[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016121602A1 - 複層フィルム、光学異方性積層体、円偏光板、有機エレクトロルミネッセンス表示装置、及び製造方法 - Google Patents

複層フィルム、光学異方性積層体、円偏光板、有機エレクトロルミネッセンス表示装置、及び製造方法 Download PDF

Info

Publication number
WO2016121602A1
WO2016121602A1 PCT/JP2016/051608 JP2016051608W WO2016121602A1 WO 2016121602 A1 WO2016121602 A1 WO 2016121602A1 JP 2016051608 W JP2016051608 W JP 2016051608W WO 2016121602 A1 WO2016121602 A1 WO 2016121602A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optically anisotropic
liquid crystal
substrate
carbon atoms
Prior art date
Application number
PCT/JP2016/051608
Other languages
English (en)
French (fr)
Inventor
弘昌 橋本
昌和 齊藤
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201680005869.2A priority Critical patent/CN107111044B/zh
Priority to JP2016571973A priority patent/JP6711283B2/ja
Priority to KR1020177017644A priority patent/KR102581852B1/ko
Priority to US15/541,479 priority patent/US10207474B2/en
Publication of WO2016121602A1 publication Critical patent/WO2016121602A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • the present invention relates to a multilayer film having an optically anisotropic layer and an optically anisotropic laminate.
  • the present invention also relates to a circularly polarizing plate having the optically anisotropic layer, an organic electroluminescence display device, and a manufacturing method.
  • the retardation film is widely used as a component of a display device such as a liquid crystal display device and an organic electroluminescence (hereinafter, sometimes referred to as “organic EL”) display device.
  • the retardation plate used in the display device displays a desired phase difference such as ⁇ / 4, ⁇ / 2, etc. uniformly in all wavelength regions for display (usually the visible region). In some cases, it is required to exhibit the effect in all the wavelength regions.
  • Such a retardation plate is continuously manufactured in a production line as a long film having a desired width, and is adapted to a rectangular display surface of a display device from such a long retardation plate. If a rectangular retardation plate having the shape described above can be cut out, efficient production becomes possible. Furthermore, if it is possible to cut out the long retardation plate so that the sides of the rectangular retardation plate correspond to the direction close to the direction parallel to the longitudinal direction and the width direction, it is more efficient. Manufacture is possible.
  • a retardation plate having a slow axis at a predetermined angle such as 15 °, 45 °, or 75 ° with respect to the transmission axis of the polarizing plate used together may be required.
  • the retardation plate has a slow axis at an angle of 45 ° with respect to the transmission axis of the linear polarizer. Is required.
  • the polarization axis of the polarizing plate has a transmission axis in a direction parallel to either the vertical or horizontal side of the rectangular display surface of the display device.
  • a film whose transmission axis is parallel or perpendicular to the longitudinal direction, particularly perpendicular to the longitudinal direction, can be produced particularly easily. Therefore, if a long retardation plate having a slow axis at a predetermined angle such as 15 °, 45 °, or 75 ° with respect to the width direction thereof can be manufactured, it can be used for a display device. This is very advantageous in the production of retardation plates.
  • a method for obtaining a retardation plate there is known a method in which a compound capable of exhibiting a liquid crystal phase is formed into a solid film while exhibiting a liquid crystal phase.
  • a composition containing a polymerizable liquid crystal compound having a polymerizable property and exhibiting a liquid crystal phase is applied to the surface of an appropriate substrate to form a layer, and the polymerizable liquid crystal compound in the layer
  • a method of forming a film having optical anisotropy by maintaining the oriented state and polymerizing is provided.
  • a retardation plate in which the retardation is uniformly expressed in the plane, and it is uniform in the visible light wavelength region by appropriately selecting a polymerizable liquid crystal compound. It is possible to obtain a phase difference plate that generates a large phase difference (for example, Patent Document 1).
  • a method for aligning such a compound capable of exhibiting a liquid crystal phase a composition containing a compound capable of exhibiting a liquid crystal phase is applied on the surface of the base material, and a composition containing a compound capable of exhibiting a liquid crystal phase is applied to the surface. It is common practice to place in conditions.
  • Examples of methods for imparting alignment regulating force to the surface of the substrate include a rubbing method (for example, Patent Documents 2 to 4) and a photo alignment method (for example, Patent Documents 5 to 6). Also known is a method of aligning a liquid crystal compound on a film by using a film to which an alignment regulating force is imparted by a stretching treatment as a substrate (for example, Patent Documents 7 to 9).
  • the object of the present invention can be used as a material for a retardation plate such as a ⁇ / 2 wavelength plate, a ⁇ / 4 wavelength plate, etc., and the retardation can be expressed uniformly in the surface, and can be efficiently manufactured.
  • An object of the present invention is to provide a multilayer film including an optically anisotropic layer, an optically anisotropic laminate, and a method for producing the same, in which there are few defects due to generation of foreign matter and defects due to insufficient alignment regulating force.
  • Another object of the present invention is to provide a circularly polarizing plate and an organic electroluminescence display device that can be efficiently manufactured and have few defects due to generation of foreign matters and defects due to insufficient alignment regulating force.
  • the present inventor has conceived that a base material having a slow axis in a specific manner in a direction different from the longitudinal direction is used. And when the optically anisotropic layer containing the cured liquid crystal molecule which has alignment regularity was directly formed on such a base material, it discovered that the said subject could be solved and completed this invention. That is, according to the present invention, the following is provided.
  • an elongated first base material A multilayer film comprising an optically anisotropic layer comprising cured liquid crystal molecules formed directly on the first substrate,
  • the first base material has an Nz coefficient of 1.1 to 3.0, an orientation angle variation of 1.0 ° or less, and an orientation regulating force generated by stretching,
  • the multilayer film whose angle which the slow axis of said 1st base material and the width direction of said 1st base material make is 0 degree or more and less than 90 degrees.
  • an angle formed between the slow axis of the first substrate and the width direction of the first substrate is 40 ° to 80 °.
  • the optically anisotropic layer is peeled from the multilayer film according to any one of [1] to [10], An optically anisotropic laminate obtained by bonding the optically anisotropic layer to a long second substrate.
  • An organic electroluminescence display device comprising the circularly polarizing plate according to [12].
  • [14] The method for producing a multilayer film according to any one of [1] to [10], A step of feeding a long first base material in a longitudinal direction, wherein the first base material has an Nz coefficient of 1.1 to 3.0 and a variation in orientation angle of 1.0 ° or less. And having an orientation regulating force generated by stretching, and an angle formed by the slow axis of the first substrate and the width direction of the first substrate is 0 ° or more and less than 90 °.
  • a production method comprising a step (III) of orienting the polymerizable liquid crystal compound in the layer of the liquid crystal composition, and a step (IV) of polymerizing the polymerizable liquid crystal compound to form cured liquid crystal molecules.
  • the multilayer film and the optically anisotropic laminate of the present invention can be used as a material for a retardation plate such as a ⁇ / 2 wavelength plate or a ⁇ / 4 wavelength plate, and the retardation is uniformly expressed in the plane. It is possible to supply an optically anisotropic layer that can be efficiently manufactured and has few defects due to generation of foreign matter and defects due to insufficient alignment regulating force. Moreover, according to the manufacturing method of this invention, the multilayer film of the said this invention can be manufactured efficiently.
  • an inverse wavelength dispersion polymerizable liquid crystal compound as a material of cured liquid crystal molecules, and forming an optically anisotropic layer having reverse wavelength dispersion characteristics, the efficiency of production by oblique stretching, the slow axis direction It is possible to provide an optical material having a high level of flexibility in setting, uniformity of in-plane characteristics, few defects due to foreign matter, and usefulness due to reverse wavelength dispersion characteristics.
  • the circularly polarizing plate and the organic electroluminescence display device of the present invention have a uniform characteristic, can be efficiently manufactured, and have few defects due to the generation of foreign matters and insufficient defects due to insufficient alignment regulating force.
  • a luminescence display device can be obtained.
  • FIG. 1 is a schematic view showing an example of bonding in roll-to-roll.
  • FIG. 2 is a graph showing the result of measuring the reflectance of light incident on the polarizer-side surface of the laminate for evaluation of a circularly polarizing plate in Example 13 and calculating the reflection luminance from the measured reflectance. .
  • members having a plate-like shape such as “polarizing plate”, “ ⁇ / 2 wavelength plate”, “ ⁇ / 4 wavelength plate”, and “retardation plate” are not limited to rigid members, but are films. And can be flexible.
  • nx is the refractive index in the slow axis direction in the plane of the layer (maximum refractive index in the plane)
  • ny is the refractive index in the direction perpendicular to the slow axis in the plane of the layer
  • d is the thickness (nm) of the layer.
  • the measurement wavelength is 590 nm unless otherwise specified.
  • the multilayer film of the present invention includes a long first base material and an optically anisotropic layer containing cured liquid crystal molecules directly formed on the first base material.
  • the “cured liquid crystal molecule” means a molecule of the compound when a compound capable of exhibiting a liquid crystal phase is turned into a solid while exhibiting a liquid crystal phase.
  • the cured liquid crystal molecules include a polymer obtained by polymerizing a polymerizable liquid crystal compound.
  • this specific optically anisotropic layer containing cured liquid crystal molecules is simply referred to as an “optically anisotropic layer”.
  • the first substrate used in the present invention is a long substrate.
  • “long shape” means a shape having a length of at least 5 times the width, preferably 10 times or more, and specifically wound in a roll shape. It refers to the shape of a film having a length that can be taken and stored or transported.
  • the upper limit of the ratio of the length with respect to the width of a film is not specifically limited, For example, it can be 100,000 times or less.
  • the first substrate used in the present invention has a slow axis in a direction different from the longitudinal direction. That is, the angle formed by the slow axis of the first substrate and the width direction of the first substrate is 0 ° or more and less than 90 °.
  • the direction of the slow axis of the first substrate and the optically anisotropic layer refers to the direction of the slow axis in the in-plane direction unless otherwise specified.
  • the angle expressing the slow axis direction of the base material and the optically anisotropic layer is expressed as an angle relative to the width direction of the base material unless otherwise specified.
  • the angle formed by the slow axis direction of the base material or the optically anisotropic layer and the width direction of the base material or the optically anisotropic layer may be simply referred to as “orientation angle”.
  • the angle formed between the slow axis of the first substrate and the width direction of the first substrate can be 0 ° to 80 °.
  • the multilayer film of the present invention can be a material that enables efficient production of a circularly polarizing plate or the like.
  • the angle formed by the slow axis of the first substrate and the width direction of the first substrate is preferably 40 ° to 80 °, and more preferably 55 ° to 80 °. Particularly preferred.
  • the multilayer film of this invention can be made into the material which enables the efficient manufacture of a specific circularly-polarizing plate.
  • the multilayer film of the present invention has a predetermined Nz coefficient as the first base material, and thus, even when it has such an angle, it exhibits a good orientation regulating force by oblique stretching, and as a result It can be set as the multilayer film which has an optically anisotropic layer with few defects.
  • the angle formed by the slow axis of the first substrate and the width direction of the first substrate is preferably 15 ° ⁇ 5 °, 22.5 ⁇ 5 °, 45 ° ⁇ . 5.
  • the multilayer film of the present invention is a material that enables efficient production of a specific circularly polarizing plate can do.
  • the material of the first base material is not particularly limited, and various resins that can impart orientation regulating force to the surface by imparting birefringence can be used.
  • the resin include resins containing various polymers.
  • the polymer include an alicyclic structure-containing polymer, cellulose ester, polyvinyl alcohol, polyimide, UV transparent acrylic, polycarbonate, polysulfone, polyethersulfone, epoxy polymer, polystyrene, and combinations thereof.
  • alicyclic structure-containing polymers and cellulose esters are preferable, and alicyclic structure-containing polymers are more preferable.
  • the first substrate is preferably a resin film having positive intrinsic birefringence.
  • a resin having positive intrinsic birefringence is used as a material, a first base material having good characteristics such as high orientation regulating force, high strength, and low cost can be easily obtained. be able to.
  • An alicyclic structure-containing polymer is an amorphous polymer having an alicyclic structure in a repeating unit, and a polymer containing an alicyclic structure in a main chain and an alicyclic structure in a side chain. Any of the contained polymers can be used.
  • Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and a cycloalkane structure is preferable from the viewpoint of thermal stability.
  • the number of carbon atoms constituting one repeating unit of the alicyclic structure is not particularly limited, but is usually 4 to 30, preferably 5 to 20, and more preferably 6 to 15.
  • the proportion of the repeating unit having an alicyclic structure in the alicyclic structure-containing polymer is appropriately selected according to the purpose of use, but is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight. That's it. When there are too few repeating units having an alicyclic structure, the heat resistance of the film may be reduced.
  • the alicyclic structure-containing polymer includes (1) a norbornene polymer, (2) a monocyclic olefin polymer, (3) a cyclic conjugated diene polymer, and (4) a vinyl alicyclic hydrocarbon.
  • examples thereof include polymers and hydrogenated products thereof.
  • norbornene polymers and hydrogenated products thereof are more preferable from the viewpoints of transparency and moldability.
  • norbornene polymers include, for example, ring-opening polymers of norbornene monomers, ring-opening copolymers of norbornene monomers with other monomers capable of ring-opening copolymerization, and hydrogenated products thereof; addition polymers of norbornene monomers; Examples include addition copolymers with other monomers copolymerizable with norbornene monomers.
  • a ring-opening polymer hydrogenated product of norbornene monomer is most preferable from the viewpoint of transparency.
  • the alicyclic structure-containing polymer is selected from known polymers disclosed in, for example, JP-A No. 2002-321302.
  • the alicyclic structure-containing polymer has a glass transition temperature of preferably 80 ° C. or higher, more preferably 100 to 250 ° C.
  • An alicyclic structure-containing polymer having a glass transition temperature in such a range is excellent in durability without causing deformation or stress in use at high temperatures.
  • the molecular weight of the alicyclic structure-containing polymer is converted to polyisoprene measured by gel permeation chromatography (hereinafter abbreviated as “GPC”) using cyclohexane (toluene when the resin is not dissolved) as a solvent.
  • the weight average molecular weight (Mw) in terms of polystyrene (when the solvent is toluene) is usually 10,000 to 100,000, preferably 25,000 to 80,000, more preferably 25,000 to 50,000. is there. When the weight average molecular weight is in such a range, the mechanical strength and moldability of the film are highly balanced and suitable.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the alicyclic structure-containing polymer is not particularly limited, but is usually 1 to 10, preferably 1 to 4, more preferably 1.2 to 3. .5 range.
  • the resin containing the alicyclic structure-containing polymer has a resin component (that is, an oligomer component) having a molecular weight of 2,000 or less, preferably 5% by weight or less, more preferably 3% by weight or less, and still more preferably 2% by weight or less.
  • a resin component that is, an oligomer component
  • the amount of the oligomer component is within the above range, generation of fine convex portions on the surface is reduced, thickness unevenness is reduced, and surface accuracy is improved.
  • the selection of the polymerization catalyst and the hydrogenation catalyst, the reaction conditions such as polymerization and hydrogenation, and the temperature conditions in the step of pelletizing the resin as a molding material may be optimized. .
  • the amount of the oligomer component can be measured by the GPC described above.
  • the thickness of the first substrate is not particularly limited, but it is easy to improve productivity, reduce the thickness and reduce the weight. Therefore, the thickness is usually 1 to 1000 ⁇ m, preferably 5 to 300 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the resin containing the alicyclic structure-containing polymer may be composed only of the alicyclic structure-containing polymer, but may contain any compounding agent as long as the effects of the present invention are not significantly impaired.
  • the ratio of the alicyclic structure-containing polymer in the resin containing the alicyclic structure-containing polymer is preferably 70% by weight or more, more preferably 80% by weight or more.
  • Preferable specific examples of the resin containing the alicyclic structure-containing polymer include “Zeonor 1420, Zeonor 1420R” manufactured by Nippon Zeon.
  • Typical examples of cellulose esters include lower fatty acid esters of cellulose (eg, cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate).
  • Lower fatty acid means a fatty acid having 6 or less carbon atoms per molecule.
  • Cellulose acetate includes triacetyl cellulose (TAC) and cellulose diacetate (DAC).
  • the degree of acetylation of cellulose acetate is preferably 50 to 70%, particularly preferably 55 to 65%.
  • the weight average molecular weight is preferably 70,000 to 120,000, and particularly preferably 80,000 to 100,000.
  • the cellulose acetate may be partially esterified with fatty acids such as propionic acid and butyric acid as long as the degree of acetylation is satisfied as well as acetic acid.
  • resin which comprises a 1st base material may contain combining cellulose acetate and cellulose esters (cellulose propionate, a cellulose butyrate, etc.) other than a cellulose acetate. In that case, it is preferable that all of these cellulose esters satisfy the above acetylation degree.
  • a triacetyl cellulose film is prepared by dissolving triacetyl cellulose in a solvent substantially free of dichloromethane by a low temperature dissolution method or a high temperature dissolution method.
  • a triacetyl cellulose film prepared using an acetyl cellulose dope is particularly preferable from the viewpoint of environmental protection.
  • a film of triacetyl cellulose can be produced by a co-casting method. In the co-casting method, raw material flakes of triacetyl cellulose are dissolved in a solvent, and if necessary, an arbitrary additive is added to prepare a solution (dope), and the dope is supported from the dope supply means (die).
  • solvents that dissolve raw flakes include halogenated hydrocarbons (dichloromethane, etc.), alcohols (methanol, ethanol, butanol, etc.), esters (methyl formate, methyl acetate, etc.), ethers (dioxane, dioxolane, Diethyl ether and the like).
  • solvents that dissolve raw flakes include halogenated hydrocarbons (dichloromethane, etc.), alcohols (methanol, ethanol, butanol, etc.), esters (methyl formate, methyl acetate, etc.), ethers (dioxane, dioxolane, Diethyl ether and the like).
  • the additive added to the dope include a retardation increasing agent, a plasticizer, an ultraviolet absorber, a deterioration preventing agent, a slipping agent, and a peeling accelerator.
  • Examples of the support for casting the dope include a horizontal endless metal belt and a rotating drum.
  • a single dope can be cast as a single layer, or a plurality of layers can be co-cast.
  • a low concentration cellulose ester dope layer and a high concentration cellulose ester dope layer provided in contact with the front and back surfaces are formed.
  • the dopes can be cast sequentially.
  • means for drying the film and removing the solvent include means for transporting the film and passing it through a drying section set to conditions suitable for drying.
  • the triacetyl cellulose film include known ones such as TAC-TD80U (manufactured by Fuji Photo Film Co., Ltd.), and those disclosed in JIII Journal of Technical Disclosure No. 2001-1745. It is done.
  • the thickness of the triacetyl cellulose film is not particularly limited, but is preferably 20 to 150 ⁇ m, more preferably 40 to 130 ⁇ m, still more preferably 70 to 120 ⁇ m.
  • the first substrate has an orientation regulating force generated by stretching and has an orientation angle of 0 ° or more and less than 90 °. Further, the Nz coefficient of the first base material is in a specific range, and the variation in the orientation angle is in a specific range.
  • the Nz coefficient of the first substrate is 1.1 or more, preferably 1.2 or more, more preferably 1.6 or more, while 3.0 or less, preferably 2.9 or less. More preferably, it is 2.3 or less.
  • the Nz coefficient of a film is usually evaluated by an average Nz coefficient.
  • the average Nz coefficient of the film can be obtained by measuring the Nz coefficient at a plurality of points at intervals of 50 mm in the width direction of the film and calculating the average value of the Nz coefficient at these points.
  • the value obtained by subtracting the minimum value from the maximum value of each measured value of the Nz coefficient (Nz coefficient variation) is 0.10 or less, preferably 0.09 or less, more preferably 0.08 or less.
  • the variation in the orientation angle of the first substrate is 1.0 ° or less, preferably 0.8 ° or less.
  • the lower limit of the variation in the orientation angle is not particularly limited, but is ideally 0 °.
  • the variation in the orientation angle of the first substrate represents the difference between the maximum value and the minimum value among the angles formed by the width direction and the slow axis at any point of the first substrate.
  • the Nz coefficient can be measured together with other optical characteristics such as Re using a phase difference meter (for example, trade name “AxoScan”, manufactured by Axometrics). Further, the variation in the orientation angle can be measured, for example, by observation using a polarizing microscope.
  • phase difference meter for example, trade name “AxoScan”, manufactured by Axometrics.
  • the variation of the Nz coefficient and the orientation angle of the first substrate is within the specific range described above, a good orientation regulating force can be obtained, and as a result, schlieren.
  • An optically anisotropic layer with few defects such as defects can be formed.
  • the Nz coefficient and the orientation angle can be monitored as optical characteristics of the first substrate. Therefore, in continuous production of multilayer films, it can be easily measured as an index of orientation regulation power, and as a result, production quality control becomes easy and high-quality products can be produced efficiently. It becomes possible.
  • the schlieren defect is a liquid crystal alignment defect that is not uniformly aligned by locally disturbing alignment when a liquid crystal compound is applied on a transparent substrate and liquid crystal molecules are aligned.
  • the number of schlieren defects in the optically anisotropic layer is determined based on whether the optical axis of the polarizer or analyzer and the alignment axis or optical axis of the liquid crystal molecules are parallel or orthogonal when the optically anisotropic layer is observed with a polarizing microscope. This can be evaluated by counting alignment defects in which the dark field portions appear to be radial.
  • the first base material having such a specific Nz coefficient and variation in orientation angle can be prepared by stretching a film such as one made of the above-described materials and imparting optical anisotropy.
  • the extending direction can be appropriately set according to the desired orientation direction required for the optically anisotropic layer. Stretching may be only oblique stretching, or may be only lateral stretching (stretching in the width direction of the first substrate), oblique stretching, longitudinal stretching (stretching in the longitudinal direction of the first substrate) and / or You may carry out combining horizontal stretching. From the viewpoint of expressing the orientation regulating force in an oblique direction, stretching including one or more oblique stretching is preferable.
  • the draw ratio can be appropriately set within the range in which the orientation regulating force is generated on the substrate surface.
  • the first base material uses a resin having positive intrinsic birefringence as a material, molecules are oriented in the stretching direction and a slow axis is developed in the stretching direction.
  • Examples of preferred stretching modes include stretching in which one or more oblique stretchings are combined with one or more free longitudinal uniaxial stretchings. By performing such stretching, a first substrate having a desired Nz coefficient and variation in orientation angle can be easily produced.
  • the order of performing oblique stretching and free longitudinal uniaxial stretching and the respective stretching ratios are not particularly limited, but it is preferable to perform oblique stretching and then perform free longitudinal uniaxial stretching.
  • the oblique stretching in the step (a) is performed using a known device such as a tenter device capable of continuously stretching in a direction in which the angle formed by the width direction of the base material before stretching is more than 0 ° and less than 90 °. sell.
  • the draw ratio B1 in the step (a) is preferably 1.1 times or more, more preferably 1.5 times or more, preferably 4.0 times or less, more preferably 3.0 times or less.
  • the stretching temperature T1 in the step (a) is preferably Tg ° C. or higher, more preferably (Tg + 2) ° C. or higher, particularly preferably (Tg + 5) ° C. or higher, preferably (Tg + 40) ° C. or lower, more preferably (Tg + 35). ° C or lower, particularly preferably (Tg + 30) ° C or lower.
  • Tg is the glass transition temperature of the resin that forms the base material before stretching.
  • the stretching temperature refers to a temperature in a stretching zone in a stretching apparatus.
  • the intermediate film Since the molecules contained in the intermediate film are oriented by stretching in the step (a), the intermediate film has a slow axis.
  • the slow axis of the intermediate film appears in the oblique direction of the intermediate film.
  • the intermediate film has a slow axis in an average range of usually 5 ° to 85 ° with respect to the width direction.
  • the film has a slow axis in a range that is average with respect to the width direction, that the orientation angle ⁇ formed by the width direction of the film and the slow axis at a plurality of points in the width direction of the film. Means that the average value of the orientation angles ⁇ measured at those points falls within the certain range.
  • the direction of the slow axis of an intermediate film is set according to the direction of the slow axis of the 1st base material to manufacture.
  • the angle formed by the slow axis of the first substrate obtained by the step (b) with respect to the width direction is larger than the angle formed by the intermediate film with respect to the width direction. Therefore, it is preferable that the angle formed by the slow axis of the intermediate film with respect to the width direction is smaller than the angle formed by the slow axis of the obtained first substrate with respect to the width direction.
  • the intermediate film has an average slow axis in the range of preferably 10 ° or more, more preferably 20 ° or more, and preferably 40 ° or less, more preferably 35 ° or less with respect to the width direction.
  • the 1st base material whose orientation angle (theta) is 45 degree vicinity used for various uses as a film which has a slow axis diagonally with respect to the width direction of a film can be obtained easily.
  • the free uniaxial stretching in the step (b) refers to stretching in a certain direction and applying no restraining force in directions other than the stretching direction. Accordingly, free longitudinal uniaxial stretching refers to stretching in the longitudinal direction performed without restraining the end of the film in the width direction. Such stretching in the step (b) is usually performed using a roll stretching machine while continuously transporting the intermediate film in the longitudinal direction.
  • the draw ratio B2 in the step (b) is smaller than the draw ratio B1 in the step (a).
  • a large Nz coefficient can be expressed in the first substrate without causing wrinkles due to stretching.
  • a slow axis is provided in the oblique direction with respect to the width direction.
  • the first substrate having a large Nz coefficient and a small variation in the orientation angle can be easily manufactured.
  • the specific draw ratio B2 in the step (b) is preferably 1.1 times or more, more preferably 1.15 times or more, particularly preferably 1.2 times or more, preferably 2.0 times or less, more Preferably it is 1.8 times or less, Most preferably, it is 1.6 times or less.
  • the total draw ratio (B1 ⁇ B2) of the draw ratio B1 in the step (a) and the draw ratio B2 in the step (b) is preferably 1.1 times or more, more preferably 1.5 times or more, Particularly preferably, it is 1.9 times or more, preferably 4.5 times or less, more preferably 4.2 times or less, and particularly preferably 4.0 times or less.
  • the stretching temperature T2 in the step (b) is preferably higher than (T1-5) ° C., more preferably (T1-4) ° C. or more, particularly preferably (T1 ⁇ 1), based on the stretching temperature T1 in the step (a). 3) It is not lower than (T1 + 5) ° C, more preferably not higher than (T1 + 4) ° C, and particularly preferably not higher than (T1 + 3) ° C.
  • the phase difference Re in the in-plane direction of the first substrate is preferably 30 nm or more, more preferably 50 nm or more, and preferably 500 nm or less, more preferably 300 nm or less.
  • the lower limit of the birefringence ⁇ n of the first substrate is preferably 0.000050 or more, more preferably 0.000070 or more, while the upper limit of the birefringence ⁇ n of the first substrate is preferably 0.007500 or less. More preferably, it is 0.007000 or less.
  • the resin containing the alicyclic structure-containing polymer described above or the resin containing triacetyl cellulose is used, and by giving optical properties within the range, the first A molecular director orientates substantially uniformly over the whole thickness direction of a base material, and can give favorable orientation control force to the 1st base material surface. Stretching can be performed using a known stretching machine such as a tenter stretching machine.
  • the alignment regulating force can be given only to the surface layer of the substrate, and even when the photo-alignment film is used, the alignment regulating force can be given only to the thin film surface layer of the alignment film layer. .
  • the alignment regulating force developed only in the surface layer is relaxed with the influence of the environment (heat, light, oxygen, etc.) over time, and alignment defects can be generated more during the formation of the optically anisotropic layer.
  • the multilayer film of the present invention includes an optically anisotropic layer containing cured liquid crystal molecules formed directly on the first substrate.
  • “Directly” formation of the optically anisotropic layer on the first substrate means that the optically anisotropic layer is formed on the surface of the first substrate without any other layers. .
  • an optical heterogeneity having a slow axis in a desired direction is obtained.
  • the isotropic layer can be obtained in a state where there is no generation of dust, scratches or foreign matters caused by rubbing.
  • the optically anisotropic layer can be an optically anisotropic layer with few scratches and foreign matters seen when the optically anisotropic layer is observed with a microscope, and few alignment defects such as line defects.
  • the first base material having the specific Nz coefficient and the variation in the orientation angle described above is employed, and the optically anisotropic layer is directly formed thereon, so that a good orientation regulating force can be obtained.
  • an optically anisotropic layer with few defects such as schlieren defects can be easily obtained.
