[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016121055A1 - Power transmission coil structure in contactless power transmission device - Google Patents

Power transmission coil structure in contactless power transmission device Download PDF

Info

Publication number
WO2016121055A1
WO2016121055A1 PCT/JP2015/052541 JP2015052541W WO2016121055A1 WO 2016121055 A1 WO2016121055 A1 WO 2016121055A1 JP 2015052541 W JP2015052541 W JP 2015052541W WO 2016121055 A1 WO2016121055 A1 WO 2016121055A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
magnetic flux
power transmission
flux density
vehicle
Prior art date
Application number
PCT/JP2015/052541
Other languages
French (fr)
Japanese (ja)
Inventor
木下 拓哉
研吾 毎川
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2015/052541 priority Critical patent/WO2016121055A1/en
Publication of WO2016121055A1 publication Critical patent/WO2016121055A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings

Definitions

  • This invention relates to the structure of the coil for electric power transmission used for a non-contact electric power transmission apparatus.
  • a non-contact power transmission device that transmits power in a non-contact manner and charges the battery provided in the power receiving side device.
  • a non-contact power transmission device when a foreign metal object exists in the vicinity of a power transmission coil for transmitting power or a power reception coil for receiving power, the foreign object may generate heat. Therefore, if there is a foreign object, it must be detected and removed.
  • Patent Document 1 As a conventional example of foreign object detection, for example, one described in Patent Document 1 is known.
  • Patent Document 1 a plurality of signal primary coils smaller than the power transmission primary coil are provided in order to detect whether or not there is a foreign object in the vicinity of the power transmission primary coil, and are generated in each signal primary coil. It is shown that a foreign object existing in the vicinity of a primary coil for power transmission is detected by measuring a voltage.
  • the present invention has been made to solve such a conventional problem.
  • the object of the present invention is to place a foreign object having a shape similar to the main coil of the power transmission coil in the vicinity of the power transmission coil. It is an object of the present invention to provide a coil structure for power transmission that can detect the presence of a foreign substance with high accuracy even when it is used.
  • the coil structure for power transmission of the non-contact power transmission apparatus is configured such that the power transmission coil has a flat plate-shaped magnetic body and a surface on the power transmission side or reception side with respect to the magnetic body. It includes a main coil that is provided and spirally wound. Furthermore, a general part that generates a predetermined magnetic flux density and a magnetic flux changing part that generates a magnetic flux density different from the general part are provided.
  • FIG. 1 is a block diagram showing a configuration of a non-contact charging system that employs a power transmission coil structure of a non-contact power transmission apparatus according to an embodiment of the present invention.
  • this non-contact charging system 100 includes a vehicle-side device 101 mounted on an electric vehicle (hereinafter referred to as “vehicle”) and a power supply device 102 that is installed on the ground side and supplies power to the vehicle. It is configured. And electric power is transmitted from the electric power feeder 102, this electric power is received non-contact in the vehicle side apparatus 101, and the received electric power is charged to the battery mounted in an electric vehicle.
  • vehicle an electric vehicle
  • power supply device 102 that is installed on the ground side and supplies power to the vehicle. It is configured.
  • electric power is transmitted from the electric power feeder 102, this electric power is received non-contact in the vehicle side apparatus 101, and the received electric power is charged to the battery mounted in an electric vehicle.
  • the “non-contact power transmission device” indicates both the vehicle side device 101 and the power feeding device 102. That is, the power feeding device 102 is a non-contact power transmission device that transmits power in a non-contact manner via a power transmission coil (a ground coil 14 described later), and the vehicle-side device 101 includes a power transmission coil (a vehicle described later). This is a non-contact power transmission device that receives power in a non-contact manner via a coil 35).
  • the configuration of the non-contact charging system 100 will be described.
  • a power supply apparatus 102 shown in FIG. 1 desires a DC power source 11 that rectifies AC power output from a commercial power source 10 (for example, 100 V, 50 Hz) to obtain DC power, and DC power output from the DC power source 11.
  • the inverter 12 which converts into the alternating current power of frequency, the ground coil 14 for electric power feeding provided in the road surface of the parking space of a vehicle, and the resonance capacitor 13 which resonates electric power between this ground coil 14 are provided.
  • the voltage / current / temperature sensor 16 that detects the voltage, current, and temperature of the DC power supply 11 and the inverter 12, the ground side control unit 15, and operations for acquiring reference voltage data (described later) used for foreign object determination are performed.
  • reference voltage storage unit 21 that stores a reference voltage table
  • wireless LAN 17 that performs short-range communication with vehicle-side device 101
  • various types of information particularly, information regarding the presence of foreign matter
  • display unit 22 for displaying.
  • a planar search coil 19 provided on the upper surface side (power transmission side) of the ground coil 14 and provided substantially parallel to the ground coil 14, and a voltage detection control unit for measuring a voltage generated in the search coil 19. 20.
  • a disk-type coil is used as the ground coil 14. Details of the disk type coil will be described later.
  • the search coil 19 is configured by a plurality of sensor coils 19 ⁇ / b> L (in the figure, 54 of 9 ⁇ 6 are shown as an example) arranged in a plane. A voltage resulting from the magnetic flux output from the ground coil 14 is generated in each sensor coil 19L.
  • the ground side control unit 15 comprehensively controls the power supply apparatus 102. In particular, various controls including operations of the inverter 12 and the DC power supply 11 are performed. Specifically, when transmitting power to the vehicle-side device 101, the ground-side control unit 15 supplies AC power output from the inverter 12 to the ground coil 14 so that the ground coil 14 is used. Performs excitation control. Further, when it is confirmed by the operator that no foreign matter (nails, bolts, empty cans, etc.) exists around the search coil 19 and the calibration switch 18 is operated, the ground coil 14 is excited.
  • produces in each sensor coil 19L at this time is measured as a reference voltage, and the process which memorize
  • the vehicle-side device 101 includes a vehicle coil 35 provided on the bottom surface of the vehicle, a resonance capacitor 34 that resonates power between the vehicle coil 35, and AC power received via the vehicle coil 35.
  • a vehicle coil 35 provided on the bottom surface of the vehicle
  • a resonance capacitor 34 that resonates power between the vehicle coil 35, and AC power received via the vehicle coil 35.
  • DC power a battery 31 that charges DC power
  • a relay box 32 that switches between charging and discharging of the battery 31.
  • the voltage / current / temperature sensor 38 for detecting the input / output voltage and current of the battery 31 and the temperature of the relay box 32, the vehicle side control unit 39, and the operation for acquiring the reference voltage table used for foreign object determination are performed.
  • a calibration switch 44 to be performed, a reference voltage storage unit 43 that stores a reference voltage table, a wireless LAN 41 that performs near field communication with the power supply apparatus 102, and various types of information (particularly, information related to the presence of foreign matter) are displayed. Display unit 42.
  • vehicle-side control unit 39 is connected to the vehicle network 40, and can transmit and receive data to and from in-vehicle devices such as an ECU in the vehicle.
  • a planar search coil 36 provided so as to cover the lower surface side (electric power reception side) of the vehicle coil 35 and provided substantially parallel to the vehicle coil 35, and a voltage generated in the search coil 36 are measured.
  • a voltage detection control unit 37 a planar search coil 36 provided so as to cover the lower surface side (electric power reception side) of the vehicle coil 35 and provided substantially parallel to the vehicle coil 35, and a voltage generated in the search coil 36 are measured.
  • a voltage detection control unit 37 is provided so as to cover the lower surface side (electric power reception side) of the vehicle coil 35 and provided substantially parallel to the vehicle coil 35.
  • the disk coil 35 is used for the vehicle coil 35 as in the case of the ground coil 14 described above.
  • the search coil 36 has a configuration in which a plurality of sensor coils are arranged in a plane, similarly to the search coil 19 (see FIG. 2) on the power supply apparatus 102 side described above.
  • the voltage detection control unit 37 measures the voltage generated in the search coil 36. More specifically, the voltage generated in each sensor coil provided in the search coil 36 is individually detected, and each detected voltage data is transmitted to the vehicle side control unit 39.
  • the vehicle-side control unit 39 controls the vehicle-side device 101 as a whole. In particular, after confirming that no foreign matter is present around the search coil 36, the vehicle coil 35 is excited, the voltage generated at each sensor coil is measured, and this voltage is used as a reference voltage table. Store in the voltage storage unit 43. Further, based on the detection signal from the voltage detection control unit 37, it is determined whether or not there is a foreign object in the vicinity of the search coil 36. Further, when it is determined that a foreign object is present, the position where the foreign object is present and the material of the foreign object are determined to notify the operator of the power supply apparatus 102 or the driver of the vehicle, or to output an alarm. Then, control for forcibly cutting off charging of the battery 31 is performed.
  • the vehicle-side control unit 39 and the above-described ground-side control unit 15 can be configured as, for example, an integrated computer including a central processing unit (CPU) and storage means such as a RAM, a ROM, and a hard disk. .
  • CPU central processing unit
  • storage means such as a RAM, a ROM, and a hard disk.
  • FIG. 3 is a side view schematically showing a state when the ground coil 14 and the vehicle coil 35 face each other.
  • the search coil 19 is provided so as to cover the upper surface side of the ground coil 14 provided on the road surface of the parking space, and the lower surface side of the vehicle coil 35 provided on the vehicle bottom surface is covered.
  • a search coil 36 is provided.
  • FIG. 4 is a block diagram showing a detailed configuration of the voltage detection control unit 20.
  • the voltage detection control unit 20 is connected to each sensor coil 19L (in FIG. 4, each sensor coil 19L is represented as channel 1, channel 2,... Channel n), and each sensor coil A multiplexer 51 that sequentially switches and outputs a voltage signal detected by 19L, a differential amplifier 52 that amplifies the voltage signal output from the multiplexer 51, and a rectifier for the voltage signal output from the differential amplifier 52 A rectifier 53 for removing the AC component, and a CPU 55 for A / D converting the voltage signal.
  • each sensor coil 19L in FIG. 4, each sensor coil 19L is represented as channel 1, channel 2,... Channel n
  • each sensor coil A multiplexer 51 that sequentially switches and outputs a voltage signal detected by 19L, a differential amplifier 52 that amplifies the voltage signal output from the multiplexer 51, and a rectifier for the voltage signal output from the differential amplifier 52 A rectifier 53 for removing the AC component, and a CPU 55 for A /
  • the CPU 55 has a function of transmitting a channel designation signal to the multiplexer 51. Accordingly, the voltage signal detected by each sensor coil 19L is input to the CPU 55 as a serial signal, digitized by the CPU 55, and transmitted to the ground side control unit 15 shown in FIG. Note that the voltage detection control unit 37 provided in the vehicle-side device 101 also has the same configuration as in FIG.
  • FIGS. 5A and 5B are explanatory views showing the configuration of the disk-type coil 71, where FIG. 5A is a plan view and FIG. 5B is a cross-sectional view taken along line A-A 'in FIG.
  • the disk-shaped coil 71 is provided with an insulating material 73 so as to cover the upper surface of a ferrite 72 (magnetic material) having a flat plate shape.
  • the electric wire is rectangular on the upper surface of the insulating material 73.
  • a main coil 74 wound in a spiral shape is provided.
  • terminals 75a and 75b are provided at the outer peripheral end and the inner peripheral end of the main coil 74, respectively.
  • the terminals 75a and 75b are connected to the inverter 12 via the resonance capacitor 13 shown in FIG. 1, and an alternating current is passed through the main coil 74, whereby a magnetic flux can be generated around the disk-type coil 71. Since this magnetic flux is transmitted to the vehicle coil 35 side, electric power can be transmitted to the vehicle coil 35.
  • FIG. 6 is an explanatory diagram schematically showing magnetic flux generated in the disk-type coil 71 when an alternating current is passed through the main coil 74.
  • FIG. 6 shows a cross section of the disk-type coil 71, and a magnetic flux is generated around the main coil 74 in which an electric wire is wound in a spiral shape as indicated by an arrow in the figure. That is, the magnetic flux density increases on the inner side (center side) and the outer side (outer peripheral side) of the main coil 74, and the magnetic flux density decreases in the region therebetween.
  • a voltage generated in each sensor coil 19L when no foreign matter is present around the disk type coil 71 is detected in advance, and this voltage is stored as a reference voltage in the reference voltage storage unit 21 (see FIG. 1). .
  • the voltage detected by each sensor coil 19L is compared with the reference voltage.
  • the voltage detected by each sensor coil 19L changes with respect to the reference voltage. Therefore, the presence of foreign objects is detected based on this change. can do.
  • the voltage detected by each sensor coil 19L the reference voltage
  • the voltage detected by each sensor coil 19L is uniformly reduced or raised, so the presence of the foreign matter may not be detected.
  • the voltage generated in each sensor coil 19L is uniformly reduced or increased, the change in voltage is due to the difference in gap between the ground coil 14 and the vehicle coil 35, or there is a frame-like foreign matter. This is because it is impossible to tell whether it is due to a problem.
  • the magnetic flux density is changed by forming a notch in a part of the ferrite 72 (magnetic material) constituting the disk-type coil 71, and a frame-like foreign material is formed on the upper surface side of the disk-type coil 71. Even if exists, this is reliably detected.
  • specific examples of the first embodiment will be described in the first example and the second example.
  • FIG. 7 is an explanatory diagram schematically showing the configuration of the disk-type coil 71 (power transmission coil) and its peripheral devices according to the first embodiment.
  • 7A is a plan view
  • FIG. 7B is an explanatory diagram showing magnetic flux density generated when a current is passed through the main coil 74
  • FIG. 7C is an AA ′ cross-sectional view shown in FIG.
  • FIG. 4 shows a cross-sectional view along the line BB ′ shown in FIG.
  • the disk type coil 71 is shown by taking the ground coil 14 shown in FIG. 1 as an example.
  • the disk-type coil 71 includes a rectangular ferrite 72, an insulating material 73 provided on the upper surface side of the ferrite 72, and an electric wire on the upper surface side of the insulating material 73.
  • the main coil 74 wound in the shape is provided. Further, as shown in FIGS. 7A and 7D, a notch p1 is formed from the center of the ferrite 72 downward. Then, the end portion of the electric wire on the inner peripheral side of the main coil 74 is drawn out to the outside and connected to the terminal 75b via the space formed by the cutout portion p1. That is, by inserting the electric wire at the end of the main coil 74 into the notch p1 formed in the ferrite 72 (magnetic material), the electric wire at the end of the main coil 74 is drawn out of the main coil 74. .
  • the ferrite 72, the insulating material 73, and the main coil 74 constituting the disk-type coil 71 are housed in a metal case 82, and the metal case
  • the search coil 19 shown in FIGS. 1 and 2 is provided at the top end of 82, and the upper surface thereof is closed by a resin lid 81.
  • the magnetic flux density B1 of the region R1 around which the main coil 74 is wound As shown in FIG. 7B, the magnetic flux density B1 of the region R1 around which the main coil 74 is wound, the magnetic flux density B2 of the region R2 inside the region R1, and the region R1
  • the relationship (B2, B3)> B1 is established between the magnetic flux density B3 in the outer region R3. That is, the magnetic flux densities B2 and B3 in the regions R2 and R3 are larger than the magnetic flux density B1 in the region R1.
  • the magnetic flux densities B4 and B5 in the inner and outer regions of the main coil 74 corresponding to this, that is, the regions R4 and R5 shown in FIG. The magnetic flux densities B2 and B3 in the regions R2 and R3 are small. That is, the relationship (B2, B3)> (B4, B5)> B1 is established.
  • the regions R2 and R3 are general portions that are regions that generate a predetermined magnetic flux density
  • the regions R4 and R5 are magnetic flux changing portions that are regions that generate a magnetic flux density different from the general portion.
  • the magnetic flux density generated when a current is passed through the disk-type coil 71 is smaller than the other regions (general portion).
  • the regions R2, R3 and the region are caused by the presence of the foreign material.
  • the magnitude of the magnetic flux density and the ratio of the magnetic flux density of R4 and R5 change. Therefore, it is possible to detect whether or not a frame-like foreign substance exists by detecting the change in the magnitude and ratio of the magnetic flux density.
  • FIG. 8 is a characteristic diagram showing an example of a reference voltage table set for each output power.
  • a curve s1 indicates the reference voltage detected by each sensor coil 19L when the output power of the ground coil 14 is 1 KW.
  • the horizontal axis in FIG. 8 indicates “channels” (numbers of the sensor coils 19L) in the order of decreasing generated voltage toward the right. That is, the left end of the curve s1 indicates the channel with the lowest generated voltage, and the right end indicates the channel with the highest generated voltage.
  • the curve s2 indicates the reference voltage when the output power is 2 KW
  • the curve s3 indicates the reference voltage when the output power is 3 KW.
  • the difference between the voltage generated in each sensor coil 19L detected by the voltage detection control unit 20 and the reference voltage table is calculated.
  • the difference between the measured voltage data (curve s12) and the reference voltage (curve s11) stored in the reference voltage table is obtained. Detect presence.
  • the ground side control unit 15 compares the voltage detected by each sensor coil 19L with the above reference voltage, and if there is a large difference, the vicinity of the search coil 19 and thus the ground coil 14 It is determined that a metal foreign object exists in the vicinity.
  • the presence of a foreign object can be detected by the same method as described above for the search coil 36 provided on the lower surface side of the vehicle coil 35 shown in FIG. Detailed description is omitted.
  • the search coil 36 it is possible to detect a foreign object in the vicinity of the vehicle coil 35 due to a metal foreign object entangled with the vehicle coil 35 or the like.
  • FIG. 10A shows a case in which a rod-like foreign matter (for example, iron) having a high magnetic permeability is placed at substantially the center of the search coil 19, and FIG. 10B is slightly shifted from the center of the search coil 19. It is a top view which shows a voltage change when the foreign material (for example, iron) with the block shape and the high magnetic permeability is put in the position.
  • a rod-like foreign matter for example, iron
  • FIG. 11A shows a case where a rod-like foreign material (for example, aluminum) having a low magnetic permeability is placed at the substantially central portion of the search coil 19, and FIG. 11B is slightly shifted from the center of the search coil 19. It is a top view which shows a voltage change when the block-shaped foreign material with low magnetic permeability is put in the position.
  • a rod-like foreign material for example, aluminum
  • FIG. 12A and 12B are explanatory views showing a state in which a frame-like foreign material 83 is placed on the upper surface side of the disk-type coil 71.
  • FIG. 12A is a plan view
  • FIG. 12B is a cross-sectional view taken along line AA ′ in FIG. (C) is a BB ′ cross-sectional view in (a).
  • the foreign matter 83 overlaps with the main coil 74 as shown in FIG.
  • the magnetic flux density generated by the disk type coil 71 is uniformly reduced, and does not appear as a local voltage change as shown in the characteristic diagram of FIG.
  • the presence of a frame-like foreign object is detected based on a change in the magnetic flux density ratio.
  • the inter-coil gap which is the distance between the ground coil 14 and the vehicle coil 35 shown in FIG. 1, differs depending on the vehicle. Therefore, the current flowing through the ground coil 14 is changed according to the gap between the coils.
  • the current flowing through the main coil 74 is defined as current I.
  • the magnetic flux densities B2 and B3 in the regions R2 and R3 are “b * I” as indicated by the symbol q2.
  • the magnetic flux densities B4 and B5 of the regions R4 and R5 are “a * I” as indicated by the symbol q1.
  • the current flowing through the main coil 74 is defined as current 2I.
  • the magnetic flux density in the regions R2 and R3 is “a * 2I” as indicated by the symbol q4
  • the magnetic flux density in the regions R4 and R5 is “b * 2I” as indicated by the symbol q3. That is, when there is no foreign matter on the upper surface side of the disk-type coil 71, when the gap between the coils changes, the ratio of the magnetic flux density between the regions R2, R3 and the regions R4, R5 is “2: 1. This ratio does not change greatly even if the gap between the coils changes.
  • the magnetic flux density of the regions R2 and R3 is “b * 2Ic” as indicated by the symbol q6, and the magnetic flux density of the regions R4 and R5 is “a * 2Ic” as indicated by the symbol q5. . Therefore, the ratio of magnetic flux density is “3: 1”, and the ratio changes.
  • the notch p1 for inserting the electric wire of the main coil 74 is formed in the central portion of the ferrite 72 included in the disk type coil 71, and the regions R4 and R5 (magnetic flux changing portions) are formed. ) Is a region having a smaller magnetic flux density than the other regions R2 and R4 (general part). Therefore, even when a frame-shaped foreign object is placed on the upper surface side of the disk-type coil 71 (power transmission coil), the presence of the foreign object can be detected with high accuracy.
  • the operation when detecting the presence of a foreign object in the non-contact charging system 100 employing the power transmission coil structure according to the first embodiment will be described with reference to the flowcharts shown in FIGS.
  • voltage data detected by each sensor coil 19L when no foreign object is present in the vicinity of the search coil 19 is acquired in advance, and this is stored as a reference voltage table.
  • the data is stored in the unit 21 (see FIG. 1). Further, the ratio of the magnetic flux density generated in the regions R2 and R3 and the magnetic flux density generated in the regions R4 and R5 is calculated, and this ratio is stored and stored in the reference voltage storage unit 21.
  • step S31 the ground-side control unit 15 shown in FIG. 1 supplies power to the ground coil 14 so that the output becomes 1 KW.
  • step S32 the voltage distribution in each sensor coil 19L of the search coil 19 at this time is acquired and stored in the reference voltage storage unit 21 as a reference voltage table at 1 kW.
  • step S33 the ground-side control unit 15 supplies power to the ground coil 14 so that the output becomes 2 KW.
  • step S34 the voltage distribution in each sensor coil 19L of the search coil 19 at this time is acquired and stored in the reference voltage storage unit 21 as a reference voltage table at 2 kW.
  • step S35 the ground side control part 15 supplies electric power to the ground coil 14 so that an output may be 3KW.
  • step S36 the voltage distribution in each sensor coil 19L of the search coil 19 at this time is acquired and stored in the reference voltage storage unit 21 as a reference voltage table at 3 kW.
  • step S37 the magnetic flux densities of the regions R2, R3 (general part) and the regions R4, R5 (magnetic flux changing part) are calculated from the current I during operation at each output.
  • step S37 the magnetic flux density ratio in each region is calculated, and the calculation result is stored and saved in the reference voltage storage unit 21.
  • a reference voltage table indicating the voltage distribution of the search coil 19 at each output.
  • the ratio of the magnetic flux density of a general part and the magnetic flux density of a magnetic flux change part is computable.
  • the ground coil 14 is excited and the reference voltage table for the search coil 19 provided on the upper surface side of the ground coil 14 and the magnetic flux density ratio are obtained.
  • a reference voltage table for each output power can be created by similar processing.
  • the ground side control unit 15 determines whether or not to perform a reference voltage table calibration process in step S52. This process can be determined by whether or not the operator has pressed the calibration switch 18. When the calibration switch 18 is pressed (ON in step S52), in step S53, the ground side control unit 15 executes the process shown in FIG. 14 and creates a new reference voltage table. .
  • step S52 when the calibration switch 18 is not pressed (OFF in step S52), voltage data detected by each sensor coil 19L included in the search coil 19 is acquired in step S54. That is, voltage data for each sensor coil 19L detected by the voltage detection control unit 20 shown in FIG. 1 is acquired.
  • step S55 the ground side control unit 15 reads the reference voltage table stored and saved in advance in the reference voltage storage unit 21. At this time, a reference voltage table corresponding to the output power of the ground coil 14 is used. For example, when the output power of the ground coil 14 is 2 KW, the reference voltage table corresponding to 2 KW is read.
  • step S56 the ground side control unit 15 compares the reference voltage table read in step S55 with the voltage data acquired in step S54 to obtain a differential voltage.
  • step S57 the ground-side control unit 15 determines a voltage change pattern in an area where the differential voltage is equal to or higher than a preset threshold voltage (an installation position of the sensor coil 19L). Based on the voltage change pattern, the position on the search coil 19 where the foreign substance exists is specified. Further, it is determined whether the foreign material is a foreign matter having a high magnetic permeability such as iron or a foreign matter having a low magnetic permeability such as copper or aluminum. Specifically, the position and material of the foreign matter are specified based on the method shown in FIGS.
  • step S58 the ratio of the magnetic flux density B2 in the region R2 (or the magnetic flux density B3 in the region R3) and the magnetic flux density B4 in the region R4 (or the magnetic flux density B5 in the region R5) shown in FIG. 7 is calculated.
  • step S59 the ratio calculated in step S58 is compared with the magnetic flux density ratio calculated in step S38 of FIG. If there is a large difference in the ratio, it is detected that there is a frame-like foreign object in the vicinity of the disk type coil 71.
  • the foreign object detection information can be notified to the vehicle side device 101 by communication between the wireless LAN 17 of the power supply device 102 and the wireless LAN 41 of the vehicle side device 101, the detection information of the vehicle side device 101 can be notified. It can be displayed on the display unit 42 and can inform the driver of the vehicle that a foreign object exists.
  • an operator or the like who recognizes the foreign object can remove it in advance, so that a metal foreign object placed in the vicinity of the search coil 19 can be removed. The occurrence of problems such as heat generation can be avoided.
  • the search coil 19 including the plurality of sensor coils 19L is provided on the upper surface side of the ground coil 14, and each sensor coil 19L is provided. Detects the voltage generated in Further, the detected voltage data is compared with the reference voltage set in the reference voltage table acquired in advance, and the presence position of the foreign matter and the foreign material are detected based on the voltage increase / decrease pattern. Therefore, it is possible to reliably detect the position and material of the metallic foreign object existing in the vicinity of the search coil 19 and notify the operator of the power supply apparatus 102 and the driver of the vehicle.
  • a general portion that is a region that generates a predetermined magnetic flux density and a magnetic flux change portion that is a region that generates a magnetic flux density different from the general portion are formed.
  • the general part and the magnetic flux change part can be formed with a simple operation. Moreover, since the electric wire inside the main coil 74 can be pulled out using this notch part p1, the main coil 74 can be easily connected.
  • the search coil 36 provided on the lower surface side of the vehicle coil 35 can detect the presence of foreign matter existing in the vicinity of the vehicle coil 35.
  • the disk-type coil 71 in which the electric wire is wound in a rectangular spiral shape has been described.
  • the present invention is not limited to this, for example, in a circular shape. It is also possible to use a disk-type coil having a wound electric wire.
  • FIG. 16 is an explanatory diagram schematically showing the configuration of the disk-type coil 71 (coil for power transmission) and its peripheral devices according to the second embodiment.
  • 16A is a plan view
  • FIG. 16B is an explanatory diagram showing magnetic flux density generated when a current is passed through the electric wire
  • FIG. 16C is a cross-sectional view along AA ′ shown in FIG. 16A
  • FIG. A cross-sectional view taken along line BB ′ shown in a) is shown.
  • the disk type coil 71 is the ground coil 14 or the vehicle coil 35 shown in FIG.
  • the ferrite 72 at one corner of the disk-type coil 71 is notched, forming a notch p2.
  • region R6, R7 in which the notch part p2 is formed becomes magnetic flux density B2 of area
  • the ferrite 72 can be easily arranged.
  • the ground coil 14 shown in FIG. 1 has been described.
  • a frame-like foreign matter is formed by forming a notch in the ferrite. The presence can be detected.
  • the magnetic flux density generated on the upper surface side of the disk type coil 71 is changed by providing a step in the ferrite 72 constituting the disk type coil 71 and the main coil 74 provided on the upper surface side of the ferrite 72. . That is, a region without a step is a general portion, and a region that is lowered or raised by a step is a magnetic flux change portion.
  • FIG. 17 is an explanatory diagram schematically showing the configuration of a disk-type coil 71 (coil for power transmission) and its peripheral devices according to the third embodiment.
  • 17A is a plan view
  • FIG. 17B is an explanatory diagram showing magnetic flux density generated when a current is passed through the electric wire
  • FIG. 17C is a cross-sectional view taken along the line AA ′ shown in FIG.
  • a cross-sectional view taken along line BB ′ shown in a) is shown.
  • the disk type coil 71 is the ground coil 14 or the vehicle coil 35 shown in FIG.
  • a part on the right side in the drawing in the region around which the main coil 74 is wound is a recessed portion p3 that is recessed downward.
  • the recess p3 has a longer distance from the main coil 74 to the lid 81 than the other regions. That is, a step that faces the normal direction of the ferrite 72 is provided in a part of the main coil 74. Further, a part of the ferrite 72 is provided with a step that faces the normal direction of the ferrite 72.
  • the hollow portion p3 is a magnetic flux changing portion, and the other region is a general portion. As a result, as shown in FIG.
  • the magnetic flux densities B8 and B9 in the regions R8 and R9 where the recess p3 is formed are smaller than the magnetic flux densities B2 and B3 in the regions R2 and R3. Become. That is, when the magnetic flux density in the region R1 is B1, the relationship is (B2, B3)> (B8, B9)> B1.
  • the ferrite 72, the insulating material 73, and the main coil 74 are arranged at a low position in the region of the recess p3.
  • the configuration of the disk-type coil 71 can be simplified. Further, since a step is formed in a part of the ferrite 72 so as to face the normal direction of the ferrite 72, the configuration of the disk-type coil 71 can be simplified.
  • FIG. 18 is an explanatory view schematically showing the configuration of the disk-type coil 71 (coil for power transmission) and its peripheral devices according to the fourth embodiment.
  • 18A is a plan view
  • FIG. 18B is an explanatory diagram showing the magnetic flux density generated when a current is passed through the electric wire
  • FIG. 18C is a cross-sectional view along AA ′ shown in FIG. 18A
  • FIG. A cross-sectional view taken along line BB ′ shown in a) is shown.
  • the disk type coil 71 is the ground coil 14 or the vehicle coil 35 shown in FIG.
  • the right half of the region around which the main coil 74 is wound is a recessed portion p4 that is recessed downward. That is, the recess p4 has a longer distance from the main coil 74 to the lid 81 as compared with other regions.
  • the hollow portion p4 is a magnetic flux changing portion, and the other region is a general portion.
  • the magnetic flux densities B10 and B11 of the regions R10 and R11 where the recess p4 is formed are smaller than the magnetic flux densities B2 and B3 of the regions R2 and R3. Become. That is, when the magnetic flux density in the region R1 is B1, there is a relationship of (B2, B3)> (B10, B11)> B1.
  • the ratio of the magnetic flux densities B2, B3 and the magnetic flux densities B10, B11 changes, so that the frame-like foreign matter is placed. Can be detected.
  • the ferrite 72, the insulating material 73, and the main coil 74 are arranged at a low position in the region of the recess p4, the configuration can be simplified.
  • FIG. 19 is an explanatory diagram schematically showing the configuration of the disk-type coil 71 (coil for power transmission) and its peripheral devices according to the fifth embodiment.
  • 19A is a plan view
  • FIG. 19B is an explanatory diagram showing magnetic flux density generated when a current is passed through the main coil 74
  • FIG. 19C is a sectional view taken along line AA ′ shown in FIG.
  • FIG. 4 shows a cross-sectional view along the line BB ′ shown in FIG.
  • the disk type coil 71 is the ground coil 14 or the vehicle coil 35 shown in FIG.
  • the lower right corner in the figure of the region around which the main coil 74 is wound is a recess p5 that is recessed downward. That is, the distance from the main coil 74 to the lid 81 is longer in the recess p5 than in other regions.
  • the hollow portion p5 is a magnetic flux changing portion, and the other region is a general portion.
  • the magnetic flux densities B12 and B13 in the regions R12 and R13 where the recess p5 is formed are smaller than the magnetic flux densities B2 and B3 in the regions R2 and R3. Become. That is, when the magnetic flux density in the region R1 is B1, there is a relationship of (B2, B3)> (B12, B13)> B1.
  • the ratio of the magnetic flux densities B2, B3 and the magnetic flux densities B12, B13 changes, so that the frame-like foreign matter is placed. Can be detected.
  • the depression p5 is formed in the corner, and the ferrite 72, the insulating material 73, and the main coil 74 are arranged in a low position in this region, so that the configuration is simplified. Is possible.
  • the height of the ferrite 72, the insulating material 73, and the main coil 74 is reduced.
  • the height of the main coil 74 is not changed, and the ferrite 72 and the insulation are changed.
  • a configuration in which only the height of the material 73 is reduced is also possible.
  • FIG. 20 is an explanatory diagram schematically showing the configuration of the disk-type coil 71 (coil for power transmission) and its peripheral devices according to the sixth embodiment.
  • 20A is a plan view
  • FIG. 20B is an explanatory diagram showing magnetic flux density generated when a current is passed through the main coil 74
  • FIG. 20C is a cross-sectional view taken along line AA ′ shown in FIG.
  • FIG. 4 shows a cross-sectional view along the line BB ′ shown in FIG.
  • the disk type coil 71 is the ground coil 14 or the vehicle coil 35 shown in FIG.
  • the lower right corner in the drawing of the region around which the main coil 74 is wound is a protruding portion p6 protruding upward. That is, the distance from the main coil 74 to the lid 81 is shorter in the protrusion p6 than in other regions.
  • the protrusion p6 is a magnetic flux change part, and the other region is a general part.
  • the magnetic flux densities B14 and B15 of the regions R14 and R15 where the protrusions p6 are formed are larger than the magnetic flux densities B2 and B3 of the regions R2 and R3. Become. That is, when the magnetic flux density in the region R1 is B1, there is a relationship of (B14, B15)> (B2, B3)> B1.
  • the projecting portion p6 is formed at the corner, and the ferrite 72, the insulating material 73, and the main coil 74 are arranged at a high position in this region, so that the configuration is simplified. Is possible.
  • the height of the ferrite 72, the insulating material 73, and the main coil 74 is increased.
  • the height of the ferrite 72 and the insulating material 73 is not changed, and the main coil 74 is changed. It is also possible to adopt a configuration that raises only the height of the.
  • the ground coil 14 shown in FIG. 1 has been described.
  • the vehicle coil 35 is also formed with a hollow portion or a protruding portion so that a frame-like foreign object is formed. Can be detected.
  • FIG. 21 is an explanatory view schematically showing the configuration of the disk-type coil 71 (coil for power transmission) and its peripheral devices according to the seventh embodiment.
  • FIG. 21A is a plan view
  • FIG. 21B is an explanatory diagram showing the magnetic flux density generated when a current is passed through the main coil 74.
  • the disk type coil 71 is the ground coil 14 or the vehicle coil 35 shown in FIG.
  • a sub-coil 91 having a rectangular loop shape is formed on the upper surface of the insulating material 73 using an electric wire inside the main coil 74. That is, the main coil 74 in which the electric wire is wound in a spiral shape has an opening Q1 at the center, and a subcoil 91 is formed in the opening.
  • a current flows through the spiral loop, and at the same time, a current flows through the subcoil 91.
  • the magnetic flux density of the disk type coil 71 changes.
  • the magnetic flux density B16 in the region R16 is larger than the magnetic flux density B2 in the surrounding region R2, and the magnetic flux density B17 in the region R17 is smaller than the magnetic flux density B2.
  • the relationship is B16> (B2, B3)> B17> B1.
  • Regions R16 and R17 are magnetic flux changing portions, and the other regions are general portions.
  • the subcoil 91 is formed by using the electric wire at the end of the main coil 74, the magnetic flux changing portion and the general portion can be formed with a simple configuration. Furthermore, since the subcoil 91 is formed in the central opening Q1 of the main coil 74, the electric wires can be easily arranged. In FIG. 21, the example in which the main coil 74 is wound only once to form the subcoil 91 has been described. However, the subcoil 91 can be formed by winding a plurality of turns.
  • the ground coil 14 shown in FIG. 1 has been described. Similarly, it is possible to detect the presence of a frame-like foreign matter by forming a sub-coil for the vehicle coil 35 as well. it can.
  • the search coil 36 is provided on the lower surface side of the vehicle coil 35 and the search coil 19 is provided on the upper surface side of the ground coil 14 has been described, but the present invention is not limited to this.
  • at least one of the search coils may be provided.
  • the search coil 19 is provided only on the upper surface side of the ground coil 14, it is possible to detect foreign matter existing in the vicinity of the ground coil 14.
  • the search coil 36 is provided only on the lower surface of the vehicle coil 35, foreign matter existing in the vicinity of the vehicle coil 35 can be detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A cutout portion (p1) is formed in a part of a ferrite (72) provided in a disc-type coil (71). Formation of the cutout portion (p1) causes a change in the density of magnetic flux produced by a main coil (74), resulting in the formation of a general portion with a predetermined magnetic flux density and a magnetic flux changed portion with a magnetic flux density different from that of the general portion. If a frame-shaped foreign body is present on the upper surface side of the disc-type coil (71), the ratio between the magnetic flux density detected in the general portion and the magnetic flux density detected in the magnetic flux changed portion will change compared with a situation in which the foreign body is not placed thereon. Accordingly, the presence of a frame-shaped foreign body can be detected on the basis of the change.

