[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016121266A1 - Sample analysis device and sample analysis method - Google Patents

Sample analysis device and sample analysis method Download PDF

Info

Publication number
WO2016121266A1
WO2016121266A1 PCT/JP2015/085695 JP2015085695W WO2016121266A1 WO 2016121266 A1 WO2016121266 A1 WO 2016121266A1 JP 2015085695 W JP2015085695 W JP 2015085695W WO 2016121266 A1 WO2016121266 A1 WO 2016121266A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
sample
supply
measurement
supply mechanism
Prior art date
Application number
PCT/JP2015/085695
Other languages
French (fr)
Japanese (ja)
Inventor
啓 綱澤
中村 篤
足立 雄介
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016121266A1 publication Critical patent/WO2016121266A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a sample analyzer and a sample analysis method, and more particularly to a sample analyzer and a sample analysis method suitable for analyzing soil components.
  • the soil analyzer injects each soil extract into a plurality of test tubes each time with a graduated dropper, and then puts the reagent and diluent determined for each soil component into the test tubes. Inject and develop color. And it is measured by converting into a numerical value using a colorimetric table, a turbidimetric table, an absorptiometric method or the like.
  • the measurement method described above needs to mix a reagent with each soil extract, which increases the number of repetitive operations. Moreover, it is necessary to prepare a reagent according to the soil component to be measured, and the complexity is high.
  • FIG. 13 shows the reagent mixing and soil analysis apparatus disclosed in Patent Document 1.
  • FIG. 13 (a) is a schematic diagram of a conventional soil analysis apparatus
  • FIG. 13 (b) is a schematic diagram showing the fitting between the storage cartridge provided in the conventional soil analyzer and the extract cartridge.
  • the soil analysis apparatus described in Patent Document 1 includes a light emitting unit 7, a light receiving unit 8, and a storage cartridge 9, as shown in FIG.
  • the storage cartridge 9 is made of a transparent material, and is provided with a plurality of cells 11 for storing a mixture of a soil extract and a reagent extracted from soil.
  • light emitted from the light emitting unit 7 passes through the mixed solution in the storage cartridge 9 and is detected by the light receiving unit 8 to measure the absorbance of the mixed solution.
  • the concentration of soil components is measured by the method.
  • a predetermined amount of reagent is previously stored in the cell 11 of the storage cartridge 9 and is sealed with a seal paper 15.
  • Each cell 16 of the extract cartridge 14 has a dredging function as a metering and contains a soil extract.
  • the extract cartridge 14 is pushed into the storage cartridge 9 in the direction indicated by the arrows in FIGS. 13B and 13C, so that the storage cartridge 9 and the extract cartridge 14 are fitted. Thereafter, the bottom surface of the extraction liquid cartridge 14 is penetrated, and the extraction liquid is injected into the cell 11 of the storage cartridge 9 to prepare a mixed liquid.
  • Patent Document 2 discloses an analysis device and an analysis apparatus in which a microchannel is formed.
  • the analysis apparatus described in Patent Document 2 drops a sample solution on an analysis device in which a diluent is set in advance, and then rotates the analysis device to rotate the sample solution held in the analysis device.
  • the reagent is moved to the reaction tank, and a mixed solution of the sample and the reagent is prepared by a simple method.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2007-46922 (published on February 22, 2007)” Japanese Patent Publication “JP 2009-210564 A (published on September 17, 2009)”
  • the present invention has been made in view of the above problems, and the object thereof is to be able to measure a plurality of soil components in a short time in a simple method, and to perform highly accurate measurement.
  • a sample analysis apparatus and a sample analysis method are provided.
  • a sample analyzer is a container that rotates around a rotation axis, and the first and second are arranged on a first circumference of the rotation axis.
  • a container in which a measurement chamber is formed, and a first supply port communicating with the first measurement chamber and a second supply port communicating with the second measurement chamber are formed on a second circumference around the rotation axis
  • a liquid supply mechanism that is disposed at a position corresponding to the second circumference and that supplies the liquid to the first or second measurement chamber via the first or second supply port; and A component of the liquid based on a light emitting unit disposed at a position corresponding to the circumference, a light receiving unit that receives light transmitted through the first or second measurement chamber, and a transmitted light amount received by the light receiving unit And a measuring unit for analyzing the above.
  • the container has the first and second measurement chambers formed on the first circumference of the rotation shaft, and the first measurement chamber is provided on the second circumference of the rotation shaft.
  • a first supply port that communicates with a second supply port that communicates with the second measurement chamber is formed. Therefore, the container is rotated so that the liquid injection position of the liquid supply mechanism is aligned with the positions of the first and second supply ports, and liquid is injected from the liquid supply mechanism via the first and second supply ports. It can be carried out. As a result, the liquid can be injected in a short time, and the liquid is injected by the liquid supply mechanism, so that the measurement can be performed with high accuracy.
  • FIG. 1 is a schematic configuration diagram of a sample analyzer according to Embodiment 1 of the present invention. It is the structure schematic of the light emission part with which the sample analyzer shown in FIG. 1 is equipped.
  • FIG. 3 is a schematic configuration diagram of a filter array provided in the light emitting unit shown in FIG. 2. It is the structure schematic of the chip
  • FIG. FIG. 2 is a schematic configuration diagram of a liquid supply mechanism provided in the sample analyzer shown in FIG. 1.
  • FIG. 1 schematically shows a filter array and a light receiving section. It is a flowchart which shows the flow of a measurement of the sample analyzer shown in FIG. It is a block schematic diagram of the sample analyzer which concerns on Embodiment 2 of this invention. It is a flowchart which shows the flow of a measurement of the sample analyzer shown in FIG. It is a block schematic diagram of the sample analyzer which concerns on Embodiment 3 of this invention. It is a block schematic diagram of the sample analyzer which concerns on Embodiment 4 of this invention.
  • FIG. (A) is a schematic diagram of a conventionally used soil analyzer, and (b) and (c) show the fitting between the storage cartridge provided in the soil analyzer shown in (a) and the extract cartridge. It is a schematic diagram shown.
  • FIG. 1 shows a schematic configuration diagram of a sample analyzer 100 according to Embodiment 1 of the present invention.
  • a sample analyzer 100 according to the first embodiment of the present invention is a sample analyzer that performs absorptiometry, and as shown in FIG. 1, a light emitting unit 101, a chip 102, a light receiving unit 103, and a rotational drive.
  • Unit 106, liquid supply mechanism 108, measurement unit 109, and control unit 111 is a sample analyzer 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic configuration diagram of the light emitting unit 101.
  • the light emitting unit 101 includes a plurality of light sources 201a, 201b, and 201c having different emission wavelengths, collimating lenses 202a, 202b, and 202c corresponding to the plurality of light sources 201a, 201b, and 201c, and a dichroic.
  • Mirrors 203a and 203b, an aperture 204, and a filter array 205 are provided.
  • the light emitting unit 101 is connected to the control unit 111, and each of the light sources 201a to 201c is controlled in light emission, extinction, and light emission intensity by a signal from the control unit 111.
  • a white LED Light Emitting Diode
  • a blue LED is used as the light source 201b
  • a red LED is used as the light source 201c.
  • the dichroic mirrors 203a and 203b are mirrors that transmit light in a specific wavelength band and reflect light in another specific wavelength band.
  • a dichroic mirror 203a that transmits light in the wavelength band of 470 nm to 1600 nm and reflects light in the wavelength band of 350 nm to 430 nm is used.
  • the dichroic mirror 203b is a mirror that transmits light having a wavelength band of 400 nm to 630 nm and reflects light having a wavelength band of 675 nm to 850 nm.
  • FIG. 3 is a front view of the filter array 205 shown in FIG. 2 as viewed from above.
  • the filter array 205 includes a plurality of interference filters 301 to 306 having different transmission wavelength bands arranged on the circumference around the rotation axis 210.
  • interference filters having transmission wavelength bands of 420 nm, 520 nm, 570 nm, 610 nm, 710 nm, and 720 nm are used as the interference filters 301 to 306, respectively.
  • a plurality of light sources 201a to 201c emit light in response to a signal from the control unit 111.
  • Light emitted from the light sources 201a to 201c is directed by collimating lenses 202a to 202c corresponding to the light sources 201a to 201c, and their optical paths are combined by dichroic mirrors 203a and 203b.
  • the beam diameter is adjusted by the aperture 204 and guided to the filter array 205.
  • the filter array 205 is controlled to rotate around a rotation axis 210 parallel to the traveling direction of light in synchronization with the control of the plurality of light sources 201a to 201c, and has a specific wavelength from the light that has passed through the aperture 204 Select only transparent.
  • the light transmitted through the filter array 205 is emitted from the light emitting unit 101 as light 300.
  • FIG. 4 is a schematic view showing the chip 102
  • FIG. 4A is a front view of the chip 102 as viewed from above
  • FIG. 4B is an example of the shape of the cell 400 provided in the chip 102
  • FIG. 4C is a schematic diagram showing the shape of the cell 410 provided in the chip 102.
  • the chip 102 has a disk shape, and a plurality of cells 400 and cells 410 are formed radially around the rotation shaft 450.
  • a plurality of cells 400 and cells 410 are formed radially around the rotation shaft 450.
  • six cells 400 and one cell 410 are formed on the chip 102.
  • the cells 400 and 410 are formed at equal intervals in the circumferential direction of the chip 102.
  • the chip 102 is preferably made of a transparent material such as silicone, glass, or plastic so as to transmit the light 300 emitted from the light emitting unit 101.
  • the chip 102 is more preferably made of a highly transparent synthetic resin in order to make the chip 102 inexpensive, and in this embodiment, the chip 102 is a low-density polypropylene that also has chemical resistance. It is made with.
  • the internal structure is shown by solid lines so that the internal structure can be easily understood.
  • each cell 400 stores a sample chamber 401 into which a soil extract (liquid sample) extracted from soil and a reagent (first reagent and second reagent) are injected.
  • Reagent chambers 402 and 403 and measurement chambers (first measurement chamber and second measurement chamber) 404 are formed.
  • a flow path 405 is formed between the reagent chamber 403, the sample chamber 401, the reagent chamber 402, and the measurement chamber 404, and the reagent chamber 403, the sample chamber 401, the reagent chamber 402, and the measurement chamber 404 communicate with each other. ing.
  • the sample chamber 401 is formed with openings (first supply port, second supply port) 407 for injecting the soil extract, and the opening 407 opens toward the upper surface of the chip 102.
  • the cell 410 does not include a reagent chamber, and a sample chamber 411 and a reference chamber 414 are formed. Further, a flow path 415 is formed between the sample chamber 411 and the reference chamber 414, and the sample chamber 411 and the reference chamber 414 communicate with each other.
  • an opening 417 for injecting a soil extract is formed in the sample chamber 411, and the opening 417 opens toward the upper surface of the chip 102.
  • the measurement chamber 404 of the cell 400 and the reference chamber 414 of the cell 410 are formed on the first circumference as indicated by a dashed line A in FIG. Further, the opening 407 of the cell 400 and the opening 417 of the cell 410 are formed on the second circumference as indicated by a dashed line B in FIG. That is, the measurement chamber 404 and the reference chamber 414, and the openings 407 and 417 are formed on concentric circles with the rotation axis 450 as the center, and the openings 407 and 417 are radially inward of the measurement chamber 404 and A reference chamber 414 is formed radially outward.
  • an open / close valve is provided in the flow path 405 between the reagent chamber 403 and the measurement chamber 404, and the valve is closed.
  • the size of the chip 102 is, for example, about 20 cm in diameter, and the size of each of the cell 400 and the cell 410 is 4 to 5 cm in the longitudinal direction of FIGS. 4B and 4C and 2 in the short direction. The size is about 3 cm.
  • the light receiving unit 103 receives the light 300 emitted from the light emitting unit 101 and transmitted through the region on the first circumference indicated by the alternate long and short dash line A in FIG.
  • the measuring unit 109 is connected to the light receiving unit 103.
  • the measuring unit 109 measures the intensity of the light received by the light receiving unit 103 and calculates various data (soil component concentration, pH, etc.) based on the measurement result.
  • the rotation drive unit 106 is provided below the chip 102 and rotates the chip 102 about the rotation axis 450.
  • a stepping motor capable of pulse control is used as the rotation drive unit 106.
  • the configuration in which the rotation driving unit 106 rotationally drives the chip 102 is shown, but the present invention is not limited to this, and the chip 102, the light emitting unit 101, the light receiving unit 103, and the liquid supply mechanism 108 Should move relatively.
  • the rotation driving unit 106 may be configured to rotationally drive the light emitting unit 101, the light receiving unit 103, and the liquid supply mechanism 108 around the rotation axis 450, or the chip 102, the light emitting unit 101, the light receiving unit 103, and the like.
  • the configuration may be such that both the liquid supply mechanism 108 and the liquid supply mechanism 108 are rotationally driven.
  • the control unit 111 includes a liquid supply control unit 104 and a measurement control unit (measurement control unit) 105.
  • the control unit 111 is connected to the light emitting unit 101, the measurement unit 109, the liquid supply mechanism 108, and the rotation driving unit 106, and controls the operation of each unit.
  • the liquid supply control unit 104 controls the operation of the rotation driving unit 106 and the liquid supply mechanism 108, and controls the rotation of the chip 102 so that the liquid injection position of the liquid supply mechanism 108 matches the positions of the openings 407 and 417. Then, the soil extract or the like is supplied from the liquid supply mechanism 108 to the openings 407 and 417 of the chip 102.
  • the measurement control unit 105 controls the operation of the rotation driving unit 106 and the measurement unit 109 when measuring the absorbance, and converts the light transmitted through the reference chamber 414 and the measurement chamber 404 of the chip 102 rotating around the rotation axis 450. Based on the measurement of soil components.
  • FIG. 5 is a schematic diagram showing the configuration of the liquid supply mechanism 108.
  • the chip 102 and the rotation drive unit 106 are also shown.
  • the liquid supply mechanism 108 includes a sample storage container 112, a liquid supply pump 113, a tube 501, and an injection nozzle 502.
  • a soil extract obtained by adding water to the collected soil, shaking and filtering is stored, and connected to the liquid supply pump 113 by a silicon tube (not shown) or the like.
  • the soil extract may be prepared in an extraction container (not shown), which is another container, and injected from the extraction container into the sample storage container 112.
  • the extraction container and the sample storage container 112 may be combined. By making it fit, the bottom part of the extraction container may be penetrated and the soil extract may flow into the silicon tube or the like.
  • the tube 501 connects the liquid supply pump 113 and the injection nozzle 502.
  • the liquid supply pump 113 drops a predetermined amount of a soil extract stored in the sample storage container 112 from the openings 407 and 417 into the sample chambers 401 and 411 of the chip 102 through the tube 501 and the injection nozzle 502. Dispense. Therefore, the injection nozzle 502 is disposed at a position immediately above the circumference (on the second circumference) indicated by the alternate long and short dash line B in FIG. 4A where the openings 407 and 417 are formed.
  • a tube pump capable of feeding liquid with high accuracy is used as the liquid supply pump 113.
  • FIG. 6 shows a top view of the chip 102 at the time of measurement.
  • FIG. 6B schematically shows a cross-sectional view taken along the line CC of the chip 102 in FIG. 6A and the filter array 205 and the light receiving unit 103.
  • sample chamber 401 the reagent chamber 402, the reagent chamber 403, the measurement chamber 404, the flow channel 405, and the opening 407 formed in the cell 400 are distinguished from each other by 401-a to 401-f.
  • 402-a to 402-f 403-a to 403-f
  • 404-a to 404-f 405-a to 405-f
  • 407-a to 407-f 407-a to 407-f.
  • reagent chamber 402-a of the cell 400-a 0.4 ml of 5 wt% salicylic acid-sulfuric acid aqueous solution is injected into the reagent chamber 402-a of the cell 400-a, and 10 ml of 2 mol / l sodium hydroxide (NaOH) aqueous solution is injected into the reagent chamber 403-a in advance. .
  • the reagent is previously injected into the reagent chambers 402-b to 402-f and the reagent chambers 403-b to 403-f.
  • Table 1 shows the types and amounts of the reagents previously injected into each of the reagent chambers 402-a to 402-f and the reagent chambers 403-a to 403-f. The column indicated by “ ⁇ ” in Table 1 indicates that no reagent has been injected.
  • FIG. 7 is a flowchart showing the measurement procedure of the sample analyzer 100.
  • the liquid supply control unit 104 of the control unit 111 rotates the rotation driving unit 106, and the chip 102 is rotated so that the opening 417 of the sample chamber 411 of the cell 410 is positioned immediately below the injection nozzle 502 ( S4).
  • the sample analyzer may be configured such that the opening 417 is always positioned immediately below the injection nozzle 502 when the chip 102 is installed in S3.
  • S3 can be omitted.
  • the chip 102 is provided with a notch
  • a chip mounting table (not shown) on which the chip 102 is placed is provided with a projecting piece, and the notch and the projecting piece are fitted with each other.
  • the liquid supply mechanism 108 injects the soil extract into the sample chamber 411 from the opening 117 (S5).
  • the liquid supply control unit 104 causes each of the openings 407-a to 407-f of the sample chambers 401-a to 401-f to be immediately below the injection nozzle 502.
  • the rotation drive unit 106 is controlled, and the liquid supply mechanism 108 is controlled so that a predetermined amount of soil extract is injected into each of the sample chambers 401-a to 401-f (S6).
  • the soil extraction liquid is injected by controlling the rotation of the chip 102 so that the liquid injection position of the liquid supply mechanism 108 matches the positions of the openings 407 and 417. Therefore, the soil extract can be injected into the sample chambers 401-a to 401-f in a short time.
  • the soil extract can be injected into the sample chamber 411, the air between the sample storage container 112 and the liquid supply pump 113, the liquid supply pump 113, the tube 501, and the injection nozzle 502 is pushed out, and the soil Can be filled with extract. Therefore, in the step of injecting the soil extract into each of the sample chambers 401-a to 401-f, the accuracy of injecting the soil extract can be improved, and the measurement accuracy can be improved.
  • the liquid supply mechanism 108 injects the soil extract remaining in the sample storage container 112 into the sample chamber 411, and the sample storage container 112 becomes empty (S7).
  • pure water (diluent) for diluting the soil extract is poured into the sample storage container 112 emptied in S7 (S8), and the sample chambers 401-a to 401-f are set in advance.
  • a predetermined amount of pure water is injected (S9).
  • 5 ml of pure water is injected into the sample chamber 401-c of the cell 400-c, which is a cell for measuring absorbable phosphoric acid (P 2 O 5 ).
  • the liquid to be injected into the sample storage container 112 in S8, the sample chambers 401-a to 401-f to be injected in S9, and the injection amount are not limited to this, and the reagent used and the collected soil Depending on the amount, the liquid used to extract the soil (for example, weakly acidic solution such as pure water or citric acid), etc., the soil extract and the diluted solution are determined to have a predetermined ratio.
  • the liquid used to extract the soil for example, weakly acidic solution such as pure water or citric acid
  • the soil extract and the diluted solution are determined to have a predetermined ratio.
  • the procedure proceeds to the measurement of the absorbance of each of the cells 400 and 410, and the rotation driving unit 106 is first rotated.
  • the rotation of the rotation drive unit 106 causes the chip 102 to rotate about the rotation axis 450, and the cell 400 and the cell 410 have the directions indicated by arrows F in FIG. 4B and FIG. 4C, respectively.
  • Centrifugal force acts.
  • the soil extract injected into the sample chamber 411 of the cell 410 moves to the reference chamber 414 through the flow path 415 by centrifugal force.
  • the soil extract in the sample chamber 401 of the cell 400 and the reagent in the reagent chamber 402 move to the reagent chamber 403 through the flow path 405.
  • a mixed liquid (first mixed liquid, second mixed liquid) of the sample and the reagent to be measured is generated in the reagent chamber 403 (S10).
  • the sample analyzer 100 may include a translation drive unit (not shown) that can be driven in one axis, and may be configured to perform stirring by a reciprocating motion of the translation drive unit.
  • the rotation drive unit 106 and the translation drive unit may be used. It may be a configuration in which stirring is performed by driving in combination.
  • the structure which stirs by driving each of the rotation drive part 106 and the translation drive part with a time difference separately may be sufficient.
  • the structure may be such that the rotation drive unit 106 rotates at a constant speed during agitation, a structure that rotates with acceleration, or a structure that rotates in reverse, or a combination of these. May be configured to rotate.
  • the open / close valve provided in the flow path 405 between the reagent chamber 403 and the measurement chamber 404 is opened, and the rotation driving unit 106 is rotated again, so that the mixed solution is mixed by centrifugal force. Is moved to the measurement chamber 404 (S11).
  • stirring of the above-mentioned liquid mixture may be performed in the reagent chamber 403, it may be performed in the measurement chamber 404.
  • the mixed liquid is generated and stirred by the rotation of the rotation driving unit 106 in a lump for the cells 400-a to 400-f.
  • the present invention is not limited to this. Instead, it may be configured to be performed individually for each of the cells 400-a to 400-f. However, from the viewpoint of shortening the processing time, it is preferable that the cell 400-a to 400-f be configured to be performed collectively.
  • the rotation of the rotation drive unit 106 causes the chip 102 to rotate at a constant speed and the light from the light emitting unit 101 to the light 300.
  • the light 300 scans the chip 102, and the light 300 transmitted through the chip 102 passes through the measurement chamber 404 and the reference chamber 414 of the chip 102 and enters the light receiving unit 103.
  • the measuring unit 109 calculates the absorbance (transmittance) of the mixed liquid based on the intensity (transmitted light amount) of the light received by the light receiving unit 103 (S12).
  • the measurement control unit 105 of the control unit 111 controls the rotation driving unit 106, so that the light 300 emitted from the light emitting unit 101 passes through the measurement chamber 404 and the reference chamber 414 of the chip 102.
  • the mixed solution stored in the measurement chambers 404-a to 404-f exhibits a color reaction due to the reagent, and light absorption occurs depending on the concentration of each soil component.
  • the measurement unit 109 specifies the position where the transmitted light amount is the highest as the reference chamber 414.
  • the measuring unit 109 obtains the difference between the light amount transmitted through the measurement chambers 404-a to 404-f and the light amount transmitted through the reference chamber 414 via the corresponding interference filters 301 to 306, thereby measuring the measurement chambers 404-a to 404-a.