  • the formation of the optically anisotropic layer on the first substrate typically involves Step (I): a step of feeding out the first long substrate described above in the longitudinal direction, Step (II): A step of directly applying a liquid crystal composition containing a polymerizable liquid crystal compound on the first substrate that has been fed to form a layer of the liquid crystal composition, Step (III): a step of aligning a polymerizable liquid crystal compound in the layer of the liquid crystal composition, and step (IV): a step of polymerizing the polymerizable liquid crystal compound to form cured liquid crystal molecules.
  • Step (I) can be performed by preparing a roll of the first long base material described above and feeding out the first base material.
  • Step (II) can be performed by directly applying the liquid crystal composition onto one surface of the first substrate that is continuously conveyed.
  • the conveyance direction of the substrate and the application direction of the liquid crystal composition can usually be the same direction.
  • coating methods include curtain coating, extrusion coating, roll coating, spin coating, dip coating, bar coating, spray coating, slide coating, print coating, gravure coating, and die coating.
  • Method, cap coating method, and dipping method For example, in the die coating method, when the lip direction of the die coater is arranged so as to be parallel to the substrate width direction, the application direction of the liquid crystal composition is the same as the conveyance direction of the substrate, that is, the longitudinal direction of the substrate.
  • the thickness of the liquid crystal composition layer to be applied can be appropriately set according to the desired thickness required for the optically anisotropic layer.
  • Step (III) may be achieved immediately by application, but may also be achieved by applying an orientation treatment such as heating after application, if necessary.
  • the alignment treatment conditions can be appropriately set according to the properties of the liquid crystal composition to be used.
  • the alignment treatment may be performed at a temperature of 50 to 160 ° C. for 30 seconds to 5 minutes.
  • the application direction of the liquid crystal composition to be used and the alignment direction of the polymerizable liquid crystal compound can be made different, that is, crossed.
  • the angle formed by the application direction of the liquid crystal composition and the alignment direction of the polymerizable liquid crystal compound can be preferably more than 5 °, more preferably 10 to 90 °, and even more preferably 40 to 50 °.
  • the step (IV) may be performed immediately after the step (III), but a step of drying the liquid crystal composition layer may be performed as necessary before the subsequent step (IV) of the step (III). .
  • drying can be achieved by a drying method such as natural drying, heat drying, reduced pressure drying, and reduced pressure heat drying. By such drying, the solvent can be removed from the liquid crystal composition layer.
  • a method suitable for the properties of the components of the liquid crystal composition can be appropriately selected.
  • examples thereof include a method of irradiating active energy rays and a thermal polymerization method.
  • a method of irradiating active energy rays is preferable because the reaction can proceed at room temperature without requiring heating.
  • the irradiated active energy rays can include light such as visible light, ultraviolet light, and infrared light, and arbitrary energy rays such as electron beams.
  • a method of irradiating light such as ultraviolet rays is preferable because the operation is simple.
  • the upper limit of the temperature at the time of ultraviolet irradiation is preferably not more than the glass transition temperature (Tg) of the substrate. Usually, it is 150 ° C. or lower, preferably 100 ° C. or lower, particularly preferably 80 ° C. or lower.
  • the lower limit of the temperature during ultraviolet irradiation can be 15 ° C. or higher.
  • Ultraviolet irradiation intensity is usually, 0.1mW / cm 2 ⁇ 1000mW / cm 2 range, preferably in the range of 0.5mW / cm 2 ⁇ 600mW / cm 2.
  • the ultraviolet irradiation time is in the range of 1 second to 300 seconds, preferably in the range of 5 seconds to 100 seconds.
  • UV integrated light quantity (mJ / cm 2 ) ultraviolet irradiation intensity (mW / cm 2 ) ⁇ irradiation time (seconds)
  • a high pressure mercury lamp, a metal halide lamp, or a low pressure mercury lamp can be used as the ultraviolet irradiation light source.
  • the cured liquid crystal molecules can have alignment regularity along substantially the same direction as the slow axis direction of the first substrate.
  • the cured liquid crystal molecules may preferably have a homogeneous alignment regularity along substantially the same direction as the slow axis direction of the first substrate.
  • “having homogeneous alignment regularity” means that the average direction of the lines obtained by projecting the long axis direction of the mesogen of the cured liquid crystal molecules onto the film surface is one direction (for example, the basic direction) Alignment in the direction of the surface director of the material film.
  • the homogeneous alignment regularity “along” in a predetermined direction means that the alignment direction substantially coincides with the predetermined direction.
  • the predetermined direction is the direction of the surface director of the base film or the slow axis direction of the base film.
  • the cured liquid crystal molecules have homogeneous alignment regularity and the alignment direction are determined by measuring the slow axis direction using a phase difference meter represented by AxoScan (manufactured by Axometrics), and the slow phase This can be confirmed by measuring the retardation distribution at each incident angle in the axial direction and in the direction orthogonal to the slow axis.
  • the major axis direction of the mesogen of the polymerizable liquid crystal compound is usually the mesogen of the cured liquid crystal molecule. It becomes the major axis direction.
  • a plurality of types of mesogens having different orientation directions are present in the optically anisotropic layer as in the case of using a reverse wavelength dispersion polymerizable liquid crystal compound (described later) as the polymerizable liquid crystal compound,
  • the direction in which the long axis directions of the longest types of mesogens are aligned is the alignment direction.
  • orientation along the direction of the slow axis of the first substrate and “substantially” in the same direction means that the angle between the direction of the slow axis of the first substrate and the alignment direction of the mesogen is 5 That is within °.
  • the angle is preferably within 3 °, more preferably within 1 °.
  • the first base material having the predetermined slow axis described above is used, and the material of the optically anisotropic layer is appropriately selected, so that the optically anisotropic layer has substantially the same direction as the slow axis.
  • An alignment regularity such as a homogeneous alignment regularity along the same direction can be imparted, and as a result, an optically anisotropic layer having such an alignment regularity can be obtained.
  • the thickness of the optically anisotropic layer is not particularly limited, and can be appropriately adjusted so that properties such as retardation can be within a desired range.
  • the lower limit of the thickness is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, while the upper limit of the thickness is preferably 10 ⁇ m or less, and is 7 ⁇ m or less. Is more preferable, and it is still more preferable that it is 5 micrometers or less.
  • the shape, length and width of the optically anisotropic layer can be a long film-like shape similar to that of the first substrate, and this can be made into a rectangle suitable for the desired application as required. It can be cut into shapes.
  • the optically anisotropic layer preferably has reverse wavelength dispersion. That is, the optically anisotropic layer preferably has chromatic dispersion that exhibits a high in-plane retardation with respect to transmitted light having a longer wavelength than a short wavelength.
  • the optically anisotropic layer preferably has such reverse wavelength dispersion in at least a part of the visible light band, preferably all. Since the optically anisotropic layer has reverse wavelength dispersion, the function can be expressed uniformly in a wide band in optical applications such as a ⁇ / 4 wavelength plate or a ⁇ / 2 wavelength plate.
  • the optically anisotropic layer is a ⁇ / 4 wavelength plate or a ⁇ / 2 wavelength plate.
  • the in-plane retardation Re measured at a measurement wavelength of 590 nm is in the range of 108 nm to 168 nm, it can be used as a ⁇ / 4 wavelength plate.
  • the in-plane retardation Re measured at a measurement wavelength of 590 nm is in the range of 245 nm to 305 nm, it can be used as a ⁇ / 2 wavelength plate.
  • the in-plane retardation Re measured at a measurement wavelength of 590 nm is preferably in the range of 128 nm to 148 nm, more preferably 133 nm to 143 nm.
  • the in-plane retardation Re measured at a measurement wavelength of 590 nm is preferably in the range of 265 nm to 285 nm, more preferably 270 nm to 280 nm.
  • the optically anisotropic layer is such a ⁇ / 4 wavelength plate or ⁇ / 2 wavelength plate
  • an optical element such as a circularly polarizing plate having a ⁇ / 4 wavelength plate or a ⁇ / 2 wavelength plate is used.
  • the device can be easily manufactured.
  • the angle formed by the slow axis of the optically anisotropic layer and the width direction of the optically anisotropic layer can be the same as the angle formed by the slow axis of the first substrate and the width direction of the first substrate. .
  • the angle formed by the slow axis of the optically anisotropic layer and the width direction of the optically anisotropic layer can be specifically 0 ° to 80 °.
  • the angle formed by the slow axis of the optically anisotropic layer and the width direction of the optically anisotropic layer is particularly preferably 40 ° to 50 °.
  • the angle formed by the slow axis of the optically anisotropic layer and the width direction of the optically anisotropic layer is preferably 15 ° ⁇ 5 °, 22.5 ° ⁇ 5 °, 45 ° ⁇ . 5. 5 °, 75 ° ⁇ 5 °, more preferably 15 ° ⁇ 4 °, 22.5 ° ⁇ 4 °, 45 ° ⁇ 4 °, 75 ° ⁇ 4 °, even more preferably 15 ° ⁇ 3 °, 22. Specific ranges such as 5 ° ⁇ 3 °, 45 ° ⁇ 3 °, and 75 ° ⁇ 3 ° may be used.
  • the multilayer film of the present invention can be a material that enables efficient production of a specific circularly polarizing plate.
  • composition (A) A liquid crystal composition containing a polymerizable liquid crystal compound (hereinafter, the composition may be abbreviated as “composition (A)”) that can be used in the production of the multilayer film of the present invention will be described.
  • the liquid crystal compound as a component of the composition (A) is a compound that can exhibit a liquid crystal phase when blended and oriented in the composition (A).
  • the polymerizable liquid crystal compound is a liquid crystal compound that can be polymerized in the composition (A) in a state of exhibiting such a liquid crystal phase and can be a polymer while maintaining the molecular orientation in the liquid crystal phase.
  • the reverse wavelength dispersion polymerizable liquid crystal compound is a polymerizable liquid crystal compound in which, when such a polymer is used, the obtained polymer exhibits reverse wavelength dispersion.
  • compounds having a polymerizable property such as a polymerizable liquid crystal compound and other polymerizable compounds which are components of the composition (A) may be simply referred to as “polymerizable compound”. .
  • Examples of the polymerizable liquid crystal compound include a liquid crystal compound having a polymerizable group, a compound capable of forming a side chain liquid crystal polymer, and a discotic liquid crystal compound.
  • Examples of the liquid crystal compound having a polymerizable group include, for example, JP-A Nos. 11-513360, 2002-030042, 2004-204190, 2005-263789, and 2007-119415. And rod-like liquid crystal compounds having a polymerizable group described in JP-A No. 2007-186430 and the like.
  • Examples of the side chain type liquid crystal polymer compound include side chain type liquid crystal polymer compounds described in JP-A No. 2003-177242.
  • examples of preferable liquid crystal compounds include “LC242” manufactured by BASF and the like.
  • Specific examples of the discotic liquid crystalline compound are disclosed in JP-A-8-50206, literature (C. Destrade et al., Mol. Crysr. Liq. Cryst., Vol. 71, page 111 (1981); Ed., Quarterly Chemistry Review, No. 22, Chemistry of Liquid Crystals, Chapter 5, Chapter 10, Section 2 (1994); B. Kohne et al., Angew. Chem. Soc. Chem. Comm., Page 1794 (1985) ); J. Zhang et al., J. Am. Chem. Soc., Vol. 116, page 2655 (1994)).
  • One of these liquid crystal compounds and the reverse wavelength dispersion polymerizable liquid crystal compound described below may be used alone, or two or more thereof may be used in combination at any ratio.
  • a reverse wavelength dispersion polymerizable liquid crystal compound may be used as a part or all of the polymerizable liquid crystal compound. By using the reverse wavelength dispersion polymerizable liquid crystal compound, an optically anisotropic layer having reverse wavelength dispersion can be easily obtained.
  • Examples of the reverse wavelength dispersion polymerizable liquid crystal compound include a compound having a main chain mesogen and a side chain mesogen bonded to the main chain mesogen in the molecule.
  • the side chain mesogen can be aligned in a different direction from the main chain mesogen. Therefore, in the optically anisotropic layer, the main chain mesogen and the side chain mesogen can be oriented in different directions. Such an orientation allows the optically anisotropic layer to exhibit reverse wavelength dispersion characteristics.
  • Examples of the reverse wavelength dispersion polymerizable liquid crystal compound include a compound represented by the following formula (I) (hereinafter sometimes referred to as “compound (I)”).
  • Y 1 to Y 8 are each independently a chemical single bond, —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O. —C ( ⁇ O) —O—, —NR 1 —C ( ⁇ O) —, —C ( ⁇ O) —NR 1 —, —O—C ( ⁇ O) —NR 1 —, —NR 1 —C ( ⁇ O) —O—, —NR 1 —C ( ⁇ O) —NR 1 —, or —NR 1 —O— is represented.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms of R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, n- A hexyl group etc. are mentioned.
  • R 1 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Y 1 to Y 8 are each independently a chemical single bond, —O—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, or , —O—C ( ⁇ O) —O— is preferable.
  • G 1 and G 2 each independently represent a divalent aliphatic group having 1 to 20 carbon atoms, which may have a substituent.
  • the divalent aliphatic group having 1 to 20 carbon atoms include a divalent aliphatic group having a chain structure such as an alkylene group having 1 to 20 carbon atoms and an alkenylene group having 2 to 20 carbon atoms; And divalent aliphatic groups such as a cycloalkanediyl group having 20 carbon atoms, a cycloalkenediyl group having 4 to 20 carbon atoms, and a divalent alicyclic fused ring group having 10 to 30 carbon atoms.
  • Examples of the substituent for the divalent aliphatic group of G 1 and G 2 include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n -Butoxy group, sec-butoxy group, t-butoxy group, n-pentyloxy group, n-hexyloxy group and the like, such as alkoxy groups having 1 to 6 carbon atoms; Of these, a fluorine atom, a methoxy group, and an ethoxy group are preferable.
  • the aliphatic group includes —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C ( ⁇ O) —O—, — NR 2 —C ( ⁇ O) —, —C ( ⁇ O) —NR 2 —, —NR 2 —, or —C ( ⁇ O) — may be present.
  • R 2 represents the same hydrogen atom or alkyl group having 1 to 6 carbon atoms as R 1, and is preferably a hydrogen atom or a methyl group.
  • the group intervening in the aliphatic group is preferably —O—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —C ( ⁇ O) —.
  • G 1 and G 2 are each independently an alkylene group having 1 to 20 carbon atoms, an alkenylene group having 2 to 20 carbon atoms, or the like, from the viewpoint of better expressing the desired effect of the present invention.
  • a divalent aliphatic group having a chain structure is preferable.
  • Z 1 and Z 2 each independently represents an alkenyl group having 2 to 10 carbon atoms which is unsubstituted or substituted with a halogen atom.
  • the alkenyl group preferably has 2 to 6 carbon atoms.
  • Examples of the halogen atom that is a substituent of the alkenyl group of Z 1 and Z 2 include a fluorine atom, a chlorine atom, a bromine atom, and the like, and a chlorine atom is preferable.
  • alkenyl group having 2 to 10 carbon atoms of Z 1 and Z 2 include CH 2 ⁇ CH—, CH 2 ⁇ C (CH 3 ) —, CH 2 ⁇ CH—CH 2 —, CH 3 —CH ⁇ .
  • Z 1 and Z 2 are each independently CH 2 ⁇ CH—, CH 2 ⁇ C (CH 3 ) —, CH 2 ⁇
  • C (Cl) —, CH 2 ⁇ CH—CH 2 —, CH 2 ⁇ C (CH 3 ) —CH 2 —, or CH 2 ⁇ C (CH 3 ) —CH 2 —CH 2 — is preferred.
  • CH 2 ⁇ CH—, CH 2 ⁇ C (CH 3 ) —, or CH 2 ⁇ C (Cl) — is more preferable, and CH 2 ⁇ CH— is particularly preferable.
  • a x represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the “aromatic ring” is represented by a cyclic structure having a broad sense of aromaticity according to the Huckle rule, that is, a cyclic conjugated structure having (4n + 2) ⁇ electrons, and thiophene, furan, benzothiazole, and the like. This means that a lone pair of heteroatoms such as sulfur, oxygen, and nitrogen is involved in the ⁇ -electron system and exhibits aromaticity.
  • the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring of A x may have a plurality of aromatic rings. And having an aromatic hydrocarbon ring and an aromatic heterocycle.
  • aromatic hydrocarbon ring examples include a benzene ring, a naphthalene ring, and an anthracene ring.
  • aromatic heterocyclic ring examples include monocyclic aromatic heterocyclic rings such as a pyrrole ring, a furan ring, a thiophene ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a pyrazole ring, an imidazole ring, an oxazole ring, and a thiazole ring; Benzothiazole ring, benzoxazole ring, quinoline ring, phthalazine ring, benzimidazole ring, benzopyrazole ring, benzofuran ring, benzothiophene ring, thiazolopyridine ring, oxazolopyridine ring, thiazolopyrazine ring,
  • the aromatic ring of A x may have a substituent.
  • substituents include halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; and 2 to 6 carbon atoms such as vinyl group and allyl group.
  • An alkyl group having 1 to 6 carbon atoms such as a trifluoromethyl group; a substituted amino group such as a dimethylamino group; an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, and an isopropoxy group; Nitro group; aryl group such as phenyl group and naphthyl group; —C ( ⁇ O) —R 5 ; —C ( ⁇ O) —OR 5 ; —SO 2 R 6 ;
  • R 5 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or a cycloalkyl group having 3 to 12 carbon atoms
  • R 6 is a carbon atom similar to R 4 described later. It represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group.
  • the aromatic ring within A x may have a plurality of identical or different substituents, bonded two adjacent substituents together may form a ring.
  • the ring formed may be a single ring or a condensed polycycle, and may be an unsaturated ring or a saturated ring.
  • the “carbon number” of the organic group having 2 to 30 carbon atoms in A x means the total number of carbon atoms in the whole organic group not including the carbon atom of the substituent (the same applies to A y described later). .
  • an aromatic hydrocarbon ring group As the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring of A x , an aromatic hydrocarbon ring group; an aromatic heterocyclic ring Group: an alkyl group having 3 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring group and an aromatic heterocyclic group; from an aromatic hydrocarbon ring group and an aromatic heterocyclic group An alkenyl group having 4 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of: a carbon number having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring group and an aromatic heterocyclic group 4-30 alkynyl groups; and the like.
  • a x is not limited to the following.
  • “-” represents a bond extending from any position of the ring (the same applies hereinafter).
  • E represents NR 6a , an oxygen atom or a sulfur atom.
  • R 6a represents a hydrogen atom; or an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, or a propyl group.
  • X, Y, and Z each independently represent NR 7 , an oxygen atom, a sulfur atom, —SO—, or —SO 2 — (provided that an oxygen atom, a sulfur atom, —SO—, Except where —SO 2 — are adjacent to each other).
  • R 7 represents the same hydrogen atom as R 6a ; or an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, or a propyl group.
  • an aromatic hydrocarbon group having 6 to 30 carbon atoms or is preferably an aromatic heterocyclic group having 4 to 30 carbon atoms, more preferably one of the groups shown below ,
  • the ring of A x may have a substituent.
  • substituents include halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; and 2 to 6 carbon atoms such as vinyl group and allyl group.
  • An alkyl group having 1 to 6 carbon atoms such as a trifluoromethyl group; a substituted amino group such as a dimethylamino group; an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, and an isopropoxy group; Nitro group; aryl group such as phenyl group and naphthyl group; —C ( ⁇ O) —R 8 ; —C ( ⁇ O) —OR 8 ; —SO 2 R 6 ; R 8 represents an alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group; or an aryl group having 6 to 14 carbon atoms such as a phenyl group.
  • a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms are preferable.
  • the ring of A x may have a plurality of the same or different substituents, and two adjacent substituents may be bonded together to form a ring.
  • the ring formed may be monocyclic or condensed polycyclic.
  • the “carbon number” of the organic group having 2 to 30 carbon atoms in A x means the total number of carbon atoms in the whole organic group not including the carbon atom of the substituent (the same applies to A y described later). .
  • a y has a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent.
  • a cycloalkyl group having 3 to 12 carbon atoms, an alkynyl group having 2 to 20 carbon atoms which may have a substituent, —C ( ⁇ O) —R 3 , —SO 2 —R 4 , —C ( S) NH-R 9 or an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • R 3 has an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent.
  • R 9 is an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, A cycloalkyl group having 3 to 12 carbon atoms which may have a substituent and an aromatic group having 5 to 20 carbon atoms which may have a substituent are represented.
  • alkyl group having 1 to 20 carbon atoms that may have a substituent of A y include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n-butyl.
  • alkenyl group having 2 to 20 carbon atoms which may have a substituent of A y include a vinyl group, a propenyl group, an isopropenyl group, a butenyl group, an isobutenyl group, and a pentenyl group.
  • the carbon number of the alkenyl group having 2 to 20 carbon atoms which may have a substituent is preferably 2 to 12.
  • Examples of the cycloalkyl group having 3 to 12 carbon atoms of the cycloalkyl group having 3 to 12 carbon atoms which may have a substituent include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group. Groups and the like.
  • alkynyl group having 2 to 20 carbon atoms of the alkynyl group having 2 to 20 carbon atoms which may have a substituent examples include an ethynyl group, a propynyl group, a 2-propynyl group (propargyl group), and a butynyl group.
  • Examples of the substituent of the alkyl group having 1 to 20 carbon atoms which may have a substituent and the alkenyl group having 2 to 20 carbon atoms which may have a substituent include a fluorine atom, chlorine Halogen atoms such as atoms; cyano groups; substituted amino groups such as dimethylamino groups; alkoxy groups having 1 to 20 carbon atoms such as methoxy groups, ethoxy groups, isopropoxy groups, butoxy groups; methoxymethoxy groups, methoxyethoxy groups, etc.
  • R 7a and R 10 are each independently an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or a 6 to 12 carbon atom.
  • R 8a represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group similar to R 4 described above.
  • Examples of the substituent of the cycloalkyl group having 3 to 12 carbon atoms which may have a substituent for A y include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a substituted amino group such as a dimethylamino group; C1-C6 alkyl groups such as methyl, ethyl and propyl groups; C1-C6 alkoxy groups such as methoxy, ethoxy and isopropoxy groups; nitro groups; aryls such as phenyl and naphthyl groups A cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group; —C ( ⁇ O) —R 7a ; —C ( ⁇ O) —OR 7a ; —SO 2 R 8a ; And the like.
  • R 7a and R 8a represent
  • Examples of the substituent of the alkynyl group having 2 to 20 carbon atoms that may have a substituent of A y include an alkyl group having 1 to 20 carbon atoms that may have a substituent and a substituent. And the same substituent as the substituent of the alkenyl group having 2 to 20 carbon atoms which may be used.
  • R 3 may have a C 1-20 alkyl group which may have a substituent, or may have a substituent.
  • Preferred examples thereof include an alkenyl group having 2 to 20 carbon atoms, an optionally substituted cycloalkyl group having 3 to 12 carbon atoms, and an aromatic hydrocarbon group having 5 to 12 carbon atoms.
  • Specific examples thereof include the alkyl group having 1 to 20 carbon atoms which may have a substituent, the alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent of the above Ay.
  • Examples of the cycloalkyl group having 3 to 12 carbon atoms which may be included are the same as those listed.
  • R 4 is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group To express.
  • Specific examples of the alkyl group having 1 to 20 carbon atoms and the alkenyl group having 2 to 20 carbon atoms in R 4 include the alkyl group having 1 to 20 carbon atoms and the alkenyl group having 2 to 20 carbon atoms in the above Ay . Examples are the same as those listed.
  • Examples of the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring for A y are the same as those exemplified for A x above. Is mentioned.
  • a hydrogen atom an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent
  • R 3 and R 4 represent the same meaning as described above.
  • an alkyl group having 1 to 20 carbon atoms which may have a substituent an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and an optionally substituted carbon
  • substituent of the alkynyl group having 2 to 20 carbon atoms include a halogen atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an alkoxy group having 1 to 12 carbon atoms substituted with an alkoxy group having 1 to 12 carbon atoms, phenyl Group, cyclohexyl group, C2-C12 cyclic ether group, C6-C14 aryloxy group, hydroxyl group, benzodioxanyl group, phenylsulfonyl group, 4-methylphenylsulfonyl group, benzoyl group, -SR 10 Is preferred.
  • R 10 represents the same meaning as described above.
  • a y having an optionally substituted cycloalkyl group having 3 to 12 carbon atoms, an optionally substituted aromatic hydrocarbon group having 6 to 12 carbon atoms, and a substituent.
  • the substituent of the aromatic heterocyclic group having 3 to 9 carbon atoms a fluorine atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a cyano group are preferable.
  • a x and A y may be combined to form a ring.
  • a ring examples include an unsaturated heterocyclic ring having 4 to 30 carbon atoms and an unsaturated carbocyclic ring having 6 to 30 carbon atoms, which may have a substituent.
  • the unsaturated heterocyclic ring having 4 to 30 carbon atoms and the unsaturated carbocyclic ring having 6 to 30 carbon atoms are not particularly limited and may or may not have aromaticity.
  • the ring shown below is mentioned.
  • the ring shown below is the one in the formula (I).
  • substituent groups include the same ones as exemplified as the substituents of the aromatic ring within A x.
  • the total number of ⁇ electrons contained in A x and A y is preferably 4 or more and 24 or less, more preferably 6 or more and 20 or less, from the viewpoint of better expressing the desired effect of the present invention. More preferably, it is 6 or more and 18 or less.
  • a x is an aromatic hydrocarbon group or aromatic heterocyclic group having 4 to 30 carbon atoms
  • a y is a hydrogen atom, a cycloalkyl group having 3 to 8 carbon atoms, (halogen atom, cyano group,
  • An aromatic hydrocarbon group having 6 to 12 carbon atoms which may have a substituent of an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 8 carbon atoms) , (Halogen atom, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, cyano group) which may have as a substituent a C 3-9 aromatic heterocyclic group or substituent An optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 1 to 20 carbon atoms, and an optionally substituted alkyl group having 1 to 20 carbon atoms, and an optional
  • the substituent is a halogen atom, a cyano group, or an aryl group having 1 to 20 carbon atoms.
  • R 10 represents the same meaning as described above.
  • a x is any of the groups having the following structure
  • a y is a hydrogen atom, a cycloalkyl group having 3 to 8 carbon atoms, (a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, carbon
  • An aromatic hydrocarbon group having 6 to 12 carbon atoms which may have an alkoxy group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms as a substituent, (halogen atom, 1 to 6 carbon atoms)
  • Atoms, cyano groups, alkoxy groups having 1 to 20 carbon atoms, 1 to 1 carbon atoms An alkoxy group having 1 to 12 carbon atoms, a phenyl group, a cyclohexyl group, a cyclic ether group having 2 to 12 carbon atoms, an aryloxy group having 6 to 14 carbon atoms, a hydroxyl group, and a benzodioxanyl group.
  • benzenesulfonyl group, a benzoyl group, a combination is either -SR 10.
  • R 10 represents the same meaning as described above.
  • a x is any of the groups having the following structure
  • a y is a hydrogen atom, a cycloalkyl group having 3 to 8 carbon atoms, a (halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, carbon
  • An aromatic hydrocarbon group having 6 to 12 carbon atoms which may have an alkoxy group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms as a substituent, (halogen atom, 1 to 6 carbon atoms)
  • Atoms, cyano groups, alkoxy groups having 1 to 20 carbon atoms, 1 to 1 carbon atoms An alkoxy group having 1 to 12 carbon atoms, a phenyl group, a cyclohexyl group, a cyclic ether group having 2 to 12 carbon atoms, an aryloxy group having 6 to 14 carbon atoms, a hydroxyl group, and a benzodioxanyl group.
  • benzenesulfonyl group, a benzoyl group, a combination is either -SR 10.
  • X represents the same meaning as described above.
  • R 10 represents the same meaning as described above.
  • a 1 represents a trivalent aromatic group which may have a substituent.
  • the trivalent aromatic group may be a trivalent carbocyclic aromatic group or a trivalent heterocyclic aromatic group. From the viewpoint of better expressing the desired effect of the present invention, a trivalent carbocyclic aromatic group is preferable, a trivalent benzene ring group or a trivalent naphthalene ring group is more preferable, and a trivalent represented by the following formula: The benzene ring group or trivalent naphthalene ring group is more preferable.
  • the substituents Y 1 and Y 2 are described for convenience in order to clarify the bonding state (Y 1 and Y 2 represent the same meaning as described above, and the same applies hereinafter). .
  • a 1 groups represented by the following formulas (A11) to (A25) are more preferable.
  • A13 groups represented by the following formulas (A11), (A13), (A15), (A19), and (A23) are particularly preferred.
  • a 1 as a trivalent substituent which may be possessed by the aromatic group, the same ones as exemplified as the substituents of the aromatic groups of the A X and the like.
  • a 1 preferably has no substituent.
  • a 2 and A 3 each independently represents a C 3-30 divalent alicyclic hydrocarbon group which may have a substituent.
  • Examples of the divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms include a cycloalkanediyl group having 3 to 30 carbon atoms and a divalent alicyclic condensed ring group having 10 to 30 carbon atoms.
  • Examples of the cycloalkanediyl group having 3 to 30 carbon atoms include cyclopropanediyl group; cyclobutanediyl group such as cyclobutane-1,2-diyl group and cyclobutane-1,3-diyl group; cyclopentane-1,2-diyl group Cyclopentanediyl groups such as cyclopentane-1,3-diyl group; cyclohexanediyl groups such as cyclohexane-1,2-diyl group, cyclohexane-1,3-diyl group, cyclohexane-1,4-diyl group; Cycloheptanediyl groups such as cycloheptane-1,2-diyl group, cycloheptane-1,3-diyl group, cycloheptane-1,4-diyl group; cyclooc
  • Examples of the divalent alicyclic condensed ring group having 10 to 30 carbon atoms include decalin-2,5-diyl group, decalin-2,7-diyl group, etc .; adamantane-1,2-diyl group, adamantane Adamantanediyl group such as -1,3-diyl group; bicyclo [2.2.1] heptane-2,3-diyl group, bicyclo [2.2.1] heptane-2,5-diyl group, bicyclo And bicyclo [2.2.1] heptanediyl groups such as [2.2.1] heptane-2,6-diyl group.
  • These divalent alicyclic hydrocarbon groups may have a substituent at any position.
  • substituents the same ones as exemplified as the substituents of the aromatic groups of the A X and the like.
  • a 2 and A 3 a divalent alicyclic hydrocarbon group having 3 to 12 carbon atoms is preferable, a cycloalkanediyl group having 3 to 12 carbon atoms is more preferable, and the following formula (A31) to (A34)
  • the divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms is a cis type or a trans type based on a difference in configuration of carbon atoms bonded to Y 1 , Y 3 (or Y 2 , Y 4 ).
  • Stereoisomers can exist.
  • a cis-type isomer (A32a) and a trans-type isomer (A32b) may exist.
  • it may be a cis type, a trans type, or a mixture of cis and trans isomers.
  • a trans type Preferably, there is a trans type.
  • a 4 and A 5 each independently represents a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
  • the aromatic groups of A 4 and A 5 may be monocyclic or polycyclic.
  • Preferable specific examples of A 4 and A 5 include the following.
  • the divalent aromatic groups of A 4 and A 5 may have a substituent at any position.
  • substituents include a halogen atom, a cyano group, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a nitro group, and a —C ( ⁇ O) —OR 8b group; It is done.