Description

非接触電力伝送装置の電力伝送用コイル構造Coil structure for power transmission of non-contact power transmission equipment
 本発明は、非接触電力伝送装置に用いられる電力伝送用コイルの構造に関する。 This invention relates to the structure of the coil for electric power transmission used for a non-contact electric power transmission apparatus.
 従来より、非接触で電力を送電し、受電側装置に設けられるバッテリに電力を充電する非接触電力伝送装置が提案されている。非接触電力伝送装置では、電力を送電するための送電コイル、或いは電力を受電するための受電コイルの近傍に、金属製の異物が存在する場合には、この異物が発熱することがある。従って、異物が存在する場合には、これを検出し取り除く必要がある。異物検出の従来例として、例えば特許文献1に記載されたものが知られている。該特許文献1では、送電用一次コイルの近傍に異物が存在するか否かを検出するために、送電用一次コイルよりも小さい信号用一次コイルを複数配設し、各信号用一次コイルに生じる電圧を測定することにより、送電用一次コイルの近傍に存在する異物を検出することが示されている。 Conventionally, a non-contact power transmission device that transmits power in a non-contact manner and charges the battery provided in the power receiving side device has been proposed. In a non-contact power transmission device, when a foreign metal object exists in the vicinity of a power transmission coil for transmitting power or a power reception coil for receiving power, the foreign object may generate heat. Therefore, if there is a foreign object, it must be detected and removed. As a conventional example of foreign object detection, for example, one described in Patent Document 1 is known. In Patent Document 1, a plurality of signal primary coils smaller than the power transmission primary coil are provided in order to detect whether or not there is a foreign object in the vicinity of the power transmission primary coil, and are generated in each signal primary coil. It is shown that a foreign object existing in the vicinity of a primary coil for power transmission is detected by measuring a voltage.
特開2010-259172号公報JP 2010-259172 A
 しかしながら、上述した特許文献1に開示された従来技術では、送電用一次コイルの上に、例えば、金属製で枠状の異物等、送電コイルと類似した形状の異物が送電コイル上に置かれると、異物により発生する磁束分布の変化が、送電コイルと受電コイルとの間のギャップ変化或いは送電コイルと受電コイルとの間の位置ずれに起因して生じる磁束分布変化との区別がつき難くなる。このため、異物の存在を検出できないという問題が発生する。 However, in the conventional technique disclosed in Patent Document 1 described above, when a foreign object having a shape similar to the power transmission coil, such as a metal frame-shaped foreign object, is placed on the power transmission coil, for example, a metal frame-like foreign material. Thus, it is difficult to distinguish a change in the magnetic flux distribution caused by the foreign matter from a change in the magnetic flux distribution caused by a gap change between the power transmission coil and the power reception coil or a positional deviation between the power transmission coil and the power reception coil. For this reason, the problem that the presence of a foreign object cannot be detected occurs.
 本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、電力伝送用コイルの主コイルと類似した形状の異物が電力伝送用コイルの近傍に置かれた場合でも、異物の存在を高精度に検出することができる電力伝送用コイル構造を提供することにある。 The present invention has been made to solve such a conventional problem. The object of the present invention is to place a foreign object having a shape similar to the main coil of the power transmission coil in the vicinity of the power transmission coil. It is an object of the present invention to provide a coil structure for power transmission that can detect the presence of a foreign substance with high accuracy even when it is used.
 本発明の一態様に係る非接触電力伝送装置の電力伝送用コイル構造は、電力伝送用コイルが、平板形状を成す磁性体と、磁性体に対して電力の送信側または受信側となる面に設けられ、渦巻き状に巻かれた主コイルを含む。更に、所定の磁束密度を発生する一般部と、一般部とは異なる磁束密度を発生する磁束変化部とを設けている。 The coil structure for power transmission of the non-contact power transmission apparatus according to one aspect of the present invention is configured such that the power transmission coil has a flat plate-shaped magnetic body and a surface on the power transmission side or reception side with respect to the magnetic body. It includes a main coil that is provided and spirally wound. Furthermore, a general part that generates a predetermined magnetic flux density and a magnetic flux changing part that generates a magnetic flux density different from the general part are provided.
本発明の実施形態に係る電力伝送用コイルが採用された非接触充電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the non-contact charge system by which the coil for electric power transmission which concerns on embodiment of this invention was employ | adopted. 本発明の実施形態に係る非接触充電システムに用いられるサーチコイルを示す説明図である。It is explanatory drawing which shows the search coil used for the non-contact charge system which concerns on embodiment of this invention. 本発明の実施形態に係る非接触充電システムに用いられる地上コイルと車両用コイルが対向して配置されている状態を示す説明図である。It is explanatory drawing which shows the state by which the ground coil and vehicle coil which are used for the non-contact charging system which concerns on embodiment of this invention are opposingly arranged. 本発明の実施形態に係る非接触充電システムに用いられる電圧検出制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the voltage detection control part used for the non-contact charge system which concerns on embodiment of this invention. 本発明の実施形態に係る非接触充電システムに用いられるディスク型コイルの構成を示す説明図である。It is explanatory drawing which shows the structure of the disk type coil used for the non-contact charge system which concerns on embodiment of this invention. ディスク型コイルに電流を流したときに生じる磁束を示す説明図である。It is explanatory drawing which shows the magnetic flux produced when an electric current is sent through a disk type coil. 本発明の第1実施例に係るディスク型コイルの構成を示す説明図である。It is explanatory drawing which shows the structure of the disk type coil which concerns on 1st Example of this invention. 本発明の実施形態に係る非接触充電システムで用いられる基準電圧分布テーブルを示す特性図である。It is a characteristic view which shows the reference voltage distribution table used with the non-contact charge system which concerns on embodiment of this invention. 本発明の実施形態に係る非接触充電システムで用いられる基準電圧分布テーブルと実際に測定された電圧との対比を示す特性図である。It is a characteristic view which shows the contrast of the reference voltage distribution table used with the non-contact charge system which concerns on embodiment of this invention, and the actually measured voltage. 本発明の実施形態に係る非接触充電システムのサーチコイル上に、鉄が置かれている場合の電圧分布の変化を示す説明図である。It is explanatory drawing which shows the change of voltage distribution when iron is placed on the search coil of the non-contact charging system which concerns on embodiment of this invention. 本発明の実施形態に係る非接触充電システムのサーチコイル上に、アルミニウムが置かれている場合の電圧分布の変化を示す説明図である。It is explanatory drawing which shows the change of the voltage distribution in case aluminum is placed on the search coil of the non-contact charging system which concerns on embodiment of this invention. ディスク型コイル上に枠状の異物が置かれた状態を示す説明図である。It is explanatory drawing which shows the state by which the frame-shaped foreign material was placed on the disk type coil. 一般部と磁束変化部に生じる磁束密度を示すグラフである。It is a graph which shows the magnetic flux density which arises in a general part and a magnetic flux change part. 本発明の実施形態に係る非接触充電システムの、基準電圧テーブルの測定処理手順を示すフローチャートである。It is a flowchart which shows the measurement processing procedure of the reference voltage table of the non-contact charge system which concerns on embodiment of this invention. 本発明の実施形態に係る非接触充電システムの、異物検出の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of a foreign material detection of the non-contact charge system which concerns on embodiment of this invention. 本発明の第2実施例に係るディスク型コイルの構成を示す説明図である。It is explanatory drawing which shows the structure of the disk type coil which concerns on 2nd Example of this invention. 本発明の第3実施例に係るディスク型コイルの構成を示す説明図である。It is explanatory drawing which shows the structure of the disk type coil which concerns on 3rd Example of this invention. 本発明の第4実施例に係るディスク型コイルの構成を示す説明図である。It is explanatory drawing which shows the structure of the disk type coil which concerns on 4th Example of this invention. 本発明の第5実施例に係るディスク型コイルの構成を示す説明図である。It is explanatory drawing which shows the structure of the disk type coil which concerns on 5th Example of this invention. 本発明の第6実施例に係るディスク型コイルの構成を示す説明図である。It is explanatory drawing which shows the structure of the disk type coil which concerns on 6th Example of this invention. 本発明の第7実施例に係るディスク型コイルの構成を示す説明図である。It is explanatory drawing which shows the structure of the disk type coil which concerns on 7th Example of this invention.
 以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の実施形態に係る非接触電力伝送装置の電力伝送用コイル構造が採用された非接触充電システムの構成を示すブロック図である。図1に示すように、この非接触充電システム100は、電気自動車(以下、「車両」という)に搭載される車両側装置101と、地上側に設置され車両に電力を供給する給電装置102から構成されている。そして、給電装置102より電力を送信し、この電力を車両側装置101にて非接触で受信し、受信した電力を電気自動車に搭載されるバッテリに充電する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a non-contact charging system that employs a power transmission coil structure of a non-contact power transmission apparatus according to an embodiment of the present invention. As shown in FIG. 1, this non-contact charging system 100 includes a vehicle-side device 101 mounted on an electric vehicle (hereinafter referred to as “vehicle”) and a power supply device 102 that is installed on the ground side and supplies power to the vehicle. It is configured. And electric power is transmitted from the electric power feeder 102, this electric power is received non-contact in the vehicle side apparatus 101, and the received electric power is charged to the battery mounted in an electric vehicle.
 ここで、本発明に係る「非接触電力伝送装置」は車両側装置101、及び給電装置102の双方のことを示している。つまり、給電装置102は、電力伝送用コイル(後述する地上コイル14)を介して非接触で電力を送信する非接触電力伝送装置であり、車両側装置101は、電力伝送用コイル(後述する車両用コイル35)を介して非接触で電力を受信する非接触電力伝送装置である。以下、非接触充電システム100の構成について説明する。 Here, the “non-contact power transmission device” according to the present invention indicates both the vehicle side device 101 and the power feeding device 102. That is, the power feeding device 102 is a non-contact power transmission device that transmits power in a non-contact manner via a power transmission coil (a ground coil 14 described later), and the vehicle-side device 101 includes a power transmission coil (a vehicle described later). This is a non-contact power transmission device that receives power in a non-contact manner via a coil 35). Hereinafter, the configuration of the non-contact charging system 100 will be described.
 図1に示す給電装置102は、商用電源10(例えば、100V、50Hz)より出力される交流電力を整流して直流電力を得る直流電源11と、該直流電源11より出力される直流電力を所望周波数の交流電力に変換するインバータ12と、車両の駐車スペースの路面に設けられる給電用の地上コイル14と、該地上コイル14との間で電力を共振させる共振コンデンサ13と、を備えている。また、直流電源11及びインバータ12の電圧、電流、温度を検出する電圧・電流・温度センサ16と、地上側制御部15と、異物判定に用いる基準電圧データ(後述)を取得する際の操作を行う校正スイッチ18と、基準電圧テーブルを記憶する基準電圧記憶部21と、車両側装置101との間で近距離通信を行う無線LAN17と、各種の情報(特に、異物の存在に関する情報)を表示する表示部22と、を備えている。 A power supply apparatus 102 shown in FIG. 1 desires a DC power source 11 that rectifies AC power output from a commercial power source 10 (for example, 100 V, 50 Hz) to obtain DC power, and DC power output from the DC power source 11. The inverter 12 which converts into the alternating current power of frequency, the ground coil 14 for electric power feeding provided in the road surface of the parking space of a vehicle, and the resonance capacitor 13 which resonates electric power between this ground coil 14 are provided. In addition, the voltage / current / temperature sensor 16 that detects the voltage, current, and temperature of the DC power supply 11 and the inverter 12, the ground side control unit 15, and operations for acquiring reference voltage data (described later) used for foreign object determination are performed. Display of calibration switch 18 to be performed, reference voltage storage unit 21 that stores a reference voltage table, wireless LAN 17 that performs short-range communication with vehicle-side device 101, and various types of information (particularly, information regarding the presence of foreign matter) And a display unit 22 for displaying.
 更に、地上コイル14の上面側(電力の送信側)に設けられ、該地上コイル14と略平行に設けられる平面形状のサーチコイル19と、該サーチコイル19に生じる電圧を測定する電圧検出制御部20と、を備えている。 Furthermore, a planar search coil 19 provided on the upper surface side (power transmission side) of the ground coil 14 and provided substantially parallel to the ground coil 14, and a voltage detection control unit for measuring a voltage generated in the search coil 19. 20.
 地上コイル14として、ディスク型コイルが用いられる。ディスク型コイルの詳細については後述する。サーチコイル19は、図2の平面図に示すように、複数のセンサコイル19L(図では、一例として9×6の54個を示している)が平面的に配置されて構成されている。そして、各センサコイル19Lには、地上コイル14より出力される磁束に起因する電圧が発生することとなる。 A disk-type coil is used as the ground coil 14. Details of the disk type coil will be described later. As shown in the plan view of FIG. 2, the search coil 19 is configured by a plurality of sensor coils 19 </ b> L (in the figure, 54 of 9 × 6 are shown as an example) arranged in a plane. A voltage resulting from the magnetic flux output from the ground coil 14 is generated in each sensor coil 19L.
 図1に示す電圧検出制御部20は、サーチコイル19にて発生する電圧を測定する。より詳細には、サーチコイル19に設けられるそれぞれのセンサコイル19Lに生じる電圧を個別に検出し、検出した各電圧データを地上側制御部15に送信する。詳細については後述する。 The voltage detection control unit 20 shown in FIG. More specifically, the voltage generated in each sensor coil 19 </ b> L provided in the search coil 19 is individually detected, and each detected voltage data is transmitted to the ground side control unit 15. Details will be described later.
 地上側制御部15は、給電装置102を総括的に制御する。特に、インバータ12、及び直流電源11の動作を含む各種の制御を行う。具体的には、該地上側制御部15は、車両側装置101に対して電力を送信する際には、インバータ12より出力される交流電力を地上コイル14に供給して、該地上コイル14を励磁する制御を行う。また、操作者によりサーチコイル19の周囲に異物(釘、ボルト、空き缶等)が存在しないことが確認され、且つ校正スイッチ18が操作された際には、地上コイル14を励磁させる。そして、このときに各センサコイル19Lにて発生する電圧を基準電圧として測定し、この基準電圧を基準電圧テーブルとして、基準電圧記憶部21に記憶する処理を行う。更に、電圧検出制御部20にて検出された電圧データと上記の基準電圧テーブルとを対比して、地上コイル14の近傍に異物が存在するか否かを判断する。加えて、異物が存在する場合には、異物が存在する位置、及び異物の材質を判断して、給電装置102の操作者や車両の運転者に報知することや、警報の出力、強制的に電力を遮断する制御等を行う。 The ground side control unit 15 comprehensively controls the power supply apparatus 102. In particular, various controls including operations of the inverter 12 and the DC power supply 11 are performed. Specifically, when transmitting power to the vehicle-side device 101, the ground-side control unit 15 supplies AC power output from the inverter 12 to the ground coil 14 so that the ground coil 14 is used. Performs excitation control. Further, when it is confirmed by the operator that no foreign matter (nails, bolts, empty cans, etc.) exists around the search coil 19 and the calibration switch 18 is operated, the ground coil 14 is excited. And the voltage which generate | occur | produces in each sensor coil 19L at this time is measured as a reference voltage, and the process which memorize | stores this reference voltage in the reference voltage memory | storage part 21 as a reference voltage table is performed. Furthermore, the voltage data detected by the voltage detection control unit 20 is compared with the reference voltage table to determine whether or not there is a foreign object in the vicinity of the ground coil 14. In addition, when there is a foreign object, the position where the foreign object exists and the material of the foreign object are determined to notify the operator of the power supply apparatus 102 or the driver of the vehicle, output an alarm, Controls to cut off power.
 一方、車両側装置101は、車両の底面に設けられる車両用コイル35と、該車両用コイル35との間で電力を共振させる共振コンデンサ34と、車両用コイル35を介して受信される交流電力を整流して直流電力に変換する整流回路33と、直流電力を充電するバッテリ31と、該バッテリ31の充電、放電を切り替えるリレーボックス32と、を備えている。 On the other hand, the vehicle-side device 101 includes a vehicle coil 35 provided on the bottom surface of the vehicle, a resonance capacitor 34 that resonates power between the vehicle coil 35, and AC power received via the vehicle coil 35. Are rectified and converted to DC power, a battery 31 that charges DC power, and a relay box 32 that switches between charging and discharging of the battery 31.
 また、バッテリ31の入出力電圧、電流、及びリレーボックス32の温度を検出する電圧・電流・温度センサ38と、車両側制御部39と、異物判定に用いる基準電圧テーブルを取得する際の操作を行う校正スイッチ44と、基準電圧テーブルを記憶する基準電圧記憶部43と、給電装置102との間で近距離通信を行う無線LAN41と、各種の情報(特に、異物の存在に関する情報)を表示する表示部42と、を備えている。 In addition, the voltage / current / temperature sensor 38 for detecting the input / output voltage and current of the battery 31 and the temperature of the relay box 32, the vehicle side control unit 39, and the operation for acquiring the reference voltage table used for foreign object determination are performed. A calibration switch 44 to be performed, a reference voltage storage unit 43 that stores a reference voltage table, a wireless LAN 41 that performs near field communication with the power supply apparatus 102, and various types of information (particularly, information related to the presence of foreign matter) are displayed. Display unit 42.
