WO2016120237A1 - Stranded wire rope - Google Patents
Stranded wire rope Download PDFInfo
- Publication number
- WO2016120237A1 WO2016120237A1 PCT/EP2016/051506 EP2016051506W WO2016120237A1 WO 2016120237 A1 WO2016120237 A1 WO 2016120237A1 EP 2016051506 W EP2016051506 W EP 2016051506W WO 2016120237 A1 WO2016120237 A1 WO 2016120237A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- strands
- wire rope
- separator
- core
- rope according
- Prior art date
Links
- 229920003023 plastic Polymers 0.000 claims abstract description 52
- 239000004033 plastic Substances 0.000 claims abstract description 52
- 229910000831 Steel Inorganic materials 0.000 claims description 13
- 239000010959 steel Substances 0.000 claims description 13
- -1 polyethylene Polymers 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000004743 Polypropylene Substances 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- 229910000677 High-carbon steel Inorganic materials 0.000 claims description 5
- 229910001209 Low-carbon steel Inorganic materials 0.000 claims description 5
- 239000004952 Polyamide Substances 0.000 claims description 5
- 229920002647 polyamide Polymers 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 4
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 4
- 238000001125 extrusion Methods 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical group C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 claims description 2
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 2
- 229920002492 poly(sulfone) Polymers 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 238000005470 impregnation Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 3
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 229920010741 Ultra High Molecular Weight Polyethylene (UHMWPE) Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000006223 plastic coating Substances 0.000 description 1
- 229920003366 poly(p-phenylene terephthalamide) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/16—Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/16—Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
- D07B1/162—Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber enveloping sheathing
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
- D07B1/0673—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/16—Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
- D07B1/165—Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber inlay
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/10—Rope or cable structures
- D07B2201/1012—Rope or cable structures characterised by their internal structure
- D07B2201/1016—Rope or cable structures characterised by their internal structure characterised by the use of different strands
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2019—Strands pressed to shape
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2047—Cores
- D07B2201/2052—Cores characterised by their structure
- D07B2201/2059—Cores characterised by their structure comprising wires
- D07B2201/2061—Cores characterised by their structure comprising wires resulting in a twisted structure
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2047—Cores
- D07B2201/2052—Cores characterised by their structure
- D07B2201/2059—Cores characterised by their structure comprising wires
- D07B2201/2062—Cores characterised by their structure comprising wires comprising fillers
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2071—Spacers
- D07B2201/2072—Spacers characterised by the materials used
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2071—Spacers
- D07B2201/2073—Spacers in circumferencial direction
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2075—Fillers
- D07B2201/2076—Fillers having a lubricant function
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/30—Inorganic materials
- D07B2205/3021—Metals
- D07B2205/3025—Steel
- D07B2205/3046—Steel characterised by the carbon content
- D07B2205/305—Steel characterised by the carbon content having a low carbon content, e.g. below 0,5 percent respectively NT wires
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/30—Inorganic materials
- D07B2205/3021—Metals
- D07B2205/3067—Copper (Cu)
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2401/00—Aspects related to the problem to be solved or advantage
- D07B2401/20—Aspects related to the problem to be solved or advantage related to ropes or cables
- D07B2401/2065—Reducing wear
- D07B2401/207—Reducing wear internally
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2401/00—Aspects related to the problem to be solved or advantage
- D07B2401/20—Aspects related to the problem to be solved or advantage related to ropes or cables
- D07B2401/208—Enabling filler penetration
Definitions
- the present invention relates to a wire rope, in particular to a high performance stranded wire rope, a method for producing such a wire rope and the applications of such a wire rope.
- the steel wire rope is impregnated by a special process whereby the individual strand gaps within the rope are filled with a sealing thermoplastic material forming a protective layer between the individual strands and around the core of the rope.
- plastic impregnation protects the rope from dirt and dust penetration and other corrosive materials, and also from internal wear from friction between the strands. Therefore, the life of the rope is greatly prolonged.
- plastic impregnated wire rope has several advantages. It has no stretch qualities because the thermo-plastic sticks the strands together; this is hugely beneficial for rotating ropes too as this process prevents the rope from twisting apart. Another benefit is their bend qualities: the plastic filling reduces wire contact bending stresses and so improving load transfer and sharing between wires and strands. Impregnated plastic results in continued flexibility, much more resistant to shock loading and a great increase in the working life of the rope.
