[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016119583A1 - 一种前导序列的发送方法及装置 - Google Patents

一种前导序列的发送方法及装置 Download PDF

Info

Publication number
WO2016119583A1
WO2016119583A1 PCT/CN2016/070390 CN2016070390W WO2016119583A1 WO 2016119583 A1 WO2016119583 A1 WO 2016119583A1 CN 2016070390 W CN2016070390 W CN 2016070390W WO 2016119583 A1 WO2016119583 A1 WO 2016119583A1
Authority
WO
WIPO (PCT)
Prior art keywords
repetition factor
power
preamble
transmit power
preamble sequence
Prior art date
Application number
PCT/CN2016/070390
Other languages
English (en)
French (fr)
Inventor
胡文权
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16742645.1A priority Critical patent/EP3223573B1/en
Publication of WO2016119583A1 publication Critical patent/WO2016119583A1/zh
Priority to US15/637,505 priority patent/US10420032B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and an apparatus for transmitting a preamble sequence.
  • the process of the random access channel (English: Random Access Channel, RACH) of the user equipment (English: User Equipment, abbreviated as: UE) is as follows.
  • the higher layer request triggers the physical layer to perform the preamble transmission.
  • the request includes a preamble index, a target preamble receiving power (PREAMBLE_RECEIVED_TARGET_POWER), a corresponding random access-Radio Network Temporary Identity (RA-RNTI), and a physical random access.
  • Incoming channel (English: Physical Random Access Channel, abbreviation: PRACH) resource information.
  • the preamble transmission power P PRACH is determined according to the following formula.
  • P PRACH min ⁇ P CMAX , c( i), PREAMBLE_RECEIVED_TARGET_POWER+PL c ⁇ _[dBm].
  • P CMAX,c (i) is the configured maximum allowed transmit power of the i-th subframe of the serving cell c where the UE is located
  • PL c is an estimated value of the downlink path loss estimate of the serving cell c by the UE
  • min ⁇ is Take the minimum operation.
  • a preamble sequence is then selected from the set of preamble sequences using a preamble index.
  • the selected preamble sequence is transmitted on the indicated PRACH resource using the selected preamble sequence according to the preamble transmission power P PRACH .
  • the UE detects the physical downlink control channel (English: Physical Downlink Control Channel, PDCCH for short) in the RA-RNTI, and detects the response of the transmitted preamble sequence in the corresponding downlink data block, and the UE responds according to the response.
  • the content sends an upstream transport block.
  • the UE detects the PDCCH with the RA-RNTI, but the corresponding downlink data. If no response is found in the block, the UE determines whether to resend the preamble sequence according to the higher layer indication. Third, if the UE does not receive the response from the network side, the UE determines whether to resend the preamble sequence according to the high layer indication.
  • the Media Access Control (MAC) layer updates the preamble receiving target power and the new PRACH parameter retransmits the preamble sequence.
  • the updated preamble receiving target power is: preambleInitialReceivedTargetPower+DELTA_PREAMBLE+PREAMBLE_TRANSMISSION_COUNTER–1)*powerRampingStep.
  • the preambleInitialReceivedTargetPower is the preamble initial receiving target power, the broadcast information sent from the network side;
  • the powerRampingStep is the power adjustment step size, and is also the broadcast information sent from the network side;
  • the DELTA_PREAMBLE is the preamble sequence format offset value, which is the agreed value of the protocol;
  • PREAMBLE_TRANSMISSION_COUNTER The preamble transmission counter value is obtained based on the current counter value.
  • the physical layer is then instructed to transmit the preamble sequence using the PRACH, the corresponding RA-RNTI, the preamble index, and the updated preamble receive target power.
  • UMTS Universal Mobile Telecommunications System
  • the next available access slot is selected among the available RACH subchannels corresponding to a given access service class (English: Access Service Class, ASC for short).
  • a new signature is randomly selected among the available signatures corresponding to the given ASC.
  • Set the preamble retransmission counter value to Preamble Retrans Max. If the preamble initial power (Preamble_Initial_Power) is less than the preset minimum value, the preamble demand power is set to be between the preamble initial power and the preset minimum value, otherwise it is set as the preamble initial power.
  • the preamble transmit power is set to a preset maximum value; if the preamble demand power is less than the preset minimum value, the preamble transmit power is set to be between the preamble demand power and the preset minimum value.
  • the preamble sequence is transmitted using the selected uplink access slot, signature, and preamble transmission power. If the UE does not detect the acquisition indication of the corresponding signature in the downlink access slot corresponding to the uplink access slot, the next available access slot is selected in the available RACH subchannel corresponding to the given ASC. Giving A new signature is randomly selected among the available signatures corresponding to the determined ASC. Increase the preamble demand power by one power adjustment step (Power Ramp Step [dB]).
  • the UE transmits the physical layer status ("no positive response on the capture indication channel") to the MAC layer and exits. Physical layer random access process. Decrease the preamble retransmission counter by one. If the preamble retransmission counter is greater than 0, the preamble sequence is retransmitted using the selected uplink access slot, new signature, and preamble transmission power. If the preamble retransmission counter is equal to 0, the UE transmits the physical layer status ("no positive response on the acquisition indication channel") to the MAC layer and exits the physical layer random access procedure. If a negative acquisition indication is detected, the UE transmits the physical layer status ("no positive response on the acquisition indication channel") to the MAC layer and exits the physical layer random access procedure.
  • the UE calculates the initial transmit power Preamble_Initial_Power of the PRACH based on the measurement of the downlink signal power as follows.
  • Preamble_Initial_Power CPICH_TX_Power-CPICH_RSCP+UL_interference+Constant Value.
  • the CPICH_RSCP is the received pilot channel power measured by the UE; the CPICH_Tx_Power is the transmit power of the downlink pilot channel.
  • UL_interference is the uplink interference, and Constant_value is a constant.
  • the CPICH_Tx_Power, UL_interference, and Constant_value may be transmitted by the network to the UE through a broadcast channel.
  • the present application provides a method and a device for transmitting a preamble sequence, which are used to solve the technical problem of low transmission success rate caused by retransmission of a preamble sequence by a transmission power increase in the prior art.
  • a first aspect of the present application provides a method for transmitting a preamble sequence, including:
  • the UE If the UE does not receive the response message corresponding to the first preamble sequence sent by the network side device within a predetermined time period after the sending of the first preamble sequence, the UE switches to the next repetition factor N 2 , where The number of consecutive transmissions indicated by the next repetition factor N 2 is greater than the number of consecutive transmissions indicated by the repetition factor N 1 ;
  • the UE transmits the second preamble sequence by the next repetition factor N 2 according to the second transmission power.
  • the UE before the UE sends the second preamble sequence by the next repetition factor N 2 according to the second transmit power, the UE further passes the following The formula determines the second transmit power:
  • P PRACH 1 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER1+PL ⁇
  • PREAMBLE_RECEIVED_TARGET_POWER1 preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(N l+1 )
  • the P PRACH 1 is the second transmit power
  • the min ⁇ is the minimum value operation
  • the P MAX is the maximum allowed transmit power of the UE
  • the PL is the estimated value of the downlink path loss estimation by the UE for the cell in the cell.
  • preambleInitialReceivedTargetPower is the preamble initial receiving target power
  • DELTA_PREAMBLE is the preamble sequence format offset value
  • PREAMBLE_TRANSMISSION_COUNTER is the preamble sending counter
  • powerRampingStep is the power adjustment step size
  • N l+1 is the next repetition factor N 2
  • delta(N l+ 1 ) is a decreasing function of the next repetition factor N 2 .
  • the UE switching to the next repetition factor N 2 includes:
  • the UE determines the third transmit power by using:
  • P PRACH 2 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER2+PL ⁇
  • PREAMBLE_RECEIVED_TARGET_POWER2 preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)* (powerRampingStep)+delta(N l )
  • the P PRACH 2 is the third transmit power
  • the min ⁇ is the minimum value operation
  • the P MAX is the maximum allowed transmit power of the UE
  • the PL is the estimated value of the downlink path loss estimation performed by the UE on the cell.
  • preambleInitialReceivedTargetPower is the preamble initial receiving target power
  • DELTA_PREAMBLE is the preamble sequence format offset value
  • PREAMBLE_TRANSMISSION_COUNTER is the preamble sending counter
  • powerRampingStep is the power adjustment step size
  • N l is the repetition factor N 1
  • delta(N l ) is the repetition The decreasing function of the factor N 1 .
  • the UE before the UE sends the second preamble sequence by using the next retransmission factor N 2 according to the second transmit power, the UE further passes the following The formula determines the second transmit power:
  • P PRACH 3 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER3+PL+delta(N l+1 ) ⁇
  • the P PRACH 3 is the second transmit power
  • the min ⁇ is the minimum value operation
  • the P MAX is the maximum allowed transmit power of the UE
  • the PL is the estimated value of the downlink path loss estimation performed by the UE on the cell in which the cell is located.
  • PREAMBLE_RECEIVED_TARGET_POWER3 is a preamble receiving target power corresponding to the second preamble sequence
  • N l+1 is the next repetition factor N 2
  • delta(N l+1 ) is a decreasing function of the repetition factor N 2 .
  • the method when the first preamble sequence is the first preamble sequence in a random access procedure, before the user equipment UE sends the first preamble sequence by using the repetition factor N 1 according to the first transmission power, the method further includes:
  • the UE determines the first transmit power by using:
  • P PRACH 4 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER4+PL+delta(N l ) ⁇
  • the P PRACH 4 is the first transmit power
  • P MAX is the maximum allowed transmit power of the UE
  • the PREAMBLE_RECEIVED_TARGET_POWER is the preamble receive target power corresponding to the first preamble sequence
  • N l is the repetition factor N 1
  • the delta(N l ) is a decreasing function of the repetition factor N 1
  • min ⁇ is a minimum operation
  • PL is the estimated value.
  • the delta(N 1 ) is -10log ( N 1 ) or -10log(N 1 )+offset(N 1 ), the offset(N 1 ) is an offset constant corresponding to the repetition factor N 1 .
  • the delta(N l+1 ) is - 10log(N l+1 ) or -10log(N l+1 )+offset(N l+1 ), the offset(N l+1 ) is an offset constant corresponding to the next repetition factor N 2 .
  • the method when the first preamble sequence is the first preamble in a random access procedure, the method further includes:
  • the UE determines the first transmit power according to the following formula:
  • P PRACH 5 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER5+PL-10log(N 1 )+offset(N 1 ) ⁇
  • the P PRACH 5 indicates the first transmit power
  • min ⁇ is the minimum value operation
  • P MAX is the maximum allowed transmit power of the UE
  • PREAMBLE_RECEIVED_TARGET_POWER5 is the preamble receive target corresponding to the first preamble sequence.
  • Power PL is the estimated value
  • N 1 is the repetition factor N 1 .
  • the method further includes:
  • the UE acquires a group of sending information corresponding to the repetition factor N 1 ; the sending information includes a preamble index and a physical random access channel PRACH resource;
  • the user equipment UE sends the first preamble sequence by using the repetition factor N 1 according to the first transmission power, including:
  • the UE on the PRACH resource in accordance with a first transmission power to the transmission repetition factor N 1 and the preamble of the first preamble sequence corresponding to the index.
  • the UE obtains a set of transmit and repeating the factor information corresponding to N 1, comprising: a
  • the physical layer of the UE reports the repetition factor N 1 to the media access MAC layer of the UE; the physical layer of the UE receives the foregoing that is sent by the MAC layer and corresponds to the repetition factor N 1 a group of messages; or
  • the physical layer of the UE receives multiple sets of transmission information respectively corresponding to multiple repetition factors, including the repetition factor N 1 , delivered by the media access MAC layer of the UE; the physical layer of the UE is according to the repetition factor N 1 determines a set of transmission information corresponding to the repetition factor N 1 of the plurality of sets of transmission information.
  • the UE before the UE sends the second preamble sequence by using the next retransmission factor N 2 according to the second transmit power, the UE further passes The following formula determines the second transmit power:
  • N l is the repetition factor N 1
  • N l+1 is the lower A repetition factor N 2 .
  • the UE determines the first transmit power by using the following formula:
  • Preamble_Initial_Power CPICH_TX_Power-CPICH_RSCP+UL_interference+Constant_Value+delta(N l )
  • the Preamble_Initial_Power is the first transmit power
  • the CPICH_Tx_Power is the transmit power of the downlink pilot channel
  • the CPICH_RSCP is the receive power of the downlink pilot channel
  • the UL_Interference is the uplink interference
  • the Constant_Value is a constant
  • N l is the repetition factor N 1 .
  • Delta(N l ) is a decreasing function of the repetition factor N 1 .
  • delta(N 1 ) is -10log(N 1 ) or -10log(N 1 )+offset (N 1 ), the offset (N 1 ) is an offset constant corresponding to the repetition factor N 1 .
  • the UE switching To the next repetition factor N 2 includes:
  • the method further includes: before the user equipment UE sends the first preamble sequence by the repetition factor N 1 according to the first transmission power, when the repetition factor N 1 is the initial repetition factor, the method further includes:
  • the power of the preamble sequence corresponding to the first repetition factor is less than or equal to the difference between the maximum allowed transmit power of the UE and the specific constant, and the power of the preamble sequence corresponding to the second repetition factor is greater than the difference between the maximum power of the UE and the specific constant, Or when the power of the preamble sequence corresponding to the first repetition factor is smaller than the difference between the maximum allowed transmission power of the UE and the specific constant, and the power of the preamble sequence corresponding to the second repetition factor is greater than or equal to the difference between the maximum power of the UE and a specific constant. Determining the first repetition factor as a repetition factor N 1 ; wherein the second repetition factor is smaller than the first repetition factor and adjacent to the first repetition factor in a repetition factor.
  • the repetition factor N 1 corresponds to a first coverage enhancement level of the UE
  • the next repetition factor N 2 corresponds to a second coverage enhancement level of the UE
  • the second coverage enhancement level is higher than the first coverage Enhanced level.
  • the UE by increasing the repetition factor N 1 step a repetition factor to obtain the next repetition factor N 2; wherein the repetition factor N 1 corresponds to the first enhancement level covering the UE, when the When the next repetition factor N 2 is less than or equal to the maximum repetition factor corresponding to the first coverage enhancement level, the next repetition factor N 2 corresponds to the first coverage enhancement level; when the next repetition factor N 2 When the maximum repetition factor is greater than the maximum repetition factor, the next repetition factor N 2 corresponds to a second coverage enhancement level of the UE; and the second coverage enhancement level is higher than the first coverage enhancement level.
  • the method when the repetition factor N 1 is an initial repetition factor, the method further includes:
  • the UE determines the repetition factor N 1 according to the preamble receiving target power, the maximum allowed transmit power of the UE, and an estimated value of the downlink path loss estimation performed by the UE on the cell.
  • the UE determines the repetition factor N 1 by using the following formula:
  • the Preamble_Initial_Repetition_Number is the repetition factor N 1 , Ceil( ) is an upper rounding function; the PREAMBLE_RECEIVED_TARGET_POWER is the preamble receiving target power, PL is the estimated value, and P MAX is the maximum allowed transmission power.
  • the method further includes:
  • the UE receives an offset constant offset (N k ) corresponding to the first coverage enhancement level; N k is a maximum repetition factor corresponding to the first coverage enhancement level;
  • the target UE according to the received power of the preamble, the UE maximum allowed transmission power, and an estimated value of the cell where the UE for the downlink path loss estimate, determining the repetition factor N 1 comprising:
  • the method when the repetition factor N 1 is an initial repetition factor, the method further includes:
  • the UE determines the repetition factor N 1 according to the maximum allowed transmit power, the constant, the uplink interference, the received power of the downlink pilot channel, and the transmit power of the downlink pilot channel.
  • the UE determines the repetition factor N 1 by using the following formula:
  • the Preamble_Initial_Repetition_Number is the repetition factor N 1 , Ceil ( ) is an upper rounding function; Maximum_Allowed_Power is the maximum allowed transmission power; CPICH_RSCP is the received power of the downlink pilot channel; and CPICH_Tx_Power is the downlink pilot channel. Transmit power, UL_Interference is the uplink interference, and Constant_Value is the constant.
  • the method further includes:
  • the UE receives an offset constant offset (N k ) corresponding to the first coverage enhancement level; N k is a maximum repetition factor corresponding to the first coverage enhancement level;
  • the UE according to the maximum allowed transmission power, the constant, the uplink interference, downlink received power of the pilot channel, the downlink transmit power of the pilot channel determines the repetition factor N 1 comprising:
  • the repetition factor N 1 is determined.
  • the first transmit power and the second transmit power are both maximum allowed transmit power of the UE.
  • the second aspect of the present application provides a sending apparatus for a preamble sequence, including:
  • a sending unit configured to send the first preamble sequence by using a repetition factor N 1 according to the first sending power
  • a processing unit configured to switch to a next repetition factor N 2 if the response message corresponding to the first preamble sequence sent by the network side device is not received within a predetermined time period after the sending the first preamble sequence
  • the number of consecutive transmissions indicated by the next repetition factor N 2 is greater than the number of consecutive transmissions indicated by the repetition factor N 1 ;
  • the sending unit is further configured to: send the second preamble sequence by the next repetition factor N 2 according to the second transmit power.
  • the processing unit is further configured to: send, by the sending unit, the second preamble by the next repetition factor N 2 according to the second sending power Before the sequence, the second transmit power is determined by the following formula:
  • P PRACH 1 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER1+PL ⁇
  • PREAMBLE_RECEIVED_TARGET_POWER1 preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(N l+1 )
  • the P PRACH 1 is the second transmit power
  • the min ⁇ is the minimum value operation
  • the P MAX is the maximum allowed transmit power of the UE
  • the PL is the estimated value of the downlink path loss estimation by the UE for the cell in the cell.
  • preambleInitialReceivedTargetPower is the preamble initial receiving target power
  • DELTA_PREAMBLE is the preamble sequence format offset value
  • PREAMBLE_TRANSMISSION_COUNTER is the preamble sending counter
  • powerRampingStep is the power adjustment step size
  • N l+1 is the next repetition factor N 2
  • delta(N l+ 1 ) is a decreasing function of the next repetition factor N 2 .
  • the processing unit is specifically configured to:
  • the processing unit determines the third transmit power by using the following formula:
  • P PRACH 2 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER2+PL ⁇
  • PREAMBLE_RECEIVED_TARGET_POWER2 preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(N l )
  • the P PRACH 2 is the third transmit power
  • the min ⁇ is the minimum value operation
  • the P MAX is the maximum allowed transmit power of the UE
  • the PL is the estimated value of the downlink path loss estimation performed by the UE on the cell.
  • preambleInitialReceivedTargetPower is the preamble initial receiving target power
  • DELTA_PREAMBLE is the preamble sequence format offset value
  • PREAMBLE_TRANSMISSION_COUNTER is the preamble sending counter
  • powerRampingStep is the power adjustment step size
  • N l is the repetition factor N 1
  • delta(N l ) is the repetition The decreasing function of the factor N 1 .
  • the processing unit is further configured to: send, by the sending unit, the second preamble by the next repetition factor N 2 according to the second sending power Before the sequence, the second transmit power is determined by the following formula:
  • P PRACH 3 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER3+PL+delta(N l+1 ) ⁇
  • the P PRACH 3 is the second transmit power
  • the min ⁇ is the minimum value operation
  • the P MAX is the maximum allowed transmit power of the UE
  • the PL is the estimated value of the downlink path loss estimation performed by the UE on the cell in which the cell is located.
  • PREAMBLE_RECEIVED_TARGET_POWER3 is a preamble receiving target power corresponding to the second preamble sequence
  • N l+1 is the next repetition factor N 2
  • delta(N l+1 ) is a decreasing function of the repetition factor N 2 .
  • the processing unit is further configured to: when the first preamble sequence is in a random access process In the first preamble sequence, before the transmitting unit transmits the first preamble sequence by the repetition factor N1 according to the first transmission power,
  • the processing unit determines the first transmit power by using the following formula:
  • P PRACH 4 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER4+PL+delta(N l ) ⁇
  • the P PRACH 4 is the first transmit power
  • P MAX is the maximum allowed transmit power of the UE
  • the PREAMBLE_RECEIVED_TARGET_POWER is the preamble receive target power corresponding to the first preamble sequence
  • N l is the repetition factor N 1
  • the delta(N l ) is a decreasing function of the repetition factor N 1
  • min ⁇ is a minimum operation
  • PL is the estimated value.
  • the delta(N 1 ) is -10log (N 1 ) or -10log(N 1 )+offset(N 1 ), the offset(N 1 ) is an offset constant corresponding to the repetition factor N 1 .
  • the delta(N l+1 ) is - 10log(N l+1 ) or -10log(N l+1 )+offset(N l+1 ), the offset(N l+1 ) is an offset constant corresponding to the next repetition factor N 2 .
  • the processing unit is further configured to: when the first preamble sequence is a random connection Obtaining a preamble receiving target power corresponding to the first preamble sequence; acquiring an offset constant offset (N 1 ) corresponding to the repetition factor N 1 according to the first preamble sequence in the process; the maximum allowed transmission power, the first preamble corresponding to the preamble sequence received target power, the repetition factor of the corresponding N 1 constant bias offset (N 1) of the host cell and the downlink path loss estimated The estimated value determines the first transmit power.
  • the processing unit determines the first transmit power according to the following formula:
  • P PRACH 5 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER5+PL-10log(N 1 )+offset(N 1 ) ⁇
  • the P PRACH 5 indicates the first transmit power
  • min ⁇ is the minimum value operation
  • P MAX is the maximum allowed transmit power of the UE
  • PREAMBLE_RECEIVED_TARGET_POWER5 is the preamble receive target corresponding to the first preamble sequence.
  • Power PL is the estimated value
  • N 1 is the repetition factor N 1 .
  • the processing unit is further used Obtaining, before the sending unit sends the first preamble sequence by using the repetition factor N 1 according to the first sending power, acquiring a group of sending information corresponding to the repetition factor N 1 ; the sending information includes a preamble index and a physical random connection Incoming channel PRACH resources;
  • the sending unit is configured: in the PRACH resource in accordance with a first transmission power to a first preamble sequence transmit repeat factor N 1 corresponding to the preamble index.
  • the processing unit is specifically configured to: send, by the sending unit, the second repetition rate N 2 according to the second transmission power Before the preamble sequence, the second transmit power is determined by the following formula:
  • N l is the repetition factor N 1
  • N l+1 is the lower A repetition factor N 2 .
  • the processing unit is further configured to: when the first preamble sequence is in a random access process
  • the first transmit power is determined by the following formula:
  • Preamble_Initial_Power CPICH_TX_Power-CPICH_RSCP+UL_interference+Constant_Value+delta(N l )
  • the Preamble_Initial_Power is the first transmit power
  • the CPICH_Tx_Power is the transmit power of the downlink pilot channel
  • the CPICH_RSCP is the receive power of the downlink pilot channel
  • the UL_Interference is the uplink interference
  • the Constant_Value is a constant
  • N l is the repetition factor N 1 .
  • Delta(N l ) is a decreasing function of the repetition factor N 1 .
  • delta(N 1 ) is -10log(N 1 ) or -10log(N 1 )+offset (N 1 ), the offset (N 1 ) is an offset constant corresponding to the repetition factor N 1 .