 また、車両側制御部39は、車両ネットワーク40と接続されており、車両内のECU等の車載機器との間でデータの送受信を行うことが可能となっている。 Further, the vehicle-side control unit 39 is connected to the vehicle network 40, and can transmit and receive data to and from in-vehicle devices such as an ECU in the vehicle.
 更に、車両用コイル35の下面側(電力の受信側)を覆うように設けられ、該車両用コイル35と略平行に設けられる平面形状のサーチコイル36と、該サーチコイル36に生じる電圧を測定する電圧検出制御部37と、を備えている。 Further, a planar search coil 36 provided so as to cover the lower surface side (electric power reception side) of the vehicle coil 35 and provided substantially parallel to the vehicle coil 35, and a voltage generated in the search coil 36 are measured. And a voltage detection control unit 37.
 車両用コイル35は、前述した地上コイル14と同様に、ディスク型コイルが用いられる。サーチコイル36は、前述した給電装置102側のサーチコイル19(図2参照)と同様に、複数のセンサコイルが平面的に配置された構成を有している。 The disk coil 35 is used for the vehicle coil 35 as in the case of the ground coil 14 described above. The search coil 36 has a configuration in which a plurality of sensor coils are arranged in a plane, similarly to the search coil 19 (see FIG. 2) on the power supply apparatus 102 side described above.
 電圧検出制御部37は、サーチコイル36にて発生する電圧を測定する。より詳細には、サーチコイル36に設けられるそれぞれのセンサコイルに生じる電圧を個別に検出し、検出した各電圧データを車両側制御部39に送信する。 The voltage detection control unit 37 measures the voltage generated in the search coil 36. More specifically, the voltage generated in each sensor coil provided in the search coil 36 is individually detected, and each detected voltage data is transmitted to the vehicle side control unit 39.
 車両側制御部39は、車両側装置101を総括的に制御する。特に、サーチコイル36の周囲に異物が存在しないことを確認した上で車両用コイル35を励磁させ、このときに各センサコイルにて発生する電圧を測定し、この電圧を基準電圧テーブルとして、基準電圧記憶部43に記憶する。また、電圧検出制御部37による検出信号に基づいて、サーチコイル36の近傍に異物が存在するか否かを判断する。更には、異物が存在すると判断された場合には、この異物が存在する位置、及び異物の材質を判断して、給電装置102の操作者や車両の運転者に報知することや、警報の出力、強制的にバッテリ31への充電を遮断する制御等を行う。 The vehicle-side control unit 39 controls the vehicle-side device 101 as a whole. In particular, after confirming that no foreign matter is present around the search coil 36, the vehicle coil 35 is excited, the voltage generated at each sensor coil is measured, and this voltage is used as a reference voltage table. Store in the voltage storage unit 43. Further, based on the detection signal from the voltage detection control unit 37, it is determined whether or not there is a foreign object in the vicinity of the search coil 36. Further, when it is determined that a foreign object is present, the position where the foreign object is present and the material of the foreign object are determined to notify the operator of the power supply apparatus 102 or the driver of the vehicle, or to output an alarm. Then, control for forcibly cutting off charging of the battery 31 is performed.
 ここで、車両側制御部39、及び前述した地上側制御部15は、例えば、中央演算ユニット(CPU)や、RAM、ROM、ハードディスク等の記憶手段からなる一体型のコンピュータとして構成することができる。 Here, the vehicle-side control unit 39 and the above-described ground-side control unit 15 can be configured as, for example, an integrated computer including a central processing unit (CPU) and storage means such as a RAM, a ROM, and a hard disk. .
 次に、図3を参照して、車両側装置101と給電装置102との間で非接触充電が行われる際の、地上コイル14と車両用コイル35との位置関係について説明する。図3は、地上コイル14と車両用コイル35が対向したときの状態を模式的に示す側面図である。 Next, the positional relationship between the ground coil 14 and the vehicle coil 35 when non-contact charging is performed between the vehicle-side device 101 and the power feeding device 102 will be described with reference to FIG. FIG. 3 is a side view schematically showing a state when the ground coil 14 and the vehicle coil 35 face each other.
 図3に示すように、駐車スペースの路面に設けられた地上コイル14の上面側を覆うようにサーチコイル19が設けられ、且つ、車両底面に設けられた車両用コイル35の下面側を覆うようにサーチコイル36が設けられている。そして、車両が駐車スペースの所定の位置に停車すると、地上コイル14と車両用コイル35が互いに対向した状態となる。そして、地上コイル14に電力が供給されると、この電力が非接触で車両用コイル35に伝送され、図1に示したバッテリ31を充電することができる。 As shown in FIG. 3, the search coil 19 is provided so as to cover the upper surface side of the ground coil 14 provided on the road surface of the parking space, and the lower surface side of the vehicle coil 35 provided on the vehicle bottom surface is covered. A search coil 36 is provided. When the vehicle stops at a predetermined position in the parking space, the ground coil 14 and the vehicle coil 35 face each other. And if electric power is supplied to the ground coil 14, this electric power will be transmitted to the coil 35 for vehicles without contact, and the battery 31 shown in FIG. 1 can be charged.
 図4は、電圧検出制御部20の詳細な構成を示すブロック図である。図4に示すように、電圧検出制御部20は、各センサコイル19L(図4では、各センサコイル19Lを、チャンネル1,チャンネル2,・・・チャンネルnと表記)と接続され、各センサコイル19Lで検出される電圧信号を順次切り替えて出力するマルチプレクサ51と、該マルチプレクサ51より出力される電圧信号を増幅する差動増幅部52と、該差動増幅部52より出力される電圧信号を整流する整流器53と、交流成分を除去するフィルタ54と、電圧信号をA/D変換するCPU55と、を備えている。 FIG. 4 is a block diagram showing a detailed configuration of the voltage detection control unit 20. As shown in FIG. 4, the voltage detection control unit 20 is connected to each sensor coil 19L (in FIG. 4, each sensor coil 19L is represented as channel 1, channel 2,... Channel n), and each sensor coil A multiplexer 51 that sequentially switches and outputs a voltage signal detected by 19L, a differential amplifier 52 that amplifies the voltage signal output from the multiplexer 51, and a rectifier for the voltage signal output from the differential amplifier 52 A rectifier 53 for removing the AC component, and a CPU 55 for A / D converting the voltage signal.
 CPU55は、マルチプレクサ51にチャンネル指定信号を送信する機能を備えている。従って、各センサコイル19Lで検出される電圧信号は、シリアル信号としてCPU55に入力され、更に該CPU55にてディジタル化されて、図1に示した地上側制御部15に送信される。なお、車両側装置101に設けられる電圧検出制御部37についても、図4と同様の構成を備えている。 The CPU 55 has a function of transmitting a channel designation signal to the multiplexer 51. Accordingly, the voltage signal detected by each sensor coil 19L is input to the CPU 55 as a serial signal, digitized by the CPU 55, and transmitted to the ground side control unit 15 shown in FIG. Note that the voltage detection control unit 37 provided in the vehicle-side device 101 also has the same configuration as in FIG.
 次に、図5、図6を参照して、地上コイル14及び車両用コイル35として用いられるディスク型コイル71について説明する。図5は、ディスク型コイル71の構成を示す説明図であり、(a)は平面図、(b)は(a)におけるA-A’断面図を示している。図5に示すように、ディスク型コイル71は、平板形状を成すフェライト72(磁性体)の上面を覆うように絶縁材73が設けられ、更に、該絶縁材73の上面には電線が矩形の渦巻き状に巻回された主コイル74が設けられている。更に、主コイル74の外周側の端部、及び内周側の端部にはそれぞれ端子75a、75bが設けられている。 Next, the disk type coil 71 used as the ground coil 14 and the vehicle coil 35 will be described with reference to FIGS. 5A and 5B are explanatory views showing the configuration of the disk-type coil 71, where FIG. 5A is a plan view and FIG. 5B is a cross-sectional view taken along line A-A 'in FIG. As shown in FIG. 5, the disk-shaped coil 71 is provided with an insulating material 73 so as to cover the upper surface of a ferrite 72 (magnetic material) having a flat plate shape. Further, the electric wire is rectangular on the upper surface of the insulating material 73. A main coil 74 wound in a spiral shape is provided. Further, terminals 75a and 75b are provided at the outer peripheral end and the inner peripheral end of the main coil 74, respectively.
 端子75a、75bを図1に示す共振コンデンサ13を介してインバータ12に接続し、主コイル74に交流電流を流すことにより、ディスク型コイル71の周囲に磁束を発生させることができる。この磁束は、車両用コイル35側に伝達されるので、車両用コイル35に電力を伝送することができる。 The terminals 75a and 75b are connected to the inverter 12 via the resonance capacitor 13 shown in FIG. 1, and an alternating current is passed through the main coil 74, whereby a magnetic flux can be generated around the disk-type coil 71. Since this magnetic flux is transmitted to the vehicle coil 35 side, electric power can be transmitted to the vehicle coil 35.
 図6は、主コイル74に交流電流を流した際に、ディスク型コイル71に生じる磁束を模式的に示す説明図である。図6は、ディスク型コイル71の断面を示しており、電線を渦巻き状に巻回した主コイル74の周囲に図中の矢印に示すように磁束が発生する。つまり、主コイル74の内側(中央部側)、及び外側(外周側)にて磁束密度が大きくなり、その間の領域は磁束密度が小さくなる。 FIG. 6 is an explanatory diagram schematically showing magnetic flux generated in the disk-type coil 71 when an alternating current is passed through the main coil 74. FIG. 6 shows a cross section of the disk-type coil 71, and a magnetic flux is generated around the main coil 74 in which an electric wire is wound in a spiral shape as indicated by an arrow in the figure. That is, the magnetic flux density increases on the inner side (center side) and the outer side (outer peripheral side) of the main coil 74, and the magnetic flux density decreases in the region therebetween.
 本実施形態では、ディスク型コイル71の周辺に異物が存在しないときの、各センサコイル19Lに生じる電圧を予め検出し、この電圧を基準電圧として基準電圧記憶部21(図1参照)に記憶する。異物の有無を検出する際には、各センサコイル19Lで検出される電圧と、基準電圧とを対比する。ディスク型コイル71の周囲に空き缶やボルト等の異物が存在する場合には、各センサコイル19Lで検出される電圧は基準電圧に対して変化が生じるので、この変化に基づいて異物の存在を検出することができる。 In the present embodiment, a voltage generated in each sensor coil 19L when no foreign matter is present around the disk type coil 71 is detected in advance, and this voltage is stored as a reference voltage in the reference voltage storage unit 21 (see FIG. 1). . When detecting the presence or absence of a foreign object, the voltage detected by each sensor coil 19L is compared with the reference voltage. When foreign objects such as empty cans and bolts exist around the disk type coil 71, the voltage detected by each sensor coil 19L changes with respect to the reference voltage. Therefore, the presence of foreign objects is detected based on this change. can do.
 更に、ディスク型コイル71の周辺に、窓枠等の枠状の異物が存在する場合には(後述する図12の符号83を参照)、各センサコイル19Lで検出される電圧と、基準電圧との間に大きな相違が発生しない場合がある。即ち、枠状の異物が存在すると、各センサコイル19Lで検出される電圧が一律に低下或いは上昇するので、異物の存在を検出できない場合がある。これは、各センサコイル19Lに生じる電圧が一律に低下或いは上昇すると、電圧の変化が、地上コイル14と車両用コイル35との間のギャップの相違によるものか、或いは枠状の異物が存在することによるものか、の見分けがつかなくなるからである。 Further, when there is a frame-like foreign material such as a window frame around the disk-shaped coil 71 (see reference numeral 83 in FIG. 12 described later), the voltage detected by each sensor coil 19L, the reference voltage, There may be no significant difference between the two. That is, if there is a frame-like foreign matter, the voltage detected by each sensor coil 19L is uniformly reduced or raised, so the presence of the foreign matter may not be detected. This is because when the voltage generated in each sensor coil 19L is uniformly reduced or increased, the change in voltage is due to the difference in gap between the ground coil 14 and the vehicle coil 35, or there is a frame-like foreign matter. This is because it is impossible to tell whether it is due to a problem.
 第1実施形態では、ディスク型コイル71を構成するフェライト72(磁性体)の一部に切欠部を形成することにより、磁束密度を変化させて、ディスク型コイル71の上面側に枠状の異物が存在する場合でも、これを確実に検出する。以下、第1実施形態の具体例を第1実施例、第2実施例にて説明する。 In the first embodiment, the magnetic flux density is changed by forming a notch in a part of the ferrite 72 (magnetic material) constituting the disk-type coil 71, and a frame-like foreign material is formed on the upper surface side of the disk-type coil 71. Even if exists, this is reliably detected. Hereinafter, specific examples of the first embodiment will be described in the first example and the second example.
(第1実施例)
 図7は、第1実施例に係るディスク型コイル71(電力伝送用コイル)、及びその周辺機器の構成を模式的に示す説明図である。図7(a)は平面図、(b)は主コイル74に電流を流したときに生じる磁束密度を示す説明図、(c)は(a)に示すA-A’断面図、(d)は(a)に示すB-B’断面図を示している。なお、ディスク型コイル71は、図1に示した地上コイル14を例に挙げて示している。
(First embodiment)
FIG. 7 is an explanatory diagram schematically showing the configuration of the disk-type coil 71 (power transmission coil) and its peripheral devices according to the first embodiment. 7A is a plan view, FIG. 7B is an explanatory diagram showing magnetic flux density generated when a current is passed through the main coil 74, FIG. 7C is an AA ′ cross-sectional view shown in FIG. FIG. 4 shows a cross-sectional view along the line BB ′ shown in FIG. The disk type coil 71 is shown by taking the ground coil 14 shown in FIG. 1 as an example.
 前述した図5に示したように、ディスク型コイル71は、矩形状のフェライト72と、該フェライト72の上面側に設けられる絶縁材73と、該絶縁材73の上面側に電線を矩形の渦巻き状に巻回した主コイル74を備えている。また、図7(a)、(d)に示すように、フェライト72の中央から下方に向けて切欠部p1が形成されている。そして、主コイル74の内周側の電線の端部が、この切欠部p1により形成される空間を経由して、外部に引き出されて端子75bに接続されている。即ち、フェライト72(磁性体)に形成された切欠部p1に、主コイル74の端部の電線を挿通することにより、主コイル74の端部の電線を該主コイル74の外部へ引き出している。 As shown in FIG. 5 described above, the disk-type coil 71 includes a rectangular ferrite 72, an insulating material 73 provided on the upper surface side of the ferrite 72, and an electric wire on the upper surface side of the insulating material 73. The main coil 74 wound in the shape is provided. Further, as shown in FIGS. 7A and 7D, a notch p1 is formed from the center of the ferrite 72 downward. Then, the end portion of the electric wire on the inner peripheral side of the main coil 74 is drawn out to the outside and connected to the terminal 75b via the space formed by the cutout portion p1. That is, by inserting the electric wire at the end of the main coil 74 into the notch p1 formed in the ferrite 72 (magnetic material), the electric wire at the end of the main coil 74 is drawn out of the main coil 74. .
 また、図7(c)、(d)に示すように、ディスク型コイル71を構成するフェライト72、絶縁材73、及び主コイル74は、金属ケース82の内部に収納されており、該金属ケース82の天端には、図1、図2に示したサーチコイル19が設けられ、その上面は樹脂製の蓋体81で閉塞されている。 Further, as shown in FIGS. 7C and 7D, the ferrite 72, the insulating material 73, and the main coil 74 constituting the disk-type coil 71 are housed in a metal case 82, and the metal case The search coil 19 shown in FIGS. 1 and 2 is provided at the top end of 82, and the upper surface thereof is closed by a resin lid 81.
 図7(b)に示すように、ディスク型コイル71の、主コイル74が巻回されている領域R1の磁束密度B1と、領域R1の内側となる領域R2の磁束密度B2と、領域R1の外側となる領域R3の磁束密度B3との間には、図6にて説明したように、(B2、B3)>B1なる関係が成立する。即ち、領域R2、R3の磁束密度B2、B3は、領域R1の磁束密度B1よりも大きい。 As shown in FIG. 7B, the magnetic flux density B1 of the region R1 around which the main coil 74 is wound, the magnetic flux density B2 of the region R2 inside the region R1, and the region R1 As described with reference to FIG. 6, the relationship (B2, B3)> B1 is established between the magnetic flux density B3 in the outer region R3. That is, the magnetic flux densities B2 and B3 in the regions R2 and R3 are larger than the magnetic flux density B1 in the region R1.
 更に、フェライト72に切欠部p1が形成されていることにより、これに対応する主コイル74の内側及び外側の領域、即ち、図7(b)に示す領域R4、R5の磁束密度B4、B5は、領域R2、R3の磁束密度B2、B3と対比して小さくなる。即ち、(B2、B3)>(B4、B5)>B1なる関係が成立する。領域R2、R3が所定の磁束密度を発生する領域である一般部であり、領域R4、R5が一般部とは異なる磁束密度を発生する領域である磁束変化部である。 Further, since the notch p1 is formed in the ferrite 72, the magnetic flux densities B4 and B5 in the inner and outer regions of the main coil 74 corresponding to this, that is, the regions R4 and R5 shown in FIG. , The magnetic flux densities B2 and B3 in the regions R2 and R3 are small. That is, the relationship (B2, B3)> (B4, B5)> B1 is established. The regions R2 and R3 are general portions that are regions that generate a predetermined magnetic flux density, and the regions R4 and R5 are magnetic flux changing portions that are regions that generate a magnetic flux density different from the general portion.
 切欠部p1が形成された領域(磁束変化部)では、ディスク型コイル71に電流を流した際に生じる磁束密度が他の領域(一般部)よりも小さくなる。このような構成により、後述するように、ディスク型コイル71の上面側に、窓枠等の金属製で枠状の異物が置かれた場合には、この異物の存在により領域R2、R3と領域R4、R5の、磁束密度の大きさ、及び磁束密度の比率が変化する。従って、この磁束密度の大きさ及び比率の変化を検出することにより、枠状の異物が存在するか否かを検出することができる。 In the region where the notch p1 is formed (magnetic flux changing portion), the magnetic flux density generated when a current is passed through the disk-type coil 71 is smaller than the other regions (general portion). With such a configuration, as will be described later, when a metal frame-like foreign material such as a window frame is placed on the upper surface side of the disk-type coil 71, the regions R2, R3 and the region are caused by the presence of the foreign material. The magnitude of the magnetic flux density and the ratio of the magnetic flux density of R4 and R5 change. Therefore, it is possible to detect whether or not a frame-like foreign substance exists by detecting the change in the magnitude and ratio of the magnetic flux density.
 次に、上述した第1実施例に係る非接触電力伝送装置の電力伝送用コイル構造を用いて実行される異物検出の手法について説明する。本発明では、前述したように、初期的な操作として、サーチコイル19の近傍に異物が存在しないときに、地上コイル14に電力を供給して該地上コイル14を励磁させ、サーチコイル19の各センサコイル19Lに生じる電圧を検出する。そして、検出した電圧データを基準電圧テーブルとして基準電圧記憶部21に記憶する。 Next, a foreign object detection method executed using the power transmission coil structure of the non-contact power transmission apparatus according to the first embodiment described above will be described. In the present invention, as described above, as an initial operation, when there is no foreign object in the vicinity of the search coil 19, power is supplied to the ground coil 14 to excite the ground coil 14. A voltage generated in the sensor coil 19L is detected. The detected voltage data is stored in the reference voltage storage unit 21 as a reference voltage table.
