WO2016122284A1 - 백라이트 유닛 및 이를 포함하는 디스플레이 장치 - Google Patents
백라이트 유닛 및 이를 포함하는 디스플레이 장치 Download PDFInfo
- Publication number
- WO2016122284A1 WO2016122284A1 PCT/KR2016/001088 KR2016001088W WO2016122284A1 WO 2016122284 A1 WO2016122284 A1 WO 2016122284A1 KR 2016001088 W KR2016001088 W KR 2016001088W WO 2016122284 A1 WO2016122284 A1 WO 2016122284A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- backlight unit
- film
- color conversion
- light source
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S8/00—Lighting devices intended for fixed installation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
- F21K9/60—Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
- F21K9/64—Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
- F21K9/60—Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
- F21K9/69—Details of refractors forming part of the light source
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0023—Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
- G02B6/0055—Reflecting element, sheet or layer
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133615—Edge-illuminating devices, i.e. illuminating from the side
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
- F21Y2115/15—Organic light-emitting diodes [OLED]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133614—Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133624—Illuminating devices characterised by their spectral emissions
Definitions
- the present application relates to a backlight unit and a display device including the same.
- This application claims the benefit of the filing date of Patent Application No. 10-2015-0015706 filed with the Korean Intellectual Property Office on January 31, 2015, the entire contents of which are incorporated herein.
- the present application provides a backlight unit having excellent color reproduction and a display device including the same.
- a light source including a light emitting lamp that emits light including a 450 nm wavelength and an inorganic phosphor having a maximum emission wavelength within a range of 510 to 560 nm when irradiated with light including a 450 nm wavelength and at least a portion of the interior or surface of the lamp. ;
- a color conversion film including an organic phosphor and having a maximum emission wavelength within a range of 610 to 660 nm when irradiated with light emitted from the light emitting lamp or the inorganic phosphor.
- It provides a backlight unit comprising a.
- the ratio of the photon of the blue light and the green light emitted from the light source when the power is applied to the backlight unit of the exemplary embodiments is in the range of 55:45 to 30:70.
- the organic phosphor has a maximum emission wavelength in the film state within a range of 610 to 660 nm, and a half width of the emission peak in the film state is 70 nm or less.
- a light guide plate is provided between the light source and the color conversion film of the backlight unit described above.
- the color conversion film of the backlight unit described above is a resin matrix; And an organic phosphor dispersed in the resin matrix and absorbing light emitted from the light source to emit light of different wavelengths.
- Another embodiment of the present application provides a display device including a backlight unit according to the above-described embodiment.
- the backlight unit includes a green inorganic phosphor in a light source using a blue light emitting lamp and a red organic phosphor in a color conversion film, thereby providing excellent color reproducibility with the light source and one color conversion film. White can be achieved.
- FIG. 1 is a schematic diagram of a structure of a backlight unit according to an exemplary embodiment of the present application.
- FIG. 9 is a schematic diagram illustrating a structure of a display device according to an exemplary embodiment of the present application.
- the backlight unit according to the exemplary embodiment of the present application is provided in at least a portion of an inside or a surface of a light emitting lamp that emits light including a 450 nm wavelength, and includes a light within a range of 510 to 560 nm when irradiated with a 450 nm wavelength.
- a light source comprising an inorganic phosphor having a maximum emission wavelength; And an organic phosphor, and a color conversion film having a maximum emission wavelength within a range of 610 to 660 nm when irradiated with light emitted from the light emitting lamp or the inorganic phosphor.
- the light emitting lamp is a blue light emitting lamp
- the inorganic phosphor is a green inorganic phosphor
- the organic phosphor may be referred to as a red organic phosphor.
- the maximum emission wavelength of the color conversion film may be determined according to the type of the organic phosphor or the type of matrix resin constituting the film. The maximum emission wavelength of the color conversion film is preferably within 610 ⁇ 650 nm.
- the light source of the backlight unit according to FIG. 1 includes a blue light emitting lamp including a blue chip, and a green inorganic phosphor.
- a blue light emitting lamp including a blue chip
- a green inorganic phosphor According to FIG. 1, an edge type light source in which a light guide plate is provided between the light source and the color conversion film and the light source is positioned on a side surface of the light guide plate is illustrated.
- a reflecting plate is provided on the rear surface of the light guide plate.
- the scope of the present invention is not limited by FIG. 1, but may be applied to a direct type light source, and two or more light sources may be provided.
- the color conversion film according to FIG. 1 is provided on the substrate.
- the substrate may serve as a support in the manufacture of a color conversion film, or may serve as a barrier film depending on the material.
- the color conversion film according to FIG. 1 includes a red organic phosphor and light diffusing particles.
- the light diffusion particles are not essential, but when the color conversion film includes the light diffusion particles, luminance may be improved without a separate film.
- the ratio of the photon of the blue light and the green light emitted from the light source when the power is applied to the backlight unit of the exemplary embodiments is in the range of 55:45 to 30:70.
- the white color coordinates can be easily adjusted.
- the blue light means that the maximum emission wavelength is within the wavelength range of 400 nm to 500 nm
- green light means that the maximum emission wavelength is within the wavelength range of 500 nm to 600 nm.
- the red organic phosphor has a maximum emission wavelength in the film state within a range of 610 to 660 nm, and a half width of the emission peak in the film state is 70 nm or less.
- the color reproducibility can be further increased by using a red organic phosphor having a half-width of 70 nm or less as described above.
- a pyrromethene metal complex type is preferable.
- the blue light emitting lamp included in the light source may be a blue LED.
- the green inorganic phosphor included in the light source may be included in the lamp by, for example, coating the inner surface or the outer surface of the lamp, or adding the same to the lamp.
- the amount of the green inorganic phosphor may be determined according to the intensity of blue light, the kind of the green inorganic phosphor, the kind of the red organic phosphor, and the like.
- the green inorganic phosphor may include SiAlON series, Gallium nitride, Silicon carbide, Zinc selenide, GaAlAsP, and the like, but is not limited thereto.
- the color conversion film is a resin matrix; And a red organic phosphor dispersed in the resin matrix and absorbing light emitted from the light source to emit red light.
- a red organic phosphor having a maximum emission wavelength in a film state in a range of 610 to 660 nm and a half width of an emission peak in a film state of 70 nm or less may be used.
- the maximum light emission wavelength in the film state is within the above range and the half width of the light emission peak in the film state is less than 70 nm, high color reproducibility can be realized.
- the full width at half maximum means a width of an emission peak when the maximum emission peak is half the maximum height of light emitted from the organic phosphor.
- the full width at half maximum of the luminescence peak herein can be measured in the film state.
- film state means a state in which the organic phosphor is prepared in the form of a film, alone or in combination with other components that do not affect the measurement of half width.
- the red organic phosphor may be a pyrromethene metal complex-based, rhodamine-based, DCM-based, or perylenedimide-based phosphor.
- red phosphor a compound of Formula 1 may be used as the pyrromethene metal complex.
- R 11 , R 12 and L are the same as or different from each other, and each independently hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group, an alkylaryl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a mercapto group, an alkoxy group, alkoxyaryl Group, alkylthio group, arylether group, arylthioether group, aryl group, haloaryl group, heterocyclic group, halogen, haloalkyl group, haloalkenyl group, haloalkynyl group, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group Is a carbamoyl group, an amino group, a nitro group, a silyl group, or a siloxanyl group, or is linked to an adjacent substituent to form a substituted or
- M is a m-valent metal, which is boron, beryllium, magnesium, chromium, iron, nickel, copper, zinc or platinum,
- Ar 1 to Ar 5 are the same as or different from each other, and each independently hydrogen; Alkyl groups; Haloalkyl group; Alkylaryl group; Amine groups; Aryl alkenyl group unsubstituted or substituted by the alkoxy group; Or an aryl group unsubstituted or substituted with a hydroxy group, an alkyl group or an alkoxy group.
- Chemical Formula 1 may be represented by the following structural formula.
- Rhodamine-based compounds of Formula 2 may be used.
- R is the same as or different from each other, hydrogen; heavy hydrogen; COO-; Substituted or unsubstituted alkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryl group; Substituted or unsubstituted aryloxy group.