  • R 8b is an alkyl group having 1 to 6 carbon atoms.
  • a halogen atom, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group are preferable.
  • the halogen atom is preferably a fluorine atom
  • the alkyl group having 1 to 6 carbon atoms is preferably a methyl group, an ethyl group or a propyl group
  • the alkoxy group is more preferably a methoxy group or an ethoxy group.
  • a 4 and A 5 may each independently have a substituent, the following formulas (A41) and (A42) And a group represented by (A43) is more preferred, and a group represented by formula (A41) which may have a substituent is particularly preferred.
  • Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • the alkyl group which has 1 carbon atoms which may be ⁇ 6 have a substituent, the same ones as exemplified in the A X and the like.
  • Q 1 is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or a methyl group.
  • Compound (I) can be produced, for example, by a reaction of a hydrazine compound and a carbonyl compound described in International Publication No. WO2012 / 147904.
  • the composition (A) can contain a polymerizable monomer as an optional component.
  • the “polymerizable monomer” refers to a compound other than the reverse wavelength dispersion polymerizable liquid crystal compound, among compounds having a polymerization ability and capable of functioning as a monomer.
  • the polymerizable monomer for example, one having one or more polymerizable groups per molecule can be used. By having such a polymerizable group, polymerization can be achieved in forming the optically anisotropic layer.
  • the polymerizable monomer is a crosslinkable monomer having two or more polymerizable groups per molecule, crosslinkable polymerization can be achieved.
  • the polymerizable group include the same groups as the groups Z 1 -Y 7 -and Z 2 -Y 8- in the compound (I), and more specifically, for example, acryloyl group, methacryloyl Groups and epoxy groups.
  • the polymerizable monomer itself may be liquid crystalline or non-liquid crystalline.
  • non-liquid crystalline per se means that the polymerizable monomer itself is aligned on the first base material subjected to the alignment treatment when it is placed at any temperature from room temperature to 200 ° C. That does not show Whether or not the orientation is indicated is determined by whether or not there is a contrast between light and dark when the rubbing direction is rotated by the surface phase in the crossed Nicol transmission observation of the polarizing microscope.
  • the blending ratio of the polymerizable monomer is usually 1 to 100 parts by weight, preferably 5 to 50 parts by weight with respect to 100 parts by weight of the reverse wavelength dispersion polymerizable liquid crystal compound. Within the above range, precise control of the reverse wavelength dispersion characteristic is facilitated by appropriately adjusting the blending ratio of the polymerizable monomer so as to exhibit the desired reverse wavelength dispersion characteristic.
  • the polymerizable monomer can be produced by a known production method. Or what has a structure similar to compound (I) can be manufactured according to the manufacturing method of compound (I).
  • composition (A) In addition to the polymerizable liquid crystal compound and the polymerizable monomer, the composition (A) may contain an optional component such as those exemplified below as necessary.
  • Composition (A) may contain a polymerization initiator.
  • a polymerization initiator it can select suitably according to the kind of polymeric group which a polymerizable liquid crystal compound, a polymerizable monomer, and another polymerizable compound have in a composition (A).
  • a radical polymerization initiator can be used if the polymerizable group is radical polymerizable
  • an anionic polymerization initiator can be used if it is an anion polymerizable group
  • a cationic polymerization initiator can be used if it is a cationic polymerizable group.
  • a thermal radical generator which is a compound that generates an active species capable of initiating polymerization of a polymerizable compound by heating; and visible light, ultraviolet light (i-line, etc.), far ultraviolet light, electron beam
  • photoradical generators which are compounds that generate active species capable of initiating polymerization of a polymerizable compound upon exposure to exposure light such as X-rays, can be used, but photoradical generators are used. Is preferred.
  • Examples of the photoradical generator include an acetophenone compound, a biimidazole compound, a triazine compound, an O-acyloxime compound, an onium salt compound, a benzoin compound described in International Publication No. WO2012 / 147904, Examples include benzophenone compounds, ⁇ -diketone compounds, polynuclear quinone compounds, xanthone compounds, diazo compounds, imide sulfonate compounds, and the like.
  • anionic polymerization initiator examples include alkyl lithium compounds; monolithium salts or monosodium salts such as biphenyl, naphthalene, and pyrene; polyfunctional initiators such as dilithium salts and trilithium salts; and the like.
  • the cationic polymerization initiator examples include proton acids such as sulfuric acid, phosphoric acid, perchloric acid, and trifluoromethanesulfonic acid; Lewis acids such as boron trifluoride, aluminum chloride, titanium tetrachloride, and tin tetrachloride.
  • These polymerization initiators can be used alone or in combination of two or more.
  • the blending ratio of the polymerization initiator is usually 0.1 to 30 parts by weight, preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the polymerizable compound.
  • Composition (A) may contain a surfactant for adjusting the surface tension.
  • the surfactant is not particularly limited, but a nonionic surfactant is usually preferable.
  • a commercially available product can be used as the nonionic surfactant.
  • a nonionic surfactant that is an oligomer having a molecular weight of about several thousand can be used.
  • Specific examples of these surfactants include “PF-151N”, “PF-636”, “PF-6320”, “PF-656”, “PF-6520”, “PF-3320” of PolyFox of OMNOVA.
  • surfactant may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the blending ratio of the surfactant is usually 0.01 to 10 parts by weight, preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the polymerizable compound.
  • Composition (A) may contain a solvent such as an organic solvent.
  • organic solvents include ketones such as cyclopentanone, cyclohexanone, methyl ethyl ketone, acetone and methyl isobutyl ketone; acetate esters such as butyl acetate and amyl acetate; halogenated hydrocarbons such as chloroform, dichloromethane and dichloroethane; Examples include ethers such as 1,4-dioxane, cyclopentylmethyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, and 1,2-dimethoxyethane; and aromatic hydrocarbons such as toluene, xylene, and mesitylene.
  • the boiling point of the solvent is preferably 60 to 250 ° C., more preferably 60 to 150 ° C., from the viewpoint of excellent handleability.
  • the amount of the solvent used is usually 100 to 1000 parts by weight with respect to 100 parts by weight of the polymerizable compound.
  • the composition (A) is further composed of metal, metal complex, dye, pigment, fluorescent material, phosphorescent material, leveling agent, thixotropic agent, gelling agent, polysaccharide, ultraviolet absorber, infrared absorber, antioxidant, ion.
  • An optional additive such as an exchange resin and a metal oxide such as titanium oxide may be included.
  • the ratio of such optional additives is usually 0.1 to 20 parts by weight per 100 parts by weight of the polymerizable compound.
  • Composition (A) can usually be prepared by mixing the components described above.
  • optically anisotropic laminate of the present invention is obtained by peeling the optically anisotropic layer from the multilayer film of the present invention and bonding it to a long second substrate.
  • An example of the second substrate is a film that can protect the optically anisotropic layer such as a masking film.
  • a masking film known ones (for example, FF1025 and “FF1035” manufactured by Treteger, Inc .; “SAT116T”, “SAT2038T-JSL” and “SAT4538T-JSL” manufactured by Sanei Kaken Co., Ltd .; “NBO” manufactured by Fujimori Industrial Co., Ltd.
  • the optically anisotropic layer can be easily transferred to another member. Therefore, an optical element having an optically anisotropic layer can be easily manufactured.
  • the second substrate is an optically isotropic substrate film.
  • the optical isotropy is that the in-plane retardation Re is preferably less than 10 nm, and more preferably less than 5 nm.
  • the retardation Rth in the thickness direction is also preferably less than 10 nm, and more preferably less than 5 nm.
  • the lower limit of the in-plane retardation Re can be 0 nm.
  • the lower limit of the retardation Rth in the thickness direction is preferably more than ⁇ 10 nm, and more preferably more than ⁇ 5 nm.
  • optically isotropic substrate film examples include cellulose esters and the like in addition to the same materials as the first substrate film described above. A long film of such a material is formed and can be used as it is as the second substrate without being stretched.
  • An optically anisotropic laminate including an optically isotropic substrate film as a second substrate can be incorporated into an optical device such as a display device as it is and used as an optical member.
  • the process of peeling the optically anisotropic layer from the multilayer film and laminating it on the long second substrate is a roll-to-roll operation. Can be done.
  • the circularly polarizing plate of the present invention is formed by laminating one or more optically anisotropic layers and a long linear polarizer by roll-to-roll.
  • Circularly polarizing plate a circularly polarizing plate formed by laminating an optically anisotropic layer and a long linear polarizer by roll-to-roll, wherein the optically anisotropic layer is of the present invention.
  • a circularly polarizing plate which is a layer formed by peeling from a multilayer film.
  • Polarizer a circularly polarizing plate formed by laminating an optically anisotropic layer and a long linear polarizer by roll-to-roll, wherein the optically anisotropic layer is of the present invention.
  • the optically anisotropic layer included in the circularly polarizing plate of the present invention a layer peeled from the multilayer film of the present invention may be used directly.
  • the optically anisotropic layer included in the circularly polarizing plate of the present invention is peeled from the multilayer film of the present invention, and once bonded to the second base material to obtain the optically anisotropic laminate of the present invention, You may use it as it is, or you may use what peeled again from there.
  • the step of peeling the optically anisotropic layer from the multilayer film and the step of bonding the optically anisotropic layer to another layer (other optically anisotropic layer, linear polarizer, etc.)
  • the step of peeling and bonding are performed by bonding the surface on the optically anisotropic layer side of the multilayer film and one surface of the linear polarizer and then peeling the first substrate. These steps can be performed.
  • the relationship between the slow axis of the ⁇ / 4 wavelength plate, the slow axis of the ⁇ / 2 wavelength plate, and the transmission axis of the linear polarizer can be various known relationships.
  • the optically anisotropic layer of the multilayer film of the present invention is used as both a ⁇ / 4 wavelength plate and a ⁇ / 2 wavelength plate, the delay of the ⁇ / 2 wavelength plate with respect to the direction of the transmission axis or absorption axis of the polarizer.
  • the direction of the phase axis is 15 ° or an angle close thereto (for example, 15 ° ⁇ 5 °, preferably 15 ° ⁇ ° 4, more preferably 15 ° ⁇ 3 °), and the direction of the transmission axis or absorption axis of the polarizer
  • the slow axis direction of the ⁇ / 4 wave plate may be 75 ° or an angle close thereto (for example, 75 ° ⁇ 5 °, preferably 75 ° ⁇ ° 4, more preferably 75 ° ⁇ 3 °).
  • a circularly-polarizing plate can be used as a broadband antireflection film for an organic EL display device.
  • the direction of the in-plane optical axis (slow axis, transmission axis, absorption axis, etc.) and geometric direction (longitudinal direction of the film And the width direction, etc.) are defined such that a shift in one direction is positive and a shift in another direction is negative, and the positive and negative directions are commonly defined in the components in the product.
  • the direction of the slow axis of the ⁇ / 2 wavelength plate relative to the direction of the transmission axis or absorption axis of the linear polarizer is 15 °
  • the direction of the transmission axis or absorption axis of the linear polarizer is ⁇
  • the direction of the slow axis of the quarter-wave plate is 75 °
  • the direction of the slow axis of the ⁇ / 2 wavelength plate is shifted 15 ° counterclockwise from the direction of the transmission axis or absorption axis of the linear polarizer
  • the direction of the slow axis of the ⁇ / 4 wavelength plate is shifted by 75 ° counterclockwise from the direction of the transmission axis or absorption axis of the linear polarizer.
  • the circularly polarizing plate (i) there is one ⁇ / 4 wave plate as an optically anisotropic layer, and the ⁇ / 4 wave plate is delayed with respect to the transmission axis or absorption axis of the linear polarizer.
  • Examples include a relationship in which the direction of the axis is 45 ° or an angle close thereto (for example, 45 ° ⁇ 5 °, preferably 45 ° ⁇ 4 °, more preferably 45 ° ⁇ 3 °).
  • a circularly-polarizing plate can be used as an antireflection film for organic EL display devices.
  • Roll-to-roll pasting means transporting a continuously supplied film, such as unwinding a film from a roll of long film, and performing a pasting process with another film on the transport line. Furthermore, it refers to the bonding in an aspect in which the obtained bonded product is a take-up roll.
  • the multilayer film is unwound from a roll of a long multilayer film, transported, and pasted with a linear polarizer on a transport line. It is possible to perform roll-to-roll bonding by using the obtained bonded product as a take-up roll. In this case, the linear polarizer can also be fed from the roll and supplied to the bonding step.
  • the multilayer film 21 fed out from a feeding roll (not shown) is conveyed to the laminating apparatus 120.
  • the bonding apparatus 120 includes nip rolls 121 and 122 provided so as to press each other.
  • the multilayer film 21 that has been conveyed to the laminating apparatus 120 is fed between the nip rolls 121 and 122.
  • the linear polarizer 30 is supplied to the bonding apparatus 120.
  • the supplied linear polarizer 30 is fed between the nip rolls 121 and 122 and bonded to the multilayer film 21. Thereby, the bonding thing 10 provided with the multilayer film 21 and the linear polarizer 30 is obtained.
  • the bonded article 10 obtained in this way is conveyed to the winding shaft 130 and wound up in a roll shape by the winding shaft 130. Thereby, the roll 11 of the bonding thing 10 is obtained.
  • a board can be obtained.
  • linear polarizer known polarizers used in devices such as liquid crystal display devices and other optical devices can be used.
  • linear polarizers are those obtained by adsorbing iodine or dichroic dye on a polyvinyl alcohol film and then uniaxially stretching in a boric acid bath, and iodine or dichroic dye on a polyvinyl alcohol film.
  • examples thereof include those obtained by adsorbing and stretching and further modifying a part of the polyvinyl alcohol unit in the molecular chain into a polyvinylene unit.
  • linear polarizer examples include a polarizer having a function of separating polarized light into reflected light and transmitted light, such as a grid polarizer, a multilayer polarizer, and a cholesteric liquid crystal polarizer. Of these, a polarizer containing polyvinyl alcohol is preferred.
  • the polarization degree of the polarizer used for this invention is not specifically limited, Preferably it is 98% or more, More preferably, it is 99% or more.
  • the average thickness of the polarizer is preferably 5 to 80 ⁇ m.
  • One of the uses of the circularly polarizing plate of the present invention is a use as an antireflection film of a display device having an organic EL element. That is, by providing a circularly polarizing plate having the above-described configuration on the surface of the display device so that the surface on the linear polarizer side faces the viewing side, light incident from the outside of the device is reflected in the device. Outgoing to the outside of the device can be suppressed, and as a result, undesired reduction such as glare of the display surface of the display device can be suppressed. Specifically, only a part of the linearly polarized light passes through the linear polarizer and then passes through the optically anisotropic layer to become circularly polarized light.
  • circularly polarized light includes elliptically polarized light as long as it substantially exhibits an antireflection function.
  • Circularly polarized light is reflected by a component (such as a reflective electrode in an organic EL element) that reflects light in the device, passes through the optically anisotropic layer again, and is orthogonal to the polarization axis of the incident linearly polarized light.
  • a component such as a reflective electrode in an organic EL element
  • the function of antireflection is achieved.
  • the circularly polarizing plate (ii) described above achieves the antireflection function in a wide band.
  • the circularly polarizing plate of the present invention has few defects due to foreign matters or the like in the optically anisotropic layer, such an antireflection effect can be obtained particularly well.
  • An optically anisotropic layer can be used.
  • the circularly polarizing plate of the present invention may have other arbitrary layers as necessary.
  • optional layers include adhesive layers for adhering to other members, mat layers for improving film slipperiness, hard coat layers such as impact-resistant polymethacrylate resin layers, antireflection layers, antifouling layers, etc. Is mentioned.
  • the circularly polarizing plate of the present invention can be used as a component of a display device such as a liquid crystal display device or an organic EL display device.
  • the organic EL display device of the present invention includes the circularly polarizing plate of the present invention.
  • the organic EL display device of the present invention can include the circularly polarizing plate of the present invention as an antireflection film as described above in a display device having an organic EL element as a display element.
  • the transmittance was measured using a spectrophotometer “V7200” manufactured by JASCO Corporation and an automatic polarizing film measuring device “VAP-7070S”, and evaluated according to the following criteria. Excellent: Cross Nicol transmittance at the bottom wavelength is 0.010% or less. Good: Cross Nicol transmittance at the bottom wavelength is more than 0.010% and 0.020% or less. Good: Cross Nicol transmittance at the bottom wavelength is more than 0.020% and 0.030% or less. Impossible: Cross Nicol transmittance at the bottom wavelength exceeds 0.030%.
  • the optically anisotropic layer was observed using a polarizing microscope, the bright spots and foreign matters in the optical anisotropic layer were counted, and evaluated according to the following four stages according to the number of bright spots and foreign matters within 1 cm square of the sample.
  • SA The number of bright spots in a 1 cm square is 0
  • A The number of bright spots in a 1 cm square is 1 or more and 5 or less
  • B The number of bright spots in a 1 cm square is 6 or more and 15 or less
  • C 1 cm 16 or more bright spots in the corner
  • the circularly polarizing plate was placed on a diffuse reflector (trade name “Metal Me TS50”, manufactured by Toray Industries, Inc., aluminum vapor-deposited PET (polyethylene terephthalate) film), and the front contrast and viewing angle characteristics were evaluated according to the following criteria.
  • the front contrast was visually observed from the front (that is, from the direction perpendicular to the surface of the circularly polarizing plate) and evaluated based on the observed reflected color. When the reflected color was particularly black, it was evaluated as “A” (best), when it was black, “B” (good), and when the reflected color was bright and blue, “C” (bad).
  • the viewing angle characteristics were evaluated based on the reflected color, brightness, and color unevenness when visually observed from the front and when visually observed from an oblique 45 °.
  • A best
  • B good
  • Example 1 (1-1. Preparation of first substrate)
  • the base material (A) before stretching was drawn from the roll of the base material (A) before stretching obtained in Production Example 1, and the masking film was continuously peeled off and supplied to a tenter stretching machine, and oblique stretching was performed. Thereby, an intermediate film was obtained.
  • the stretching ratio in the oblique stretching was 1.9 times, the stretching temperature was 132 ° C., and the obtained intermediate film had an average orientation angle of 25 ° with respect to the width direction and Re of 360 nm.
  • the obtained intermediate film was further stretched by free longitudinal uniaxial stretching.
  • the stretching direction of free longitudinal uniaxial stretching was the film transport direction, the stretching ratio was 1.25 times, and the stretching temperature was 129 ° C.
  • first substrate (A-1) having a long width of 1350 mm.
  • the obtained stretched substrate had a slow axis of 45 ° with respect to the width direction, an orientation angle variation of 0.5 °, an Nz coefficient of 2.3, Re of 141 nm, and a film thickness of 42 ⁇ m.
  • the obtained first base material (A-1) was rolled up while being protected with a new masking film (FF1025, manufactured by Treteger) to obtain a roll of the first base material (A-1).
  • the first substrate (A-1) was fed out from the roll of the first substrate (A-1) obtained in (1-1), and the masking film was peeled off and conveyed.
  • the liquid crystal composition (A) obtained in Production Example 5 was applied to one surface (the surface on which the masking film was bonded) of the first substrate (A-1) to be conveyed.
  • it was directly applied using a die coater to form a liquid crystal composition layer.
  • the application by the die coater is performed by bringing the discharge port of the fixed die coater close to the surface of the first substrate (A-1) to be conveyed and discharging the liquid crystal composition (A) from the die coater. went. Therefore, the relative application direction with respect to the surface of the first substrate (A-1) to be conveyed by the die coater was the longitudinal direction (that is, 90 ° with respect to the width direction).
  • the liquid crystal composition layer on the first substrate (A-1) obtained in (1-2) was subjected to an alignment treatment at 110 ° C. for 2.5 minutes. Thereafter, under a nitrogen atmosphere, the layer of the liquid crystal composition is irradiated with ultraviolet rays having an accumulated light amount of 100 mJ / cm 2 (irradiation intensity of 10 mW / cm 2 for an irradiation time of 10 seconds) or more, and the polymerizable liquid crystal compound in the liquid crystal composition Was polymerized to form cured liquid crystal molecules.
  • a homogeneously oriented optically anisotropic layer having a dry film thickness of 1.1 ⁇ m was obtained, and a multilayer film having a layer configuration of (first substrate) / (optically anisotropic layer) was obtained.
  • Example 2 Except for the following items, the same operation as in Example 1 was performed to obtain and evaluate the first base material and the multilayer film.
  • the stretching temperature was 133 ° C., and the stretching direction was also changed (the stretching ratio was 1.9 times and no change) ).
  • the obtained intermediate film had an average orientation angle of 23 ° and Re of 325 nm (the upper limit of free longitudinal uniaxial stretching thereafter was not changed).
  • the dry film thickness of the optically anisotropic layer was changed to 2.2 ⁇ m.
  • Example 3 Except for the following items, the same operation as in Example 1 was performed to obtain and evaluate the first base material and the multilayer film.
  • the stretching ratio was 2.0 times, the stretching temperature was 136 ° C., and the stretching direction was also changed.
  • the obtained intermediate film had an average orientation angle of 30 ° with respect to the width direction and Re of 450 nm.
  • the stretching ratio was changed to 1.20 times and the stretching temperature was changed to 132 ° C.
  • Example 4 Except for the following items, the same operation as in Example 1 was performed to obtain and evaluate the first base material and the multilayer film.
  • the stretching ratio was 3.0 times, the stretching temperature was 131 ° C., and the stretching direction was also changed.
  • the obtained intermediate film had an average orientation angle of 15 ° with respect to the width direction and Re of 300 nm.
  • the stretching ratio was changed to 1.40 times (the stretching temperature was 129 ° C. and not changed).
  • Example 5 (5-1. Preparation of first substrate) From the roll of the base material (A) before stretching obtained in Production Example 1, the base material (A) before stretching was pulled out, the masking film was continuously peeled off, and free longitudinal uniaxial stretching was performed to obtain an intermediate film.
  • the stretching direction of free longitudinal uniaxial stretching was the film conveying direction, the stretching ratio was 1.2 times, and the stretching temperature was 140 ° C.
  • the obtained intermediate film had an average orientation angle of 90 ° with respect to the width direction and Re of 160 nm.
  • the obtained intermediate film was further supplied to a tenter stretching machine and subjected to oblique stretching. The stretching ratio in the oblique stretching was 1.70 times, and the stretching temperature was 136 ° C.
  • first substrate (A-1) having a long width of 1350 mm.
  • the stretched substrate thus obtained had a slow axis of 45 ° with respect to the width direction, an orientation angle variation of 0.3 °, an Nz coefficient of 1.6, an Re of 140 nm, and a film thickness of 49 ⁇ m.
  • the obtained first base material (A-1) was rolled up while being protected with a new masking film (FF1025, manufactured by Treteger) to obtain a roll of the first base material (A-1).
  • Example 6 Except for the following items, the same operation as in Example 1 was performed to obtain and evaluate the first base material and the multilayer film.
  • the stretching ratio was 1.25 times, the stretching temperature was 135 ° C., and the stretching direction was also changed.
  • the obtained intermediate film had an average orientation angle of 15 ° with respect to the width direction and Re of 140 nm.
  • the stretching ratio was changed to 1.60 times and the stretching temperature was changed to 138 ° C.
  • the liquid crystal composition (B) obtained in Production Example 6 was used in place of the liquid crystal composition (A).
  • the dry film thickness of the optically anisotropic layer was changed to 2.2 ⁇ m.
  • Example 7 Except for the following items, the same operation as in Example 1 was performed to obtain and evaluate the first base material and the multilayer film.
  • (1-1) instead of the roll of the base material (A) before stretching, the roll of the base material (B) before stretching obtained in Production Example 2 was used.
  • the stretching ratio was 1.25 times, the stretching temperature was 135 ° C., and the stretching direction was also changed.
  • the obtained intermediate film had an average orientation angle of 45 ° with respect to the width direction and Re of 140 nm.
  • the stretching ratio was changed to 1.40 times and the stretching temperature was changed to 133 ° C.
  • the dry film thickness of the optically anisotropic layer was changed to 1.2 ⁇ m.
  • Example 8 (8-1. Preparation of first substrate)
  • the base material (C) before stretching was drawn from the roll of the base material (C) before stretching obtained in Production Example 3, and the masking film was continuously peeled off and supplied to a tenter stretching machine, and oblique stretching was performed.
  • the stretching ratio in the oblique stretching was 1.5 times, and the stretching temperature was 142 ° C.
  • both ends in the substrate film width direction were trimmed to obtain a first substrate (A-1) having a long width of 1350 mm.
  • the obtained stretched substrate had a slow axis of 15 ° with respect to the width direction, an orientation angle variation of 0.7 °, an Nz coefficient of 1.1, an Re of 141 nm, and a film thickness of 22 ⁇ m.
  • the obtained first base material (A-1) was rolled up while being protected with a new masking film (FF1025, manufactured by Treteger) to obtain a roll of the first base material (A-1).
  • Example 9 (9-1. Preparation of first substrate)
  • the base material (D) before stretching was drawn from the roll of the base material (D) before stretching obtained in Production Example 4, and the masking film was continuously peeled off and supplied to a tenter stretching machine, and oblique stretching was performed.
  • the stretching ratio in the oblique stretching was 1.96 times, and the stretching temperature was 142 ° C.
  • both ends in the substrate film width direction were trimmed to obtain a first substrate (A-1) having a long width of 1350 mm.
  • the obtained stretched substrate had a slow axis of 22.5 ° in the width direction, an orientation angle variation of 0.2 °, an Nz coefficient of 1.35, an Re of 259 nm, and a film thickness of 43 ⁇ m.
  • the obtained first base material (A-1) was rolled up while being protected with a new masking film (FF1025, manufactured by Treteger) to obtain a roll of the first base material (A-1).
  • the roll of the first base material (A-1) is the same as that of Example 1 except that the roll obtained in (9-1) was used instead of the roll obtained in (1-1) of Example 1.
  • a multilayer film was produced and evaluated in the same manner as (1-2) to (1-4).
  • Example 1 Except for the following items, the same operation as in Example 1 was performed to obtain and evaluate the first base material and the multilayer film.
  • the stretching ratio was 3.0 times, the stretching temperature was 131 ° C., and the stretching direction was also changed.
  • the obtained intermediate film had an average orientation angle of 15 ° with respect to the width direction and Re of 300 nm.
  • the stretching ratio was changed to 1.80 times and the stretching temperature was changed to 128 ° C.
  • Example 2 Except for the following items, the same operation as in Example 1 was performed to obtain and evaluate the first base material and the multilayer film.
  • the stretching ratio was 1.5 times, the stretching temperature was 144 ° C., and the stretching direction was also changed.
  • the obtained intermediate film had an average orientation angle of 55 ° with respect to the width direction and Re of 300 nm.
  • the stretching ratio was changed to 2.0 times and the stretching temperature was changed to 145 ° C.
  • Tables 1 and 2 show the results of Examples 1 to 9 and Comparative Examples 1 and 2.
  • Example 10 (10-1. Manufacturing of circularly polarizing plate) A circularly polarizing plate was produced using the optically anisotropic layer of the multilayer film obtained in Example 1 as a ⁇ / 4 wavelength plate.
  • a polarizing film manufactured by Sanlitz, trade name “HLC2-5618S”, thickness 180 ⁇ m, having a transmission axis in a direction of 0 ° with respect to the width direction
  • This one surface was bonded to the surface of the multilayer film obtained in Example 1 on the side of the optically anisotropic layer (that is, the ⁇ / 4 wavelength plate).
  • Pasting was performed via an adhesive layer (manufactured by Nitto Denko, trade name “CS9621”).
  • a laminate (10-i) having a layer configuration of (polarizer) / (adhesive layer) / ( ⁇ / 4 wavelength plate) / (first substrate) was obtained.
  • the first substrate was peeled from the laminate (10-i) to obtain a circularly polarizing plate having a layer structure of (polarizer) / (adhesive layer) / ( ⁇ / 4 wavelength plate).
  • Each of these bonding and peeling operations was continuously performed by roll-to-roll in the embodiment illustrated in FIG. Therefore, the operation of pasting was performed in a state where the longitudinal direction of the long film was aligned.
  • the optical axes of the components of the obtained circularly polarizing plate had the following angular relationship. That is, when the circularly polarizing plate was observed from the surface on the polarizer side, the slow axis of the ⁇ / 4 wavelength plate was shifted 45 ° clockwise from the direction of the transmission axis of the polarizing plate.
  • Example 10 except that the film obtained in Example 5 (Example 11) or the one obtained in Example 6 (Example 12) was used instead of the film obtained in Example 1 as the multilayer film.
  • a circularly polarizing plate was obtained.
  • the angular relationship of the optical axes of the components of the obtained circularly polarizing plate was the same as that of the circularly polarizing plate obtained in Example 10.
  • the obtained long circularly polarizing plate was cut into an appropriate size and evaluated by visual observation.
  • Table 3 shows the evaluation results of visual observation in Examples 10 to 12.
  • Example 13 The surface on the ⁇ / 4 wavelength plate side of the circularly polarizing plate manufactured in Example 12 and the reflective surface of a reflective plate (trade name “Metal Me TS50”, manufactured by Toray Industries, Inc., aluminum-deposited PET (polyethylene terephthalate) film) are bonded together. did. Pasting was performed via an adhesive layer (manufactured by Nitto Denko, trade name “CS9621”). Thus, an evaluation laminate (12-v) having a layer configuration of (polarizer) / (adhesive layer) / ( ⁇ / 4 wavelength plate) / (adhesive layer) / (reflector) was obtained. .
  • the reflectance of light incident on the surface on the polarizer side was measured.
  • a spectrophotometer V7200 and an absolute reflectance unit VAR7020 manufactured by JASCO Corporation were used.
  • the polar angle was varied in the range of 5 ° to 60 °.
  • the azimuth angle was set to 0 °, 45 °, 90 °, and 135 ° clockwise from the direction of the transmission axis of the polarizing plate when the circularly polarizing plate was observed from the surface on the polarizer side. The results are shown in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