 図8は、各出力電力毎に設定される基準電圧テーブルの例を示す特性図である。図8において、曲線s1は、地上コイル14の出力電力が1KWである場合の、各センサコイル19Lで検出される基準電圧を示している。なお、図8の横軸は、右方向に向けて、発生電圧が小さい順の「チャンネル」(各センサコイル19Lの番号)を示している。即ち、曲線s1の左端は発生電圧が最も小さいチャンネルを示し、右端は発生電圧が最も大きいチャンネルを示している。同様に、曲線s2は出力電力が2KWの場合、曲線s3は出力電力が3KWの場合の基準電圧を示している。 FIG. 8 is a characteristic diagram showing an example of a reference voltage table set for each output power. In FIG. 8, a curve s1 indicates the reference voltage detected by each sensor coil 19L when the output power of the ground coil 14 is 1 KW. The horizontal axis in FIG. 8 indicates “channels” (numbers of the sensor coils 19L) in the order of decreasing generated voltage toward the right. That is, the left end of the curve s1 indicates the channel with the lowest generated voltage, and the right end indicates the channel with the highest generated voltage. Similarly, the curve s2 indicates the reference voltage when the output power is 2 KW, and the curve s3 indicates the reference voltage when the output power is 3 KW.
 そして、実際の電力送信時に、サーチコイル19近傍に存在する異物を検出する際には、電圧検出制御部20で検出される各センサコイル19Lに生じる電圧と、基準電圧テーブルとの差分を演算する。その結果、例えば図9に示すように、測定された電圧データ(曲線s12)と、基準電圧テーブルに記憶されている基準電圧(曲線s11)との差分が求められ、この差分に基づいて異物の存在を検出する。 Then, when detecting foreign matter existing in the vicinity of the search coil 19 during actual power transmission, the difference between the voltage generated in each sensor coil 19L detected by the voltage detection control unit 20 and the reference voltage table is calculated. . As a result, for example, as shown in FIG. 9, the difference between the measured voltage data (curve s12) and the reference voltage (curve s11) stored in the reference voltage table is obtained. Detect presence.
 つまり、地上側制御部15では、各センサコイル19Lで検出される電圧と、上記の基準電圧とを対比し、大きな相違が生じている場合には、サーチコイル19の近傍、ひいては地上コイル14の近傍に金属製の異物が存在するものと判断する。 That is, the ground side control unit 15 compares the voltage detected by each sensor coil 19L with the above reference voltage, and if there is a large difference, the vicinity of the search coil 19 and thus the ground coil 14 It is determined that a metal foreign object exists in the vicinity.
 ここで、図1に示した車両用コイル35の下面側に設けられるサーチコイル36についても、上記と同様の手法により異物の存在を検出することができる。詳細な説明を省略する。そして、サーチコイル36を用いることにより、車両用コイル35に、金属製の異物が絡まる等の理由により該車両用コイル35の近傍に異物が存在する場合に、これを検出することができる。 Here, the presence of a foreign object can be detected by the same method as described above for the search coil 36 provided on the lower surface side of the vehicle coil 35 shown in FIG. Detailed description is omitted. By using the search coil 36, it is possible to detect a foreign object in the vicinity of the vehicle coil 35 due to a metal foreign object entangled with the vehicle coil 35 or the like.
 次に、地上コイル14の近傍に異物が存在する場合の、磁束の乱れについて説明する。初めに、サーチコイル19近傍に、鉄等の透磁率の高い異物が置かれている場合について、図10を参照して説明する。図10(a)は、サーチコイル19のほぼ中央部に棒状で透磁率の高い異物(例えば、鉄)が置かれている場合、図10(b)は、サーチコイル19の中央から若干ずれた位置に塊状で透磁率の高い異物(例えば、鉄)が置かれている場合の電圧変化を示す平面図である。 Next, a description will be given of the disturbance of the magnetic flux when a foreign object is present in the vicinity of the ground coil 14. First, a case where a foreign matter having a high magnetic permeability such as iron is placed in the vicinity of the search coil 19 will be described with reference to FIG. FIG. 10A shows a case in which a rod-like foreign matter (for example, iron) having a high magnetic permeability is placed at substantially the center of the search coil 19, and FIG. 10B is slightly shifted from the center of the search coil 19. It is a top view which shows a voltage change when the foreign material (for example, iron) with the block shape and the high magnetic permeability is put in the position.
 図10(a)に示すように、棒状の異物x1が置かれている場合には、この異物x1の中央部の領域r1に生じる電圧は基準電圧に対して低下し、両端部の領域r2、r3に生じる電圧は上昇する。一方、図10(b)に示すように、塊状の異物x2が置かれている場合には、この近傍の領域r4に生じる電圧は基準電圧に対して上昇し、両端の領域r5、r6に生じる電圧は低下する。従って、このような電圧変化のパターンに基づいて、異物が存在する位置、及び材質を認識することができる。 As shown in FIG. 10 (a), when the rod-like foreign material x1 is placed, the voltage generated in the central region r1 of the foreign material x1 is lower than the reference voltage, and both end regions r2, The voltage generated at r3 increases. On the other hand, as shown in FIG. 10 (b), when a lump-like foreign material x2 is placed, the voltage generated in the nearby region r4 rises with respect to the reference voltage and is generated in the regions r5 and r6 at both ends. The voltage drops. Therefore, based on such a voltage change pattern, it is possible to recognize the position and material where the foreign matter exists.
 次に、サーチコイル19の近傍にアルミニウムや銅等の透磁率の低い異物が置かれている場合について説明する。図11(a)は、サーチコイル19のほぼ中央部に透磁率の低い棒状の異物(例えば、アルミニウム)が置かれている場合、図11(b)は、サーチコイル19の中央から若干ずれた位置に透磁率の低い塊状の異物が置かれている場合の電圧変化を示す平面図である。 Next, a case where a foreign matter having a low magnetic permeability such as aluminum or copper is placed in the vicinity of the search coil 19 will be described. FIG. 11A shows a case where a rod-like foreign material (for example, aluminum) having a low magnetic permeability is placed at the substantially central portion of the search coil 19, and FIG. 11B is slightly shifted from the center of the search coil 19. It is a top view which shows a voltage change when the block-shaped foreign material with low magnetic permeability is put in the position.
 図11(a)に示すように、サーチコイル19上の磁束の方向に棒状の異物x3が置かれている場合には、この異物x3は、磁束の変化にほとんど影響しない。従って、サーチコイル19で検出される電圧に変化が生じない。また、図11(b)に示すように、塊状の異物x4が置かれている場合には、この異物x4が存在する領域r7に生じる電圧が低下する。従って、このような電圧変化のパターンに基づいて、異物が存在する位置、及び材質を認識することができる。 As shown in FIG. 11A, when a rod-like foreign material x3 is placed in the direction of the magnetic flux on the search coil 19, the foreign material x3 hardly affects the change of the magnetic flux. Accordingly, the voltage detected by the search coil 19 does not change. Further, as shown in FIG. 11B, when a lump-like foreign matter x4 is placed, the voltage generated in the region r7 where the foreign matter x4 is present decreases. Therefore, based on such a voltage change pattern, it is possible to recognize the position and material where the foreign matter exists.
 次に、サーチコイル19上に、窓枠等の枠状の異物が置かれた場合の、磁束密度の変化について、図12に示す説明図、及び図13に示す特性図を参照して説明する。図12は、ディスク型コイル71の上面側に枠状の異物83が置かれた様子を示す説明図であり、(a)は平面図、(b)は(a)におけるA-A’断面図、(c)は(a)におけるB-B’断面図である。 Next, a change in magnetic flux density when a frame-like foreign matter such as a window frame is placed on the search coil 19 will be described with reference to an explanatory diagram shown in FIG. 12 and a characteristic diagram shown in FIG. . 12A and 12B are explanatory views showing a state in which a frame-like foreign material 83 is placed on the upper surface side of the disk-type coil 71. FIG. 12A is a plan view, and FIG. 12B is a cross-sectional view taken along line AA ′ in FIG. (C) is a BB ′ cross-sectional view in (a).
 例えば、金属製の窓枠は矩形状を成しているので、図12(a)に示すように、異物83が主コイル74と重複する。このような場合には、ディスク型コイル71により生じる磁束密度は、一律に低下することになり、図9の特性図に示したように、局部的な電圧変化として現れない。第1実施例では、磁束密度の比率の変化に基づいて枠状の異物の存在を検出する。 For example, since the metal window frame has a rectangular shape, the foreign matter 83 overlaps with the main coil 74 as shown in FIG. In such a case, the magnetic flux density generated by the disk type coil 71 is uniformly reduced, and does not appear as a local voltage change as shown in the characteristic diagram of FIG. In the first embodiment, the presence of a frame-like foreign object is detected based on a change in the magnetic flux density ratio.
 以下、サーチコイル19上に、枠状の異物が置かれた場合の、磁束密度の比率の変化を図13に示すグラフを参照して説明する。図1に示す地上コイル14と車両用コイル35の距離であるコイル間ギャップは、車両により相違する。従って、コイル間ギャップに応じて地上コイル14に流す電流を変化させる。 Hereinafter, the change in the ratio of the magnetic flux density when a frame-like foreign matter is placed on the search coil 19 will be described with reference to the graph shown in FIG. The inter-coil gap, which is the distance between the ground coil 14 and the vehicle coil 35 shown in FIG. 1, differs depending on the vehicle. Therefore, the current flowing through the ground coil 14 is changed according to the gap between the coils.
 図13に示すように、コイル間ギャップがN1(例えば、100mm)の場合には、例えば、主コイル74に流す電流を電流Iとする。この際、領域R2、R3の磁束密度B2、B3は符号q2に示すように「b*I」となる。また、領域R4、R5の磁束密度B4、B5は符号q1に示すように「a*I」となる。なお、a、bは比例定数(但し、a<b)であり、本実施例では一例として「b=2a」としている。 As shown in FIG. 13, when the inter-coil gap is N1 (for example, 100 mm), for example, the current flowing through the main coil 74 is defined as current I. At this time, the magnetic flux densities B2 and B3 in the regions R2 and R3 are “b * I” as indicated by the symbol q2. Further, the magnetic flux densities B4 and B5 of the regions R4 and R5 are “a * I” as indicated by the symbol q1. Note that a and b are proportional constants (where a <b), and in this embodiment, “b = 2a” is taken as an example.
 また、コイル間ギャップがN2(例えば、120mm)の場合には、例えば、主コイル74に流す電流を電流2Iとする。これにより、領域R2、R3の磁束密度は符号q4に示すように「a*2I」となり、領域R4、R5の磁束密度は符号q3に示すように「b*2I」となる。つまり、ディスク型コイル71の上面側に異物が存在しない場合には、コイル間ギャップが変化した場合に、領域R2、R3と、領域R4、R5との間で磁束密度の比率は「2:1」であり、この比率はコイル間ギャップが変化しても大きな変化は生じない。 Further, when the inter-coil gap is N2 (for example, 120 mm), for example, the current flowing through the main coil 74 is defined as current 2I. As a result, the magnetic flux density in the regions R2 and R3 is “a * 2I” as indicated by the symbol q4, and the magnetic flux density in the regions R4 and R5 is “b * 2I” as indicated by the symbol q3. That is, when there is no foreign matter on the upper surface side of the disk-type coil 71, when the gap between the coils changes, the ratio of the magnetic flux density between the regions R2, R3 and the regions R4, R5 is “2: 1. This ratio does not change greatly even if the gap between the coils changes.
 これに対して、コイル間ギャップがN2であり、ディスク型コイル71の上面側に枠状の異物が存在する場合には、この異物が存在することにより磁束密度が低下する。具体例として、領域R2、R3の磁束密度は符号q6に示すように「b*2I-c」となり、領域R4、R5の磁束密度は符号q5に示すように「a*2I-c」となる。よって、磁束密度の比率は「3:1」となり、比率が変化する。つまり、領域R2、R3(一般部)と領域R4、R5(磁束変化部)の磁束密度の大きさ、及び比率の変化を測定することにより、ディスク型コイル71の上面側に枠状の異物が存在するか否かを判断することが可能となる。 On the other hand, when the gap between the coils is N2 and there is a frame-like foreign matter on the upper surface side of the disk-type coil 71, the magnetic flux density is reduced due to the presence of the foreign matter. As a specific example, the magnetic flux density of the regions R2 and R3 is “b * 2Ic” as indicated by the symbol q6, and the magnetic flux density of the regions R4 and R5 is “a * 2Ic” as indicated by the symbol q5. . Therefore, the ratio of magnetic flux density is “3: 1”, and the ratio changes. That is, by measuring changes in the magnetic flux density and ratio of the regions R2 and R3 (general portion) and the regions R4 and R5 (magnetic flux changing portions), a frame-like foreign matter is formed on the upper surface side of the disk-type coil 71. It is possible to determine whether or not it exists.
 このように、第1実施例では、ディスク型コイル71に含まれるのフェライト72の中央部に、主コイル74の電線を挿通するための切欠部p1を形成し、領域R4、R5(磁束変化部)を、他の領域R2、R4(一般部)に対して磁束密度が小さい領域としている。従って、ディスク型コイル71(電力伝送用コイル)の上面側に枠状の異物が置かれた場合でも、この存在を精度良く検出できることになる。 Thus, in the first embodiment, the notch p1 for inserting the electric wire of the main coil 74 is formed in the central portion of the ferrite 72 included in the disk type coil 71, and the regions R4 and R5 (magnetic flux changing portions) are formed. ) Is a region having a smaller magnetic flux density than the other regions R2 and R4 (general part). Therefore, even when a frame-shaped foreign object is placed on the upper surface side of the disk-type coil 71 (power transmission coil), the presence of the foreign object can be detected with high accuracy.
 次に、第1実施例に係る電力伝送用コイル構造を採用した非接触充電システム100で、異物の存在を検出する際の作用について、図14、図15に示すフローチャートを参照して説明する。本実施形態に係る非接触充電システム100では、サーチコイル19の近傍に異物が存在しないときの、各センサコイル19Lにて検出される電圧データを予め取得し、これを基準電圧テーブルとして基準電圧記憶部21(図1参照)に記憶保存する。更に、領域R2、R3に生じる磁束密度と、領域R4、R5に生じる磁束密度の比率を算出し、この比率を基準電圧記憶部21に記憶保存する。 Next, the operation when detecting the presence of a foreign object in the non-contact charging system 100 employing the power transmission coil structure according to the first embodiment will be described with reference to the flowcharts shown in FIGS. In the non-contact charging system 100 according to the present embodiment, voltage data detected by each sensor coil 19L when no foreign object is present in the vicinity of the search coil 19 is acquired in advance, and this is stored as a reference voltage table. The data is stored in the unit 21 (see FIG. 1). Further, the ratio of the magnetic flux density generated in the regions R2 and R3 and the magnetic flux density generated in the regions R4 and R5 is calculated, and this ratio is stored and stored in the reference voltage storage unit 21.
 以下、基準電圧記憶部21に記憶する基準電圧テーブルを作成し、且つ磁束密度の比率を算出する際の処理手順について、図14に示すフローチャートを参照して説明する。 Hereinafter, a processing procedure for creating a reference voltage table stored in the reference voltage storage unit 21 and calculating a magnetic flux density ratio will be described with reference to a flowchart shown in FIG.
 初めに、ステップS31において、図1に示す地上側制御部15は、出力が1KWとなるように、地上コイル14に電力を給電する。そして、ステップS32において、このときのサーチコイル19の各センサコイル19Lにおける電圧分布を取得し、1KWでの基準電圧テーブルとして基準電圧記憶部21に記憶保存する。 First, in step S31, the ground-side control unit 15 shown in FIG. 1 supplies power to the ground coil 14 so that the output becomes 1 KW. In step S32, the voltage distribution in each sensor coil 19L of the search coil 19 at this time is acquired and stored in the reference voltage storage unit 21 as a reference voltage table at 1 kW.
 ステップS33において、地上側制御部15は、出力が2KWとなるように、地上コイル14に電力を給電する。そして、ステップS34において、このときのサーチコイル19の各センサコイル19Lにおける電圧分布を取得し、2KWでの基準電圧テーブルとして基準電圧記憶部21に記憶保存する。 In step S33, the ground-side control unit 15 supplies power to the ground coil 14 so that the output becomes 2 KW. In step S34, the voltage distribution in each sensor coil 19L of the search coil 19 at this time is acquired and stored in the reference voltage storage unit 21 as a reference voltage table at 2 kW.
 更に、ステップS35において、地上側制御部15は、出力が3KWとなるように、地上コイル14に電力を給電する。そして、ステップS36において、このときのサーチコイル19の各センサコイル19Lにおける電圧分布を取得し、3KWでの基準電圧テーブルとして基準電圧記憶部21に記憶保存する。 Furthermore, in step S35, the ground side control part 15 supplies electric power to the ground coil 14 so that an output may be 3KW. In step S36, the voltage distribution in each sensor coil 19L of the search coil 19 at this time is acquired and stored in the reference voltage storage unit 21 as a reference voltage table at 3 kW.
 次いで、ステップS37において、各出力での運転時の電流Iから、領域R2、R3(一般部)と、領域R4、R5(磁束変化部)の、それぞれの磁束密度を演算する。 Next, in step S37, the magnetic flux densities of the regions R2, R3 (general part) and the regions R4, R5 (magnetic flux changing part) are calculated from the current I during operation at each output.
 ステップS37において、各領域での磁束密度の比率を演算し、演算結果を基準電圧記憶部21に記憶保存する。 In step S37, the magnetic flux density ratio in each region is calculated, and the calculation result is stored and saved in the reference voltage storage unit 21.
 こうすることにより、各出力でのサーチコイル19の電圧分布を示す基準電圧テーブルを取得することができる。且つ、一般部の磁束密度と磁束変化部の磁束密度との比率を演算することができる。なお、図14のフローチャートでは、地上コイル14を励磁状態として該地上コイル14の上面側に設けられるサーチコイル19についての基準電圧テーブル、及び磁束密度の比率を取得することについて示したが、車両側装置101に設けられるサーチコイル36についても同様の処理により、各出力電力毎の基準電圧テーブルを作成することができる。 By doing this, it is possible to obtain a reference voltage table indicating the voltage distribution of the search coil 19 at each output. And the ratio of the magnetic flux density of a general part and the magnetic flux density of a magnetic flux change part is computable. In the flowchart of FIG. 14, the ground coil 14 is excited and the reference voltage table for the search coil 19 provided on the upper surface side of the ground coil 14 and the magnetic flux density ratio are obtained. For the search coil 36 provided in the apparatus 101, a reference voltage table for each output power can be created by similar processing.
 次に、図15に示すフローチャートを参照して、サーチコイル19の近傍に存在する異物を検出する際の具体的な処理手順について説明する。この処理は、図1に示した地上側制御部15の制御により実行される。 Next, with reference to a flowchart shown in FIG. 15, a specific processing procedure for detecting a foreign object existing in the vicinity of the search coil 19 will be described. This process is executed under the control of the ground side control unit 15 shown in FIG.
