounds (polymer compounds (d) to (f)) obtained by polymerization without using derivatives, it is possible to form a photoresist pattern with a better shape, and to improve LWR Therefore, it was possible to achieve both formation of a high-resolution photoresist pattern and reduction of LWR.
本発明のアクリル酸エステル誘導体は、LWRが改善され、且つ高解像度のレジストパターンを形成するフォトレジスト組成物用の高分子化合物の原料として有用であり、半導体やプリント基板の製造において有用である。
The acrylic ester derivative of the present invention is useful as a raw material for a polymer compound for a photoresist composition with improved LWR and forming a high-resolution resist pattern, and is useful in the production of semiconductors and printed boards.
Claims (15)
- 下記一般式(1)
(一般式(1)中、R1は、水素原子、メチル基またはトリフルオロメチル基を表す。R2は、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。
X1は、-S(=O)-または-S(=O)2-を表し、X2は、-O-、-S(=O)-または-S(=O)2-を表す。
U1およびU2は、それぞれ独立して、単結合、または、メチレン基およびエチレン基からなる群から選択されるアルキレン基を表し、該アルキレン基は、炭素数1~10のアルキル基および炭素数3~10のシクロアルキル基からなる群から選択される少なくとも1つの置換基によって置換されていてもよい。
U3は、メチレン基、エチレン基、トリメチレン基およびテトラメチレン基からなる群から選択されるアルキレン基、または炭素数3~10のシクロアルキレン基を表し、該アルキレン基およびシクロアルキレン基は、炭素数1~10のアルキル基および炭素数3~10のシクロアルキル基からなる群から選択される少なくとも1つの置換基によって置換されていてもよい。
A1は、単結合または炭素数1~10の鎖状脂肪族炭化水素基を表す。
A2は、炭素数1~10の鎖状脂肪族炭化水素基または炭素数3~10の脂環式炭化水素基を表し、該脂環式炭化水素基は、炭素数1~10のアルキル基によって置換されていてもよい。
kは0~2の整数を表す。)
で示されるアクリル酸エステル誘導体。 The following general formula (1)
(In the general formula (1), R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group. R 2 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms. Represents.
X 1 represents —S (═O) — or —S (═O) 2 —, and X 2 represents —O—, —S (═O) — or —S (═O) 2 —.
U 1 and U 2 each independently represent a single bond or an alkylene group selected from the group consisting of a methylene group and an ethylene group, and the alkylene group has an alkyl group having 1 to 10 carbon atoms and a carbon number It may be substituted with at least one substituent selected from the group consisting of 3 to 10 cycloalkyl groups.
U 3 represents an alkylene group selected from the group consisting of a methylene group, an ethylene group, a trimethylene group and a tetramethylene group, or a cycloalkylene group having 3 to 10 carbon atoms, and the alkylene group and the cycloalkylene group have It may be substituted with at least one substituent selected from the group consisting of 1 to 10 alkyl groups and cycloalkyl groups having 3 to 10 carbon atoms.
A 1 represents a single bond or a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms.
A 2 represents a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms or an alicyclic hydrocarbon group having 3 to 10 carbon atoms, and the alicyclic hydrocarbon group is an alkyl group having 1 to 10 carbon atoms. May be substituted.
k represents an integer of 0-2. )
An acrylic ester derivative represented by - 下記一般式(2)
(一般式(2)中、R1、R2、X1、X2、A2およびkは、請求項1に記載の通りである。
R3~R10は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。また、R11およびR12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基を表す。
zは0または1を表す。)
で示される、請求項1に記載のアクリル酸エステル誘導体。 The following general formula (2)
(In the general formula (2), R 1 , R 2 , X 1 , X 2 , A 2 and k are as defined in claim 1.
R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms. R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
z represents 0 or 1; )
The acrylic ester derivative according to claim 1, which is represented by: - 下記一般式(3)
(一般式(3)中、R1、R2、X1、X2、A2およびkは、請求項1に記載の通りである。
R3~R10は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。また、R11およびR12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基を表す。
zは0または1を表す。)
で示される、請求項1に記載のアクリル酸エステル誘導体。 The following general formula (3)
(In General Formula (3), R 1 , R 2 , X 1 , X 2 , A 2 and k are as defined in claim 1.