 長尺状の第一の基材と、前記第一の基材上に直接形成された、硬化液晶分子を含む光学異方性層とを備える複層フィルムであって、前記第一の基材は、そのNz係数が1.1~3.0、配向角のバラツキが1.0°以下であって、延伸により生じた配向規制力を有し、前記第一の基材の遅相軸と、前記第一の基材の幅方向とがなす角度が0°以上90°未満である、複層フィルム;並びにその製造方法及び用途。

Description

複層フィルム、光学異方性積層体、円偏光板、有機エレクトロルミネッセンス表示装置、及び製造方法
 本発明は、光学異方性層を有する複層フィルム及び光学異方性積層体に関する。本発明はまた、当該光学異方性層を有する円偏光板、有機エレクトロルミネッセンス表示装置、及び製造方法に関する。
 位相差板は、液晶表示装置及び有機エレクトロルミネッセンス(以下において「有機EL」と呼ぶことがある)表示装置等の表示装置の構成要素として、広く用いられている。表示装置に用いる位相差板は、表示のための全ての波長領域(通常は可視領域)において、λ/4、λ/2等の所望の位相差を一様に発現することにより、表示のための全ての波長領域においてその効果が発現することが求められる場合がある。
 このような位相差板は、所望の幅を有する長尺状のフィルムとして、製造ラインにおいて連続的に製造し、このような長尺状の位相差板から、表示装置の矩形の表示面に適合した形状の矩形の位相差板を切り出すことができれば、効率的な製造が可能となる。さらに、長尺状の位相差板の、長手方向及び幅方向に平行な方向に近い方向に矩形の位相差板の辺が相当するように切り出しを行なうことが可能であれば、さらに効率的な製造が可能となる。
 表示装置における位相差板としては、共に用いられる偏光板の透過軸に対して15°、45°、又は75°といった所定の角度に遅相軸を有するものが求められる場合がある。例えば、直線偏光子とλ/4波長板とを組み合わせて外部光の反射防止機能を発現させる場合、位相差板は、直線偏光子の透過軸に対して45°の角度に遅相軸を有することが求められる。偏光板の偏光軸は、表示装置の矩形の表示面の縦横のいずれかの辺に平行な方向に透過軸を有する場合が多い。また、直線偏光子を長尺状のフィルムとして製造する場合、透過軸を長手方向に対して平行又は垂直な方向、特に長手方向に対して垂直な方向であるものが、特に容易に製造しうる。したがって、長尺状の位相差板であって、その幅方向に対して15°、45°、又は75°といった所定の角度に遅相軸を有するものを製造することができれば、表示装置用の位相差板の製造において非常に有利である。
 位相差板を得るための方法の一つとして、液晶相を呈しうる化合物を、液晶相を呈した状態のまま固体のフィルムに成形する方法が知られている。そのような方法の例としては、重合性を有し且つ液晶相を呈しうる重合性液晶化合物を含む組成物を、適切な基材の表面に塗布して層とし、層内の重合性液晶化合物を配向させ、さらに配向させた状態を維持して重合させることにより、光学異方性を有するフィルムを形成する方法が挙げられる。このような方法を用いれば、位相差を面内で均一に発現させた位相差板を得ることが可能であり、また、重合性液晶化合物を適宜選択することにより、可視光波長域で一様な位相差を発生させる位相差板を得ることが可能である(例えば特許文献1)。
 このような液晶相を呈しうる化合物を配向させる方法としては、基材の表面に配向規制力を付与し、その上に液晶相を呈しうる化合物を含む組成物を塗布し、さらに配向に適した条件に置くことが一般的に行なわれる。基材の表面に配向規制力を付与する方法の例としては、ラビングによる方法(例えば特許文献2~4)、及び光配向(例えば特許文献5~6)による方法が挙げられる。また、基材として延伸処理により配向規制力を付与したフィルムを用いることにより、液晶化合物をフィルム上に配向させる方法も知られていた(例えば特許文献7~9)。
特開平11-52131号公報 特開平8-160430号公報 特開2000-267105号公報 特開2002-6322号公報 特許第2980558号公報(対応外国公報:欧州特許出願公開第0525478号明細書) 特開平11-153712号公報 特開平3-9325号公報(対応外国公報:米国特許第5132147号明細書) 特開平4-16919号公報 特開2003-207641号公報(対応外国公報:欧州特許出願公開第1452892号明細書)
 しかしながらラビングを行なった場合、その処理工程中に静電気が発生し易く、かかる静電気の発生により異物が付着したり、配向欠陥の発生により製品の品質が劣化しうる、といった問題点がある。また、長尺状の基材に斜め方向のラビングを連続的に行なう場合、配向方向を厳密に制御することが非常に困難であるという問題点もある。一方、光配向による配向規制力の付与は、高コストであり、且つ処理速度が遅いという問題点がある。
 また、延伸処理によりフィルムに配向規制力を付与する場合、十分な配向規制力を与えることが困難である。とくに斜め方向に配向規制力を付与する場合は、斜め方向に延伸を行う必要があり、その場合、十分な配向規制力を均一かつ高い精度で加えることが困難であり、その結果、得られる光学異方性層にシュリーレン欠陥等の欠陥が生じ易い。
 従って、本発明の目的は、λ/2波長板、λ/4波長板等の位相差板の材料として用いることができ、位相差が面内で均一に発現し、効率的に製造でき、且つ異物の発生による欠陥及び配向規制力の不足による欠陥が少ない、光学異方性層を含む複層フィルム及び光学異方性積層体、並びにその製造方法を提供することにある。
 本発明の別の目的は、効率的に製造でき、且つ異物の発生による欠陥及び配向規制力の不足による欠陥が少ない、円偏光板及び有機エレクトロルミネッセンス表示装置を提供することにある。
 本発明者は前記の課題を解決するべく検討した結果、基材として、その長手方向と異なる方向に特定の態様で遅相軸を付与したものを用いることを着想した。そして、そのような基材上に直接、配向規則性を有する硬化液晶分子を含む光学異方性層を形成した場合、上記課題を解決しうることを見出し、本発明を完成した。
 すなわち、本発明によれば、以下のものが提供される。
〔1〕 長尺状の第一の基材と、
 前記第一の基材上に直接形成された、硬化液晶分子を含む光学異方性層とを備える複層フィルムであって、
 前記第一の基材は、そのNz係数が1.1~3.0、配向角のバラツキが1.0°以下であって、延伸により生じた配向規制力を有し、
 前記第一の基材の遅相軸と、前記第一の基材の幅方向とがなす角度が0°以上90°未満である、複層フィルム。
〔2〕 前記第一の基材の遅相軸と前記第一の基材の幅方向とがなす角度が40°~80°である、〔1〕に記載の複層フィルム。
〔3〕 前記第一の基材の遅相軸と前記第一の基材の幅方向とがなす角度が55°~80°である、〔2〕に記載の複層フィルム。
〔4〕 前記第一の基材が正の固有複屈折性を有する樹脂のフィルムである、〔1〕~〔3〕のいずれか1項に記載の複層フィルム。
〔5〕 前記第一の基材が脂環式構造含有重合体を含む樹脂のフィルムである、〔1〕~〔4〕のいずれか1項に記載の複層フィルム。
〔6〕 前記第一の基材が、1回以上の斜め延伸を含む延伸工程により延伸された延伸フィルムである、〔1〕~〔5〕のいずれか1項に記載の複層フィルム。
〔7〕 前記光学異方性層が逆波長分散性を有する、〔1〕~〔6〕のいずれか1項に記載の複層フィルム。
〔8〕 前記光学異方性層がλ/4波長板である、〔1〕~〔7〕のいずれか1項に記載の複層フィルム。
〔9〕 前記光学異方性層がλ/2波長板である、〔1〕~〔7〕のいずれか1項に記載の複層フィルム。
〔10〕 前記光学異方性層の厚みが5μm以下である、〔1〕~〔9〕のいずれか1項に記載の複層フィルム。
〔11〕 〔1〕~〔10〕のいずれか1項に記載の複層フィルムから、光学異方性層を剥離し、
 前記光学異方性層を、長尺状の第二の基材に貼合してなる、光学異方性積層体。
〔12〕 光学異方性層と、長尺状の直線偏光子とをロールツーロールで貼合してなる円偏光板であって、
 前記光学異方性層が、〔1〕~〔10〕のいずれか1項に記載の複層フィルムから剥離してなる層である、円偏光板。
〔13〕 〔12〕に記載の円偏光板を備える有機エレクトロルミネッセンス表示装置。
〔14〕 〔1〕~〔10〕のいずれか1項に記載の複層フィルムの製造方法であって、
 長尺状の第一の基材を長手方向に繰出す工程であって、前記第一の基材は、そのNz係数が1.1~3.0、配向角のバラツキが1.0°以下であって、延伸により生じた配向規制力を有し、前記第一の基材の遅相軸と、前記第一の基材の幅方向とがなす角度が0°以上90°未満である、工程(I)、
 繰出した前記第一の基材の表面上に、直接、重合性液晶化合物を含有する液晶組成物を塗布し、液晶組成物の層を得る工程(II)、
 前記液晶組成物の層中の前記重合性液晶化合物を配向させる工程(III)、及び
 前記重合性液晶化合物を重合させ、硬化液晶分子を形成する工程(IV)を含む製造方法。
〔15〕 前記液晶組成物の塗布方向と、前記重合性液晶化合物の配向方向とが異なる、〔14〕に記載の複層フィルムの製造方法。
 本発明の複層フィルム及び光学異方性積層体は、λ/2波長板、λ/4波長板等の位相差板の材料として用いることができ、位相差が面内で均一に発現し、効率的に製造でき、且つ異物の発生による欠陥及び配向規制力の不足による欠陥が少ない光学異方性層を供給しうる。また、本発明の製造方法によれば、前記本発明の複層フィルムを効率的に製造しうる。
 さらに、硬化液晶分子の材料として、逆波長分散重合性液晶化合物を用い、逆波長分散特性を有する光学異方性層を形成することにより、斜め延伸による製造の効率の高さ、遅相軸方向の設定の自由度の高さ、面内における特性の均一さ、異物による欠陥の少なさ、及び逆波長分散特性による有用性を高レベルで兼ね備えた光学材料を提供しうる。
 本発明の円偏光板及び有機エレクトロルミネッセンス表示装置は、均一な特性を有し、効率的に製造でき、且つ異物の発生による欠陥及び配向規制力の不足による欠陥が少ない、円偏光板及び有機エレクトロルミネッセンス表示装置としうる。
図1は、ロールツーロールでの貼合の例を示す概略図である。 図2は、実施例13における、円偏光板の評価用積層体の偏光子側の面に入射した光の反射率を測定し、測定した反射率より反射輝度を計算した結果を示すグラフである。
 以下、例示物及び実施形態を挙げて本発明について詳細に説明するが、本発明は以下に挙げる例示物及び実施形態に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。
 本願において、「偏光板」、「λ/2波長板」、「λ/4波長板」及び「位相差板」といった板状の形状を有する部材は、剛直な部材に限られるものではなく、フィルム状の、可撓性を有するものとしうる。
 本願において、ある層の面内レターデーションRe及び厚み方向のレターデーションRthは、式Re=(nx-ny)×d及びRth=[{(nx+ny)/2}-nz]×dに従って算出する。nxは、当該層の面内の遅相軸方向の屈折率(面内の最大屈折率)であり、nyは、当該層の面内の遅相軸に垂直な方向の屈折率であり、nzは、当該層の厚み方向の屈折率であり、dは、当該層の厚み(nm)である。さらに、Nz係数は、別に断らない限り、Nz=(nx-nz)/(nx-ny)=Rth/Re+0.5で表される値である。測定波長は、別に断らない限り、590nmとする。
 〔1.複層フィルム〕
 本発明の複層フィルムは、長尺状の第一の基材と、第一の基材上に直接形成された、硬化液晶分子を含む光学異方性層とを備える。
 本願においては、「硬化液晶分子」とは、液晶相を呈しうる化合物を、液晶相を呈した状態のまま固体とした際の当該化合物の分子を意味する。硬化液晶分子の例としては、重合性液晶化合物を重合させてなる重合体が挙げられる。以下の説明においては、別段ことわらない限り、この特定の、硬化液晶分子を含む光学異方性層を、単に「光学異方性層」という。
 〔1.1.第一の基材〕
 本発明において用いる第一の基材は、長尺状の基材である。本願において「長尺状」とは、幅に対して、少なくとも5倍以上の長さを有する形状をいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムの形状をいう。フィルムの幅に対する長さの割合の上限は、特に限定されないが、例えば100,000倍以下としうる。
 本発明において用いる第一の基材は、その長手方向と異なる方向に遅相軸を有する。即ち、第一の基材の遅相軸と、第一の基材の幅方向とがなす角度は0°以上90°未満である。本願において、第一の基材及び光学異方性層の遅相軸の方向とは、別に断らない限り、面内方向の遅相軸の方向をいう。
 また、本願において、基材及び光学異方性層の遅相軸方向を表現する角度は、別に断らない場合は、基材の幅方向を基準とし、これに対する角度で表現している。また、基材又は光学異方性層の遅相軸方向と、基材又は光学異方性層の幅方向とがなす角度のことを単に「配向角」という場合がある。
 第一の基材の遅相軸と第一の基材の幅方向とがなす角度は、具体的には0°~80°としうる。このような範囲の角度において遅相軸を有することにより、本発明の複層フィルムを、円偏光板等の効率的な製造を可能にする材料とすることができる。
 また、ある態様において、第一の基材の遅相軸と第一の基材の幅方向とがなす角度が、40°~80°であることが好ましく、55°~80°であることが特に好ましい。このような角度関係とすることにより、本発明の複層フィルムを、特定の円偏光板の効率的な製造を可能にする材料とすることができる。具体的には、直線偏光子と、一枚の位相差板とを有する円偏光板の効率的な製造が可能となる。本発明の複層フィルムは、第一の基材を所定のNz係数を有するものとすることにより、このような角度を有する場合においても、斜め延伸による良好な配向規制力を発現させ、その結果欠陥の少ない光学異方性層を有する複層フィルムとしうる。
 また、別のある態様において、第一の基材の遅相軸と第一の基材の幅方向とがなす角度を、好ましくは15°±5°、22.5±5°、45°±5°、75°±5°、より好ましくは15°±4°、22.5°±4°、45°±4°、75°±4°、さらにより好ましくは15°±3°、22.5°±3°、45°±3°、75°±3°といった特定の範囲とすることにより、本発明の複層フィルムを、特定の円偏光板の効率的な製造を可能にする材料とすることができる。
 第一の基材の材料は、特に限定されず、複屈折性の付与によりその表面に配向規制力を付与しうる種々の樹脂を用いうる。樹脂の例としては、各種の重合体を含む樹脂が挙げられる。当該重合体としては、脂環式構造含有重合体、セルロースエステル、ポリビニルアルコール、ポリイミド、UV透過アクリル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、エポキシ重合体、ポリスチレン、及びこれらの組み合わせが挙げられる。これらの中でも、透明性、低吸湿性、寸法安定性、軽量性等の観点から、脂環式構造含有重合体及びセルロースエステルが好ましく、脂環式構造含有重合体がより好ましい。
 第一の基材は正の固有複屈折性を有する樹脂のフィルムであることが好ましい。正の固有複屈折性を有する樹脂を材料として用いた場合、配向規制力の高さ、強度の高さ、コストの低さ等の良好な特性を備えた第一の基材を、容易に得ることができる。
 脂環式構造含有重合体は、繰り返し単位中に脂環式構造を有する非晶性の重合体であり、主鎖中に脂環式構造を含有する重合体及び側鎖に脂環式構造を含有する重合体のいずれも用いることができる。
 脂環式構造としては、例えば、シクロアルカン構造、シクロアルケン構造等が挙げられるが、熱安定性等の観点からシクロアルカン構造が好ましい。
 1つの脂環式構造の繰り返し単位を構成する炭素数に特に制限はないが、通常4~30個、好ましくは5~20個、より好ましくは6~15個である。
 脂環式構造含有重合体中の脂環式構造を有する繰り返し単位の割合は使用目的に応じて適宜選択されるが、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上である。
 脂環式構造を有する繰り返し単位が過度に少ないと、フィルムの耐熱性が低下するおそれがある。
 脂環式構造含有重合体は、具体的には、(1)ノルボルネン重合体、(2)単環の環状オレフィン重合体、(3)環状共役ジエン重合体、(4)ビニル脂環式炭化水素重合体、及びこれらの水素添加物などが挙げられる。
 これらの中でも、透明性や成形性の観点から、ノルボルネン重合体及びこれらの水素添加物がより好ましい。
 ノルボルネン重合体としては、例えば、ノルボルネンモノマーの開環重合体、ノルボルネンモノマーと開環共重合可能なその他のモノマーとの開環共重合体、及びそれらの水素添加物;ノルボルネンモノマーの付加重合体、ノルボルネンモノマーと共重合可能なその他のモノマーとの付加共重合体などが挙げられる。
 これらの中でも、透明性の観点から、ノルボルネンモノマーの開環重合体水素添加物が最も好ましい。
 上記の脂環式構造含有重合体は、例えば特開2002-321302号公報等に開示されている公知の重合体から選ばれる。
 脂環式構造含有重合体は、そのガラス転移温度が、好ましくは80℃以上、より好ましくは100~250℃の範囲である。
 ガラス転移温度がこのような範囲にある脂環式構造含有重合体は、高温下での使用における変形や応力が生じることがなく耐久性に優れる。
 脂環式構造含有重合体の分子量は、溶媒としてシクロヘキサン(樹脂が溶解しない場合にはトルエン)を用いたゲル・パーミエーション・クロマトグラフィー(以下、「GPC」と略す。)で測定したポリイソプレン換算(溶媒がトルエンのときは、ポリスチレン換算)の重量平均分子量(Mw)で、通常10,000~100,000、好ましくは25,000~80,000、より好ましくは25,000~50,000である。
 重量平均分子量がこのような範囲にあるときに、フィルムの機械的強度及び成形加工性が高度にバランスされ好適である。
 脂環式構造含有重合体の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は特に制限されないが、通常1~10、好ましくは1~4、より好ましくは1.2~3.5の範囲である。
 脂環式構造含有重合体を含む樹脂は、その分子量2,000以下の樹脂成分(すなわち、オリゴマー成分)の含有量が、好ましくは5重量%以下、より好ましくは3重量%以下、さらに好ましくは2重量%以下である。
 オリゴマー成分の量が前記範囲内にあると、表面における微細な凸部の発生が減少し、厚みむらが小さくなり面精度が向上する。
 オリゴマー成分の量を低減するためには、重合触媒や水素化触媒の選択、重合、水素化等の反応条件、樹脂を成形用材料としてペレット化する工程における温度条件、等を最適化すればよい。
 オリゴマーの成分量は、前述のGPCによって測定することができる。
 第一の基材の材質として脂環式構造含有重合体を含む樹脂を用いた場合の、第一の基材の厚みは特に制限されないが、生産性の向上、薄型化及び軽量化を容易にする観点から、その厚みは、通常1~1000μm、好ましくは5~300μm、より好ましくは30~100μmである。
 脂環式構造含有重合体を含む樹脂は、脂環式構造含有重合体のみからなってもよいが、本発明の効果を著しく損なわない限り、任意の配合剤を含んでもよい。脂環式構造含有重合体を含む樹脂中の、脂環式構造含有重合体の割合は、好ましくは70重量%以上、より好ましくは80重量%以上である。
 脂環式構造含有重合体を含む樹脂の好適な具体例としては、日本ゼオン社製「ゼオノア1420、ゼオノア1420R」を挙げうる。
 セルロースエステルとしては、セルロースの低級脂肪酸エステル(例:セルロースアセテート、セルロースアセテートブチレートおよびセルロースアセテートプロピオネート)が代表的である。低級脂肪酸は、1分子あたりの炭素原子数6以下の脂肪酸を意味する。セルロースアセテートには、トリアセチルセルロース(TAC)やセルロースジアセテート(DAC)が含まれる。
 セルロースアセテートの酢化度は、50~70%が好ましく、特に55~65%が好ましい。重量平均分子量70000~120000が好ましく、特に80000~100000が好ましい。また、上記セルロースアセテートは、酢酸だけでなく上記酢化度を満足する限り、一部プロピオン酸、酪酸等の脂肪酸でエステル化されていても良い。また、第一の基材を構成する樹脂は、セルロースアセテートと、セルロースアセテート以外のセルロースエステル(セルロースプロピオネート及びセルロースブチレート等)とを組み合わせて含んでも良い。その場合、これらのセルロースエステルの全体が、上記酢化度を満足することが好ましい。
 第一の基材として、トリアセチルセルロースのフィルムを用いる場合、かかるフィルムとしては、トリアセチルセルロースを低温溶解法あるいは高温溶解法によってジクロロメタンを実質的に含まない溶剤に溶解することで調製されたトリアセチルセルロースドープを用いて作成されたトリアセチルセルロースフィルムが、環境保全の観点から特に好ましい。トリアセチルセルロースのフィルムは、共流延法により作製しうる。共流延法は、トリアセチルセルロースの原料フレークを溶媒に溶解し、これに必要に応じて任意の添加剤を添加し溶液(ドープ)を調製し、当該ドープをドープ供給手段(ダイ)から支持体の上に流延し、流延物をある程度乾燥して剛性が付与された時点でフィルムとして支持体から剥離し、当該フィルムをさらに乾燥して溶媒を除去することにより行いうる。原料フレークを溶解する溶媒の例としては、ハロゲン化炭化水素類(ジクロロメタン等)、アルコール類(メタノール、エタノール、ブタノール等)、エステル類(蟻酸メチル、酢酸メチル等)、エーテル類(ジオキサン、ジオキソラン、ジエチルエーテル等)等が挙げられる。ドープに添加する添加剤の例としては、レターデーション上昇剤、可塑剤、紫外線吸収剤、劣化防止剤、滑り剤、剥離促進剤等が挙げられる。ドープを流延する支持体の例としては、水平式のエンドレスの金属ベルト、及び回転するドラムが挙げられる。流延に際しては、単一のドープを単層流延することもできるが、複数の層を共流延することもできる。複数の層を共流延する場合、例えば、低濃度のセルロースエステルドープの層と、そのおもて面及び裏面に接して設けられた高濃度のセルロースエステルドープの層が形成されるよう、複数のドープを順次流延しうる。フィルムを乾燥して溶媒を除去する手段の例としては、フィルムを搬送して、内部を乾燥に適した条件に設定した乾燥部を通過させる手段が挙げられる。
 トリアセチルセルロースのフィルムの好ましい例としては、TAC-TD80U(富士写真フィルム(株)製)等の公知のもの、及び発明協会公開技報公技番号2001-1745号にて公開されたものが挙げられる。トリアセチルセルロースのフィルムの厚みは特に限定されないが、20~150μmが好ましく、40~130μmがより好ましく、70~120μmが更に好ましい。
 第一の基材は、延伸により生じた配向規制力を有し、0°以上90°未満の配向角を有する。第一の基材はさらに、そのNz係数が特定の範囲であり、且つ配向角のバラツキが特定の範囲である。
 第一の基材のNz係数は、1.1以上であり、好ましくは1.2以上であり、より好ましくは1.6以上であり、一方3.0以下であり、好ましくは2.9以下であり、より好ましくは2.3以下ある。一般にフィルムのNz係数は面内で一定ではないので、通常は、平均Nz係数によりそのフィルムのNz係数の評価を行なう。フィルムの平均Nz係数は、フィルムの幅方向に50mm間隔の複数の地点でNz係数を測定し、これらの地点でのNz係数の平均値を計算することにより求めうる。また、Nz係数の各測定値の最大値から最小値を差し引いた値(Nz係数のバラツキ)は、0.10以下、好ましくは0.09以下、より好ましくは0.08以下である。
 第一の基材の配向角のバラツキは1.0°以下であり、好ましくは0.8°以下である。配向角のバラツキの下限は特に限定されないが、理想的には0°である。第一の基材の配向角のバラツキは、第一の基材の任意の地点における幅方向と遅相軸とがなす角度のうち、その最大値と最小値との差を表す。
 Nz係数は、Re等の他の光学的特性と共に、位相差計(例えば商品名「AxoScan」、Axometrics社製)を用いて測定しうる。また、配向角のバラツキは、例えば偏光顕微鏡を用いた観察により測定しうる。
 本願発明者が見出したところによれば、第一の基材のNz係数及び配向角のバラツキが上に述べた特定の範囲内である場合、良好な配向規制力が得られ、その結果、シュリーレン欠陥等の欠陥が少ない光学異方性層を形成できる。また、Nz係数及び配向角は、第一の基材の光学特性としてモニターすることが可能である。したがって、複層フィルムの連続的な製造において、配向規制力の指標として容易に測定することができ、その結果、製造の品質管理が容易になり、高品質な製品を効率的に製造することが可能となる。
 シュリーレン欠陥とは、透明基材上に液晶化合物を塗布し、液晶分子を配向させた場合に配向が局所的に乱れることにより、均一に配向していない液晶配向欠陥のことである。光学異方性層におけるシュリーレン欠陥の数は、光学異方性層を、偏光顕微鏡を用いて観察した時に、偏光子または検光子の光軸と液晶分子の配向軸または光軸が、平行または直交した暗視野部分が放射状に見える配向欠陥を計数することにより評価しうる。
 このような特定のNz係数及び配向角のバラツキを有する第一の基材は、上記の材料からなるものなどのフィルムを延伸し、光学異方性を付与することにより調製しうる。延伸する方向は、光学異方性層に求められる所望の配向方向に応じて適宜設定しうる。延伸は、斜め延伸のみでもよく、横延伸(第一の基材の幅方向への延伸)のみでもよく、斜め延伸と、縦延伸(第一の基材の長手方向への延伸)及び/又は横延伸とを組み合わせて行ってもよい。斜め方向に配向規制力を発現させる観点からは、1回以上の斜め延伸を含む延伸が好ましい。延伸倍率は、基材表面に配向規制力が生じる範囲で適宜設定しうる。第一の基材が正の固有複屈折性を有する樹脂を材料として用いた場合、延伸方向に分子が配向して延伸方向に遅相軸が発現する。
 好ましい延伸の態様の例として、1回以上の斜め延伸と、1回以上の自由縦一軸延伸とを組み合わせた延伸が挙げられる。このような延伸を行うことにより、所望のNz係数及び配向角のバラツキを有する第一の基材を容易に製造しうる。ここで、斜め延伸及び自由縦一軸延伸を行う順序及びそれぞれの延伸倍率は特に限定されないが、斜め延伸を行い、その後自由縦一軸延伸を行うことが好ましい。より具体的には、
 工程(a):長尺の延伸前基材を延伸倍率B1で斜め方向に延伸して、長尺の中間フィルムを得る工程と、
 工程(b):工程(a)の後で、中間フィルムを連続的に搬送しながら、延伸倍率B1より小さい延伸倍率B2で自由縦一軸延伸して、長尺の延伸フィルムを得る工程とを含む延伸が、好ましい態様として挙げられる。
 工程(a)の斜め延伸は、延伸前基材の幅方向とがなす角度が0°超90°未満の方向への延伸を連続的に行いうる、テンター装置等の既知の装置を用いて行いうる。
 工程(a)における延伸倍率B1は、好ましくは1.1倍以上、より好ましくは1.5倍以上であり、好ましくは4.0倍以下、より好ましくは3.0倍以下である。工程(a)における延伸倍率B1を前記範囲の下限値以上にすることにより、得られる第一の基材のNz係数を所望の大きい値とすることができる。また、上限値以下にすることにより、得られる第一の基材の配向角を容易に制御することができる。
 工程(a)における延伸温度T1は、好ましくはTg℃以上、より好ましくは(Tg+2)℃以上、特に好ましくは(Tg+5)℃以上であり、好ましくは(Tg+40)℃以下、より好ましくは(Tg+35)℃以下、特に好ましくは(Tg+30)℃以下である。ここで、Tgとは、延伸前基材を形成する樹脂のガラス転移温度である。また、延伸温度とは、延伸を行う装置における延伸ゾーンにおける温度をいう。工程(a)における延伸温度T1を前記の範囲にすることにより、延伸前基材に含まれる分子を確実に配向させることができるので、所望の光学特性を有する中間フィルムを容易に得ることができる。