  • the absorbance of 404-f is calculated and the soil component is measured.
  • the concentration of the extract is within a concentration range in which the reagent corresponding to the soil component exhibits a color reaction, but in other soil components, the concentration of the extract is
  • the reagent corresponding to another soil component may be higher than the concentration at which a color development reaction is caused, and the mixed solution may not exhibit an absorbance corresponding to the concentration of the soil component. In such a case, it is necessary to dilute the liquid mixture and measure the absorbance again.
  • the reagent is stored in advance in the cell 11 of the storage cartridge 9, and the extract is weighed in the cell 16 of the extract cartridge 14. Therefore, when the concentration of a specific soil component is higher than the concentration range in which the corresponding reagent exhibits a color reaction, the extract is first diluted and then weighed again in the cell 16 of the extract cartridge 14. After that, it is necessary to prepare a mixed solution by fitting the storage cartridge 9 and the extract cartridge 14 and measure the absorbance. Therefore, it is necessary to newly use the cartridge, and there is a problem that the cost increases. In addition, the measurement is reworked, and there is a problem that the measurement takes time.
  • the opening 407 is formed in the cell 400, and a diluting liquid for diluting the soil extract according to the soil component to be measured is liquid. Injection can be performed from the supply mechanism 108 to the cell 400 through the opening 407. Thereby, even if the specific component of the soil extract has a high concentration outside the range in which the reagent exhibits a color reaction, the measurement is not reworked, and the measurement can be easily performed. In addition, by diluting the soil extract, it is possible to optimize the concentration within a range showing a color development reaction, and it is possible to perform measurement with high accuracy.
  • FIG. 8 is a schematic configuration diagram of the sample analyzer 600 according to this embodiment.
  • the sample analyzer 600 has the same configuration as the sample analyzer 100 except that it includes a liquid supply mechanism 120 that is different from the liquid supply mechanism 108 of the sample analyzer 100 according to the first embodiment.
  • the liquid supply mechanism 120 includes a liquid sample supply mechanism 122 that supplies a soil extract and a diluent supply mechanism 121 that supplies a diluent.
  • the liquid sample supply mechanism 122 has the same configuration as the liquid supply mechanism 108, and includes a sample storage container 112, a liquid supply pump 113, a tube 501 (see FIG. 5), and an injection nozzle 502 (see FIG. 5). ing.
  • the diluent supply mechanism 121 has the same configuration as the liquid sample supply mechanism 122 except that the diluent storage container 114 includes a diluent storage container 114 instead of the sample storage container 112.
  • FIG. 9 is a flowchart showing the measurement procedure of the sample analyzer 600.
  • the chip 102 is set in the sample analyzer 600 (S24). Then, the liquid supply control unit 104 of the control unit 111 rotates the rotation driving unit 106 so that the opening 417 of the sample chamber 411 of the cell 410 is positioned immediately below the injection nozzle 502 of the liquid sample supply mechanism 122. 102 is rotated (S25). Thereafter, a soil extract is injected into the sample chamber 411 (S26).
  • the rotation driving unit 106 is controlled so that the respective openings 407-a to 407-f of the sample chambers 401-a to 401-f are directly below the injection nozzle 502 of the liquid sample supply mechanism 122, and the sample A predetermined amount of soil extract is injected into each of the chambers 401-a to 401-f, and at the same time, a predetermined amount of pure water is injected into the specific sample chambers 401-a to 401-f from the diluent supply mechanism 121. (S27).
  • the liquid supply mechanism 120 includes the liquid sample supply mechanism 122 and the diluent supply mechanism 121, the soil extract and the diluent are injected. Can be performed simultaneously. Therefore, as in the sample analyzer 100 according to the first embodiment, the process of injecting the soil extract into the sample chambers 401 and 411, then injecting pure water into the sample storage container 112, and injecting again into the sample chamber 401 is performed. There is no need to perform the measurement, and the measurement time can be shortened.
  • the chip 102 is rotated, the soil extract in the sample chamber 411 is fed to the reference chamber 414, and the soil in the reagent chamber 403 (see FIG. 4). Prepare a mixture of the extract and the reagent. Then, by further rotating the chip 102, the soil extract in the reagent chamber 403 is fed to the measurement chamber 404 (S28).
  • the absorbance is sequentially measured for the mixed solution in the measurement chamber 404 and the soil extract in the reference chamber 414 by the same method as the sample analyzer 100 according to the first embodiment (S29).
  • FIG. 10 is a schematic configuration diagram of a sample analyzer 700 according to the present embodiment.
  • the sample analyzer 700 has the same configuration as the sample analyzer 600 except that the sample analyzer 700 includes a liquid supply mechanism 125 different from the sample analyzer 600 according to the second embodiment.
  • the liquid supply mechanism 125 includes a liquid sample supply mechanism 126 and a diluent supply mechanism 127.
  • the diluent supply mechanism 127 is upstream in the liquid supply direction, and the liquid sample supply mechanism 126 is downstream in the liquid supply direction. Is arranged. In other words, the liquid sample supply mechanism 126 and the diluent supply mechanism 127 are arranged in series with respect to the liquid supply direction.
  • the liquid sample supply mechanism 126 has substantially the same configuration as the liquid sample supply mechanism 122 according to the second embodiment, and includes a sample storage container 112, a liquid supply pump 113, a tube, and an injection nozzle, and the sample storage container 112. It is possible to inject the liquid stored in the chip 102 into the chip 102.
  • the diluent supply mechanism 127 includes a diluent storage container 114, a liquid supply pump 113, and a tube (not shown).
  • the tube of the diluent supply mechanism 127 connects the liquid supply pump 113 and the sample storage container 112 provided in the liquid sample supply mechanism 126. Therefore, the liquid supply pump 113 can send the diluent stored in the diluent storage container 114 to the sample storage container 112 through the tube.
  • the liquid supply mechanism 125 is configured as described above, so that pure water is used as a diluent storage container in a process of injecting pure water as a diluent into a specific sample chamber 401.
  • the sample is transferred from 114 to the sample storage container 112. Thereafter, the pure water is conveyed to the liquid supply pump 113, the tube, and the injection nozzle, and injected into the sample chamber 411. Therefore, the flow path of the soil extract in the liquid sample supply mechanism 126 is washed with pure water, and it becomes possible to perform measurement with higher accuracy.
  • FIGS. 11 and 12 Another embodiment of the present invention will be described with reference to FIGS. 11 and 12.
  • members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • FIG. 11 is a schematic diagram of the configuration of the sample analyzer 800 according to the present embodiment.
  • the sample analyzer 800 includes an appropriate range recording unit 131, an appropriate determination unit 132, and a remeasurement unit 133 in addition to the sample analysis device 100 according to the first embodiment.
  • the appropriate range recording unit 131 is connected to the appropriate determination unit 132.
  • an appropriate range of absorbance in which the component concentration can be accurately calculated when the reagent is used is recorded.
  • the appropriate range of the amount of transmitted light received by the light receiving unit 103 is recorded according to the reagent.
  • the appropriateness determination unit 132 is connected to the appropriate range recording unit 131, the measurement unit 109, and the remeasurement unit 133.
  • the appropriateness determination unit 132 compares the absorbance value calculated by the measurement unit 109 with the appropriate range of the absorbance of the reagent used for the measurement recorded in the appropriate range recording unit 131 for each cell 400. And determine whether the absorbance is within an appropriate range.
  • the remeasurement unit 133 is connected to the appropriateness determination unit 132 and the control unit 111, and performs remeasurement on the cell 400 in which the absorbance is determined to be out of the appropriate range based on the determination of the appropriateness determination unit 132. . Details of the remeasurement will be described later.
  • FIG. 12 is a flowchart showing the measurement procedure of the sample analyzer 800.
  • the chip 102 is set in the sample analyzer 800 (S33). Then, the liquid supply control unit 104 of the control unit 111 rotates the rotation driving unit 106, and the opening 417 of the sample chamber 411 of the cell 410 is positioned immediately below the injection nozzle 502 (see FIG. 5) of the liquid supply mechanism 108. Thus, the chip 102 is rotated (S34). Thereafter, a soil extract is injected into the sample chamber 411 (S35).
  • the rotation driving unit 106 is controlled so that the openings 407-a to 407-f of the sample chambers 401-a to 401-f are directly below the injection nozzle 502 of the liquid supply mechanism 108, and the sample chamber A predetermined amount of soil extract is injected into each of 401-a to 401-f (S36). Thereafter, the liquid supply mechanism 108 injects the soil extract remaining in the sample storage container 112 into the sample chamber 411, and the sample storage container 112 becomes empty (S37).
  • the rotation of the rotation drive unit 106 causes the chip 102 to rotate at a constant speed, and the light 300 is emitted from the light emitting unit 101.
  • the light 300 scans the chip 102, and the light 300 transmitted through the chip 102 is 102 passes through the measurement chamber 404 and the reference chamber 414 of 102, and enters the light receiving unit 103.
  • the measuring unit 109 calculates the absorbance (transmittance) of the mixed liquid based on the intensity (transmitted light amount) of the light received by the light receiving unit 103 (S42).
  • S31 to S42 in the measurement procedure of the sample analyzer 800 according to the present embodiment are the same as S1 to S12 in the measurement procedure of the sample analyzer 100 according to the first embodiment.
  • the appropriateness determination unit 132 determines whether or not the absorbance value calculated by the measurement unit 109 in S42 is within the appropriate range recorded in the appropriate range recording unit 131, for each cell 400. (S43). In all the cells 400, when it is determined that the absorbance value calculated by the measurement unit 109 is within the appropriate range recorded in the appropriate range recording unit 131 (Yes in S43), the measurement ends.
  • the remeasurement unit 133 performs remeasurement on the cell 400 that the appropriateness determining unit 132 determines to be out of the appropriate range.
  • the liquid supply mechanism 108 applies a predetermined amount (for example, the same amount as the pure water injected in S38) to the sample chamber 401 with respect to the cell 400 in which the absorbance is determined to be outside the appropriate range. Pure water is injected (S44).
  • the pure water injected into the sample chamber 401 is sent to the reagent chamber 403 and the measurement chamber 404 via the flow path 405 (S45). Then, the absorbance is again measured for all measurement chambers 404 and reference chambers 414 (S42). In this way, remeasurement is performed until the absorbance values of all the cells 400 are within the proper range recorded in the proper range recording unit 131.
  • the sample analyzer 800 performs the measurement in such a procedure, so that even if a certain soil component has a higher concentration than the assumed component concentration, the effort of remeasurement is minimized. Thus, it is possible to measure efficiently and to grasp the excess state of the soil components accurately.
  • the sample analyzer 800 includes the appropriate range recording unit 131, the appropriate determination unit 132, and the re-measurement unit 133 in addition to the sample analysis device 100 of the first embodiment. What is necessary is just to provide the appropriate range recording part 131, the appropriateness determination part 132, and the re-measurement part 133. That is, the sample analyzer 800 includes a proper range recording unit 131, a proper determination unit 132, and a remeasurement unit 133 in addition to the sample analysis device 600 of the second embodiment or the sample analysis device 700 of the third embodiment. There may be.
  • the determination unit 132 and the re-measurement unit 133 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software using a CPU (Central Processing Unit). May be.
  • Sample analyzers 100, 600, 700, and 800 are containers that rotate around a rotation shaft 450, and a first measurement chamber (on the first circumference of the rotation shaft 450).
  • One of the measurement chambers 404-a to 404-f) and a second measurement chamber (the other one of the measurement chambers 404-a to 404-f) are formed, and the first measurement chamber (the measurement chamber) is formed.
  • a first supply port one of openings 407-a to 407-f communicating with one of 404-a to 404-f and the second measurement chamber (measurement chambers 404-a to 404).
  • a second supply port (the other one of the openings 407-a to 407-f) communicating with the other one of -f on the second circumference around the rotation axis 450 And the container (chip 102) formed on the second circumference, at a position corresponding to the second circumference, the first supply port (opening portion) 07-a to 407-f) or the second measurement port (the other one of the openings 407-a to 407-f) through the first measurement chamber (measurement chamber 404).
  • a light emitting unit 101 arranged at a position corresponding to the first circumference, the first measurement chamber (one of the measurement chambers 404-a to 404-f) or the second measurement chamber (measurement)
  • a light receiving unit 103 that receives light transmitted through one of the chambers 404-a to 404-f), and a measurement unit that analyzes the component of the liquid based on the amount of light transmitted by the light receiving unit 103 109.
  • the container (chip 102) includes the first measurement chamber (one of the measurement chambers 404-a to 404-f) and the second measurement on the first circumference of the rotating shaft 450.
  • a chamber (the other one of the measurement chambers 404-a to 404-f) is formed, and the first measurement chamber (the measurement chambers 404-a to 404-f) is formed on the second circumference of the rotating shaft 450.
  • a first supply port (one of the openings 407-a to 407-f) communicating with one of the second measurement chambers (the other one of the measurement chambers 404-a to 404-f).
  • the second supply port (the other one of the openings 407-a to 407-f) is formed.
  • the container (chip 102) is rotated so that the liquid injection position of the liquid supply mechanism 108 matches the positions of the first and second supply ports, and the first supply ports (the openings 407-a to 407-f One of them) and the second supply port (the other one of the openings 407-a to 407-f) can inject liquid from the liquid supply mechanisms 108, 120, and 125.
  • the liquid can be injected in a short time and the liquid is supplied by the liquid supply mechanisms 108, 120, and 125, so that the measurement can be performed with high accuracy.
  • the sample analyzers 100, 600, 700, 800 according to the second aspect of the present invention are the same as the first aspect in that the liquid injection positions of the liquid supply mechanisms 108, 120, 125 and the first and second supply ports (opening 407-a). ⁇ 407-f and the other one) are controlled so as to rotate the container (chip 102) about the rotation axis 450 and adjust the liquid to the liquid.
  • the first and second supply ports (one of the openings 407-a to 407-f and the other one of the openings 407-a to 407-f) ) May be further provided with a liquid supply control unit 104 that controls the rotation of the container (chip 102) and the operation of the liquid supply mechanisms 108, 120, and 125.
  • liquid components can be analyzed with high accuracy in a short time with a simple configuration.
  • the liquid in the first or second aspect, includes a liquid sample and a diluent for diluting the liquid sample, and the liquid supply mechanisms 120 and 125 are The liquid sample supply mechanisms 122 and 126 for supplying the liquid sample and the diluent supply mechanisms 121 and 127 for supplying the diluent may be included.
  • the liquid supply mechanisms 120 and 125 include the liquid sample supply mechanism 122 that supplies the liquid sample, the dilution liquid supply mechanisms 121 and 127 that supply the diluent, and the liquid sample supply mechanism 126. It has. As a result, the liquid sample and the diluent can be injected simultaneously, and the measurement can be performed in a shorter time.
  • the sample analyzers 100, 600, 700, and 800 according to the fourth aspect of the present invention are the same as the third aspect, except that the liquid injection positions of the liquid supply mechanisms 120 and 125 and the first or second supply port (opening 407-a). ⁇ 407-f or the other one) is controlled so that the container (chip 102) rotates around the rotation axis 450, and the liquid sample is adjusted. Is supplied from the liquid sample supply mechanism 122, 126 to the first and second supply ports (one of the openings 407-a to 407-f and the other one), and the dilution liquid is diluted with the dilution liquid.
  • the container ( Rotation level of chip 102) May further comprise the liquid sample supply mechanism 122, 126 and the liquid supply controller 104 which controls the operation of the dilution liquid supply means 121, 127 to.
  • the liquid supply mechanisms 120 and 125 allow at least one of the first and second supply ports (one of the openings 407-a to 407-f and the other one).
  • the diluent can be supplied to at least one of the first and second measurement chambers (one of the measurement chambers 404-a to 404-f). Therefore, even if the concentration of the soil component is outside the range of the concentration at which the reagent exhibits the color reaction, the concentration can be within the range of the concentration at which the color reaction occurs by performing dilution. Therefore, measurement can be performed in a short time without reworking the measurement.
  • the sample analyzers 100, 600, 700, 800 according to the fifth aspect of the present invention are supplied to the first measurement chamber (one of the measurement chambers 404-a to 404-f) in the third or fourth aspect.
  • a mixed liquid of the liquid and the first reagent is generated in the first measurement chamber (one of the measurement chambers 404-a to 404-f), and the second measurement chamber (measurement chambers 404-a to 404-) is generated.
  • a liquid mixture of the liquid supplied to the other one of f) and the second reagent is generated in the second measurement chamber (the other one of the measurement chambers 404-a to 404-f).
  • the liquid sample supply mechanisms 122 and 126 and the dilution liquid supply mechanisms 121 and 127 include the first and second supply ports (one of the openings 407-a to 407-f, and In the other one, the liquid sample and the diluent are respectively added to the first and second liquids. Reagents may be supplied in a ratio corresponding to the second reagent.
  • the first reagent and the second reagent are within a concentration range in which a color development reaction is exhibited.
  • the sample analyzer 800 is the first analysis chamber (one of the measurement chambers 404-a to 404-f) or the second measurement chamber according to any one of the Aspects 3 to 5.
  • An appropriate range recording unit 131 that records an appropriate range of the amount of transmitted light received by the light receiving unit 103 with respect to a measurement chamber (the other one of the measurement chambers 404-a to 404-f), and the first measurement For the chamber (one of the measurement chambers 404-a to 404-f) or the second measurement chamber (the other one of the measurement chambers 404-a to 404-f), the appropriate range recording unit 131 Is necessary for the transmitted light amount to be within the appropriate range when it is determined that the transmitted light amount is out of the appropriate range.
  • the sample analyzer 800 includes the appropriate range recording unit 131, the appropriate determination unit 132, and the re-measurement unit 133, so that the concentration of the soil component in the liquid sample is higher than expected. Even if the concentration is outside the range where the reagent exhibits a color development reaction, the diluent can be injected as it is and the measurement can be performed again. Therefore, measurement can be performed in a short time, and it is not necessary to newly use a container (chip 102) at the time of re-measurement, and cost can be suppressed.
  • the first measurement chamber (one of the measurement chambers 404-a to 404-f) and the second measurement chamber (measurement) are arranged on the first circumference of the rotating shaft 450.
  • the other one of the chambers 404-a to 404-f is formed, and a first supply port (opening) communicating with the first measurement chamber (one of the measurement chambers 404-a to 404-f) Part 407-a to 407-f) and the second supply port (opening 407-) communicating with the second measurement chamber (the other one of measurement chambers 404-a to 404-f).
  • a container formed on the second circumference around the rotation axis 450 with the other one of a to 407-f) at a position corresponding to the second circumference.
  • the first and second supply ports opening portions 407-a to 407-).
  • One of the other and the other one) is rotated around the rotation axis 450, and liquid is supplied from the liquid supply mechanisms 108, 120, 125 to the first and second supplies.
  • a measuring step of analyzing the component of the liquid based on the transmitted light amount of the light transmitted through the first one.
  • liquid components can be analyzed with high accuracy in a short time with a simple configuration.
  • the liquid includes a liquid sample and a diluent for diluting the liquid sample
  • the liquid supply step is at a position corresponding to the second circumference.
  • Liquid sample supply for supplying a liquid sample from the arranged liquid supply mechanisms 108, 120, 125 to the first and second supply ports (one of the openings 407-a to 407-f and the other one).
  • a diluting solution for diluting the liquid sample from the liquid supply mechanisms 108, 120, 125 from the first and second supply ports (one of the openings 407-a to 407-f and the other one).
  • a diluent supply step for supplying to at least one of the above.
  • the liquid supply mechanisms 108, 120, and 125 pass through the second supply port (the other one of the openings 407-a to 407-f) through the second measurement chamber (measurement chamber).
  • the other one of 404-a to 404-f) can be supplied with a diluent. Therefore, even if the concentration of the soil component is outside the range of the concentration at which the reagent exhibits the color reaction, the concentration can be within the range of the concentration at which the color reaction occurs by performing dilution. Therefore, measurement can be performed in a short time without reworking the measurement.
  • the first measurement chamber (one of the measurement chambers 404-a to 404-f) is transmitted before the liquid sample supply step.
  • An appropriate range recording step for recording an appropriate range of the amount of transmitted light; and after the measurement step, the appropriate range is recorded for the first measurement chamber (one of the measurement chambers 404-a to 404-f).
  • an appropriateness determination step for calculating a necessary supply amount of the diluent and a first measurement chamber (of the measurement chambers 404-a to 404-f) in which the transmitted light amount is determined to be out of an appropriate range by the appropriateness determination step. 1), the liquid test of the required supply amount. Or further comprising a re-measuring step of supplying, performing re-measurement of the transmitted light amount of the diluent.
  • the present invention can be used for a sample analyzer, particularly a sample analyzer suitable for analyzing soil components.
  • Sample analyzer 102 Chip (container) 103 light receiving unit 104 liquid supply control unit 105 measurement control unit (measurement control unit) 108, 120, 125 Liquid supply mechanism 109 Measuring unit 121, 127 Diluent supply mechanism (liquid supply mechanism) 122, 126 Liquid sample supply mechanism (liquid supply mechanism) 131 Appropriate range recording unit 132 Appropriate determination unit 133 Re-measurement unit 404, 404-a to 404-f Measurement chamber (first measurement chamber, second measurement chamber) 407, 407-a to 407-f Openings (first supply port, second supply port) 450 axis of rotation