  • the processing unit is And configured to: determine a third sending power, where the third sending power is greater than the first sending power; when the third sending power exceeds a maximum allowed transmit power of the UE, switch to the next repetition factor N 2 .
  • the processing unit further When the repetition factor N 1 is an initial repetition factor, before the sending unit sends the first preamble sequence by using the repetition factor N 1 according to the first transmission power, determining that the first repetition factor and the second repetition factor respectively correspond to Preamble sequence power; when the power of the preamble sequence corresponding to the first repetition factor is less than or equal to the difference between the maximum allowed transmission power of the UE and the specific constant, and the power of the preamble sequence corresponding to the second repetition factor is greater than the maximum power and specificity of the UE When the difference between the constants is different, or when the power of the preamble sequence corresponding to the first repetition factor is smaller than the difference between the maximum allowed transmission power of the UE and the specific constant, and the power of the preamble sequence corresponding to the second repetition factor is greater than or equal to the maximum power of the UE the difference of the specific constant is determined as
  • the repetition factor N 1 corresponding to the first coverage enhancement level of the UE
  • the next repetition factor N 2 corresponds to a second coverage enhancement level of the UE
  • the second coverage enhancement level is higher than the first coverage enhancement level
  • the processing unit further is used: by increasing the repetition factor N 1 step a repetition factor to obtain the next repetition factor N 2; wherein the repetition factor N 1 corresponds to the first enhancement level covering the UE, when the When the next repetition factor N 2 is less than or equal to the maximum repetition factor corresponding to the first coverage enhancement level, the next repetition factor N 2 corresponds to the first coverage enhancement level; when the next repetition factor N 2 When the maximum repetition factor is greater than the maximum repetition factor, the next repetition factor N 2 corresponds to a second coverage enhancement level of the UE; and the second coverage enhancement level is higher than the first coverage enhancement level.
  • the processing unit is further configured to: when the repetition factor N 1 is an initial repetition factor, Receiving a preamble receiving target power of the first preamble sequence; determining, by the UE, the repetition according to the preamble receiving target power, the maximum allowed transmit power of the UE, and an estimated value of the downlink path loss estimation performed by the UE on the cell Factor N 1 .
  • the processing unit determines the repetition factor N 1 by using the following formula:
  • the Preamble_Initial_Repetition_Number is the repetition factor N 1 , Ceil( ) is an upper rounding function; the PREAMBLE_RECEIVED_TARGET_POWER is the preamble receiving target power, PL is the estimated value, and P MAX is the maximum allowed transmission power.
  • the device further includes: a receiving unit, configured to receive, corresponding to the first coverage enhancement level Offset constant offset(N k ); N k is the maximum repetition factor corresponding to the first coverage enhancement level;
  • the processing unit is further configured to: estimate, according to the preamble receiving target power, the offset constant offset (N k ), the maximum allowed transmit power of the UE, and the downlink path loss estimation performed by the UE on the cell , determining the repetition factor N 1 .
  • the apparatus further includes a receiving unit, when the repetition factor N 1 is an initial repetition Receiving, by the UE, a maximum allowed transmit power, a constant, and an uplink interference of the UE;
  • the processing unit is further configured to: obtain, by measurement, a received power of a downlink pilot channel; obtain a transmit power of the downlink pilot channel; and according to the maximum allowed transmit power, the constant, the uplink interference, and the downlink guide
  • the received power of the frequency channel and the transmission power of the downlink pilot channel determine the repetition factor N 1 .
  • the processing unit determines the repetition factor N 1 by using the following formula:
  • the Preamble_Initial_Repetition_Number is the repetition factor N 1 , Ceil ( ) is an upper rounding function; Maximum_Allowed_Power is the maximum allowed transmission power; CPICH_RSCP is the received power of the downlink pilot channel; and CPICH_Tx_Power is the downlink pilot channel. Transmit power, UL_Interference is the uplink interference, and Constant_Value is the constant.
  • the receiving unit is further configured to: receive, corresponding to the first coverage enhancement level, Offset constant offset(N k ); N k is a maximum repetition factor corresponding to the first coverage enhancement level;
  • the processing unit is further configured to: according to the maximum allowed transmit power, the constant, the uplink interference, the received power of the downlink pilot channel, the transmit power of the downlink pilot channel, and the offset constant
  • the offset (N k ) determines the repetition factor N 1 .
  • the first transmit power and the second transmit power are both the maximum allowed transmit power of the UE.
  • the device is a user equipment UE.
  • the time domain is repeated in the form of a repetition factor, so that the transmission success rate of the preamble sequence can be improved. Further, when the corresponding transmission is not received When the response sequence of the preamble sequence is raised, the repetition factor is increased, which further improves the signal coverage and improves the success rate of the preamble transmission.
  • the method in the embodiment of the present application is more effective and more practical because there is no climbing bottleneck such as the maximum allowable transmission power.
  • FIG. 1 is a flowchart of a method for transmitting a preamble sequence according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a coverage enhancement level according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of sending a preamble sequence according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of sending another preamble sequence according to an embodiment of the present application.
  • FIG. 5 is a functional block diagram of a sending apparatus of a preamble sequence according to an embodiment of the present application
  • FIG. 6 is a structural block diagram of a user equipment according to an embodiment of the present application.
  • the embodiment of the present invention provides a method and a device for transmitting a preamble sequence, which are used to solve the technical problem that a transmission success rate is low due to retransmission of a preamble sequence by a transmission power increase in the prior art.
  • the user equipment may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal Computers, for example, can be portable, pocket, handheld, computer built-in or in-vehicle mobile devices, with or without The line access network exchanges languages and/or data.
  • a radio access network eg, RAN, Radio Access Network
  • RAN Radio Access Network
  • Computers for example, can be portable, pocket, handheld, computer built-in or in-vehicle mobile devices, with or without The line access network exchanges languages and/or data.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • FIG. 1 is a flowchart of a method for transmitting a preamble sequence according to an embodiment of the present application. As shown in FIG. 1, the method includes the following.
  • Step 101 The UE sends the first preamble sequence by using a repetition factor N 1 according to the first transmission power.
  • Step 102 If the UE does not receive the response message corresponding to the first preamble sequence sent by the network side device within a predetermined time period after the first preamble sequence is sent, the UE switches to the next repetition factor N 2 , where the next repetition factor N The number of consecutive transmissions indicated by 2 is greater than the number of consecutive transmissions indicated by the repetition factor N 1 ;
  • Step 103 The UE sends the second preamble sequence according to a repetition factor N 2 of the second transmission power.
  • the high layer request triggers the physical layer of the UE to perform preamble transmission, where the request includes a preamble index, a target preamble receiving power, and corresponding RA-RNTI and PRACH resource information.
  • the UE uses the preamble index to select a preamble sequence from the set of preamble sequences.
  • step 101 is performed to transmit the selected preamble sequence by the repetition factor N 1 according to the first transmit power on the indicated PRACH resource using the selected preamble sequence.
  • step 102 if the UE does not receive the response message corresponding to the first preamble sequence sent by the network side device within a predetermined time period after the first preamble sequence is sent, step 102 is performed.
  • the first preamble sequence is sent in step 101, and a timer is started. Therefore, the UE can judge whether the predetermined time is exceeded by whether the timer expires. In the actual application, the judgment of whether or not to time out can be performed by other means, and the content of the part is well known to those skilled in the art, and therefore will not be described herein.
  • the UE does not receive the response message corresponding to the first preamble sequence sent by the network side device within a predetermined time, such as the second and third cases described in the background art.
  • a predetermined time such as the second and third cases described in the background art.
  • other situations in which the response message corresponding to the first preamble sequence is not received may be used, which is not specifically limited in this application.
  • step 102 the UE switches to the next repetition factor N 2 to increase the number of consecutive transmissions of the preamble sequence to N 2 .
  • the first preamble sequence is transmitted with a repetition factor of three, in other words, the first preamble sequence is repeatedly transmitted in the time domain, that is, transmitted continuously three times.
  • the UE switches to the repetition factor 4.
  • the second preamble sequence is transmitted with a repetition factor of 4 according to the second power. In other words, the second preamble sequence is repeatedly transmitted in the time domain and transmitted continuously 4 times to improve the transmission success rate of the preamble sequence.
  • the first transmission power and the second transmission power may be the same or different, and will be described in detail later.
  • the transmission success rate of the preamble sequence is improved by increasing the transmission power.
  • the embodiment of the present application performs repeated transmission in the time domain and does not receive the response message. It is more effective to improve the transmission success rate of the preamble sequence by increasing the number of consecutive transmissions in the time domain. Because the method of increasing the transmission power is limited by the maximum allowable transmission power of the UE, there is a bottleneck, so the effect is limited.
  • the preamble sequence is transmitted by using the method in the embodiment of the present application.
  • MTC Machine Type Communication
  • coverage enhancement can be performed (English: Coverage Enhancement, referred to as CE).
  • CE level refers to a different coverage enhancement level after coverage enhancement is performed compared to normal coverage.
  • the maximum coupling loss corresponding to normal coverage is 147dB
  • the enhancement level, the enhancement of 10dB corresponds to the next coverage level
  • the enhancement of 15dB corresponds to the maximum coverage level, and different repetition factors can be used to achieve different coverage enhancement levels.
  • each CE level corresponds to a different channel/signal repetition factor.
  • the cell of a certain UE is divided into three CE levels, which are CE level 0, CE level 1 and CE level 2.
  • the repetition factor corresponding to CE level 0 is C 0
  • the repetition factor corresponding to CE level 1 is C 1
  • the repetition factor corresponding to CE level 2 is C 2 .
  • the repetition factor N 1 in step 101 corresponds to the first CE level of the UE
  • the next repetition factor N 2 corresponds to the second CE level of the UE
  • the second CE level is higher than the first CE level.
  • CE rating In other words, in step 102, the UE switches to the next repetition factor N 2 , which means that the UE switches to the second CE level. Since the repetition factor N 1 corresponding to the first CE level cannot meet the coverage requirement, it is necessary to switch to a higher level CE level.
  • step 102 includes: the UE determines a third transmit power, and when determining that the third transmit power exceeds a maximum allowed transmit power of the UE, switches to a next repetition factor N 2 ; the third transmit power is greater than the first transmit power.
  • the third transmit power is determined first, where the third transmit power is the power after the first transmit power is climbed.
  • the UE determines whether the third transmission power exceeds the maximum allowed transmission power of the UE. If yes, step 102 is performed, and the second transmission power corresponding to the next repetition factor N 2 is determined, and then step 103 is performed. If not, that is, the third transmit power does not exceed the maximum allowed transmit power of the UE, the UE transmits the third preamble sequence by the repetition factor N 1 according to the third transmit power.
  • the solution in this embodiment is to perform a rise in transmission power under the same repetition factor. When the transmission power climbs above the maximum allowable transmission power of the UE, the repetition factor is climbed. And on the basis of the repetition factor after the climb, the transmission power is increased again, and so on.
  • FIG. 3 is a schematic diagram of transmission of a preamble sequence in this embodiment.
  • the abscissa represents time t and the ordinate represents transmission power p.
  • the dotted line parallel to the abscissa indicates the maximum allowable transmission power of the UE.
  • the corresponding repetition factor is 4.
  • a total of three sets of preamble sequences are transmitted, the left group in FIG. 3, four squares indicating a repetition factor of 4, and the shaded portion indicating the transmission power used by the first group to transmit the preamble sequence.
  • the second group of transmissions is performed, that is, the middle group, and the four squares still indicate the repetition factor of 4, that is, the second group continues to transmit the preamble sequence with the repetition factor of 4, but the transmission power is increased. .
  • the repetition factor is still 4, but the transmission power climbs to the maximum allowable transmission power of the UE. Therefore, the UE transmits the preamble sequence with a repetition factor of 4 according to the maximum allowed transmission power.
  • the transmitted power after the climb has exceeded the maximum transmission power of the UE, then It is necessary to switch the CE level, for example, to switch to the second CE level.
  • the corresponding repetition factor is 8.
  • the UE determines the initial transmit power of the corresponding repetition factor 8, such as shown in the left group of Figure 3, and then the UE transmits the preamble sequence again with a repetition factor of 8 according to the initial transmit power. If the response message is still not received, the transmission power is increased. Since the transmitted power after the climb is smaller than the maximum allowed transmit power of the UE, the UE transmits the preamble sequence again with a repetition factor of 8 according to the transmitted power after the climb. This reciprocates until a response message corresponding to the transmitted preamble sequence is received within a predetermined time period after transmitting the preamble sequence.
  • the first possible implementation manner is: the UE acquires a preamble receiving target power corresponding to the first preamble sequence, and the UE according to the maximum allowed transmit power of the UE, the preamble receiving target power corresponding to the first preamble sequence, and the cell to which the UE is located.
  • the estimated value of the downlink path loss estimate is used to determine the first transmit power.
  • the first transmit power can be determined by equation (1).
  • P PRACH 6 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER6+PL ⁇ (1)
  • P PRACH 6 is the first transmit power
  • min ⁇ is a minimum value operation
  • P MAX is the maximum allowable transmit power
  • PREAMBLE_RECEIVED_TARGET_POWER6 is the preamble receive target power corresponding to the first preamble sequence
  • PL is The estimated value.
  • the physical layer of the UE may send P MAX and PL to the MAC layer, and the MAC layer calculates P PRACH 6 according to formula (1) and sends P PRACH 6 to the physical layer.
  • the PREAMBLE_RECEIVED_TARGET_POWER6 may be sent to the physical layer by the MAC layer, and the P PRACH 6 is calculated by the physical layer according to the formula (1).
  • the third transmission power may be determined by the formula (2) and the formula (3).
  • P PRACH 2 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER2+PL ⁇ (2)
  • PREAMBLE_RECEIVED_TARGET_POWER2 preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(N l ) (3)
  • P PRACH 2 is the third transmit power
  • preambleInitialReceivedTargetPower is the preamble initial receive target power
  • DELTA_PREAMBLE is the preamble sequence format offset value
  • PREAMBLE_TRANSMISSION_COUNTER is the preamble transmit counter
  • powerRampingStep is the power adjustment step size
  • N l is the repetition factor N 1
  • delta (N l ) is a decreasing function of the repetition factor N 1 .
  • the other parameters have the same meaning as the same parameters in the formula (1).
  • the preambleInitialReceivedTargetPower and powerRampingStep are broadcast messages sent from the network side.
  • DELTA_PREAMBLE is the value agreed by the protocol.
  • PREAMBLE_TRANSMISSION_COUNTER is available based on the value of the current counter.
  • Delta(N 1 ) is -10log(N 1 ) or -10log(N 1 )+offset(N 1 ), and offset(N 1 ) is an offset constant corresponding to the repetition factor N 1 .
  • the third transmission power after the climb is determined by introducing delta(N 1 ), and the diversity obtained by repeatedly transmitting N 1 times is used. The gain is taken into account.
  • the second transmit power corresponding to the next repetition factor N 2 may be determined by formulas (4) and (5).
  • P PRACH 1 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER1+PL ⁇ (4)
  • PREAMBLE_RECEIVED_TARGET_POWER1 preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(N l+1 ) (5)
  • N l+1 is the next repetition factor N 2
  • delta (N l+1 ) is the decreasing function of the next repetition factor N 2 .
  • the other parameters have the same meanings as the same parameters in equations (1) and (3).
  • the initial transmission power corresponding to the switched CE level can be calculated according to equations (4) and (5).
  • N l+1 represents the repetition factor corresponding to the CE level after the handover.
  • a second possible implementation manner of determining the first transmit power is: based on the first possible implementation, the UE further determines the first transmit power according to the repetition factor N 1 .
  • the first transmission power can be determined by Equation (6).
  • P PRACH 4 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER4+PL+delta(N l ) ⁇ (6)
  • P PRACH 4 is the first transmission power.
  • PREAMBLE_RECEIVED_TARGET_POWER4 is the preamble reception target power corresponding to the first preamble sequence.
  • Other parameters have the same meaning as the same parameters described above.
  • the second transmission power to Equation (6) is similar, except that the equation (6 Delta(N l ) in the change to delta(N l+1 ), PREAMBLE_RECEIVED_TARGET_POWER4 becomes PREAMBLE_RECEIVED_TARGET_POWER3, PREAMBLE_RECEIVED_TARGET_POWER3, indicating the preamble reception target power corresponding to the second preamble sequence. And P PRACH 3 is used to indicate the second transmission power.
  • the PREAMBLE_RECEIVED_TARGET_POWER4 in the formula (6) can be directly updated, and the updated PREAMBLE_RECEIVED_TARGET_POWER4 is preambleInitialReceivedTargetPower+DELTA_PREAMBLE+PREAMBLE_TRANSMISSION_COUNTER-1)*powerRampingStep.
  • the meaning of each parameter is the same as the meaning of the same parameter described above.
  • a third possible implementation manner of determining the first transmit power is: the UE acquires a preamble receiving target power corresponding to the first preamble sequence; the UE receives an offset constant offset (N 1 ) corresponding to the repetition factor N 1 ; the UE according to the UE The first transmit power is determined by the maximum allowed transmit power, the preamble receive target power corresponding to the first preamble sequence, the offset constant offset (N 1 ), and an estimated value of the downlink path loss estimation performed by the UE on the cell.
  • the first transmission power can be determined by Equation (7).
  • P PRACH 5 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER5+PL-10log(N 1 )+offset(N 1 ) ⁇ (7)
  • P PRACH 5 represents the first transmission power, and other parameters have the same meaning as the same parameters described above.
  • the fourth possible implementation manner of determining the first transmit power is: the UE acquires the transmit power CPICH_Tx_Power of the downlink pilot channel, the received power CPICH_RSCP of the downlink pilot channel, the uplink interference UL_interference, the constant Constant_value, and the UE transmits according to the downlink pilot channel.
  • the power CPICH_Tx_Power, the received power CPICH_RSCP of the downlink pilot channel, the uplink interference UL_interference, the constant Constant_value, and the repetition factor N 1 determine the first transmission power.
  • CPICH_RSCP is measured by the UE.
  • the CPICH_Tx_Power, UL_interference, and Constant_value may be transmitted by the network to the UE through a broadcast channel.
  • the uplink interference indicates the amount of interference caused by the uplink transmission of the UE other than the cell where the UE is located to the uplink transmission of the UE.
  • the first transmission power can be determined by the formula (8).
  • Preamble_Initial_Power CPICH_TX_Power-CPICH_RSCP+UL_interference +Constant_Value+delta(N l ) (8)
  • the Preamble_Initial_Power is the first transmit power.
  • N l is the repetition factor N 1 and delta(N l ) is the decreasing function of the repetition factor N 1 .
  • Delta(N 1 ) is -10log(N 1 ) or -10log(N 1 )+offset(N 1 ), and offset(N 1 ) is an offset constant corresponding to the repetition factor N 1 .
  • the UE may further determine the second transmit power by using formula (9).
  • N l+1 is the repetition factor N 1
  • N l+1 is the next repetition factor N 2 .
  • the first transmission power plus ⁇ P 0 is the third transmission power.
  • the form of the formula for determining the second transmission power is not limited to the formula (9), and various modifications of the formula (9) are also within the scope of protection of the present application.
  • the value may be greater than the maximum allowed transmit power of the UE.
  • the first possible manner is that the UE estimates its own CE level according to the measurement result of the downlink signal, and then determines that the repetition factor corresponding to the CE level is the repetition factor N 1 .
  • the correspondence between the CE level and the repetition factor corresponding to the CE level can be obtained by cell broadcast.
  • the second possible manner is: the UE determines the preamble sequence power corresponding to the first repetition factor and the second repetition factor respectively; when the power of the preamble sequence corresponding to the first repetition factor is less than or equal to the difference between the maximum allowable transmission power of the UE and the specific constant, And the power of the preamble sequence corresponding to the second repetition factor is greater than the difference between the maximum power of the UE and the specific constant, or when the power of the preamble sequence corresponding to the first repetition factor is smaller than the difference between the maximum allowed transmission power of the UE and the specific constant, and When the power of the preamble corresponding to the two repetition factors is greater than or equal to the difference between the maximum power of the UE and the specific constant, the first repetition factor is determined as the repetition factor N 1 . Wherein the second repetition factor is smaller than the first repetition factor and is adjacent to the first repetition factor in the repetition factor.
  • the UE can calculate the preamble power of each repetition factor according to equation (10).
  • P PRACH (C i ) is the preamble power of each repetition factor.
  • Other parameters have the same meaning as the same parameters described above.
  • Delta(C i ) is, for example, a decreasing function of the repetition factor C i .
  • the repetition factor C i is the repetition factor N 1 .
  • positive_constant is a specific constant.
  • the UE determines a repetition factor after 1 N, the physical layer also reported repetition factors N 1 to the MAC layer; UE receives a set of transmission information corresponding to the repetition factor N 1 of delivered by the MAC layer.
  • the transmission information includes, for example, a preamble index, a preamble reception target power, a corresponding RA-RNTI, and PRACH resource information.
  • the information may be transmitted every repetition factor delivered by the corresponding UE receives the MAC; repetition factor is determined after the UE 1 N, 1 was repeated with a group selected factor N 1 corresponding to the transmission information in accordance with the repetition factor N.
  • step 101 includes: the UE transmitting the selected first preamble sequence by the repetition factor N 1 according to the first transmission power on the PRACH resource corresponding to the repetition factor N 1 using the first preamble sequence selected according to the preamble index.
  • the handover in step 102 to the next after a repetition factor 2 N can obtain a set of transmission information corresponding to a repetition factor of the next N 2 by the aforementioned two ways.
  • it may transmit a second preamble sequence according to a next set of repeated transmission information corresponding to the factor N 2.
  • UE prior to step 102, UE by increasing the repetition factor N 1 step a repetition factor, to obtain the next repetition factor N 2.
  • the repetition factor N 1 corresponds to the first CE level of the UE
  • two cases occur here. One is: when the next repetition factor N 2 is less than or equal to the maximum repetition factor corresponding to the first CE level, then the next repetition factor N 2 still corresponds to the first CE level. The other is: when the next repetition factor N 2 is greater than the maximum repetition factor, the next repetition factor N 2 corresponds to the second CE level of the UE; the second CE level is higher than the first CE level.
  • the UE performs a climb factor increase within a maximum repetition factor corresponding to one CE level, and then switches to the next CE level when the repetition factor climb has exceeded the maximum repetition factor corresponding to the CE level.
  • the first transmit power and the second transmit power may be the same, for example, a power value that is less than or equal to the maximum allowed transmit power of the UE.
  • the first transmit power and the second transmit power may also be different.
  • the first transmit power is smaller than the maximum allowed transmit power of the UE, and the second transmit power is the maximum allowable transmit power of the UE.
  • FIG. 4 is a schematic diagram of transmission of another preamble sequence provided by an embodiment of the present application.
  • the UE transmits the preamble sequence with the maximum transmit power of the UE each time.
  • the shaded portion indicates the repetition factor for each use.
  • the repetition factor used is 2.
  • a repetition factor step size for example 1, is added to the repetition factor 2 to obtain a repetition factor of 3. Since the repetition factor 3 does not exceed the maximum repetition factor of 4 corresponding to the first CE level, the UE is currently still at the first CE level.