 工程(a)における延伸によって中間フィルムに含まれる分子は配向しているので、中間フィルムは遅相軸を有する。工程(a)では斜め方向へ延伸が行なわれるので、中間フィルムの遅相軸は、中間フィルムの斜め方向に発現する。具体的には、中間フィルムは、その幅方向に対して、平均で通常5°~85°の範囲に遅相軸を有する。ここで、フィルムがその幅方向に対して平均である範囲に遅相軸を有する、とは、そのフィルムの幅方向の複数の地点において当該フィルムの幅方向と遅相軸とがなす配向角θを測定した場合に、それらの地点で測定された配向角θの平均値が、前記のある範囲に収まることを意味する。中でも、中間フィルムの遅相軸の方向は、製造したい第一の基材の遅相軸の方向に応じて設定することが好ましい。通常は、工程(b)により得られる第一の基材の遅相軸がその幅方向に対してなす角度は、中間フィルムがその幅方向に対してなす角度よりも大きくなる。そのため、中間フィルムの遅相軸がその幅方向に対してなす角度が、得られる第一の基材の遅相軸がその幅方向に対してなす角度よりも小さくなるようにすることが好ましい。例えば、中間フィルムは、その幅方向に対して、平均で、好ましくは10°以上、より好ましくは20°以上、且つ、好ましくは40°以下、より好ましくは35°以下の範囲に遅相軸を有する。これにより、フィルムの幅方向に対して斜めに遅相軸を有するフィルムとして種々の用途に用いられる、配向角θが45°付近の第一の基材を容易に得ることができる。
 工程(b)における自由一軸延伸とは、ある一方向への延伸であって、延伸される方向以外の方向に拘束力を加えないことをいう。よって、自由縦一軸延伸は、フィルムの幅方向の端部を拘束しないで行なう縦方向への延伸のことをいう。工程(b)でのこのような延伸は、通常、中間フィルムを長手方向に連続的に搬送しながら、ロール延伸機を用いて行なわれる。
 工程(b)における延伸倍率B2は、工程(a)における延伸倍率B1よりも小さくする。これにより、延伸によるシワを生じさせること無く、第一の基材に大きいNz係数を発現させることができる。このように、斜め方向への延伸及び自由縦一軸延伸をこの順に行なうことと、延伸倍率をB1>B2とすることとを組み合わせることにより、幅方向に対して斜めの方向に遅相軸を有し、且つ、大きいNz係数及び小さい配向角のバラツキを有する第一の基材を容易に製造できる。
 工程(b)における具体的な延伸倍率B2は、好ましくは1.1倍以上、より好ましくは1.15倍以上、特に好ましくは1.2倍以上であり、好ましくは2.0倍以下、より好ましくは1.8倍以下、特に好ましくは1.6倍以下である。工程(b)における延伸倍率B2を前記範囲の下限値以上にすることにより、得られる第一の基材のシワを防止できる。また、上限値以下にすることにより、得られる第一の基材のNz係数を大きくできる。
 また、工程(a)における延伸倍率B1と工程(b)における延伸倍率B2とを合わせた総延伸倍率(B1×B2)は、好ましくは1.1倍以上、より好ましくは1.5倍以上、特に好ましくは1.9倍以上であり、好ましくは4.5倍以下、より好ましくは4.2倍以下、特に好ましくは4.0倍以下である。総延伸倍率を前記範囲の下限値以上にすることにより、得られる第一の基材のNz係数を大きくできる。また、上限値以下にすることにより、得られる第一の基材の配向角を容易に制御できる。
 工程(b)における延伸温度T2は、工程(a)における延伸温度T1を基準として、好ましくは(T1-5)℃より高く、より好ましくは(T1-4)℃以上、特に好ましくは(T1-3)℃以上であり、好ましくは(T1+5)℃より低く、より好ましくは(T1+4)℃以下、特に好ましくは(T1+3)℃以下である。工程(b)における延伸温度T2を前記の範囲にすることにより、得られる第一の基材の良好な性質を得ることができる。
 第一の基材の面内方向の位相差Reは、好ましくは30nm以上、より好ましくは50nm以上であり、一方好ましくは500nm以下であり、より好ましくは300nm以下である。第一の基材の複屈折Δnの下限は、好ましくは0.000050以上、より好ましくは0.000070以上であり、一方、第一の基材の複屈折Δnの上限は好ましくは0.007500以下、より好ましくは0.007000以下である。特に、第一の基材の材料として、上に述べた脂環式構造含有重合体を含む樹脂又はトリアセチルセルロースを含む樹脂を用い、当該範囲内の光学特性を付与することにより、第一の基材の厚み方向全体に亘って分子ダイレクターが略均一に配向し、良好な配向規制力を第一の基材表面に与えることができる。延伸は、テンター延伸機などの既知の延伸機を用いて行いうる。
 一方、ラビング処理の場合、基材の表面層にしか配向規制力を与えることができず、光配向膜を使用する場合も、配向膜層の薄膜表面層にしか配向規制力を与えることができない。表面層にのみ発現した配向規制力は、経時と共に環境の影響(熱、光、酸素など)により緩和し、光学異方性層の形成時に配向欠陥をより発生させうる。
 〔1.2.第一の基材上での光学異方性層の形成〕
 本発明の複層フィルムは、第一の基材上に直接形成された、硬化液晶分子を含む光学異方性層を備える。
 第一の基材上への、光学異方性層の「直接」の形成とは、第一の基材の表面に、他の層を介さずに光学異方性層を形成することである。延伸により生じた配向規制力を有する第一の基材を採用し、且つ、光学異方性層がその上に直接形成されたものであることにより、所望の方向に遅相軸を有する光学異方性層を、ラビングにより生じる発塵、キズの発生や異物の混入が無い状態で得ることができる。その結果、配向における欠陥の少ない光学異方性層とすることができる。具体的には、光学異方性層を顕微鏡観察した場合に見られるキズや異物が少なく、線欠陥等の配向欠陥の少ない光学異方性層とすることができる。さらに、上に述べた特定のNz係数及び配向角のバラツキを有する第一の基材を採用し、光学異方性層がその上に直接形成されたものであることにより、良好な配向規制力が得られ、その結果、シュリーレン欠陥等の欠陥が少ない光学異方性層を容易に得ることができる。
 第一の基材上での光学異方性層の形成は、典型的には、
 工程(I):上に述べた特定の長尺状の第一の基材を長手方向に繰出す工程、
 工程(II):繰り出した第一の基材上に、直接、重合性液晶化合物を含有する液晶組成物を塗布し、液晶組成物の層を形成する工程、
 工程(III):液晶組成物の層における重合性液晶化合物を配向させる工程、及び
 工程(IV):重合性液晶化合物を重合させ、硬化液晶分子を形成する工程
 を含む方法により行いうる。
 工程(I)は、上に述べた特定の長尺状の第一の基材のロールを用意し、これから第一の基材を繰り出すことにより行いうる。
 工程(II)は、連続的に搬送される第一の基材の一方の面上に、液晶組成物を直接塗布することにより行いうる。基材の搬送方向と、液晶組成物の塗布方向とは通常同一方向となりうる。塗布の方法の例としては、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、キャップコーティング法、及びディッピング法が挙げられる。例えばダイコーティング法において、ダイコーターのリップ方向を基材幅方向と平行となるように配置した場合、液晶組成物の塗布方向は基材の搬送方向つまり基材の長手方向と同一となる。塗布される液晶組成物の層の厚みは、光学異方性層に求められる所望の厚さに応じて適宜設定しうる。
 工程(III)は、塗布により直ちに達成される場合もあるが、必要に応じて、塗布の後に、加温などの配向処理を施すことにより達成される場合もある。配向処理の条件は、使用する液晶組成物の性質に応じて適宜設定しうるが、例えば、50~160℃の温度条件において30秒間~5分間処理する条件としうる。用いる液晶組成物の組成及び処理条件を適宜設定することにより、第一の基材の遅相軸の方向と略同一方向に沿った配向を達成しうる。これにより、使用する液晶組成物の塗布方向と、重合性液晶化合物の配向方向とを異ならせる、すなわち交差させることができる。液晶組成物の塗布方向と、重合性液晶化合物の配向方向とがなす角は、好ましくは5°を超える角度、より好ましくは10~90°、さらにより好ましくは40~50°としうる。
 工程(III)の後直ちに工程(IV)を行ってもよいが、工程(III)の後工程(IV)の前に、必要に応じて液晶組成物の層を乾燥させる工程を行なってもよい。かかる乾燥は、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥等の乾燥方法で達成しうる。かかる乾燥により、液晶組成物の層から、溶媒を除去することができる。
 工程(IV)は、重合性化合物及び重合開始剤等の、液晶組成物の成分の性質に適合した方法を適宜選択しうる。例えば、活性エネルギー線を照射する方法、及び熱重合法が挙げられる。加熱を必要とせず、室温で反応を進行させうることから活性エネルギー線を照射する方法が好ましい。ここで、照射される活性エネルギー線には、可視光線、紫外線、及び赤外線等の光、並びに電子線等の任意のエネルギー線が含まれうる。なかでも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。紫外線照射時の温度の上限は、基材のガラス転移温度(Tg)以下とすることが好ましい。通常、150℃以下、好ましくは100℃以下、特に好ましくは80℃以下の範囲である。紫外線照射時の温度の下限は、15℃以上としうる。紫外線照射強度は、通常、0.1mW/cm~1000mW/cmの範囲、好ましくは0.5mW/cm~600mW/cmの範囲である。紫外線照射時間は、1秒~300秒の範囲、好ましくは5秒~100秒の範囲である。紫外線積算光量(mJ/cm)=紫外線照射強度(mW/cm)×照射時間(秒)で求められる。紫外線照射光源としては、高圧水銀灯、メタルハライドランプ、低圧水銀灯を用いることができる。
 〔1.3.光学異方性層〕
 本発明の複層フィルムにおいて、硬化液晶分子は、第一の基材の遅相軸の方向と略同一方向に沿った配向規則性を有しうる。
 硬化液晶分子は、好ましくは、第一の基材の遅相軸の方向と略同一方向に沿ったホモジニアス配向規則性を有しうる。ここで、「ホモジニアス配向規則性を有する」とは、硬化液晶分子のメソゲンの長軸方向をフィルム面に投影して得られる線の平均方向が、フィルム面に水平なある一の方向(例えば基材フィルムの表面ダイレクターの方向)に整列することをいう。さらに、ある所定の方向に「沿った」ホモジニアス配向規則性とは、当該整列方向が、前記所定の方向に略一致することをいう。例えば、前記所定の方向とは、基材フィルムの表面ダイレクターの方向や基材フィルムの遅相軸方向である。硬化液晶分子がホモジニアス配向規則性を有しているか否か、及びその整列方向は、AxoScan(Axometrics社製)に代表されるような位相差計を用いた遅相軸方向の測定と、遅相軸方向ならびに遅相軸と直交方向における入射角毎のレターデーション分布の測定とにより確認しうる。
 ここで、硬化液晶分子が、棒状の分子構造を有する重合性液晶化合物を重合させてなるものである場合は、通常は、当該重合性液晶化合物のメソゲンの長軸方向が、硬化液晶分子のメソゲンの長軸方向となる。また、重合性液晶化合物として逆波長分散重合性液晶化合物(後述)を用いた場合のように、光学異方性層中に、配向方向の異なる複数種類のメソゲンが存在する場合は、それらのうち最も長い種類のメソゲンの長軸方向が整列する方向が、当該整列方向となる。
 さらに、第一の基材の遅相軸の方向と「略」同一方向に沿った配向とは、第一の基材の遅相軸の方向と、メソゲンの整列方向とがなす角が、5°以内であることをいう。当該角は、好ましくは3°以内であり、より好ましくは1°以内である。
 第一の基材として上に説明した所定の遅相軸を有するものを用い、さらに光学異方性層の材料を適宜選択することにより、光学異方性層に、遅相軸の方向と略同一方向に沿ったホモジニアス配向規則性等の配向規則性を付与することができ、その結果、このような配向規則性を有する光学異方性層を得ることができる。
 光学異方性層の厚さは、特に限定されず、レターデーションなどの特性を所望の範囲とできるよう適宜調整することができる。具体的には、厚さの下限は0.5μm以上であることが好ましく、1.0μm以上であることがより好ましく、一方厚さの上限は10μm以下であることが好ましく、7μm以下であることがより好ましく、5μm以下であることがさらにより好ましい。
 光学異方性層の形状並びに長さ及び幅は、第一の基材と同様の長尺状のフィルム状の形状とすることができ、これを、必要に応じて所望の用途に適合した矩形などの形状に裁断することができる。
 光学異方性層は、逆波長分散性を有することが好ましい。即ち、光学異方性層は、短波長より長波長の透過光について高い面内位相差を示す波長分散を有することが好ましい。光学異方性層は、少なくとも可視光の帯域の一部、好ましくは全部においてそのような逆波長分散性を有することが好ましい。光学異方性層が逆波長分散性を有することにより、λ/4波長板又はλ/2波長板といった光学用途において、広い帯域において均一に機能を発現しうる。
 好ましい態様として、光学異方性層は、λ/4波長板又はλ/2波長板である。具体的には、測定波長590nmで測定した面内レターデーションReが、108nm~168nmの範囲である場合、λ/4波長板として使用しうる。また測定波長590nmで測定した面内レターデーションReが245nm~305nmの範囲である場合、λ/2波長板として使用しうる。より具体的には、λ/4波長板の場合、測定波長590nmで測定した面内レターデーションReは、好ましくは128nm~148nm、より好ましくは133nm~143nmの範囲である。またλ/2波長板の場合、測定波長590nmで測定した面内レターデーションReは、好ましくは265nm~285nm、より好ましくは270nm~280nmの範囲である。光学異方性層が、このようなλ/4波長板又はλ/2波長板である場合、それを利用して、λ/4波長板又はλ/2波長板を有する円偏光板等の光学素子を容易に製造しうる。
 光学異方性層の遅相軸と光学異方性層の幅方向とがなす角度は、第一の基材の遅相軸と第一の基材の幅方向とがなす角度と同様としうる。具体的には、光学異方性層の遅相軸と光学異方性層の幅方向とがなす角度は、具体的には0°~80°としうる。また、ある態様において、光学異方性層の遅相軸と光学異方性層の幅方向とがなす角度が、40°~50°であることが特に好ましい。また、具体的には、光学異方性層の遅相軸と光学異方性層の幅方向とがなす角度を、好ましくは15°±5°、22.5°±5°、45°±5°、75°±5°、より好ましくは15°±4°、22.5°±4°、45°±4°、75°±4°、さらにより好ましくは15°±3°、22.5°±3°、45°±3°、75°±3°といった特定の範囲としうる。このような角度関係を有することにより、本発明の複層フィルムを、特定の円偏光板の効率的な製造を可能にする材料とすることができる。
 〔1.4.液晶組成物〕
 本発明の複層フィルムの製造に用いうる、重合性液晶化合物を含有する液晶組成物(以下において、当該組成物を、「組成物(A)」と略称する場合がある。)について説明する。
 本願において、組成物(A)の成分としての液晶化合物とは、組成物(A)に配合し配向させた際に、液晶相を呈しうる化合物である。重合性液晶化合物とは、かかる液晶相を呈した状態で組成物(A)中で重合し、液晶相における分子の配向を維持したまま重合体となりうる液晶化合物である。さらに、逆波長分散重合性液晶化合物とは、そのように重合体とした場合、得られた重合体が逆波長分散性を示す重合性液晶化合物である。
 また、本願において、組成物(A)の成分であって、重合性を有する化合物(重合性液晶化合物及びその他の重合性を有する化合物等)を総称して単に「重合性化合物」ということがある。
 〔1.4.1.重合性液晶化合物〕
 重合性液晶化合物としては、重合性基を有する液晶化合物、側鎖型液晶ポリマーを形成しうる化合物、円盤状液晶性化合物などが挙げられる。重合性基を有する液晶化合物としては、例えば、特開平11-513360号公報、特開2002-030042号公報、特開2004-204190号公報、特開2005-263789号公報、特開2007-119415号公報、特開2007-186430号公報などに記載された重合性基を有する棒状液晶化合物などが挙げられる。また、側鎖型液晶ポリマー化合物としては、例えば、特開2003-177242号公報などに記載の側鎖型液晶ポリマー化合物などが挙げられる。また、好ましい液晶化合物の例を製品名で挙げると、BASF社製「LC242」等が挙げられる。円盤状液晶性化合物の具体例としては、特開平8-50206号公報、文献(C. Destrade et al., Mol. Crysr. Liq. Cryst., vol. 71, page 111 (1981) ;日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B. Kohne et al., Angew. Chem. Soc. Chem. Comm., page 1794 (1985);J. Zhang et al., J. Am. Chem. Soc., vol. 116, page 2655 (1994))に記載されている。これらの液晶化合物及び以下に説明する逆波長分散重合性液晶化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 〔1.4.2.逆波長分散重合性液晶化合物〕
 重合性液晶化合物の一部又は全部として、逆波長分散重合性液晶化合物を用いうる。逆波長分散重合性液晶化合物を用いることにより、逆波長分散性を有する光学異方性層を容易に得ることができる。
 逆波長分散重合性液晶化合物の例としては、その分子中に主鎖メソゲンと、主鎖メソゲンに結合した側鎖メソゲンとを有する化合物が挙げられる。このような逆波長分散重合性液晶化合物が配向した状態において、側鎖メソゲンは、主鎖メソゲンと異なる方向に配向しうる。したがって、光学異方性層において、主鎖メソゲン及び側鎖メソゲンは異なる方向に配向しうる。そのような配向により、光学異方性層が逆波長分散特性を呈しうる。
 〔1.4.2.1.化合物(I)〕
 逆波長分散重合性液晶化合物の例としては、下記式(I)で示される化合物(以下において「化合物(I)」という場合がある。)を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 逆波長分散重合性液晶化合物が化合物(I)である場合、基-Y-A-Y-A-Y-A-Y-A-Y-A-Y-が主鎖メソゲンとなり、一方基>A-C(Q)=N-N(A)Aが側鎖メソゲンとなり、基Aは、主鎖メソゲン及び側鎖メソゲンの両方の性質に影響する。
 式中、Y~Yはそれぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。
 ここで、Rは水素原子又は炭素数1~6のアルキル基を表す。
 Rの炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-へキシル基等が挙げられる。
 Rとしては、水素原子又は炭素数1~4のアルキル基が好ましい。
 化合物(I)においては、Y~Yは、それぞれ独立して、化学的な単結合、-O-、-O-C(=O)-、-C(=O)-O-、又は、-O-C(=O)-O-であるのが好ましい。
 G、Gはそれぞれ独立して、置換基を有していてもよい、炭素数1~20の二価の脂肪族基を表す。
 炭素数1~20の二価の脂肪族基としては、炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基等の鎖状構造を有する二価の脂肪族基;炭素数3~20のシクロアルカンジイル基、炭素数4~20のシクロアルケンジイル基、炭素数10~30の二価の脂環式縮合環基等の二価の脂肪族基;等が挙げられる。
 G、Gの二価の脂肪族基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-へキシルオキシ基等の炭素数1~6のアルコキシ基;等が挙げられる。なかでも、フッ素原子、メトキシ基、エトキシ基が好ましい。
 また、前記脂肪族基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-NR-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、Rは、前記Rと同様の、水素原子又は炭素数1~6のアルキル基を表し、水素原子又はメチル基であることが好ましい。
 前記脂肪族基に介在する基としては、-O-、-O-C(=O)-、-C(=O)-O-、-C(=O)-が好ましい。
 これらの基が介在する脂肪族基の具体例としては、-CH-CH-O-CH-CH-、-CH-CH-S-CH-CH-、-CH-CH-O-C(=O)-CH-CH-、-CH-CH-C(=O)-O-CH-CH-、-CH-CH-C(=O)-O-CH-、-CH-O-C(=O)-O-CH-CH-、-CH-CH-NR-C(=O)-CH-CH-、-CH-CH-C(=O)-NR-CH-、-CH-NR-CH-CH-、-CH-C(=O)-CH-等が挙げられる。
 これらの中でも、本発明の所望の効果をより良好に発現させる観点から、G、Gは、それぞれ独立して、炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基等の鎖状構造を有する二価の脂肪族基が好ましく、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基〔-(CH10-〕等の、炭素数1~12のアルキレン基がより好ましく、テトラメチレン基〔-(CH-〕、ヘキサメチレン基〔-(CH-〕、オクタメチレン基〔-(CH-〕、及び、デカメチレン基〔-(CH10-〕が特に好ましい。
 Z、Zはそれぞれ独立して、無置換又はハロゲン原子で置換された炭素数2~10のアルケニル基を表す。
 該アルケニル基の炭素数としては、2~6が好ましい。Z及びZのアルケニル基の置換基であるハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられ、塩素原子が好ましい。
 Z及びZの炭素数2~10のアルケニル基の具体例としては、CH=CH-、CH=C(CH)-、CH=CH-CH-、CH-CH=CH-、CH=CH-CH-CH-、CH=C(CH)-CH-CH-、(CHC=CH-CH-、(CHC=CH-CH-CH-、CH=C(Cl)-、CH=C(CH)-CH-、CH-CH=CH-CH-等が挙げられる。
 なかでも、本発明の所望の効果をより良好に発現させる観点から、Z及びZとしては、それぞれ独立して、CH=CH-、CH=C(CH)-、CH=C(Cl)-、CH=CH-CH-、CH=C(CH)-CH-、又は、CH=C(CH)-CH-CH-であるのが好ましく、CH=CH-、CH=C(CH)-、又は、CH=C(Cl)-であるのがより好ましく、CH=CH-であるのが特に好ましい。
 Aは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。
 本発明において、「芳香環」は、Huckel則に従う広義の芳香族性を有する環状構造、すなわち、π電子を(4n+2)個有する環状共役構造、及びチオフェン、フラン、ベンゾチアゾール等に代表される、硫黄、酸素、窒素等のヘテロ原子の孤立電子対がπ電子系に関与して芳香族性を示すものを意味する。
 Aの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基は、芳香環を複数個有するものであってもよく、芳香族炭化水素環及び芳香族複素環を有するものであってもよい。
 前記芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環等が挙げられる。前記芳香族複素環としては、ピロール環、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピラゾール環、イミダゾール環、オキサゾール環、チアゾール環等の単環の芳香族複素環;ベンゾチアゾール環、ベンゾオキサゾール環、キノリン環、フタラジン環、ベンゾイミダゾール環、ベンゾピラゾール環、ベンゾフラン環、ベンゾチオフェン環、チアゾロピリジン環、オキサゾロピリジン環、チアゾロピラジン環、オキサゾロピラジン環、チアゾロピリダジン環、オキサゾロピリダジン環、チアゾロピリミジン環、オキサゾロピリミジン環等の縮合環の芳香族複素環;等が挙げられる。
 Aが有する芳香環は置換基を有していてもよい。かかる置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;ビニル基、アリル基等の炭素数2~6のアルケニル基;トリフルオロメチル基等の炭素数1~6のハロゲン化アルキル基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;-C(=O)-R;-C(=O)-OR;-SO;等が挙げられる。ここで、Rは炭素数1~20のアルキル基、炭素数2~20のアルケニル基、又は、炭素数3~12のシクロアルキル基を表し、Rは後述するRと同様の、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。
 また、Aが有する芳香環は、同一又は相異なる置換基を複数有していてもよく、隣り合った二つの置換基が一緒になって結合して環を形成していてもよい。形成される環は単環であっても、縮合多環であってもよく、不飽和環であっても、飽和環であってもよい。
 なお、Aの炭素数2~30の有機基の「炭素数」は、置換基の炭素原子を含まない有機基全体の総炭素数を意味する(後述するAにて同じである。)。
 Aの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基としては、芳香族炭化水素環基;芳香族複素環基;芳香族炭化水素環基及び芳香族複素環基からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数3~30のアルキル基;芳香族炭化水素環基及び芳香族複素環基からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数4~30のアルケニル基;芳香族炭化水素環基及び芳香族複素環基からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数4~30のアルキニル基;等が挙げられる。
 Aの好ましい具体例を以下に示す。但し、本発明においては、Aは以下に示すものに限定されるものではない。なお、下記式中、「-」は環の任意の位置からのびる結合手を表す(以下にて同じである。)。
(1)芳香族炭化水素環基
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 (2)芳香族複素環基
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 上記式中、Eは、NR6a、酸素原子又は硫黄原子を表す。ここで、R6aは、水素原子;又は、メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000006
 上記式中、X、Y、Zは、それぞれ独立して、NR、酸素原子、硫黄原子、-SO-、又は、-SO-を表す(ただし、酸素原子、硫黄原子、-SO-、-SO-が、それぞれ隣接する場合を除く。)。Rは、前記R6aと同様の、水素原子;又は、メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000007
 (上記式中、Xは前記と同じ意味を表す。)
 (3)芳香族炭化水素環基及び芳香族複素環基からなる群から選ばれる少なくとも一つの芳香環を有する、アルキル基
Figure JPOXMLDOC01-appb-C000008
 (4)芳香族炭化水素環基及び芳香族複素環基からなる群から選ばれる少なくとも一つの芳香環を有する、アルケニル基
Figure JPOXMLDOC01-appb-C000009
 (5)芳香族炭化水素環基及び芳香族複素環基からなる群から選ばれる少なくとも一つの芳香環を有する、アルキニル基
Figure JPOXMLDOC01-appb-C000010
 上記したAの中でも、炭素数6~30の芳香族炭化水素基、又は炭素数4~30の芳香族複素環基であることが好ましく、下記に示すいずれかの基であることがより好ましく、
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 下記に示すいずれかの基であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000013