- the substituent may be a deuterium, an alkyl group, an alkoxy group, an aryl group or an aryloxy group.
- a DCM compound may be used as the DCM series.
- R is the same as or different from each other, hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryl group; Substituted or unsubstituted aryloxy group.
- the substituent may be a deuterium, an alkyl group, an alkoxy group, an aryl group or an aryloxy group.
- perylenediimide-based compounds of Formula 4 or 5 may be used.
- R is the same as or different from each other, and hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryl group; Substituted or unsubstituted aryloxy group.
- the substituent may be a deuterium, an alkyl group, an alkoxy group, an aryl group or an aryloxy group.
- Rhodamine-based, DCM-based, and perylenedimide-based series described above have a half width of about 80 nm in a film state.
- the red organic phosphor in the color conversion film may be present in the range of 0.001 to 2 parts by weight based on 100 parts by weight of the resin matrix.
- blue light, green light and red light may be used as definitions known in the art, for example, blue light is light having a wavelength selected from a wavelength of 400 nm to 500 nm, and green light is 500 light having a wavelength selected from the wavelength of nm to 560 nm, and red light is light having a wavelength selected from the wavelength of 600 nm to 780 nm.
- the green phosphor absorbs at least a portion of blue light to emit green light
- the red phosphor absorbs at least a portion of blue light or green light to emit red light.
- the red phosphor may absorb not only blue light but also light having a wavelength between 500 and 600 nm. If necessary, a phosphor that emits yellow light between the green light and the red light wavelength may be further used.
- the ratio of photons of blue light and green light emitted from the light source when power is applied to the backlight unit of the exemplary embodiments is in the range of 55:45 to 30:70.
- the white color coordinates can be easily matched.
- the photon ratio of the blue light and the green light of the light from the light source may be in the range of 50:50 to 30:70.
- the red organic phosphor is characterized in that the maximum emission wavelength in the film state is in the range of 610 to 660 nm, the half width of the emission peak in the film state is 70 nm or less, to satisfy this, pyromethene metal complex is preferred. .
- the half width of the green light emitted from the light source is reduced.
- the material of the said resin matrix is a thermoplastic polymer or a thermosetting polymer.
- the material of the resin matrix is poly (meth) acrylic, polycarbonate (PC), polystyrene (PS), polyarylene (PAR), polyurethane (TPU) such as polymethyl methacrylate (PMMA) ), Styrene-acrylonitrile (SAN), polyvinylidene fluoride (PVDF), modified polyvinylidene fluoride (modified-PVDF) and the like can be used.
- the color conversion film according to the above-described embodiment further includes light diffusing particles.
- light diffusing particles By dispersing light-diffusing particles in the color conversion film instead of the light-diffusion film conventionally used to improve the brightness, it is possible to omit the attaching process and to achieve higher brightness as compared to using a separate optical-diffusion film. Can be represented.
- a resin matrix and particles having high refractive index may be used, such as TiO 2 , silica, borosilicate, alumina, sapphire, air or other gas, air- or gas-filled hollow beads or particles (eg, , Air / gas-filled glass or polymer); Polymer particles including polystyrene, polycarbonate, polymethylmethacrylate, acrylic, methyl methacrylate, styrene, melamine resin, formaldehyde resin, or melamine and formaldehyde resin, or any suitable combination thereof.
- the particle diameter of the light diffusing particles may be in the range of 0.1 micrometer to 5 micrometers.
- the content of the light diffusing particles may be determined as necessary, for example, may be in the range of about 1 to 30 parts by weight relative to 100 parts by weight of the resin matrix solids.
- the color conversion film according to the above-described embodiment may have a thickness of 2 to 200 micrometers, for example, 2 to 100 micrometers.
- the color conversion film may exhibit high luminance even at a thin thickness of 2 to 20 micrometers. This is because the content of the red organic phosphor molecules contained on the unit volume is higher than that of the quantum dots.
- the color conversion film according to the above-described embodiment may be provided with a substrate on one surface.
- This substrate can function as a support in the production of the color conversion film. It does not specifically limit as a kind of base material, As long as it is transparent and can function as the said support body, it is not limited to the material and thickness. Transparent here means that visible light transmittance is 70% or more.
- a PET film may be used as the substrate.
- the color conversion film according to the above-described embodiment may further include a protective film or a barrier film provided on at least one surface.
- An additional adhesive or adhesive layer for attaching the protective film or barrier film to the color conversion film may be provided.
- the above-mentioned color conversion film may be prepared by coating and drying a resin solution in which a red organic phosphor is dissolved on a substrate, or by extruding and filming the above-mentioned red organic phosphor together with a resin.
- the red organic phosphor Since the red organic phosphor is dissolved in the resin solution, the red organic phosphor is homogeneously distributed in the solution. This is different from the manufacturing process of the quantum dot film that requires a separate dispersion process.
- the resin solution may further include a light diffusing particle and a dispersant for dispersing the light diffusing particle if necessary.
- the resin solution in which the red organic phosphor is dissolved is not particularly limited as long as the red organic phosphor and the resin are dissolved in the solution.
- the resin solution in which the red organic phosphor is dissolved prepares a first solution by dissolving the red organic phosphor in a solvent, prepares a second solution by dissolving the resin in a solvent, and prepares the first solution and the second solution. It can be manufactured by the method of mixing. When mixing the first solution and the second solution, it is preferable to mix homogeneously.
- the present invention is not limited thereto, and a method of dissolving a red organic phosphor and a resin in a solvent is added at the same time. And the like can be used.
- the above-mentioned resin matrix material a monomer curable with this resin matrix resin, or a mixture thereof can be used.
- the monomer curable with the resin matrix resin includes a (meth) acrylic monomer, which may be formed of a resin matrix material by UV curing.
- an initiator necessary for curing may be further added as necessary.
- the solvent is not particularly limited and is not particularly limited as long as it can be removed by drying without adversely affecting the coating process.
- Non-limiting examples of the solvent include toluene, xylene, acetone, chloroform, various alcohol solvents, MEK (methyl ethyl ketone), MIBK (methyl isobutyl ketone), EA (ethyl acetate), butyl acetate, DMF ( Dimethylformamide), cyclohexanone, DMAc (dimethylacetamide), DMSO (dimethylsulfoxide), NMP (N-methyl-pyrrolidone) and the like may be used, and one or two or more kinds thereof may be mixed. Can be used.
- the solvent contained in each of these solutions may be the same and may differ. Even when different kinds of solvents are used in the first solution and the second solution, it is preferable that these solvents have compatibility so that they can be mixed with each other.
- the process of coating the resin solution in which the red organic phosphor is dissolved on a substrate may use a roll-to-roll process. For example, after the substrate is unrolled from the roll on which the substrate is wound, the resin solution in which the red organic phosphor is dissolved may be coated on one surface of the substrate, dried, and then wound on the roll.
- a roll-to-roll process it is preferable to determine the viscosity of the said resin solution to the range in which the said process is possible, for example, it can determine within the range of 200-2,000 cps.
- a die coater may be used, and various bar coating methods such as a comma coater and a reverse comma coater may be used.
- the drying process can be carried out under the conditions necessary to remove the solvent. For example, it is possible to obtain a color conversion film including a phosphor having a desired thickness and concentration on the substrate by drying under conditions that the solvent is sufficiently blown in an oven located adjacent to the coater in the direction in which the substrate proceeds during the coating process.
- curing such as UV curing may be performed before or simultaneously with the drying.
- the red organic phosphor When the red organic phosphor is extruded together with the resin to form a film, an extrusion method known in the art may be used.
- the red organic phosphor may be used as polycarbonate (PC), poly (meth) acrylic or styrene-acryl.
- a color conversion film can be prepared by extruding a resin such as nitrile (SAN) together.
- An adhesive or adhesive film may be provided between the light source or the light guide plate and the color conversion film as necessary.
- a reflector may be provided around the light source.
- a reflective layer may be provided on a surface opposite to the surface of the light guide plate that faces the color conversion film.
- the backlight unit may further include additional films such as a light diffusing film, a light collecting film, a brightness enhancement film (DBEF), and the like.
- a light diffusing film e.g., a light collecting film
- DBEF brightness enhancement film
- the light collecting film e.g., a prism film may be used.