Landscapes

  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

Provided are a sample analysis device and sample analysis method that make it possible to carry out accurate measurement using a simple method. A sample analysis device (100) is provided with a chip (102) on which a plurality of measurement chambers (404) are formed on a first circle around an axis of rotation (450) and on which opening parts (407) communicating with the measurement chambers (404) are formed on a second circle around the axis of rotation (450), a liquid feeding mechanism (108) for feeding liquid to the measurement chambers (404) via the opening parts (407), and a measurement unit (109) for analyzing the components of the liquid on the basis of the transmitted light amount of light transmitted through the measurement chambers (404).

Description

試料分析装置及び試料分析方法Sample analyzer and sample analysis method
 本発明は試料分析装置及び試料分析方法に関し、土壌成分の分析に好適な試料分析装置及び試料分析方法に関する。 The present invention relates to a sample analyzer and a sample analysis method, and more particularly to a sample analyzer and a sample analysis method suitable for analyzing soil components.
 農業の分野において、農作物の育成状態の管理のため、農作物の生育環境における土壌成分の分析が広く行われている。 In the field of agriculture, analysis of soil components in the growing environment of crops is widely performed to manage the growing state of the crops.
 一般的に、土壌分析装置は、それぞれの土壌抽出液をその都度複数の試験管に目盛り付のスポイトで計量しながら注入し、その後、土壌成分毎に決められた試薬及び希釈液を試験管に注入し発色させる。そして、比色表、比濁表、または、吸光光度法等を用いて数値換算することで測定が行われている。 In general, the soil analyzer injects each soil extract into a plurality of test tubes each time with a graduated dropper, and then puts the reagent and diluent determined for each soil component into the test tubes. Inject and develop color. And it is measured by converting into a numerical value using a colorimetric table, a turbidimetric table, an absorptiometric method or the like.
 しかしながら、上述の測定方法は、それぞれの土壌抽出液に試薬を混合する必要があり、そのために繰り返し作業が多くなる。また、測定したい土壌成分に応じた試薬を準備する必要もあり、煩雑性が高い。 However, the measurement method described above needs to mix a reagent with each soil extract, which increases the number of repetitive operations. Moreover, it is necessary to prepare a reagent according to the soil component to be measured, and the complexity is high.
 土壌分析を頻繁に行うことにより、圃場ごとの細かい分析や、作付けごとの分析を行うことができる。そのため、前作の影響を考慮した施肥設計を行うことができ、また、成育期間の長い作物についてはより短いスパンで定期的に分析を行うことで、追肥のタイミングや量を最適化することができ、結果として収穫量の増加や品質の安定化が望める。 By performing soil analysis frequently, it is possible to perform detailed analysis for each field and analysis for each planting. Therefore, it is possible to design a fertilizer application that takes into account the effects of the previous crop, and it is possible to optimize the timing and amount of additional fertilization by periodically analyzing the crops with a long growth period in a shorter span. As a result, an increase in yield and stabilization of quality can be expected.
 しかしながら、上述した煩雑性の高さから分析の頻度を高めることは困難である。 However, it is difficult to increase the frequency of analysis due to the high complexity described above.
 近年では、このような問題点に鑑みて、簡易な方法で土壌抽出液と試薬等とを混合し、土壌成分を分析する手法が提案されている。 In recent years, in view of such problems, a method for analyzing soil components by mixing a soil extract and a reagent by a simple method has been proposed.
 図13は、特許文献1に開示されている試薬混合及び土壌分析装置を示したものであり、図13の(a)は、従来の土壌分析装置の模式図であり、図13の(b)及び(c)は、従来の土壌分析装置に備えられる収納カートリッジと、抽出液カートリッジとの嵌合を示す模式図である。 FIG. 13 shows the reagent mixing and soil analysis apparatus disclosed in Patent Document 1. FIG. 13 (a) is a schematic diagram of a conventional soil analysis apparatus, and FIG. 13 (b). And (c) is a schematic diagram showing the fitting between the storage cartridge provided in the conventional soil analyzer and the extract cartridge.
 特許文献1に記載の土壌分析装置は、図13の(a)に示すように、発光部7、受光部8及び収納カートリッジ9を備えている。収納カートリッジ9は、透明材からなり、土壌から抽出した土壌抽出液と試薬との混合液を収納するセル11が複数設けられている。特許文献1に記載の土壌分析装置は、発光部7から出射された光が収納カートリッジ9内の混合液を透過し、受光部8により検出されることにより混合液の吸光度を測定し、吸光光度法により土壌成分の濃度を測定している。 The soil analysis apparatus described in Patent Document 1 includes a light emitting unit 7, a light receiving unit 8, and a storage cartridge 9, as shown in FIG. The storage cartridge 9 is made of a transparent material, and is provided with a plurality of cells 11 for storing a mixture of a soil extract and a reagent extracted from soil. In the soil analyzer described in Patent Document 1, light emitted from the light emitting unit 7 passes through the mixed solution in the storage cartridge 9 and is detected by the light receiving unit 8 to measure the absorbance of the mixed solution. The concentration of soil components is measured by the method.
 図13の(b)に示すように、収納カートリッジ9のセル11には、所定量の試薬が予め収納されており、シール紙15により密閉されている。抽出液カートリッジ14の各セル16は、計量としての枡機能を有しており、土壌抽出液が収納されている。測定前に図13の(b)及び(c)に矢印で示す方向に抽出液カートリッジ14を収納カートリッジ9に押し込むことで、収納カートリッジ9と抽出液カートリッジ14とを嵌合する。その後、抽出液カートリッジ14の底面を貫通させ、抽出液を収納カートリッジ9のセル11に注入し、混合液を作成する。 As shown in FIG. 13B, a predetermined amount of reagent is previously stored in the cell 11 of the storage cartridge 9 and is sealed with a seal paper 15. Each cell 16 of the extract cartridge 14 has a dredging function as a metering and contains a soil extract. Before the measurement, the extract cartridge 14 is pushed into the storage cartridge 9 in the direction indicated by the arrows in FIGS. 13B and 13C, so that the storage cartridge 9 and the extract cartridge 14 are fitted. Thereafter, the bottom surface of the extraction liquid cartridge 14 is penetrated, and the extraction liquid is injected into the cell 11 of the storage cartridge 9 to prepare a mixed liquid.
 このように、特許文献1に記載の土壌分析装置においては、混合液の作成が容易であり、また、吸光光度法によって土壌成分の濃度の測定を行うため、精度のよい測定を行うことができる。 Thus, in the soil analyzer described in Patent Document 1, it is easy to create a mixed solution, and the concentration of soil components is measured by the absorptiometric method, so that accurate measurement can be performed. .
 また、特許文献2には、マイクロ流路が形成された分析用デバイスおよび分析装置が開示されている。特許文献2に記載の分析装置は、希釈液が予めセットされた分析用デバイスに試料液を点着し、その後分析用デバイスを回転駆動させることで、分析用デバイス内に保持された試料液および試薬を反応槽まで移動させ、簡易な方法で試料と試薬との混合液を作成している。 Further, Patent Document 2 discloses an analysis device and an analysis apparatus in which a microchannel is formed. The analysis apparatus described in Patent Document 2 drops a sample solution on an analysis device in which a diluent is set in advance, and then rotates the analysis device to rotate the sample solution held in the analysis device. The reagent is moved to the reaction tank, and a mixed solution of the sample and the reagent is prepared by a simple method.
日本国公開特許公報「特開2007-46922号公報(2007年2月22日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2007-46922 (published on February 22, 2007)” 日本国公開特許公報「特開2009-210564号公報(2009年9月17日公開)」Japanese Patent Publication “JP 2009-210564 A (published on September 17, 2009)”
 しかしながら、特許文献1に記載の土壌分析装置においては、測定の際に、土壌抽出液を手動で計量して抽出液カートリッジ14の各セル16に供給する必要が有り、測定の準備のために時間がかかってしまうという問題がある。また、土壌抽出液の計量を目視により行うため、測定に誤差が生じてしまうという問題もある。 However, in the soil analysis apparatus described in Patent Document 1, it is necessary to manually weigh the soil extract and supply it to each cell 16 of the extract cartridge 14 during the measurement. There is a problem that it takes. In addition, since the soil extract is weighed visually, there is a problem that an error occurs in the measurement.
 また、特許文献2に記載の分析用デバイスおよび分析装置においても、試料液の点着は手動でおこなうため、測定の準備のために時間がかかると共に、点着量にばらつきが生まれ、その結果測定に誤差が生じてしまう。 Also, in the analysis device and the analysis apparatus described in Patent Document 2, since the spotting of the sample liquid is performed manually, it takes time to prepare for the measurement, and the spotting amount varies, resulting in measurement. An error will occur.
 本発明は、上記の問題に鑑みてなされたものであり、その目的は、簡易な方法で、短時間で複数の土壌成分を一括して測定でき、かつ、精度の良い測定を行うことができる試料分析装置及び試料分析方法を提供することにある。 The present invention has been made in view of the above problems, and the object thereof is to be able to measure a plurality of soil components in a short time in a simple method, and to perform highly accurate measurement. A sample analysis apparatus and a sample analysis method are provided.
 上記の課題を解決するために、本発明の一態様に係る試料分析装置は、回転軸の周りに回転運動する容器であって、前記回転軸の第1の円周上に第1及び第2測定室が形成され、前記第1測定室に連通する第1供給口と前記第2測定室に連通する第2供給口とが前記回転軸の周りの第2の円周上に形成された容器と、前記第2の円周上に対応する位置に配置され、前記第1又は第2供給口を介して前記第1又は第2測定室に液体を供給する液体供給機構と、前記第1の円周上に対応する位置に配置された発光部と、前記第1又は第2測定室を透過した光を受光する受光部と、前記受光部が受光した透過光量に基づいて、前記液体の成分を分析する計測部とを備えることを特徴とする。 In order to solve the above problems, a sample analyzer according to one aspect of the present invention is a container that rotates around a rotation axis, and the first and second are arranged on a first circumference of the rotation axis. A container in which a measurement chamber is formed, and a first supply port communicating with the first measurement chamber and a second supply port communicating with the second measurement chamber are formed on a second circumference around the rotation axis A liquid supply mechanism that is disposed at a position corresponding to the second circumference and that supplies the liquid to the first or second measurement chamber via the first or second supply port; and A component of the liquid based on a light emitting unit disposed at a position corresponding to the circumference, a light receiving unit that receives light transmitted through the first or second measurement chamber, and a transmitted light amount received by the light receiving unit And a measuring unit for analyzing the above.
 本発明の一態様によれば、容器には、回転軸の第1の円周上に第1及び第2測定室が形成され、回転軸の第2の円周上に、第1測定室に連通する第1供給口と、第2測定室に連通する第2供給口とが形成されている。そのため、前記液体供給機構の液体注入位置と前記第1及び第2供給口の位置とを合わせるように容器を回転させて、第1及び第2供給口を介して液体供給機構から液体の注入を行うことができる。これにより、液体の注入を短時間で行うことができると共に、液体供給機構によって液体の注入を行うため、高精度に測定を行うことが可能となる。 According to one aspect of the present invention, the container has the first and second measurement chambers formed on the first circumference of the rotation shaft, and the first measurement chamber is provided on the second circumference of the rotation shaft. A first supply port that communicates with a second supply port that communicates with the second measurement chamber is formed. Therefore, the container is rotated so that the liquid injection position of the liquid supply mechanism is aligned with the positions of the first and second supply ports, and liquid is injected from the liquid supply mechanism via the first and second supply ports. It can be carried out. As a result, the liquid can be injected in a short time, and the liquid is injected by the liquid supply mechanism, so that the measurement can be performed with high accuracy.
本発明の実施形態1に係る試料分析装置の構成概略図である。1 is a schematic configuration diagram of a sample analyzer according to Embodiment 1 of the present invention. 図1に示す試料分析装置に備えられる発光部の構成概略図である。It is the structure schematic of the light emission part with which the sample analyzer shown in FIG. 1 is equipped. 図2に示す発光部に備えられるフィルターアレイの構成概略図である。FIG. 3 is a schematic configuration diagram of a filter array provided in the light emitting unit shown in FIG. 2. 図1に示す試料分析装置に備えられるチップの構成概略図であり、(a)は、チップを上方からみた正面図であり、(b)及び(c)は、チップに備えられるセルの形状を示す概略図である。It is the structure schematic of the chip | tip with which the sample analyzer shown in FIG. 1 is equipped, (a) is the front view which looked at the chip | tip from upper direction, (b) And (c) is the shape of the cell with which a chip | tip is equipped. FIG. 図1に示す試料分析装置に備えられる液体供給機構の構成概略図である。FIG. 2 is a schematic configuration diagram of a liquid supply mechanism provided in the sample analyzer shown in FIG. 1. (a)は、測定時におけるチップの上面図を示したものであり、(b)は、(a)におけるチップのC-C線矢視断面図、並びに、図1に示す試料分析装置に備えられるフィルターアレイ及び受光部を模式的に示したものである。(A) is a top view of the chip at the time of measurement, and (b) is a cross-sectional view taken along the line CC of the chip in (a), and the sample analyzer shown in FIG. 1 schematically shows a filter array and a light receiving section. 図1に示す試料分析装置の測定の流れを示すフローチャートである。It is a flowchart which shows the flow of a measurement of the sample analyzer shown in FIG. 本発明の実施形態2に係る試料分析装置の構成概略図である。It is a block schematic diagram of the sample analyzer which concerns on Embodiment 2 of this invention. 図8に示す試料分析装置の測定の流れを示すフローチャートである。It is a flowchart which shows the flow of a measurement of the sample analyzer shown in FIG. 本発明の実施形態3に係る試料分析装置の構成概略図である。It is a block schematic diagram of the sample analyzer which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る試料分析装置の構成概略図である。It is a block schematic diagram of the sample analyzer which concerns on Embodiment 4 of this invention. 図11に示す試料分析装置の測定の流れを示すフローチャートである。It is a flowchart which shows the flow of a measurement of the sample analyzer shown in FIG. (a)は従来用いられている土壌分析装置の模式図であり、(b)及び(c)は、(a)に示す土壌分析装置に備えられる収納カートリッジと、抽出液カートリッジとの嵌合を示す模式図である。(A) is a schematic diagram of a conventionally used soil analyzer, and (b) and (c) show the fitting between the storage cartridge provided in the soil analyzer shown in (a) and the extract cartridge. It is a schematic diagram shown.
 〔実施形態1〕
 以下、図面を参照しながら、本発明に係る試料分析装置の実施の形態について説明する。また、図面におけるそれぞれの構成部材の厚みや長さ等は、本発明の理解を助けるために示したものであり、本発明は、図示される構成に限定されるものではない。
[Embodiment 1]
Hereinafter, an embodiment of a sample analyzer according to the present invention will be described with reference to the drawings. In addition, the thickness, length, and the like of each constituent member in the drawings are shown to assist the understanding of the present invention, and the present invention is not limited to the illustrated configuration.
 (試料分析装置の構成概略)
 図1に、本発明の実施形態1に係る試料分析装置100の構成概略図を示す。本発明の実施形態1に係る試料分析装置100は、吸光光度法により測定を行う試料分析装置であり、図1に示すように、発光部101と、チップ102と、受光部103と、回転駆動部106と、液体供給機構108と、計測部109と、制御部111とを備える。
(Outline of sample analyzer configuration)
FIG. 1 shows a schematic configuration diagram of a sample analyzer 100 according to Embodiment 1 of the present invention. A sample analyzer 100 according to the first embodiment of the present invention is a sample analyzer that performs absorptiometry, and as shown in FIG. 1, a light emitting unit 101, a chip 102, a light receiving unit 103, and a rotational drive. Unit 106, liquid supply mechanism 108, measurement unit 109, and control unit 111.
 以下に各部の構成について詳細に説明する。 The configuration of each part will be described in detail below.
 図2は、発光部101の構成概略図である。図2に示すように、発光部101は、発光波長がそれぞれ異なる複数の光源201a、201b、201cと、複数の光源201a、201b、201cのそれぞれに対応するコリメートレンズ202a、202b、202cと、ダイクロイックミラー203a、203bと、アパーチャー204と、フィルターアレイ205とを備える。 FIG. 2 is a schematic configuration diagram of the light emitting unit 101. As shown in FIG. 2, the light emitting unit 101 includes a plurality of light sources 201a, 201b, and 201c having different emission wavelengths, collimating lenses 202a, 202b, and 202c corresponding to the plurality of light sources 201a, 201b, and 201c, and a dichroic. Mirrors 203a and 203b, an aperture 204, and a filter array 205 are provided.
 発光部101は、制御部111と接続しており、複数の光源201a~201cのそれぞれは、制御部111からの信号により発光、消灯及び発光強度が制御されている。本実施形態においては、光源201aとして白色LED(Light Emitting Diode)を、光源201bとして青色LEDを、光源201cとして赤色LEDを用いた。 The light emitting unit 101 is connected to the control unit 111, and each of the light sources 201a to 201c is controlled in light emission, extinction, and light emission intensity by a signal from the control unit 111. In the present embodiment, a white LED (Light Emitting Diode) is used as the light source 201a, a blue LED is used as the light source 201b, and a red LED is used as the light source 201c.
 ダイクロイックミラー203a、203bは、特定の波長帯の光を透過させ、別の特定の波長帯の光を反射する鏡である。本実施形態においては、ダイクロイックミラー203aは、470nm~1600nmの波長帯の光を透過させ、350nm~430nmの波長帯の光を反射させるものを用いた。また、ダイクロイックミラー203bは400nm~630nmの波長帯の光を透過させ、675nm~850nmの波長帯の光を反射させるものを用いた。 The dichroic mirrors 203a and 203b are mirrors that transmit light in a specific wavelength band and reflect light in another specific wavelength band. In the present embodiment, a dichroic mirror 203a that transmits light in the wavelength band of 470 nm to 1600 nm and reflects light in the wavelength band of 350 nm to 430 nm is used. The dichroic mirror 203b is a mirror that transmits light having a wavelength band of 400 nm to 630 nm and reflects light having a wavelength band of 675 nm to 850 nm.
 図3は、図2に示すフィルターアレイ205を上方から見た正面図である。図3に示すようにフィルターアレイ205は、回転軸210を中心として、円周上に配置された、透過波長帯域の異なる複数の干渉フィルター301~306を備えている。本実施形態においては、干渉フィルター301~306としてそれぞれ透過波長帯域が420nm、520nm、570nm、610nm、710nm、720nmの干渉フィルターを用いた。 FIG. 3 is a front view of the filter array 205 shown in FIG. 2 as viewed from above. As shown in FIG. 3, the filter array 205 includes a plurality of interference filters 301 to 306 having different transmission wavelength bands arranged on the circumference around the rotation axis 210. In this embodiment, interference filters having transmission wavelength bands of 420 nm, 520 nm, 570 nm, 610 nm, 710 nm, and 720 nm are used as the interference filters 301 to 306, respectively.
 発光部101は、制御部111からの信号に応じて、複数の光源201a~201cが発光する。光源201a~201cから射出された光は、各光源201a~201cに対応するコリメートレンズ202a~202cにより指向され、ダイクロイックミラー203a、203bにより光路が合される。そして、アパーチャー204によりビーム径が調整され、フィルターアレイ205へと導かれる。フィルターアレイ205は、複数の光源201a~201cの制御と同期して、光の進行方向に平行な回転軸210を中心として回転するように制御されており、アパーチャー204を通過した光から特定の波長のみを選択して透過させる。フィルターアレイ205を透過した光は、光300として発光部101から射出される。 In the light emitting unit 101, a plurality of light sources 201a to 201c emit light in response to a signal from the control unit 111. Light emitted from the light sources 201a to 201c is directed by collimating lenses 202a to 202c corresponding to the light sources 201a to 201c, and their optical paths are combined by dichroic mirrors 203a and 203b. Then, the beam diameter is adjusted by the aperture 204 and guided to the filter array 205. The filter array 205 is controlled to rotate around a rotation axis 210 parallel to the traveling direction of light in synchronization with the control of the plurality of light sources 201a to 201c, and has a specific wavelength from the light that has passed through the aperture 204 Select only transparent. The light transmitted through the filter array 205 is emitted from the light emitting unit 101 as light 300.
 図4はチップ102を示す概略図であり、図4の(a)は、チップ102を上方からみた正面図であり、図4の(b)は、チップ102に備えられるセル400の形状の一例を示す概略図であり、図4の(c)は、チップ102に備えられるセル410の形状を示す概略図である。 FIG. 4 is a schematic view showing the chip 102, FIG. 4A is a front view of the chip 102 as viewed from above, and FIG. 4B is an example of the shape of the cell 400 provided in the chip 102. FIG. 4C is a schematic diagram showing the shape of the cell 410 provided in the chip 102.
 図4の(a)に示すように、チップ102は円盤状であり、回転軸450を中心に、放射状に複数のセル400及びセル410が形成されている。なお、本実施形態においては、チップ102には、セル400が6つ、及び、セル410が1つ形成されている。セル400及びセル410は、チップ102の円周方向に対して等間隔で形成されている。 As shown in FIG. 4A, the chip 102 has a disk shape, and a plurality of cells 400 and cells 410 are formed radially around the rotation shaft 450. In the present embodiment, six cells 400 and one cell 410 are formed on the chip 102. The cells 400 and 410 are formed at equal intervals in the circumferential direction of the chip 102.
 チップ102は、発光部101から射出された光300を透過するように、例えば、シリコーン、ガラス、プラスチック等の透明材で作製されていることが好ましい。チップ102は、チップ102を安価な構成とするために、透明性の高い合成樹脂で作製されていることがより好ましく、本実施形態においては、チップ102は、耐薬品性も兼ね備えた低密度ポリプロピレンで作製されている。 The chip 102 is preferably made of a transparent material such as silicone, glass, or plastic so as to transmit the light 300 emitted from the light emitting unit 101. The chip 102 is more preferably made of a highly transparent synthetic resin in order to make the chip 102 inexpensive, and in this embodiment, the chip 102 is a low-density polypropylene that also has chemical resistance. It is made with.
 また、セル400及びセル410は、チップ102の表面に露出して形成されるものではないが、図4の(a)では、内部構造を理解しやすいように実線で示している。 In addition, although the cell 400 and the cell 410 are not formed to be exposed on the surface of the chip 102, in FIG. 4A, the internal structure is shown by solid lines so that the internal structure can be easily understood.
 図4の(b)に示すように、セル400のそれぞれには、土壌から抽出した土壌抽出液(液体試料)を注入する試料室401と、試薬(第1試薬、第2試薬)を格納する試薬室402、403と、測定室(第1測定室、第2測定室)404とが形成されている。試薬室403と、試料室401、試薬室402及び測定室404との間には流路405が形成されており、試薬室403と、試料室401、試薬室402及び測定室404とは連通している。また、試料室401には、土壌抽出液を注入するための開口部(第1供給口、第2供給口)407が形成されており、開口部407は、チップ102の上面に向かって開口している、
 図4の(c)に示すように、セル410は、試薬室を備えておらず、試料室411及び基準室414が形成されている。また、試料室411と基準室414との間は流路415が形成されており、試料室411と基準室414とは連通している。試料室411には、セル400の試料室401と同様に、土壌抽出液を注入するための開口部417が形成されており、開口部417は、チップ102の上面に向かって開口している。
As shown in FIG. 4B, each cell 400 stores a sample chamber 401 into which a soil extract (liquid sample) extracted from soil and a reagent (first reagent and second reagent) are injected. Reagent chambers 402 and 403 and measurement chambers (first measurement chamber and second measurement chamber) 404 are formed. A flow path 405 is formed between the reagent chamber 403, the sample chamber 401, the reagent chamber 402, and the measurement chamber 404, and the reagent chamber 403, the sample chamber 401, the reagent chamber 402, and the measurement chamber 404 communicate with each other. ing. The sample chamber 401 is formed with openings (first supply port, second supply port) 407 for injecting the soil extract, and the opening 407 opens toward the upper surface of the chip 102. ing,
As shown in FIG. 4C, the cell 410 does not include a reagent chamber, and a sample chamber 411 and a reference chamber 414 are formed. Further, a flow path 415 is formed between the sample chamber 411 and the reference chamber 414, and the sample chamber 411 and the reference chamber 414 communicate with each other. Similar to the sample chamber 401 of the cell 400, an opening 417 for injecting a soil extract is formed in the sample chamber 411, and the opening 417 opens toward the upper surface of the chip 102.