- Plastic impregnated wire rope is useful in more extreme conditions (e.g. dirty, dusty or chemical environments). It is also often used in the coal or ore industry, piling operations and shovel cranes, as well as applications with very high wear levels.
- a wire rope comprising a core, a plurality of outer strands and a plurality of separator strands laid on said core, a first plastic jacket around said plurality of outer strands and said plurality of separator strands, wherein said plurality of separator strands extend from said core and in-between each pair of said plurality of outer strands so as to produce and maintain gaps between said pair of said plurality of outer strands.
- separator strands refer to strands used as wormings, spacers or separator means for maintaining a gap between each pair of the outer strands.
- Separator strands or wormings are distinguished from fillers in the prior art. The location and function of wormings are different from fillers. Separator strands or wormings are sitting in-between each pair of the outer strands while fillers would fill in voids in-between two adjacent layers of strands. Separator strands or wormings are used to remain the gaps between each pair of strands while fillers are usually used to fill in the gaps in the ropes to make the rope more circular. Separator strands or wormings have the same lay length of the layer that they are associated with while fillers have the same lay length of the filaments they touch.
- 'strands' can also be interpreted as 'cords'. It is typically made up of several single filaments.
- 'Single filament' in this context is a wire of a single, uninterrupted length.
- individual wires having an uninterrupted length need not be the same.
- Each of the wires maybe of a different type, depending on its needed properties.
- the filaments or wires are twisted with an intended lay length to form a strand or a cord. Either all filaments receive the same lay of which typical examples are compact cords (wherein all filament diameters are equal), Warrington or Seale strands (wherein filaments fit together in a certain pattern).
- strands can be made in layers wherein a layer of filaments is twisted with a layer lay length around a center filament or precursor strand resulting in a layered cord (for example a 3+9+15 cords wherein a core strand of 3 filaments twisted together is surrounded by a layer of 9 filaments and finally with a layer of 15 filaments).
- the steel strands are so called 7x7 cord which consists of a core strand of 7 filaments around which 6 strands each comprising 7 filaments are twisted with a same lay length.
- the core of the wire rope can also be a wire strand or an independent wire rope.
- said core can be synthetic rope, such as made of fibers of polypropylene, nylon, polyester.
- Yarns of high modulus fibers are preferably used, for example yarns of fibers of liquid crystal polymer (LCP), aramid such as poly(p-phenylene terephthalamide) (known as Kevlar®), high molecular weight polyethylene (HMwPE), ultra-high molecular weight polyethylene (UHMwPE) such as Dyneema® and PBO (poly(p-phenylene- 2,6-benzobisoxazole).
- said core is an independent steel wire rope.
- the plurality of outer strands and the plurality of separator strands can be made from metals or metal alloys, such as copper, aluminum or steel.
- the hardness of said plurality of separator strands is lower than that of said plurality of outer strands of the wire rope.
- said core, said plurality of outer strands, and said plurality of separator strands are all made from steels.
- said core and said plurality of outer strands are made from high carbon steel having a carbon content in the range of 0.2 to 1.5 weight percent and said plurality of separator strands are made from low carbon steel having a carbon content in the range of 0.02 to 0.2 weight percent.
- a high carbon steel can have a carbon content ranging between 0.2 wt % and 0.8 wt %, a manganese content from 0.3 wt % to 0.80 wt%, a silicon content ranging from 0.10 wt % to 0.50 wt %, a maximum sulphur content of 0.05 wt %, a maximum phosphorus content of 0.05 wt %, the remainder being iron and possible traces of copper, chromium, nickel, vanadium, molybdenum or boron.
- the wire of outer strands may also have the following composition: a carbon content ranging between 0.8 wt %to 1.0 wt %, a manganese content from 0.5 wt %to 0.8 wt %, a silicon content ranging from 0.1 wt % to 5.0 wt %, a chromium content from 0.1 wt % to 0.5 wt %, a vanadium content from 0.02 wt % to 0.2 wt %, the remainder being iron and possible traces.
- a carbon content ranging between 0.8 wt %to 1.0 wt %
- a manganese content from 0.5 wt %to 0.8 wt %
- a silicon content ranging from 0.1 wt % to 5.0 wt %
- a chromium content from 0.1 wt % to 0.5 wt %
- a vanadium content from 0.02 wt % to
- the wires of the outer strand have a composition of 0.84 wt % carbon, 0.67 wt % manganese, 0.23 wt % silicon, 0.24 wt % chromium, 0.075 wt % vanadium, the remainder being iron and possible traces.