- two prism films disposed perpendicular to each other may be used.
- a display device including the above-described backlight unit is applied.
- the display device is not particularly limited as long as it includes the above-described backlight unit as a component.
- the display device includes a display module and a backlight unit.
- 9 illustrates a structure of a display device.
- the present invention is not limited thereto, and an additional film, for example, a light diffusing film, a light collecting film, a brightness enhancing film, or the like may be further provided between the display module and the backlight unit if necessary.
- a red color conversion film was prepared using a red organic phosphor of the following structural formula.
- thermoplastic resin (SAN) was dissolved in DMF, and 0.15 wt% red organic phosphor and 10% TiO 2 particles were added to the resin solids to prepare a coating solution and mix homogeneously. This solution was coated on a PET substrate and dried to prepare a color conversion film.
- the ratio of the number of blue light photons to the number of green light photons was controlled by controlling the content of the green inorganic phosphor, and the content used at this time was 10wt% of the solid content of the encapsulant.
- the maximum light emission wavelength of the manufactured color conversion film was 615 nm, and the half value width was 49 nm.
- the spectrum of the film prepared in Example 1 is shown in FIG. 2. In Figure 2, the horizontal axis represents wavelength (nm) and the vertical axis represents radiance.
- the spectrum of the film prepared in Example 2 is shown in FIG. 3.
- the maximum light emission wavelength of the manufactured color conversion film was 622 nm, and the half value width was 62 nm.
- the spectrum of the color conversion film prepared in Example 3 is shown in FIG. 4.
- the maximum light emission wavelength of the manufactured color conversion film was 640 nm, and the half value width was 49 nm.
- the spectrum of the color conversion film prepared in Example 4 is shown in FIG. 5.
- the maximum light emission wavelength of the manufactured color conversion film was 642 nm, and the half value width was 50 nm.
- the spectrum of the color conversion film prepared in Example 5 is shown in FIG. 6.
- the maximum light emission wavelength of the manufactured color conversion film was 640 nm, and the half value width was 50 nm.
- red inorganic phosphor (RE306N, half width 93nm) and 10 wt% of TiO 2 particles were added to the acrylic UV resin, instead of the organic phosphor, to prepare a coating solution and homogeneously mix them.
- This solution was coated on a PET substrate and then UV cured to produce a color conversion film.
- Wx / Wy, color reproducibility (%, s-RGB basis) of the backlight unit manufactured in Example includes a backlight unit (Comparative Example 1) to which a red inorganic phosphor was applied (Comparative Example 1) and a white LED light source including a YAG phosphor It is shown in Table 1 below compared to the backlight unit (Comparative Example 2) that does not include a film.
- the emission spectrum of the backlight unit including the white LED light source including the YAG phosphor is shown in FIG. 8.
- Example 1 Example 2 Example 3 Example 4 Example 5 Comparative Example 1 Comparative Example 2 Photon ratio of light source (B: G) 45:55 38:62 30:70 60:40 26:74 45:55 W-LED Wx / Wy 0.30 / 0.28 0.30 / 0.32 0.31 / 0.29 0.22 / 0.21 0.34 / 0.35 0.31 / 0.38 0.31 / 0.33 Color reproduction rate (%, s-RGB standard) 125% 122% 137% 146% 127% 113% 106%
- the embodiment using the organic phosphor showed excellent color reproducibility compared to the comparative example, and particularly, when the photon ratio of the light source was in the range of 55: 45-30: 70, the Wx / Wy of the backlight unit was set to the target color coordinate.
- the photon ratio of the light source was in the range of 55: 45-30: 70
- the Wx / Wy of the backlight unit was set to the target color coordinate.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Liquid Crystal (AREA)
- Planar Illumination Modules (AREA)
- Electroluminescent Light Sources (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
Abstract
본 명세서에 기재된 발명은 450nm 파장을 포함하는 광을 발광하는 발광 램프 및 상기 램프의 내부 또는 표면 중 적어도 일부에 구비되고, 450nm 파장을 포함하는 광 조사시 510~560nm 범위 내에서 최대 발광 파장을 갖는 무기 형광체를 포함하는 광원; 및 유기 형광체를 포함하고, 상기 발광 램프 또는 상기 무기 형광체로부터 방출되는 광 조사시 610~660nm 범위 내에서 최대 발광 파장을 갖는 색변환 필름을 포함하는 백라이트 유닛 및 이를 포함하는 디스플레이 장치에 관한 것이다.
Description
본 출원은 백라이트 유닛 및 이를 포함하는 디스플레이 장치에 관한 것이다. 본 출원은 2015년 1월 31일에 한국 특허청에 제출된 특허출원 제10-2015-0015706의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
TV의 대면적화와 함께 고화질화, 슬림화, 고기능화가 이루어지고 있다. 고성능, 고화질의 OLED TV는 여전히 가격 경쟁력이 문제점이며, 이에 따라 아직 본격적인 시장은 열리지 않고 있다. 따라서, LCD로 OLED의 장점을 유사하게 확보하려는 노력이 계속 되고 있다.
상기 노력의 하나로서, 최근 양자점 관련 기술 및 시제품이 많이 구현되고 있다. 그러나, 카드뮴 계열의 양자점은 사용 제한 등의 안전성 문제가 있으므로, 상대적으로 안전성 이슈가 없는 카드뮴이 없는 양자점을 적용한 백라이트 제조에 관심이 모이고 있다.
본 출원은 색재현율이 우수한 백라이트 유닛 및 이를 포함하는 디스플레이 장치를 제공한다.
본 출원의 일 실시상태는
450nm 파장을 포함하는 광을 발광하는 발광 램프 및 상기 램프의 내부 또는 표면 중 적어도 일부에 구비되고, 450nm 파장을 포함하는 광 조사시 510~560nm 범위 내에서 최대 발광 파장을 갖는 무기 형광체를 포함하는 광원; 및
유기 형광체를 포함하고, 상기 발광 램프 또는 상기 무기 형광체로부터 방출되는 광 조사시 610~660 nm 범위 내에서 최대 발광 파장을 갖는 색변환 필름
을 포함하는 백라이트 유닛을 제공한다.
본 출원의 또 하나의 실시상태에 따르면, 상기 실시상태들의 백라이트 유닛에 전원 인가시 광원으로부터 방출되는 광의 청색광과 녹색광의 광자(photon) 수 비가 55:45~30:70 범위 내이다.
본 출원의 또 하나의 실시상태에 따르면, 상기 유기 형광체는 필름 상태에서의 최대 발광 파장이 610 내지 660 nm의 범위 내에 있고, 필름 상태에서의 발광 피크의 반치폭이 70 nm 이하이다.
본 출원의 일 실시상태에 따르면, 전술한 백라이트 유닛의 상기 광원과 상기 색변환 필름 사이에는 도광판이 구비된다.
본 출원의 또 하나의 실시상태에 따르면, 전술한 백라이트 유닛의 색변환 필름은 수지 매트릭스; 및 상기 수지 매트릭스 내에 분산되고, 상기 광원으로부터 방출된 빛을 흡수하여 다른 파장의 광을 방출하는 유기 형광체를 포함하는 색변환 필름이다.
본 출원의 또 하나의 실시상태는 전술한 실시상태에 따른 백라이트 유닛을 포함하는 디스플레이 장치를 제공한다.
본 명세서에 기재된 실시상태들에 따른 백라이트 유닛은 청색 발광 램프를 사용하는 광원에 녹색 무기 형광체를 포함시키고, 색변환 필름에 적색 유기 형광체를 포함시킴으로써, 광원과 한 장의 색변환 필름으로 색재현율이 우수한 백색을 구현할 수 있다.
도 1은 본 출원의 일 실시상태에 따른 백라이트 유닛의 구조의 모식도이다.
도 2 내지 도 8은 각각 실시예 1 내지 5 및 비교예 1 및 2에서 측정한 발광 스펙트럼을 나타낸 것이다.
도 9는 본 출원의 일 실시상태에 따른 디스플레이 장치의 구조를 예시한 모식도이다.