 Aが有する環は置換基を有していてもよい。かかる置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;ビニル基、アリル基等の炭素数2~6のアルケニル基;トリフルオロメチル基等の炭素数1~6のハロゲン化アルキル基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;-C(=O)-R;-C(=O)-OR;-SO;等が挙げられる。ここでRは、メチル基、エチル基等の炭素数1~6のアルキル基;又は、フェニル基等の炭素数6~14のアリール基;を表す。なかでも、ハロゲン原子、シアノ基、炭素数1~6のアルキル基、及び炭素数1~6のアルコキシ基が好ましい。
 また、Aが有する環は、同一又は相異なる置換基を複数有していてもよく、隣り合った二つの置換基が一緒になって結合して環を形成していてもよい。形成される環は単環であっても、縮合多環であってもよい。
 なお、Aの炭素数2~30の有機基の「炭素数」は、置換基の炭素原子を含まない有機基全体の総炭素数を意味する(後述するAにて同じである。)。
 Aは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R、-SO-R、-C(=S)NH-R又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。ここで、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、炭素数5~12の芳香族炭化水素基を表し、Rは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表し、Rは置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数5~20の芳香族基を表す。
 Aの、置換基を有していてもよい炭素数1~20のアルキル基の炭素数1~20のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、1-メチルペンチル基、1-エチルペンチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-イコシル基等が挙げられる。置換基を有してもよい炭素数1~20のアルキル基の炭素数は、1~12であることが好ましく、4~10であることが更に好ましい。
 Aの、置換基を有していてもよい炭素数2~20のアルケニル基の炭素数2~20のアルケニル基としては、ビニル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基等が挙げられる。
 置換基を有していてもよい炭素数2~20のアルケニル基の炭素数は、2~12であることが好ましい。
 Aの、置換基を有していてもよい炭素数3~12のシクロアルキル基の炭素数3~12のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。
 Aの、置換基を有していてもよい炭素数2~20のアルキニル基の炭素数2~20のアルキニル基としては、エチニル基、プロピニル基、2-プロピニル基(プロパルギル基)、ブチニル基、2-ブチニル基、3-ブチニル基、ペンチニル基、2-ペンチニル基、ヘキシニル基、5-ヘキシニル基、ヘプチニル基、オクチニル基、2-オクチニル基、ノナニル基、デカニル基、7-デカニル基等が挙げられる。
 Aの、置換基を有していてもよい炭素数1~20のアルキル基、及び置換基を有していてもよい炭素数2~20のアルケニル基の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の炭素数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の炭素数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の炭素数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の炭素数6~14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、少なくとも1個がフッ素原子で置換された炭素数1~12のフルオロアルコキシ基;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;ベンゾジオキサニル基;-C(=O)-R7a;-C(=O)-OR7a;-SO8a;-SR10;-SR10で置換された炭素数1~12のアルコキシ基;水酸基;等が挙げられる。ここで、R7a及びR10はそれぞれ独立して、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数3~12のシクロアルキル基、又は、炭素数6~12の芳香族炭化水素基を表し、R8aは前記Rと同様の、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。
 Aの、置換基を有していてもよい炭素数3~12のシクロアルキル基の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の置換アミノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;-C(=O)-R7a;-C(=O)-OR7a;-SO8a;水酸基;等が挙げられる。ここでR7a、R8aは前記と同じ意味を表す。
 Aの、置換基を有していてもよい炭素数2~20のアルキニル基の置換基としては、置換基を有していてもよい炭素数1~20のアルキル基、及び置換基を有していてもよい炭素数2~20のアルケニル基の置換基と同様な置換基が挙げられる。
 Aの、-C(=O)-Rで表される基において、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、炭素数5~12の芳香族炭化水素基を表す。これらの具体例は、前記Aの、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基の例として列記したものと同様のものが挙げられる。
 Aの、-SO-Rで表される基において、Rは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。
 Rの、炭素数1~20のアルキル基、及び炭素数2~20のアルケニル基の具体例は、前記Aの、炭素数1~20のアルキル基、炭素数2~20のアルケニル基の例として列記したものと同様のものが挙げられる。
 Aの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基としては、前記Aで例示したのと同様のものが挙げられる。
 これらの中でも、Aとしては、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R、-SO-R、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基で表される基が好ましく、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、置換基を有してもよい炭素数6~12の芳香族炭化水素基、置換基を有していてもよい炭素数3~9の芳香族複素環基、-C(=O)-R、-SO-Rで表される基が更に好ましい。ここで、R、Rは前記と同じ意味を表す。
 Aの、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基の置換基としては、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、フェニルスルホニル基、4-メチルフェニルスルホニル基、ベンゾイル基、-SR10が好ましい。ここで、R10は前記と同じ意味を表す。
 Aの、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有してもよい炭素数6~12の芳香族炭化水素基、置換基を有していてもよい炭素数3~9の芳香族複素環基の置換基としては、フッ素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基が好ましい。
 また、AとAは一緒になって、環を形成していてもよい。かかる環としては、置換基を有していてもよい、炭素数4~30の不飽和複素環、炭素数6~30の不飽和炭素環が挙げられる。
 前記炭素数4~30の不飽和複素環、炭素数6~30の不飽和炭素環としては、特に制約はなく、芳香族性を有していても有していなくてもよい。例えば、下記に示す環が挙げられる。なお、下記に示す環は、式(I)中の
Figure JPOXMLDOC01-appb-C000014
 として表される部分を示すものである。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 (式中、X、Y、Zは、前記と同じ意味を表す。)
 また、これらの環は置換基を有していてもよい。かかる置換基としては、Aが有する芳香環の置換基として例示したのと同様のものが挙げられる。
 AとAに含まれるπ電子の総数は、本発明の所望の効果をより良好に発現させる観点から、4以上24以下であるのが好ましく、6以上20以下であるのがより好ましく、6以上18以下であるのが更により好ましい。
 AとAの好ましい組み合わせとしては、
 (α)Aが炭素数4~30の、芳香族炭化水素基又は芳香族複素環基であり、Aが水素原子、炭素数3~8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、若しくは炭素数3~8のシクロアルキル基)を置換基として有していてもよい炭素数6~12の芳香族炭化水素基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3~9の芳香族複素環基、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基、-SR10のいずれかである組み合わせ、及び、
 (β)AとAが一緒になって不飽和複素環又は不飽和炭素環を形成しているもの、
 が挙げられる。ここで、R10は前記と同じ意味を表す。
 AとAのより好ましい組み合わせとしては、
 (γ)Aが下記構造を有する基のいずれかであり、Aが水素原子、炭素数3~8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、若しくは炭素数3~8のシクロアルキル基)を置換基として有していてもよい炭素数6~12の芳香族炭化水素基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3~9の芳香族複素環基、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基、-SR10のいずれかである組み合わせである。ここで、R10は前記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 (式中、X、Yは、前記と同じ意味を表す。)
 AとAの特に好ましい組み合わせとしては、
 (δ)Aが下記構造を有する基のいずれかであり、Aが水素原子、炭素数3~8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、若しくは炭素数3~8のシクロアルキル基)を置換基として有していてもよい炭素数6~12の芳香族炭化水素基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3~9の芳香族複素環基、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基、-SR10のいずれかである組合せである。下記式中、Xは前記と同じ意味を表す。ここで、R10は前記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000020
 Aは置換基を有していてもよい三価の芳香族基を表す。三価の芳香族基としては、三価の炭素環式芳香族基であっても、三価の複素環式芳香族基であってもよい。本発明の所望の効果をより良好に発現させる観点から、三価の炭素環式芳香族基が好ましく、三価のベンゼン環基又は三価のナフタレン環基がより好ましく、下記式に示す三価のベンゼン環基又は三価のナフタレン環基がさらに好ましい。
 なお、下記式においては、結合状態をより明確にすべく、置換基Y、Yを便宜上記載している(Y、Yは、前記と同じ意味を表す。以下にて同じ。)。
Figure JPOXMLDOC01-appb-C000021
 これらの中でも、Aとしては、下記に示す式(A11)~(A25)で表される基がより好ましく、式(A11)、(A13)、(A15)、(A19)、(A23)で表される基がさらに好ましく、式(A11)、(A23)で表される基が特に好ましい。
Figure JPOXMLDOC01-appb-C000022
 Aの、三価の芳香族基が有していてもよい置換基としては、前記Aの芳香族基の置換基として例示したのと同様のものが挙げられる。Aとしては、置換基を有さないものが好ましい。
 A、Aはそれぞれ独立して、置換基を有していてもよい炭素数3~30の二価の脂環式炭化水素基を表す。
 炭素数3~30の二価の脂環式炭化水素基としては、炭素数3~30のシクロアルカンジイル基、炭素数10~30の二価の脂環式縮合環基等が挙げられる。
 炭素数3~30のシクロアルカンジイル基としては、シクロプロパンジイル基;シクロブタン-1,2-ジイル基、シクロブタン-1,3-ジイル基等のシクロブタンジイル基;シクロペンタン-1,2-ジイル基、シクロペンタン-1,3-ジイル基等のシクロペンタンジイル基;シクロヘキサン-1,2-ジイル基、シクロヘキサン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基等のシクロへキサンジイル基;シクロヘプタン-1,2-ジイル基、シクロヘプタン-1,3-ジイル基、シクロヘプタン-1,4-ジイル基等のシクロへプタンジイル基;シクロオクタン-1,2-ジイル基、シクロオクタン-1,3-ジイル基、シクロオクタン-1,4-ジイル基、シクロオクタン-1,5-ジイル基等のシクロオクタンジイル基;シクロデカン-1,2-ジイル基、シクロデカン-1,3-ジイル基、シクロデカン-1,4-ジイル基、シクロデカン-1,5-ジイル基等のシクロデカンジイル基;シクロドデカン-1,2-ジイル基、シクロドデカン-1,3-ジイル基、シクロドデカン-1,4-ジイル基、シクロドデカン-1,5-ジイル基等のシクロドデカンジイル基;シクロテトラデカン-1,2-ジイル基、シクロテトラデカン-1,3-ジイル基、シクロテトラデカン-1,4-ジイル基、シクロテトラデカン-1,5-ジイル基、シクロテトラデカン-1,7-ジイル基等のシクロテトラデカンジイル基;シクロエイコサン-1,2-ジイル基、シクロエイコサン-1,10-ジイル基等のシクロエイコサンジイル基;等が挙げられる。
 炭素数10~30の二価の脂環式縮合環基としては、デカリン-2,5-ジイル基、デカリン-2,7-ジイル基等のデカリンジイル基;アダマンタン-1,2-ジイル基、アダマンタン-1,3-ジイル基等のアダマンタンジイル基;ビシクロ[2.2.1]へプタン-2,3-ジイル基、ビシクロ[2.2.1]へプタン-2,5-ジイル基、ビシクロ[2.2.1]へプタン-2,6-ジイル基等のビシクロ[2.2.1]へプタンジイル基;等が挙げられる。
 これらの二価の脂環式炭化水素基は、任意の位置に置換基を有していてもよい。置換基としては、前記Aの芳香族基の置換基として例示したのと同様のものが挙げられる。
 これらの中でも、A、Aとしては、炭素数3~12の二価の脂環式炭化水素基が好ましく、炭素数3~12のシクロアルカンジイル基がより好ましく、下記式(A31)~(A34)
Figure JPOXMLDOC01-appb-C000023
 で表される基がさらに好ましく、前記式(A32)で表される基が特に好ましい。
 前記炭素数3~30の二価の脂環式炭化水素基は、Y、Y(又はY、Y)と結合する炭素原子の立体配置の相違に基づく、シス型、トランス型の立体異性体が存在し得る。例えば、シクロヘキサン-1,4-ジイル基の場合には、下記に示すように、シス型の異性体(A32a)とトランス型の異性体(A32b)が存在し得る。
Figure JPOXMLDOC01-appb-C000024
 本発明においては、シス型であってもトランス型であっても、あるいはシス型とトランス型の異性体混合物であってもよいが、配向性が良好であることから、トランス型あるいはシス型であるのが好ましく、トランス型がより好ましい。
 A、Aはそれぞれ独立して、置換基を有していてもよい、炭素数6~30の二価の芳香族基を表す。
 A、Aの芳香族基は単環のものであっても、多環のものであってもよい。
 A、Aの好ましい具体例としては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000025
 上記A、Aの二価の芳香族基は、任意の位置に置換基を有していてもよい。当該置換基としては、ハロゲン原子、シアノ基、ヒドロキシル基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ニトロ基、-C(=O)-OR8b基;等が挙げられる。ここでR8bは、炭素数1~6のアルキル基である。なかでも、ハロゲン原子、炭素数1~6のアルキル基、アルコキシ基が好ましい。また、ハロゲン原子としてはフッ素原子が、炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基が、アルコキシ基としては、メトキシ基、エトキシ基がより好ましい。
 これらの中でも、本発明の所望の効果をより良好に発現させる観点から、A、Aは、それぞれ独立して、置換基を有していてもよい、下記式(A41)、(A42)及び(A43)で表される基がより好ましく、置換基を有していてもよい式(A41)で表される基が特に好ましい。
Figure JPOXMLDOC01-appb-C000026
 Qは、水素原子、置換基を有していてもよい炭素数1~6のアルキル基を示す。
 置換基を有していてもよい炭素数1~6のアルキル基としては、前記Aで例示したのと同様のものが挙げられる。
 これらの中でも、Qは、水素原子又は炭素数1~6のアルキル基が好ましく、水素原子及びメチル基がより好ましい。
 化合物(I)は、例えば、国際公開第WO2012/147904号に記載される、ヒドラジン化合物とカルボニル化合物との反応により製造しうる。
 〔1.4.3.重合性モノマー〕
 組成物(A)は、任意の成分として、重合性モノマーを含有しうる。本願において、「重合性モノマー」とは、重合能を有しモノマーとして働きうる化合物のうち、特に、逆波長分散重合性液晶化合物以外の化合物をいう。
 重合性モノマーとしては、例えば、1分子当たり1以上の重合性基を有するものを用いうる。そのような重合性基を有することにより、光学異方性層の形成に際し重合を達成することができる。重合性モノマーが1分子当たり2以上の重合性基を有する架橋性モノマーである場合、架橋的な重合を達成することができる。かかる重合性基の例としては、化合物(I)中の基Z-Y-及びZ-Y-と同様の基を挙げることができ、より具体的には例えば、アクリロイル基、メタクリロイル基、及びエポキシ基を挙げることができる。
 重合性モノマーは、それ自体が液晶性のものであってもよく、非液晶性のものであってもよい。ここで、それ自体が「非液晶性」であるとは、当該重合性モノマーそのものを、室温から200℃のいずれの温度に置いた場合にも、配向処理をした第一の基材上で配向を示さないものをいう。配向を示すかどうかは、偏光顕微鏡のクロスニコル透過観察にてラビング方向を面相で回転させた場合に、明暗のコントラストがあるかどうかで判断する。
 組成物(A)において、重合性モノマーの配合割合は、逆波長分散重合性液晶化合物100重量部に対し、通常、1~100重量部、好ましくは5~50重量部である。当該範囲内で、重合性モノマーの配合割合を、所望の逆波長分散特性を示すように適宜調整することにより、逆波長分散特性の精密な制御が容易となる。
 重合性モノマーは、既知の製造方法により製造することができる。または、化合物(I)と類似の構造を持つものについては、化合物(I)の製造方法に準じて製造することができる。
 〔1.4.4.組成物(A)のその他の成分〕
 組成物(A)は、重合性液晶化合物及び重合性モノマーに加えて、必要に応じて、以下に例示するもの等の任意の成分を含みうる。
 組成物(A)は、重合開始剤を含みうる。重合開始剤としては、組成物(A)中の、重合性液晶化合物、重合性モノマー及びその他の重合性化合物が有する重合性基の種類に応じて適宜選択しうる。例えば、重合性基がラジカル重合性であればラジカル重合開始剤を、アニオン重合性の基であればアニオン重合開始剤を、カチオン重合性の基であればカチオン重合開始剤を、それぞれ使用しうる。
 ラジカル重合開始剤としては、加熱することにより、重合性化合物の重合を開始しえる活性種が発生する化合物である熱ラジカル発生剤;及び可視光線、紫外線(i線など)、遠紫外線、電子線、X線等の露光光の露光により、重合性化合物の重合を開始しえる活性種が発生する化合物である光ラジカル発生剤;のいずれも使用可能であるが、光ラジカル発生剤を使用するのが好適である。
 光ラジカル発生剤としては、例えば、国際公開第WO2012/147904号に記載される、アセトフェノン系化合物、ビイミダゾール系化合物、トリアジン系化合物、O-アシルオキシム系化合物、オニウム塩系化合物、ベンゾイン系化合物、ベンゾフェノン系化合物、α-ジケトン系化合物、多核キノン系化合物、キサントン系化合物、ジアゾ系化合物、イミドスルホナート系化合物等を挙げることができる。
 前記アニオン重合開始剤としては、例えば、アルキルリチウム化合物;ビフェニル、ナフタレン、ピレン等の、モノリチウム塩又はモノナトリウム塩;ジリチウム塩やトリリチウム塩等の多官能性開始剤;等が挙げられる。
 また、前記カチオン重合開始剤としては、例えば、硫酸、リン酸、過塩素酸、トリフルオロメタンスルホン酸等のプロトン酸;三フッ化ホウ素、塩化アルミニウム、四塩化チタン、四塩化スズのようなルイス酸;芳香族オニウム塩又は芳香族オニウム塩と、還元剤との併用系;が挙げられる。
 これらの重合開始剤は一種単独で、又は二種以上を組合わせて用いることができる。
 組成物(A)において、重合開始剤の配合割合は、重合性化合物100重量部に対し、通常、0.1~30重量部、好ましくは0.5~10重量部である。
 組成物(A)は、表面張力を調整するための、界面活性剤を含みうる。当該界面活性剤としては、特に限定はないが、通常、ノニオン系界面活性剤が好ましい。当該ノニオン系界面活性剤としては、市販品を用いうる。例えば、分子量が数千程度のオリゴマーであるノニオン系界面活性剤を用いうる。これらの界面活性剤の具体例としては、OMNOVA社PolyFoxの「PF-151N」、「PF-636」、「PF-6320」、「PF-656」、「PF-6520」、「PF-3320」、「PF-651」、「PF-652」;ネオス社フタージェントの「FTX-209F」、「FTX-208G」、「FTX-204D」;セイミケミカル社サーフロンの「KH-40」、「S-420」等を用いることができる。また、界面活性剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。組成物(A)において、界面活性剤の配合割合は、重合性化合物100重量部に対し、通常、0.01~10重量部、好ましくは0.1~2重量部である。
 組成物(A)は、有機溶媒等の溶媒を含みうる。かかる有機溶媒の例としては、シクロペンタノン、シクロヘキサノン、メチルエチルケトン、アセトン、メチルイソブチルケトン等のケトン類;酢酸ブチル、酢酸アミル等の酢酸エステル類;クロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素類;1,4-ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、1,2-ジメトキシエタン等のエーテル類;及びトルエン、キシレン、メシチレン等の芳香族炭化水素が挙げられる。溶媒の沸点は、取り扱い性に優れる観点から、60~250℃であることが好ましく、60~150℃であることがより好ましい。溶媒の使用量は、重合性化合物100重量部に対し、通常、100~1000重量部である。
 組成物(A)は、さらに、金属、金属錯体、染料、顔料、蛍光材料、燐光材料、レベリング剤、チキソ剤、ゲル化剤、多糖類、紫外線吸収剤、赤外線吸収剤、抗酸化剤、イオン交換樹脂、酸化チタン等の金属酸化物等の任意の添加剤を含みうる。本発明の重合性組成物において、かかる任意の添加剤の配合割合は、重合性化合物100重量部に対し、通常、各々0.1~20重量部である。
 組成物(A)は、通常、上に述べた成分を混合することにより、調製することができる。
 〔2.光学異方性積層体〕
 本発明の光学異方性積層体は、前記本発明の複層フィルムから、光学異方性層を剥離し、これを長尺状の第二の基材に貼合してなる。
 第二の基材の一例としては、マスキングフィルム等の光学異方性層を保護しうるフィルムが挙げられる。マスキングフィルムとしては、既知のもの(例えば、トレテガー社製のFF1025、「FF1035」;サンエー化研社製の「SAT116T」、「SAT2038T-JSL」及び「SAT4538T-JSL」;藤森工業社製の「NBO-0424」、「TFB-K001」、「TFB-K0421」及び「TFB-K202」;日立化成社製の「DT-2200-25」及び「K-6040」;寺岡製作所社製の「6010#75」、「6010#100」、「6011#75」及び「6093#75」)を用いうる。このような第二の基材を有する光学異方性積層体からは、光学異方性層を他の部材に容易に転写することができる。したがって、光学異方性層を有する光学素子を容易に製造することができる。
 第二の基材の別の一例としては、光学等方性の基材フィルムが挙げられる。光学等方性とは、具体的には、面内レターデーションReが10nm未満であることが好ましく、5nm未満であることがより好ましい。また、光学等方性の基材では、厚み方向のレターデーションRthも、10nm未満であることが好ましく、5nm未満であることがより好ましい。面内レターデーションReの下限は、0nmとしうる。厚み方向のレターデーションRthの下限は、-10nm超であることが好ましく、-5nm超であることがより好ましい。
 光学等方性の基材フィルムの材料の例としては、上に述べた第一の基材フィルムと同様のものの他にセルロースエステル等が挙げられる。そのような材料の長尺状フィルムを形成し、これを延伸せず、そのまま第二の基材として用いうる。第二の基材として、光学等方性の基材フィルムを備える光学異方性積層体は、そのまま、表示装置等の光学装置に組み込み、光学部材として用いうる。
 本発明の光学異方性積層体の製造においては、複層フィルムから光学異方性層を剥離し、これを長尺状の第二の基材に貼合する工程を、ロールツーロールの操作で行うことができる。
 〔3.円偏光板〕
 本発明の円偏光板は、1層以上の光学異方性層と、長尺状の直線偏光子とをロールツーロールで貼合してなる。
 本発明の円偏光板の具体的な態様としては、下記の2つの態様が挙げられる。
 円偏光板(i):光学異方性層と、長尺状の直線偏光子とをロールツーロールで貼合してなる円偏光板であって、光学異方性層が、前記本発明の複層フィルムから剥離してなる層である、円偏光板。
 円偏光板(ii):長尺状のλ/4波長板と、長尺状のλ/2波長板と、長尺状の直線偏光子とを、ロールツーロールで貼合してなる円偏光板であって、長尺状のλ/4波長板、長尺状のλ/2波長板、またはこれらの両方が、前記本発明の複層フィルムから剥離した光学異方性層である、円偏光板。
 本発明の円偏光板が含む光学異方性層としては、本発明の複層フィルムから剥離したものを直接用いてもよい。又は本発明の円偏光板が含む光学異方性層としては、本発明の複層フィルムから剥離し、一旦第二の基材と貼合して前記本発明の光学異方性積層体とし、それをそのまま用いてもよく、又はそこから再び剥離したものを用いてもよい。