- a low carbon steel composition is a steel composition where - possibly with exception for silicon and manganese - all the elements have a content of less than 0.50 % by weight, e.g. less than 0.20 % by weight, e.g. less than 0.10 % by weight.
- E.g. silicon is present in amounts of maximum 1.0 % by weight, e.g. maximum 0.50 % by weight, e.g.
- the carbon content ranges up to 0.20 % by weight, e.g. ranging up to 0.06 % by weight.
- the minimum carbon content can be about 0.02 % by weight.
- said core and said plurality of outer strands are made from steels (either high carbon steel or low carbon steel), and said plurality of separator strands are made from copper.
- the use of copper as the material for separator strands, or low carbon steel as the material for separator strands while high carbon steel as the material for the outer strands has the advantage that these separator strands can be the "weak" parts when fretting occurs since they are relatively soft. In this way, the outer strands are not suffering of huge fretting due to the metal separator strands.
- said wire rope comprising a first plastic jacket penetrates in-between said plurality of outer strands and said plurality of separator strands.
- the separator means between the outer strands of the wire rope are in the form of strands allowing that the plastic goes around the separator strands and so the plastic is not stopped by the separators or wormings.
- the plastic jacket can penetrate into said plurality of separator strands. This is advantageous over fiber-wormings as there is no or no sufficient space for fiber wormings with respect to plastic penetration.
- the separator strand can be easily handled than a single wire with the same diameter during punching and cabling the wire rope since a strand has better flexibility than a single wire.
- separator strands on the one hand provides better fretting resistance over plastic or fibrous rod separators, and on the other hand assures that there is a minimum gap between the outer strands facilitating the plastic to flow and pass the separator strands during jacketing in order to have full plastic penetration. Consequently, the performance of the rope can be significantly improved as a benefit of full penetration of plastic jacket.
- said wire rope further comprises a second plastic jacket on said core or the wire rope.
- the first plastic jacket on said wire rope and the second plastic jacket on said core can be made from polyamide (PA), polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polyurethane (PU), polysulfone (PES), ethylene tetrafluoroethylene (ETFE) and others.
- the first and second plastic jacket can be made from the same or different material.
- the plastic jacket is formed to extend over the periphery of the wire rope by a thickness preferably in the range of 0.5 mm to 5 mm, e.g. 2 to 4 mm.
- the second plastic jacket thereon can result in a more round cross-section and the separator strands can be precisely laid on the plastic jacket and placed in-between the outer strands.
- the cushion between the core and the separator strands as well as the outer strands can be avoided.
- each of said plurality of separator strands may be covered with a third plastic jacket as to reduce the cushion between the separator strands and the outer strands.
- the plastic coating is the same material of the first and second plastic jackets.
- the first, the second and/or the third plastic jacket can be made by any suitable method, preferably by extrusion.
- the plurality of outer strands and the plurality of separator strands may both have a near circular cross-section.
- the plurality of outer strands have a same size and the plurality of the separator strands are also the same.
- the ratio of the diameter of said plurality of outer strands to the diameter of said plurality of separator strands is in the range of 3 to 10, e.g. 6 to 10. This ratio plays the role to control the magnitude of the gaps between the outer strands and the filling ratio of metals in the wire rope.
- the diameter of said plurality of outer strands is in the range of 2 to 40 mm, e.g. in the range of 10 to 30 mm or in the range of 15 to 25 mm.
- the diameter of said wire rope is in the range of 5 to 200 mm, e.g. in the range of 10 to 100 mm or in the range of 30 to 50 mm.
- the metal or metal reinforced separator strands can be especially used for big diameter ropes where the gap between the separator strands and the ropes are rather big (e.g. about 1 mm, about 2 mm or even bigger) and therefore allow the plastic going easily around the separators. For medium-small diameter ropes, this will be very important when jacketing with full penetration is needed.
- Figure 1 schematically shows an example of the wire rope according to the present invention.
- Figure 2 schematically shows another example of the wire rope according to the present invention.
- FIG. 1 A construction of the wire rope of the present invention is illustrated in Fig.
- the wire rope has a diameter of 44 or 71 mm and a configuration of EP8xK36WS+IWRC (1 +6-8-8+8).
- EP refers to the wire rope covered with a polymer.