 初めにステップS51において、初期診断、即ち、異物の検知処理が開始されると、ステップS52において、地上側制御部15は、基準電圧テーブルの校正処理を行うか否かを判断する。この処理は、操作者が校正スイッチ18を押したか否かにより判断することができる。そして、校正スイッチ18が押された場合には(ステップS52でオン)、ステップS53において、地上側制御部15は、前述の図14に示した処理を実行し、新たな基準電圧テーブルを作成する。 First, when an initial diagnosis, that is, a foreign object detection process is started in step S51, the ground side control unit 15 determines whether or not to perform a reference voltage table calibration process in step S52. This process can be determined by whether or not the operator has pressed the calibration switch 18. When the calibration switch 18 is pressed (ON in step S52), in step S53, the ground side control unit 15 executes the process shown in FIG. 14 and creates a new reference voltage table. .
 一方、校正スイッチ18が押されていない場合には(ステップS52でオフ)、ステップS54において、サーチコイル19に含まれる各センサコイル19Lで検出される電圧データを取得する。即ち、図1に示した電圧検出制御部20にて検出される各センサコイル19L毎の電圧データを取得する。 On the other hand, when the calibration switch 18 is not pressed (OFF in step S52), voltage data detected by each sensor coil 19L included in the search coil 19 is acquired in step S54. That is, voltage data for each sensor coil 19L detected by the voltage detection control unit 20 shown in FIG. 1 is acquired.
 ステップS55において、地上側制御部15は、基準電圧記憶部21に予め記憶保存されている基準電圧テーブルを読み込む。この際、地上コイル14の出力電力に対応する基準電圧テーブルを用いる。例えば、地上コイル14の出力電力が2KWである場合には、この2KWに対応する基準電圧テーブルを読み込む。 In step S55, the ground side control unit 15 reads the reference voltage table stored and saved in advance in the reference voltage storage unit 21. At this time, a reference voltage table corresponding to the output power of the ground coil 14 is used. For example, when the output power of the ground coil 14 is 2 KW, the reference voltage table corresponding to 2 KW is read.
 ステップS56において、地上側制御部15は、ステップS55にて読み込んだ基準電圧テーブルと、ステップS54で取得した電圧データを対比し、差分電圧を求める。 In step S56, the ground side control unit 15 compares the reference voltage table read in step S55 with the voltage data acquired in step S54 to obtain a differential voltage.
 ステップS57において、地上側制御部15は、差分電圧が予め設定した閾値電圧以上となる領域(センサコイル19Lの設置位置)の電圧変化のパターンを判断する。そして、この電圧変化のパターンに基づいて、サーチコイル19上の、異物が存在する位置を特定する。更に、異物の材質、即ち、鉄等の透磁率の高い異物であるか、或いは、銅やアルミニウム等の透磁率の低い異物であるかを判断する。具体的には、前述した図10、図11にて示した手法に基づいて、異物の位置、及び材質を特定する。 In step S57, the ground-side control unit 15 determines a voltage change pattern in an area where the differential voltage is equal to or higher than a preset threshold voltage (an installation position of the sensor coil 19L). Based on the voltage change pattern, the position on the search coil 19 where the foreign substance exists is specified. Further, it is determined whether the foreign material is a foreign matter having a high magnetic permeability such as iron or a foreign matter having a low magnetic permeability such as copper or aluminum. Specifically, the position and material of the foreign matter are specified based on the method shown in FIGS.
 ステップS58において、図7に示した領域R2の磁束密度B2(または、領域R3の磁束密度B3)と、領域R4の磁束密度B4(または、領域R5の磁束密度B5)の比率を演算する。 In step S58, the ratio of the magnetic flux density B2 in the region R2 (or the magnetic flux density B3 in the region R3) and the magnetic flux density B4 in the region R4 (or the magnetic flux density B5 in the region R5) shown in FIG. 7 is calculated.
 ステップS59において、ステップS58の処理で演算した比率と、図14のステップS38で演算した磁束密度の比率を対比する。そして、比率に大きな相違が存在する場合には、ディスク型コイル71の近傍に枠状の異物が存在することが検出される。 In step S59, the ratio calculated in step S58 is compared with the magnetic flux density ratio calculated in step S38 of FIG. If there is a large difference in the ratio, it is detected that there is a frame-like foreign object in the vicinity of the disk type coil 71.
 具体的には、前述した図13のグラフにて示したように、金属製で枠状の異物が存在する場合には、領域R2、R3と、領域R4、R5で、磁束密度の比率が変化するので、この変化に基づいて枠状の異物が存在するか否かを判断することができる。 Specifically, as shown in the graph of FIG. 13 described above, when there is a metal frame-like foreign material, the ratio of the magnetic flux density changes in the regions R2 and R3 and the regions R4 and R5. Therefore, based on this change, it can be determined whether or not a frame-like foreign substance exists.
 そして、これらの情報を、図1に示す表示部22に表示することにより、給電装置102の操作者に対してサーチコイル19の近傍に異物が存在することを報知することができる。また、給電装置102の無線LAN17と、車両側装置101の無線LAN41との間の通信により、異物の検出情報を車両側装置101に通知することができるので、この検出情報を車両側装置101の表示部42にて表示することができ、異物が存在することを車両の運転者に知らせることができる。その結果、サーチコイル19の近傍に異物が存在する場合には、これを認識した作業者等が事前にこれを除去することができるので、サーチコイル19の近傍に置かれた金属製の異物が発熱するといった問題の発生を回避することができる。 Then, by displaying these pieces of information on the display unit 22 shown in FIG. 1, it is possible to notify the operator of the power feeding apparatus 102 that there is a foreign object in the vicinity of the search coil 19. Further, since the foreign object detection information can be notified to the vehicle side device 101 by communication between the wireless LAN 17 of the power supply device 102 and the wireless LAN 41 of the vehicle side device 101, the detection information of the vehicle side device 101 can be notified. It can be displayed on the display unit 42 and can inform the driver of the vehicle that a foreign object exists. As a result, if a foreign object exists in the vicinity of the search coil 19, an operator or the like who recognizes the foreign object can remove it in advance, so that a metal foreign object placed in the vicinity of the search coil 19 can be removed. The occurrence of problems such as heat generation can be avoided.
 なお、図15に示すフローチャートでは、地上コイル14の上面側に設置したサーチコイル19による異物の検出手順について説明したが、車両用コイル35の下面側に設置したサーチコイル36についても同様の手順で異物を検出することができる。 In the flowchart shown in FIG. 15, the foreign object detection procedure by the search coil 19 installed on the upper surface side of the ground coil 14 has been described. However, the search coil 36 installed on the lower surface side of the vehicle coil 35 is similar in procedure. Foreign matter can be detected.
 このようにして、第1実施例に係る電力伝送用コイル構造を採用した非接触電力伝送装置では、地上コイル14の上面側に複数のセンサコイル19Lから成るサーチコイル19を設け、各センサコイル19Lに生じる電圧を検出する。更に、検出した電圧データと予め取得した基準電圧テーブルに設定されてる基準電圧とを対比し、電圧の増減のパターンに基づいて、異物の存在位置、及び異物の材質を検出する。従って、サーチコイル19の近傍に存在する金属製の異物の位置、及び材質を確実に検出して給電装置102の操作者、及び車両の運転者に報知することができる。 In this way, in the non-contact power transmission apparatus employing the power transmission coil structure according to the first embodiment, the search coil 19 including the plurality of sensor coils 19L is provided on the upper surface side of the ground coil 14, and each sensor coil 19L is provided. Detects the voltage generated in Further, the detected voltage data is compared with the reference voltage set in the reference voltage table acquired in advance, and the presence position of the foreign matter and the foreign material are detected based on the voltage increase / decrease pattern. Therefore, it is possible to reliably detect the position and material of the metallic foreign object existing in the vicinity of the search coil 19 and notify the operator of the power supply apparatus 102 and the driver of the vehicle.
 即ち、車両を充電用の駐車スペースに停車させている場合には、路面に設けられたサーチコイル19上の状況を周囲から視認することが難しいので、本実施形態のサーチコイル19を用いることにより、確実に異物の存在、及び位置確認、及び材質の確認が可能となり、即時に異物の除去作業を行うことができる。 That is, when the vehicle is parked in the parking space for charging, it is difficult to visually recognize the situation on the search coil 19 provided on the road surface from the surroundings. Therefore, it is possible to confirm the presence, position and material of the foreign material with certainty, and it is possible to immediately remove the foreign material.
 また、領域R2、R3(一般部)に生じる磁束密度と領域R4、R5(磁束変化部)に生じる磁束密度の比率を予め演算し、この比率が変化した場合に、枠状の異物が存在することを認識できる。従って、ディスク型コイル71の周辺に、主コイルと類似した形状の異物(例えば、窓枠等の枠状の異物)が存在する場合でも、確実にこの存在を検出して操作者、或いは運転者に報知することが可能となる。 In addition, when the ratio between the magnetic flux density generated in the regions R2 and R3 (general part) and the magnetic flux density generated in the regions R4 and R5 (magnetic flux changing part) is calculated in advance, and the ratio changes, a frame-shaped foreign matter exists. I can recognize that. Accordingly, even when a foreign object having a shape similar to that of the main coil (for example, a frame-shaped foreign object such as a window frame) exists around the disk-type coil 71, the presence of the foreign object is reliably detected and the operator or the driver Can be notified.
 更に、フェライト72に切欠部p1を形成することにより、所定の磁束密度を発生する領域である一般部と、一般部とは異なる磁束密度を発生する領域である磁束変化部を形成するので、簡単な操作で一般部及び磁束変化部を形成することができる。また、この切欠部p1を利用して主コイル74の内側の電線を外部に引き出すことができるので、主コイル74を容易に接続することが可能となる。 Further, by forming the notch portion p1 in the ferrite 72, a general portion that is a region that generates a predetermined magnetic flux density and a magnetic flux change portion that is a region that generates a magnetic flux density different from the general portion are formed. The general part and the magnetic flux change part can be formed with a simple operation. Moreover, since the electric wire inside the main coil 74 can be pulled out using this notch part p1, the main coil 74 can be easily connected.
 また、車両用コイル35の下面側に設けるサーチコイル36により、該車両用コイル35の近傍に存在する異物の存在を検出することができる。
 なお、上記した第1実施例では、電線が矩形の渦巻き状に巻回されたディスク型コイル71を用いる例について説明したが、本発明はこれに限定されるものではなく、例えば、円形状に巻回された電線を有するディスク型コイルを用いることも可能である。
The search coil 36 provided on the lower surface side of the vehicle coil 35 can detect the presence of foreign matter existing in the vicinity of the vehicle coil 35.
In the first embodiment described above, an example in which the disk-type coil 71 in which the electric wire is wound in a rectangular spiral shape has been described. However, the present invention is not limited to this, for example, in a circular shape. It is also possible to use a disk-type coil having a wound electric wire.
(第2実施例)
 次に、第2実施例について説明する。図16は、第2実施例に係るディスク型コイル71(電力伝送用コイル)、及びその周辺機器の構成を模式的に示す説明図である。図16(a)は平面図、(b)は電線に電流を流したときに生じる磁束密度を示す説明図、(c)は(a)に示すA-A’断面図、(d)は(a)に示すB-B’断面図を示している。なお、ディスク型コイル71は、図1に示した地上コイル14または車両用コイル35である。
(Second embodiment)
Next, a second embodiment will be described. FIG. 16 is an explanatory diagram schematically showing the configuration of the disk-type coil 71 (coil for power transmission) and its peripheral devices according to the second embodiment. 16A is a plan view, FIG. 16B is an explanatory diagram showing magnetic flux density generated when a current is passed through the electric wire, FIG. 16C is a cross-sectional view along AA ′ shown in FIG. 16A, and FIG. A cross-sectional view taken along line BB ′ shown in a) is shown. The disk type coil 71 is the ground coil 14 or the vehicle coil 35 shown in FIG.
 第2実施例では、図16(a)、(c)に示すように、ディスク型コイル71の一つの隅部のフェライト72が切り欠かれており、切欠部p2とされている。そして、この切欠部p2を形成することにより、図16(b)に示すように、切欠部p2が形成されている領域R6、R7の磁束密度B6、B7が、領域R2、R3の磁束密度B2、B3と対比して小さくなっている。即ち、領域R1の磁束密度をB1とした場合、(B2、B3)>(B6、B7)>B1なる関係を有する。 In the second embodiment, as shown in FIGS. 16A and 16C, the ferrite 72 at one corner of the disk-type coil 71 is notched, forming a notch p2. And by forming this notch part p2, as shown in FIG.16 (b), magnetic flux density B6, B7 of area | region R6, R7 in which the notch part p2 is formed becomes magnetic flux density B2 of area | region R2, R3. , Smaller than B3. That is, when the magnetic flux density in the region R1 is B1, there is a relationship of (B2, B3)> (B6, B7)> B1.
 従って、前述した第1実施例と同様に、ディスク型コイル71の周辺に存在する異物を検出することができる。更に、ディスク型コイル71の上面側に枠状の異物が存在する場合には、磁束密度B2、B3と磁束密度B6、B7の比率が変化するので、枠状の異物が置かれていることを検出することができる。また、第2実施例では、矩形状のフェライト72の隅部に切欠部p2を形成しているので、フェライト72を容易に配置することが可能となる。 Therefore, as in the first embodiment described above, it is possible to detect foreign matter existing around the disk-type coil 71. Further, when there is a frame-like foreign matter on the upper surface side of the disk-type coil 71, the ratio of the magnetic flux densities B2, B3 and the magnetic flux densities B6, B7 changes, so that the frame-like foreign matter is placed. Can be detected. In the second embodiment, since the notch p2 is formed at the corner of the rectangular ferrite 72, the ferrite 72 can be easily arranged.
 なお、上述した第1、第2実施例では、図1に示した地上コイル14について説明したが、車両用コイル35についても同様に、フェライトに切欠部を形成することにより、枠状の異物が存在することを検出することができる。 In the first and second embodiments described above, the ground coil 14 shown in FIG. 1 has been described. Similarly, for the vehicle coil 35, a frame-like foreign matter is formed by forming a notch in the ferrite. The presence can be detected.
[第2実施形態の説明]
 次に、本発明の第2実施形態を、第3~第6実施例に基づいて説明する。第2実施形態では、ディスク型コイル71を構成するフェライト72、及び該フェライト72の上面側に設けられる主コイル74に段差を設けることにより、ディスク型コイル71の上面側に生じる磁束密度を変化させる。即ち、段差の無い領域は、一般部であり、段差により低くされている領域、或いは高くされている領域が磁束変化部とされる。
[Description of Second Embodiment]
Next, a second embodiment of the present invention will be described based on the third to sixth examples. In the second embodiment, the magnetic flux density generated on the upper surface side of the disk type coil 71 is changed by providing a step in the ferrite 72 constituting the disk type coil 71 and the main coil 74 provided on the upper surface side of the ferrite 72. . That is, a region without a step is a general portion, and a region that is lowered or raised by a step is a magnetic flux change portion.
(第3実施例)
 図17は、第3実施例に係るディスク型コイル71(電力伝送用コイル)、及びその周辺機器の構成を模式的に示す説明図である。図17(a)は平面図、(b)は電線に電流を流したときに生じる磁束密度を示す説明図、(c)は(a)に示すA-A’断面図、(d)は(a)に示すB-B’断面図を示している。なお、ディスク型コイル71は、図1に示した地上コイル14または車両用コイル35である。
(Third embodiment)
FIG. 17 is an explanatory diagram schematically showing the configuration of a disk-type coil 71 (coil for power transmission) and its peripheral devices according to the third embodiment. 17A is a plan view, FIG. 17B is an explanatory diagram showing magnetic flux density generated when a current is passed through the electric wire, FIG. 17C is a cross-sectional view taken along the line AA ′ shown in FIG. A cross-sectional view taken along line BB ′ shown in a) is shown. The disk type coil 71 is the ground coil 14 or the vehicle coil 35 shown in FIG.
 そして、図17(a)~(d)に示すように、主コイル74が巻回されている領域のうちの図中右側の一部が下方に窪んだ窪み部p3とされている。窪み部p3は、その他の領域と対比して主コイル74から蓋体81までの距離が長くなっている。即ち、主コイル74の一部に、フェライト72の法線方向を向く段差を設けている。また、フェライト72の一部に、該フェライト72の法線方向を向く段差を設けている。窪み部p3が磁束変化部であり、その他の領域が一般部とされている。こうすることにより、図17(b)に示すように、窪み部p3が形成されている領域R8、R9の磁束密度B8、B9は、領域R2、R3の磁束密度B2、B3と対比して小さくなる。即ち、領域R1の磁束密度をB1とした場合、(B2、B3)>(B8、B9)>B1なる関係を有する。 Then, as shown in FIGS. 17A to 17D, a part on the right side in the drawing in the region around which the main coil 74 is wound is a recessed portion p3 that is recessed downward. The recess p3 has a longer distance from the main coil 74 to the lid 81 than the other regions. That is, a step that faces the normal direction of the ferrite 72 is provided in a part of the main coil 74. Further, a part of the ferrite 72 is provided with a step that faces the normal direction of the ferrite 72. The hollow portion p3 is a magnetic flux changing portion, and the other region is a general portion. As a result, as shown in FIG. 17B, the magnetic flux densities B8 and B9 in the regions R8 and R9 where the recess p3 is formed are smaller than the magnetic flux densities B2 and B3 in the regions R2 and R3. Become. That is, when the magnetic flux density in the region R1 is B1, the relationship is (B2, B3)> (B8, B9)> B1.
 従って、前述した第1実施例と同様に、ディスク型コイル71の周辺に存在する異物を検出することができる。更に、ディスク型コイル71の上面側に枠状の異物が存在する場合には、磁束密度B2、B3と磁束密度B8、B9の比率が変化するので、枠状の異物が置かれていることを検出することができる。また、第3実施例では、窪み部p3の領域にてフェライト72、絶縁材73、及び主コイル74を低い位置に配置する構成としている。 Therefore, as in the first embodiment described above, it is possible to detect foreign matter existing around the disk-type coil 71. Further, when there is a frame-like foreign matter on the upper surface side of the disk-type coil 71, the ratio of the magnetic flux densities B2, B3 and the magnetic flux densities B8, B9 changes, so that the frame-like foreign matter is placed. Can be detected. In the third embodiment, the ferrite 72, the insulating material 73, and the main coil 74 are arranged at a low position in the region of the recess p3.
 即ち、主コイル74の一部にフェライト72の法線方向を向く段差を形成しているので、ディスク型コイル71の構成を簡素化することが可能となる。更に、フェライト72の一部に該フェライト72の法線方向を向く段差を形成しているので、ディスク型コイル71の構成を簡素化することが可能となる。 That is, since a step facing the normal direction of the ferrite 72 is formed in a part of the main coil 74, the configuration of the disk-type coil 71 can be simplified. Further, since a step is formed in a part of the ferrite 72 so as to face the normal direction of the ferrite 72, the configuration of the disk-type coil 71 can be simplified.
(第4実施例)
 次に、第4実施例について説明する。図18は、第4実施例に係るディスク型コイル71(電力伝送用コイル)、及びその周辺機器の構成を模式的に示す説明図である。図18(a)は平面図、(b)は電線に電流を流したときに生じる磁束密度を示す説明図、(c)は(a)に示すA-A’断面図、(d)は(a)に示すB-B’断面図を示している。なお、ディスク型コイル71は、図1に示した地上コイル14または車両用コイル35である。