 ここで、セル400の測定室404、及び、セル410の基準室414は、図4の(a)に一点鎖線Aで示すように、第1の円周上に形成されている。また、セル400の開口部407、及び、セル410の開口部417は、図4の(a)に一点鎖線Bで示すように第2の円周上に形成されている。すなわち、測定室404及び基準室414と、開口部407、417とは、回転軸450を中心とする同心円上に形成されており、開口部407、417が、半径方向内側に、測定室404及び基準室414が半径方向外側に形成されている。 Here, the measurement chamber 404 of the cell 400 and the reference chamber 414 of the cell 410 are formed on the first circumference as indicated by a dashed line A in FIG. Further, the opening 407 of the cell 400 and the opening 417 of the cell 410 are formed on the second circumference as indicated by a dashed line B in FIG. That is, the measurement chamber 404 and the reference chamber 414, and the openings 407 and 417 are formed on concentric circles with the rotation axis 450 as the center, and the openings 407 and 417 are radially inward of the measurement chamber 404 and A reference chamber 414 is formed radially outward.
 なお、試薬室403と測定室404との間の流路405には、開閉式の弁が設けられており、弁は閉じられた状態となっている。 Note that an open / close valve is provided in the flow path 405 between the reagent chamber 403 and the measurement chamber 404, and the valve is closed.
 チップ102の大きさは、例えば直径が20cm程度であり、セル400及びセル410のそれぞれの大きさは、図4の(b)及び(c)の長手方向が4~5cm、短手方向が2~3cm程度の大きさである。 The size of the chip 102 is, for example, about 20 cm in diameter, and the size of each of the cell 400 and the cell 410 is 4 to 5 cm in the longitudinal direction of FIGS. 4B and 4C and 2 in the short direction. The size is about 3 cm.
 受光部103は、発光部101から射出され、チップ102の、図4の(a)において一点鎖線Aで示す第1の円周上の領域を透過した光300を受光する。 The light receiving unit 103 receives the light 300 emitted from the light emitting unit 101 and transmitted through the region on the first circumference indicated by the alternate long and short dash line A in FIG.
 計測部109は、受光部103と接続している。計測部109は、受光部103の受光した光の強度を測定するとともに、測定結果に基づいて各種データ(土壌成分濃度、pH等)を算出する。 The measuring unit 109 is connected to the light receiving unit 103. The measuring unit 109 measures the intensity of the light received by the light receiving unit 103 and calculates various data (soil component concentration, pH, etc.) based on the measurement result.
 回転駆動部106は、チップ102の下方に備えられ、チップ102を、回転軸450を中心として回転駆動する。本実施形態においては、回転駆動部106としてパルス制御可能なステッピングモーターを用いた。なお、本実施形態においては、回転駆動部106がチップ102を回転駆動する構成を示したが、これに限られるものではなく、チップ102と、発光部101、受光部103及び液体供給機構108とが相対的に移動すればよい。例えば、回転駆動部106が、発光部101、受光部103及び液体供給機構108を回転軸450の周りで回転駆動する構成であってもよいし、チップ102と、発光部101、受光部103及び液体供給機構108との双方を回転駆動する構成であってもよい。 The rotation drive unit 106 is provided below the chip 102 and rotates the chip 102 about the rotation axis 450. In this embodiment, a stepping motor capable of pulse control is used as the rotation drive unit 106. In the present embodiment, the configuration in which the rotation driving unit 106 rotationally drives the chip 102 is shown, but the present invention is not limited to this, and the chip 102, the light emitting unit 101, the light receiving unit 103, and the liquid supply mechanism 108 Should move relatively. For example, the rotation driving unit 106 may be configured to rotationally drive the light emitting unit 101, the light receiving unit 103, and the liquid supply mechanism 108 around the rotation axis 450, or the chip 102, the light emitting unit 101, the light receiving unit 103, and the like. The configuration may be such that both the liquid supply mechanism 108 and the liquid supply mechanism 108 are rotationally driven.
 制御部111は、液体供給制御部104、及び測定制御部(計測制御部)105を備える。制御部111は、発光部101、計測部109、液体供給機構108及び回転駆動部106と接続しており、各部の動作を制御する。液体供給制御部104は、回転駆動部106及び液体供給機構108の動作を制御し、液体供給機構108の液体注入位置と開口部407、417の位置とを合わせるようにチップ102の回転を制御して、土壌抽出液等を、液体供給機構108からチップ102の開口部407、417に供給する。測定制御部105は、吸光度の測定を行う際に回転駆動部106及び計測部109の動作を制御し、回転軸450の周りに回転するチップ102の基準室414および測定室404を透過した光に基づいて、土壌成分の測定を行う。 The control unit 111 includes a liquid supply control unit 104 and a measurement control unit (measurement control unit) 105. The control unit 111 is connected to the light emitting unit 101, the measurement unit 109, the liquid supply mechanism 108, and the rotation driving unit 106, and controls the operation of each unit. The liquid supply control unit 104 controls the operation of the rotation driving unit 106 and the liquid supply mechanism 108, and controls the rotation of the chip 102 so that the liquid injection position of the liquid supply mechanism 108 matches the positions of the openings 407 and 417. Then, the soil extract or the like is supplied from the liquid supply mechanism 108 to the openings 407 and 417 of the chip 102. The measurement control unit 105 controls the operation of the rotation driving unit 106 and the measurement unit 109 when measuring the absorbance, and converts the light transmitted through the reference chamber 414 and the measurement chamber 404 of the chip 102 rotating around the rotation axis 450. Based on the measurement of soil components.
 図5は、液体供給機構108の構成を示す概略図である。なお、同図では、チップ102及び回転駆動部106も合わせて示している。図5に示すように、液体供給機構108は、試料格納容器112と、液体供給ポンプ113と、チューブ501と、注入ノズル502とを備えている。 FIG. 5 is a schematic diagram showing the configuration of the liquid supply mechanism 108. In the figure, the chip 102 and the rotation drive unit 106 are also shown. As shown in FIG. 5, the liquid supply mechanism 108 includes a sample storage container 112, a liquid supply pump 113, a tube 501, and an injection nozzle 502.
 試料格納容器112には、採取した土壌に水を加え、振とう及びろ過を行った土壌抽出液が格納されており、シリコンチューブ(図示せず)等によって液体供給ポンプ113と接続している。当該土壌抽出液は、別の容器である抽出容器(図示せず)にて作成し、抽出容器から試料格納容器112へと注入する構成であってもよいし、抽出容器と試料格納容器112を嵌合させることで、抽出容器の底部を貫通させ、土壌抽出液がシリコンチューブ等に流入する構成であってもよい。 In the sample storage container 112, a soil extract obtained by adding water to the collected soil, shaking and filtering is stored, and connected to the liquid supply pump 113 by a silicon tube (not shown) or the like. The soil extract may be prepared in an extraction container (not shown), which is another container, and injected from the extraction container into the sample storage container 112. Alternatively, the extraction container and the sample storage container 112 may be combined. By making it fit, the bottom part of the extraction container may be penetrated and the soil extract may flow into the silicon tube or the like.
 チューブ501は、液体供給ポンプ113と注入ノズル502とを接続している。液体供給ポンプ113は、チューブ501及び注入ノズル502を介して、開口部407、417からチップ102の試料室401、411に、試料格納容器112に格納された土壌抽出液等を所定量だけ滴下・分注する。そのため、注入ノズル502は、開口部407、417が形成された、図4の(a)に一点鎖線Bで示す円周上(第2の円周上)の直上の位置に配置される。また、本実施形態においては、液体供給ポンプ113として、精度良く送液可能なチューブポンプを用いた。 The tube 501 connects the liquid supply pump 113 and the injection nozzle 502. The liquid supply pump 113 drops a predetermined amount of a soil extract stored in the sample storage container 112 from the openings 407 and 417 into the sample chambers 401 and 411 of the chip 102 through the tube 501 and the injection nozzle 502. Dispense. Therefore, the injection nozzle 502 is disposed at a position immediately above the circumference (on the second circumference) indicated by the alternate long and short dash line B in FIG. 4A where the openings 407 and 417 are formed. In the present embodiment, a tube pump capable of feeding liquid with high accuracy is used as the liquid supply pump 113.
 (測定動作及び測定手順)
 次に、図6及び図7に基づいて測定時の各部の動作及び測定手順について説明する。
(Measurement operation and measurement procedure)
Next, the operation of each unit and the measurement procedure during measurement will be described with reference to FIGS.
 図6の(a)は、測定時におけるチップ102の上面図を示したものである。図6の(b)は、図6の(a)におけるチップ102のC-C線矢視断面図、並びに、フィルターアレイ205及び受光部103を模式的に示したものである。 (A) of FIG. 6 shows a top view of the chip 102 at the time of measurement. FIG. 6B schematically shows a cross-sectional view taken along the line CC of the chip 102 in FIG. 6A and the filter array 205 and the light receiving unit 103.
 以下では説明の便宜上6つのセル400のそれぞれを区別するときは、400-a~400-fの参照符号を付し、区別しない場合には400の参照符号を付す。また同様に、セル400に形成された試料室401、試薬室402、試薬室403、測定室404、流路405及び開口部407についても、それぞれを区別するときには、それぞれ401-a~401-f、402-a~402-f、403-a~403-f、404-a~404-f、405-a~405-f、407-a~407-fの参照符号を付す。 Hereinafter, when distinguishing each of the six cells 400 for convenience of explanation, reference numerals 400-a to 400-f are given, and when not distinguished, 400 reference signs are given. Similarly, the sample chamber 401, the reagent chamber 402, the reagent chamber 403, the measurement chamber 404, the flow channel 405, and the opening 407 formed in the cell 400 are distinguished from each other by 401-a to 401-f. 402-a to 402-f, 403-a to 403-f, 404-a to 404-f, 405-a to 405-f, and 407-a to 407-f.
 セル400-aの試薬室402-aには、5wt%サリチル酸-硫酸水溶液が0.4ml、試薬室403-aには、2mol/lの水酸化ナトリウム(NaOH)水溶液が10ml予め注入されている。また同様に、試薬室402-b~402-f、試薬室403-b~403-fにも試薬が予め注入されている。試薬室402-a~402-f、試薬室403-a~403-fのそれぞれに予め注入されている試薬の種類及び量を表1に示す。表1において「-」で示されている欄は、試薬が何も注入されていないことを示す。 0.4 ml of 5 wt% salicylic acid-sulfuric acid aqueous solution is injected into the reagent chamber 402-a of the cell 400-a, and 10 ml of 2 mol / l sodium hydroxide (NaOH) aqueous solution is injected into the reagent chamber 403-a in advance. . Similarly, the reagent is previously injected into the reagent chambers 402-b to 402-f and the reagent chambers 403-b to 403-f. Table 1 shows the types and amounts of the reagents previously injected into each of the reagent chambers 402-a to 402-f and the reagent chambers 403-a to 403-f. The column indicated by “−” in Table 1 indicates that no reagent has been injected.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、セル400の試薬室402及び試薬室403には、それぞれ異なる試薬が注入されている。これは、測定したい土壌成分に応じた試料が注入されているからであり、セル400-aでは硝酸態窒素(NO-N)を、セル400-bではアンモニア態窒素(NH-N)を、セル400-cでは可吸態リン酸(P)を、セル400-dでは交換性カリウム(KO)を、セル400-eでは交換性カルシウム(CaO)を、セル400-fでは交換性マグネシウム(MgO)を測定対象の土壌成分としている。 As shown in Table 1, different reagents are injected into the reagent chamber 402 and the reagent chamber 403 of the cell 400, respectively. This is because the sample according to the soil component to be measured is injected, nitrate nitrogen (NO 3 -N) is used in the cell 400-a, and ammonia nitrogen (NH 4 -N) is used in the cell 400-b. In the cell 400-c, absorbable phosphoric acid (P 2 O 5 ), in the cell 400-d exchangeable potassium (K 2 O), in the cell 400-e exchangeable calcium (CaO), In -f, exchangeable magnesium (MgO) is used as the soil component to be measured.
 図7は、試料分析装置100の測定手順を示すフローチャートである。 FIG. 7 is a flowchart showing the measurement procedure of the sample analyzer 100.
 まず、抽出容器に土壌0.4g及び水100mlを入れ、抽出容器にて振とう及びろ過を行い、土壌抽出液を作成する(S1)。そして、作成した土壌抽出液を試料分析装置100の試料格納容器112に注入する(S2)。そして、チップ102を試料分析装置100にセットする(S3)。 First, 0.4 g of soil and 100 ml of water are put in an extraction container, and shaking and filtration are performed in the extraction container to create a soil extract (S1). Then, the prepared soil extract is poured into the sample storage container 112 of the sample analyzer 100 (S2). Then, the chip 102 is set in the sample analyzer 100 (S3).
 次に、制御部111の液体供給制御部104が回転駆動部106を回転させ、セル410の試料室411の開口部417が注入ノズル502の直下の位置となるように、チップ102を回転する(S4)。なお、試料分析装置は、S3にてチップ102を設置する際に、必ず開口部417が注入ノズル502の直下の位置に来るような構成であってもよく、そのような構成の場合には、S3を省略することができる。例えば、チップ102に切り欠き部を設け、チップ102を載置するチップ載置台(図示せず)に突片を設け、切り欠き部と突片とを嵌合する構成としたり、チップ102と回転駆動部106とが接続する回転軸450をDカット形状としたりすることで、チップ102がセットされる位置が、必ず開口部417が注入ノズル502の直下に来る位置となるように、一義的に決めることができる。 Next, the liquid supply control unit 104 of the control unit 111 rotates the rotation driving unit 106, and the chip 102 is rotated so that the opening 417 of the sample chamber 411 of the cell 410 is positioned immediately below the injection nozzle 502 ( S4). Note that the sample analyzer may be configured such that the opening 417 is always positioned immediately below the injection nozzle 502 when the chip 102 is installed in S3. In such a configuration, S3 can be omitted. For example, the chip 102 is provided with a notch, a chip mounting table (not shown) on which the chip 102 is placed is provided with a projecting piece, and the notch and the projecting piece are fitted with each other. By making the rotating shaft 450 connected to the drive unit 106 into a D-cut shape, the position where the chip 102 is set is uniquely positioned so that the opening 417 is always located directly below the injection nozzle 502. I can decide.
 次に、液体供給機構108が開口部117から試料室411に土壌抽出液を注入する(S5)。試料室411への土壌抽出液の注入が完了すると、液体供給制御部104は、試料室401-a~401-fのそれぞれの開口部407-a~407-fが順次注入ノズル502の直下となるように、回転駆動部106を制御すると共に、試料室401-a~401-fのそれぞれに所定量の土壌抽出液が注入されるように液体供給機構108を制御する(S6)。 Next, the liquid supply mechanism 108 injects the soil extract into the sample chamber 411 from the opening 117 (S5). When the injection of the soil extract into the sample chamber 411 is completed, the liquid supply control unit 104 causes each of the openings 407-a to 407-f of the sample chambers 401-a to 401-f to be immediately below the injection nozzle 502. Thus, the rotation drive unit 106 is controlled, and the liquid supply mechanism 108 is controlled so that a predetermined amount of soil extract is injected into each of the sample chambers 401-a to 401-f (S6).
 このように、本実施形態に係る試料分析装置100においては、液体供給機構108の液体注入位置と開口部407、417の位置とを合わせるようにチップ102の回転を制御して土壌抽出液を注入することができるため、短時間で試料室401-a~401-fに土壌抽出液注入することができる。また、初めに試料室411に土壌抽出液を注入することで、試料格納容器112と液体供給ポンプ113との間のチューブ、液体供給ポンプ113、チューブ501及び注入ノズル502内の空気を押し出し、土壌抽出液で満たすことができる。そのため、試料室401-a~401-fのそれぞれに土壌抽出液を注入する工程において、土壌抽出液を注入する精度を向上することができ、計測精度を向上させることが可能となる。 As described above, in the sample analyzer 100 according to the present embodiment, the soil extraction liquid is injected by controlling the rotation of the chip 102 so that the liquid injection position of the liquid supply mechanism 108 matches the positions of the openings 407 and 417. Therefore, the soil extract can be injected into the sample chambers 401-a to 401-f in a short time. In addition, by first injecting the soil extract into the sample chamber 411, the air between the sample storage container 112 and the liquid supply pump 113, the liquid supply pump 113, the tube 501, and the injection nozzle 502 is pushed out, and the soil Can be filled with extract. Therefore, in the step of injecting the soil extract into each of the sample chambers 401-a to 401-f, the accuracy of injecting the soil extract can be improved, and the measurement accuracy can be improved.
 次に、液体供給機構108が試料格納容器112に残存した土壌抽出液を試料室411に注入し、試料格納容器112が空となる(S7)。 Next, the liquid supply mechanism 108 injects the soil extract remaining in the sample storage container 112 into the sample chamber 411, and the sample storage container 112 becomes empty (S7).
 続いて、S7にて空となった試料格納容器112に土壌抽出液を希釈するための純水(希釈液)を注入し(S8)、予め定められた試料室401-a~401-fに所定量の純水を注入する(S9)。本実施形態においては、可吸態リン酸(P)を計測するためのセルであるセル400-cの試料室401-cに5mlの純水を注入する。なお、S8において試料格納容器112に注入する液体、ならびに、S9において注入対象となる試料室401-a~401-f及び注入量はこれに限られるものではなく、用いた試薬、採取した土壌の量、土壌を抽出するために用いた液体(例えば、純水やクエン酸等の弱酸性溶液)等に応じて、土壌抽出液と希釈液とが所定の比率となるように決定される。 Subsequently, pure water (diluent) for diluting the soil extract is poured into the sample storage container 112 emptied in S7 (S8), and the sample chambers 401-a to 401-f are set in advance. A predetermined amount of pure water is injected (S9). In this embodiment, 5 ml of pure water is injected into the sample chamber 401-c of the cell 400-c, which is a cell for measuring absorbable phosphoric acid (P 2 O 5 ). Note that the liquid to be injected into the sample storage container 112 in S8, the sample chambers 401-a to 401-f to be injected in S9, and the injection amount are not limited to this, and the reagent used and the collected soil Depending on the amount, the liquid used to extract the soil (for example, weakly acidic solution such as pure water or citric acid), etc., the soil extract and the diluted solution are determined to have a predetermined ratio.
 次に、各セル400、410の吸光度の測定に移り、まず回転駆動部106が回転する。回転駆動部106の回転により、チップ102は、回転軸450を中心として回転し、セル400及びセル410には、それぞれ図4の(b)及び図4の(c)に矢印Fで示す方向に遠心力(慣性力)が作用する。 Next, the procedure proceeds to the measurement of the absorbance of each of the cells 400 and 410, and the rotation driving unit 106 is first rotated. The rotation of the rotation drive unit 106 causes the chip 102 to rotate about the rotation axis 450, and the cell 400 and the cell 410 have the directions indicated by arrows F in FIG. 4B and FIG. 4C, respectively. Centrifugal force (inertial force) acts.
 セル410の試料室411に注入された土壌抽出液は、遠心力によって流路415を通って基準室414へと移動する。 The soil extract injected into the sample chamber 411 of the cell 410 moves to the reference chamber 414 through the flow path 415 by centrifugal force.
 また、セル400の試料室401の土壌抽出液及び試薬室402の試薬は、流路405を通り試薬室403へと移動する。これにより、試薬室403内に測定対象となる試料と試薬との混合液(第1混合液、第2混合液)が生成される(S10)。 In addition, the soil extract in the sample chamber 401 of the cell 400 and the reagent in the reagent chamber 402 move to the reagent chamber 403 through the flow path 405. As a result, a mixed liquid (first mixed liquid, second mixed liquid) of the sample and the reagent to be measured is generated in the reagent chamber 403 (S10).
 次に回転駆動部106の回転により、セル400の試薬室403内に生成された混合液の攪拌が行われる。混合液の攪拌は、本実施形態では、回転駆動部106の回転により行われる構成としたが、これに限られるものでは無い。試料分析装置100が1軸駆動可能な並進駆動部(図示せず)を備えており、並進駆動部の往復運動によって攪拌が行われる構成であってもよいし、回転駆動部106と並進駆動部とを組み合わせて駆動させることによって攪拌が行われる構成であってもよい。また、回転駆動部106と並進駆動部とのそれぞれを個別に時間差を空けて駆動することで攪拌を行う構成であってもよい。さらには、攪拌の際に、回転駆動部106を一定の速度で回転する構成であってもよいし、加速度を付けて回転する構成や、逆回転する構成であっても、また、これらを組み合わせて回転する構成であってもよい。 Next, the liquid mixture generated in the reagent chamber 403 of the cell 400 is stirred by the rotation of the rotation driving unit 106. In this embodiment, the stirring of the mixed liquid is performed by the rotation of the rotation driving unit 106, but is not limited thereto. The sample analyzer 100 may include a translation drive unit (not shown) that can be driven in one axis, and may be configured to perform stirring by a reciprocating motion of the translation drive unit. Alternatively, the rotation drive unit 106 and the translation drive unit may be used. It may be a configuration in which stirring is performed by driving in combination. Moreover, the structure which stirs by driving each of the rotation drive part 106 and the translation drive part with a time difference separately may be sufficient. Furthermore, the structure may be such that the rotation drive unit 106 rotates at a constant speed during agitation, a structure that rotates with acceleration, or a structure that rotates in reverse, or a combination of these. May be configured to rotate.
 混合液の攪拌が終了すると、試薬室403と測定室404との間の流路405に設けられた開閉式の弁を開放し、再び回転駆動部106を回転させることで、遠心力により混合液を測定室404へと移動させる(S11)。 When the stirring of the mixed solution is completed, the open / close valve provided in the flow path 405 between the reagent chamber 403 and the measurement chamber 404 is opened, and the rotation driving unit 106 is rotated again, so that the mixed solution is mixed by centrifugal force. Is moved to the measurement chamber 404 (S11).
 なお、上述の混合液の攪拌は、試薬室403で行ってもよいが、測定室404で行ってもよい。また、本実施形態においては、回転駆動部106の回転により、混合液の生成及び攪拌が、セル400-a~400-fに対して一括に行われる構成であったが、これに限られるものでは無く、それぞれのセル400-a~400-fに対して個別に行われる構成であってもよい。しかしながら、処理時間の短縮という観点から見れば、セル400-a~400-fに対して一括で行われる構成であることが好ましい。 In addition, although stirring of the above-mentioned liquid mixture may be performed in the reagent chamber 403, it may be performed in the measurement chamber 404. In the present embodiment, the mixed liquid is generated and stirred by the rotation of the rotation driving unit 106 in a lump for the cells 400-a to 400-f. However, the present invention is not limited to this. Instead, it may be configured to be performed individually for each of the cells 400-a to 400-f. However, from the viewpoint of shortening the processing time, it is preferable that the cell 400-a to 400-f be configured to be performed collectively.
 図6の(a)及び(b)に示すように、混合液の攪拌が終了すると、次に、回転駆動部106の回転によりチップ102が1周等速回転すると共に、発光部101から光300が射出され、光300がチップ102を走査し、チップ102を透過した光300は、チップ102の測定室404及び基準室414を透過し、受光部103へと入射される。計測部109は、受光部103が受光した光の強度(透過光量)に基づいて混合液の吸光度(透過率)を算出する(S12)。 As shown in FIGS. 6A and 6B, when the stirring of the mixed solution is completed, the rotation of the rotation drive unit 106 causes the chip 102 to rotate at a constant speed and the light from the light emitting unit 101 to the light 300. , The light 300 scans the chip 102, and the light 300 transmitted through the chip 102 passes through the measurement chamber 404 and the reference chamber 414 of the chip 102 and enters the light receiving unit 103. The measuring unit 109 calculates the absorbance (transmittance) of the mixed liquid based on the intensity (transmitted light amount) of the light received by the light receiving unit 103 (S12).
 S12において、制御部111の測定制御部105が、回転駆動部106を制御することで、発光部101から射出された光300が、チップ102の測定室404及び基準室414を透過する。ここで、測定室404-a~404-fに格納された混合液は、試薬により発色反応を示しており、各土壌成分の濃度に依存した光吸収が生じる。一方で、基準室414には、土壌抽出液のみが格納されているため、測定室404-a~404-fと比較して、生じる光吸収は少ない。そのため、計測部109は、透過光量が一番高くなっている位置を基準室414であると特定する。計測部109は、測定室404-a~404-fを透過した光量と、対応する干渉フィルター301~306を介して基準室414透過した光量との差分を取ることで、測定室404-a~404-fの吸光度を算出し、土壌成分の測定を行う。 In S12, the measurement control unit 105 of the control unit 111 controls the rotation driving unit 106, so that the light 300 emitted from the light emitting unit 101 passes through the measurement chamber 404 and the reference chamber 414 of the chip 102. Here, the mixed solution stored in the measurement chambers 404-a to 404-f exhibits a color reaction due to the reagent, and light absorption occurs depending on the concentration of each soil component. On the other hand, since only the soil extract is stored in the reference chamber 414, less light absorption occurs compared to the measurement chambers 404-a to 404-f. Therefore, the measurement unit 109 specifies the position where the transmitted light amount is the highest as the reference chamber 414. The measuring unit 109 obtains the difference between the light amount transmitted through the measurement chambers 404-a to 404-f and the light amount transmitted through the reference chamber 414 via the corresponding interference filters 301 to 306, thereby measuring the measurement chambers 404-a to 404-a. The absorbance of 404-f is calculated and the soil component is measured.
 (効果)
 ここで、複数の土壌成分の濃度を一括で測定する場合には、土壌成分毎に異なる試薬を用いる必要があるが、特定の土壌成分において、試薬の発色濃度範囲と、抽出液の濃度範囲とが一致しないことがある。
(effect)
Here, when measuring the concentration of a plurality of soil components at the same time, it is necessary to use a different reagent for each soil component, but for a specific soil component, the coloring concentration range of the reagent, the concentration range of the extract, May not match.