R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms. R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
z represents 0 or 1; )
The acrylic ester derivative according to claim 1, which is represented by: - X1が-S(=O)2-であり、且つX2が-O-である、請求項1~5のいずれか1項に記載のアクリル酸エステル誘導体。 The acrylic ester derivative according to any one of claims 1 to 5, wherein X 1 is -S (= O) 2- and X 2 is -O-.
- kが0である、請求項1~6のいずれか1項に記載のアクリル酸エステル誘導体。 The acrylic ester derivative according to any one of claims 1 to 6, wherein k is 0.
- 下記一般式(2)
(一般式(2)中、R1、R2、X1、X2、A2およびkは、請求項1に記載の通りである。
R3~R10は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。また、R11およびR12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基を表す。
zは0または1を表す。)
で示されるアクリル酸エステル誘導体、および下記一般式(3)
(一般式(3)中、R1、R2、X1、X2、A2およびkは、請求項1に記載の通りである。
R3~R10は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数3~10のシクロアルキル基を表す。また、R11およびR12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基を表す。
zは0または1を表す。)
で示されるアクリル酸エステル誘導体の混合物。 The following general formula (2)
(In the general formula (2), R 1 , R 2 , X 1 , X 2 , A 2 and k are as defined in claim 1.
R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms. R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
z represents 0 or 1; )
And the following general formula (3):
(In General Formula (3), R 1 , R 2 , X 1 , X 2 , A 2 and k are as defined in claim 1.
R 3 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms. R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
z represents 0 or 1; )
A mixture of acrylic ester derivatives represented by - 前記一般式(2)で示されるアクリル酸エステル誘導体と前記一般式(3)で示されるアクリル酸エステル誘導体との混合比率[(2):(3)]が、モル比で50:50~95:5である、請求項8に記載の混合物。 The mixing ratio [(2) :( 3)] of the acrylic ester derivative represented by the general formula (2) and the acrylic ester derivative represented by the general formula (3) is 50:50 to 95 in molar ratio. The mixture of claim 8, wherein:
- 前記一般式(2)および(3)の両方において、X1が-S(=O)2-であり、且つX2が-O-である、請求項8または9に記載の混合物。 The mixture according to claim 8 or 9, wherein in both of the general formulas (2) and (3), X 1 is -S (= O) 2- and X 2 is -O-.
- 前記一般式(2)および(3)の両方においてkが0である、請求項8~10のいずれか1項に記載の混合物。 The mixture according to any one of claims 8 to 10, wherein k is 0 in both of the general formulas (2) and (3).
- 請求項1~7のいずれか1項に記載のアクリル酸エステル誘導体に由来する構成単位を有する高分子化合物。 A polymer compound having a structural unit derived from the acrylate derivative according to any one of claims 1 to 7.
- 請求項1~7のいずれか1項に記載のアクリル酸エステル誘導体に由来する構成単位を2種以上有する高分子化合物。 A polymer compound having two or more kinds of structural units derived from the acrylate derivative according to any one of claims 1 to 7.
- 請求項8~11のいずれか1項に記載の混合物に由来する構成単位を有する高分子化合物。 A polymer compound having a structural unit derived from the mixture according to any one of claims 8 to 11.