(Fourth embodiment)
Next, a fourth embodiment will be described. FIG. 18 is an explanatory view schematically showing the configuration of the disk-type coil 71 (coil for power transmission) and its peripheral devices according to the fourth embodiment. 18A is a plan view, FIG. 18B is an explanatory diagram showing the magnetic flux density generated when a current is passed through the electric wire, FIG. 18C is a cross-sectional view along AA ′ shown in FIG. 18A, and FIG. A cross-sectional view taken along line BB ′ shown in a) is shown. The disk type coil 71 is the ground coil 14 or the vehicle coil 35 shown in FIG.
 そして、図18(a)~(d)に示すように、主コイル74が巻回されている領域のうちの図中右側の半分が下方に窪んだ窪み部p4とされている。即ち、窪み部p4は、その他の領域と対比して主コイル74から蓋体81までの距離が長くなっている。窪み部p4が磁束変化部であり、その他の領域が一般部とされている。こうすることにより、図18(b)に示すように、窪み部p4が形成されている領域R10、R11の磁束密度B10、B11が、領域R2、R3の磁束密度B2、B3と対比して小さくなる。即ち、領域R1の磁束密度をB1とした場合、(B2、B3)>(B10、B11)>B1なる関係を有する。 Then, as shown in FIGS. 18A to 18D, the right half of the region around which the main coil 74 is wound is a recessed portion p4 that is recessed downward. That is, the recess p4 has a longer distance from the main coil 74 to the lid 81 as compared with other regions. The hollow portion p4 is a magnetic flux changing portion, and the other region is a general portion. By doing so, as shown in FIG. 18B, the magnetic flux densities B10 and B11 of the regions R10 and R11 where the recess p4 is formed are smaller than the magnetic flux densities B2 and B3 of the regions R2 and R3. Become. That is, when the magnetic flux density in the region R1 is B1, there is a relationship of (B2, B3)> (B10, B11)> B1.
 従って、前述した第1実施例と同様に、ディスク型コイル71の周辺に存在する異物を検出することができる。更に、ディスク型コイル71の上面側に枠状の異物が存在する場合には、磁束密度B2、B3と磁束密度B10、B11の比率が変化するので、枠状の異物が置かれていることを検出することができる。また、第4実施例では、窪み部p4の領域にてフェライト72、絶縁材73、及び主コイル74を低い位置に配置する構成としているので、構成を簡素化することが可能となる。 Therefore, as in the first embodiment described above, it is possible to detect foreign matter existing around the disk-type coil 71. Furthermore, when there is a frame-like foreign matter on the upper surface side of the disk-type coil 71, the ratio of the magnetic flux densities B2, B3 and the magnetic flux densities B10, B11 changes, so that the frame-like foreign matter is placed. Can be detected. In the fourth embodiment, since the ferrite 72, the insulating material 73, and the main coil 74 are arranged at a low position in the region of the recess p4, the configuration can be simplified.
(第5実施例)
 次に、第5実施例について説明する。図19は、第5実施例に係るディスク型コイル71(電力伝送用コイル)、及びその周辺機器の構成を模式的に示す説明図である。図19(a)は平面図、(b)は主コイル74に電流を流したときに生じる磁束密度を示す説明図、(c)は(a)に示すA-A’断面図、(d)は(a)に示すB-B’断面図を示している。なお、ディスク型コイル71は、図1に示した地上コイル14または車両用コイル35である。
(5th Example)
Next, a fifth embodiment will be described. FIG. 19 is an explanatory diagram schematically showing the configuration of the disk-type coil 71 (coil for power transmission) and its peripheral devices according to the fifth embodiment. 19A is a plan view, FIG. 19B is an explanatory diagram showing magnetic flux density generated when a current is passed through the main coil 74, FIG. 19C is a sectional view taken along line AA ′ shown in FIG. FIG. 4 shows a cross-sectional view along the line BB ′ shown in FIG. The disk type coil 71 is the ground coil 14 or the vehicle coil 35 shown in FIG.
 そして、図19(a)~(d)に示すように、主コイル74が巻回されている領域のうちの図中右下の隅部が下方に窪んだ窪み部p5とされている。即ち、窪み部p5は、その他の領域と対比して主コイル74から蓋体81までの距離が長くなっている。窪み部p5が磁束変化部であり、その他の領域が一般部とされている。こうすることにより、図19(b)に示すように、窪み部p5が形成されている領域R12、R13の磁束密度B12、B13が、領域R2、R3の磁束密度B2、B3と対比して小さくなる。即ち、領域R1の磁束密度をB1とした場合、(B2、B3)>(B12、B13)>B1なる関係を有する。 Then, as shown in FIGS. 19A to 19D, the lower right corner in the figure of the region around which the main coil 74 is wound is a recess p5 that is recessed downward. That is, the distance from the main coil 74 to the lid 81 is longer in the recess p5 than in other regions. The hollow portion p5 is a magnetic flux changing portion, and the other region is a general portion. By doing so, as shown in FIG. 19B, the magnetic flux densities B12 and B13 in the regions R12 and R13 where the recess p5 is formed are smaller than the magnetic flux densities B2 and B3 in the regions R2 and R3. Become. That is, when the magnetic flux density in the region R1 is B1, there is a relationship of (B2, B3)> (B12, B13)> B1.
 従って、前述した第1実施例と同様に、ディスク型コイル71の周辺に存在する異物を検出することができる。更に、ディスク型コイル71の上面側に枠状の異物が存在する場合には、磁束密度B2、B3と磁束密度B12、B13の比率が変化するので、枠状の異物が置かれていることを検出することができる。また、第5実施例では、隅部に窪み部p5を形成し、この領域にてフェライト72、絶縁材73、及び主コイル74を低い位置に配置する構成としているので、構成を簡素化することが可能となる。 Therefore, as in the first embodiment described above, it is possible to detect foreign matter existing around the disk-type coil 71. Furthermore, when there is a frame-like foreign matter on the upper surface side of the disk-type coil 71, the ratio of the magnetic flux densities B2, B3 and the magnetic flux densities B12, B13 changes, so that the frame-like foreign matter is placed. Can be detected. Further, in the fifth embodiment, the depression p5 is formed in the corner, and the ferrite 72, the insulating material 73, and the main coil 74 are arranged in a low position in this region, so that the configuration is simplified. Is possible.
 なお、上述した第3~第5実施例では、フェライト72、絶縁材73、及び主コイル74の高さを低下させる構成としたが、主コイル74の高さを変更せず、フェライト72及び絶縁材73の高さのみを低下させる構成とすることも可能である。 In the third to fifth embodiments described above, the height of the ferrite 72, the insulating material 73, and the main coil 74 is reduced. However, the height of the main coil 74 is not changed, and the ferrite 72 and the insulation are changed. A configuration in which only the height of the material 73 is reduced is also possible.
(第6実施例)
 次に、第6実施例について説明する。図20は、第6実施例に係るディスク型コイル71(電力伝送用コイル)、及びその周辺機器の構成を模式的に示す説明図である。図20(a)は平面図、(b)は主コイル74に電流を流したときに生じる磁束密度を示す説明図、(c)は(a)に示すA-A’断面図、(d)は(a)に示すB-B’断面図を示している。なお、ディスク型コイル71は、図1に示した地上コイル14または車両用コイル35である。
(Sixth embodiment)
Next, a sixth embodiment will be described. FIG. 20 is an explanatory diagram schematically showing the configuration of the disk-type coil 71 (coil for power transmission) and its peripheral devices according to the sixth embodiment. 20A is a plan view, FIG. 20B is an explanatory diagram showing magnetic flux density generated when a current is passed through the main coil 74, FIG. 20C is a cross-sectional view taken along line AA ′ shown in FIG. FIG. 4 shows a cross-sectional view along the line BB ′ shown in FIG. The disk type coil 71 is the ground coil 14 or the vehicle coil 35 shown in FIG.
 そして、図20(a)~(d)に示すように、主コイル74が巻回されている領域のうちの図中右下の隅部が上方に突起した突起部p6とされている。即ち、突起部p6は、その他の領域と対比して主コイル74から蓋体81までの距離が短くなっている。突起部p6が磁束変化部であり、その他の領域が一般部とされている。こうすることにより、図20(b)に示すように、突起部p6が形成されている領域R14、R15の磁束密度B14、B15が、領域R2、R3の磁束密度B2、B3と対比して大きくなる。即ち、領域R1の磁束密度をB1とした場合、(B14、B15)>(B2、B3)>B1なる関係を有する。 Then, as shown in FIGS. 20A to 20D, the lower right corner in the drawing of the region around which the main coil 74 is wound is a protruding portion p6 protruding upward. That is, the distance from the main coil 74 to the lid 81 is shorter in the protrusion p6 than in other regions. The protrusion p6 is a magnetic flux change part, and the other region is a general part. As a result, as shown in FIG. 20B, the magnetic flux densities B14 and B15 of the regions R14 and R15 where the protrusions p6 are formed are larger than the magnetic flux densities B2 and B3 of the regions R2 and R3. Become. That is, when the magnetic flux density in the region R1 is B1, there is a relationship of (B14, B15)> (B2, B3)> B1.
 従って、前述した第1実施例と同様に、ディスク型コイル71の周辺に存在する異物を検出することができる。更に、ディスク型コイル71の上面側に枠状の異物が存在する場合には、磁束密度B2、B3と磁束密度B14、B15の比率が変化するので、枠状の異物が置かれていることを検出することができる。また、第6実施例では、隅部に突起部p6を形成し、この領域にてフェライト72、絶縁材73、及び主コイル74を高い位置に配置する構成としているので、構成を簡素化することが可能となる。 Therefore, as in the first embodiment described above, it is possible to detect foreign matter existing around the disk-type coil 71. Further, when there is a frame-like foreign matter on the upper surface side of the disk-type coil 71, the ratio of the magnetic flux densities B2, B3 and the magnetic flux densities B14, B15 changes, so that the frame-like foreign matter is placed. Can be detected. Further, in the sixth embodiment, the projecting portion p6 is formed at the corner, and the ferrite 72, the insulating material 73, and the main coil 74 are arranged at a high position in this region, so that the configuration is simplified. Is possible.
 なお、上述した第6実施例では、フェライト72、絶縁材73、及び主コイル74の高さを上昇させる構成としたが、フェライト72、及び絶縁材73の高さを変更せず、主コイル74の高さのみを上昇させる構成とすることも可能である。 In the above-described sixth embodiment, the height of the ferrite 72, the insulating material 73, and the main coil 74 is increased. However, the height of the ferrite 72 and the insulating material 73 is not changed, and the main coil 74 is changed. It is also possible to adopt a configuration that raises only the height of the.
 また、上述した第3~第6実施例では、図1に示した地上コイル14について説明したが、車両用コイル35についても同様に、窪み部或いは突起部を形成することにより、枠状の異物が存在することを検出することができる。 Further, in the third to sixth embodiments described above, the ground coil 14 shown in FIG. 1 has been described. Similarly, the vehicle coil 35 is also formed with a hollow portion or a protruding portion so that a frame-like foreign object is formed. Can be detected.
[第3実施形態の説明]
 次に、本発明の第3実施形態を、第7実施例に基づいて説明する。第3実施形態では、フェライト72、絶縁材73、及び主コイル74を変化させず、電線の端部を1回或いは複数回だけ巻回してサブコイルを形成することにより、一般部と磁束変化部を形成する。
[Description of Third Embodiment]
Next, 3rd Embodiment of this invention is described based on 7th Example. In the third embodiment, the ferrite 72, the insulating material 73, and the main coil 74 are not changed, and the end portion of the electric wire is wound only once or a plurality of times to form a subcoil, so that the general portion and the magnetic flux changing portion are changed. Form.
(第7実施例)
 図21は、第7実施例に係るディスク型コイル71(電力伝送用コイル)、及びその周辺機器の構成を模式的に示す説明図である。図21(a)は平面図、(b)は主コイル74に電流を流したときに生じる磁束密度を示す説明図である。なお、ディスク型コイル71は、図1に示した地上コイル14または車両用コイル35である。
(Seventh embodiment)
FIG. 21 is an explanatory view schematically showing the configuration of the disk-type coil 71 (coil for power transmission) and its peripheral devices according to the seventh embodiment. FIG. 21A is a plan view, and FIG. 21B is an explanatory diagram showing the magnetic flux density generated when a current is passed through the main coil 74. The disk type coil 71 is the ground coil 14 or the vehicle coil 35 shown in FIG.
 第7実施例では、図21に示すように主コイル74の内側の電線を利用して、絶縁材73の上面に矩形のループ状を成すサブコイル91を形成している。即ち、電線を渦巻き状に巻回した主コイル74は、中央が開口部Q1とされ、この開口部にサブコイル91が形成されている。そして、主コイル74に電流を流すことにより、渦巻き状のループに電流が流れ、これと同時にサブコイル91に電流が流れる。サブコイル91に電流が流れることにより、ディスク型コイル71の磁束密度に変化が生じる。 In the seventh embodiment, as shown in FIG. 21, a sub-coil 91 having a rectangular loop shape is formed on the upper surface of the insulating material 73 using an electric wire inside the main coil 74. That is, the main coil 74 in which the electric wire is wound in a spiral shape has an opening Q1 at the center, and a subcoil 91 is formed in the opening. By passing a current through the main coil 74, a current flows through the spiral loop, and at the same time, a current flows through the subcoil 91. When the current flows through the subcoil 91, the magnetic flux density of the disk type coil 71 changes.
 具体的には、図21(b)に示すように、領域R16の磁束密度B16は、周囲の領域R2の磁束密度B2よりも大きくなり、領域R17の磁束密度B17は、磁束密度B2よりも小さくなる。即ち、領域R1の磁束密度をB1とした場合、B16>(B2、B3)>B17>B1なる関係を有する。領域R16、R17が磁束変化部であり、その他の領域が一般部である。 Specifically, as shown in FIG. 21B, the magnetic flux density B16 in the region R16 is larger than the magnetic flux density B2 in the surrounding region R2, and the magnetic flux density B17 in the region R17 is smaller than the magnetic flux density B2. Become. That is, when the magnetic flux density in the region R1 is B1, the relationship is B16> (B2, B3)> B17> B1. Regions R16 and R17 are magnetic flux changing portions, and the other regions are general portions.
 従って、前述した第1実施例と同様に、ディスク型コイル71の周辺に存在する異物を検出することができる。更に、ディスク型コイル71の上面側に枠状の異物が存在する場合には、磁束密度B2、B3と磁束密度B16、B17の比率が変化するので、枠状の異物が置かれていることを検出することができる。また、第7実施例では、主コイル74の端部の電線を利用してサブコイル91を形成するので、簡単な構成で磁束変化部と一般部を形成することが可能となる。更に、主コイル74の中央の開口部Q1にサブコイル91を形成するので、電線を容易に配置することができる。なお、図21では、主コイル74を1回だけ巻回してサブコイル91を形成する例について説明したが、複数回巻回してサブコイル91を形成することも可能である。 Therefore, as in the first embodiment described above, it is possible to detect foreign matter existing around the disk-type coil 71. Further, when there is a frame-like foreign matter on the upper surface side of the disk-type coil 71, the ratio of the magnetic flux density B2, B3 and the magnetic flux density B16, B17 changes, so that the frame-like foreign matter is placed. Can be detected. In the seventh embodiment, since the subcoil 91 is formed by using the electric wire at the end of the main coil 74, the magnetic flux changing portion and the general portion can be formed with a simple configuration. Furthermore, since the subcoil 91 is formed in the central opening Q1 of the main coil 74, the electric wires can be easily arranged. In FIG. 21, the example in which the main coil 74 is wound only once to form the subcoil 91 has been described. However, the subcoil 91 can be formed by winding a plurality of turns.
 また、第7実施例では、図1に示した地上コイル14について説明したが、車両用コイル35についても同様に、サブコイルを形成することにより、枠状の異物が存在することを検出することができる。 In the seventh embodiment, the ground coil 14 shown in FIG. 1 has been described. Similarly, it is possible to detect the presence of a frame-like foreign matter by forming a sub-coil for the vehicle coil 35 as well. it can.
 以上、本発明の非接触電力伝送装置の電力伝送用コイル構造を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。 As mentioned above, although the coil structure for electric power transmission of the non-contact electric power transmission apparatus of this invention was demonstrated based on embodiment of illustration, this invention is not limited to this, The structure of each part has the same function. It can be replaced with any configuration.
 例えば、上述した実施形態では、車両用コイル35の下面側にサーチコイル36を設け、地上コイル14の上面側にサーチコイル19を設ける例について説明したが、本発明はこれに限定されるものではなく、少なくとも一方にサーチコイルを設ける構成とすることもできる。例えば、地上コイル14の上面側にのみサーチコイル19を設ける構成とすれば、地上コイル14の近傍に存在する異物を検出することができる。また、車両用コイル35の下面にのみサーチコイル36を設ける構成とすれば、車両用コイル35の近傍に存在する異物を検出することができる。 For example, in the above-described embodiment, the example in which the search coil 36 is provided on the lower surface side of the vehicle coil 35 and the search coil 19 is provided on the upper surface side of the ground coil 14 has been described, but the present invention is not limited to this. Alternatively, at least one of the search coils may be provided. For example, if the search coil 19 is provided only on the upper surface side of the ground coil 14, it is possible to detect foreign matter existing in the vicinity of the ground coil 14. Further, if the search coil 36 is provided only on the lower surface of the vehicle coil 35, foreign matter existing in the vicinity of the vehicle coil 35 can be detected.
 10 商用電源
 11 直流電源
 12 インバータ
 13 共振コンデンサ
 14 地上コイル
 15 地上側制御部
 16 電圧・電流・温度センサ
 17 無線LAN
 18 校正スイッチ
 19 サーチコイル
 19L センサコイル
 20 電圧検出制御部
 21 基準電圧記憶部
 22 表示部
 31 バッテリ
 32 リレーボックス
 33 整流回路
 34 共振コンデンサ
 35 車両用コイル
 36 サーチコイル
 37 電圧検出制御部
 38 電圧・電流・温度センサ
 39 車両側制御部
 40 車両ネットワーク
 41 無線LAN
 42 表示部
 43 基準電圧記憶部
 44 校正スイッチ
 51 マルチプレクサ
 52 差動増幅部
 53 整流器
 54 フィルタ
 55 CPU
 71 ディスク型コイル
 72 フェライト(磁性体)
 73 絶縁材
 74 主コイル
 75a、75b 端子
 81 蓋体
 82 金属ケース
 83 異物
 91 サブコイル
 100 非接触充電システム
 101 車両側装置
 102 給電装置
DESCRIPTION OF SYMBOLS 10 Commercial power supply 11 DC power supply 12 Inverter 13 Resonance capacitor 14 Ground coil 15 Ground side control part 16 Voltage / current / temperature sensor 17 Wireless LAN
18 Calibration Switch 19 Search Coil 19L Sensor Coil 20 Voltage Detection Control Unit 21 Reference Voltage Storage Unit 22 Display Unit 31 Battery 32 Relay Box 33 Rectifier Circuit 34 Resonance Capacitor 35 Coil for Vehicle 36 Search Coil 37 Voltage Detection Control Unit 38 Voltage / Current / Temperature sensor 39 Vehicle side control unit 40 Vehicle network 41 Wireless LAN
42 Display Unit 43 Reference Voltage Storage Unit 44 Calibration Switch 51 Multiplexer 52 Differential Amplifier 53 Rectifier 54 Filter 55 CPU
71 Disc type coil 72 Ferrite (magnetic material)
73 Insulating material 74 Main coil 75a, 75b Terminal 81 Lid 82 Metal case 83 Foreign object 91 Subcoil 100 Non-contact charging system 101 Vehicle side device 102 Power feeding device