본 출원의 일 실시상태에 따른 백라이트 유닛은 450nm 파장을 포함하는 광을 발광하는 발광 램프 및 상기 램프의 내부 또는 표면 중 적어도 일부에 구비되고, 450nm 파장을 포함하는 광 조사시 510~560nm 범위 내에서 최대 발광 파장을 갖는 무기 형광체를 포함하는 광원; 및 유기 형광체를 포함하고, 상기 발광 램프 또는 상기 무기 형광체로부터 방출되는 광 조사시 610~660 nm 범위 내에서 최대 발광 파장을 갖는 색변환 필름을 포함하는 백라이트 유닛을 제공한다. 상기 발광 램프는 청색 발광 램프이고, 상기 무기 형광체는 녹색 무기 형광체이며, 상기 유기 형광체는 적색 유기 형광체로 언급될 수 있다. 상기 색변환 필름의 최대 발광 파장은 상기 유기 형광체의 종류 또는 필름을 구성하는 매트릭스 수지의 종류에 따라 결정될 수 있다. 상기 색변환 필름의 최대 발광 파장은 바람직하게는 610~650 nm 내에 있다.
도 1에 상기 실시상태에 따른 백라이트 유닛 구조의 모식도를 나타내었다. 도 1에 따른 백라이트 유닛의 광원은 청색 칩을 포함하는 청색 발광 램프와, 녹색 무기 형광체를 포함한다. 도 1에 따르면, 상기 광원과 상기 색변환 필름 사이에 도광판이 구비되고, 도광판의 측면에 광원이 위치하는 엣지형 광원이 도시되어 있다. 또한, 도광판의 후면에 반사판이 구비되어 있다. 그러나, 본 발명의 범위가 도 1에 의하여 한정되는 것은 아니고, 직하형 광원에 적용될 수도 있으며, 광원이 2개 이상 구비될 수도 있다. 도 1에 따른 색변환 필름은 기재 상에 구비되어 있다. 상기 기재는 색변환 필름의 제조시 지지체의 역할을 할 수도 있고, 그 재료에 따라 배리어 필름의 역할을 할 수도 있다. 도 1에 따른 색변환 필름은 적색 유기 형광체와 광확산 입자를 포함한다. 광확산 입자는 필수적인 것은 아니지만, 색변환 필름이 광확산 입자를 포함하는 경우 별도의 필름 없이도 휘도를 향상시킬 수 있다.
본 출원의 또 하나의 실시상태에 따르면, 상기 실시상태들의 백라이트 유닛에 전원 인가시 광원으로부터 방출되는 광의 청색광과 녹색광의 광자(photon) 수 비가 55:45~30:70 범위 내이다. 청색광과 녹색광의 광자 수의 비가 위의 범위에 포함되는 경우, 백색 색좌표를 용이하게 맞출 수 있다. 상기 청색광은 최대 발광 파장이 400 nm 내지 500 nm 파장 범위 내임을 의미하고, 녹색광은 최대 발광 파장이 500 nm 내지 600 nm 파장 범위 내임을 의미한다.
본 출원의 또 하나의 실시상태에 따르면, 상기 적색 유기 형광체는 필름 상태에서의 최대 발광 파장이 610 내지 660 nm의 범위 내에 있고, 필름 상태에서의 발광 피크의 반치폭이 70 nm 이하이다. 일반적으로 반치폭이 큰 무기 형광체와 달리, 상기와 같이 반치폭이 70 nm 이하인 적색 유기 형광체를 사용함으로써 색재현율을 더욱 높일 수 있다. 이와 같은 적색 유기 형광체로는 피로메텐 금속착제 계열이 바람직하다.
상기 광원에 포함되는 청색 발광 램프는 청색 LED일 수 있다.
상기 광원에 포함되는 녹색 무기 형광체는 예컨대 램프의 내면 또는 외면에 코팅, 램프 내에 첨가 등의 방법으로 램프에 포함될 수 있다.
상기 녹색 무기 형광체의 사용량은 청색 광의 세기, 녹색 무기 형광체의 종류, 적색 유기 형광체의 종류 등에 따라 결정될 수 있다.
상기 녹색 무기 형광체로는 SiAlON 계열, Gallium nitride, Silicon carbide, Zinc selenide, GaAlAsP 등이 있으나, 이에만 한정되는 것은 아니다.
본 출원의 또 하나의 실시상태에 따르면, 상기 색변환 필름은 수지 매트릭스; 및 상기 수지 매트릭스 내에 분산되고, 상기 광원으로부터 방출된 빛을 흡수하여 적색 광을 방출하는 적색 유기 형광체를 포함하는 색변환 필름이다.
상기 적색 유기 형광체로는 필름 상태에서의 최대 발광 파장이 610 내지 660 nm의 범위 내에 있고, 필름상태에서의 발광 피크의 반치폭이 70 nm 이하인 적색 유기 형광체가 사용될 수 있다. 필름 상태에서의 최대 발광 파장이 상기 범위 내이고, 필름 상태에서의 발광 피크의 반치폭이 70 nm 이하로 작은 경우, 높은 색재현율을 구현할 수 있다. 상기 적색 유기 형광체의 발광 피크의 반치폭은 작을수록 좋다.
본 명세서에 있어서, 상기 반치폭은 상기 유기 형광체로부터 발광한 빛의 최대 발광 피크에서 최대 높이의 절반일 때의 발광 피크의 폭을 의미한다. 본 명세서에서의 발광 피크의 반치폭은 필름 상태에서 측정될 수 있다. 여기서, "필름 상태"라는 것은 용액 상태가 아니고, 상기 유기 형광체 단독으로 또는 반치폭을 측정하는데 영향을 미치지 않는 다른 성분과 혼합하여 필름 형태로 제조한 상태를 의미한다.
본 출원의 일 실시상태에 따르면, 상기 적색 유기 형광체로는 피로메텐 금속 착체 계열, 로다민(Rhodamine) 계열, DCM 계열, 페릴렌디이미드(Perylenedimide) 계열의 형광체가 사용될 수 있다.
상기 적색 형광체로서 피로메텐 금속 착체 계열로는 하기 화학식 1의 화합물이 사용될 수 있다.
[화학식 1]
R11, R12 및 L은 서로 같거나 상이하고 각각 독립적으로 수소, 알킬기, 시클로알킬기, 아랄킬기, 알킬아릴기, 알케닐기, 시클로알케닐기, 알키닐기, 수산기, 머캅토기, 알콕시기, 알콕시아릴기, 알킬티오기, 아릴에테르기, 아릴티오에테르기, 아릴기, 할로아릴기, 헤테로고리기, 할로겐, 할로알킬기, 할로알케닐기, 할로알키닐기, 시아노기, 알데히드기, 카르보닐기, 카르복실기, 에스테르기, 카르바모일기, 아미노기, 니트로기, 실릴기 또는 실록사닐기이거나, 인접한 치환기와 연결되어 치환 또는 비치환된 방향족 또는 지방족의 탄화수소 또는 헤테로 고리를 형성하고,
M은 m가의 금속으로서, 붕소, 베릴륨, 마그네슘, 크롬, 철, 니켈, 구리, 아연 또는 백금이고,
Ar1 내지 Ar5는 서로 같거나 상이하고 각각 독립적으로 수소; 알킬기; 할로알킬기; 알킬아릴기; 아민기; 알콕시기로 치환 또는 비치환된 아릴알케닐기; 또는 히드록시기, 알킬기 또는 알콕시기로 치환 또는 비치환된 아릴기이다.
일 실시상태에 따르면, 상기 화학식 1는 하기 구조식들로 표시될 수 있다.
상기 적색 형광체로서 로다민 계열로는 하기 화학식 2의 화합물이 사용될 수 있다.
[화학식 2]
상기 화학식 2에 있어서, R은 서로 같거나 상이하고, 수소; 중수소; COO-; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 아릴옥시기이다. 상기 R이 추가로 치환되는 경우, 치환기는 중수소, 알킬기, 알콕시기, 아릴기 또는 아릴옥시기일 수 있다.
상기 적색 형광체로서 DCM 계열로는 하기 화학식 3의 화합물이 사용될 수 있다.