- the wire rope has 8 compacted outer strands having 36 wires in combined parallel lay, indicated by 8xK36WS.
- the core is an independent wire rope (IWRC).
- the entire rope has a Warrington construction (1 +6-8-8+8), i.e. it is a parallel lay strand construction having an outer layer of wires containing alternately large cords and small cords, the number of cords in the outer layer being twice that in the underlying layer of cords.
- the wire rope 10 has an independent wire rope core (IWRC) 12 which is provided with a plastic jacket 14.
- the plastic jacket 14 is made of a hard plastic material, such as polyamide.
- the independent wire rope 12 can be synthetic rope.
- the independent wire rope 12 is preferably a steel wire rope and more preferably the interior of the wire rope 12 is lubricated, e.g. with a conventional asphaltic lubricant 16 which is entrapped within the core 12 by the plastic jacket 14.
- separator strands 17 and 8 compacted outer 18, which are made from metal or alloys.
- the separator strands 17 and the outer strands 18 are made from steel. More preferably, the steel for the outer strands 18 has higher carbon content than that of the separator strands 17.
- the separator strands 17 are provided in-between the compacted outer strands 18 so as to create a gap between each pair of compacted outer strands 18 laid on top of the plastic jacket 14.
- the wire rope 10 is enclosed with a plastic jacket 19.
- the plastic jacket 19 is made of polypropylene and more preferably produced by extrusion.
- the plastic jacket 19 is extruded to extend over the periphery of the wire rope by a thickness in the range of 1 mm to 2 mm, i.e. 1.50 mm.
- Such a wire rope provides a considerable improvement in GAP uniform distribution among 5% to 10%.
- FIG. 2 illustrates another example of the wire rope according to the present invention.
- the wire rope 20 has a 7x7+7x19W construction.
- Steel cords 27 are inserted as separators extending from the core 22 and in- between each pair of plurality of outer strands 28 so as to produce and maintain gaps between each pair of plurality of outer strands 28.
Landscapes
- Ropes Or Cables (AREA)
- Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16701624.5A EP3250749A1 (en) | 2015-01-27 | 2016-01-26 | Stranded wire rope |
BR112017013878A BR112017013878A2 (en) | 2015-01-27 | 2016-01-26 | twisted wire cable |
CN201680006168.0A CN107208368A (en) | 2015-01-27 | 2016-01-26 | Stranded hawser |
RU2017130174A RU2017130174A (en) | 2015-01-27 | 2016-01-26 | MULTI-LINE ROPE |
US15/538,756 US20170370046A1 (en) | 2015-01-27 | 2016-01-26 | Stranded wire rope |
SG11201705015SA SG11201705015SA (en) | 2015-01-27 | 2016-01-26 | Stranded wire rope |
KR1020177020672A KR20170106970A (en) | 2015-01-27 | 2016-01-26 | Twisted wire rope |
CA2970930A CA2970930A1 (en) | 2015-01-27 | 2016-01-26 | Stranded wire rope |
AU2016212179A AU2016212179A1 (en) | 2015-01-27 | 2016-01-26 | Stranded wire rope |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15152660 | 2015-01-27 | ||
EP15152660.5 | 2015-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016120237A1 true WO2016120237A1 (en) | 2016-08-04 |
Family
ID=52394193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2016/051506 WO2016120237A1 (en) | 2015-01-27 | 2016-01-26 | Stranded wire rope |
Country Status (10)
Country | Link |
---|---|
US (1) | US20170370046A1 (en) |
EP (1) | EP3250749A1 (en) |
KR (1) | KR20170106970A (en) |
CN (1) | CN107208368A (en) |
AU (1) | AU2016212179A1 (en) |
BR (1) | BR112017013878A2 (en) |
CA (1) | CA2970930A1 (en) |
RU (1) | RU2017130174A (en) |
SG (1) | SG11201705015SA (en) |
WO (1) | WO2016120237A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10501887B2 (en) | 2017-03-03 | 2019-12-10 | Bonita Carter | Jacketed wire rope |
US10968566B2 (en) | 2016-04-08 | 2021-04-06 | Gates Corporation | Hybrid cable for reinforcing polymeric articles and reinforced articles |