Claims (7)

  1.  非接触電力伝送装置に用いられる電力伝送用コイルの構造において、
     前記電力伝送用コイルは、
     平板形状を成す磁性体と、前記磁性体に対して電力の送信側または受信側となる面に設けられ、渦巻き状に巻かれた主コイルと、を含み、
     更に、所定の磁束密度を発生する領域である一般部と、前記一般部とは異なる磁束密度を発生する領域である磁束変化部と、を設けたこと
     を特徴とする非接触電力伝送装置の電力伝送用コイル構造。
    In the structure of the coil for power transmission used in the non-contact power transmission device,
    The power transmission coil is:
    A magnetic body having a flat plate shape, and a main coil that is provided on a surface on the power transmission side or reception side of the magnetic body and wound in a spiral shape,
    Further, the power of the non-contact power transmission apparatus is provided with a general part that generates a predetermined magnetic flux density and a magnetic flux changing part that generates a magnetic flux density different from the general part. Coil structure for transmission.
  2.  前記磁性体の一部に切欠部を形成することにより、前記磁束変化部を形成すること
     を特徴とする請求項1に記載の非接触電力伝送装置の電力伝送用コイル構造。
    The coil structure for electric power transmission of the non-contact electric power transmission device according to claim 1, wherein the magnetic flux changing part is formed by forming a notch part in a part of the magnetic body.
  3.  前記磁性体に形成された切欠部に、前記主コイル端部の電線を挿通することにより、前記主コイル端部の電線を主コイルの外部へ引き出すこと
     を特徴とする請求項2に記載の非接触電力伝送装置の電力伝送用コイル構造。
    The non-wire according to claim 2, wherein the wire at the end of the main coil is pulled out of the main coil by inserting the wire at the end of the main coil into the notch formed in the magnetic body. Coil structure for power transmission of a contact power transmission device.
  4.  前記主コイルの一部に、前記平板形状を成す磁性体の法線方向を向く段差を設けることにより、前記磁束変化部を形成すること
     を特徴とする請求項1に記載の非接触電力伝送装置の電力伝送用コイル構造。
    2. The contactless power transmission device according to claim 1, wherein the magnetic flux changing portion is formed by providing a step in the normal direction of the magnetic material having the flat plate shape in a part of the main coil. Coil structure for power transmission.
  5.  前記平板形状を成す磁性体の一部に、該磁性体の法線方向を向く段差を設けることにより、前記磁束変化部を形成すること
     を特徴とする請求項1に記載の非接触電力伝送装置の電力伝送用コイル構造。
    2. The contactless power transmission device according to claim 1, wherein the magnetic flux changing portion is formed by providing a step in a normal direction of the magnetic material in a part of the flat magnetic material. 3. Coil structure for power transmission.
  6.  前記主コイルを形成する電線の端部に接続され、ループ状をなすサブコイルを備え、前記主コイルを励磁する際に、前記サブコイルを励磁することにより、前記磁束変化部を形成すること
     を特徴とする請求項1に記載の非接触電力伝送装置の電力伝送用コイル構造。
    A sub-coil that is connected to an end of an electric wire that forms the main coil and has a loop shape, and when exciting the main coil, the magnetic flux changing section is formed by exciting the sub-coil. The coil structure for electric power transmission of the non-contact electric power transmission apparatus of Claim 1.
  7.  前記主コイルは中央が開口部とされ、前記サブコイルは、前記開口部に形成されること
     を特徴とする請求項6に記載の非接触電力伝送装置の電力伝送用コイル構造。
    The coil structure for power transmission of the non-contact power transmission device according to claim 6, wherein the main coil has an opening at the center, and the sub-coil is formed at the opening.
PCT/JP2015/052541 2015-01-29 2015-01-29 Power transmission coil structure in contactless power transmission device WO2016121055A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052541 WO2016121055A1 (en) 2015-01-29 2015-01-29 Power transmission coil structure in contactless power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052541 WO2016121055A1 (en) 2015-01-29 2015-01-29 Power transmission coil structure in contactless power transmission device