[화학식 3]
상기 화학식 3에 있어서, R은 서로 같거나 상이하고, 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 아릴옥시기이다. 상기 R이 추가로 치환되는 경우, 치환기는 중수소, 알킬기, 알콕시기, 아릴기 또는 아릴옥시기일 수 있다.
상기 적색 형광체로서 페릴렌디이미드 계열로는 하기 화학식 4 또는 5의 화합물이 사용될 수 있다.
[화학식 4]
상기 화학식 4에 있어서, R은 서로 같거나 상이하고, 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 아릴옥시기이다. 상기 R이 추가로 치환되는 경우, 치환기는 중수소, 알킬기, 알콕시기, 아릴기 또는 아릴옥시기일 수 있다.
[화학식 5]
전술한 로다민(Rhodamine) 계열, DCM 계열, 페릴렌디이미드(Perylenedimide) 계열은 필름 상태에서의 반치폭이 80nm 내외이다.
상기 색변환 필름 중의 적색 유기 형광체는 수지 매트릭스 100 중량부를 기준으로 0.001 내지 2 중량부의 범위 내로 존재할 수 있다.
본 명세서에 있어서, 청색 광, 녹색 광 및 적색 광은 당기술분야에 알려져 있는 정의가 사용될 수 있으며, 예컨대 청색 광은 400 nm 내지 500 nm 의 파장에서 선택되는 파장을 갖는 광이고, 녹색 광은 500 nm 내지 560 nm 의 파장에서 선택되는 파장을 갖는 광이며, 적색 광은 600 nm 내지 780 nm 의 파장에서 선택되는 파장을 갖는 광이다. 본 명세서에 있어서, 녹색 형광체는 청색 광의 적어도 일부를 흡수하여 녹색 광을 방출하고, 적색 형광체는 청색 광 또는 녹색 광의 적어도 일부를 흡수하여 적색 광을 방출한다. 예컨대, 적색 형광체는 청색 광 뿐만 아니라 500~600nm 사이의 파장의 광을 흡수할 수도 있다. 필요에 따라 녹색 광과 적색 광 파장 사이의 황색 광을 발광하는 형광체도 추가로 사용될 수 있다.
본 출원의 또 하나의 실시상태에 따르면, 상기 실시상태들의 백라이트 유닛에 전원 인가시 광원으로부터 방출되는 광의 청색 광과 녹색 광의 광자(photon) 수 비가 55:45~30:70 범위 내이다. 광원으로부터 방출되는 광에 있어서, 청색 광과 녹색 광의 광자 수의 비가 위의 범위에 포함되는 경우, 백색 색좌표를 용이하게 맞출 수 있다. 일 예에 따르면, 상기 광원으로부터 나오는 광 중 청색광과 녹색광의 광자 수 비는 50:50~30:70 범위 내일 수 있다.
상기 적색 유기 형광체는 필름 상태에서의 최대 발광 파장이 610 내지 660 nm의 범위 내에 있고, 필름 상태에서의 발광 피크의 반치폭이 70 nm 이하인 것을 특징으로 하며, 이를 만족하기 위해서는 피로메텐 금속착제가 바람직하다.
특히 피로메텐 금속착제를 사용할 경우 광원에서 나오는 녹색광의 반치폭을 감소시키는 효과가 있다.
상기 수지 매트릭스의 재료는 열가소성 고분자 또는 열경화성 고분자인 것이 바람직하다. 구체적으로, 상기 수지 매트릭스의 재료로는 폴리메틸메타크릴레이트(PMMA)와 같은 폴리(메트)아크릴계, 폴리카보네이트계(PC), 폴리스티렌계(PS), 폴리아릴렌계(PAR), 폴리우레탄계(TPU), 스티렌-아크릴로니트릴계(SAN), 폴리비닐리덴플루오라이드계(PVDF), 개질된 폴리비닐리덴플루오라이드계(modified-PVDF) 등이 사용될 수 있다.
본 출원의 또 하나의 실시상태에 따르면, 전술한 실시상태에 따른 색변환 필름이 추가로 광확산 입자를 포함한다. 휘도를 향상시키기 위하여 종래에 사용되는 광확산 필름 대신 광확산 입자를 색변환 필름 내부에 분산시킴으로서, 별도의 광학산 필름을 사용하는 것에 비하여, 부착 공정을 생략할 수 있을 뿐만 아니라, 더 높은 휘도를 나타낼 수 있다.
광확산 입자로는 수지 매트릭스와 굴절율이 높은 입자가 사용될 수 있으며, 예컨대 TiO2, 실리카, 보로실리케이트, 알루미나, 사파이어, 공기 또는 다른 가스, 공기- 또는 가스-충진된 중공 비드들 또는 입자들(예컨대, 공기/가스-충진된 유리 또는 폴리머); 폴리스티렌, 폴리카보네이트, 폴리메틸메타크릴레이트, 아크릴, 메틸 메타크릴레이트, 스티렌, 멜라민 수지, 포름알데히드 수지, 또는 멜라민 및 포름알데히드 수지를 비롯한 폴리머 입자들, 또는 이들의 임의의 적합한 조합을 포함한다.
상기 광확산 입자의 입경은 0.1 마이크로미터 내지 5 마이크로미터의 범위내일 수 있다. 광확산 입자의 함량은 필요에 따라 정해질 수 있으며, 예컨대 수지 매트릭스 고형분 100 중량부 대비 약 1 내지 30 중량부 범위내일 수 있다.
전술한 실시상태에 따른 색변환 필름은 두께가 2 내지 200 마이크로미터, 예컨대 2 내지 100 마이크로미터일 수 있다. 특히, 상기 색변환 필름은 두께가 2 내지 20 마이크로미터의 얇은 두께에서도 높은 휘도를 나타낼 수 있다. 이는 단위 부피 상에 포함되는 적색 유기 형광체 분자의 함량이 양자점에 비하여 높기 때문이다.
전술한 실시상태에 따른 색변환 필름은 일면에 기재가 구비될 수 있다. 이 기재는 상기 색변환 필름의 제조시 지지체로서의 기능을 할 수 있다. 기재의 종류로는 특별히 한정되지 않으며, 투명하고, 상기 지지체로서의 기능을 할 수 있는 것이라면 그 재질이나 두께에 한정되지 않는다. 여기서 투명이란, 가시광선 투과율이 70% 이상인 것을 의미한다. 예컨대 상기 기재로는 PET 필름이 사용될 수 있다.
전술한 실시상태에 따른 색변환 필름은 적어도 일면에 구비된 보호필름 또는 배리어 필름을 더 포함할 수 있다. 상기 보호필름 또는 배리어 필름을 상기 색변환 필름에 부착하기 위한 추가의 점착 또는 점착층이 구비될 수 있다.
전술한 색변환 필름은 적색 유기 형광체가 용해된 수지 용액을 기재 위에 코팅하고 건조하거나, 전술한 적색 유기 형광체를 수지와 함께 압출하여 필름화함으로써 제조될 수 있다.
상기 수지 용액 중에는 적색 유기 형광체가 용해되어 있기 때문에 적색 유기 형광체가 용액 중에 균질하게 분포하게 된다. 이는 별도의 분산공정을 필요로 하는 양자점 필름의 제조공정과는 상이하다.
상기 수지 용액에는 광확산 입자 및 필요한 경우 상기 광확산 입자를 분산시키기 위한 분산제가 더 포함될 수 있다.
상기 적색 유기 형광체가 용해된 수지 용액은 용액 중에 전술한 적색 유기 형광체와 수지가 녹아있는 상태라면 그 제조방법은 특별히 한정되지 않는다.
일 예에 따르면, 상기 적색 유기 형광체가 용해된 수지 용액은 적색 유기 형광체를 용매에 녹여 제1 용액을 준비하고, 수지를 용매에 녹여 제2 용액을 준비하고, 상기 제1 용액과 제2 용액을 혼합하는 방법에 의하여 제조될 수 있다. 상기 제1 용액과 제2 용액을 혼합할 때, 균질하게 섞는 것이 바람직하다. 그러나, 이에 한정되지 않고, 용매에 적색 유기 형광체와 수지를 동시에 첨가하여 녹이는 방법, 용매에 적색 유기 형광체를 녹이고 이어서 수지를 첨가하여 녹이는 방법, 용매에 수지를 녹이고 이어서 적색 유기 형광체를 첨가하여 녹이는 방법 등이 사용될 수 있다.