 具体的には、ある土壌成分においては、抽出液の濃度が、当該土壌成分に対応する試薬が発色反応を示す濃度範囲内にあるが、他の土壌成分においては、抽出液の濃度が、当該他の土壌成分に対応する試薬が発色反応を示す濃度よりも高く、混合液が土壌成分の濃度に応じた吸光度を示さないことがある。このような場合には、混合液を希釈し、再度吸光度の測定を行う必要がある。 Specifically, in a certain soil component, the concentration of the extract is within a concentration range in which the reagent corresponding to the soil component exhibits a color reaction, but in other soil components, the concentration of the extract is The reagent corresponding to another soil component may be higher than the concentration at which a color development reaction is caused, and the mixed solution may not exhibit an absorbance corresponding to the concentration of the soil component. In such a case, it is necessary to dilute the liquid mixture and measure the absorbance again.
 図13に示す、特許文献1に記載の土壌分析装置においては、試薬は予め収納カートリッジ9のセル11に収納されており、抽出液は、抽出液カートリッジ14のセル16で計量される。そのため、特定の土壌成分の濃度が、対応する試薬が発色反応を示す濃度範囲よりも高い場合には、まず抽出液を希釈し、次に抽出液カートリッジ14のセル16で再度計量を行う。その後、収納カートリッジ9と抽出液カートリッジ14とを嵌合することで混合液を作成し、吸光度の測定を行う必要がある。そのため、カートリッジを新たに使用する必要があり、コストが嵩んでしまうという問題がある。また、測定に手戻りが生じることとなり、測定に時間がかかってしまうという問題もある。 In the soil analysis apparatus described in Patent Document 1 shown in FIG. 13, the reagent is stored in advance in the cell 11 of the storage cartridge 9, and the extract is weighed in the cell 16 of the extract cartridge 14. Therefore, when the concentration of a specific soil component is higher than the concentration range in which the corresponding reagent exhibits a color reaction, the extract is first diluted and then weighed again in the cell 16 of the extract cartridge 14. After that, it is necessary to prepare a mixed solution by fitting the storage cartridge 9 and the extract cartridge 14 and measure the absorbance. Therefore, it is necessary to newly use the cartridge, and there is a problem that the cost increases. In addition, the measurement is reworked, and there is a problem that the measurement takes time.
 これに対して、本実施形態に係る試料分析装置100は、セル400に開口部407が形成されており、測定を行う土壌成分に応じて、土壌抽出液を希釈するための希釈液を、液体供給機構108から開口部407を介してセル400に注入することができる。これにより、土壌抽出液の特定の成分が、試薬が発色反応を示す範囲外の高濃度であったとしても、測定に手戻りが生じることは無く、簡便に測定を行うことができる。また、土壌抽出液を希釈することで、発色反応を示す範囲内の濃度に最適化することができ、測定を高精度に行うことが可能となる。 On the other hand, in the sample analyzer 100 according to the present embodiment, the opening 407 is formed in the cell 400, and a diluting liquid for diluting the soil extract according to the soil component to be measured is liquid. Injection can be performed from the supply mechanism 108 to the cell 400 through the opening 407. Thereby, even if the specific component of the soil extract has a high concentration outside the range in which the reagent exhibits a color reaction, the measurement is not reworked, and the measurement can be easily performed. In addition, by diluting the soil extract, it is possible to optimize the concentration within a range showing a color development reaction, and it is possible to perform measurement with high accuracy.
 〔実施形態2〕
 本発明の他の実施形態について、図8及び図9に基づいて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
Another embodiment of the present invention will be described with reference to FIGS. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図8は、本実施形態に係る試料分析装置600の構成概略図である。試料分析装置600は、実施形態1に係る試料分析装置100の液体供給機構108とは異なる液体供給機構120を備えている点以外は、試料分析装置100と同様の構成である。 FIG. 8 is a schematic configuration diagram of the sample analyzer 600 according to this embodiment. The sample analyzer 600 has the same configuration as the sample analyzer 100 except that it includes a liquid supply mechanism 120 that is different from the liquid supply mechanism 108 of the sample analyzer 100 according to the first embodiment.
 液体供給機構120は、土壌抽出液を供給する液体試料供給機構122と、希釈液を供給する希釈液供給機構121とを備えている。液体試料供給機構122は、液体供給機構108と同様の構成であり、試料格納容器112と、液体供給ポンプ113と、チューブ501(図5参照)と、注入ノズル502(図5参照)とを備えている。また、希釈液供給機構121は、試料格納容器112の代わりに希釈液格納容器114を備えている点以外は、液体試料供給機構122と同様の構成である。 The liquid supply mechanism 120 includes a liquid sample supply mechanism 122 that supplies a soil extract and a diluent supply mechanism 121 that supplies a diluent. The liquid sample supply mechanism 122 has the same configuration as the liquid supply mechanism 108, and includes a sample storage container 112, a liquid supply pump 113, a tube 501 (see FIG. 5), and an injection nozzle 502 (see FIG. 5). ing. The diluent supply mechanism 121 has the same configuration as the liquid sample supply mechanism 122 except that the diluent storage container 114 includes a diluent storage container 114 instead of the sample storage container 112.
 次に、試料分析装置600における測定手順を説明する。図9は、試料分析装置600の測定手順を示すフローチャートである。 Next, the measurement procedure in the sample analyzer 600 will be described. FIG. 9 is a flowchart showing the measurement procedure of the sample analyzer 600.
 まず、実施形態1に係る試料分析装置100と同様に、抽出容器に土壌0.4g及び水100mlを入れ、抽出容器にて振とう及びろ過を行い、土壌抽出液を作成する(S21)。そして、作成した土壌抽出液を液体試料供給機構122の試料格納容器112に注入し(S22)、希釈液として純水を希釈液供給機構121の希釈液格納容器114に注入する(S23)。 First, similarly to the sample analyzer 100 according to the first embodiment, 0.4 g of soil and 100 ml of water are put into an extraction container, and the extract is shaken and filtered to create a soil extract (S21). Then, the prepared soil extract is poured into the sample storage container 112 of the liquid sample supply mechanism 122 (S22), and pure water is injected as a diluent into the diluent storage container 114 of the diluent supply mechanism 121 (S23).
 次に、チップ102を試料分析装置600にセットする(S24)。そして、制御部111の液体供給制御部104が回転駆動部106を回転させ、セル410の試料室411の開口部417が液体試料供給機構122の注入ノズル502の直下の位置となるように、チップ102を回転する(S25)。その後、試料室411に土壌抽出液を注入する(S26)。 Next, the chip 102 is set in the sample analyzer 600 (S24). Then, the liquid supply control unit 104 of the control unit 111 rotates the rotation driving unit 106 so that the opening 417 of the sample chamber 411 of the cell 410 is positioned immediately below the injection nozzle 502 of the liquid sample supply mechanism 122. 102 is rotated (S25). Thereafter, a soil extract is injected into the sample chamber 411 (S26).
 次に、試料室401-a~401-fのそれぞれの開口部407-a~407-fが順次液体試料供給機構122の注入ノズル502の直下となるように回転駆動部106を制御し、試料室401-a~401-fのそれぞれに所定量の土壌抽出液の注入を行うと同時に、特定の試料室401-a~401-fに、希釈液供給機構121から所定量の純水が注入される(S27)。 Next, the rotation driving unit 106 is controlled so that the respective openings 407-a to 407-f of the sample chambers 401-a to 401-f are directly below the injection nozzle 502 of the liquid sample supply mechanism 122, and the sample A predetermined amount of soil extract is injected into each of the chambers 401-a to 401-f, and at the same time, a predetermined amount of pure water is injected into the specific sample chambers 401-a to 401-f from the diluent supply mechanism 121. (S27).
 このように、本実施形態に係る試料分析装置600は、液体供給機構120が、液体試料供給機構122と希釈液供給機構121とを備えているため、土壌抽出液の注入と、希釈液の注入とを同時に行うことができる。そのため、実施形態1に係る試料分析装置100のように、土壌抽出液を試料室401、411に注入した後に、試料格納容器112に純水を注入し、再度試料室401に注入するという工程を行う必要が無くなり、測定時間を短縮することができる。 Thus, in the sample analyzer 600 according to this embodiment, since the liquid supply mechanism 120 includes the liquid sample supply mechanism 122 and the diluent supply mechanism 121, the soil extract and the diluent are injected. Can be performed simultaneously. Therefore, as in the sample analyzer 100 according to the first embodiment, the process of injecting the soil extract into the sample chambers 401 and 411, then injecting pure water into the sample storage container 112, and injecting again into the sample chamber 401 is performed. There is no need to perform the measurement, and the measurement time can be shortened.
 その後は、実施形態1に係る試料分析装置100と同様に、チップ102を回転させ、試料室411の土壌抽出液を基準室414へと送液すると共に、試薬室403(図4参照)において土壌抽出液と試薬との混合液を作成する。そして、さらにチップ102を回転させることで試薬室403の土壌抽出液を測定室404へと送液する(S28)。 Thereafter, similarly to the sample analyzer 100 according to the first embodiment, the chip 102 is rotated, the soil extract in the sample chamber 411 is fed to the reference chamber 414, and the soil in the reagent chamber 403 (see FIG. 4). Prepare a mixture of the extract and the reagent. Then, by further rotating the chip 102, the soil extract in the reagent chamber 403 is fed to the measurement chamber 404 (S28).
 最後に、実施形態1に係る試料分析装置100と同様の方法で、測定室404の混合液、及び、基準室414の土壌抽出液に対して順次吸光度の測定を行う(S29)。 Finally, the absorbance is sequentially measured for the mixed solution in the measurement chamber 404 and the soil extract in the reference chamber 414 by the same method as the sample analyzer 100 according to the first embodiment (S29).
 〔実施形態3〕
 本発明の他の実施形態について、図10に基づいて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
Another embodiment of the present invention will be described with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図10は、本実施形態に係る試料分析装置700の構成概略図である。図10に示すように、試料分析装置700は、実施形態2に係る試料分析装置600とは異なる液体供給機構125を備えている点以外は、試料分析装置600と同様の構成である。 FIG. 10 is a schematic configuration diagram of a sample analyzer 700 according to the present embodiment. As shown in FIG. 10, the sample analyzer 700 has the same configuration as the sample analyzer 600 except that the sample analyzer 700 includes a liquid supply mechanism 125 different from the sample analyzer 600 according to the second embodiment.
 液体供給機構125は、液体試料供給機構126と、希釈液供給機構127とを備えており、希釈液供給機構127が液体の供給方向上流側に、液体試料供給機構126が液体の供給方向下流側に配置されている。換言すれば、液体試料供給機構126と、希釈液供給機構127とは、液体の供給方向に対して直列に配置されている。 The liquid supply mechanism 125 includes a liquid sample supply mechanism 126 and a diluent supply mechanism 127. The diluent supply mechanism 127 is upstream in the liquid supply direction, and the liquid sample supply mechanism 126 is downstream in the liquid supply direction. Is arranged. In other words, the liquid sample supply mechanism 126 and the diluent supply mechanism 127 are arranged in series with respect to the liquid supply direction.
 液体試料供給機構126は、実施形態2に係る液体試料供給機構122と略同一の構成を有しており、試料格納容器112、液体供給ポンプ113、チューブ、及び注入ノズルを備え、試料格納容器112に格納された液体をチップ102に注入することが可能である。 The liquid sample supply mechanism 126 has substantially the same configuration as the liquid sample supply mechanism 122 according to the second embodiment, and includes a sample storage container 112, a liquid supply pump 113, a tube, and an injection nozzle, and the sample storage container 112. It is possible to inject the liquid stored in the chip 102 into the chip 102.
 希釈液供給機構127は、希釈液格納容器114、液体供給ポンプ113、及び、チューブ(図示せず)を備えている。希釈液供給機構127のチューブは、液体供給ポンプ113と、液体試料供給機構126が備える試料格納容器112とを接続している。そのため、液体供給ポンプ113は、希釈液格納容器114に格納された希釈液を、チューブを介して試料格納容器112に送ることができる。 The diluent supply mechanism 127 includes a diluent storage container 114, a liquid supply pump 113, and a tube (not shown). The tube of the diluent supply mechanism 127 connects the liquid supply pump 113 and the sample storage container 112 provided in the liquid sample supply mechanism 126. Therefore, the liquid supply pump 113 can send the diluent stored in the diluent storage container 114 to the sample storage container 112 through the tube.
 本実施形態に係る試料分析装置700は、液体供給機構125をこのような構成とすることで、特定の試料室401に希釈液としての純水を注入する工程において、純水が希釈液格納容器114から試料格納容器112へと搬送される。その後純水は、液体供給ポンプ113、チューブ、注入ノズルと搬送され、試料室411へと注入される。そのため、液体試料供給機構126における土壌抽出液の流路が純水によって洗浄されることとなり、より精度の高い測定を行うことが可能となる。 In the sample analyzer 700 according to this embodiment, the liquid supply mechanism 125 is configured as described above, so that pure water is used as a diluent storage container in a process of injecting pure water as a diluent into a specific sample chamber 401. The sample is transferred from 114 to the sample storage container 112. Thereafter, the pure water is conveyed to the liquid supply pump 113, the tube, and the injection nozzle, and injected into the sample chamber 411. Therefore, the flow path of the soil extract in the liquid sample supply mechanism 126 is washed with pure water, and it becomes possible to perform measurement with higher accuracy.
 〔実施形態4〕
 本発明の他の実施形態について、図11及び図12に基づいて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 4]
Another embodiment of the present invention will be described with reference to FIGS. 11 and 12. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図11は、本実施形態に係る試料分析装置800の構成概略図である。図11に示すように、試料分析装置800は、実施形態1に係る試料分析装置100に加えて、適正範囲記録部131、適正判定部132、再測定部133を備える。 FIG. 11 is a schematic diagram of the configuration of the sample analyzer 800 according to the present embodiment. As illustrated in FIG. 11, the sample analyzer 800 includes an appropriate range recording unit 131, an appropriate determination unit 132, and a remeasurement unit 133 in addition to the sample analysis device 100 according to the first embodiment.
 適正範囲記録部131は、適正判定部132と接続している。適正範囲記録部131は、各セル400に収納された試薬のそれぞれに対して、当該試薬を用いた場合に成分濃度を正確に算出することができる吸光度の適正範囲が記録されている。換言すれば、受光部103が受光する透過光量の適正範囲が試薬に応じて記録されている。 The appropriate range recording unit 131 is connected to the appropriate determination unit 132. In the appropriate range recording unit 131, for each reagent stored in each cell 400, an appropriate range of absorbance in which the component concentration can be accurately calculated when the reagent is used is recorded. In other words, the appropriate range of the amount of transmitted light received by the light receiving unit 103 is recorded according to the reagent.
 適正判定部132は、適正範囲記録部131、計測部109、及び、再測定部133と接続している。適正判定部132は、セル400のそれぞれに対して、計測部109が算出した吸光度の値と、適正範囲記録部131に記録されている、測定に用いた試薬の吸光度の適正範囲との比較を行い、当該吸光度が適正範囲内にあるか否かの判定を行う。 The appropriateness determination unit 132 is connected to the appropriate range recording unit 131, the measurement unit 109, and the remeasurement unit 133. The appropriateness determination unit 132 compares the absorbance value calculated by the measurement unit 109 with the appropriate range of the absorbance of the reagent used for the measurement recorded in the appropriate range recording unit 131 for each cell 400. And determine whether the absorbance is within an appropriate range.
 再測定部133は、適正判定部132及び制御部111と接続しており、適正判定部132の判定に基づいて、吸光度が適正範囲外であると判定されたセル400に対して再測定を行う。当該再測定の詳細については後述する。 The remeasurement unit 133 is connected to the appropriateness determination unit 132 and the control unit 111, and performs remeasurement on the cell 400 in which the absorbance is determined to be out of the appropriate range based on the determination of the appropriateness determination unit 132. . Details of the remeasurement will be described later.
 次に、試料分析装置800における測定手順を説明する。図12は、試料分析装置800の測定手順を示すフローチャートである。 Next, the measurement procedure in the sample analyzer 800 will be described. FIG. 12 is a flowchart showing the measurement procedure of the sample analyzer 800.
 まず、実施形態1に係る試料分析装置100と同様に、抽出容器に土壌0.4g及び水100mlを入れ、抽出容器にて振とう及びろ過を行い、土壌抽出液を作成する(S31)。そして、作成した土壌抽出液を液体供給機構108の試料格納容器112に注入する(S32)。 First, similarly to the sample analyzer 100 according to the first embodiment, 0.4 g of soil and 100 ml of water are put in an extraction container, and the extract is shaken and filtered to create a soil extract (S31). Then, the created soil extract is poured into the sample storage container 112 of the liquid supply mechanism 108 (S32).
 次に、チップ102を試料分析装置800にセットする(S33)。そして、制御部111の液体供給制御部104が回転駆動部106を回転させ、セル410の試料室411の開口部417が液体供給機構108の注入ノズル502(図5参照)の直下の位置となるように、チップ102を回転する(S34)。その後、試料室411に土壌抽出液を注入する(S35)。 Next, the chip 102 is set in the sample analyzer 800 (S33). Then, the liquid supply control unit 104 of the control unit 111 rotates the rotation driving unit 106, and the opening 417 of the sample chamber 411 of the cell 410 is positioned immediately below the injection nozzle 502 (see FIG. 5) of the liquid supply mechanism 108. Thus, the chip 102 is rotated (S34). Thereafter, a soil extract is injected into the sample chamber 411 (S35).
 次に、試料室401-a~401-fのそれぞれの開口部407-a~407-fが順次液体供給機構108の注入ノズル502の直下となるように回転駆動部106を制御し、試料室401-a~401-fのそれぞれに所定量の土壌抽出液の注入を行う(S36)。その後、液体供給機構108が試料格納容器112に残存した土壌抽出液を試料室411に注入し、試料格納容器112が空となる(S37)。 Next, the rotation driving unit 106 is controlled so that the openings 407-a to 407-f of the sample chambers 401-a to 401-f are directly below the injection nozzle 502 of the liquid supply mechanism 108, and the sample chamber A predetermined amount of soil extract is injected into each of 401-a to 401-f (S36). Thereafter, the liquid supply mechanism 108 injects the soil extract remaining in the sample storage container 112 into the sample chamber 411, and the sample storage container 112 becomes empty (S37).
 続いて、S37にて空となった試料格納容器112に土壌抽出液を希釈するための純水を注入し(S38)、予め定められた試料室401-a~401-fに所定量の純水を注入する(S39)。次に、チップ102を回転駆動することで、セル400では、試薬室403において土壌抽出液と試薬との混合液を作成され、セル410においては、基準室414に土壌抽出液が送液される(S40)。混合液の攪拌が終了すると、再び回転駆動部106を回転させることで、遠心力により混合液を測定室404へと移動させる(S41)。 Subsequently, pure water for diluting the soil extract is poured into the sample storage container 112 emptied in S37 (S38), and a predetermined amount of pure water is poured into predetermined sample chambers 401-a to 401-f. Water is injected (S39). Next, by rotating the chip 102, in the cell 400, a mixed solution of the soil extract and the reagent is created in the reagent chamber 403, and in the cell 410, the soil extract is sent to the reference chamber 414. (S40). When the stirring of the mixed solution is completed, the rotation driving unit 106 is rotated again, and the mixed solution is moved to the measurement chamber 404 by centrifugal force (S41).
 次に、回転駆動部106の回転によりチップ102が1周等速回転すると共に、発光部101から光300が射出され、光300がチップ102を走査し、チップ102を透過した光300は、チップ102の測定室404及び基準室414を透過し、受光部103へと入射される。計測部109は、受光部103が受光した光の強度(透過光量)に基づいて混合液の吸光度(透過率)を算出する(S42)。なお、本実施形態に係る試料分析装置800の測定手順におけるS31~S42は、実施形態1に係る試料分析装置100の測定手順におけるS1~S12と同一である。 Next, the rotation of the rotation drive unit 106 causes the chip 102 to rotate at a constant speed, and the light 300 is emitted from the light emitting unit 101. The light 300 scans the chip 102, and the light 300 transmitted through the chip 102 is 102 passes through the measurement chamber 404 and the reference chamber 414 of 102, and enters the light receiving unit 103. The measuring unit 109 calculates the absorbance (transmittance) of the mixed liquid based on the intensity (transmitted light amount) of the light received by the light receiving unit 103 (S42). Note that S31 to S42 in the measurement procedure of the sample analyzer 800 according to the present embodiment are the same as S1 to S12 in the measurement procedure of the sample analyzer 100 according to the first embodiment.
 次に、適正判定部132が、S42において計測部109が算出した吸光度の値が、適正範囲記録部131に記録されている適正範囲内にあるか否かの判定を、それぞれのセル400に対して行う(S43)。すべてのセル400において、計測部109が算出した吸光度の値が、適正範囲記録部131に記録された適正範囲内にあると判定された場合は(S43でYes)、測定を終了する。 Next, the appropriateness determination unit 132 determines whether or not the absorbance value calculated by the measurement unit 109 in S42 is within the appropriate range recorded in the appropriate range recording unit 131, for each cell 400. (S43). In all the cells 400, when it is determined that the absorbance value calculated by the measurement unit 109 is within the appropriate range recorded in the appropriate range recording unit 131 (Yes in S43), the measurement ends.
 一方、何れかのセル400において、計測部109が算出した吸光度の値が、適正範囲記録部131に記録された適正範囲外であると判定された場合には(S43でNo)、再測定部133が、適正判定部132が適正範囲外であると判定したセル400に対して、再測定を行う。当該再測定は、まず、吸光度が適正範囲外であると判定されたセル400に対して、液体供給機構108が、試料室401に所定量(例えば、S38において注入した純水と同量)の純水を注入する(S44)。その後、試料室401に注入された純水を、流路405を介して試薬室403、測定室404へと送液する(S45)。そして、再度すべての測定室404及び基準室414に対して吸光度の測定を行う(S42)。このようにして、すべてのセル400の吸光度の値が、適正範囲記録部131に記録されている適正範囲内となるまで再測定を行う。 On the other hand, in any cell 400, when it is determined that the absorbance value calculated by the measurement unit 109 is outside the proper range recorded in the proper range recording unit 131 (No in S43), the remeasurement unit 133 performs remeasurement on the cell 400 that the appropriateness determining unit 132 determines to be out of the appropriate range. In the remeasurement, first, the liquid supply mechanism 108 applies a predetermined amount (for example, the same amount as the pure water injected in S38) to the sample chamber 401 with respect to the cell 400 in which the absorbance is determined to be outside the appropriate range. Pure water is injected (S44). Thereafter, the pure water injected into the sample chamber 401 is sent to the reagent chamber 403 and the measurement chamber 404 via the flow path 405 (S45). Then, the absorbance is again measured for all measurement chambers 404 and reference chambers 414 (S42). In this way, remeasurement is performed until the absorbance values of all the cells 400 are within the proper range recorded in the proper range recording unit 131.
 本発明に係る試料分析装置800は、このような手順で測定を行うことにより、ある土壌成分が、想定していた成分濃度よりも高濃度であったとしても、再測定の手間を最小限にとどめることができ、効率よく測定することが可能となるとともに、土壌成分の過剰状態を的確に把握することが可能となる。 The sample analyzer 800 according to the present invention performs the measurement in such a procedure, so that even if a certain soil component has a higher concentration than the assumed component concentration, the effort of remeasurement is minimized. Thus, it is possible to measure efficiently and to grasp the excess state of the soil components accurately.
 なお、本実施形態においては、試料分析装置800は、実施形態1の試料分析装置100に加えて、適正範囲記録部131、適正判定部132、及び、再測定部133を備える構成としたが、適正範囲記録部131、適正判定部132、及び、再測定部133を備えていればよい。すなわち、試料分析装置800は、実施形態2の試料分析装置600、または、実施形態3の試料分析装置700に加えて、適正範囲記録部131、適正判定部132及び再測定部133を備える構成であってもよい。 In the present embodiment, the sample analyzer 800 includes the appropriate range recording unit 131, the appropriate determination unit 132, and the re-measurement unit 133 in addition to the sample analysis device 100 of the first embodiment. What is necessary is just to provide the appropriate range recording part 131, the appropriateness determination part 132, and the re-measurement part 133. That is, the sample analyzer 800 includes a proper range recording unit 131, a proper determination unit 132, and a remeasurement unit 133 in addition to the sample analysis device 600 of the second embodiment or the sample analysis device 700 of the third embodiment. There may be.