WO2021204727A1 (en) | 2020-04-08 | 2021-10-14 | Bridon International Limited | Wire rope and an assembly comprising such wire rope |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111278759B (en) * | 2017-10-27 | 2022-05-10 | 贝卡尔特先进帘线阿尔特公司 | Belt comprising a steel cord suitable for wear detection |
CN109281211A (en) * | 2018-08-01 | 2019-01-29 | 江苏杰力钢缆索具有限公司 | A kind of high stability wirerope and preparation method thereof |
CN112779797A (en) * | 2021-01-15 | 2021-05-11 | 江苏兴达钢帘线股份有限公司 | Compact steel cord |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1481801A (en) * | 1924-01-29 | Noble g | ||
FR1339115A (en) * | 1961-11-10 | 1963-10-04 | Multi-layered spiral wire cable | |
US3154910A (en) * | 1961-05-05 | 1964-11-03 | Dictz Alfred | Stranded spiral rope |
CH470531A (en) * | 1968-03-08 | 1969-03-31 | Dietz Gerhard | Wire rope |
US3798350A (en) * | 1972-01-28 | 1974-03-19 | Post Office | Co-axial cable with strength member |
US4534162A (en) * | 1983-08-08 | 1985-08-13 | Amsted Industries Incorporated | Plastic encapsulated wire rope |
GB2167777A (en) * | 1984-12-03 | 1986-06-04 | Amsted Ind Inc | Plastic filled wire rope with strand spacer |
US5386683A (en) | 1991-04-25 | 1995-02-07 | Wire Rope Industries Limited | Method for making a wire rope having a plastic jacketed core with wormings |
JP2003268685A (en) * | 2002-03-08 | 2003-09-25 | Tokyo Seiko Co Ltd | Wire rope |
US7389633B2 (en) | 2005-05-17 | 2008-06-24 | Wire Rope Industries Ltd. | Double jacketed wire rope and method of manufacture thereof |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1116923A (en) * | 1964-08-20 | 1968-06-12 | British Ropes Ltd | Improvements in or relating to ropes, strands and cores |
US4197695A (en) * | 1977-11-08 | 1980-04-15 | Bethlehem Steel Corporation | Method of making sealed wire rope |
US4487010A (en) * | 1983-02-18 | 1984-12-11 | Amsted Industries Incorporated | Multi-layer, parallel lay, coreless wire rope |
US4635432A (en) * | 1985-04-10 | 1987-01-13 | Wire Rope Corporation Of America, Inc. | Method for impregnating and coating wire rope |
CN2128643Y (en) * | 1992-08-07 | 1993-03-24 | 赵忠海 | Mine composite steel wire rope |
CA2109904C (en) * | 1992-12-18 | 2004-09-14 | Pol Bruyneel | Multi-strand steel cord |
FR2707309B1 (en) * | 1993-07-09 | 1995-08-11 | Trefileurope France Sa | Lifting cable. |
BR9500779A (en) * | 1994-03-02 | 1995-10-24 | Inventio Ag | Cable as a support medium for elevators |
IL132299A (en) * | 1998-10-23 | 2003-10-31 | Inventio Ag | Stranded synthetic fiber rope |
NO321272B1 (en) * | 2000-05-31 | 2006-04-10 | Aker Kvaerner Subsea As | The tension member |
BR0209227B1 (en) * | 2001-04-27 | 2014-02-25 | UNSTAILED COMPOSITE ROPE | |
FR2824849B1 (en) * | 2001-05-17 | 2005-06-10 | Trefileurope | DYNAMIC CABLE HAVING IMPROVED PROPERTIES, AND METHOD AND INSTALLATION FOR MANUFACTURING SUCH A CABLE |
JP4108607B2 (en) * | 2001-12-12 | 2008-06-25 | 三菱電機株式会社 | Elevator rope and elevator equipment |
WO2004002868A1 (en) * | 2002-06-27 | 2004-01-08 | Mitsubishi Denki Kabushiki Kaisha | Rope for elevator and method of manufacturing the rope |
CA2393220A1 (en) * | 2002-07-12 | 2004-01-12 | Wire Rope Industries Ltd. - Industries De Cables D'acier Ltee | Plastic impregnated wire rope with internal separating bands |
CA2504394C (en) * | 2005-04-12 | 2009-04-07 | Wire Rope Industries Ltd./Industries De Cables D'acier Ltee | Wire rope with galvanized outer wires |
US7326854B2 (en) * | 2005-06-30 | 2008-02-05 | Schlumberger Technology Corporation | Cables with stranded wire strength members |
BR112014014043A2 (en) * | 2012-01-05 | 2017-06-13 | Bekaert Sa Nv | lift and elevator cable comprising the cable |
JP5976116B2 (en) * | 2012-08-29 | 2016-08-23 | 三菱電機株式会社 | Elevator rope and elevator apparatus using the same |
-
2016