상기 용액 중에 포함되어 있는 수지로는 전술한 수지 매트릭스 재료, 이 수지 매트릭스 수지로 경화가능한 모노머, 또는 이들의 혼합이 사용될 수 있다. 예컨대, 상기 수지 매트릭스 수지로 경화가능한 모노머로는 (메트)아크릴계 모노머가 있으며, 이는 UV 경화에 의하여 수지 매트릭스 재료로 형성될 수 있다. 이와 같이 경화가능한 모노머를 사용하는 경우, 필요에 따라 경화에 필요한 개시제가 더 첨가될 수 있다.
상기 용매로는 특별히 한정되지 않으며, 상기 코팅 공정에 악영향을 미치지 않으면서 추후 건조에 의하여 제거될 수 있는 것이라면 특별히 한정되지 않는다. 상기 용매의 비제한적인 예로는 톨루엔, 자일렌, 아세톤, 클로로포름, 각종 알코올계 용매, MEK(메틸에틸케톤), MIBK(메틸이소부틸케톤), EA(에틸에세테이트), 부틸아세테이트, DMF(디메틸포름아미드), 시클로헥사논(cyclohexanone), DMAc(디메틸아세트아미드), DMSO(디메틸술폭사이드), NMP(N-메틸-피롤리돈) 등이 사용될 수 있으며, 1 종 또는 2 종 이상이 혼합되어 사용될 수 있다. 상기 제1 용액과 제2 용액을 사용하는 경우, 이들 각각의 용액에 포함되는 용매는 동일할 수도 있고, 상이할 수도 있다. 상기 제1 용액과 상기 제2 용액에 서로 상이한 종류의 용매가 사용되는 경우에도, 이들 용매는 서로 혼합될 수 있도록 상용성을 갖는 것이 바람직하다.
상기 적색 유기 형광체가 용해된 수지 용액을 기재 상에 코팅하는 공정은 롤투롤 공정을 이용할 수 있다. 예컨대, 기재가 권취된 롤로부터 기재를 푼 후, 상기 기재의 일면에 상기 적색 유기 형광체가 용해된 수지 용액을 코팅하고, 건조한 후, 이를 다시 롤에 권취하는 공정으로 수행될 수 있다. 롤투롤 공정을 이용하는 경우, 상기 수지 용액의 점도를 상기 공정이 가능한 범위로 결정하는 것이 바람직하며, 예컨대 200 내지 2,000 cps 범위 내에서 결정할 수 있다.
상기 코팅 방법으로는 공지된 다양한 방식을 이용할 수 있으며, 예컨대 다이(die) 코터가 사용될 수도 있고, 콤마(comma) 코터, 역콤마(reverse comma) 코터 등 다양한 바 코팅 방식이 사용될 수도 있다.
상기 코팅 이후에 건조 공정을 수행한다. 건조 공정은 용매를 제거하기에 필요한 조건으로 수행할 수 있다. 예컨대, 기재가 코팅 공정시 진행하는 방향으로, 코터에 인접하여 위치한 오븐에서 용매가 충분히 날아갈 조건으로 건조하여, 기재 위에 원하는 두께 및 농도의 형광체를 포함하는 색변환 필름을 얻을 수 있다.
상기 용액 중에 포함되는 수지로서 상기 수지 매트릭스 수지로 경화가능한 모노머를 사용하는 경우, 상기 건조 전에 또는 건조와 동시에 경화, 예컨대 UV 경화를 수행할 수 있다.
적색 유기 형광체를 수지와 함께 압출하여 필름화하는 경우에는 당기술분야에 알려져 있는 압출 방법을 이용할 수 있으며, 예컨대, 적색 유기 형광체를 폴리카보네이트계(PC), 폴리(메트)아크릴계, 스티렌-아크릴로니트릴계(SAN)와 같은 수지를 함께 압출함으로써 색변환 필름을 제조할 수 있다.
상기 광원 또는 도광판과 상기 색변환 필름 사이에는 필요에 따라 접착 또는 점착 필름이 구비될 수 있다.
필요에 따라, 상기 광원의 주변에는 반사판이 구비될 수 있다. 또한, 도광판의 상기 색변환 필름에 대향하는 면에 반대면에는 반사층이 구비될 수 있다.
전술한 백라이트 유닛은 필요에 따라 추가의 필름, 예컨대 광확산 필름, 집광 필름, 휘도 향상 필름(DBEF) 등이 더 추가로 구비될 수 있다. 상기 집광 필름으로는 프리즘 필름이 사용될 수 있으며, 예컨대 서로 수직으로 배치된 프리즘 필름 2장이 사용될 수 있다.
본 출원의 또 하나의 실시상태에 따르면, 전술한 백라이트 유닛을 포함하는 디스플레이 장치가 적용된다. 이 디스플레이 장치로는 전술한 백라이트 유닛을 구성요소로 포함하는 것이라면 특별히 한정되지 않는다. 예컨대, 상기 디스플레이 장치는 디스플레이 모듈 및 백라이트 유닛을 포함한다. 도 9에 디스플레이 장치의 구조를 예시하였다. 그러나, 이에만 한정된 것은 아니고, 디스플레이 모듈과 백라이트 유닛 사이에 필요한 경우 추가의 필름, 예컨대 광확산 필름, 집광 필름, 휘도 향상 필름 등이 더 추가로 구비될 수 있다.
이하, 실시예를 통하여, 본 발명을 더욱 상세히 설명한다. 그러나, 이하의 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위를 한정할 것을 의도한 것은 아니다.
실시예 1
하기 구조식의 적색 유기 형광체를 사용하여 적색 색변환 필름을 제조하였다.
DMF에 열가소성 수지(SAN)을 녹이고 수지 고형분 대비 0.15wt% 의 적색 유기 형광체와 10% TiO2 입자를 첨가하여 코팅액을 제조하고 균질하게 혼합하였다. 이 용액을 PET 기재에 코팅한 후 건조하여 색변환 필름을 제조하였다. 이렇게 제조한 적색 색변환 필름을 β-SiAlON 계열의 녹색 무기 형광체(MW540H)와 청색 LED 칩을 포함하는 광원(청색광 광자 수: 녹색광 광자 수= 45:55)에 대고 스펙트럼을 측정하였으며 백색광이 나왔다. 녹색 무기 형광체의 함량 조절을 통해 청색광 광자 수: 녹색광 광자수의 비를 조절하였으며, 이 때 사용한 함량은 봉지재 고형분 대비 10wt%이다. 제조한 색변환 필름의 최대 발광 파장은 615nm이며, 반치폭은 49nm이었다. 실시예 1에서 제조된 필름의 스펙트럼을 도 2에 나타내었다. 도 2에서 가로축은 파장(nm)이고 세로축은 radiance를 나타낸다.
실시예 2
하기 구조식의 적색 유기 형광체를 사용하고, 녹색 무기 형광체의 함량이 16wt% 이며, 광원의 청색광 광자 수:녹색광 광자 수=38:62인 것을 제외하고는 실시예 1과 동일하게 진행하였다. 실시예 2에서 제조된 필름의 스펙트럼을 도 3에 나타내었다. 제조한 색변환 필름의 최대 발광 파장은 622nm이며, 반치폭은 62nm이었다.
실시예 3
Toray사의 TRR170 형광체를 사용하고, 녹색 무기 형광체의 함량이 21wt%이며, 광원의 청색광 광자 수: 녹색광 광자 수=30:70인 것을 제외하고는 실시예 1과 동일하게 진행하였다. 실시예 3에서 제조된 색변환 필름의 스펙트럼을 도 4에 나타내었다. 제조한 색변환 필름의 최대 발광 파장은 640nm이며, 반치폭은 49nm이었다.
실시예 4
Toray사의 TRR170 형광체를 사용하고, 녹색 무기 형광체(MW535)의 함량이 5wt%이며, 광원의 청색광 광자 수: 녹색광 광자 수=60:40인 것을 제외하고는 실시예 1과 동일하게 진행하였다. 실시예 4에서 제조된 색변환 필름의 스펙트럼을 도 5에 나타내었다. 제조한 색변환 필름의 최대 발광 파장은 642nm이며, 반치폭은 50nm이었다.