 また、上述した実施形態1~4において、試料分析装置100、600、700の制御部111及び計測部109、並びに、試料分析装置800の制御部111、計測部109、適正範囲記録部131、適正判定部132、及び、再測定部133は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。 In the first to fourth embodiments described above, the control unit 111 and the measurement unit 109 of the sample analyzers 100, 600, and 700, and the control unit 111, the measurement unit 109, the appropriate range recording unit 131 of the sample analysis device 800, The determination unit 132 and the re-measurement unit 133 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software using a CPU (Central Processing Unit). May be.
 〔まとめ〕
 本発明の態様1に係る試料分析装置100、600、700、800は、回転軸450の周りに回転運動する容器であって、前記回転軸450の第1の円周上に第1測定室(測定室404-a~404-fのうちの1つ)及び第2測定室(測定室404-a~404-fのうちの他の1つ)が形成され、前記第1測定室(測定室404-a~404-fのうちの1つ)に連通する第1供給口(開口部407-a~407-fのうちの1つ)と前記第2測定室(測定室404-a~404-fのうちの他の1つ)に連通する第2供給口(開口部407-a~407-fのうちの他の1つ)とが前記回転軸450の周りの第2の円周上に形成された容器(チップ102)と、前記第2の円周上に対応する位置に配置され、前記第1供給口(開口部407-a~407-fのうちの1つ)、又は、第2供給口(開口部407-a~407-fのうちの他の1つ)を介して前記第1測定室(測定室404-a~404-fのうちの1つ)、又は、第2測定室(測定室404-a~404-fのうちの他の1つ)に液体を供給する液体供給機構108、120、125と、前記第1の円周上に対応する位置に配置された発光部101と、前記第1測定室(測定室404-a~404-fのうちの1つ)又は第2測定室(測定室404-a~404-fのうちの他の1つ)を透過した光を受光する受光部103と、前記受光部103が受光した透過光量に基づいて、前記液体の成分を分析する計測部109とを備える。
[Summary]
Sample analyzers 100, 600, 700, and 800 according to the first aspect of the present invention are containers that rotate around a rotation shaft 450, and a first measurement chamber (on the first circumference of the rotation shaft 450). One of the measurement chambers 404-a to 404-f) and a second measurement chamber (the other one of the measurement chambers 404-a to 404-f) are formed, and the first measurement chamber (the measurement chamber) is formed. A first supply port (one of openings 407-a to 407-f) communicating with one of 404-a to 404-f and the second measurement chamber (measurement chambers 404-a to 404). A second supply port (the other one of the openings 407-a to 407-f) communicating with the other one of -f on the second circumference around the rotation axis 450 And the container (chip 102) formed on the second circumference, at a position corresponding to the second circumference, the first supply port (opening portion) 07-a to 407-f) or the second measurement port (the other one of the openings 407-a to 407-f) through the first measurement chamber (measurement chamber 404). -One of -a to 404-f) or the liquid supply mechanism 108, 120, 125 for supplying liquid to the second measurement chamber (the other one of the measurement chambers 404-a to 404-f). A light emitting unit 101 arranged at a position corresponding to the first circumference, the first measurement chamber (one of the measurement chambers 404-a to 404-f) or the second measurement chamber (measurement) A light receiving unit 103 that receives light transmitted through one of the chambers 404-a to 404-f), and a measurement unit that analyzes the component of the liquid based on the amount of light transmitted by the light receiving unit 103 109.
 上記の構成によれば、容器(チップ102)には、回転軸450の第1の円周上に第1測定室(測定室404-a~404-fのうちの1つ)及び第2測定室(測定室404-a~404-fのうちの他の1つ)が形成され、回転軸450の第2の円周上に、第1測定室(測定室404-a~404-fのうちの1つ)に連通する第1供給口(開口部407-a~407-fのうちの1つ)と、第2測定室(測定室404-a~404-fのうちの他の1つ)に連通する第2供給口(開口部407-a~407-fのうちの他の1つ)とが形成されている。そのため、液体供給機構108の液体注入位置と第1及び第2供給口の位置とを合わせるように容器(チップ102)を回転させて、第1供給口(開口部407-a~407-fのうちの1つ)及び第2供給口(開口部407-a~407-fのうちの他の1つ)を介して液体供給機構108、120、125から液体の注入を行うことができる。これにより、液体の注入を短時間で行うことができると共に、液体供給機構108、120、125によって液体の注入を行うため、高精度に測定を行うことが可能となる。 According to the above configuration, the container (chip 102) includes the first measurement chamber (one of the measurement chambers 404-a to 404-f) and the second measurement on the first circumference of the rotating shaft 450. A chamber (the other one of the measurement chambers 404-a to 404-f) is formed, and the first measurement chamber (the measurement chambers 404-a to 404-f) is formed on the second circumference of the rotating shaft 450. A first supply port (one of the openings 407-a to 407-f) communicating with one of the second measurement chambers (the other one of the measurement chambers 404-a to 404-f). The second supply port (the other one of the openings 407-a to 407-f) is formed. Therefore, the container (chip 102) is rotated so that the liquid injection position of the liquid supply mechanism 108 matches the positions of the first and second supply ports, and the first supply ports (the openings 407-a to 407-f One of them) and the second supply port (the other one of the openings 407-a to 407-f) can inject liquid from the liquid supply mechanisms 108, 120, and 125. As a result, the liquid can be injected in a short time and the liquid is supplied by the liquid supply mechanisms 108, 120, and 125, so that the measurement can be performed with high accuracy.
 本発明の態様2に係る試料分析装置100、600、700、800は、上記態様1において、液体供給機構108、120、125の液体注入位置と第1及び第2供給口(開口部407-a~407-fのうちの1つ、及び他の1つ)の位置とを合わせるように、容器(チップ102)が回転軸450の周りに回転する回転動作を制御するとともに、前記液体を前記液体供給機構108、120、125から前記第1及び第2供給口(開口部407-a~407-fのうちの1つ、及び、開口部407-a~407-fのうちの他の1つ)に供給するために、前記容器(チップ102)の回転及び前記液体供給機構108、120、125の動作を制御する液体供給制御部104をさらに備えてもよい。 The sample analyzers 100, 600, 700, 800 according to the second aspect of the present invention are the same as the first aspect in that the liquid injection positions of the liquid supply mechanisms 108, 120, 125 and the first and second supply ports (opening 407-a). ˜407-f and the other one) are controlled so as to rotate the container (chip 102) about the rotation axis 450 and adjust the liquid to the liquid. From the supply mechanisms 108, 120, 125, the first and second supply ports (one of the openings 407-a to 407-f and the other one of the openings 407-a to 407-f) ) May be further provided with a liquid supply control unit 104 that controls the rotation of the container (chip 102) and the operation of the liquid supply mechanisms 108, 120, and 125.
 上記の構成によれば、簡単な構成により、液体の成分を短時間で精度良く分析することができる。 According to the above configuration, liquid components can be analyzed with high accuracy in a short time with a simple configuration.
 本発明の態様3に係る試料分析装置600、700は、上記態様1又は2において、前記液体が、液体試料と、前記液体試料を希釈する希釈液とを含み、前記液体供給機構120、125は、前記液体試料を供給する液体試料供給機構122、126と、前記希釈液を供給する希釈液供給機構121、127とを有していてもよい。 In the sample analyzers 600 and 700 according to the third aspect of the present invention, in the first or second aspect, the liquid includes a liquid sample and a diluent for diluting the liquid sample, and the liquid supply mechanisms 120 and 125 are The liquid sample supply mechanisms 122 and 126 for supplying the liquid sample and the diluent supply mechanisms 121 and 127 for supplying the diluent may be included.
 上記の構成によれば前記液体供給機構120、125は、前記液体試料を供給する液体試料供給機構122、と、前記希釈液を供給する希釈液供給機構121、127と、液体試料供給機構126とを備えている。これにより、液体試料と希釈液との注入を同時に行うことが可能となり、より短時間で測定を行うことができる。 According to the above configuration, the liquid supply mechanisms 120 and 125 include the liquid sample supply mechanism 122 that supplies the liquid sample, the dilution liquid supply mechanisms 121 and 127 that supply the diluent, and the liquid sample supply mechanism 126. It has. As a result, the liquid sample and the diluent can be injected simultaneously, and the measurement can be performed in a shorter time.
 本発明の態様4に係る試料分析装置100、600、700、800は、上記態様3において、前記液体供給機構120、125の液体注入位置と前記第1又は第2供給口(開口部407-a~407-fのうちの1つ、又は他の1つ)の位置とを合わせるように、前記容器(チップ102)が前記回転軸450の周りに回転する回転動作を制御するとともに、前記液体試料を前記液体試料供給機構122、126から前記第1及び第2供給口(開口部407-a~407-fのうちの1つ、及び他の1つ)に供給し、前記希釈液を前記希釈液供給機構121、127から前記第1及び第2供給口(開口部407-a~407-fのうちの1つ、及び他の1つ)の少なくともいずれかに供給するために、前記容器(チップ102)の回転並びに前記液体試料供給機構122、126及び前記希釈液供給機構121、127の動作を制御する液体供給制御部104をさらに備えてもよい。 The sample analyzers 100, 600, 700, and 800 according to the fourth aspect of the present invention are the same as the third aspect, except that the liquid injection positions of the liquid supply mechanisms 120 and 125 and the first or second supply port (opening 407-a). ˜407-f or the other one) is controlled so that the container (chip 102) rotates around the rotation axis 450, and the liquid sample is adjusted. Is supplied from the liquid sample supply mechanism 122, 126 to the first and second supply ports (one of the openings 407-a to 407-f and the other one), and the dilution liquid is diluted with the dilution liquid. In order to supply from the liquid supply mechanisms 121 and 127 to at least one of the first and second supply ports (one of the openings 407-a to 407-f and one of the other), the container ( Rotation level of chip 102) May further comprise the liquid sample supply mechanism 122, 126 and the liquid supply controller 104 which controls the operation of the dilution liquid supply means 121, 127 to.
 上記の構成によれば、液体供給機構120、125は、前記第1及び第2供給口(開口部407-a~407-fのうちの1つ、及び他の1つ)の少なくともいずれかを介して第1及び第2測定室(測定室404-a~404-fのうちの1つ)の少なくともいずれかに希釈液を供給することができる。そのため、土壌成分のある濃度が、試薬が発色反応を示す濃度の範囲外であったとしても、希釈を行うことで発色反応を示す濃度の範囲内とすることができる。そのため、測定に手戻りが生じることなく、短時間で測定を行うことが可能となる。 According to the configuration described above, the liquid supply mechanisms 120 and 125 allow at least one of the first and second supply ports (one of the openings 407-a to 407-f and the other one). The diluent can be supplied to at least one of the first and second measurement chambers (one of the measurement chambers 404-a to 404-f). Therefore, even if the concentration of the soil component is outside the range of the concentration at which the reagent exhibits the color reaction, the concentration can be within the range of the concentration at which the color reaction occurs by performing dilution. Therefore, measurement can be performed in a short time without reworking the measurement.
 本発明の態様5に係る試料分析装置100、600、700、800は、上記態様3又は4において、前記第1測定室(測定室404-a~404-fのうちの1つ)に供給された液体と第1試薬との混合液が前記第1測定室(測定室404-a~404-fのうちの1つ)において生成され、前記第2測定室(測定室404-a~404-fのうちの他の1つ)に供給された液体と第2試薬との混合液が前記第2測定室(測定室404-a~404-fのうちの他の1つ)において生成される試料分析装置であって、液体試料供給機構122、126及び前記希釈液供給機構121、127は、前記第1及び第2供給口(開口部407-a~407-fのうちの1つ、及び他の1つ)に、前記液体試料と前記希釈液とを、それぞれ前記第1試薬と前記第2試薬とに応じた比率で供給してもよい。 The sample analyzers 100, 600, 700, 800 according to the fifth aspect of the present invention are supplied to the first measurement chamber (one of the measurement chambers 404-a to 404-f) in the third or fourth aspect. A mixed liquid of the liquid and the first reagent is generated in the first measurement chamber (one of the measurement chambers 404-a to 404-f), and the second measurement chamber (measurement chambers 404-a to 404-) is generated. A liquid mixture of the liquid supplied to the other one of f) and the second reagent is generated in the second measurement chamber (the other one of the measurement chambers 404-a to 404-f). In the sample analyzer, the liquid sample supply mechanisms 122 and 126 and the dilution liquid supply mechanisms 121 and 127 include the first and second supply ports (one of the openings 407-a to 407-f, and In the other one, the liquid sample and the diluent are respectively added to the first and second liquids. Reagents may be supplied in a ratio corresponding to the second reagent.
 上記の構成によれば、液体試料と希釈液とを第1試薬と第2試薬とに応じた比率で供給することにより、第1試薬、第2試薬が発色反応を示す濃度範囲内となるように液体試料を希釈することができ、高精度に測定を行うことが可能となる。 According to the above configuration, by supplying the liquid sample and the diluent at a ratio corresponding to the first reagent and the second reagent, the first reagent and the second reagent are within a concentration range in which a color development reaction is exhibited. In addition, it is possible to dilute a liquid sample and to perform measurement with high accuracy.
 本発明の態様6に係る試料分析装置800は、上記態様3から態様5のいずれか一態様において、前記第1測定室(測定室404-a~404-fのうちの1つ)又は第2測定室(測定室404-a~404-fのうちの他の1つ)に対して、前記受光部103が受光する透過光量の適正範囲を記録する適正範囲記録部131と、前記第1測定室(測定室404-a~404-fのうちの1つ)又は第2測定室(測定室404-a~404-fのうちの他の1つ)に対して、前記適正範囲記録部131に記録された適正範囲と、前記受光部103が受光した透過光量とを比較し、前記透過光量が適正範囲外であると判定した場合に、当該透過光量が適正範囲内となるために必要な前記液体試料又は前記希釈液の必要供給量を算出する適正判定部132と、前記適正判定部132によって透過光量が適正範囲外であると判定された第1測定室(測定室404-a~404-fのうちの1つ)又は第2測定室(測定室404-a~404-fのうちの他の1つ)に、前記必要供給量の前記液体試料または前記希釈液を供給し、透過光量の再測定を行う再測定部133とをさらに備えていてもよい。 The sample analyzer 800 according to Aspect 6 of the present invention is the first analysis chamber (one of the measurement chambers 404-a to 404-f) or the second measurement chamber according to any one of the Aspects 3 to 5. An appropriate range recording unit 131 that records an appropriate range of the amount of transmitted light received by the light receiving unit 103 with respect to a measurement chamber (the other one of the measurement chambers 404-a to 404-f), and the first measurement For the chamber (one of the measurement chambers 404-a to 404-f) or the second measurement chamber (the other one of the measurement chambers 404-a to 404-f), the appropriate range recording unit 131 Is necessary for the transmitted light amount to be within the appropriate range when it is determined that the transmitted light amount is out of the appropriate range. Appropriate judgment for calculating the necessary supply amount of the liquid sample or the diluent Unit 132 and the first measurement chamber (one of the measurement chambers 404-a to 404-f) or the second measurement chamber (measurement chamber) in which the transmitted light amount is determined to be out of the appropriate range by the appropriate determination unit 132. 404-a to 404-f) is further provided with a re-measurement unit 133 for supplying the necessary supply amount of the liquid sample or the diluent and re-measuring the amount of transmitted light. Also good.
 上記の構成によれば、試料分析装置800が、適正範囲記録部131、適正判定部132、再測定部133を備えていることにより、液体試料のある土壌成分が想定していた濃度よりも高濃度であり、試薬が発色反応を示す濃度の範囲外であったとしても、そのまま希釈液を注入し再度測定を行うことができる。そのため、測定を短時間で行うことができると共に、再測定の際に新たに容器(チップ102)を使用する必要がなくなり、コストを抑えることができる。 According to the above configuration, the sample analyzer 800 includes the appropriate range recording unit 131, the appropriate determination unit 132, and the re-measurement unit 133, so that the concentration of the soil component in the liquid sample is higher than expected. Even if the concentration is outside the range where the reagent exhibits a color development reaction, the diluent can be injected as it is and the measurement can be performed again. Therefore, measurement can be performed in a short time, and it is not necessary to newly use a container (chip 102) at the time of re-measurement, and cost can be suppressed.
 本発明の態様7に係る試料分析方法は、回転軸450の第1の円周上に第1測定室(測定室404-a~404-fのうちの1つ)及び第2測定室(測定室404-a~404-fのうちの他の1つ)が形成され、前記第1測定室(測定室404-a~404-fのうちの1つ)に連通する第1供給口(開口部407-a~407-fのうちの1つ)と前記第2測定室(測定室404-a~404-fのうちの他の1つ)に連通する第2供給口(開口部407-a~407-fのうちの他の1つ)とが前記回転軸450の周りの第2の円周上に形成された容器(チップ102)を、前記第2の円周上に対応する位置に配置された液体供給機構108、120、125の液体注入位置と前記第1及び第2供給口(開口部407-a~407-fのうちの1つ及び他の1つ)の位置とを合わせるように、前記回転軸450の周りに回転動作させ、さらに前記液体供給機構108、120、125から液体を前記第1及び第2供給口に供給する液体供給工程と、前記第1の円周上に対応する位置から出射され、前記第1又は第2測定室(測定室404-a~404-fのうちの1つ又は他の1つ)を透過した光の透過光量に基づいて前記液体の成分を分析する計測工程とを包含する。 In the sample analysis method according to aspect 7 of the present invention, the first measurement chamber (one of the measurement chambers 404-a to 404-f) and the second measurement chamber (measurement) are arranged on the first circumference of the rotating shaft 450. The other one of the chambers 404-a to 404-f is formed, and a first supply port (opening) communicating with the first measurement chamber (one of the measurement chambers 404-a to 404-f) Part 407-a to 407-f) and the second supply port (opening 407-) communicating with the second measurement chamber (the other one of measurement chambers 404-a to 404-f). a container (chip 102) formed on the second circumference around the rotation axis 450 with the other one of a to 407-f) at a position corresponding to the second circumference. And the first and second supply ports (opening portions 407-a to 407-). One of the other and the other one) is rotated around the rotation axis 450, and liquid is supplied from the liquid supply mechanisms 108, 120, 125 to the first and second supplies. A liquid supply step for supplying to the mouth, and the first or second measurement chamber (one of the measurement chambers 404-a to 404-f or other ones) emitted from a position corresponding to the first circumference And a measuring step of analyzing the component of the liquid based on the transmitted light amount of the light transmitted through the first one.
 上記の方法によれば、簡単な構成により、液体の成分を短時間で精度良く分析することができる。 According to the above method, liquid components can be analyzed with high accuracy in a short time with a simple configuration.
 本発明の態様8に係る試料分析方法は、前記液体は、液体試料と、前記液体試料を希釈する希釈液とを含み、前記液体供給工程は、前記第2の円周上に対応する位置に配置された液体供給機構108、120、125から液体試料を前記第1及び第2供給口(開口部407-a~407-fのうちの1つ及び他の1つ)に供給する液体試料供給工程と、前記液体試料を希釈する希釈液を前記液体供給機構108、120、125から前記第1及び第2供給口(開口部407-a~407-fのうちの1つ及び他の1つ)の少なくともいずれかに供給する希釈液供給工程とを包含してもよい。 In the sample analysis method according to aspect 8 of the present invention, the liquid includes a liquid sample and a diluent for diluting the liquid sample, and the liquid supply step is at a position corresponding to the second circumference. Liquid sample supply for supplying a liquid sample from the arranged liquid supply mechanisms 108, 120, 125 to the first and second supply ports (one of the openings 407-a to 407-f and the other one). And a diluting solution for diluting the liquid sample from the liquid supply mechanisms 108, 120, 125 from the first and second supply ports (one of the openings 407-a to 407-f and the other one). And a diluent supply step for supplying to at least one of the above.
 上記の方法によれば、液体供給機構108、120、125は、前記第2供給口(開口部407-a~407-fのうちの他の1つ)を介して第2測定室(測定室404-a~404-fのうちの他の1つ)に希釈液を供給することができる。そのため、土壌成分のある濃度が、試薬が発色反応を示す濃度の範囲外であったとしても、希釈を行うことで発色反応を示す濃度の範囲内とすることができる。そのため、測定に手戻りが生じることなく、短時間で測定を行うことが可能となる。 According to the above method, the liquid supply mechanisms 108, 120, and 125 pass through the second supply port (the other one of the openings 407-a to 407-f) through the second measurement chamber (measurement chamber). The other one of 404-a to 404-f) can be supplied with a diluent. Therefore, even if the concentration of the soil component is outside the range of the concentration at which the reagent exhibits the color reaction, the concentration can be within the range of the concentration at which the color reaction occurs by performing dilution. Therefore, measurement can be performed in a short time without reworking the measurement.
 本発明の態様9に係る試料分析方法は、上記態様8において、前記液体試料供給工程の前に、前記第1測定室(測定室404-a~404-fのうちの1つ)を透過した光の透過光量の適正範囲を記録する適正範囲記録工程と、前記計測工程の後で、前記第1測定室(測定室404-a~404-fのうちの1つ)に対して、前記適正範囲記録工程により記録された適正範囲と、前記透過光量とを比較し、前記透過光量が適正範囲外であると判定した場合に、当該透過光量が適正範囲内となるために必要な前記液体試料又は前記希釈液の必要供給量を算出する適正判定工程と、前記適正判定工程によって透過光量が適正範囲外であると判定された第1測定室(測定室404-a~404-fのうちの1つ)に、前記必要供給量の前記液体試料または前記希釈液を供給し、透過光量の再測定を行う再測定工程とをさらに包含する。 In the sample analysis method according to aspect 9 of the present invention, in the above aspect 8, the first measurement chamber (one of the measurement chambers 404-a to 404-f) is transmitted before the liquid sample supply step. An appropriate range recording step for recording an appropriate range of the amount of transmitted light; and after the measurement step, the appropriate range is recorded for the first measurement chamber (one of the measurement chambers 404-a to 404-f). The liquid sample required for the transmitted light amount to be within the appropriate range when the transmitted light amount is compared with the appropriate range recorded by the range recording step and the transmitted light amount is determined to be outside the appropriate range. Alternatively, an appropriateness determination step for calculating a necessary supply amount of the diluent, and a first measurement chamber (of the measurement chambers 404-a to 404-f) in which the transmitted light amount is determined to be out of an appropriate range by the appropriateness determination step. 1), the liquid test of the required supply amount. Or further comprising a re-measuring step of supplying, performing re-measurement of the transmitted light amount of the diluent.
 上記の方法によれば、上記態様6に係る試料分析装置800と同様の効果を奏し、液体試料のある土壌成分が想定していた濃度よりも高濃度であり、試薬が発色反応を示す濃度の範囲外であったとしても、そのまま希釈液を注入し再度測定を行うことができる。そのため、測定を短時間で行うことができると共に、再測定の際に新たに容器(チップ102)を使用する必要がなくなり、コストを抑えることができる。 According to said method, there exists an effect similar to the sample analyzer 800 which concerns on the said aspect 6, a density | concentration higher than the density | concentration with which the soil component with a liquid sample was assumed, and the density | concentration which a reagent shows color development reaction of Even if it is out of the range, the diluent can be injected as it is and the measurement can be performed again. Therefore, measurement can be performed in a short time, and it is not necessary to newly use a container (chip 102) at the time of re-measurement, and cost can be suppressed.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、試料分析装置、特に土壌成分の分析に好適な試料分析装置に利用することができる。 The present invention can be used for a sample analyzer, particularly a sample analyzer suitable for analyzing soil components.
 100、600、700、800 試料分析装置
 102 チップ(容器)
 103 受光部
 104 液体供給制御部
 105 測定制御部(計測制御部)
 108、120、125 液体供給機構
 109 計測部
 121、127 希釈液供給機構(液体供給機構)
 122、126 液体試料供給機構(液体供給機構)
 131 適正範囲記録部
 132 適正判定部
 133 再測定部
 404、404-a~404-f 測定室(第1測定室、第2測定室)
 407、407-a~407-f 開口部(第1供給口、第2供給口)
 450 回転軸
100, 600, 700, 800 Sample analyzer 102 Chip (container)
103 light receiving unit 104 liquid supply control unit 105 measurement control unit (measurement control unit)
108, 120, 125 Liquid supply mechanism 109 Measuring unit 121, 127 Diluent supply mechanism (liquid supply mechanism)
122, 126 Liquid sample supply mechanism (liquid supply mechanism)
131 Appropriate range recording unit 132 Appropriate determination unit 133 Re-measurement unit 404, 404-a to 404-f Measurement chamber (first measurement chamber, second measurement chamber)
407, 407-a to 407-f Openings (first supply port, second supply port)
450 axis of rotation