Publications (1)

Publication Number Publication Date
WO2016121055A1 true WO2016121055A1 (en) 2016-08-04

Family

ID=56542707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052541 WO2016121055A1 (en) 2015-01-29 2015-01-29 Power transmission coil structure in contactless power transmission device

Country Status (1)

Country Link
WO (1) WO2016121055A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263970A (en) * 2017-10-19 2020-06-09 罗伯特·博世有限公司 Device for contactless transmission of data and energy and for angle measurement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917665A (en) * 1995-06-28 1997-01-17 Toyota Autom Loom Works Ltd Coupler for battery charger
JP2012191704A (en) * 2011-03-09 2012-10-04 Panasonic Corp Non contact charging module and non contact charger
WO2012157454A1 (en) * 2011-05-19 2012-11-22 ソニー株式会社 Power supply device, power supply system, and electronic device
JP2012249401A (en) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd Non-contact power supply device
JP2013192391A (en) * 2012-03-14 2013-09-26 Sony Corp Detecting apparatus, power receiving apparatus, power transmitting apparatus, and contactless power supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917665A (en) * 1995-06-28 1997-01-17 Toyota Autom Loom Works Ltd Coupler for battery charger
JP2012191704A (en) * 2011-03-09 2012-10-04 Panasonic Corp Non contact charging module and non contact charger
WO2012157454A1 (en) * 2011-05-19 2012-11-22 ソニー株式会社 Power supply device, power supply system, and electronic device
JP2012249401A (en) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd Non-contact power supply device
JP2013192391A (en) * 2012-03-14 2013-09-26 Sony Corp Detecting apparatus, power receiving apparatus, power transmitting apparatus, and contactless power supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263970A (en) * 2017-10-19 2020-06-09 罗伯特·博世有限公司 Device for contactless transmission of data and energy and for angle measurement
CN111263970B (en) * 2017-10-19 2022-06-24 罗伯特·博世有限公司 Device for contactless transmission of data and energy and for angle measurement
US11373801B2 (en) 2017-10-19 2022-06-28 Robert Bosch Gmbh Device for the contactless transmission of data and of energy and for angle measurement

Similar Documents

Publication Publication Date Title
JP6566446B2 (en) System, method and apparatus for foreign object detection loop based on inductive heat sensing
EP3249783B1 (en) Power transmission system, foreign matter detection device, and coil device
US9829454B2 (en) Coil unit and apparatus for detecting foreign matter
US9933378B2 (en) Coil unit and apparatus for detecting foreign matter
US10180361B2 (en) Temperature estimation device and temperature estimation method for contactless power-reception device
WO2014156655A1 (en) Contactless power transmission device
WO2015037291A1 (en) Contactless power supply device capable of detecting metallic foreign objects and metallic foreign object detection method therefor
CN114072308B (en) Active harmonic cancellation
US10308124B2 (en) Power reception apparatus and power transmission apparatus
JP6330637B2 (en) Power receiving device
JP7231357B2 (en) Conductor deterioration detector
TW201729511A (en) Method for operating a monitoring apparatus for monitoring an inductive energy transmission apparatus
JP2015008552A (en) Non-contact power charger
WO2016121055A1 (en) Power transmission coil structure in contactless power transmission device
KR20190077526A (en) Apparatus for induction charging an electric vehicle and method for detecting electrically conductive foreign matter in such apparatus
JP2015008549A (en) Non-contact power transmission device
WO2013061617A1 (en) Contactless electrical power transmission device, and electricity supply device and electricity reception device using same
JP6458466B2 (en) Coil unit
CN110518715A (en) Detection device for foreign matter
JP2015008546A (en) Non-contact power transmission device
JP2020156307A (en) Non-contact power supply device
JP5757269B2 (en) Non-contact power feeding device
JP6001471B2 (en) Power transmission device and power reception device
JP6428420B2 (en) Contactless power supply system
JP6285810B2 (en) Coil unit in non-contact power feeder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15879952

Country of ref document: EP

Kind code of ref document: A1