 複層フィルムからの光学異方性層の剥離の工程と、光学異方性層と他の層(他の光学異方性層、直線偏光子等)との貼合の工程は、どちらを先に行ってもよい。例えば、複層フィルムの光学異方性層側の面と直線偏光子の一方の面とを貼合し、その後第一の基材を剥離する工程を行なうことにより、かかる剥離の工程及び貼合の工程を行いうる。
 円偏光板(ii)において、λ/4波長板の遅相軸と、λ/2波長板の遅相軸と、直線偏光子の透過軸との関係は、既知の様々な関係としうる。例えば、λ/4波長板及びλ/2波長板の両方として本発明の複層フィルムの光学異方性層を用いる場合、偏光子の透過軸または吸収軸の方向に対するλ/2波長板の遅相軸の方向が15°またはそれに近い角度(例えば15°±5°、好ましくは15°±°4、より好ましくは15°±3°)であり、偏光子の透過軸または吸収軸の方向に対するλ/4波長板の遅相軸の方向が75°またはそれに近い角度(例えば75°±5°、好ましくは75°±°4、より好ましくは75°±3°)である関係としうる。このような態様を有することにより、円偏光板を、有機EL表示装置用の広帯域反射防止フィルムとして用いることができる。
 本発明にかかるある製品(複層フィルム、円偏光板、表示装置等)において、面内の光学軸(遅相軸、透過軸、吸収軸等)の方向及び幾何学的方向(フィルムの長手方向及び幅方向等)の角度関係は、ある方向のシフトを正、他の方向のシフトを負として規定され、当該正及び負の方向は、当該製品内の構成要素において共通に規定される。例えば、ある円偏光板において、「直線偏光子の透過軸または吸収軸の方向に対するλ/2波長板の遅相軸の方向が15°であり直線偏光子の透過軸または吸収軸の方向に対するλ/4波長板の遅相軸の方向が75°である」とは、下記の2通りの場合を表す:
 ・当該円偏光板を、そのある一方の面から観察すると、λ/2波長板の遅相軸の方向が、直線偏光子の透過軸または吸収軸の方向から時計周りに15°シフトし、且つλ/4波長板の遅相軸の方向が、直線偏光子の透過軸または吸収軸の方向から時計周りに75°シフトしている。
 ・当該円偏光板を、そのある一方の面から観察すると、λ/2波長板の遅相軸の方向が、直線偏光子の透過軸または吸収軸の方向から反時計周りに15°シフトし、且つλ/4波長板の遅相軸の方向が、直線偏光子の透過軸または吸収軸の方向から反時計周りに75°シフトしている。
 円偏光板(i)のより具体的な態様としては、光学異方性層としてλ/4波長板を1層有し、直線偏光子の透過軸または吸収軸に対するλ/4波長板の遅相軸の方向が45°またはそれに近い角度(例えば45°±5°、好ましくは45°±4°、より好ましくは45°±3°)である関係の態様が挙げられる。このような態様を有することにより、円偏光板を、有機EL表示装置用の反射防止フィルムとして用いることができる。
 ロールツーロールでの貼合とは、長尺状のフィルムのロールからフィルムを繰り出すなどして連続的に供給されたフィルムを搬送し、搬送ライン上で他のフィルムとの貼合の工程を行い、さらに得られた貼合物を巻き取りロールとする態様の貼合をいう。例えば、直線偏光子と複層フィルムとを貼合する場合、長尺状の複層フィルムのロールから複層フィルムを繰り出し、これを搬送し、搬送ライン上で直線偏光子との貼合の工程を行い、得られた貼合物を巻き取りロールとすることにより、ロールツーロールでの貼合を行いうる。この場合において、直線偏光子も、ロールから繰り出して貼合の工程に供給しうる。
 ロールツーロールでの貼合の例を、図1を参照して説明する。図1において、繰り出しロール(不図示)から繰り出された複層フィルム21は、貼合装置120へと搬送される。貼合装置120は互いに押圧し合うように設けられたニップロール121及び122を備えている。貼合装置120に搬送されてきた複層フィルム21は、前記のニップロール121及び122の間に送り込まれる。
 また、貼合装置120には、直線偏光子30が供給されている。供給された直線偏光子30は、ニップロール121及び122の間に送り込まれ、複層フィルム21に貼り合わせられる。これにより、複層フィルム21、及び直線偏光子30を備える貼合物10が得られる。
 こうして得られた貼合物10は、巻き軸130に搬送され、巻き軸130によってロール状に巻き取られる。これにより、貼合物10のロール11が得られる。この貼合物10のロールから貼合物をさらに引き出し、第一の基材を剥離する工程を行うことにより、光学異方性層と直線偏光子とがロールツーロールで貼合された円偏光板を得ることができる。
 直線偏光子としては、液晶表示装置、及びその他の光学装置等の装置に用いられている既知の偏光子を用いうる。直線偏光子の例としては、ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させた後、ホウ酸浴中で一軸延伸することによって得られるもの、及びポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させ延伸しさらに分子鎖中のポリビニルアルコール単位の一部をポリビニレン単位に変性することによって得られるものが挙げられる。直線偏光子の他の例としては、グリッド偏光子、多層偏光子、コレステリック液晶偏光子などの偏光を反射光と透過光に分離する機能を有する偏光子が挙げられる。これらのうちポリビニルアルコールを含有する偏光子が好ましい。
 本発明に用いる偏光子に自然光を入射させると一方の偏光だけが透過する。本発明に用いる偏光子の偏光度は特に限定されないが、好ましくは98%以上、より好ましくは99%以上である。偏光子の平均厚みは好ましくは5~80μmである。
 本発明の円偏光板の用途の一つとして、有機EL素子を有する表示装置の反射防止フィルムとしての用途が挙げられる。即ち、表示装置の表面に、上に述べた構成を有する円偏光板を、直線偏光子側の面が視認側に向くように設けることにより、装置外部から入射した光が装置内で反射して装置外部へ出射することを抑制することができ、その結果、表示装置の表示面のぎらつきなどの不所望な減少を抑制しうる。具体的には、装置外部から入射した光は、その一部の直線偏光のみが直線偏光子を通過し、次にそれが光学異方性層を通過することにより円偏光となる。ここでいう円偏光としては、実質的に反射防止機能を発現する範囲であれば楕円偏光も包含される。円偏光は、装置内の光を反射する構成要素(有機EL素子中の反射電極等)により反射され、再び光学異方性層を通過することにより、入射した直線偏光の偏光軸と直交する方向に偏光軸を有する直線偏光となり、直線偏光子を通過しなくなる。これにより、反射防止の機能が達成される。特に上に述べた円偏光板(ii)であれば、広帯域での反射防止の機能が達成される。本発明の円偏光板は、光学異方性層中の異物等による欠陥が少ないため、このような反射防止の効果を特に良好に得ることができる。また、光学異方性層の3次元屈折率(nx、ny、nz)の関係について、例えば「nx>ny=nz」「nx>ny>nz」「nx>nz>ny」などの関係をもつ光学異方性層を使用することができる。3次元屈折率が「nx>nz>ny」の関係をもつ光学異方性層にすることで、正面方向の反射防止機能だけではなく、斜め方向の反射防止機能も有することができる。
 本発明の円偏光板は、必要に応じてその他の任意の層を有していてもよい。任意の層の例としては、他の部材と接着するための接着層、フィルムの滑り性を良くするマット層、耐衝撃性ポリメタクリレート樹脂層などのハードコート層、反射防止層、防汚層等が挙げられる。
 〔4.表示装置〕
 本発明の円偏光板は、液晶表示装置、有機EL表示装置等の表示装置の構成要素として用いうる。特に、好ましい態様として、本発明の有機EL表示装置は、前記本発明の円偏光板を備える。具体的には、本発明の有機EL表示装置は、表示素子の有機EL素子を有する表示装置において、上で説明した通り、反射防止フィルムとして本発明の円偏光板を備えうる。
 以下、実施例を示して本発明について具体的に説明するが、本発明は以下に説明する実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
 〔評価方法〕
 〔第一の基材及び中間フィルムの遅相軸方向及び配向角バラツキの測定〕
 偏光顕微鏡(オリンパス社製、偏光顕微鏡BX51)を用いてフィルムの幅方向に対し50mmの間隔で配向角の測定を行いその平均値を平均配向角(即ち幅方向に対する遅相軸方向)とし、配向角の最大値と配向角の最小値の差を配向角バラツキとした。
 〔第一の基材及び中間フィルムのRe、及び第一の基材のNz係数の測定〕
 位相差計(AxoScan:Axometrics社製)を用いて、フィルムの幅方向に50mm間隔で590nmにおけるReおよびNz係数を測定し、それらの平均値をそれぞれReおよびNz係数とした。
 〔光学異方性層のRe及び遅相軸方向の測定〕
 光学異方性層をガラス板に転写したサンプルにおいて、AxoScan(Axometrics社製)を用いて、測定波長590nmで測定した。
 〔配向状態の評価〕
 光学異方性層をガラス板に転写したサンプルを作製し、2枚の直線偏光子(偏光子及び検光子)の間に置いた。この際、前記の直線偏光子は、厚み方向から見て、互いの偏光透過軸が垂直になるように、向きを設定した。また、光学異方性層の遅相軸方向は、厚み方向から見て、直線偏光子の偏光透過軸と平行又は垂直になるように設定し、このサンプルを透過する光の透過率(クロスニコル透過率)を、日本分光社製の分光光度計「V7200」及び自動偏光フィルム測定装置「VAP-7070S」を用いて測定し、下記の基準で評価した。
 優:ボトムとなる波長におけるクロスニコル透過率が0.010%以下。
 良:ボトムとなる波長におけるクロスニコル透過率が0.010%超0.020%以下。
 可:ボトムとなる波長におけるクロスニコル透過率が0.020%超0.030%以下。
 不可:ボトムとなる波長におけるクロスニコル透過率が0.030%超。
 〔配向欠陥の評価〕
 配向状態の評価に用いたものと同様のサンプルを10cm角のサイズにカットし、偏光顕微鏡を用いてシュリーレン欠陥の個数を計数した。サンプルの1cm角内におけるシュリーレン欠陥の数により、配向欠陥を、以下の3段階で評価した。
 A:1cm角内におけるシュリーレン欠陥の数が10個以下
 B:1cm角内におけるシュリーレン欠陥の数が11個以上20個以下
 C:1cm角内におけるシュリーレン欠陥の数が21個以上
 〔輝点及び異物の評価〕
 光学異方性層を、偏光顕微鏡を用いて観察し、光学異方性層における輝点及び異物を計数し、サンプルの1cm角内における輝点・異物の数により、以下の4段階で評価した。
 SA:1cm角内における輝点の数が0個
 A:1cm角内における輝点の数が1個以上5個以下
 B:1cm角内における輝点の数が6個以上15個以下
 C:1cm角内における輝点の数が16個以上
 〔円偏光板の目視観察〕
 円偏光板を拡散反射板(商品名「メタルミーTS50」、東レ社製、アルミ蒸着PET(ポリエチレンテレフタレート)フィルム)の上に置き、正面コントラストおよび視野角特性を次の基準で評価した。
 正面コントラストについては、正面から(即ち、円偏光板の面に垂直な方向から)目視観察して、観察された反射色に基づき評価した。反射色が特に黒い場合は「A」(最良)、黒い場合は「B」(良)、反射色が明るくて青くなる場合は「C」(不良)と評価した。
 視野角特性については、正面から目視観察した場合と斜め45°から目視観察した場合の、反射色、明るさおよび色むらに基づき評価した。
 正面から観察した場合と斜め45°から観察した場合とで反射色と明るさに変化がなく、且つ斜め45°から観察した場合に色むらが見えない場合は「A」(最良)と評価した。
 正面から観察した場合と斜め45°から観察した場合とで反射色と明るさに変化がなく、且つ斜め45°から観察した場合に色むらがほとんど見えない場合は「B」(良好)と評価した。
 正面から観察した場合と斜め45°から観察した場合とで反射色と明るさに変化があり、且つ斜め45°から観察した場合に色むらがかすかに見える場合は「C」(良好ではないが使用可)と評価した。
 正面から観察した場合と斜め45°から観察した場合とで反射色と明るさに変化があり、且つ斜め45°から観察した場合に色むらがはっきり見える場合は「D」(不良)とした。
 〔製造例1:延伸前基材(A)の調製〕
 熱可塑性ノルボルネン樹脂のペレット(日本ゼオン株式会社製、商品名「ZEONOR1420R」、Tg 137℃)を100℃で5時間乾燥させた。乾燥させたペレットを押し出し機に供給し、押し出し機内で溶融させ、ポリマーパイプおよびポリマーフィルターを通し、Tダイからキャスティングドラム上にシート状に押し出し、冷却し、マスキングフィルム(トレテガー社製、FF1025)で保護しながら巻取り、厚み100μm、幅1490mmの延伸前基材(A)のロールを得た。
 〔製造例2:延伸前基材(B)の調製〕
 熱可塑性ノルボルネン樹脂のペレットを、別のノルボルネン樹脂のペレット(日本ゼオン株式会社製、Tg 126℃)に変更した他は、製造例1と同様にして、厚み100μm、幅1490mmの延伸前基材(B)のロールを得た。
 〔製造例3:延伸前基材(C)の調製〕
 熱可塑性ノルボルネン樹脂のペレットを、別のノルボルネン樹脂のペレット(日本ゼオン株式会社製、Tg 126℃)に変更し、且つTダイを変更した他は、製造例1と同様にして、厚み60μm、幅1350mmの延伸前基材(C)のロールを得た。
 〔製造例4:延伸前基材(D)の調製〕
 熱可塑性ノルボルネン樹脂のペレットを、別のノルボルネン樹脂のペレット(日本ゼオン株式会社製、Tg 126℃)に変更し、且つTダイを変更した他は、製造例1と同様にして、厚み90μm、幅1060mmの延伸前基材(D)のロールを得た。
 〔製造例5:液晶組成物(A)の調製〕
 重合性液晶化合物(商品名「LC242」BASF社製、式(A1)で示される化合物)24.15部、界面活性剤(商品名「フタージェントFTX-209F」、ネオス社製)0.12部、重合開始剤(商品名「IRGACURE379」、BASF社製)0.73重量部、及び溶媒(メチルエチルケトン)75.00部を混合し、液晶組成物を調製した。
Figure JPOXMLDOC01-appb-C000027
 〔製造例6:液晶組成物(B)の調製〕
 式(B1)で表される逆波長分散重合性液晶化合物21.25部、界面活性剤(商品名「サーフロンS420」、AGCセイミケミカル社製)0.11部、重合開始剤(商品名「IRGACURE379」、BASF社製)0.64部、及び溶媒(シクロペンタノン、日本ゼオン株式会社製)78.00部を混合し、液晶組成物を調製した。
Figure JPOXMLDOC01-appb-C000028
 〔実施例1〕
 (1-1.第一の基材の調製)
 製造例1で得た延伸前基材(A)のロールから、延伸前基材(A)を引き出し、連続的にマスキングフィルムを剥離してテンター延伸機に供給し、斜め延伸を行なった。これにより、中間フィルムを得た。斜め延伸における延伸倍率は1.9倍、延伸温度は132℃とし、得られた中間フィルムは、その平均配向角が幅方向に対して25°であり、Reが360nmであった。
 得られた中間フィルムを、さらに自由縦一軸延伸にて延伸した。自由縦一軸延伸の延伸方向はフィルム搬送方向とし、延伸倍率は1.25倍、延伸温度は129℃とした。
 延伸後、基材フィルム幅方向の両端をトリミングし、幅1350mmで長尺状の、第一の基材(A-1)を得た。得られた延伸基材の遅相軸は幅方向に対して45°、配向角のバラツキは0.5°、Nz係数は2.3、Reは141nm、膜厚は42μmであった。
 得られた第一の基材(A-1)は、新たなマスキングフィルム(トレテガー社製、FF1025)で保護しながら巻取り、第一の基材(A-1)のロールを得た。
 (1-2.液晶組成物の層の形成)
 (1-1)で得た第一の基材(A-1)のロールから、第一の基材(A-1)を繰り出し、マスキングフィルムを剥離して搬送した。室温25℃において、搬送される第一の基材(A-1)の一方の面(マスキングフィルムが貼合されていた側の面)に、製造例5で得た液晶組成物(A)を、ダイコーターを用いて直接塗布し、液晶組成物の層を形成した。
 ダイコーターによる塗布は、固定されているダイコーターの吐出口を、搬送される第一の基材(A-1)の表面に近接させ、ダイコーターから液晶組成物(A)を吐出することにより行った。したがって、ダイコーターによる、搬送される第一の基材(A-1)の表面に対する相対的な塗布方向は、長手方向(即ち幅方向に対して90°)であった。
 (1-3.配向処理及び重合)
 (1-2)で得た、第一の基材(A-1)上の液晶組成物の層を、110℃で2.5分間配向処理した。その後、窒素雰囲気下で、液晶組成物の層に、積算光量100mJ/cm(照射強度10mW/cmを照射時間10秒)以上の紫外線を照射して、液晶組成物中の重合性液晶化合物を重合させて、硬化液晶分子を形成した。これにより、乾燥膜厚1.1μmの、ホモジニアス配向した光学異方性層を得て、(第一の基材)/(光学異方性層)の層構成を有する複層フィルムを得た。
 (1-4.評価)
 得られた複層フィルムの光学異方性層について、面内レターデーションの測定、遅相軸と幅方向とがなす角度の測定、配向状態の評価、配向欠陥の評価、ならびに輝点及び異物の評価を行った。
 〔実施例2〕
 以下の事項以外は実施例1と同様に操作し、第一の基材及び複層フィルムを得て評価した。
 ・(1-1)における延伸前基材(A)を斜め延伸して中間フィルムとする工程において、延伸温度を133℃とし、延伸の方向も変更した(延伸倍率は1.9倍で変更なし)。得られた中間フィルムは、その平均配向角が23°、Reが325nmであった(その後の自由縦一軸延伸の上限は変更なし)。
 ・(1-3)において、光学異方性層の乾燥膜厚を2.2μmに変更した。
 〔実施例3〕
 以下の事項以外は実施例1と同様に操作し、第一の基材及び複層フィルムを得て評価した。
 ・(1-1)における延伸前基材(A)を斜め延伸して中間フィルムとする工程において、延伸倍率を2.0倍、延伸温度を136℃とし、延伸の方向も変更した。得られた中間フィルムは、その平均配向角が幅方向に対して30°、Reが450nmであった。
 ・(1-1)における中間フィルムを自由縦一軸延伸にて延伸する工程において、延伸倍率を1.20倍、延伸温度を132℃に変更した。
 〔実施例4〕
 以下の事項以外は実施例1と同様に操作し、第一の基材及び複層フィルムを得て評価した。
 ・(1-1)における延伸前基材(A)を斜め延伸して中間フィルムとする工程において、延伸倍率を3.0倍、延伸温度を131℃とし、延伸の方向も変更した。得られた中間フィルムは、その平均配向角が幅方向に対して15°、Reが300nmであった。
 ・(1-1)における中間フィルムを自由縦一軸延伸にて延伸する工程において、延伸倍率を1.40倍に変更した(延伸温度は129℃で変更なし)。
 〔実施例5〕
 (5-1.第一の基材の調製)
 製造例1で得た延伸前基材(A)のロールから、延伸前基材(A)を引き出し、連続的にマスキングフィルムを剥離して、自由縦一軸延伸し、中間フィルムを得た。自由縦一軸延伸の延伸方向はフィルム搬送方向とし、延伸倍率は1.2倍、延伸温度は140℃とした。得られた中間フィルムは、その平均配向角が幅方向に対して90°であり、Reが160nmであった。
 得られた中間フィルムを、さらにテンター延伸機に供給し、斜め延伸を行なった。斜め延伸における延伸倍率は1.70倍、延伸温度は136℃とした。
 延伸後、基材フィルム幅方向の両端をトリミングし、幅1350mmで長尺状の、第一の基材(A-1)を得た。得られた延伸基材の遅相軸は幅方向に対して45°、配向角のバラツキは0.3°、Nz係数は1.6、Reは140nm、膜厚は49μmであった。
 得られた第一の基材(A-1)は、新たなマスキングフィルム(トレテガー社製、FF1025)で保護しながら巻取り、第一の基材(A-1)のロールを得た。
 (5-2.複層フィルムの製造及び評価)
 第一の基材(A-1)のロールとして、実施例1の(1-1)で得たものに代えて、(5-1)で得たものを用い、光学異方性層の乾燥膜厚を1.5μmに変更した他は、実施例1の(1-2)~(1-4)と同様にして、複層フィルムを製造し評価した。
 〔実施例6〕
 以下の事項以外は実施例1と同様に操作し、第一の基材及び複層フィルムを得て評価した。
 ・(1-1)における延伸前基材(A)を斜め延伸して中間フィルムとする工程において、延伸倍率を1.25倍、延伸温度を135℃とし、延伸の方向も変更した。得られた中間フィルムは、その平均配向角が幅方向に対して15°、Reが140nmであった。
 ・(1-1)における中間フィルムを自由縦一軸延伸にて延伸する工程において、延伸倍率を1.60倍、延伸温度を138℃に変更した。
 ・(1-2)において、液晶組成物(A)に代えて、製造例6で得た液晶組成物(B)を用いた。
 ・(1-3)において、光学異方性層の乾燥膜厚を2.2μmに変更した。
 〔実施例7〕
 以下の事項以外は実施例1と同様に操作し、第一の基材及び複層フィルムを得て評価した。
 ・(1-1)において、延伸前基材(A)のロールに代えて、製造例2で得た延伸前基材(B)のロールを用いた。
 ・(1-1)における延伸前基材(A)を斜め延伸して中間フィルムとする工程において、延伸倍率を1.25倍、延伸温度を135℃とし、延伸の方向も変更した。得られた中間フィルムは、その平均配向角が幅方向に対して45°、Reが140nmであった。
 ・(1-1)における中間フィルムを自由縦一軸延伸にて延伸する工程において、延伸倍率を1.40倍、延伸温度を133℃に変更した。
 ・(1-3)において、光学異方性層の乾燥膜厚を1.2μmに変更した。
 〔実施例8〕
 (8-1.第一の基材の調製)
 製造例3で得た延伸前基材(C)のロールから、延伸前基材(C)を引き出し、連続的にマスキングフィルムを剥離してテンター延伸機に供給し、斜め延伸を行なった。斜め延伸における延伸倍率は1.5倍、延伸温度は142℃とした。
 延伸後、基材フィルム幅方向の両端をトリミングし、幅1350mmで長尺状の、第一の基材(A-1)を得た。得られた延伸基材の遅相軸は幅方向に対して15°、配向角のバラツキは0.7°、Nz係数は1.1、Reは141nm、膜厚は22μmであった。
 得られた第一の基材(A-1)は、新たなマスキングフィルム(トレテガー社製、FF1025)で保護しながら巻取り、第一の基材(A-1)のロールを得た。
 (8-2.複層フィルムの製造及び評価)
 第一の基材(A-1)のロールとして、実施例1の(1-1)で得たものに代えて、(8-1)で得たものを用いた他は、実施例1の(1-2)~(1-4)と同様にして、複層フィルムを製造し評価した。
 〔実施例9〕
 (9-1.第一の基材の調製)
 製造例4で得た延伸前基材(D)のロールから、延伸前基材(D)を引き出し、連続的にマスキングフィルムを剥離してテンター延伸機に供給し、斜め延伸を行なった。斜め延伸における延伸倍率は1.96倍、延伸温度は142℃とした。
 延伸後、基材フィルム幅方向の両端をトリミングし、幅1350mmで長尺状の、第一の基材(A-1)を得た。得られた延伸基材の遅相軸は幅方向に対して22.5°、配向角のバラツキは0.2°、Nz係数は1.35、Reは259nm、膜厚は43μmであった。
 得られた第一の基材(A-1)は、新たなマスキングフィルム(トレテガー社製、FF1025)で保護しながら巻取り、第一の基材(A-1)のロールを得た。
 (9-2.複層フィルムの製造及び評価)
 第一の基材(A-1)のロールとして、実施例1の(1-1)で得たものに代えて、(9-1)で得たものを用いた他は、実施例1の(1-2)~(1-4)と同様にして、複層フィルムを製造し評価した。
 〔比較例1〕
 以下の事項以外は実施例1と同様に操作し、第一の基材及び複層フィルムを得て評価した。
 ・(1-1)における延伸前基材(A)を斜め延伸して中間フィルムとする工程において、延伸倍率を3.0倍、延伸温度を131℃とし、延伸の方向も変更した。得られた中間フィルムは、その平均配向角が幅方向に対して15°、Reが300nmであった。
 ・(1-1)における中間フィルムを自由縦一軸延伸にて延伸する工程において、延伸倍率を1.80倍、延伸温度を128℃に変更した。
 〔比較例2〕
 以下の事項以外は実施例1と同様に操作し、第一の基材及び複層フィルムを得て評価した。
 ・(1-1)における延伸前基材(A)を斜め延伸して中間フィルムとする工程において、延伸倍率を1.5倍、延伸温度を144℃とし、延伸の方向も変更した。得られた中間フィルムは、その平均配向角が幅方向に対して55°、Reが300nmであった。
 ・(1-1)における中間フィルムを自由縦一軸延伸にて延伸する工程において、延伸倍率を2.0倍、延伸温度を145℃に変更した。
 実施例1~9及び比較例1~2の結果を、表1~表2に示す。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 〔実施例10〕
 (10-1.円偏光板の製造)
 実施例1で得た複層フィルムの光学異方性層をλ/4波長板として用い、円偏光板を製造した。
 まず、長尺状の直線偏光子として、偏光フィルム(サンリッツ社製、商品名「HLC2-5618S」、厚さ180μm、幅方向に対して0°の方向に透過軸を有する)を用意した。この一方の面と、実施例1で得た複層フィルムの光学異方性層(即ちλ/4波長板)側の面とを貼合した。貼合は粘着剤層(日東電工製、商品名「CS9621」)を介して行った。これにより、(偏光子)/(粘着剤層)/(λ/4波長板)/(第一の基材)の層構成を有する積層体(10-i)を得た。
 次に、積層体(10-i)から、第一の基材を剥離し、(偏光子)/(粘着剤層)/(λ/4波長板)の層構成を有する円偏光板を得た。
 これらの貼合及び剥離の操作は、いずれも、図1に例示する態様で、ロールツーロールにて連続的に行った。したがって、貼合の操作は、いずれも長尺状のフィルムの長手方向を揃えた状態で行った。
 得られた円偏光板の構成要素の光学軸は、下記の角度関係を有していた。即ち、偏光子側の面から円偏光板を観察した場合において、λ/4波長板の遅相軸は、偏光板の透過軸の方向から時計周りに45°シフトしていた。
 (10-2.評価)
 (10-1)で得た長尺状の円偏光板を適当な大きさに裁断し、目視観察して評価した。
 〔実施例11~12〕
 複層フィルムとして、実施例1で得たものに代えて、実施例5で得たもの(実施例11)、又は実施例6で得たもの(実施例12)を用いた他は実施例10の(10-1)と同様に操作し、円偏光板を得た。
 得られた円偏光板の構成要素の光学軸の角度関係は、実施例10で得た円偏光板と同様であった。
 得られた長尺状の円偏光板を適当な大きさに裁断し、目視観察して評価した。
 実施例10~12における目視観察の評価結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000031
 〔実施例13〕
 実施例12で製造した円偏光板のλ/4波長板側の面と、反射板(商品名「メタルミーTS50」、東レ社製、アルミニウム蒸着PET(ポリエチレンテレフタレート)フィルム)の反射面とを貼合した。貼合は粘着剤層(日東電工製、商品名「CS9621」)を介して行った。これにより、(偏光子)/(粘着剤層)/(λ/4波長板)/(粘着剤層)/(反射板)の層構成を有する、評価用積層体(12-v)を得た。
 得られた評価用積層体(12-v)について、偏光子側の面に入射した光の反射率を測定した。測定には、分光光度計V7200と絶対反射率ユニットVAR7020(日本分光株式会社製)とを用いた。測定に際して、極角は5°~60°の範囲で様々に変化させた。また、方位角は、偏光子側の面から円偏光板を観察した場合において、偏光板の透過軸の方向から時計周りに0°、45°、90°、及び135°とした。結果を図2に示す。
 表1~3及び図2の結果より、本願実施例においては、異物の発生による欠陥及び配向規制力の不足による欠陥が少ない複層フィルムが製造でき、さらに、それを用いて、良好な性能を有する円偏光板が製造できたことが分かる。
 10 貼合物
 21 複層フィルム
 30 直線偏光子
 120 貼合装置
 121 ニップロール
 122 ニップロール
 130 巻き軸