Claims (9)

  1.  回転軸の周りに回転運動する容器であって、前記回転軸の第1の円周上に第1及び第2測定室が形成され、前記第1測定室に連通する第1供給口と前記第2測定室に連通する第2供給口とが前記回転軸の周りの第2の円周上に形成された容器と、
     前記第2の円周上に対応する位置に配置され、前記第1又は第2供給口を介して前記第1又は第2測定室に液体を供給する液体供給機構と、
     前記第1の円周上に対応する位置に配置された発光部と、
     前記第1又は第2測定室を透過した光を受光する受光部と、
     前記受光部が受光した透過光量に基づいて、前記液体の成分を分析する計測部とを備えることを特徴とする試料分析装置。
    A container that rotates about a rotation axis, wherein first and second measurement chambers are formed on a first circumference of the rotation axis, and a first supply port that communicates with the first measurement chamber; A container in which a second supply port communicating with the two measurement chambers is formed on a second circumference around the rotation axis;
    A liquid supply mechanism that is disposed at a position corresponding to the second circumference and supplies liquid to the first or second measurement chamber via the first or second supply port;
    A light emitting portion disposed at a position corresponding to the first circumference;
    A light receiving unit for receiving light transmitted through the first or second measurement chamber;
    A sample analysis apparatus comprising: a measurement unit that analyzes a component of the liquid based on a transmitted light amount received by the light receiving unit.
  2.  前記液体供給機構の液体注入位置と前記第1及び第2供給口の位置とを合わせるように、前記容器が前記回転軸の周りに回転する回転動作を制御するとともに、前記液体を前記液体供給機構から前記第1及び第2供給口に供給するために、前記容器の回転及び前記液体供給機構の動作を制御する液体供給制御部をさらに備えることを特徴とする請求項1に記載の試料分析装置。 The liquid supply mechanism controls the rotation operation of the container rotating around the rotation axis so that the liquid injection position of the liquid supply mechanism matches the positions of the first and second supply ports, and the liquid is supplied to the liquid supply mechanism. 2. The sample analyzer according to claim 1, further comprising a liquid supply control unit configured to control rotation of the container and operation of the liquid supply mechanism in order to supply the first and second supply ports from the first and second supply ports. .
  3.  前記液体が、液体試料と、前記液体試料を希釈する希釈液とを含み、
     前記液体供給機構は、前記液体試料を供給する液体試料供給機構と、前記希釈液を供給する希釈液供給機構とを有することを特徴とする請求項1又は2に記載の試料分析装置。
    The liquid includes a liquid sample and a diluent for diluting the liquid sample;
    The sample analyzer according to claim 1, wherein the liquid supply mechanism includes a liquid sample supply mechanism that supplies the liquid sample, and a diluent supply mechanism that supplies the diluent.
  4.  前記液体供給機構の液体注入位置と前記第1又は第2供給口の位置とを合わせるように、前記容器が前記回転軸の周りに回転する回転動作を制御するとともに、前記液体試料を前記液体試料供給機構から前記第1及び第2供給口に供給し、前記希釈液を前記希釈液供給機構から前記第1及び第2供給口の少なくともいずれかに供給するために、前記容器の回転並びに前記液体試料供給機構及び前記希釈液供給機構の動作を制御する液体供給制御部をさらに備えることを特徴とする請求項3に記載の試料分析装置。 The container is controlled to rotate about the rotation axis so that the liquid injection position of the liquid supply mechanism is aligned with the position of the first or second supply port, and the liquid sample is the liquid sample. In order to supply the dilution liquid from the supply mechanism to the first and second supply ports, and to supply the diluent from the diluent supply mechanism to at least one of the first and second supply ports, the rotation of the container and the liquid The sample analyzer according to claim 3, further comprising a liquid supply control unit that controls operations of the sample supply mechanism and the diluent supply mechanism.
  5.  前記第1測定室に供給された液体と第1試薬との混合液が前記第1測定室において生成され、前記第2測定室に供給された液体と第2試薬との混合液が前記第2測定室において生成される試料分析装置であって、
     液体試料供給機構及び前記希釈液供給機構は、前記第1及び第2供給口に、前記液体試料と前記希釈液とを、それぞれ前記第1試薬と前記第2試薬とに応じた比率で供給することを特徴とする請求項3又は4に記載の試料分析装置。
    A liquid mixture of the liquid supplied to the first measurement chamber and the first reagent is generated in the first measurement chamber, and a liquid mixture of the liquid supplied to the second measurement chamber and the second reagent is the second liquid. A sample analyzer generated in a measurement chamber,
    The liquid sample supply mechanism and the dilution liquid supply mechanism supply the liquid sample and the dilution liquid to the first and second supply ports at a ratio corresponding to the first reagent and the second reagent, respectively. The sample analyzer according to claim 3 or 4, characterized by the above.
  6.  前記第1又は第2測定室に対して、前記受光部が受光する透過光量の適正範囲を記録する適正範囲記録部と、
     前記第1又は第2測定室に対して、前記適正範囲記録部に記録された適正範囲と、前記受光部が受光した透過光量とを比較し、前記透過光量が適正範囲外であると判定した場合に、当該透過光量が適正範囲内となるために必要な前記液体試料又は前記希釈液の必要供給量を算出する適正判定部と、
     前記適正判定部によって透過光量が適正範囲外であると判定された第1又は第2測定室に、前記必要供給量の前記液体試料または前記希釈液を供給し、透過光量の再測定を行う再測定部とをさらに備えることを特徴とする請求項3から5のいずれか一項に記載の試料分析装置。
    An appropriate range recording unit that records an appropriate range of the amount of transmitted light received by the light receiving unit with respect to the first or second measurement chamber;
    For the first or second measurement chamber, the appropriate range recorded in the appropriate range recording unit was compared with the transmitted light amount received by the light receiving unit, and the transmitted light amount was determined to be outside the appropriate range. In this case, an appropriateness determination unit that calculates a necessary supply amount of the liquid sample or the diluent necessary for the transmitted light amount to be within an appropriate range;
    The liquid sample or the diluting liquid in the necessary supply amount is supplied to the first or second measurement chamber in which the transmitted light amount is determined to be outside the appropriate range by the appropriate determination unit, and the transmitted light amount is remeasured. The sample analyzer according to claim 3, further comprising a measurement unit.
  7.  回転軸の第1の円周上に第1及び第2測定室が形成され、前記第1測定室に連通する第1供給口と前記第2測定室に連通する第2供給口とが前記回転軸の周りの第2の円周上に形成された容器を、前記第2の円周上に対応する位置に配置された液体供給機構の液体注入位置と前記第1及び第2供給口の位置とを合わせるように、前記回転軸の周りに回転動作させ、さらに前記液体供給機構から液体を前記第1及び第2供給口に供給する液体供給工程と、
     前記第1の円周上に対応する位置から出射され、前記第1又は第2測定室を透過した光の透過光量に基づいて前記液体の成分を分析する計測工程とを包含することを特徴とする試料分析方法。
    First and second measurement chambers are formed on a first circumference of the rotation shaft, and a first supply port communicating with the first measurement chamber and a second supply port communicating with the second measurement chamber are rotated. A container formed on a second circumference around an axis is disposed at a position corresponding to the second circumference, the liquid injection position of the liquid supply mechanism, and the positions of the first and second supply ports A liquid supply step of rotating around the rotation shaft to supply the liquid to the first and second supply ports from the liquid supply mechanism;
    A measuring step of analyzing the component of the liquid based on a transmitted light amount of light emitted from a position corresponding to the first circumference and transmitted through the first or second measurement chamber. Sample analysis method.
  8.  前記液体は、液体試料と、前記液体試料を希釈する希釈液とを含み、
     前記液体供給工程は、
     前記第2の円周上に対応する位置に配置された液体供給機構から液体試料を前記第1及び第2供給口に供給する液体試料供給工程と、
     前記液体試料を希釈する希釈液を前記液体供給機構から前記第1及び第2供給口の少なくともいずれかに供給する希釈液供給工程とを包含することを特徴とする請求項7に記載の試料分析方法。
    The liquid includes a liquid sample and a diluent for diluting the liquid sample,
    The liquid supply step includes
    A liquid sample supply step of supplying a liquid sample to the first and second supply ports from a liquid supply mechanism disposed at a position corresponding to the second circumference;
    The sample analysis according to claim 7, further comprising a diluent supply step of supplying a diluent for diluting the liquid sample from the liquid supply mechanism to at least one of the first and second supply ports. Method.
  9.  前記液体試料供給工程の前に、前記第1測定室を透過した光の透過光量の適正範囲を記録する適正範囲記録工程と、
     前記計測工程の後で、前記第1測定室に対して、前記適正範囲記録工程により記録された適正範囲と、前記透過光量とを比較し、前記透過光量が適正範囲外であると判定した場合に、当該透過光量が適正範囲内となるために必要な前記液体試料又は前記希釈液の必要供給量を算出する適正判定工程と、
     前記適正判定工程によって透過光量が適正範囲外であると判定された第1測定室に、前記必要供給量の前記液体試料または前記希釈液を供給し、透過光量の再測定を行う再測定工程とをさらに包含することを特徴とする請求項8に記載の試料分析方法。
    Before the liquid sample supply step, an appropriate range recording step for recording an appropriate range of the amount of light transmitted through the first measurement chamber;
    After the measurement step, when the appropriate amount recorded by the appropriate range recording step is compared with the transmitted light amount for the first measurement chamber, and the transmitted light amount is determined to be out of the appropriate range. In addition, an appropriate determination step of calculating a necessary supply amount of the liquid sample or the diluent necessary for the transmitted light amount to be within an appropriate range;
    A re-measurement step of supplying the necessary supply amount of the liquid sample or the diluting liquid to the first measurement chamber in which the transmitted light amount is determined to be outside the proper range by the appropriate determination step, and re-measuring the transmitted light amount; The sample analysis method according to claim 8, further comprising:
PCT/JP2015/085695 2015-01-30 2015-12-21 Sample analysis device and sample analysis method WO2016121266A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-016613 2015-01-30
JP2015016613A JP6030676B2 (en) 2015-01-30 2015-01-30 Sample analyzer and sample analysis method