실시예 5
Toray사의 TRR170 형광체를 사용하고, 녹색 무기 형광체의 함량이 22%이며, 광원의 청색광 광자 수: 녹색광 광자 수=26:74인 것을 제외하고는 실시예 1과 동일하게 진행하였다. 실시예 5에서 제조된 색변환 필름의 스펙트럼을 도 6에 나타내었다. 제조한 색변환 필름의 최대 발광 파장은 640nm이며, 반치폭은 50nm이었다.
비교예 1
아크릴계 UV 수지에 유기 형광체 대신 적색 무기 형광체(RE306N, 반치폭 93nm) 50wt%, TiO2 입자를 10wt% 첨가하여 코팅액을 제조하고 균질하게 혼합하였다. 이 용액을 PET 기재에 코팅한 후 UV 경화하여 색변환 필름을 제조하였다. 실시예 1과 동일한 광원(청색광 광자 수: 녹색광 광자 수=45:55)에서 스펙트럼을 측정하였으며, 도 7에 나타내었다. 적색 무기 형광체는 유기 형광체 대비 녹색광의 흡수율이 낮기 때문에 광원의 녹색 광자 수 비율이 낮아야 백색광 구현이 가능하다.
실시예에서 제조한 백라이트 유닛의 Wx/Wy, 색재현율(%, s-RGB 기준)을 적색 무기 형광체를 적용한 백라이트 유닛(비교예 1)과 YAG 형광체를 포함하는 백색 LED 광원을 포함하고 적색 색변환 필름을 포함하지 않는 백라이트 유닛(비교예 2)과 비교하여 하기 표 1에 나타내었다. YAG 형광체를 포함하는 백색 LED 광원을 포함하는 백라이트 유닛의 발광 스펙트럼은 도 8에 나타내었다.
실시예1 | 실시예2 | 실시예3 | 실시예4 | 실시예5 | 비교예1 | 비교예2 | |
광원의 광자수 비(B:G) | 45:55 | 38:62 | 30:70 | 60:40 | 26:74 | 45:55 | W-LED |
Wx/Wy | 0.30/0.28 | 0.30/0.32 | 0.31/0.29 | 0.22/0.21 | 0.34/0.35 | 0.31/0.38 | 0.31/0.33 |
색재현율(%, s-RGB기준) | 125% | 122% | 137% | 146% | 127% | 113% | 106% |
상기 표 1에 따르면 유기 형광체를 적용한 실시예에서는 비교예에 비하여 우수한 색재현율을 나타내었으며, 특히 광원의 광자수비가 55:45-30:70의 범위 내일 때 백라이트 유닛의 Wx/Wy를 목표 색좌표에 맞출 수 있었다.
Claims (9)
- 450nm 파장을 포함하는 광을 발광하는 발광 램프 및 상기 램프의 내부 또는 표면 중 적어도 일부에 구비되고, 450nm 파장을 포함하는 광 조사시 510~560nm 범위 내에서 최대 발광 파장을 갖는 무기 형광체를 포함하는 광원; 및유기 형광체를 포함하고, 상기 발광 램프 또는 상기 무기 형광체로부터 방출되는 광 조사시 610~660nm 범위 내에서 최대 발광 파장을 갖는 색변환 필름을 포함하는 백라이트 유닛.
- 청구항 1에 있어서, 상기 백라이트 유닛에 전원 인가시 광원으로부터 방출되는 광의 청색광과 녹색광의 광자(photon) 수 비가 55:45~30:70 범위 내인 것인 백라이트 유닛.
- 청구항 1에 있어서, 상기 백라이트 유닛에 전원 인가시 광원으로부터 방출되는 광의 청색광과 녹색광의 광자(photon) 수 비가 50:50~30:70 범위 내인 것인 백라이트 유닛.
- 청구항 1 내지 3 중 한 항에 있어서, 상기 유기 형광체는 필름 상태에서의 발광 피크의 반치폭이 70 nm 이하인 것인 백라이트 유닛.
- 청구항 1 내지 3 중 한 항에 있어서, 상기 광원과 상기 색변환 필름 사이에는 도광판이 구비된 것인 백라이트 유닛.
- 청구항 1 내지 3 중 한 항에 있어서, 상기 색변환 필름의 상기 광원에 대향하는 면의 반대면에 구비된, 광확산 필름, 집광 필름 및 휘도 향상 필름 중 적어도 하나를 더 포함하는 백라이트 유닛.
- 청구항 1 내지 3 중 한 항에 있어서, 상기 광원의 상기 색변환 필름에 대향하는 면의 반대면에 구비된 반사판을 더 포함하는 백라이트 유닛.
- 청구항 1 내지 3 중 어느 한 항에 있어서, 상기 색변환 필름은 수지 매트릭스; 및 상기 수지 매트릭스 내에 분산된, 상기 유기 형광체를 포함하는 것인 백라이트 유닛.
- 청구항 1 내지 3 중 어느 한 항에 따른 백라이트 유닛을 포함하는 디스플레이 장치.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680004352.1A CN107110446B (zh) | 2015-01-31 | 2016-02-01 | 背光单元和包括其的显示装置 |
US15/531,847 US10401550B2 (en) | 2015-01-31 | 2016-02-01 | Back-light unit and display apparatus comprising same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20150015706 | 2015-01-31 | ||
KR10-2015-0015706 | 2015-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016122284A1 true WO2016122284A1 (ko) | 2016-08-04 |
Family
ID=56543805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/001088 WO2016122284A1 (ko) | 2015-01-31 | 2016-02-01 | 백라이트 유닛 및 이를 포함하는 디스플레이 장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10401550B2 (ko) |
KR (1) | KR101915352B1 (ko) |
CN (1) | CN107110446B (ko) |
TW (1) | TWI596410B (ko) |
WO (1) | WO2016122284A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180091599A (ko) | 2017-02-07 | 2018-08-16 | 도레이첨단소재 주식회사 | 파장 변환 필름 |
EP3370110A1 (en) * | 2017-03-03 | 2018-09-05 | LG Electronics Inc. | Display device |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10962705B2 (en) * | 2015-01-31 | 2021-03-30 | Lg Chem, Ltd. | Color conversion film and back light unit and display apparatus comprising the same |
CN105867025B (zh) * | 2016-06-01 | 2019-02-01 | 武汉华星光电技术有限公司 | 背光模组 |
US10401682B2 (en) * | 2017-01-25 | 2019-09-03 | Innolux Corporation | Display device capable of generating color of light close to or identical to blue primary color of DCI-P3 color gamut |
KR102150150B1 (ko) * | 2017-11-28 | 2020-08-31 | 주식회사 엘지화학 | 색변환 필름, 및 이를 포함하는 백라이트 유닛 및 디스플레이 장치 |
EP3561368A4 (en) * | 2017-11-28 | 2020-01-22 | LG Chem, Ltd. | LIGHTING MODULE WITH COLOR CONVERSION FILM |
KR20200040338A (ko) * | 2018-10-08 | 2020-04-20 | 삼성디스플레이 주식회사 | 백라이트부 및 이를 포함하는 표시 장치 |
CN210573093U (zh) * | 2019-07-29 | 2020-05-19 | 瑞仪光电(南京)有限公司 | 调光膜片、背光模块及显示设备 |
TWI703385B (zh) | 2019-07-29 | 2020-09-01 | 瑞儀光電股份有限公司 | 調光膜片、背光模組及顯示裝置 |
KR102254578B1 (ko) * | 2019-12-20 | 2021-05-25 | 일신화학공업 주식회사 | 냉방 및 보온 효율이 증진된 시설원예용 하이브리드형 장기성 코팅 필름 |
WO2022131364A1 (ja) * | 2020-12-17 | 2022-06-23 | 富士フイルム株式会社 | 波長変換部材、発光装置および液晶表示装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020014130A (ko) * | 2000-08-16 | 2002-02-25 | 박득일 | 청색 발광 다이오드와 녹,적색 발광 형광판을 갖는백라이트 유닛과 이를 이용한 백색광 발광법 |
JP2002531956A (ja) * | 1998-11-30 | 2002-09-24 | ゼネラル・エレクトリック・カンパニイ | 蛍光体組成物を有する発光デバイス |
JP2008041550A (ja) * | 2006-08-09 | 2008-02-21 | Seiko Instruments Inc | 照明装置及びこれを備える表示装置、携帯電子機器 |
KR20080020840A (ko) * | 2006-09-01 | 2008-03-06 | 엘지이노텍 주식회사 | 광원 장치 및 액정 표시 장치 |