Claims (15)

  1.  長尺状の第一の基材と、
     前記第一の基材上に直接形成された、硬化液晶分子を含む光学異方性層とを備える複層フィルムであって、
     前記第一の基材は、そのNz係数が1.1~3.0、配向角のバラツキが1.0°以下であって、延伸により生じた配向規制力を有し、
     前記第一の基材の遅相軸と、前記第一の基材の幅方向とがなす角度が0°以上90°未満である、複層フィルム。
  2.  前記第一の基材の遅相軸と前記第一の基材の幅方向とがなす角度が40°~80°である、請求項1に記載の複層フィルム。
  3.  前記第一の基材の遅相軸と前記第一の基材の幅方向とがなす角度が55°~80°である、請求項2に記載の複層フィルム。
  4.  前記第一の基材が正の固有複屈折性を有する樹脂のフィルムである、請求項1~3のいずれか1項に記載の複層フィルム。
  5.  前記第一の基材が脂環式構造含有重合体を含む樹脂のフィルムである、請求項1~4のいずれか1項に記載の複層フィルム。
  6.  前記第一の基材が、1回以上の斜め延伸を含む延伸工程により延伸された延伸フィルムである、請求項1~5のいずれか1項に記載の複層フィルム。
  7.  前記光学異方性層が逆波長分散性を有する、請求項1~6のいずれか1項に記載の複層フィルム。
  8.  前記光学異方性層がλ/4波長板である、請求項1~7のいずれか1項に記載の複層フィルム。
  9.  前記光学異方性層がλ/2波長板である、請求項1~7のいずれか1項に記載の複層フィルム。
  10.  前記光学異方性層の厚みが5μm以下である、請求項1~9のいずれか1項に記載の複層フィルム。
  11.  請求項1~10のいずれか1項に記載の複層フィルムから、光学異方性層を剥離し、
     前記光学異方性層を、長尺状の第二の基材に貼合してなる、光学異方性積層体。
  12.  光学異方性層と、長尺状の直線偏光子とをロールツーロールで貼合してなる円偏光板であって、
     前記光学異方性層が、請求項1~10のいずれか1項に記載の複層フィルムから剥離してなる層である、円偏光板。
  13.  請求項12に記載の円偏光板を備える有機エレクトロルミネッセンス表示装置。
  14.  請求項1~10のいずれか1項に記載の複層フィルムの製造方法であって、
     長尺状の第一の基材を長手方向に繰出す工程であって、前記第一の基材は、そのNz係数が1.1~3.0、配向角のバラツキが1.0°以下であって、延伸により生じた配向規制力を有し、前記第一の基材の遅相軸と、前記第一の基材の幅方向とがなす角度が0°以上90°未満である、工程(I)、
     繰出した前記第一の基材の表面上に、直接、重合性液晶化合物を含有する液晶組成物を塗布し、液晶組成物の層を得る工程(II)、
     前記液晶組成物の層中の前記重合性液晶化合物を配向させる工程(III)、及び
     前記重合性液晶化合物を重合させ、硬化液晶分子を形成する工程(IV)を含む製造方法。
  15.  前記液晶組成物の塗布方向と、前記重合性液晶化合物の配向方向とが異なる、請求項14に記載の複層フィルムの製造方法。
PCT/JP2016/051608 2015-01-28 2016-01-20 複層フィルム、光学異方性積層体、円偏光板、有機エレクトロルミネッセンス表示装置、及び製造方法 WO2016121602A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680005869.2A CN107111044B (zh) 2015-01-28 2016-01-20 多层膜、光学各向异性层叠体、圆偏振片、有机电致发光显示装置及制造方法
JP2016571973A JP6711283B2 (ja) 2015-01-28 2016-01-20 複層フィルム、並びに、複層フィルム、光学異方性積層体、円偏光板、及び有機エレクトロルミネッセンス表示装置の、製造方法
KR1020177017644A KR102581852B1 (ko) 2015-01-28 2016-01-20 복층 필름, 광학 이방성 적층체, 원편광판, 유기 일렉트로 루미네선스 표시 장치, 및 제조 방법
US15/541,479 US10207474B2 (en) 2015-01-28 2016-01-20 Multilayer film, optically anisotropic layered body, circularly polarizing plate, organic electroluminescence display device, and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015014765 2015-01-28
JP2015-014765 2015-01-28

Publications (1)

Publication Number Publication Date
WO2016121602A1 true WO2016121602A1 (ja) 2016-08-04

Family

ID=56543217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051608 WO2016121602A1 (ja) 2015-01-28 2016-01-20 複層フィルム、光学異方性積層体、円偏光板、有機エレクトロルミネッセンス表示装置、及び製造方法

Country Status (6)

Country Link
US (1) US10207474B2 (ja)
JP (1) JP6711283B2 (ja)
KR (1) KR102581852B1 (ja)
CN (1) CN107111044B (ja)
TW (1) TWI677718B (ja)
WO (1) WO2016121602A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096938A1 (ja) * 2016-11-22 2018-05-31 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、光学フィルム、光学異方体、偏光板、フラットパネル表示装置、有機エレクトロルミネッセンス表示装置、反射防止フィルム、および化合物
WO2019216122A1 (ja) * 2018-05-08 2019-11-14 コニカミノルタ株式会社 液晶塗布用基材フィルム、これを含む仮支持体付き光学フィルム、これらを含む偏光板、ならびにこれらの製造方法
JPWO2019107365A1 (ja) * 2017-11-30 2020-12-24 住友化学株式会社 光学異方性フィルム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505820B (zh) * 2021-02-07 2021-06-01 北京瑞波科技术有限公司 一种位相延迟装置及其制备方法、显示设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030931A (ja) * 2004-07-13 2006-02-02 Optimax Technology Corp 光学補償フィルムおよびその製造方法
WO2009025170A1 (ja) * 2007-08-23 2009-02-26 Konica Minolta Opto, Inc. 長尺の位相差フィルム、長尺の楕円偏光フィルム、楕円偏光板、及び画像表示装置
JP2014139661A (ja) * 2012-12-17 2014-07-31 Nitto Denko Corp 光学積層体の製造方法及び光学積層体
JP2015163940A (ja) * 2013-08-09 2015-09-10 住友化学株式会社 楕円偏光板

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8724956D0 (en) 1987-10-24 1987-11-25 Dow Corning Sa Hydroxy terminated polysiloxanes
JP2631015B2 (ja) 1989-06-06 1997-07-16 株式会社リコー 液晶性高分子の配向方法
JPH0416919A (ja) 1990-05-11 1992-01-21 Ricoh Co Ltd 光学位相板
EP0525478B1 (de) 1991-07-26 1997-06-11 F. Hoffmann-La Roche Ag Flüssigkristallanzeigezelle
DE4408171A1 (de) 1994-03-11 1995-09-14 Basf Ag Neue polymerisierbare flüssigkristalline Verbindungen
JP2587398B2 (ja) 1994-05-31 1997-03-05 富士写真フイルム株式会社 光学補償シート、液晶表示装置及びカラー液晶表示装置
JPH08160430A (ja) 1994-12-02 1996-06-21 Fuji Photo Film Co Ltd ラビング方法およびそれを用いた光学補償シートの製造方法
EP0756193B1 (de) 1995-07-28 2016-02-17 Rolic AG Verfahren zur Erzeugung von Kippwinkeln in photoorientierten Polymernetzwerkschichten
JPH1152131A (ja) 1997-08-01 1999-02-26 Sumitomo Bakelite Co Ltd 位相差板及びそれを用いた偏光素子
KR19990016174A (ko) 1997-08-13 1999-03-05 권문구 액정표시소자용 편광막의 제조방법
JP2000267105A (ja) 1999-03-19 2000-09-29 Matsushita Electric Ind Co Ltd 液晶表示パネルの製造方法
DE10016524A1 (de) 2000-04-03 2001-10-04 Basf Ag Polymerisierbare Flüssigkristalle
JP2002006322A (ja) 2000-06-21 2002-01-09 Matsushita Electric Ind Co Ltd 液晶表示装置のラビング方法および液晶表示装置ならびにラビング装置
JP2002321302A (ja) 2001-04-26 2002-11-05 Nippon Zeon Co Ltd 脂環式構造含有重合体樹脂積層体
JP2003207641A (ja) 2001-11-08 2003-07-25 Dainippon Printing Co Ltd 位相差層積層体およびその製造方法
JP3992969B2 (ja) 2001-12-10 2007-10-17 日東電工株式会社 ホメオトロピック配向液晶フィルム、輝度向上フィルムおよび光学フィルム
JP4507490B2 (ja) 2002-12-26 2010-07-21 チッソ株式会社 光重合性液晶組成物および液晶フィルム
JP4721721B2 (ja) 2004-02-18 2011-07-13 株式会社Adeka 重合性化合物及び該化合物を含有する重合性液晶組成物
JP2007119415A (ja) 2005-10-31 2007-05-17 Adeka Corp 縮合環を有する重合性液晶化合物並びに該重合性液晶化合物の単独重合物及び共重合物
CN102033258B (zh) * 2005-11-28 2013-02-06 日本瑞翁株式会社 长的斜向延伸膜的制造方法
JP4545095B2 (ja) 2006-01-11 2010-09-15 株式会社Adeka 新規重合性化合物
JP4909594B2 (ja) * 2006-01-17 2012-04-04 東芝モバイルディスプレイ株式会社 液晶表示装置
JP2009294521A (ja) * 2008-06-06 2009-12-17 Nippon Oil Corp 位相差フィルム、位相差フィルムの製造方法、偏光板および液晶表示装置
KR101891573B1 (ko) 2011-04-27 2018-08-24 제온 코포레이션 중합성 화합물, 중합성 조성물, 고분자, 및 광학 이방체
JP5626133B2 (ja) * 2011-06-14 2014-11-19 コニカミノルタ株式会社 Va型液晶表示装置
KR20130061277A (ko) * 2011-12-01 2013-06-11 삼성디스플레이 주식회사 편광 구조물, 편광 구조물의 제조 방법 및 편광 구조물을 구비하는 유기 발광 표시 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030931A (ja) * 2004-07-13 2006-02-02 Optimax Technology Corp 光学補償フィルムおよびその製造方法
WO2009025170A1 (ja) * 2007-08-23 2009-02-26 Konica Minolta Opto, Inc. 長尺の位相差フィルム、長尺の楕円偏光フィルム、楕円偏光板、及び画像表示装置
JP2014139661A (ja) * 2012-12-17 2014-07-31 Nitto Denko Corp 光学積層体の製造方法及び光学積層体
JP2015163940A (ja) * 2013-08-09 2015-09-10 住友化学株式会社 楕円偏光板

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096938A1 (ja) * 2016-11-22 2018-05-31 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、光学フィルム、光学異方体、偏光板、フラットパネル表示装置、有機エレクトロルミネッセンス表示装置、反射防止フィルム、および化合物
CN109996780A (zh) * 2016-11-22 2019-07-09 日本瑞翁株式会社 聚合性化合物、聚合性组合物、高分子、光学膜、光学各向异性体、偏振片、平板显示装置、有机电致发光显示装置、防反射膜和化合物
JPWO2018096938A1 (ja) * 2016-11-22 2019-10-17 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、光学フィルム、光学異方体、偏光板、フラットパネル表示装置、有機エレクトロルミネッセンス表示装置、反射防止フィルム、および化合物
JPWO2019107365A1 (ja) * 2017-11-30 2020-12-24 住友化学株式会社 光学異方性フィルム
WO2019216122A1 (ja) * 2018-05-08 2019-11-14 コニカミノルタ株式会社 液晶塗布用基材フィルム、これを含む仮支持体付き光学フィルム、これらを含む偏光板、ならびにこれらの製造方法
JPWO2019216122A1 (ja) * 2018-05-08 2021-05-20 コニカミノルタ株式会社 液晶塗布用基材フィルム、これを含む仮支持体付き光学フィルム、これらを含む偏光板、ならびにこれらの製造方法
JP7327390B2 (ja) 2018-05-08 2023-08-16 コニカミノルタ株式会社 液晶塗布用基材フィルム、これを含む仮支持体付き光学フィルム、これらを含む偏光板、ならびにこれらの製造方法

Also Published As

Publication number Publication date
KR20170105496A (ko) 2017-09-19
JPWO2016121602A1 (ja) 2017-11-02
US20170368793A1 (en) 2017-12-28
TWI677718B (zh) 2019-11-21
US10207474B2 (en) 2019-02-19
JP6711283B2 (ja) 2020-06-17
CN107111044B (zh) 2019-08-09
TW201640157A (zh) 2016-11-16
CN107111044A (zh) 2017-08-29
KR102581852B1 (ko) 2023-09-21

Similar Documents

Publication Publication Date Title
WO2015064581A1 (ja) 複層フィルム、光学異方性積層体、円偏光板、有機エレクトロルミネッセンス表示装置、及び製造方法
WO2016121856A1 (ja) 複層フィルム、その用途、及び製造方法
WO2017170455A1 (ja) 光学異方性層及びその製造方法、光学異方性積層体及びその製造方法、光学異方性転写体、偏光板、並びに画像表示装置
WO2016136901A1 (ja) 光学フィルム用転写体、光学フィルム、有機エレクトロルミネッセンス表示装置、及び光学フィルムの製造方法
JP6641683B2 (ja) 樹脂フィルム、λ/4板、円偏光板、有機エレクトロルミネッセンス表示装置、及び製造方法
JP6442886B2 (ja) 複層フィルム、位相差フィルム、円偏光板、及び、有機エレクトロルミネッセンス表示装置の製造方法
JP6724297B2 (ja) 光学積層体の製造方法、円偏光板の製造方法及び有機エレクトロルミネッセンス表示装置の製造方法
WO2017110631A1 (ja) 光学異方性層及びその製造方法、光学異方性積層体並びに円偏光板
WO2016121602A1 (ja) 複層フィルム、光学異方性積層体、円偏光板、有機エレクトロルミネッセンス表示装置、及び製造方法
JP2017111394A (ja) 光学フィルムの製造方法
JP2019066777A (ja) 光学異方性層及びその製造方法、光学異方性積層体及びその製造方法、光学異方性転写体、偏光板、並びに画像表示装置
JP6446860B2 (ja) 複層フィルム、位相差フィルム、円偏光板、及び、有機エレクトロルミネッセンス表示装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571973

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177017644

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15541479

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743206

Country of ref document: EP

Kind code of ref document: A1