  • the next repetition factor is obtained as 5. Since the repetition factor 5 has exceeded the maximum repetition factor 4 corresponding to the first CE level, the next repetition factor 5 has already corresponded to the second CE level, that is, the UE performs CE level switching. The UE then transmits the preamble sequence with a repetition factor of 5 according to the maximum allowed transmission power.
  • the first possible implementation manner is: the UE receives the preamble receiving target power of the first preamble sequence, and the UE estimates the target power according to the preamble, the maximum allowed transmit power of the UE, and the estimated downlink path loss estimation of the cell by the UE.
  • the repetition factor N 1 is determined.
  • the repetition factor N 1 can be determined by the formula (11).
  • the Preamble_Initial_Repetition_Number is a repetition factor N 1 , Ceil ( ) is an upper rounding function; the PREAMBLE_RECEIVED_TARGET_POWER is a preamble receiving target power corresponding to the first preamble sequence, PL is the estimated value, and P MAX is a maximum allowed transmission power.
  • a second possible implementation manner is: based on the first possible implementation manner, the method further includes: receiving, by the UE, a bias constant offset (N k ) corresponding to the first CE level; and receiving, by the UE, according to the preamble
  • the target power, the offset constant offset(N k ), the maximum allowed transmit power of the UE, and the estimated value of the downlink loss estimation by the UE for the cell in question determine the repetition factor N 1 .
  • N k is the maximum repetition factor corresponding to the first CE level.
  • the repetition factor N 1 can be determined by the formula (12).
  • a third possible implementation manner is: the UE receives the maximum allowed transmit power, constant, and uplink interference of the UE; the UE obtains the received power of the downlink pilot channel by using the measurement; the UE obtains the transmit power of the downlink pilot channel; The transmission power, the constant, the uplink interference, the received power of the downlink pilot channel, and the transmission power of the downlink pilot channel are determined to determine the repetition factor N 1 .
  • the repetition factor N 1 can be determined by the formula (13).
  • the Preamble_Initial_Repetition_Number is a repetition factor N 1 , Ceil ( ) is an upper rounding function; Maximum_Allowed_Power is a maximum allowed transmission power; CPICH_RSCP is a received power of the downlink pilot channel; CPICH_Tx_Power is a transmission power of the downlink pilot channel, UL_Interference For the uplink interference, Constant_Value is the constant.
  • a fourth possible implementation manner is: based on the third possible implementation manner, the method further includes: the UE receiving the offset constant offset (N k ) corresponding to the first CE level; and the UE according to the maximum allowed transmit power
  • the repetition factor N 1 is determined by the constant, the uplink interference, the received power of the downlink pilot channel, the transmit power of the downlink pilot channel, and the offset constant offset (N 1 ).
  • N k is the maximum repetition factor corresponding to the first CE level.
  • the repetition factor N 1 can be determined by the formula (14).
  • the first example is based on the first possible implementation of the LTE system.
  • the method includes the following.
  • Step 1 The UE receives the cell broadcast of the serving cell c in which it is located.
  • the cell broadcast includes a plurality of CE levels and a repetition factor of a physical channel/signal corresponding to each CE level.
  • the segmentation of the downlink pilot channel may be segmented into multiple CE levels and respectively correspond to different channel/signal repetition factors.
  • Each CE level corresponds to a repetition factor.
  • Step 2 The UE estimates the CE level of the UE according to the measurement of the downlink signal, which is assumed to be the first CE level. A repetition factor N 1 of the channel/signal corresponding to the first CE level is then determined.
  • Step 3 The UE reports the repetition factor N 1 to the MAC layer, and receives a group of transmission information corresponding to the repetition factor N 1 sent by the MAC.
  • the transmission information includes a preamble index, a preamble reception target power (PREAMBLE_RECEIVED_TARGET_POWER), a corresponding RA-RNTI, and PRACH resource information.
  • the UE determines the first transmit power.
  • the UE transmits the preamble sequence for the first time, so the first transmission power is the initial transmission power at the first CE level.
  • the first transmission power P PRACH min ⁇ P CMAX,c (i), PREAMBLE_RECEIVED_TARGET_POWER+PL c +delta(N l ) ⁇ .
  • P CMAX,c (i) is the configured maximum allowed transmit power of the UE in the i-th subframe of the serving cell c
  • i is an integer between 0 and 9.
  • PL c is an estimated value of the downlink loss estimation of the serving cell c by the UE.
  • Delta(N l ) has the same meaning as described above.
  • Step 5 The UE selects the first preamble sequence from the set of preamble sequences using the preamble index.
  • Step 6 The UE sends the first preamble sequence with the repetition factor N 1 according to the first transmission power on the indicated PRACH resource.
  • PREAMBLE_RECEIVED_TARGET_POWER reambleInitialReceivedTargetPower+DELTA_PREAMBLE+(
  • Step 8 If the calculation determines that the next used transmit power does not exceed the maximum allowed transmit power of the UE, the UE sends the third preamble sequence with the repetition factor N 1 according to the transmit power used next time on the indicated PRACH resource. . In other words, what is going on this time is the rise in transmission power.
  • Step 9 If the calculation determines that the next used transmit power exceeds the maximum allowed transmit power of the UE, the UE switches to the second CE level, that is, switches to the next repetition factor N 2 .
  • Step Ten UE N 2 the next repetition factor reported to the MAC layer transmits and receives a set of information delivered by the MAC layer and the next repetition factor corresponding to N 2.
  • Step 11 The UE determines the initial transmission power corresponding to the next repetition factor N 2 .
  • Initial transmit power min ⁇ P CMAX,c (i), PREAMBLE_RECEIVED_TARGET_POWER+PL c +delta(N l+1 ) ⁇ .
  • Step 12 The UE selects the second preamble sequence in the preamble sequence set according to the preamble index in the transmission information.
  • Step 13 The UE sends the second preamble sequence on the indicated PRACH resource according to a repetition factor N 2 of the initial transmission power. What is going on this time is the climb of the repetition factor.
  • the second example in this embodiment, is a second possible implementation process based on the LTE system.
  • the method includes the following.
  • the first step is similar to the first step in the first example.
  • the difference is that each CE level corresponds to one maximum repetition factor and also corresponds to multiple repetition factors within the maximum repetition factor.
  • the first CE level corresponds to a maximum repetition factor of 4, then within the first CE level, repetition factors 1 to 4 can be used.
  • Step 2 The high-level request triggers the physical layer to send the preamble.
  • the request includes a preamble index, a preamble receiving target power (PREAMBLE_RECEIVED_TARGET_POWER), a corresponding RA-RNTI, and PRACH resource information.
  • the UE calculates an initial repetition factor according to the following formula.
  • Preamble_Initial_Repetition_Number is an initial repetition factor
  • Ceil() is an upper rounding function
  • PREAMBLE_RECEIVED_TARGET_POWER is a leading receiving target power.
  • P CMAX,c (i) is the configured maximum allowed transmit power of the UE in the i-th subframe of the serving cell c, i is an integer between 0 and 9.
  • PL c is an estimated value of the downlink loss estimation of the serving cell c by the UE.
  • Step 4 The UE selects a preamble sequence from the set of preamble sequences by using a preamble index.
  • Step 5 The UE transmits the selected preamble sequence with the initial repetition factor according to the maximum allowed transmission power on the indicated PRACH resource.
  • Step 6 If the corresponding PDCCH is detected by using the RA-RNTI in the receiving window of a high-level indication, but the response message of the transmitted preamble sequence is not found in the corresponding downlink data block, or the UE does not receive the response of the network side.
  • the message adds a repetition factor step to the initial repetition factor to obtain a new repetition factor.
  • Step 7 The UE transmits the selected preamble sequence with a new repetition factor according to the maximum allowed transmit power on the indicated PRACH resource. It should be noted that if the new repetition factor is greater than the maximum repetition factor of the CE level corresponding to the initial repetition factor, the new repetition factor corresponds to the next CE level; otherwise, the new repetition factor still corresponds to the CE corresponding to the initial repetition factor. grade.
  • the third example in this embodiment, is a possible preamble transmission method based on the UMTS system.
  • the method includes the following.
  • the first step and the second step are the same as the first step and the second step in the first example, respectively, assuming that the determined initial repetition factor is the repetition factor N 1 . I will not repeat them here.
  • Step 3 The UE calculates the initial transmit power Preamble_Initial_Power of the preamble sequence according to the following formula.
  • Preamble_Initial_Power CPICH_TX_Power-CPICH_RSCP+UL_interference+Constant_Value+delta(N 1 ).
  • Delta(N 1 ) is -10log(N 1 ) or -10log(N 1 )+offset(N 1 ), and offset(N 1 ) is an offset constant corresponding to the repetition factor N1.
  • Step 4 The UE transmits the preamble sequence by the repetition factor N 1 according to the initial transmission power.
  • Step 5 When the UE does not detect the capture indication of the corresponding signature in the downlink access slot corresponding to the access slot, the UE selects the next available access slot in the available RACH subchannel corresponding to the given ASC. And randomly select a new signature in the available signature corresponding to the given ASC.
  • Step 6 The UE adds a power adjustment step size ⁇ P 0 based on the initial transmission power to obtain the transmitted power after the climb.
  • Step 7 The UE determines whether the transmitted power after the climb exceeds the maximum allowed transmit power of the UE. If no, perform the eighth step. If yes, go to step 9.
  • Step 8 The UE transmits the preamble sequence by the repetition factor N 1 according to the rising transmission power.
  • Step 9 The UE switches to the next repetition factor N 2 . That is, switch to the next CE level.
  • Step 10 The UE determines the initial transmission power corresponding to the next repetition factor N 2 .
  • the initial transmission power corresponding to the next repetition factor N 2 is determined.
  • p n+1 is the initial transmission power corresponding to the next repetition factor N 2 .
  • p n is the initial transmission power corresponding to the repetition factor N 1 .
  • N l is the repetition factor N 1
  • N l+1 is the next repetition factor N 2 .
  • Tenth step UE corresponds to a next repetition factor N according to the initial transmission power following a repetition factor of 2 N 2 transmit the preamble sequence.
  • the fourth example in this embodiment, is a transmission method based on another possible preamble sequence of the UMTS system.
  • the method includes the following.
  • the first and second steps are similar to the first and second steps in the third example, except that each CE level corresponds to a maximum repetition factor and also corresponds to multiple repetition factors within the maximum repetition factor.
  • each CE level corresponds to a maximum repetition factor and also corresponds to multiple repetition factors within the maximum repetition factor.
  • the first CE level corresponds to a maximum repetition factor of 4, then within the first CE level, repetition factors 1 to 4 can be used.
  • the third step the UE determines the initial repetition factor according to the following formula.
  • Offset(N k ) is the offset constant corresponding to the CE level of the UE estimated by the UE. For example, if the UE is currently at the first CE level, then offset(N k ) is offset(4).
  • Step 4 The UE transmits the preamble sequence with an initial repetition factor according to the maximum allowed transmit power of the UE.
  • Step 5 If the UE detects the acquisition indication of the corresponding signature in the downlink access slot corresponding to the uplink access slot, select the next available access slot in the available RACH subchannel corresponding to the given ASC. And randomly select a new signature in the available signature corresponding to the given ASC.
  • Step 6 The UE adds a repetition factor step size N0 based on the initial repetition factor to obtain a new repetition factor.
  • Step 7 The UE transmits the preamble sequence with a new repetition factor according to the maximum transmission power of the UE. It should be noted that if the new repetition factor is greater than the maximum repetition factor of the CE level corresponding to the initial repetition factor, the new repetition factor corresponds to the next CE level; otherwise, the new repetition factor still corresponds to the CE corresponding to the initial repetition factor. grade.
  • Step 8 The UE decrements the retransmission counter of the preamble sequence by one.
  • Step 9 If the retransmission counter is equal to 0, the UE transmits the physical layer status (there is no positive response on the acquisition indication channel) to the MAC layer and exits the physical layer random access procedure.
  • the embodiment of the present application further provides a sending apparatus for a preamble sequence.
  • a sending apparatus for a preamble sequence.
  • the apparatus comprising: a transmission unit 201, in accordance with a first transmission power for the repetition factor N 1 transmits a first preamble sequence; a processing unit 202, if a predetermined time after transmitting the first preamble sequence The response message corresponding to the first preamble sequence sent by the network side device is not received in the segment, and is switched to the next repetition factor N 2 , wherein the consecutive transmission times indicated by the next repetition factor N 2 are greater than the continuous indication indicated by the repetition factor N 1
  • the sending unit 201 is further configured to: send the second preamble sequence according to a repetition factor N 2 of the second transmission power.
  • the processing unit 202 is further configured to: before the sending unit 201 sends the second preamble sequence according to the second transmission power and the repetition factor N 2 , determine the second sending power by using the following formula:
  • P PRACH 1 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER1+PL ⁇
  • PREAMBLE_RECEIVED_TARGET_POWER1 preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(N l+1 )
  • the PPRACH 1 is the second transmit power
  • the min ⁇ is the minimum value operation
  • the P MAX is the maximum allowed transmit power of the UE
  • the PL is the estimated value of the downlink path loss estimation performed by the UE on the cell
  • the preambleInitialReceivedTargetPower is the preamble initial receive.
  • Target power DELTA_PREAMBLE is the preamble sequence format offset value
  • PREAMBLE_TRANSMISSION_COUNTER is the preamble transmission counter
  • powerRampingStep is the power adjustment step size
  • N l+1 is the next repetition factor N 2
  • delta(N l+1 ) is the next repetition factor N The subtraction function of 2 .
  • processing unit 202 is specifically configured to:
  • the processing unit 202 determines the third sending power by using the following formula:
  • P PRACH 2 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER2+PL ⁇
  • PREAMBLE_RECEIVED_TARGET_POWER2 preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(N l )
  • the PPRACH 2 is the third transmit power
  • the min ⁇ is the minimum operation
  • the PMAX is the maximum allowed transmit power of the UE
  • the PL is the estimated value of the downlink loss estimation by the UE for the cell
  • the preambleInitialReceivedTargetPower is the initial initial receive.
  • Target power DELTA_PREAMBLE is the preamble sequence format offset value
  • PREAMBLE_TRANSMISSION_COUNTER is the preamble transmission counter
  • powerRampingStep is the power adjustment step size
  • N l is the repetition factor N 1
  • delta(N l ) is the reduction function of the repetition factor N 1 .
  • the processing unit 202 is further configured to: before the sending unit 201 sends the second preamble sequence according to the second transmission power and the repetition factor N 2 , determine the second sending power by using the following formula:
  • P PRACH 3 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER3+PL+delta(N l+1 ) ⁇
  • P PRACH 3 is the second transmit power
  • min ⁇ is the minimum operation
  • P MAX is the maximum allowed transmit power of the UE
  • PL is the estimated value of the downlink loss estimation of the cell to which the UE is located
  • PREAMBLE_RECEIVED_TARGET_POWER3 is the second The preamble corresponding to the preamble receives the target power
  • N l+1 is the next repetition factor N 2
  • delta(N l+1 ) is the decrement function of the repetition factor N 2 .
  • the processing unit 202 is further configured to: when the first preamble sequence is the first preamble sequence in a random access procedure, before the sending unit 201 sends the first preamble sequence by using the repetition factor N1 according to the first transmit power. ,
  • the first transmit power is determined.
  • the processing unit 202 determines the first sending power by using the following formula:
  • P PRACH 4 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER4+PL+delta(N l ) ⁇
  • P PRACH 4 is the first transmit power
  • P MAX is the maximum allowed transmit power of the UE
  • PREAMBLE_RECEIVED_TARGET_POWER is the preamble receive target power corresponding to the first preamble sequence
  • N l is a repetition factor N 1
  • delta(N l ) is a repetition The decreasing function of the factor N 1
  • min ⁇ is the minimum operation
  • PL is the estimated value.
  • delta(N 1 ) is -10log(N 1 ) or -10log(N 1 )+offset(N 1 ), and offset(N 1 ) is an offset constant corresponding to the repetition factor N 1 .
  • delta(N l+1 ) is -10log(N l+1 ) or -10log(N l+1 )+offset(N l+1 ), offset(N l+1 ) is the next repetition The offset constant corresponding to the factor N 2 .
  • the processing unit 202 is further configured to: when the first preamble sequence is the first preamble sequence in a random access procedure, obtain a preamble receiving target power corresponding to the first preamble sequence; and obtain and repeat the factor N 1 corresponding constant bias offset (N 1); the maximum allowed UE transmit power, the first preamble sequence corresponding to the target pilot reception power, and the repetition factor N 1 corresponding to the constant bias offset (N 1) and is located on the cell
  • the estimated value of the downlink path loss estimate is used to determine the first transmit power.
  • the processing unit 202 determines the first transmit power according to the following formula:
  • P PRACH 5 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER5+PL-10log(N 1 )+offset(N 1 ) ⁇
  • P PRACH 5 represents the first transmit power
  • min ⁇ is the minimum value operation
  • P MAX is the maximum allowed transmit power of the UE
  • PREAMBLE_RECEIVED_TARGET_POWER5 is the preamble receive target power corresponding to the first preamble sequence
  • PL is an estimated value
  • N 1 is the repetition factor N 1 .
  • the processing unit 202 is further configured to: prior to transmitting unit 201 to repeat the transmission power in accordance with a first N 1 transmits a first preamble sequence elements, repeat acquiring transmission information corresponding to a set of factor N 1; preamble index comprises transmitting information And a physical random access channel PRACH resource;
  • Sending unit 201 specifically configured to: on the PRACH resource according to a first transmission power to a first preamble sequence repeat factor N 1 transmits the corresponding preamble index.
  • the processing unit 202 is specifically configured to: before the sending unit 201 sends the second preamble sequence according to a repetition factor N 2 according to the second transmission power, determine the second sending power by using the following formula:
  • N l+1 is the repetition factor N 1
  • N l+1 is the next repetition factor N 2 .
  • the processing unit 202 is further configured to: when the first preamble sequence is the first preamble sequence in a random access procedure, determine the first transmit power by using the following formula:
  • Preamble_Initial_Power CPICH_TX_Power-CPICH_RSCP+UL_interference+Constant_Value+delta(N l )
  • the Preamble_Initial_Power is the first transmit power
  • the CPICH_Tx_Power is the transmit power of the downlink pilot channel
  • the CPICH_RSCP is the receive power of the downlink pilot channel
  • the UL_Interference is the uplink interference
  • the Constant_Value is a constant
  • N l is the repetition factor N 1
  • delta (N l ) is the decreasing function of the repetition factor N 1 .
  • delta(N 1 ) is -10log(N 1 ) or -10log(N 1 )+offset(N 1 ), and offset(N 1 ) is an offset constant corresponding to the repetition factor N 1 .
  • the processing unit 202 is specifically configured to: determine a third sending power, where the third sending power is greater than the first sending power; and when the third sending power exceeds the maximum allowed transmit power of the UE, switch to the next repetition factor N 2 .
  • the processing unit 202 is further configured to: when the repetition factor N 1 is the initial repetition factor, determine the first repetition factor and the first before the sending unit 201 sends the first preamble sequence by using the repetition factor N 1 according to the first transmission power.
  • the power of the preamble sequence corresponding to the two repetition factors respectively; when the power of the preamble sequence corresponding to the first repetition factor is less than or equal to the difference between the maximum allowed transmission power of the UE and the specific constant, and the power of the preamble sequence corresponding to the second repetition factor is greater than the maximum power of the UE.
  • the first repetition factor is determined as the repetition factor N 1 ; wherein the second repetition factor is smaller than the first repetition factor and adjacent to the first repetition factor in the repetition factor.
  • the repetition factor N 1 corresponds to a first coverage enhancement level of the UE
  • the next repetition factor N 2 corresponds to a second coverage enhancement level of the UE
  • the second coverage enhancement level is higher than the first coverage enhancement level
  • the processing unit 202 is further configured to: by increasing the repetition factor N 1 step a repetition factor, to obtain the next repetition factor N 2; wherein the repetition factor corresponding to a first coverage enhancement level N 1 of UE, a moment When the repetition factor N 2 is less than or equal to the maximum repetition factor corresponding to the first coverage enhancement level, the next repetition factor N 2 corresponds to the first coverage enhancement level; when the next repetition factor N 2 is greater than the maximum repetition factor, the next repetition factor N 2 Corresponding to the second coverage enhancement level of the UE; the second coverage enhancement level is higher than the first coverage enhancement level.
  • the processing unit 202 is further configured to: when the repetition factor N 1 is an initial repetition factor, receive a preamble receiving target power of the first preamble sequence; the UE receives the target power according to the preamble, the maximum allowed transmit power of the UE, and the UE pair location The cell performs an estimation of the downlink path loss estimate, and determines a repetition factor N 1 .
  • the processing unit 202 determines the repetition factor N 1 by using the following formula:
  • Preamble_Initial_Repetition_Number is a repetition factor N 1
  • Ceil() is an upper rounding function
  • PREAMBLE_RECEIVED_TARGET_POWER is a preamble receiving target power
  • PL is an estimated value
  • P MAX is a maximum allowable transmission power.
  • the device further includes a receiving unit 203, configured to receive an offset constant offset (N k ) corresponding to the first coverage enhancement level; N k is a maximum repetition factor corresponding to the first coverage enhancement level;
  • the processing unit 202 is further configured to: determine the repetition factor N 1 according to the preamble receiving target power, the offset constant offset (N k ), the maximum allowed transmit power of the UE, and the estimated value of the downlink path loss estimation performed by the UE on the cell.
  • the apparatus further comprises a receiving unit 203, a repetition factor when a repetition when N 1 is the initial factor, receiving the maximum allowed UE transmit power, uplink interference and constant;
  • the processing unit 202 is further configured to obtain, by using the measurement, a received power of the downlink pilot channel, and obtain a transmit power of the downlink pilot channel, according to a maximum allowed transmit power, a constant, an uplink interference, a received power of the downlink pilot channel, and a downlink pilot channel.
  • the transmit power determines the repetition factor N 1 .
  • the processing unit 202 determines the repetition factor N 1 by using the following formula:
  • Preamble_Initial_Repetition_Number is the repetition factor N 1 , Ceil ( ) is the upper rounding function; Maximum_Allowed_Power is the maximum allowed transmission power; CPICH_RSCP is the received power of the downlink pilot channel; CPICH_Tx_Power is the transmission power of the downlink pilot channel, and UL_Interference is the uplink interference. Constant_Value is a constant.
  • the receiving unit 203 is further configured to: receive an offset constant offset (N k ) corresponding to the first coverage enhancement level; N k is a maximum repetition factor corresponding to the first coverage enhancement level;
  • the processing unit 202 is further configured to: determine the repetition factor N 1 according to the maximum allowed transmit power, the constant, the uplink interference, the received power of the downlink pilot channel, the transmit power of the downlink pilot channel, and the offset constant offset (N k ).
  • the first transmit power and the second transmit power are both the maximum allowed transmit power of the UE.
  • the device is a user equipment UE.
  • the embodiment of the present application further provides a user equipment UE.
  • the meanings and specific implementations of the terms related to the user equipment shown in FIG. 6 can be referred to the foregoing FIG. 1 to FIG. 4 and implemented. A description of the example.
  • the user equipment includes a processor 301, a transmitter 302, a receiver 303, a memory 304, and an input/output (I/O) interface 305.
  • the processor 301 may be a general-purpose central processing unit (CPU), may be an application specific integrated circuit (ASIC), and may be one or more integrated circuits for controlling program execution.