KR20140143060A (ko) * | 2013-06-05 | 2014-12-15 | 제일모직주식회사 | 유기 형광체를 포함하는 광학필름 및 이를 포함하는 백라이트 유닛 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4140157B2 (ja) | 1999-12-28 | 2008-08-27 | 東芝ライテック株式会社 | 発光ダイオードを用いた照明用光源および照明装置 |
US7481562B2 (en) * | 2004-11-18 | 2009-01-27 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Device and method for providing illuminating light using quantum dots |
JP5226935B2 (ja) * | 2005-12-28 | 2013-07-03 | エルジー ディスプレイ カンパニー リミテッド | 液晶表示装置 |
JP2011241160A (ja) * | 2010-05-17 | 2011-12-01 | Yamamoto Chem Inc | 色変換材料、該材料を含む組成物、該組成物を使用した色変換光学部品および該色変換光学部品を使用した発光素子 |
US20120113671A1 (en) | 2010-08-11 | 2012-05-10 | Sridhar Sadasivan | Quantum dot based lighting |
KR101956058B1 (ko) | 2011-12-08 | 2019-03-08 | 엘지이노텍 주식회사 | 표시장치 |
KR101546937B1 (ko) * | 2012-04-04 | 2015-08-25 | 삼성전자 주식회사 | 백라이트 유닛용 필름 및 이를 포함하는 백라이트 유닛과 액정 디스플레이 장치 |
KR20140032811A (ko) * | 2012-09-07 | 2014-03-17 | 삼성전자주식회사 | 백라이트 유닛 및 이를 구비한 액정 디스플레이 장치 |
EP2925831B1 (en) * | 2012-11-30 | 2017-03-29 | Merck Patent GmbH | Wavelength conversion polymer film |
WO2014132726A1 (ja) * | 2013-02-28 | 2014-09-04 | Nsマテリアルズ株式会社 | 液晶表示装置 |
JP2015232694A (ja) * | 2014-05-13 | 2015-12-24 | Jsr株式会社 | カラーフィルタ、表示素子、赤色画素及び緑色画素 |
JP6441636B2 (ja) * | 2014-10-14 | 2018-12-19 | 大日本印刷株式会社 | 画像表示装置用モジュール及び画像表示装置 |
KR101604339B1 (ko) * | 2014-12-09 | 2016-03-18 | 엘지전자 주식회사 | 광 변환 필름, 이를 포함하는 백라이트 유닛 및 표시장치 |
-
2016
- 2016-02-01 WO PCT/KR2016/001088 patent/WO2016122284A1/ko active Application Filing
- 2016-02-01 CN CN201680004352.1A patent/CN107110446B/zh active Active
- 2016-02-01 TW TW105103099A patent/TWI596410B/zh active
- 2016-02-01 US US15/531,847 patent/US10401550B2/en active Active
- 2016-02-01 KR KR1020160012569A patent/KR101915352B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002531956A (ja) * | 1998-11-30 | 2002-09-24 | ゼネラル・エレクトリック・カンパニイ | 蛍光体組成物を有する発光デバイス |
KR20020014130A (ko) * | 2000-08-16 | 2002-02-25 | 박득일 | 청색 발광 다이오드와 녹,적색 발광 형광판을 갖는백라이트 유닛과 이를 이용한 백색광 발광법 |
JP2008041550A (ja) * | 2006-08-09 | 2008-02-21 | Seiko Instruments Inc | 照明装置及びこれを備える表示装置、携帯電子機器 |
KR20080020840A (ko) * | 2006-09-01 | 2008-03-06 | 엘지이노텍 주식회사 | 광원 장치 및 액정 표시 장치 |
KR20140143060A (ko) * | 2013-06-05 | 2014-12-15 | 제일모직주식회사 | 유기 형광체를 포함하는 광학필름 및 이를 포함하는 백라이트 유닛 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180091599A (ko) | 2017-02-07 | 2018-08-16 | 도레이첨단소재 주식회사 | 파장 변환 필름 |
EP3370110A1 (en) * | 2017-03-03 | 2018-09-05 | LG Electronics Inc. | Display device |
US10852577B2 (en) | 2017-03-03 | 2020-12-01 | Lg Electronics Inc. | Display device |
Also Published As
Publication number | Publication date |
---|---|
TW201643527A (zh) | 2016-12-16 |
CN107110446A (zh) | 2017-08-29 |
US10401550B2 (en) | 2019-09-03 |
KR101915352B1 (ko) | 2018-11-05 |
KR20160094891A (ko) | 2016-08-10 |
CN107110446B (zh) | 2019-11-08 |
TWI596410B (zh) | 2017-08-21 |
US20170261673A1 (en) | 2017-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016122284A1 (ko) | 백라이트 유닛 및 이를 포함하는 디스플레이 장치 | |
WO2016122285A2 (ko) | 색변환 필름, 이의 제조방법 및 이를 포함하는 백라이트 유닛 및 디스플레이 장치 | |
WO2016122283A1 (ko) | 색변환 필름, 이의 제조방법, 백라이트 유닛 및 디스플레이 장치 | |
WO2017183854A1 (ko) | 색변환 필름 및 이를 포함하는 백라이트 유닛과 디스플레이 장치 | |
US10131836B2 (en) | Color conversion film and back light unit and display apparatus comprising the same | |
WO2016021883A1 (ko) | 염료 복합체, 광전환 필름, 및 이를 포함하는 전자소자 | |
KR101802052B1 (ko) | 색변환 필름, 및 이를 포함하는 백라이트 유닛 및 디스플레이 장치 | |
EP3620849B1 (en) | Display device | |
WO2019146941A1 (ko) | 색변환 필름, 이를 포함하는 백라이트 유닛 및 디스플레이 장치 | |
WO2019107821A1 (ko) | 색변환 필름, 및 이를 포함하는 백라이트 유닛 및 디스플레이 장치 | |
WO2017052279A1 (ko) | 함질소 고리 화합물 및 이를 포함하는 색변환 필름 | |
KR20180007870A (ko) | 편광판 일체형 색변환 필름 및 이를 포함하는 디스플레이 장치 | |
WO2020101296A1 (ko) | 색변환 필름, 이를 포함하는 백라이트 유닛 및 디스플레이 장치 | |
WO2020101299A1 (ko) | 색변환 필름, 이를 포함하는 백라이트 유닛 및 디스플레이 장치 | |
KR102038742B1 (ko) | 색변환 필름, 및 이를 포함하는 백라이트 유닛 및 디스플레이 장치 | |
WO2019107937A1 (ko) | 색변환 필름을 포함하는 조명 모듈 | |
KR20160097147A (ko) | 색변환 필름 및 이의 제조방법 및 이를 포함하는 백라이트 유닛 | |
KR20160097153A (ko) | 색변환 필름 및 이의 제조방법 및 이를 포함하는 백라이트 유닛 | |
WO2020101298A1 (ko) | 색변환 필름, 이를 포함하는 백라이트 유닛 및 디스플레이 장치 | |
KR20180115643A (ko) | 함질소 고리 화합물 및 이를 포함하는 색변환 필름 | |
KR20170120957A (ko) | 색변환 필름 및 이의 제조방법 | |
WO2020091444A1 (ko) | 차량용 램프 및 이의 제조 방법 | |
WO2020101295A1 (ko) | 색변환 필름, 이를 포함하는 백라이트 유닛 및 디스플레이 장치 | |
KR20160094888A (ko) | 색변환 필름 및 이의 제조방법 및 이를 포함하는 백라이트 유닛 | |
KR102164759B1 (ko) | 색변환 필름, 이를 포함하는 백라이트 유닛 및 디스플레이 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16743762 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15531847 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16743762 Country of ref document: EP Kind code of ref document: A1 |