- 光酸発生剤、溶剤、および請求項12~14のいずれか1項に記載の高分子化合物を含有するフォトレジスト組成物。 A photoresist composition comprising a photoacid generator, a solvent, and the polymer compound according to any one of claims 12 to 14.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015018665 | 2015-02-02 | ||
JP2015-018665 | 2015-02-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016125585A1 true WO2016125585A1 (en) | 2016-08-11 |
Family
ID=56563936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/051585 WO2016125585A1 (en) | 2015-02-02 | 2016-01-20 | Acrylic acid ester derivative, mixture, polymer compound, and photoresist composition |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016125585A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0673130A (en) * | 1991-12-25 | 1994-03-15 | Hitachi Chem Co Ltd | Coating resin and antifouling coating therefrom |
WO2009104722A1 (en) * | 2008-02-22 | 2009-08-27 | 株式会社クラレ | Acrylate ester derivatives and polymer compounds |
JP2009196941A (en) * | 2008-02-22 | 2009-09-03 | Kuraray Co Ltd | New (meth)acrylate derivative, haloester derivative and polymer compound |
JP2009196945A (en) * | 2008-02-22 | 2009-09-03 | Kuraray Co Ltd | New acrylate derivative, and method for producing the same |
JP2011184390A (en) * | 2010-03-10 | 2011-09-22 | Kuraray Co Ltd | Acrylic acid ester derivative, polymer compound, and photoresist composition |
JP2013041266A (en) * | 2011-07-19 | 2013-02-28 | Sumitomo Chemical Co Ltd | Resist composition and method for producing resist pattern |
JP2013227269A (en) * | 2012-03-28 | 2013-11-07 | Kuraray Co Ltd | Acrylic ester derivative |
-
2016
- 2016-01-20 WO PCT/JP2016/051585 patent/WO2016125585A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0673130A (en) * | 1991-12-25 | 1994-03-15 | Hitachi Chem Co Ltd | Coating resin and antifouling coating therefrom |
WO2009104722A1 (en) * | 2008-02-22 | 2009-08-27 | 株式会社クラレ | Acrylate ester derivatives and polymer compounds |
JP2009196941A (en) * | 2008-02-22 | 2009-09-03 | Kuraray Co Ltd | New (meth)acrylate derivative, haloester derivative and polymer compound |
JP2009196945A (en) * | 2008-02-22 | 2009-09-03 | Kuraray Co Ltd | New acrylate derivative, and method for producing the same |
JP2011184390A (en) * | 2010-03-10 | 2011-09-22 | Kuraray Co Ltd | Acrylic acid ester derivative, polymer compound, and photoresist composition |
JP2013041266A (en) * | 2011-07-19 | 2013-02-28 | Sumitomo Chemical Co Ltd | Resist composition and method for producing resist pattern |
JP2013227269A (en) * | 2012-03-28 | 2013-11-07 | Kuraray Co Ltd | Acrylic ester derivative |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101620647B1 (en) | Acrylate derivative, haloester derivative, polymer compound and photoresist composition | |
JP5118622B2 (en) | Tertiary alcohol derivative, polymer compound and photoresist composition | |
KR101732205B1 (en) | --- n-acyl--lactam derivative macromolecular compound and photoresist composition | |
US8637623B2 (en) | Monomer having electron-withdrawing substituent and lactone skeleton, polymeric compound, and photoresist composition | |
JP5270188B2 (en) | Novel acrylic ester derivatives and polymer compounds | |
JP5139259B2 (en) | Tertiary alcohol derivative, polymer compound and photoresist composition | |
KR101595583B1 (en) | (meth)acrylate derivative, intermediate thereof, and polymer compound | |
JP5993858B2 (en) | (Meth) acrylic acid ester derivative, polymer compound and photoresist composition | |
JP5496715B2 (en) | Acrylic ester derivatives, polymer compounds and photoresist compositions | |
JP5840146B2 (en) | Vinylsulfonic acid ester derivative, polymer compound and photoresist composition | |
JP5460534B2 (en) | Carbamoyloxyadamantane derivative, polymer compound and photoresist composition | |
WO2013146379A1 (en) | Acrylic acid ester derivative | |
JP5248138B2 (en) | Novel acrylic ester derivative and method for producing the same | |
WO2009104727A1 (en) | Method for producing acrylate derivative, acrylate derivative, and intermediate thereof | |
JP2015160836A (en) | New alcohol derivative, acrylate derivative, haloester derivative, polymeric compound, and photoresist composition | |
WO2013146356A1 (en) | Method for manufacturing acrylic acid ester derivative, intermediate, and method for manufacturing intermediate | |
JP5657443B2 (en) | Acrylic ester derivatives, polymer compounds and photoresist compositions | |
WO2016125585A1 (en) | Acrylic acid ester derivative, mixture, polymer compound, and photoresist composition | |
JP5191759B2 (en) | Novel acrylic ester derivative and process for producing the same | |
JP5466511B2 (en) | High molecular compound | |
JP2016141737A (en) | Acrylate derivative, mixture, polymer compound, and photoresist composition | |
JP2018012674A (en) | Alcohol derivative, acrylate derivative, mixture, polymer compound and photoresist composition | |
JP2015168735A (en) | Novel alcohol derivative, acrylate derivative, haloester derivative, polymeric compound, and photoresist composition | |
JP2013144652A (en) | Acrylic acid ester derivative and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16746416 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16746416 Country of ref document: EP Kind code of ref document: A1 |