  • the I/O interface 305 can be connected to a keyboard, a mouse, a touch screen device, a voice activated input module, a display screen, a camera, and the like.
  • the number of memories 304 can be one or more.
  • the memory 304 may include a read only memory (English: Read Only Memory, ROM for short), a random access memory (English: Random Access Memory, RAM for short), and a disk storage. These memories, receivers 303 and transmitters 302 are connected to the processor 301 via a bus. The receiver 303 and the transmitter 302 are configured to perform network communication with an external device, and specifically communicate with an external device through a network such as an Ethernet, a wireless access network, or a wireless local area network. Receiver 303 and transmitter 302 may be physically separate components or may be physically identical components.
  • Instructions may be stored in memory 304, and processor 301 may execute instructions stored in memory 304.
  • the transmitter 302 is configured to send the first preamble sequence by using a repetition factor N 1 according to the first transmission power
  • the processor 301 is configured to: if the network side is not received within a predetermined time period after transmitting the first preamble sequence
  • the response message corresponding to the first preamble sequence sent by the device is switched to the next repetition factor N 2 , wherein the consecutive transmission times indicated by the next repetition factor N 2 are greater than the consecutive transmission times indicated by the repetition factor N 1 ; the transmitter 302 further For transmitting the second preamble sequence according to a repetition factor N 2 of the second transmission power.
  • the processor 301 is further configured to: prior to transmitting the transmitter 302 N 2 second preamble sequence transmit power factor in accordance with the following second repeat, the second transmission power is determined by the following equation:
  • P PRACH 1 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER1+PL ⁇
  • PREAMBLE_RECEIVED_TARGET_POWER1 preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)* (powerRampingStep)+delta(N l+1 )
  • the PPRACH 1 is the second transmit power
  • the min ⁇ is the minimum value operation
  • the P MAX is the maximum allowed transmit power of the UE
  • the PL is the estimated value of the downlink path loss estimation performed by the UE on the cell
  • the preambleInitialReceivedTargetPower is the preamble initial receive.
  • Target power DELTA_PREAMBLE is the preamble sequence format offset value
  • PREAMBLE_TRANSMISSION_COUNTER is the preamble transmission counter
  • powerRampingStep is the power adjustment step size
  • N l+1 is the next repetition factor N 2
  • delta(N l+1 ) is the next repetition factor N The subtraction function of 2 .
  • the processor 301 is specifically configured to:
  • the processor 301 determines the third sending power by using the following formula:
  • P PRACH 2 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER2+PL ⁇
  • PREAMBLE_RECEIVED_TARGET_POWER2 preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(N l )
  • the PPRACH 2 is the third transmit power
  • the min ⁇ is the minimum operation
  • the PMAX is the maximum allowed transmit power of the UE
  • the PL is the estimated value of the downlink loss estimation by the UE for the cell
  • the preambleInitialReceivedTargetPower is the initial initial receive.
  • Target power DELTA_PREAMBLE is the preamble sequence format offset value
  • PREAMBLE_TRANSMISSION_COUNTER is the preamble transmission counter
  • powerRampingStep is the power adjustment step size
  • N l is the repetition factor N 1
  • delta(N l ) is the reduction function of the repetition factor N 1 .
  • the processor 301 is further configured to: prior to transmitting the transmitter 302 N 2 second preamble sequence transmit power factor in accordance with the following second repeat, the second transmission power is determined by the following equation:
  • P PRACH 3 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER3+PL+delta(N l+1 ) ⁇
  • P PRACH 3 is the second transmit power
  • min ⁇ is the minimum operation
  • P MAX is the maximum allowed transmit power of the UE
  • PL is the estimated value of the downlink loss estimation of the cell to which the UE is located
  • PREAMBLE_RECEIVED_TARGET_POWER3 is the second The preamble corresponding to the preamble receives the target power
  • N l+1 is the next repetition factor N 2
  • delta(N l+1 ) is the decrement function of the repetition factor N 2 .
  • the processor 301 is further configured to: when the first preamble sequence is the first preamble sequence in a random access procedure, before the transmitter 302 transmits the first preamble sequence by using the repetition factor N1 according to the first transmit power. ,
  • the first transmit power is determined.
  • the processor 301 determines the first sending power by using the following formula:
  • P PRACH 4 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER4+PL+delta(N l ) ⁇
  • P PRACH 4 is the first transmit power
  • P MAX is the maximum allowed transmit power of the UE
  • PREAMBLE_RECEIVED_TARGET_POWER is the preamble receive target power corresponding to the first preamble sequence
  • N l is a repetition factor N 1
  • delta(N l ) is a repetition The decreasing function of the factor N 1
  • min ⁇ is the minimum operation
  • PL is the estimated value.
  • delta(N 1 ) is -10log(N 1 ) or -10log(N 1 )+offset(N 1 ), and offset(N 1 ) is an offset constant corresponding to the repetition factor N 1 .
  • delta(N l+1 ) is -10log(N l+1 ) or -10log(N l+1 )+offset(N l+1 ), offset(N l+1 ) is the next repetition The offset constant corresponding to the factor N 2 .
  • the processor 301 is further configured to: when the first preamble sequence is the first preamble sequence in a random access procedure, acquire a preamble receiving target power corresponding to the first preamble sequence; and obtain and repeat the factor N 1 corresponding constant bias offset (N 1); the maximum allowed UE transmit power, the target received power of a first preamble sequence corresponding to the front guide, and the repetition factor N 1 corresponding to the constant bias offset (N 1) and is located on the cell
  • the estimated value of the downlink path loss estimate is used to determine the first transmit power.
  • the processor 301 determines the first transmit power according to the following formula:
  • P PRACH 5 min ⁇ P MAX , PREAMBLE_RECEIVED_TARGET_POWER5+PL-10log(N 1 )+offset(N 1 ) ⁇
  • P PRACH 5 represents the first transmit power
  • min ⁇ is the minimum value operation
  • P MAX is the maximum allowed transmit power of the UE
  • PREAMBLE_RECEIVED_TARGET_POWER5 is the preamble receive target power corresponding to the first preamble sequence
  • PL is an estimated value
  • N 1 is the repetition factor N 1 .
  • the processor 301 is further configured to: at the transmitter 302 in accordance with a first transmission power transmitting repeating first preamble sequence N 1 before the factor, acquires transmission information set corresponding to a repeat factor N 1; preamble index comprises transmitting information And a physical random access channel PRACH resource;
  • the transmitter 302 is configured to: on the PRACH resource in accordance with a first transmission power to a first preamble sequence repeat factor N 1 transmits the corresponding preamble index.
  • the processor 301 is specifically configured to: prior to transmitting the transmitter 302 N 2 second preamble sequence transmit power factor in accordance with the following second repeat, the second transmission power is determined by the following equation:
  • N l+1 is the repetition factor N 1
  • N l+1 is the next repetition factor N 2 .
  • the processor 301 is further configured to: when the first preamble sequence is the first preamble sequence in a random access procedure, determine the first transmit power by using the following formula:
  • Preamble_Initial_Power CPICH_TX_Power-CPICH_RSCP+UL_interference+Constant_Value+delta(N l )
  • the Preamble_Initial_Power is the first transmit power
  • the CPICH_Tx_Power is the transmit power of the downlink pilot channel
  • the CPICH_RSCP is the receive power of the downlink pilot channel
  • the UL_Interference is the uplink interference
  • the Constant_Value is a constant
  • N l is the repetition factor N 1
  • delta (N l ) is the decreasing function of the repetition factor N 1 .
  • delta(N 1 ) is -10log(N 1 ) or -10log(N 1 )+offset(N 1 ), and offset(N 1 ) is an offset constant corresponding to the repetition factor N 1 .
  • the processor 301 is specifically configured to: determine a third sending power, where the third sending power is greater than the first sending power; and when the third sending power exceeds the maximum allowed transmit power of the UE, switch to the next repetition factor N 2 .
  • the processor 301 is further configured to: when the repetition factor N 1 is an initial repetition factor, determine the first repetition factor and the first before the transmitter 302 sends the first preamble sequence by using the repetition factor N 1 according to the first transmission power.
  • the power of the preamble sequence corresponding to the two repetition factors respectively; when the power of the preamble sequence corresponding to the first repetition factor is less than or equal to the difference between the maximum allowed transmission power of the UE and the specific constant, and the power of the preamble sequence corresponding to the second repetition factor is greater than the maximum power of the UE.
  • the first repetition factor is determined as the repetition factor N 1 ; wherein the second repetition factor is smaller than the first repetition factor and adjacent to the first repetition factor in the repetition factor.
  • the repetition factor N 1 corresponds to a first coverage enhancement level of the UE
  • the next repetition factor N 2 corresponds to a second coverage enhancement level of the UE
  • the second coverage enhancement level is higher than the first coverage enhancement level
  • the processor 301 is further configured to: by increasing the repetition factor N 1 step a repetition factor, to obtain the next repetition factor N 2; wherein the repetition factor corresponding to a first coverage enhancement level N 1 of UE, a moment When the repetition factor N 2 is less than or equal to the maximum repetition factor corresponding to the first coverage enhancement level, the next repetition factor N 2 corresponds to the first coverage enhancement level; when the next repetition factor N 2 is greater than the maximum repetition factor, the next repetition factor N 2 Corresponding to the second coverage enhancement level of the UE; the second coverage enhancement level is higher than the first coverage enhancement level.
  • the processor 301 is further configured to: when the repetition factor N 1 is an initial repetition factor, receive a preamble receiving target power of the first preamble sequence; the UE receives the target power according to the preamble, the maximum allowed transmit power of the UE, and the UE pair location The cell performs an estimation of the downlink path loss estimate, and determines a repetition factor N 1 .
  • the processor 301 determines the repetition factor N 1 by using the following formula:
  • Preamble_Initial_Repetition_Number is a repetition factor N 1
  • Ceil() is an upper rounding function
  • PREAMBLE_RECEIVED_TARGET_POWER is a preamble receiving target power
  • PL is an estimated value
  • P MAX is a maximum allowable transmission power.
  • the device further includes a receiver 303, configured to receive an offset constant offset (N k ) corresponding to the first coverage enhancement level; N k is a maximum repetition factor corresponding to the first coverage enhancement level;
  • the processor 301 is further configured to: determine the repetition factor N 1 according to the preamble receiving target power, the offset constant offset (N k ), the maximum allowed transmit power of the UE, and the estimated value of the downlink path loss estimation performed by the UE on the cell.
  • the apparatus further includes a receiver 303, a repetition factor when a repetition when N 1 is the initial factor, receiving the maximum allowed UE transmit power, uplink interference and constant;
  • the processor 301 is further configured to obtain the received power of the downlink pilot channel by using the obtained transmit power of the downlink pilot channel, and obtain the transmit power of the downlink pilot channel according to the maximum allowed transmit power, the constant, the uplink interference, the received power of the downlink pilot channel, and the downlink pilot channel.
  • the transmit power determines the repetition factor N 1 .
  • the processor 301 determines the repetition factor N 1 by using the following formula:
  • Preamble_Initial_Repetition_Number is the repetition factor N 1 , Ceil ( ) is the upper rounding function; Maximum_Allowed_Power is the maximum allowed transmission power; CPICH_RSCP is the received power of the downlink pilot channel; CPICH_Tx_Power is the transmission power of the downlink pilot channel, and UL_Interference is the uplink interference. Constant_Value is a constant.
  • the receiver 303 is further configured to: receive an offset constant offset (N k ) corresponding to the first coverage enhancement level; N k is a maximum repetition factor corresponding to the first coverage enhancement level;
  • the processor 301 is further configured to: determine the repetition factor N 1 according to the maximum allowed transmit power, the constant, the uplink interference, the received power of the downlink pilot channel, the transmit power of the downlink pilot channel, and the offset constant offset (N k ).
  • the first transmit power and the second transmit power are both the maximum allowed transmit power of the UE.
  • the time domain is repeated in the form of a repetition factor, so that the transmission success rate of the preamble sequence can be improved. Further, when the response message corresponding to the transmitted preamble sequence is not received, the repetition factor is increased, which further improves the signal coverage and improves the success rate of the preamble transmission.
  • the method in the embodiment of the present application is more effective and more practical because there is no climbing bottleneck such as the maximum allowable transmission power.
  • variable or parameter includes not only running software through a processor or running an algorithm based on the formula through a hardware logic circuit to obtain the variable or parameter. Also included is obtaining the variable or parameter by searching a lookup table whose logical relationship between the input table and the output table item satisfies the algorithmic principles of the input and output of the formula. Alternatively, the variable or parameter may be obtained by the processor running software or by other logic formulas that are derived from the deformation of the formula such that the acquisition of the variable or parameter still conforms to the operational rules of the formula.
  • the formula obtained by the various types of deformation of the formula (9) described above can also be used as the basis for determining the second transmission power, but the second transmission power can still be considered to be obtained according to the formula (9). Therefore, in the embodiment of the present invention, the description of a certain variable or parameter according to or according to a formula includes the case where the variable or parameter is obtained according to or according to other equivalent replacement deformation formulas of the formula.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can be packaged in one or more of them.
  • Computers containing computer usable program code may be in the form of a computer program product embodied on a storage medium, including but not limited to disk storage and optical storage.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种前导序列的发送发送及装置,该方法包括:用户设备UE按照第一发送功率以重复因子N1发送第一前导序列;如果所述UE在发送所述第一前导序列后的预定时间段内未接收到网络侧设备发送的对应所述第一前导序列的响应消息,所述UE切换到下一重复因子N2,其中所述下一重复因子N2所指示的连续发送次数大于所述重复因子N1所指示的连续发送次数;所述UE按照第二发送功率以所述下一重复因子N2发送第二前导序列。

Description

一种前导序列的发送方法及装置
本申请要求于2015年1月30日提交中国专利局、申请号为201510052923.6、发明名称为“一种前导序列的发送方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种前导序列的发送方法及装置。
背景技术
在长期演进(英文:Long Term Evolution,简称:LTE)系统中,用户设备(英文:User Equipment,简称:UE)的随机接入信道(英文:Random Access Channel,简称:RACH)的过程如下。
高层请求触发物理层进行前导(preamble)的发送。该请求中包含前导索引(preamble index)、目标前导接收功率(PREAMBLE_RECEIVED_TARGET_POWER)、对应的随机接入-无线网络临时标识(英文:Random Access-Radio Network Temporary Identity,简称:RA-RNTI)和物理随机接入信道(英文:Physical Random Access Channel,简称:PRACH)资源信息。
根据下述公式确定前导传输功率PPRACH。PPRACH=min{PCMAX,c(i),PREAMBLE_RECEIVED_TARGET_POWER+PLc}_[dBm]。其中,PCMAX,c(i)为UE所在服务小区c的第i个子帧的被配置的最大允许发送功率,PLc为UE对服务小区c进行下行路损估计的估计值,min{}为取最小值操作。
然后使用前导索引从前导序列集合中选取一个前导序列。在指示的PRACH资源上使用选择的前导序列按照前导的发送功率PPRACH发送选择的前导序列。
UE在发送前导序列之后可能有三种情况。第一种,UE以RA-RNTI检测到物理下行控制信道(英文:Physical Downlink Control Channel,简称:PDCCH),并在对应的下行数据块中检测到所发前导序列的响应,则UE根据响应的内容发送上行传输块。第二种,UE以RA-RNTI检测到PDCCH,但在对应的下行数据 块中发现没有所发前导序列的响应,则UE根据高层指示确定是否重新发送一次前导序列。第三种,UE没有收到网络侧的响应,则UE根据高层指示确定是否重新发送一次前导序列。
当发生第二种或者第三种情况时,媒体介入控制(英文:Media Access Control,简称:MAC)层会更新前导接收目标功率以及新的PRACH参数重新发送前导序列。更新后的前导接收目标功率为:preambleInitialReceivedTargetPower+DELTA_PREAMBLE+PREAMBLE_TRANSMISSION_COUNTER–1)*powerRampingStep。其中,preambleInitialReceivedTargetPower为前导初始接收目标功率,来自网络侧发送的广播信息;powerRampingStep为功率调整步长,也是来自网络侧发送的广播信息;DELTA_PREAMBLE为前导序列格式偏置值,为协议约定的值;PREAMBLE_TRANSMISSION_COUNTER为前导传输计数器值,根据当前计数器的值即可获得。
然后指示物理层使用PRACH、对应的RA-RNTI、前导索引以及更新的前导接收目标功率发送前导序列。
在通用移动通信系统(英文:Universal Mobile Telecommunications System,简称:UMTS)中,UE随机接入信道的过程如下。
在给定的接入服务等级(英文:Access Service Class,简称ASC)对应的可用的RACH子信道中选择下一个可用的接入时隙。在给定的ASC对应的可用签名(signature)中随机选择一个新的签名。设定前导的重传计数器值为Preamble Retrans Max。如果前导初始功率(Preamble_Initial_Power)小于预设最小值,则设定前导需求功率为前导初始功率和预设最小值之间,否则设为前导初始功率。如果前导需求功率大于预设最大值,设置前导发送功率为预设最大值;如果前导需求功率小于预设最小值,则设定前导发送功率为前导需求功率和预设最小值之间。使用选择的上行接入时隙、签名和前导传输功率传送前导序列。如果UE在上行接入时隙对应的下行接入时隙中没有检测到对应签名的捕获指示,则在给定的ASC对应的可用的RACH子信道中选择下一个可用的接入时隙。在给 定的ASC对应的可用签名中随机选择一个新的签名。增加前导需求功率一个功率调整步长(Power Ramp Step[dB]),如果前导需求功率超过最大允许功率6dB,UE将物理层状态(“捕获指示信道上没有肯定响应”)传送到MAC层并退出物理层随机接入过程。将前导重传计数器减1。如果前导重传计数器大于0,则重新使用选择的上行接入时隙、新的签名和前导传输功率发送前导序列。如果前导重传计数器等于0,则UE将物理层状态(“捕获指示信道上没有肯定响应”)传送到MAC层并退出物理层随机接入过程。如果检测到否定的捕获指示,则UE将物理层状态(“捕获指示信道上没有肯定响应”)传送到MAC层并退出物理层随机接入过程。
其中,UE基于下行信号功率的测量,计算PRACH的初始发射功率Preamble_Initial_Power如下。Preamble_Initial_Power=CPICH_TX_Power-CPICH_RSCP+UL_interference+Constant Value。其中,CPICH_RSCP是UE测量得到的接收的导频信道功率;CPICH_Tx_Power是下行导频信道的发射功率。UL_interference是上行干扰,Constant_value为常量。CPICH_Tx_Power、UL_interference和Constant_value可以是由网络通过广播信道发送给UE的。
由此可见,在现有技术中通过发送功率的攀升提高发送成功率的方式的效果有限。
发明内容
本申请提供一种前导序列的发送方法及装置,用于解决现有技术中通过发送功率攀升进行前导序列的重发导致的发送成功率较低的技术问题。
本申请第一方面提供了一种前导序列的发送方法,包括:
用户设备UE按照第一发送功率以重复因子N1发送第一前导序列;
如果所述UE在发送所述第一前导序列后的预定时间段内未接收到网络侧设备发送的对应所述第一前导序列的响应消息,所述UE切换到下一重复因子N2,其中所述下一重复因子N2所指示的连续发送次数大于所述重复因子N1所指示的连续发送次数;
所述UE按照第二发送功率以所述下一重复因子N2发送第二前导序列。
结合第一方面,在第一方面的第一种可能的实现方式中,在所述UE按照第二发送功率以所述下一重复因子N2发送第二前导序列之前,所述UE还通过以下公式确定所述第二发送功率:
PPRACH1=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER1+PL}
其中,
PREAMBLE_RECEIVED_TARGET_POWER1=preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(Nl+1)
其中,PPRACH1为所述第二发送功率,min{}为取最小值操作,PMAX为所述UE的最大允许发送功率,PL为所述UE对所在小区进行下行路损估计的估计值,preambleInitialReceivedTargetPower为前导初始接收目标功率,DELTA_PREAMBLE为前导序列格式偏置值,PREAMBLE_TRANSMISSION_COUNTER为前导发送计数器,powerRampingStep为功率调整步长,Nl+1为所述下一重复因子N2,delta(Nl+1)为所述下一重复因子N2的减函数。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述UE切换到下一重复因子N2包括:
所述UE确定第三发送功率,所述第三发送功率大于所述第一发送功率;
当所述第三发送功率超过所述UE的最大允许发送功率时,切换到所述下一重复因子N2
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述UE通过以下公式确定所述第三发送功率:
PPRACH2=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER2+PL}
其中,
PREAMBLE_RECEIVED_TARGET_POWER2=preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)* (powerRampingStep)+delta(Nl)
其中,PPRACH2为所述第三发送功率,min{}为取最小值操作,PMAX为所述UE的最大允许发送功率,PL为所述UE对所在小区进行下行路损估计的估计值,preambleInitialReceivedTargetPower为前导初始接收目标功率,DELTA_PREAMBLE为前导序列格式偏置值,PREAMBLE_TRANSMISSION_COUNTER为前导发送计数器,powerRampingStep为功率调整步长,Nl为所述重复因子N1,delta(Nl)为所述重复因子N1的减函数。
结合第一方面,在第一方面的第四种可能的实现方式中,在所述UE按照第二发送功率以所述下一重复因子N2发送第二前导序列之前,所述UE还通过以下公式确定所述第二发送功率:
PPRACH3=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER3+PL+delta(Nl+1)}
其中,PPRACH3为所述第二发送功率,min{}为取最小值操作,PMAX为所述UE的最大允许发送功率,PL为所述UE对所在小区进行下行路损估计的估计值,PREAMBLE_RECEIVED_TARGET_POWER3为与所述第二前导序列对应的前导接收目标功率,Nl+1为所述下一重复因子N2,delta(Nl+1)为所述重复因子N2的减函数。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,当所述第一前导序列为一次随机接入过程中的第一个前导序列时,在用户设备UE按照第一发送功率以重复因子N1发送第一前导序列前,所述方法还包括:
所述UE获得与所述第一前导序列对应的前导接收目标功率;
所述UE根据所述重复因子N1、所述UE的最大允许发送功率、所述与所述第一前导序列对应的前导接收目标功率以及所述UE对所在小区进行下行路损估计的估计值确定所述第一发送功率。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述UE通过以下公式确定所述第一发送功率:
PPRACH4=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER4+PL+delta(Nl)}
其中,PPRACH4为所述第一发送功率,PMAX为所述UE的最大允许发送功率,PREAMBLE_RECEIVED_TARGET_POWER为所述与所述第一前导序列对应的前导接收目标功率,Nl为所述重复因子N1,所述delta(Nl)为所述重复因子N1的减函数,min{}为取最小值操作,PL为所述估计值。
结合第一方面的第三种可能的实现方式或第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,所述delta(N1)为-10log(N1)或者-10log(N1)+offset(N1),所述offset(N1)为与所述重复因子N1对应的偏置常量。
结合第一方面的第一种可能的实现方式或第一方面的第四种可能的实现方式,在第一方面的第八种可能的实现方式中,所述delta(Nl+1)为-10log(Nl+1)或者-10log(Nl+1)+offset(Nl+1),所述offset(Nl+1)为与所述下一重复因子N2对应的偏置常量。
结合第一方面或第一方面的第四种可能的实现方式,在第一方面的第九种可能的实现方式中,当所述第一前导序列为一次随机接入过程中的第一个前导序列时,所述方法还包括:
所述UE获取与所述第一前导序列对应的前导接收目标功率;
所述UE获取与所述重复因子N1对应的偏置常量offset(N1);
所述UE根据所述UE的最大允许发送功率、所述与所述第一前导序列对应的前导接收目标功率、所述与所述重复因子N1对应的偏置常量offset(N1)以及所述UE对所在小区进行下行路损估计的估计值确定所述第一发送功率。
结合第一方面的第九种可能的实现方式,在第一方面的第十种可能的实现方式中,所述UE根据以下公式确定所述第一发送功率:
PPRACH5=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER5+PL-10log(N1)+offset(N1)}
其中,PPRACH5表示所述第一发送功率,min{}为取最小值操作,PMAX为所述UE的最大允许发送功率,PREAMBLE_RECEIVED_TARGET_POWER5为所述与所述第一前导序列对应的前导接收目标功率,PL为所述估计值,N1为所述重复因子N1
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第十种可能的实现方式中的任意一种,在第一方面的第十一种可能的实现方式中,在用户设备UE按照第一发送功率以重复因子N1发送第一前导序列之前,所述方法还包括:
所述UE获取与所述重复因子N1对应的一组发送信息;所述发送信息包括前导索引和物理随机接入信道PRACH资源;
用户设备UE按照第一发送功率以重复因子N1发送第一前导序列,包括:
所述UE在所述PRACH资源上按照第一发送功率以重复因子N1发送与所述前导索引对应的第一前导序列。
结合第一方面的第十一种可能的实现方式,在第一方面的第十二种可能的实现方式中,所述UE获取与所述重复因子N1对应的一组发送信息,包括:
所述UE的物理层将所述重复因子N1上报给所述UE的媒体接入MAC层;所述UE的物理层接收所述MAC层下发的与所述重复因子N1对应的所述一组发送信息;或者
所述UE的物理层接收所述UE的媒体接入MAC层下发的包括所述重复因子N1在内的多个重复因子分别对应的多组发送信息;所述UE的物理层根据所述重复因子N1在多组发送信息中确定出与所述重复因子N1对应的一组发送信息。
结合第一方面,在第一方面的第十三种可能的实现方式中,在所述UE按照第二发送功率以所述下一重复因子N2发送第二前导序列之前,所述UE还通过 以下公式确定所述第二发送功率:
Figure PCTCN2016070390-appb-000001
其中,pn+1为所述第二发送功率,pn为所述第一发送功率,ΔP0为功率调整步长,Nl为所述重复因子N1,Nl+1为所述下一重复因子N2
结合第一方面的第十三种可能的实现方式,在第一方面的第十四种可能的实现方式中,当所述第一前导序列为一次随机接入过程中的第一个前导序列时,所述UE通过以下公式确定所述第一发送功率:
Preamble_Initial_Power=CPICH_TX_Power-CPICH_RSCP+UL_interference+Constant_Value+delta(Nl)
其中,Preamble_Initial_Power为所述第一发送功率,CPICH_Tx_Power为下行导频信道的发射功率,CPICH_RSCP为下行导频信道的接收功率,UL_Interference为上行干扰,Constant_Value为常量,Nl为所述重复因子N1,delta(Nl)为所述重复因子N1的减函数。
结合第一方面的第十四种可能的实现方式,在第一方面的第十五种可能的实现方式中,delta(N1)为-10log(N1)或者-10log(N1)+offset(N1),所述offset(N1)为与所述重复因子N1对应的偏置常量。
结合第一方面的第四种可能的实现方式至第一方面的第十五种可能的实现方式中的任意一种,在第一方面的第十六种可能的实现方式中,所述UE切换到下一重复因子N2包括:
所述UE确定第三发送功率,所述第三发送功率大于所述第一发送功率;
当所述第三发送功率超过所述UE的最大允许发送功率时,切换到所述下一重复因子N2
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第十六种可能的实现方式中的任意一种,在第一方面的第十七种可能的实现方式中,当所述重复因子N1为初始重复因子时,在用户设备UE按照第一发送功率以重复因子N1发送第一前导序列之前,所述方法还包括:
所述UE确定第一重复因子和第二重复因子分别对应的前导序列功率;
当第一重复因子对应的前导序列功率小于等于所述UE的最大允许发送功率和特定常数之差,并且第二重复因子对应的前导序列功率大于所述UE的最大功率和特定常数之差时,或者当第一重复因子对应的前导序列功率小于所述UE的最大允许发送功率和特定常数之差,并且第二重复因子对应的前导序列功率大于等于所述UE的最大功率和特定常数之差时,确定所述第一重复因子作为重复因子N1;其中,所述第二重复因子小于所述第一重复因子且在重复因子中与所述第一重复因子相邻。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第十七种可能的实现方式中的任意一种,在第一方面的第十八种可能的实现方式中,所述重复因子N1对应所述UE的第一覆盖增强等级,所述下一重复因子N2对应所述UE的第二覆盖增强等级,所述第二覆盖增强等级高于所述第一覆盖增强等级。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第十七种可能的实现方式中的任意一种,在第一方面的第十九种可能的实现方式中,在所述UE切换到下一重复因子N2之前,所述包括:
所述UE通过在所述重复因子N1上增加一个重复因子步长,获得所述下一重复因子N2;其中,所述重复因子N1对应所述UE的第一覆盖增强等级,当所述下一重复因子N2小于或等于所述第一覆盖增强等级对应的最大重复因子时,所述下一重复因子N2对应所述第一覆盖增强等级;当所述下一重复因子N2大于所述最大重复因子时,所述下一重复因子N2对应所述UE的第二覆盖增强等级;所述第二覆盖增强等级高于所述第一覆盖增强等级。
结合第一方面第十九种可能的实现方式,在第一方面的第二十种可能的实现方式中,当所述重复因子N1为初始重复因子时,所述方法还包括:
所述UE接收所述第一前导序列的前导接收目标功率;
所述UE根据所述前导接收目标功率、所述UE的最大允许发送功率以及所述UE对所在小区进行下行路损估计的估计值,确定所述重复因子N1
结合第一方面第二十种可能的实现方式,在第一方面的第二十一种可能的实现方式中,所述UE通过以下公式确定所述重复因子N1
Figure PCTCN2016070390-appb-000002
其中,Preamble_Initial_Repetition_Number为所述重复因子N1,Ceil()为上取整函数;PREAMBLE_RECEIVED_TARGET_POWER为所述前导接收目标功率,PL为所述估计值,PMAX为所述最大允许发送功率。
结合第一方面第二十种可能的实现方式,在第一方面的第二十二种可能的实现方式中,所述方法还包括:
所述UE接收与所述第一覆盖增强等级对应的偏置常量offset(Nk);Nk为所述第一覆盖增强等级对应的最大重复因子;
所述UE根据所述前导接收目标功率、所述UE的最大允许发送功率以及所述UE对所在小区进行下行路损估计的估计值,确定所述重复因子N1包括:
所述UE根据所述前导接收目标功率、所述偏置常量offset(Nk)、所述UE的最大允许发送功率以及所述UE对所在小区进行下行路损估计的估计值,确定所述重复因子N1
结合第一方面第十九种可能的实现方式,在第一方面的第二十三种可能的实现方式中,当所述重复因子N1为初始重复因子时,所述方法还包括:
所述UE接收所述UE的最大允许发送功率、常数和上行干扰;
所述UE通过测量获得下行导频信道的接收功率;
所述UE获得所述下行导频信道的发射功率;
所述UE根据所述最大允许发送功率、所述常数、所述上行干扰、所述下行导频信道的接收功率、所述下行导频信道的发射功率确定所述重复因子N1
结合第一方面第二十三种可能的实现方式,在第一方面的第二十四种可能的实现方式中,所述UE通过以下公式确定所述重复因子N1
Figure PCTCN2016070390-appb-000003
其中,Preamble_Initial_Repetition_Number为所述重复因子N1,Ceil()为上取整函数;Maximum_Allowed_Power为所述最大允许发送功率;CPICH_RSCP为所述下行导频信道的接收功率;CPICH_Tx_Power为所述下行导频信道的发射功率,UL_Interference为所述上行干扰,Constant_Value为所述常数。
结合第一方面第二十三种可能的实现方式,在第一方面的第二十五种可能的实现方式中,所述方法还包括:
所述UE接收与所述第一覆盖增强等级对应的偏置常量offset(Nk);Nk为所述第一覆盖增强等级对应的最大重复因子;
所述UE根据所述最大允许发送功率、所述常数、所述上行干扰、所述下行导频信道的接收功率、所述下行导频信道的发射功率确定所述重复因子N1包括:
所述UE根据所述最大允许发送功率、所述常数、所述上行干扰、所述下行导频信道的接收功率、所述下行导频信道的发射功率以及所述偏置常量offset(Nk)确定所述重复因子N1
结合第一方面第十九种可能的实现方式至第一方面的第二十五种可能的实现方式中的任意一种,在第一方面的第二十六种可能的实现方式中,所述第一发送功率和所述第二发送功率均为所述UE的最大允许发送功率。
本申请第二方面提供一种前导序列的发送装置,包括:
发送单元,用于按照第一发送功率以重复因子N1发送第一前导序列;
处理单元,用于如果在发送所述第一前导序列后的预定时间段内未接收到网络侧设备发送的对应所述第一前导序列的响应消息,切换到下一重复因子N2,其中所述下一重复因子N2所指示的连续发送次数大于所述重复因子N1所指示的连续发送次数;
所述发送单元还用于:按照第二发送功率以所述下一重复因子N2发送第二前导序列。
结合第二方面,在第二方面的第一种可能的实现方式中,所述处理单元还用于:在所述发送单元按照第二发送功率以所述下一重复因子N2发送第二前导序列之前,通过以下公式确定所述第二发送功率:
PPRACH1=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER1+PL}
其中,
PREAMBLE_RECEIVED_TARGET_POWER1=preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(Nl+1)