Publications (1)

Publication Number Publication Date
WO2016121266A1 true WO2016121266A1 (en) 2016-08-04

Family

ID=56542899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085695 WO2016121266A1 (en) 2015-01-30 2015-12-21 Sample analysis device and sample analysis method

Country Status (2)

Country Link
JP (1) JP6030676B2 (en)
WO (1) WO2016121266A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112577952A (en) * 2019-09-30 2021-03-30 深圳迈瑞生物医疗电子股份有限公司 Sample analysis device and sample dilution test method
CN114674647A (en) * 2022-02-23 2022-06-28 福建省永正生态科技有限公司 A multifunctional soil dilution device for soil testing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7683052B2 (en) * 2022-06-13 2025-05-26 中科合肥智慧農業協同創新研究院 On-site soil nutrient detection device and detection method, microchannel chip
JP7683050B2 (en) * 2022-07-05 2025-05-26 中科合肥智慧農業協同創新研究院 Apparatus and method for rapidly detecting soil organic matter on-site

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156057A (en) * 1980-11-25 1982-09-27 Boehringer Mannheim Gmbh Rotor unit for centrifugal analyzer and its inserting element
JP2001208761A (en) * 2000-01-24 2001-08-03 Nippon Koden Corp Sample dilution method and device
WO2006011531A1 (en) * 2004-07-27 2006-02-02 Mitsubishi Kagaku Iatron, Inc. Method of auto-discrimination of test sample
JP2009128367A (en) * 2007-11-24 2009-06-11 F Hoffmann La Roche Ag Analysis system and method for analyzing analyte contained in body fluid
JP2011007778A (en) * 2009-05-18 2011-01-13 F Hoffmann-La Roche Ag Centrifugal force based micro-fluidic system and method for automatic analysis of sample

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156057A (en) * 1980-11-25 1982-09-27 Boehringer Mannheim Gmbh Rotor unit for centrifugal analyzer and its inserting element
JP2001208761A (en) * 2000-01-24 2001-08-03 Nippon Koden Corp Sample dilution method and device
WO2006011531A1 (en) * 2004-07-27 2006-02-02 Mitsubishi Kagaku Iatron, Inc. Method of auto-discrimination of test sample
JP2009128367A (en) * 2007-11-24 2009-06-11 F Hoffmann La Roche Ag Analysis system and method for analyzing analyte contained in body fluid
JP2011007778A (en) * 2009-05-18 2011-01-13 F Hoffmann-La Roche Ag Centrifugal force based micro-fluidic system and method for automatic analysis of sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112577952A (en) * 2019-09-30 2021-03-30 深圳迈瑞生物医疗电子股份有限公司 Sample analysis device and sample dilution test method
CN114674647A (en) * 2022-02-23 2022-06-28 福建省永正生态科技有限公司 A multifunctional soil dilution device for soil testing

Also Published As

Publication number Publication date
JP2016142558A (en) 2016-08-08
JP6030676B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
WO2016121266A1 (en) Sample analysis device and sample analysis method
US12000849B2 (en) Automatic analyzer
CN104502618B (en) A kind of many cuvettes automatic analysis system and colorimetric methods and application
CN109283138A (en) A kind of quantitative sample injection system
CN106645134A (en) Color measurement instrument for chemical analysis
CN1611946B (en) Chemical analyzer, method for dispensing and dilution cup
CN105044372B (en) Automatic analysing apparatus and analysis result display packing
US3999868A (en) Unit for use in optical analysis
CN105074428A (en) Method for Determination of Solute Concentration
JP6773692B2 (en) Calibration method for water hardness measurement
CN108181243B (en) A kind of error reduction method of automatic calibration device of water quality online analyzer
JP3615438B2 (en) Automatic color matching inspection device and automatic liquid dispensing system
JP2017032318A (en) Liquid sample analyzer
CN104374699B (en) A kind of many reagent color comparison tube for portable colorimetric device
US11635381B2 (en) Method and device for measuring process parameters in liquid cultures
JP5964388B2 (en) Sample analyzer
KR102087125B1 (en) Apparatus for dyeing that supplies alkali preparation automatically and method for dyeing that supplies alkali preparation automatically
JP2017198623A (en) Measuring apparatus and measuring method
JP2017072579A (en) Measuring apparatus and measuring method
JP2005291726A (en) Biochemical analyzer
KR20170091898A (en) Multi dispenser for automated hematology analyzer and method thereof
EP4141417A1 (en) Sample analysis device and sample analysis method
JP6995329B1 (en) Indicator for measuring percarboxylic acid concentration, method for measuring percarboxylic acid concentration using it
JP2007046922A (en) Liquid concentration measuring instrument
US20230143259A1 (en) Automatic analyzing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880158

Country of ref document: EP

Kind code of ref document: A1