- 2016-01-26 AU AU2016212179A patent/AU2016212179A1/en not_active Abandoned
- 2016-01-26 US US15/538,756 patent/US20170370046A1/en not_active Abandoned
- 2016-01-26 EP EP16701624.5A patent/EP3250749A1/en not_active Withdrawn
- 2016-01-26 SG SG11201705015SA patent/SG11201705015SA/en unknown
- 2016-01-26 WO PCT/EP2016/051506 patent/WO2016120237A1/en active Application Filing
- 2016-01-26 CA CA2970930A patent/CA2970930A1/en not_active Abandoned
- 2016-01-26 KR KR1020177020672A patent/KR20170106970A/en unknown
- 2016-01-26 CN CN201680006168.0A patent/CN107208368A/en active Pending
- 2016-01-26 RU RU2017130174A patent/RU2017130174A/en not_active Application Discontinuation
- 2016-01-26 BR BR112017013878A patent/BR112017013878A2/en not_active Application Discontinuation
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1481801A (en) * | 1924-01-29 | Noble g | ||
US3154910A (en) * | 1961-05-05 | 1964-11-03 | Dictz Alfred | Stranded spiral rope |
FR1339115A (en) * | 1961-11-10 | 1963-10-04 | Multi-layered spiral wire cable | |
CH470531A (en) * | 1968-03-08 | 1969-03-31 | Dietz Gerhard | Wire rope |
US3798350A (en) * | 1972-01-28 | 1974-03-19 | Post Office | Co-axial cable with strength member |
US4534162A (en) * | 1983-08-08 | 1985-08-13 | Amsted Industries Incorporated | Plastic encapsulated wire rope |
GB2167777A (en) * | 1984-12-03 | 1986-06-04 | Amsted Ind Inc | Plastic filled wire rope with strand spacer |
US5386683A (en) | 1991-04-25 | 1995-02-07 | Wire Rope Industries Limited | Method for making a wire rope having a plastic jacketed core with wormings |
JP2003268685A (en) * | 2002-03-08 | 2003-09-25 | Tokyo Seiko Co Ltd | Wire rope |
US7389633B2 (en) | 2005-05-17 | 2008-06-24 | Wire Rope Industries Ltd. | Double jacketed wire rope and method of manufacture thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10968566B2 (en) | 2016-04-08 | 2021-04-06 | Gates Corporation | Hybrid cable for reinforcing polymeric articles and reinforced articles |
US10501887B2 (en) | 2017-03-03 | 2019-12-10 | Bonita Carter | Jacketed wire rope |
WO2021204727A1 (en) | 2020-04-08 | 2021-10-14 | Bridon International Limited | Wire rope and an assembly comprising such wire rope |
Also Published As
Publication number | Publication date |
---|---|
BR112017013878A2 (en) | 2018-01-02 |
EP3250749A1 (en) | 2017-12-06 |
US20170370046A1 (en) | 2017-12-28 |
SG11201705015SA (en) | 2017-08-30 |
KR20170106970A (en) | 2017-09-22 |
CN107208368A (en) | 2017-09-26 |
CA2970930A1 (en) | 2016-08-04 |
RU2017130174A (en) | 2019-03-01 |
AU2016212179A1 (en) | 2017-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170370046A1 (en) | Stranded wire rope | |
KR102098417B1 (en) | Hybrid rope or hybrid strand | |
CA2880609C (en) | Hybrid rope | |
EP3443158B1 (en) | Hoisting rope | |
EP3143196B1 (en) | Cut resistant rope | |
EP2800832A1 (en) | A rope for lifting and an elevator comprising the rope | |
US20230119220A1 (en) | Wire rope and an assembly comprising such wire rope | |
EP3626880A1 (en) | Steel wire rope | |
KR20230137162A (en) | Wire rope | |
EA006350B1 (en) | Combined steel cord |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16701624 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2970930 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15538756 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2016701624 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016212179 Country of ref document: AU Date of ref document: 20160126 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017013878 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11201705015S Country of ref document: SG |
|
ENP | Entry into the national phase |
Ref document number: 20177020672 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017130174 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112017013878 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170627 |