其中,PPRACH1为所述第二发送功率,min{}为取最小值操作,PMAX为所述UE的最大允许发送功率,PL为所述UE对所在小区进行下行路损估计的估计值,preambleInitialReceivedTargetPower为前导初始接收目标功率,DELTA_PREAMBLE为前导序列格式偏置值,PREAMBLE_TRANSMISSION_COUNTER为前导发送计数器,powerRampingStep为功率调整步长,Nl+1为所述下一重复因子N2,delta(Nl+1)为所述下一重复因子N2的减函数。
结合第二方面或第二方面的第一种可能的实现方式中,在第二方面的第二种可能的实现方式中,所述处理单元具体用于:
确定第三发送功率,所述第三发送功率大于所述第一发送功率;
当所述第三发送功率超过UE的最大允许发送功率时,切换到所述下一重复因子N2
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述处理单元具体通过以下公式确定所述第三发送功率:
PPRACH2=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER2+PL}
其中,
PREAMBLE_RECEIVED_TARGET_POWER2=preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(Nl)
其中,PPRACH2为所述第三发送功率,min{}为取最小值操作,PMAX为所述UE的最大允许发送功率,PL为所述UE对所在小区进行下行路损估计的估计值,preambleInitialReceivedTargetPower为前导初始接收目标功率,DELTA_PREAMBLE为前导序列格式偏置值,PREAMBLE_TRANSMISSION_COUNTER为前导发送计数器,powerRampingStep为功率调整步长,Nl为所述重复因子N1,delta(Nl)为所述重复因子N1的减函数。
结合第二方面,在第二方面的第四种可能的实现方式中,所述处理单元还用于:在所述发送单元按照第二发送功率以所述下一重复因子N2发送第二前导序列之前,通过以下公式确定所述第二发送功率:
PPRACH3=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER3+PL+delta(Nl+1)}
其中,PPRACH3为所述第二发送功率,min{}为取最小值操作,PMAX为所述UE的最大允许发送功率,PL为所述UE对所在小区进行下行路损估计的估计值,PREAMBLE_RECEIVED_TARGET_POWER3为与所述第二前导序列对应的前导接收目标功率,Nl+1为所述下一重复因子N2,delta(Nl+1)为所述重复因子N2的减函数。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述处理单元还用于:当所述第一前导序列为一次随机接入过程中的第一个前导序列时,在所述发送单元按照第一发送功率以重复因子N1发送第一前导序列前,
获得与所述第一前导序列对应的前导接收目标功率;根据所述重复因子N1、所述UE的最大允许发送功率、所述与所述第一前导序列对应的前导接收目标功率以及所述UE对所在小区进行下行路损估计的估计值确定所述第一发送功率。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,所述处理单元具体通过以下公式确定所述第一发送功率:
PPRACH4=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER4+PL+delta(Nl)}
其中,PPRACH4为所述第一发送功率,PMAX为所述UE的最大允许发送功率,PREAMBLE_RECEIVED_TARGET_POWER为所述与所述第一前导序列对应的前导接收目标功率,Nl为所述重复因子N1,所述delta(Nl)为所述重复因子N1的减函数,min{}为取最小值操作,PL为所述估计值。
结合第二方面第三种可能的实现方式或第二方面的第五种可能的实现方式,在第二方面的第七种可能的实现方式中,所述delta(N1)为-10log(N1)或者-10log(N1)+offset(N1),所述offset(N1)为与所述重复因子N1对应的偏置常量。
结合第二方面的第一种可能的实现方式或第二方面的第四种可能的实现方式,在第二方面的第八种可能的实现方式中,所述delta(Nl+1)为-10log(Nl+1)或者-10log(Nl+1)+offset(Nl+1),所述offset(Nl+1)为与所述下一重复因子N2对应的偏置常量。
结合第二方面或第二方面的第四种可能的实现方式,在第二方面的第九种可能的实现方式中,所述处理单元还用于:当所述第一前导序列为一次随机接入过程中的第一个前导序列时,获取与所述第一前导序列对应的前导接收目标功率;获取与所述重复因子N1对应的偏置常量offset(N1);根据所述UE的最大允许发送功率、所述与所述第一前导序列对应的前导接收目标功率、所述与所述重复因子N1对应的偏置常量offset(N1)以及对所在小区进行下行路损估计的估计值确定所述第一发送功率。
结合第二方面的第九种可能的实现方式,在第二方面的第十种可能的实现方式中,所述处理单元根据以下公式确定所述第一发送功率:
PPRACH5=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER5+PL-10log(N1)+offset(N1)}
其中,PPRACH5表示所述第一发送功率,min{}为取最小值操作,PMAX为所述 UE的最大允许发送功率,PREAMBLE_RECEIVED_TARGET_POWER5为所述与所述第一前导序列对应的前导接收目标功率,PL为所述估计值,N1为所述重复因子N1
结合第二方面或第二方面的第一种可能的实现方式至第二方面的第十种可能的实现方式,在第二方面的第十一种可能的实现方式中,所述处理单元还用于:在所述发送单元按照第一发送功率以重复因子N1发送第一前导序列之前,获取与所述重复因子N1对应的一组发送信息;所述发送信息包括前导索引和物理随机接入信道PRACH资源;
所述发送单元具体用于:在所述PRACH资源上按照第一发送功率以重复因子N1发送与所述前导索引对应的第一前导序列。
结合第二方面,在第二方面的第十二种可能的实现方式中,所述处理单元具体用于:在所述发送单元按照第二发送功率以所述下一重复因子N2发送第二前导序列之前,通过以下公式确定所述第二发送功率:
Figure PCTCN2016070390-appb-000004
其中,pn+1为所述第二发送功率,pn为所述第一发送功率,ΔP0为功率调整步长,Nl为所述重复因子N1,Nl+1为所述下一重复因子N2
结合第二方面的第十二种可能的实现方式,在第二方面的第十三种可能的实现方式中,所述处理单元还用于当所述第一前导序列为一次随机接入过程中的第一个前导序列时,通过以下公式确定所述第一发送功率:
Preamble_Initial_Power=CPICH_TX_Power-CPICH_RSCP+UL_interference+Constant_Value+delta(Nl)
其中,Preamble_Initial_Power为所述第一发送功率,CPICH_Tx_Power为下行导频信道的发射功率,CPICH_RSCP为下行导频信道的接收功率,UL_Interference为上行干扰,Constant_Value为常量,Nl为所述重复因子N1,delta(Nl)为所述重复因子N1的减函数。
结合第二方面的第十三种可能的实现方式,在第二方面的第十四种可能的实现方式中,delta(N1)为-10log(N1)或者-10log(N1)+offset(N1),所述offset(N1)为与所述重复因子N1对应的偏置常量。
结合第二方面的第五种可能的实现方式至第二方面的十四种可能的实现方式中的任意一种,在第二方面的第十五种可能的实现方式中,所述处理单元具体用于:确定第三发送功率,所述第三发送功率大于所述第一发送功率;当所述第三发送功率超过所述UE的最大允许发送功率时,切换到所述下一重复因子N2
结合第二方面或第二方面的第一种可能的实现方式至第二方面的第十五种可能的实现方式,在第二方面的第十六种可能的实现方式中,所述处理单元还用于:当所述重复因子N1为初始重复因子时,在所述发送单元按照第一发送功率以重复因子N1发送第一前导序列之前,确定第一重复因子和第二重复因子分别对应的前导序列功率;当第一重复因子对应的前导序列功率小于等于所述UE的最大允许发送功率和特定常数之差,并且第二重复因子对应的前导序列功率大于所述UE的最大功率和特定常数之差时,或者当第一重复因子对应的前导序列功率小于所述UE的最大允许发送功率和特定常数之差,并且第二重复因子对应的前导序列功率大于等于所述UE的最大功率和特定常数之差时,确定所述第一重复因子作为重复因子N1;其中,所述第二重复因子小于所述第一重复因子且在重复因子中与所述第一重复因子相邻。
结合第二方面或第二方面的第一种可能的实现方式至第二方面的第十六种可能的实现方式,在第二方面的第十七种可能的实现方式中,所述重复因子N1对应所述UE的第一覆盖增强等级,所述下一重复因子N2对应所述UE的第二覆盖增强等级,所述第二覆盖增强等级高于所述第一覆盖增强等级。
结合第二方面或第二方面的第一种可能的实现方式至第二方面的第十六种可能的实现方式,在第二方面的第十八种可能的实现方式中,所述处理单元还用于:通过在所述重复因子N1上增加一个重复因子步长,获得所述下一重复因子N2;其中,所述重复因子N1对应所述UE的第一覆盖增强等级,当所述下一重 复因子N2小于或等于所述第一覆盖增强等级对应的最大重复因子时,所述下一重复因子N2对应所述第一覆盖增强等级;当所述下一重复因子N2大于所述最大重复因子时,所述下一重复因子N2对应所述UE的第二覆盖增强等级;所述第二覆盖增强等级高于所述第一覆盖增强等级。
结合第二方面的第十八种可能的实现方式,在第二方面的第十九种可能的实现方式中,所述处理单元还用于:当所述重复因子N1为初始重复因子时,接收所述第一前导序列的前导接收目标功率;UE根据所述前导接收目标功率、所述UE的最大允许发送功率以及所述UE对所在小区进行下行路损估计的估计值,确定所述重复因子N1
结合第二方面的第十九种可能的实现方式,在第二方面的第二十种可能的实现方式中,所述处理单元具体通过以下公式确定所述重复因子N1
Figure PCTCN2016070390-appb-000005
其中,Preamble_Initial_Repetition_Number为所述重复因子N1,Ceil()为上取整函数;PREAMBLE_RECEIVED_TARGET_POWER为所述前导接收目标功率,PL为所述估计值,PMAX为所述最大允许发送功率。
结合第二方面的第十九种可能的实现方式,在第二方面的第二十一种可能的实现方式中,所述装置还包括接收单元,用于接收与所述第一覆盖增强等级对应的偏置常量offset(Nk);Nk为所述第一覆盖增强等级对应的最大重复因子;
所述处理单元还用于:根据所述前导接收目标功率、所述偏置常量offset(Nk)、所述UE的最大允许发送功率以及所述UE对所在小区进行下行路损估计的估计值,确定所述重复因子N1
结合第二方面的第十八种可能的实现方式,在第二方面的第二十二种可能的实现方式中,所述装置还包括接收单元,用于当所述重复因子N1为初始重复因子时,接收所述UE的最大允许发送功率、常数和上行干扰;
所述处理单元还用于通过测量获得下行导频信道的接收功率;获得所述下行导频信道的发射功率;根据所述最大允许发送功率、所述常数、所述上行干 扰、所述下行导频信道的接收功率、所述下行导频信道的发射功率确定所述重复因子N1
结合第二方面的第二十二种可能的实现方式,在第二方面的第二十三种可能的实现方式中,所述处理单元具体通过以下公式确定所述重复因子N1
Figure PCTCN2016070390-appb-000006
其中,Preamble_Initial_Repetition_Number为所述重复因子N1,Ceil()为上取整函数;Maximum_Allowed_Power为所述最大允许发送功率;CPICH_RSCP为所述下行导频信道的接收功率;CPICH_Tx_Power为所述下行导频信道的发射功率,UL_Interference为所述上行干扰,Constant_Value为所述常数。
结合第二方面的第二十二种可能的实现方式,在第二方面的第二十四种可能的实现方式中,所述接收单元还用于:接收与所述第一覆盖增强等级对应的偏置常量offset(Nk);Nk为所述第一覆盖增强等级对应的最大重复因子;
所述处理单元还用于:根据所述最大允许发送功率、所述常数、所述上行干扰、所述下行导频信道的接收功率、所述下行导频信道的发射功率以及所述偏置常量offset(Nk)确定所述重复因子N1
结合第二方面的第十八种可能的实现方式至第二方面的第二十四种可能的实现方式中的任意一种,在第二方面的第二十五种可能的实现方式中,所述第一发送功率和所述第二发送功率均为所述UE的最大允许发送功率。
结合第二方面或第二方面的第一种可能的实现方式至第二方面的第二十五种可能的实现方式中的任意一种,在第二方面的第二十六种可能的实现方式中,所述装置为用户设备UE。
本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
本申请实施例中,首先在发送前导序列时,以重复因子的形式进行时域的重复,所以能够提高前导序列的发送成功率。进一步,当未接收到对应所发送 的前导序列的响应消息时,进行重复因子的攀升,进一步可以提高信号覆盖范围,提高了前导序列发送成功率。相较于现有技术中发送功率的攀升方法,因为没有如最大允许发送功率这样的攀升瓶颈,所以本申请实施例中的方法更加有效,更加实用。
附图说明
图1为本申请实施例提供的一种前导序列的发送方法的流程图;
图2为本申请实施例提供的一种覆盖增强等级的示意图;
图3为本申请实施例提供的一种前导序列的发送示意图;
图4为本申请实施例提供的另一种前导序列的发送示意图;
图5为本申请实施例提供的一种前导序列的发送装置的功能框图;
图6为本申请实施例提供的一种用户设备的结构框图。
具体实施方式
本申请实施例提供一种前导序列的发送方法及装置,用以解决现有技术中通过发送功率攀升进行前导序列的重发导致的发送成功率较低的技术问题。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本文中结合用户设备来描述各种方面。
用户设备,可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无 线接入网交换语言和/或数据。例如,个人通信业务(PCS,Personal Communication Service)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(PDA,Personal Digital Assistant)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参考图1所示,为本申请实施例提供的一种前导序列的发送方法的流程图。如图1所示,该方法包括以下内容。
步骤101:UE按照第一发送功率以重复因子N1发送第一前导序列;
步骤102:如果UE在发送第一前导序列后的预定时间段内未接收到网络侧设备发送的对应第一前导序列的响应消息,UE切换到下一重复因子N2,其中下一重复因子N2所指示的连续发送次数大于重复因子N1所指示的连续发送次数;
步骤103:UE按照第二发送功率以下一重复因子N2发送第二前导序列。
具体来说,假设在步骤101之前,高层请求触发UE的物理层进行前导的发送,该请求中包含前导索引、目标前导接收功率,对应的RA-RNTI和PRACH资源信息。然后UE使用前导索引从前导序列集合中选取一个前导序列。再执行步骤101,即在指示的PRACH资源上使用选择的前导序列按照第一发送功率以重复因子N1发送选择的前导序列。
接下来,如果UE在发送第一前导序列后的预定时间段内未接收到网络侧设备发送的对应第一前导序列的响应消息,就执行步骤102。
可选的,在步骤101中发送第一前导序列,并启动定时器。因此UE可以通过定时器是否超时来判断是否超出前述预定时间内。在实际运用中,还可以通过其他方式进行是否超时的判断,该部分内容为本领域技术人员所熟知的内容,所以在此不再赘述。
而UE在预定时间内未接收到网络侧设备发送的对应第一前导序列的响应消息的情况,例如背景技术中所描述的第二种和第三种情况。当然,在实际运用中,还可以是其它未接收到对应第一前导序列的响应消息的情况,本申请不作具体限定。
具体来说,在步骤102中,UE切换到下一重复因子N2为将前导序列的连续发送次数提高到N2。举例来说,假设在步骤101中,以重复因子3发送第一前导序列,换言之,将第一前导序列在时域上进行重复发送,即连续发送3次。然后再步骤102中,UE切换到重复因子4。那么在步骤103中,按照第二功率以重复因子4发送第二前导序列。换言之,将第二前导序列在时域上进行重复发送,并且是连续发送4次,以提高前导序列的发送成功率。
其中,关于第一发送功率和第二发送功率,可以相同,也可以不相同,将在后续进行详细描述。
由以上描述可以看出,相较于现有技术中的仅仅是通过提高发送功率来提高前导序列的发送成功率,本申请实施例通过在时域上进行重复发送、以及在未接收到响应消息时通过提高在时域上的连续发送次数来提高前导序列的发送成功率的方法更加有效。因为采用提高发送功率的方法,会受到UE的最大允许发送功率的限制,有攀升瓶颈,所以效果受限。
进一步,对于部署在地下室、高楼以及偏远地区等的机器类型通信(英文:Machine type communication,简称:MTC)的UE,由于存在较大的路径损耗,所以通过本申请实施例中的方法发送前导序列,使得在接收侧获得信号的合并增益,如此可以提高前导序列的发送成功率。因此,本申请实施例中的方法在该种场景下的效果更加明显。
进一步,例如当在前述所描述的地下室等覆盖受限的场景下,可以进行覆 盖增强(英文:Coverage Enhancement,简称:CE)。CE等级指的是相比正常覆盖进行覆盖增强后划分的不同覆盖增强等级。例如正常覆盖对应的最大耦合损耗是147dB,那么覆盖增强后对应的最大耦合损耗是147+15=162dB,它相对正常覆盖增强了15dB,可将覆盖增强的程度进行细分,增强5dB对应一个覆盖增强等级,增强10dB对应下一个覆盖等级,增强15dB对应最大的覆盖等级,可通过不同的重复因子以达到实现不同的覆盖增强程度的目的。因此,可以将小区分为不同的CE等级。每个CE等级对应不同的信道/信号的重复因子。具体请参考图2所示,某个UE的小区被分为三个CE等级,分别是CE等级0、CE等级1和CE等级2。CE等级0对应的重复因子为C0,CE等级1对应的重复因子为C1,CE等级2对应的重复因子为C2
在有CE等级的情况下,可选的,步骤101中的重复因子N1对应UE的第一CE等级,下一重复因子N2对应UE的第二CE等级,第二CE等级高于第一CE等级。换言之,在步骤102中,UE切换到下一重复因子N2,即表示UE切换到第二CE等级。因为第一CE等级对应的重复因子N1已不能满足覆盖要求,所以需要切换到更高等级的CE级别。
在进一步的实施例中,步骤102包括:UE确定第三发送功率,在确定第三发送功率超过UE的最大允许发送功率时,切换到下一重复因子N2;第三发送功率大于第一发送功率。
具体来说,在UE未接收到对应第一前导序列的响应消息时,先确定出第三发送功率,其中,第三发送功率是第一发送功率攀升之后的功率。然后UE判断第三发送功率是否超过UE的最大允许发送功率,如果是,则执行步骤102,并且确定对应下一重复因子N2的第二发送功率,然后执行步骤103。如果不是,即第三发送功率没有超过UE的最大允许发送功率,那么UE按照第三发送功率以重复因子N1发送第三前导序列。换言之,本实施例中的方案为先在同一重复因子下,进行发送功率的攀升。当发送功率攀升到超过UE的最大允许发送功率时,就进行重复因子的攀升。并且在攀升后的重复因子的基础上再次进行发送功率的攀升,如此往复。
举例来说,请参考图3所示,为本实施例中前导序列的发送示意图。其中,横坐标表示时间t,纵坐标表示发送功率p。其中,与横坐标平行的虚线表示UE的最大允许发送功率。在第一CE等级下,对应的重复因子为4。并且在第一CE等级下,总共发送了3组前导序列,图3中左边一组,四个方格表示重复因子4,阴影部分表示第一组发送前导序列时采用的发送功率。因为未接收到响应消息,所以进行第二组的发送,即中间一组,四个方格依然表示重复因子4,也就是说第二组继续以重复因子4发送前导序列,只是发送功率提高了。类似的,在发送第三组时,重复因子依然是4,但是发送功率攀升到了UE的最大允许发送功率。所以UE按照最大允许发送功率以重复因子4发送前导序列。当第三组发送之后的预定时间段内依然未接收到响应消息,那么就会在第三组的发送功率的基础上再次进行攀升,结果攀升后的发送功率已超过UE的最大发送功率,那么就要进行CE等级的切换,例如切换到第二CE等级。在第二CE等级下,对应的重复因子为8。UE确定对应重复因子8的初始发送功率,例如图3中左边一组所示,然后UE按照初始发送功率以重复因子8再次发送前导序列。如果依然未接收到响应消息,那么就进行发送功率的攀升,因为攀升后的发送功率小于UE的最大允许发送功率,所以UE按照攀升后的发送功率以重复因子8再次发送前导序列。如此往复,直到在发送前导序列后的预定时间段内接收到对应所发送的前导序列的响应消息为止。
接下来介绍当第一前导序列为一次随机接入过程中的第一个前导序列时,如何确定第一发送功率。
第一种可能的实施方式为:UE获取与第一前导序列对应的前导接收目标功率;UE根据UE的最大允许发送功率、所述与第一前导序列对应的前导接收目标功率以及UE对所在小区进行下行路损估计的估计值确定第一发送功率。
举例来说,可以通过公式(1)来确定第一发送功率。
PPRACH6=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER6+PL}(1)
其中,PPRACH6为所述第一发送功率,min{}为取最小值操作,PMAX为所述最 大允许发送功率,PREAMBLE_RECEIVED_TARGET_POWER6为所述与第一前导序列对应的前导接收目标功率,PL为所述估计值。
在实际运用中,可以是UE的物理层将PMAX和PL发送给MAC层,由MAC层根据公式(1)计算得出PPRACH6,并将PPRACH6下发给物理层。也可以是由MAC层将PREAMBLE_RECEIVED_TARGET_POWER6下发给物理层,由物理层根据公式(1)计算得到PPRACH6。
可选的,可以通过公式(2)和公式(3)确定第三发送功率。
PPRACH2=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER2+PL}  (2)
PREAMBLE_RECEIVED_TARGET_POWER2=preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(Nl)  (3)
其中,PPRACH2为第三发送功率,preambleInitialReceivedTargetPower为前导初始接收目标功率,DELTA_PREAMBLE为前导序列格式偏置值,PREAMBLE_TRANSMISSION_COUNTER为前导发送计数器,powerRampingStep为功率调整步长,Nl为重复因子N1,delta(Nl)为重复因子N1的减函数。其它参数与公式(1)中的相同参数含义相同。
preambleInitialReceivedTargetPower和powerRampingStep来自网络侧发送的广播信息。DELTA_PREAMBLE为协议约定的值。PREAMBLE_TRANSMISSION_COUNTER根据当前计数器的值即可获得。
delta(N1)为-10log(N1)或者-10log(N1)+offset(N1),offset(N1)为与重复因子N1对应的偏置常量。在本实施例中,在发送功率由第一发送功率攀升至第三发送功率时,通过引入delta(N1)来确定攀升后的第三发送功率,将因为重复发送Nl次而得到的分集增益考虑进来。
可选的,在步骤103之前,可以通过公式(4)和(5)来确定对应下一重复因子N2的第二发送功率。
PPRACH1=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER1+PL}  (4)
PREAMBLE_RECEIVED_TARGET_POWER1=preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(Nl+1)  (5)
其中,PPRACH1为第二发送功率,Nl+1为下一重复因子N2,delta(Nl+1)为下一重复因子N2的减函数。其它参数与公式(1)和公式(3)中的相同参数含义相同。
delta(Nl+1)为-10log(Nl+1)或者-10log(Nl+1)+offset(Nl+1),所述offset(Nl+1)为与下一重复因子N2对应的偏置常量。
换言之,即在CE等级切换时,切换后的CE等级对应的初始发送功率即可按照公式(4)和(5)进行计算。不同的是Nl+1表示切换后的CE等级对应的重复因子。
确定第一发送功率的第二种可能的实施方式为:在第一种可能的实施方式的基础上,UE还根据重复因子N1确定第一发送功率。
具体来说,可以通过公式(6)确定第一发送功率。
PPRACH4=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER4+PL+delta(Nl)}  (6)
其中,PPRACH4为第一发送功率。PREAMBLE_RECEIVED_TARGET_POWER4为与第一前导序列对应的前导接收目标功率。其它参数与前述相同参数的含义相同。
类似的,当在步骤102中切换到下一重复因子N2之后,计算与下一重复因子N2对应的初始发送功率,即第二发送功率与公式(6)相似,不同的是公式(6)中的delta(Nl)改变成delta(Nl+1),PREAMBLE_RECEIVED_TARGET_POWER4变为PREAMBLE_RECEIVED_TARGET_POWER3,PREAMBLE_RECEIVED_TARGET_POWER3,表示与第二前导序列对应的前导接收目标功率。并且用PPRACH3表示第二发送功率。
进一步,如果是在第一发送功率的基础上进行功率攀升获得第三发送功率, 那么就可以直接将公式(6)中的PREAMBLE_RECEIVED_TARGET_POWER4进行更新,更新后的PREAMBLE_RECEIVED_TARGET_POWER4为preambleInitialReceivedTargetPower+DELTA_PREAMBLE+PREAMBLE_TRANSMISSION_COUNTER–1)*powerRampingStep。其中,各参数的含义与前述相同参数的含义相同。
类似的,如果是在第二发送功率的基础上进行功率攀升,那么攀升的方法与第三发送功率类似,为了说明书的简洁,在此不再赘述。
确定第一发送功率的第三种可能的实施方式为:UE获取与第一前导序列对应的前导接收目标功率;UE接收与重复因子N1对应的偏置常量offset(N1);UE根据UE的最大允许发送功率、所述与第一前导序列对应的前导接收目标功率、偏置常量offset(N1)以及UE对所在小区进行下行路损估计的估计值确定所述第一发送功率。
具体来说,可以通过公式(7)确定第一发送功率。
PPRACH5=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER5+PL-10log(N1)+offset(N1)}(7)
其中,PPRACH5表示第一发送功率,其它参数与前述相同参数含义相同。
确定第一发送功率的第四种可能的实施方式为:UE获取下行导频信道的发射功率CPICH_Tx_Power、下行导频信道的接收功率CPICH_RSCP、上行干扰UL_interference、常量Constant_value;UE根据下行导频信道的发射功率CPICH_Tx_Power、下行导频信道的接收功率CPICH_RSCP、上行干扰UL_interference、常量Constant_value以及重复因子N1确定第一发送功率。其中,CPICH_RSCP是UE测量得到的。CPICH_Tx_Power、UL_interference和Constant_value可以是由网络通过广播信道发送给UE的。上行干扰表示所述UE所在小区以外的UE的上行发送对所述UE上行发送造成的干扰量大小。
具体来说,可以通过公式(8)来确定第一发送功率。
Preamble_Initial_Power=CPICH_TX_Power-CPICH_RSCP+UL_interference +Constant_Value+delta(Nl)  (8)
其中,Preamble_Initial_Power为第一发送功率。Nl为重复因子N1,delta(Nl)为重复因子N1的减函数。delta(N1)为-10log(N1)或者-10log(N1)+offset(N1),offset(N1)为与重复因子N1对应的偏置常量。
可选的,在步骤103之前,UE还可以通过公式(9)来确定第二发送功率。
Figure PCTCN2016070390-appb-000007
其中,pn+1为第二发送功率,pn为第一发送功率,ΔP0为功率调整步长,Nl为重复因子N1,Nl+1为下一重复因子N2
进一步,第一发送功率加上ΔP0即为第三发送功率。
当然,在实际运用中,确定第二发送功率的公式的形式不限于是公式(9),公式(9)的各种变形也属于本申请保护的范围。例如
Figure PCTCN2016070390-appb-000008
Figure PCTCN2016070390-appb-000009
是第一发送功率增加所述功率调整步长后得到的,其取值可以大于UE的最大允许发送功率。
接下来将描述当重复因子N1为高层请求触发进行前导序列的发送之后的初始重复因子时,如何确定重复因子N1
第一种可能的方式为:UE根据对下行信号的测量结果估计自身的CE等级,然后确定该CE等级对应的重复因子为重复因子N1。CE等级以及CE等级对应的重复因子之间的对应关系可通过小区广播获得。
第二种可能的方式为:UE确定第一重复因子和第二重复因子分别对应的前导序列功率;当第一重复因子对应的前导序列功率小于等于UE的最大允许发送功率和特定常数之差,并且第二重复因子对应的前导序列功率大于UE的最大功率和特定常数之差时,或者当第一重复因子对应的前导序列功率小于所述UE的最大允许发送功率和特定常数之差,并且第二重复因子对应的前导序列功率大于等于所述UE的最大功率和特定常数之差时,确定第一重复因子作为重复因子N1。其中,第二重复因子小于第一重复因子且在重复因子中与第一重复因子相 邻。
举例来说,请继续参考图2所示,假设有三个CE等级,分别对应的是重复因子C0、重复因子C1和重复因子C2。重复因子C2大于重复因子C1,且重复因子C1大于重复因子C0。UE可以按照公式(10)来计算每个重复因子的前导序列功率。
PPRACH(Ci)=PREAMBLE_RECEIVED_TARGET_POWER+PL+delta(Ci)(10)
其中,i为0、1、2。PPRACH(Ci)为每个重复因子的前导序列功率。其它参数与前述相同参数的含义相同。delta(Ci)例如为重复因子Ci的减函数。
如果PPRACH(Ci)<(PMAX-positive_constant)且PPRACH(Ci-1)>(PMAX-positive_constant),那么重复因子Ci即为所述重复因子N1。其中,positive_constant为特定常数。
可选的,在UE确定重复因子N1之后,物理层还将重复因子N1上报给MAC层;UE接收MAC层下发的与重复因子N1对应的一组发送信息。该发送信息例如包括:前导索引、前导接收目标功率、对应的RA-RNTI和PRACH资源信息。
可选的,还可以是UE接收MAC下发的每个重复因子对应的发送信息;UE在确定重复因子N1之后,根据重复因子N1选择出与重复因子N1对应的一组发送信息。
因此,进一步,步骤101包括:UE在与重复因子N1对应的PRACH资源上使用根据前导索引选择的第一前导序列按照第一发送功率以重复因子N1发送选择的第一前导序列。
类似的,在步骤102中切换到下一重复因子N2之后,也可以通过前述两种方式获得与下一重复因子N2对应的一组发送信息。因此,在步骤103中,可以根据与下一重复因子N2对应的一组发送信息发送第二前导序列。
在以上部分介绍了如图3所示的既进行重复因子的切换又进行发送功率的攀升的方法的各种实施方式。接下来将介绍一种进行重复因子的攀升的前导序列发送方法的详细实施过程。
具体来说,在步骤102之前,UE通过在重复因子N1上增加一个重复因子步长,获得下一重复因子N2。假设重复因子N1对应UE的第一CE等级,这里就会出现两种情况。一种是:当下一重复因子N2小于或等于第一CE等级对应的最大重复因子时,那么下一重复因子N2对应的依然是第一CE等级。另一种是:当下一重复因子N2大于最大重复因子时,下一重复因子N2对应UE的第二CE等级;第二CE等级高于第一CE等级。换言之,UE在一个CE等级对应的最大重复因子之内进行重复因子的攀升,然后在重复因子攀升已超过该CE等级对应的最大重复因子时,切换到下一CE等级。而第一发送功率和第二发送功率可以相同,例如为小于或等于UE的最大允许发送功率的某个功率值。第一发送功率和第二发送功率,也可以不相同,例如第一发送功率小于UE的最大允许发送功率,而第二发送功率为UE的最大允许发送功率。
举例来说,请参考图4所示,为本申请实施例提供的另一种前导序列的发送示意图。与图3中相同的部分就不再描述。与图3及其实施例不同的是,UE每次均是以UE的最大发送功率发送前导序列。并且阴影部分表示的是每次使用的重复因子。例如在第一次发送时,使用的重复因子为2。然后因为没有接收到对应的响应消息,所以在重复因子2的基础上增加一个重复因子步长,例如为1,得到重复因子3。因为重复因子3没有超过第一CE等级对应的最大重复因子4,所以UE当前还处于第一CE等级。如此直到以重复因子4发送前导序列之后,并且没有接收到对应的响应消息,那么在重复因子4的基础上再增加一个重复因子步长1之后,得到下一重复因子为5。因为重复因子5已经超过第一CE等级对应的最大重复因子4,所以此时下一重复因子5已经对应的是第二CE等级,即UE进行了CE等级切换。然后UE按照最大允许发送功率以重复因子5进行前导序列的发送。
接下来描述当重复因子N1为初始重复因子时如何确定重复因子N1
第一种可能的实施方式为:UE接收第一前导序列的前导接收目标功率;UE根据所述前导接收目标功率、UE的最大允许发送功率以及UE对所在小区进行下行路损估计的估计值,确定所述重复因子N1
具体来说,可以通过公式(11)来确定重复因子N1
Figure PCTCN2016070390-appb-000010
其中,Preamble_Initial_Repetition_Number为重复因子N1,Ceil()为上取整函数;PREAMBLE_RECEIVED_TARGET_POWER为所述第一前导序列对应的前导接收目标功率,PL为所述估计值,PMAX为最大允许发送功率。
第二种可能的实施方式为:在第一种可能的实施方式的基础上,该方法还包括:UE接收与第一CE等级对应的偏置常量offset(Nk);UE根据所述前导接收目标功率、偏置常量offset(Nk)、UE的最大允许发送功率以及UE对所在小区进行下行路损估计的估计值,确定重复因子N1。Nk为第一CE等级对应的最大重复因子。
具体来说,可以通过公式(12)来确定重复因子N1
Figure PCTCN2016070390-appb-000011
公式(12)中的参数与公式(11)中相同的参数含义相同,在此不再赘述。
第三种可能的实施方式为:UE接收UE的最大允许发送功率、常数和上行干扰;UE通过测量获得下行导频信道的接收功率;UE获得所述下行导频信道的发射功率;UE根据最大允许发送功率、所述常数、上行干扰、下行导频信道的接收功率、下行导频信道的发射功率确定重复因子N1
具体来说,可以通过公式(13)来确定重复因子N1
Figure PCTCN2016070390-appb-000012
其中,Preamble_Initial_Repetition_Number为重复因子N1,Ceil()为上取整函数;Maximum_Allowed_Power为最大允许发送功率;CPICH_RSCP为所述下行导频信道的接收功率;CPICH_Tx_Power为所述下行导频信道的发射功率, UL_Interference为所述上行干扰,Constant_Value为所述常数。
第四种可能的实施方式为:在第三种可能的实施方式的基础上,该方法还包括:UE接收与第一CE等级对应的偏置常量offset(Nk);UE根据最大允许发送功率、所述常数、所述上行干扰、所述下行导频信道的接收功率、所述下行导频信道的发射功率以及偏置常量offset(N1)确定所述重复因子N1。Nk为第一CE等级对应的最大重复因子。
具体来说,可以通过公式(14)来确定重复因子N1
Figure PCTCN2016070390-appb-000013
公式(14)中的参数与公式(13)中相同的参数含义相同,在此不再赘述。
以下举几个具体的例子说明本申请实施例中的前导序列的发送方法的具体实施过程。
第一例,基于LTE系统的第一种可能的实施过程。该方法包括如下内容。
第一步:UE接收所在的服务小区c的小区广播。在小区广播中包含有多个CE等级以及每一CE等级对应的物理信道/信号的重复因子。具体来说,可以按照下行导频信道的接收质量进行分段映射到多个CE等级并分别对应不同的信道/信号的重复因子。每个CE等级对应一个重复因子。
第二步:UE根据对下行信号的测量,估计UE自身的CE等级,假设为第一CE等级。然后确定该第一CE等级对应的信道/信号的重复因子N1
第三步:UE将重复因子N1上报给MAC层,并接收MAC发送的与重复因子N1对应的一组发送信息。该发送信息包括前导索引、前导接收目标功率(PREAMBLE_RECEIVED_TARGET_POWER)、对应的RA-RNTI和PRACH资源信息。
第四步:UE确定第一发送功率。在本实施例中,UE为初次发送前导序列,所以第一发送功率为在第一CE等级下的初始发送功率。第一发送功率PPRACH= min{PCMAX,c(i),PREAMBLE_RECEIVED_TARGET_POWER+PLc+delta(Nl)}。其中,PCMAX,c(i)为UE在服务小区c的第i个子帧的被配置的最大允许发送功率,i为0至9之间的整数。PLc为UE对服务小区c进行下行路损估计的估计值。delta(Nl)与前述所描述的含义相同。
第五步:UE使用前导索引从前导序列集合中选取第一前导序列。
第六步:UE在指示的PRACH资源上按照第一发送功率以重复因子N1发送第一前导序列。
第七步:在UE发送第一前导序列后的预定时间段内,如果UE未收到对应第一前导序列的响应消息(例如背景技术中所描述的第二种或第三种情况),UE确定下次所使用的发送功率(对应前述实施例中的第三发送功率)。具体来说,在确定下次使用的发送功率时,按照下式计算PREAMBLE_RECEIVED_TARGET_POWER=reambleInitialReceivedTargetPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)。然后将计算得到的PREAMBLE_RECEIVED_TARGET_POWER再代入第四步中的计算式中,再次计算得到下次所使用的发送功率。
第八步:如果计算确定出的下次所使用的发送功率未超过UE的最大允许发送功率,UE在指示的PRACH资源上按照下次所使用的发送功率以重复因子N1发送第三前导序列。换言之,本次进行的是发送功率的攀升。
第九步:如果计算确定出的下次所使用的发送功率超过UE的最大允许发送功率,UE就切换到第二CE等级,也即切换到下一重复因子N2
第十步:UE将下一重复因子N2上报给MAC层,并且接收MAC层下发的与下一重复因子N2对应的一组发送信息。
第十一步:UE确定对应下一重复因子N2的初始发送功率。初始发送功率=min{PCMAX,c(i),PREAMBLE_RECEIVED_TARGET_POWER+PLc+delta(Nl+1)}。
第十二步:UE根据发送信息中的前导索引在前导序列集合中选取第二前导序列。
第十三步:UE在指示的PRACH资源上按照初始发送功率以下一重复因子N2发送第二前导序列。在本次进行的是重复因子的攀升。
第二例,在本实施例中,为基于LTE系统的第二种可能的实施过程。该方法包括如下内容。
第一步与第一例中的第一步类似。不同的是,每个CE等级对应一个最大重复因子并且还对应最大重复因子以内的多个重复因子。举例来说,第一CE等级对应的最大重复因子为4,那么在第一CE等级内,可以使用重复因子1至4。
第二步:高层请求触发物理层进行前导的发送。请求中包含前导索引、前导接收目标功率(PREAMBLE_RECEIVED_TARGET_POWER)、对应的RA-RNTI和PRACH资源信息。
第三步,UE按照下式计算初始重复因子。
Figure PCTCN2016070390-appb-000014
其中,Preamble_Initial_Repetition_Number为初始重复因子,Ceil()为上取整函数;PREAMBLE_RECEIVED_TARGET_POWER为前导接收目标功率。PCMAX,c(i)为UE在服务小区c的第i个子帧的被配置的最大允许发送功率,i为0至9之间的整数。PLc为UE对服务小区c进行下行路损估计的估计值。
第四步:UE是用前导索引从前导序列集合中选取一个前导序列。
第五步:UE在指示的PRACH资源上按照最大允许发送功率以初始重复因子发送选择的前导序列。
第六步:如果在一个高层指示的接收窗内使用RA-RNTI检测对应的PDCCH,但在对应的下行数据块中发现没有所发送的前导序列的响应消息,或者UE没有接收到网络侧的响应消息,在初始重复因子的基础上增加一个重复因子步长,得到新的重复因子。
第七步:UE在指示的PRACH资源上按照最大允许发送功率以新的重复因子发送选择的前导序列。需要说明的是,如果新的重复因子大于初始重复因子所对应的CE等级的最大重复因子时,新的重复因子对应下一CE等级,否则,新的重复因子依然对应初始重复因子所对应的CE等级。
第三例,在本实施例中,为基于UMTS系统的一种可能的前导序列发送方法。该方法包括以下内容。
第一步、第二步分别和第一例中的第一步和第二步相同,假设确定的初始重复因子为重复因子N1。在此不再赘述。
第三步:UE按照如下公式计算前导序列的初始发送功率Preamble_Initial_Power。Preamble_Initial_Power=CPICH_TX_Power-CPICH_RSCP+UL_interference+Constant_Value+delta(N1)。delta(N1)为-10log(N1)或者-10log(N1)+offset(N1),offset(N1)为与重复因子N1对应的偏置常量。
第四步:UE按照初始发送功率以重复因子N1发送前导序列。
第五步:UE在接入时隙对应的下行接入时隙中没有检测到对应签名的捕获指示时,在给定的ASC对应的可用的RACH子信道中选择下一个可用的接入时隙,并在给定的ASC对应的可用签名中随机选择一个新的签名。
第六步:UE在初始发送功率的基础上增加一个功率调整步长ΔP0,得到攀升后的发送功率。
第七步:UE判断攀升后的发送功率是否超过UE的最大允许发送功率。如果否,则执行第八步。如果是,则执行第九步。
第八步:UE按照攀升后的发送功率以重复因子N1发送前导序列。
第九步:UE切换到下一重复因子N2。即切换到下一CE等级。
第十步:UE确定对应下一重复因子N2的初始发送功率。具体例如通过公式
Figure PCTCN2016070390-appb-000015
来确定对应下一重复因子N2的初始发送功率。其中,pn+1是对应下一重复因子N2的初始发送功率。pn是对应重复因子N1的初始发送 功率。Nl是重复因子N1,Nl+1是下一重复因子N2
第十一步:UE按照对应下一重复因子N2的初始发送功率以下一重复因子N2发送前导序列。
第四例,在本实施例中,为基于UMTS系统的另一种可能的前导序列的发送方法。该方法包括以下内容。
第一步和第二步与第三例中的第一步和第二步类似,不同的是,每个CE等级对应一个最大重复因子并且还对应最大重复因子以内的多个重复因子。举例来说,第一CE等级对应的最大重复因子为4,那么在第一CE等级内,可以使用重复因子1至4。
第三步:UE根据如下公式确定初始重复因子。
Figure PCTCN2016070390-appb-000016
Figure PCTCN2016070390-appb-000017
offset(Nk)为UE估计的UE所在CE等级对应的偏置常量。例如如果UE当前在第一CE等级,那么offset(Nk)即为offset(4)。
第四步:UE按照UE的最大允许发送功率以初始重复因子发送前导序列。
第五步:如果UE在上行接入时隙对应的下行接入时隙检测到对应签名的捕获指示时,在给定的ASC对应的可用的RACH子信道中选择下一个可用的接入时隙,并在给定的ASC对应的可用签名中随机选择一个新的签名。
第六步:UE在初始重复因子的基础上增加一个重复因子步长N0,获得新的重复因子。
第七步:UE按照UE的最大发送功率以新的重复因子发送前导序列。需要说明的是,如果新的重复因子大于初始重复因子所对应的CE等级的最大重复因子时,新的重复因子对应下一CE等级,否则,新的重复因子依然对应初始重复因子所对应的CE等级。
第八步:UE将前导序列的重传计数器减1。
第九步:如果重传计数器等于0,则UE将物理层状态(‘捕获指示信道上没有肯定响应’)传送到MAC层并退出物理层随机接入过程。
基于同一发明构思,本申请实施例还提供一种前导序列的发送装置。图5所示的装置涉及到的术语的含义以及具体实现,可以参考前述图1至图4以及实施例的相关描述。
请参考图5所示,该装置包括:发送单元201,用于按照第一发送功率以重复因子N1发送第一前导序列;处理单元202,用于如果在发送第一前导序列后的预定时间段内未接收到网络侧设备发送的对应第一前导序列的响应消息,切换到下一重复因子N2,其中下一重复因子N2所指示的连续发送次数大于重复因子N1所指示的连续发送次数;发送单元201还用于:按照第二发送功率以下一重复因子N2发送第二前导序列。
可选的,处理单元202还用于:在发送单元201按照第二发送功率以下一重复因子N2发送第二前导序列之前,通过以下公式确定第二发送功率:
PPRACH1=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER1+PL}
其中,
PREAMBLE_RECEIVED_TARGET_POWER1=preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(Nl+1)
其中,PPRACH1为第二发送功率,min{}为取最小值操作,PMAX为UE的最大允许发送功率,PL为UE对所在小区进行下行路损估计的估计值,preambleInitialReceivedTargetPower为前导初始接收目标功率,DELTA_PREAMBLE为前导序列格式偏置值,PREAMBLE_TRANSMISSION_COUNTER为前导发送计数器,powerRampingStep为功率调整步长,Nl+1为下一重复因子N2,delta(Nl+1)为下一重复因子N2的减函数。
可选的,处理单元202具体用于:
确定第三发送功率,第三发送功率大于第一发送功率;
当第三发送功率超过UE的最大允许发送功率时,切换到下一重复因子N2
可选的,处理单元202具体通过以下公式确定第三发送功率:
PPRACH2=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER2+PL}
其中,
PREAMBLE_RECEIVED_TARGET_POWER2=preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(Nl)
其中,PPRACH2为第三发送功率,min{}为取最小值操作,PMAX为UE的最大允许发送功率,PL为UE对所在小区进行下行路损估计的估计值,preambleInitialReceivedTargetPower为前导初始接收目标功率,DELTA_PREAMBLE为前导序列格式偏置值,PREAMBLE_TRANSMISSION_COUNTER为前导发送计数器,powerRampingStep为功率调整步长,Nl为重复因子N1,delta(Nl)为重复因子N1的减函数。
可选的,处理单元202还用于:在发送单元201按照第二发送功率以下一重复因子N2发送第二前导序列之前,通过以下公式确定第二发送功率:
PPRACH3=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER3+PL+delta(Nl+1)}
其中,PPRACH3为第二发送功率,min{}为取最小值操作,PMAX为UE的最大允许发送功率,PL为UE对所在小区进行下行路损估计的估计值,PREAMBLE_RECEIVED_TARGET_POWER3为与第二前导序列对应的前导接收目标功率,Nl+1为下一重复因子N2,delta(Nl+1)为重复因子N2的减函数。
可选的,处理单元202还用于:当第一前导序列为一次随机接入过程中的第一个前导序列时,在发送单元201按照第一发送功率以重复因子N1发送第一前导序列前,
获得与第一前导序列对应的前导接收目标功率;根据重复因子N1、UE的最大允许发送功率、与第一前导序列对应的前导接收目标功率以及UE对所在小区进行下行路损估计的估计值确定第一发送功率。
可选的,处理单元202具体通过以下公式确定第一发送功率:
PPRACH4=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER4+PL+delta(Nl)}
其中,PPRACH4为第一发送功率,PMAX为UE的最大允许发送功率,PREAMBLE_RECEIVED_TARGET_POWER为与第一前导序列对应的前导接收目标功率,Nl为重复因子N1,delta(Nl)为重复因子N1的减函数,min{}为取最小值操作,PL为估计值。
可选的,delta(N1)为-10log(N1)或者-10log(N1)+offset(N1),offset(N1)为与重复因子N1对应的偏置常量。
可选的,delta(Nl+1)为-10log(Nl+1)或者-10log(Nl+1)+offset(Nl+1),offset(Nl+1)为与下一重复因子N2对应的偏置常量。
可选的,处理单元202还用于:当第一前导序列为一次随机接入过程中的第一个前导序列时,获取与第一前导序列对应的前导接收目标功率;获取与重复因子N1对应的偏置常量offset(N1);根据UE的最大允许发送功率、与第一前导序列对应的前导接收目标功率、与重复因子N1对应的偏置常量offset(N1)以及对所在小区进行下行路损估计的估计值确定第一发送功率。
可选的,处理单元202根据以下公式确定第一发送功率:
PPRACH5=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER5+PL-10log(N1)+offset(N1)}
其中,PPRACH5表示第一发送功率,min{}为取最小值操作,PMAX为UE的最大允许发送功率,PREAMBLE_RECEIVED_TARGET_POWER5为与第一前导序列对应的前导接收目标功率,PL为估计值,N1为重复因子N1
可选的,处理单元202还用于:在发送单元201按照第一发送功率以重复因子N1发送第一前导序列之前,获取与重复因子N1对应的一组发送信息;发送信息包括前导索引和物理随机接入信道PRACH资源;
发送单元201具体用于:在PRACH资源上按照第一发送功率以重复因子N1发送与前导索引对应的第一前导序列。
可选的,处理单元202具体用于:在发送单元201按照第二发送功率以下一重复因子N2发送第二前导序列之前,通过以下公式确定第二发送功率:
Figure PCTCN2016070390-appb-000018
其中,pn+1为第二发送功率,pn为第一发送功率,ΔP0为功率调整步长,Nl为重复因子N1,Nl+1为下一重复因子N2
可选的,处理单元202还用于当第一前导序列为一次随机接入过程中的第一个前导序列时,通过以下公式确定第一发送功率:
Preamble_Initial_Power=CPICH_TX_Power-CPICH_RSCP+UL_interference+Constant_Value+delta(Nl)
其中,Preamble_Initial_Power为第一发送功率,CPICH_Tx_Power为下行导频信道的发射功率,CPICH_RSCP为下行导频信道的接收功率,UL_Interference为上行干扰,Constant_Value为常量,Nl为重复因子N1,delta(Nl)为重复因子N1的减函数。
可选的,delta(N1)为-10log(N1)或者-10log(N1)+offset(N1),offset(N1)为与重复因子N1对应的偏置常量。
可选的,处理单元202具体用于:确定第三发送功率,第三发送功率大于第一发送功率;当第三发送功率超过UE的最大允许发送功率时,切换到下一重复因子N2
可选的,处理单元202还用于:当重复因子N1为初始重复因子时,在发送单元201按照第一发送功率以重复因子N1发送第一前导序列之前,确定第一重复因子和第二重复因子分别对应的前导序列功率;当第一重复因子对应的前导序列 功率小于等于UE的最大允许发送功率和特定常数之差,并且第二重复因子对应的前导序列功率大于UE的最大功率和特定常数之差时,或者当第一重复因子对应的前导序列功率小于UE的最大允许发送功率和特定常数之差,并且第二重复因子对应的前导序列功率大于等于UE的最大功率和特定常数之差时,确定第一重复因子作为重复因子N1;其中,第二重复因子小于第一重复因子且在重复因子中与第一重复因子相邻。
可选的,重复因子N1对应UE的第一覆盖增强等级,下一重复因子N2对应UE的第二覆盖增强等级,第二覆盖增强等级高于第一覆盖增强等级。
可选的,处理单元202还用于:通过在重复因子N1上增加一个重复因子步长,获得下一重复因子N2;其中,重复因子N1对应UE的第一覆盖增强等级,当下一重复因子N2小于或等于第一覆盖增强等级对应的最大重复因子时,下一重复因子N2对应第一覆盖增强等级;当下一重复因子N2大于最大重复因子时,下一重复因子N2对应UE的第二覆盖增强等级;第二覆盖增强等级高于第一覆盖增强等级。
可选的,处理单元202还用于:当重复因子N1为初始重复因子时,接收第一前导序列的前导接收目标功率;UE根据前导接收目标功率、UE的最大允许发送功率以及UE对所在小区进行下行路损估计的估计值,确定重复因子N1
可选的,处理单元202具体通过以下公式确定重复因子N1
Figure PCTCN2016070390-appb-000019
其中,Preamble_Initial_Repetition_Number为重复因子N1,Ceil()为上取整函数;PREAMBLE_RECEIVED_TARGET_POWER为前导接收目标功率,PL为估计值,PMAX为最大允许发送功率。
可选的,装置还包括接收单元203,用于接收与第一覆盖增强等级对应的偏置常量offset(Nk);Nk为第一覆盖增强等级对应的最大重复因子;
处理单元202还用于:根据前导接收目标功率、偏置常量offset(Nk)、UE的最大允许发送功率以及UE对所在小区进行下行路损估计的估计值,确定重复 因子N1
可选的,装置还包括接收单元203,用于当重复因子N1为初始重复因子时,接收UE的最大允许发送功率、常数和上行干扰;
处理单元202还用于通过测量获得下行导频信道的接收功率;获得下行导频信道的发射功率;根据最大允许发送功率、常数、上行干扰、下行导频信道的接收功率、下行导频信道的发射功率确定重复因子N1
可选的,处理单元202具体通过以下公式确定重复因子N1
Figure PCTCN2016070390-appb-000020
其中,Preamble_Initial_Repetition_Number为重复因子N1,Ceil()为上取整函数;Maximum_Allowed_Power为最大允许发送功率;CPICH_RSCP为下行导频信道的接收功率;CPICH_Tx_Power为下行导频信道的发射功率,UL_Interference为上行干扰,Constant_Value为常数。
可选的,接收单元203还用于:接收与第一覆盖增强等级对应的偏置常量offset(Nk);Nk为第一覆盖增强等级对应的最大重复因子;
处理单元202还用于:根据最大允许发送功率、常数、上行干扰、下行导频信道的接收功率、下行导频信道的发射功率以及偏置常量offset(Nk)确定重复因子N1
可选的,第一发送功率和第二发送功率均为UE的最大允许发送功率。
可选的,装置为用户设备UE。
前述图1实施例中的前导序列的发送方法中的各种变化方式和具体实例同样适用于本实施例的前导序列的发送装置,通过前述对前导序列的发送方法的详细描述,本领域技术人员可以清楚的知道本实施例中前导序列的发送装置的实施方法,所以为了说明书的简洁,在此不再详述。
基于同一发明构思,本申请实施例还提供一种用户设备UE。图6所示的用户设备涉及到的术语的含义以及具体实现,可以参考前述图1至图4以及实施 例的相关描述。
请参考图6所示,该用户设备包括:处理器301、发送器302、接收器303、存储器304和输入输出(I/O)接口305。处理器301具体可以是通用的中央处理器(CPU),可以是特定应用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC),可以是一个或多个用于控制程序执行的集成电路。I/O接口305可以连接到键盘,鼠标,触摸屏设备,语音激活输入模块,显示屏、摄像头等。存储器304的数量可以是一个或多个。存储器304可以包括只读存储器(英文:Read Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)和磁盘存储器。这些存储器、接收器303和发送器302通过总线与处理器301相连接。接收器303和发送器302用于与外部设备进行网络通信,具体可以通过以太网、无线接入网、无线局域网等网络与外部设备进行通信。接收器303和发送器302可以是物理上相互独立的两个元件,也可以是物理上的同一个元件。
存储器304中可以存储指令,处理器301可以执行存储器304中存储的指令。
具体来说,发送器302,用于按照第一发送功率以重复因子N1发送第一前导序列;处理器301,用于如果在发送第一前导序列后的预定时间段内未接收到网络侧设备发送的对应第一前导序列的响应消息,切换到下一重复因子N2,其中下一重复因子N2所指示的连续发送次数大于重复因子N1所指示的连续发送次数;发送器302还用于:按照第二发送功率以下一重复因子N2发送第二前导序列。
可选的,处理器301还用于:在发送器302按照第二发送功率以下一重复因子N2发送第二前导序列之前,通过以下公式确定第二发送功率:
PPRACH1=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER1+PL}
其中,
PREAMBLE_RECEIVED_TARGET_POWER1=preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)* (powerRampingStep)+delta(Nl+1)
其中,PPRACH1为第二发送功率,min{}为取最小值操作,PMAX为UE的最大允许发送功率,PL为UE对所在小区进行下行路损估计的估计值,preambleInitialReceivedTargetPower为前导初始接收目标功率,DELTA_PREAMBLE为前导序列格式偏置值,PREAMBLE_TRANSMISSION_COUNTER为前导发送计数器,powerRampingStep为功率调整步长,Nl+1为下一重复因子N2,delta(Nl+1)为下一重复因子N2的减函数。
可选的,处理器301具体用于:
确定第三发送功率,第三发送功率大于第一发送功率;
当第三发送功率超过UE的最大允许发送功率时,切换到下一重复因子N2
可选的,处理器301具体通过以下公式确定第三发送功率:
PPRACH2=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER2+PL}
其中,
PREAMBLE_RECEIVED_TARGET_POWER2=preambleInitialReceivedTarge tPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(Nl)
其中,PPRACH2为第三发送功率,min{}为取最小值操作,PMAX为UE的最大允许发送功率,PL为UE对所在小区进行下行路损估计的估计值,preambleInitialReceivedTargetPower为前导初始接收目标功率,DELTA_PREAMBLE为前导序列格式偏置值,PREAMBLE_TRANSMISSION_COUNTER为前导发送计数器,powerRampingStep为功率调整步长,Nl为重复因子N1,delta(Nl)为重复因子N1的减函数。
可选的,处理器301还用于:在发送器302按照第二发送功率以下一重复因子N2发送第二前导序列之前,通过以下公式确定第二发送功率:
PPRACH3=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER3+PL+delta(Nl+1)}
其中,PPRACH3为第二发送功率,min{}为取最小值操作,PMAX为UE的最大允许发送功率,PL为UE对所在小区进行下行路损估计的估计值,PREAMBLE_RECEIVED_TARGET_POWER3为与第二前导序列对应的前导接收目标功率,Nl+1为下一重复因子N2,delta(Nl+1)为重复因子N2的减函数。
可选的,处理器301还用于:当第一前导序列为一次随机接入过程中的第一个前导序列时,在发送器302按照第一发送功率以重复因子N1发送第一前导序列前,
获得与第一前导序列对应的前导接收目标功率;根据重复因子N1、UE的最大允许发送功率、与第一前导序列对应的前导接收目标功率以及UE对所在小区进行下行路损估计的估计值确定第一发送功率。
可选的,处理器301具体通过以下公式确定第一发送功率:
PPRACH4=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER4+PL+delta(Nl)}
其中,PPRACH4为第一发送功率,PMAX为UE的最大允许发送功率,PREAMBLE_RECEIVED_TARGET_POWER为与第一前导序列对应的前导接收目标功率,Nl为重复因子N1,delta(Nl)为重复因子N1的减函数,min{}为取最小值操作,PL为估计值。
可选的,delta(N1)为-10log(N1)或者-10log(N1)+offset(N1),offset(N1)为与重复因子N1对应的偏置常量。
可选的,delta(Nl+1)为-10log(Nl+1)或者-10log(Nl+1)+offset(Nl+1),offset(Nl+1)为与下一重复因子N2对应的偏置常量。
可选的,处理器301还用于:当第一前导序列为一次随机接入过程中的第一个前导序列时,获取与第一前导序列对应的前导接收目标功率;获取与重复因子N1对应的偏置常量offset(N1);根据UE的最大允许发送功率、与第一前 导序列对应的前导接收目标功率、与重复因子N1对应的偏置常量offset(N1)以及对所在小区进行下行路损估计的估计值确定第一发送功率。
可选的,处理器301根据以下公式确定第一发送功率:
PPRACH5=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER5+PL-10log(N1)+offset(N1)}
其中,PPRACH5表示第一发送功率,min{}为取最小值操作,PMAX为UE的最大允许发送功率,PREAMBLE_RECEIVED_TARGET_POWER5为与第一前导序列对应的前导接收目标功率,PL为估计值,N1为重复因子N1
可选的,处理器301还用于:在发送器302按照第一发送功率以重复因子N1发送第一前导序列之前,获取与重复因子N1对应的一组发送信息;发送信息包括前导索引和物理随机接入信道PRACH资源;
发送器302具体用于:在PRACH资源上按照第一发送功率以重复因子N1发送与前导索引对应的第一前导序列。
可选的,处理器301具体用于:在发送器302按照第二发送功率以下一重复因子N2发送第二前导序列之前,通过以下公式确定第二发送功率:
Figure PCTCN2016070390-appb-000021
其中,pn+1为第二发送功率,pn为第一发送功率,ΔP0为功率调整步长,Nl为重复因子N1,Nl+1为下一重复因子N2
可选的,处理器301还用于当第一前导序列为一次随机接入过程中的第一个前导序列时,通过以下公式确定第一发送功率:
Preamble_Initial_Power=CPICH_TX_Power-CPICH_RSCP+UL_interference+Constant_Value+delta(Nl)
其中,Preamble_Initial_Power为第一发送功率,CPICH_Tx_Power为下行导频信道的发射功率,CPICH_RSCP为下行导频信道的接收功率,UL_Interference为上行干扰,Constant_Value为常量,Nl为重复因子N1,delta(Nl)为重复因子 N1的减函数。
可选的,delta(N1)为-10log(N1)或者-10log(N1)+offset(N1),offset(N1)为与重复因子N1对应的偏置常量。
可选的,处理器301具体用于:确定第三发送功率,第三发送功率大于第一发送功率;当第三发送功率超过UE的最大允许发送功率时,切换到下一重复因子N2
可选的,处理器301还用于:当重复因子N1为初始重复因子时,在发送器302按照第一发送功率以重复因子N1发送第一前导序列之前,确定第一重复因子和第二重复因子分别对应的前导序列功率;当第一重复因子对应的前导序列功率小于等于UE的最大允许发送功率和特定常数之差,并且第二重复因子对应的前导序列功率大于UE的最大功率和特定常数之差时,或者当第一重复因子对应的前导序列功率小于UE的最大允许发送功率和特定常数之差,并且第二重复因子对应的前导序列功率大于等于UE的最大功率和特定常数之差时,确定第一重复因子作为重复因子N1;其中,第二重复因子小于第一重复因子且在重复因子中与第一重复因子相邻。
可选的,重复因子N1对应UE的第一覆盖增强等级,下一重复因子N2对应UE的第二覆盖增强等级,第二覆盖增强等级高于第一覆盖增强等级。
可选的,处理器301还用于:通过在重复因子N1上增加一个重复因子步长,获得下一重复因子N2;其中,重复因子N1对应UE的第一覆盖增强等级,当下一重复因子N2小于或等于第一覆盖增强等级对应的最大重复因子时,下一重复因子N2对应第一覆盖增强等级;当下一重复因子N2大于最大重复因子时,下一重复因子N2对应UE的第二覆盖增强等级;第二覆盖增强等级高于第一覆盖增强等级。
可选的,处理器301还用于:当重复因子N1为初始重复因子时,接收第一前导序列的前导接收目标功率;UE根据前导接收目标功率、UE的最大允许发送功率以及UE对所在小区进行下行路损估计的估计值,确定重复因子N1
可选的,处理器301具体通过以下公式确定重复因子N1
Figure PCTCN2016070390-appb-000022
其中,Preamble_Initial_Repetition_Number为重复因子N1,Ceil()为上取整函数;PREAMBLE_RECEIVED_TARGET_POWER为前导接收目标功率,PL为估计值,PMAX为最大允许发送功率。
可选的,装置还包括接收器303,用于接收与第一覆盖增强等级对应的偏置常量offset(Nk);Nk为第一覆盖增强等级对应的最大重复因子;
处理器301还用于:根据前导接收目标功率、偏置常量offset(Nk)、UE的最大允许发送功率以及UE对所在小区进行下行路损估计的估计值,确定重复因子N1
可选的,装置还包括接收器303,用于当重复因子N1为初始重复因子时,接收UE的最大允许发送功率、常数和上行干扰;
处理器301还用于通过测量获得下行导频信道的接收功率;获得下行导频信道的发射功率;根据最大允许发送功率、常数、上行干扰、下行导频信道的接收功率、下行导频信道的发射功率确定重复因子N1
可选的,处理器301具体通过以下公式确定重复因子N1
Figure PCTCN2016070390-appb-000023
其中,Preamble_Initial_Repetition_Number为重复因子N1,Ceil()为上取整函数;Maximum_Allowed_Power为最大允许发送功率;CPICH_RSCP为下行导频信道的接收功率;CPICH_Tx_Power为下行导频信道的发射功率,UL_Interference为上行干扰,Constant_Value为常数。
可选的,接收器303还用于:接收与第一覆盖增强等级对应的偏置常量offset(Nk);Nk为第一覆盖增强等级对应的最大重复因子;
处理器301还用于:根据最大允许发送功率、常数、上行干扰、下行导频信道的接收功率、下行导频信道的发射功率以及偏置常量offset(Nk)确定重复 因子N1
可选的,第一发送功率和第二发送功率均为UE的最大允许发送功率。
前述图1实施例中的前导序列的发送方法中的各种变化方式和具体实例同样适用于本实施例的用户设备,通过前述对前导序列的发送方法的详细描述,本领域技术人员可以清楚的知道本实施例中用户设备的实施方法,所以为了说明书的简洁,在此不再详述。
申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
本申请实施例中,首先在发送前导序列时,以重复因子的形式进行时域的重复,所以能够提高前导序列的发送成功率。进一步,当未接收到对应所发送的前导序列的响应消息时,进行重复因子的攀升,进一步可以提高信号覆盖范围,提高了前导序列发送成功率。相较于现有技术中发送功率的攀升方法,因为没有如最大允许发送功率这样的攀升瓶颈,所以本申请实施例中的方法更加有效,更加实用。
需要说明的是,本发明实施例中提到的按照一个公式得到一个变量或参数,不仅包括通过处理器运行软件或通过硬件逻辑电路运行基于所述公式的算法以按得到所述变量或参数,也包括通过搜索查找表来获得该变量或参数,所述查找表的输入表项和输出表项之间的逻辑关系满足所述公式的输入和输出的算法原理。或者,可通过处理器运行软件或通过硬件逻辑电路计算由所述公式变形得到的其他公式来得到所述变量或参数,使得该变量或参数的获得仍然符合所述公式的运算规则。例如,如之前所述公式(9)的各类变形得到的公式也可作为确定第二发送功率的基础,但第二发送功率依然可认为是按照公式(9)得到的。因此,在本发明实施例中,按照或根据一个公式得到某一个变量或参数的描述包括了按照或根据该公式的其他等同替换变形公式得到该变量或参数的情况。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包 含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (54)

  1. 一种前导序列的发送方法,其特征在于,包括:
    用户设备UE按照第一发送功率以重复因子N1发送第一前导序列;
    如果所述UE在发送所述第一前导序列后的预定时间段内未接收到网络侧设备发送的对应所述第一前导序列的响应消息,所述UE切换到下一重复因子N2,其中所述下一重复因子N2所指示的连续发送次数大于所述重复因子N1所指示的连续发送次数;
    所述UE按照第二发送功率以所述下一重复因子N2发送第二前导序列。
  2. 如权利要求1所述的方法,其特征在于,在所述UE按照第二发送功率以所述下一重复因子N2发送第二前导序列之前,所述UE还通过以下公式确定所述第二发送功率:
    PPRACH1=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER1+PL}
    其中,
    PREAMBLE_RECEIVED_TARGET_POWER1=preambleInitialReceivedTar getPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(Nl+1)
    其中,PPRACH1为所述第二发送功率,min{}为取最小值操作,PMAX为所述UE的最大允许发送功率,PL为所述UE对所在小区进行下行路损估计的估计值,preambleInitialReceivedTargetPower为前导初始接收目标功率,DELTA_PREAMBLE为前导序列格式偏置值,PREAMBLE_TRANSMISSION_COUNTER为前导发送计数器,powerRampingStep为功率调整步长,Nl+1为所述下一重复因子N2,delta(Nl+1)为所述下一重复因子N2的减函数。
  3. 如权利要求1或2所述的方法,其特征在于,所述UE切换到下一重复因子N2包括:
    所述UE确定第三发送功率,所述第三发送功率大于所述第一发送功率;
    当所述第三发送功率超过所述UE的最大允许发送功率时,切换到所述下一重复因子N2
  4. 如权利要求3所述的方法,其特征在于,所述UE通过以下公式确定所述第三发送功率:
    PPRACH2=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER2+PL}
    其中,
    PREAMBLE_RECEIVED_TARGET_POWER2=preambleInitialReceivedTar getPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(Nl)
    其中,PPRACH2为所述第三发送功率,min{}为取最小值操作,PMAX为所述UE的最大允许发送功率,PL为所述UE对所在小区进行下行路损估计的估计值,preambleInitialReceivedTargetPower为前导初始接收目标功率,DELTA_PREAMBLE为前导序列格式偏置值,PREAMBLE_TRANSMISSION_COUNTER为前导发送计数器,powerRampingStep为功率调整步长,Nl为所述重复因子N1,delta(Nl)为所述重复因子N1的减函数。
  5. 如权利要求1所述的方法,其特征在于,在所述UE按照第二发送功率以所述下一重复因子N2发送第二前导序列之前,所述UE还通过以下公式确定所述第二发送功率:
    PPRACH3=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER3+PL+ delta(Nl+1)}
    其中,PPRACH3为所述第二发送功率,min{}为取最小值操作,PMAX为所述UE的最大允许发送功率,PL为所述UE对所在小区进行下行路损估计的估计值,PREAMBLE_RECEIVED_TARGET_POWER3为与所述第二前导序列对应的前导接收目标功率,Nl+1为所述下一重复因子N2,delta(Nl+1)为所述重复因子N2的减函数。
  6. 如权利要求5所述的方法,其特征在于,当所述第一前导序列为一次随机接入过程中的第一个前导序列时,在用户设备UE按照第一发送功率以重复因子N1发送第一前导序列前,所述方法还包括:
    所述UE获得与所述第一前导序列对应的前导接收目标功率;
    所述UE根据所述重复因子N1、所述UE的最大允许发送功率、所述与所述第一前导序列对应的前导接收目标功率以及所述UE对所在小区进行下行路损估计的估计值确定所述第一发送功率。
  7. 如权利要求6所述的方法,其特征在于,所述UE通过以下公式确定所述第一发送功率:
    PPRACH4=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER4+PL+delta(Nl)}
    其中,PPRACH4为所述第一发送功率,PMAX为所述UE的最大允许发送功率,PREAMBLE_RECEIVED_TARGET_POWER为所述与所述第一前导序列对应的前导接收目标功率,Nl为所述重复因子N1,所述delta(Nl)为所述重复因子N1的减函数,min{}为取最小值操作,PL为所述估计值。
  8. 如权利要求4或7所述的方法,其特征在于,所述delta(N1)为-10log(N1)或者-10log(N1)+offset(N1),所述offset(N1)为与所述重复因子N1对应的偏置常量。
  9. 如权利要求2或5所述的方法,其特征在于,所述delta(Nl+1)为-10log(Nl+1)或者-10log(Nl+1)+offset(Nl+1),所述offset(Nl+1)为与所述下一重复因子N2对应的偏置常量。
  10. 如权利要求1或5所述的方法,其特征在于,当所述第一前导序列为一次随机接入过程中的第一个前导序列时,所述方法还包括:
    所述UE获取与所述第一前导序列对应的前导接收目标功率;
    所述UE获取与所述重复因子N1对应的偏置常量offset(N1);
    所述UE根据所述UE的最大允许发送功率、所述与所述第一前导序列对应的前导接收目标功率、所述与所述重复因子N1对应的偏置常量offset(N1)以及所述UE对所在小区进行下行路损估计的估计值确定所述第一发送功率。
  11. 如权利要求10所述的方法,其特征在于,所述UE根据以下公式确定所述第一发送功率:
    PPRACH5=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER5+PL-10log(N1)+offset(N1)}
    其中,PPRACH5表示所述第一发送功率,min{}为取最小值操作,PMAX为所述UE的最大允许发送功率,PREAMBLE_RECEIVED_TARGET_POWER5为所述与所述第一前导序列对应的前导接收目标功率,PL为所述估计值,N1为所述重复因子N1
  12. 如权要求1至11任一项所述的方法,其特征在于,在用户设备UE按照第一发送功率以重复因子N1发送第一前导序列之前,所述方法还包括:
    所述UE获取与所述重复因子N1对应的一组发送信息;所述发送信息包括前导索引和物理随机接入信道PRACH资源;
    用户设备UE按照第一发送功率以重复因子N1发送第一前导序列,包括:
    所述UE在所述PRACH资源上按照第一发送功率以重复因子N1发送与所述前导索引对应的第一前导序列。
  13. 如权利要求12所述的方法,其特征在于,所述UE获取与所述重复因子N1对应的一组发送信息,包括:
    所述UE的物理层将所述重复因子N1上报给所述UE的媒体接入MAC层;所述UE的物理层接收所述MAC层下发的与所述重复因子N1对应的所述一组发送信息;或者
    所述UE的物理层接收所述UE的媒体接入MAC层下发的包括所述重复因子N1在内的多个重复因子分别对应的多组发送信息;所述UE的物理层根据所述重复因子N1在多组发送信息中确定出与所述重复因子N1对应的一组发送信息。
  14. 如权利要求1所述的方法,其特征在于,在所述UE按照第二发送功率以所述下一重复因子N2发送第二前导序列之前,所述UE还通过以下公式确定所述第二发送功率:
    Figure PCTCN2016070390-appb-100001
    其中,pn+1为所述第二发送功率,pn为所述第一发送功率,ΔP0为功率调整步长,Nl为所述重复因子N1,Nl+1为所述下一重复因子N2
  15. 如权利要求14所述的方法,其特征在于,当所述第一前导序列为一次随机接入过程中的第一个前导序列时,所述UE通过以下公式确定所述第一发送功率:
    Preamble_Initial_Power=CPICH_TX_Power-CPICH_RSCP+UL_interference+Constant_Value+delta(Nl)
    其中,Preamble_Initial_Power为所述第一发送功率,CPICH_Tx_Power为下行导频信道的发射功率,CPICH_RSCP为下行导频信道的接收功率,UL_Interference为上行干扰,Constant_Value为常量,Nl为所述重复因子N1,delta(Nl)为所述重复因子N1的减函数。
  16. 如权利要求15所述的方法,其特征在于,delta(N1)为-10log(N1)或者-10log(N1)+offset(N1),所述offset(N1)为与所述重复因子N1对应的偏置常量。
  17. 如权利要求5至16任一项所述的方法,其特征在于,所述UE切换到下一重复因子N2包括:
    所述UE确定第三发送功率,所述第三发送功率大于所述第一发送功率;
    当所述第三发送功率超过所述UE的最大允许发送功率时,切换到所述下一重复因子N2
  18. 如权利要求1至17任一项所述的方法,其特征在于,当所述重复因子N1为初始重复因子时,在用户设备UE按照第一发送功率以重复因子N1发送第一前导序列之前,所述方法还包括:
    所述UE确定第一重复因子和第二重复因子分别对应的前导序列功率;
    当第一重复因子对应的前导序列功率小于等于所述UE的最大允许发送功率和特定常数之差,并且第二重复因子对应的前导序列功率大于所述UE的最大功率和特定常数之差时,或者当第一重复因子对应的前导序列功率小于所述UE的最大允许发送功率和特定常数之差,并且第二重复因子对应的前导序列功率大于等于所述UE的最大功率和特定常数之差时,确定所述第一重复因子作为重复因子N1;其中,所述第二重复因子小于所述第一重复因子且在重复因子中与所述第一重复因子相邻。
  19. 如权利要求1至18任一项所述的方法,其特征在于,所述重复因子N1对应所述UE的第一覆盖增强等级,所述下一重复因子N2对应所述UE的第二覆盖增强等级,所述第二覆盖增强等级高于所述第一覆盖增强等级。
  20. 如权利要求1至18任一项所述的方法,其特征在于,在所述UE切换到下一重复因子N2之前,所述包括:
    所述UE通过在所述重复因子N1上增加一个重复因子步长,获得所述下 一重复因子N2;其中,所述重复因子N1对应所述UE的第一覆盖增强等级,当所述下一重复因子N2小于或等于所述第一覆盖增强等级对应的最大重复因子时,所述下一重复因子N2对应所述第一覆盖增强等级;当所述下一重复因子N2大于所述最大重复因子时,所述下一重复因子N2对应所述UE的第二覆盖增强等级;所述第二覆盖增强等级高于所述第一覆盖增强等级。
  21. 如权利要求20所述的方法,其特征在于,当所述重复因子N1为初始重复因子时,所述方法还包括:
    所述UE接收所述第一前导序列的前导接收目标功率;
    所述UE根据所述前导接收目标功率、所述UE的最大允许发送功率以及所述UE对所在小区进行下行路损估计的估计值,确定所述重复因子N1
  22. 如权利要求21所述的方法,其特征在于,所述UE通过以下公式确定所述重复因子N1
    Figure PCTCN2016070390-appb-100002
    其中,Preamble_Initial_Repetition_Number为所述重复因子N1,Ceil()为上取整函数;PREAMBLE_RECEIVED_TARGET_POWER为所述前导接收目标功率,PL为所述估计值,PMAX为所述最大允许发送功率。
  23. 如权利要求21所述的方法,其特征在于,所述方法还包括:
    所述UE接收与所述第一覆盖增强等级对应的偏置常量offset(Nk);Nk为所述第一覆盖增强等级对应的最大重复因子;
    所述UE根据所述前导接收目标功率、所述UE的最大允许发送功率以及所述UE对所在小区进行下行路损估计的估计值,确定所述重复因子N1包括:
    所述UE根据所述前导接收目标功率、所述偏置常量offset(Nk)、所述UE的最大允许发送功率以及所述UE对所在小区进行下行路损估计的估计值,确定所述重复因子N1
  24. 如权利要求20所述的方法,其特征在于,当所述重复因子N1为初始 重复因子时,所述方法还包括:
    所述UE接收所述UE的最大允许发送功率、常数和上行干扰;
    所述UE通过测量获得下行导频信道的接收功率;
    所述UE获得所述下行导频信道的发射功率;
    所述UE根据所述最大允许发送功率、所述常数、所述上行干扰、所述下行导频信道的接收功率、所述下行导频信道的发射功率确定所述重复因子N1
  25. 如权利要求24所述的方法,其特征在于,所述UE通过以下公式确定所述重复因子N1
    Figure PCTCN2016070390-appb-100003
    其中,Preamble_Initial_Repetition_Number为所述重复因子N1,Ceil()为上取整函数;Maximum_Allowed_Power为所述最大允许发送功率;CPICH_RSCP为所述下行导频信道的接收功率;CPICH_Tx_Power为所述下行导频信道的发射功率,UL_Interference为所述上行干扰,Constant_Value为所述常数。
  26. 如权利要求24所述的方法,其特征在于,所述方法还包括:
    所述UE接收与所述第一覆盖增强等级对应的偏置常量offset(Nk);Nk为所述第一覆盖增强等级对应的最大重复因子;
    所述UE根据所述最大允许发送功率、所述常数、所述上行干扰、所述下行导频信道的接收功率、所述下行导频信道的发射功率确定所述重复因子N1包括:
    所述UE根据所述最大允许发送功率、所述常数、所述上行干扰、所述下行导频信道的接收功率、所述下行导频信道的发射功率以及所述偏置常量offset(Nk)确定所述重复因子N1
  27. 如权利要求20至26任一项所述的方法,其特征在于,所述第一发送功率和所述第二发送功率均为所述UE的最大允许发送功率。
  28. 一种前导序列的发送装置,其特征在于,包括:
    发送单元,用于按照第一发送功率以重复因子N1发送第一前导序列;
    处理单元,用于如果在发送所述第一前导序列后的预定时间段内未接收到网络侧设备发送的对应所述第一前导序列的响应消息,切换到下一重复因子N2,其中所述下一重复因子N2所指示的连续发送次数大于所述重复因子N1所指示的连续发送次数;
    所述发送单元还用于:按照第二发送功率以所述下一重复因子N2发送第二前导序列。
  29. 如权利要求28所述的装置,其特征在于,所述处理单元还用于:在所述发送单元按照第二发送功率以所述下一重复因子N2发送第二前导序列之前,通过以下公式确定所述第二发送功率:
    PPRACH1=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER1+PL}
    其中,
    PREAMBLE_RECEIVED_TARGET_POWER1=preambleInitialReceivedTar getPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(Nl+1)
    其中,PPRACH1为所述第二发送功率,min{}为取最小值操作,PMAX为所述UE的最大允许发送功率,PL为所述UE对所在小区进行下行路损估计的估计值,preambleInitialReceivedTargetPower为前导初始接收目标功率,DELTA_PREAMBLE为前导序列格式偏置值,PREAMBLE_TRANSMISSION_COUNTER为前导发送计数器,powerRampingStep为功率调整步长,Nl+1为所述下一重复因子N2,delta(Nl+1)为所述下一重复因子N2的减函数。
  30. 如权利要求28或29所述的装置,其特征在于,所述处理单元具体用于:
    确定第三发送功率,所述第三发送功率大于所述第一发送功率;
    当所述第三发送功率超过UE的最大允许发送功率时,切换到所述下一重复因子N2
  31. 如权利要求30所述的装置,其特征在于,所述处理单元具体通过以下公式确定所述第三发送功率:
    PPRACH2=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER2+PL}
    其中,
    PREAMBLE_RECEIVED_TARGET_POWER2=preambleInitialReceivedTar getPower+DELTA_PREAMBLE+(PREAMBLE_TRANSMISSION_COUNTER–1)*(powerRampingStep)+delta(Nl)
    其中,PPRACH2为所述第三发送功率,min{}为取最小值操作,PMAX为所述UE的最大允许发送功率,PL为所述UE对所在小区进行下行路损估计的估计值,preambleInitialReceivedTargetPower为前导初始接收目标功率,DELTA_PREAMBLE为前导序列格式偏置值,PREAMBLE_TRANSMISSION_COUNTER为前导发送计数器,powerRampingStep为功率调整步长,Nl为所述重复因子N1,delta(Nl)为所述重复因子N1的减函数。
  32. 如权利要求28所述的装置,其特征在于,所述处理单元还用于:在所述发送单元按照第二发送功率以所述下一重复因子N2发送第二前导序列之前,通过以下公式确定所述第二发送功率:
    PPRACH3=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER3+PL+delta(Nl+1)}
    其中,PPRACH3为所述第二发送功率,min{}为取最小值操作,PMAX为所述UE的最大允许发送功率,PL为所述UE对所在小区进行下行路损估计的估计 值,PREAMBLE_RECEIVED_TARGET_POWER3为与所述第二前导序列对应的前导接收目标功率,Nl+1为所述下一重复因子N2,delta(Nl+1)为所述重复因子N2的减函数。
  33. 如权利要求32所述的装置,其特征在于,所述处理单元还用于:当所述第一前导序列为一次随机接入过程中的第一个前导序列时,在所述发送单元按照第一发送功率以重复因子N1发送第一前导序列前,
    获得与所述第一前导序列对应的前导接收目标功率;根据所述重复因子N1、所述UE的最大允许发送功率、所述与所述第一前导序列对应的前导接收目标功率以及所述UE对所在小区进行下行路损估计的估计值确定所述第一发送功率。
  34. 如权利要求33所述的装置,其特征在于,所述处理单元具体通过以下公式确定所述第一发送功率:
    PPRACH4=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER4+PL+delta(Nl)}
    其中,PPRACH4为所述第一发送功率,PMAX为所述UE的最大允许发送功率,PREAMBLE_RECEIVED_TARGET_POWER为所述与所述第一前导序列对应的前导接收目标功率,Nl为所述重复因子N1,所述delta(Nl)为所述重复因子N1的减函数,min{}为取最小值操作,PL为所述估计值。
  35. 如权利要求31或34所述的装置,其特征在于,所述delta(N1)为-10log(N1)或者-10log(N1)+offset(N1),所述offset(N1)为与所述重复因子N1对应的偏置常量。
  36. 如权利要求29或32所述的装置,其特征在于,所述delta(Nl+1)为-10log(Nl+1)或者-10log(Nl+1)+offset(Nl+1),所述offset(Nl+1)为与所述下一重复因子N2对应的偏置常量。
  37. 如权利要求28或32所述的装置,其特征在于,所述处理单元还用于: 当所述第一前导序列为一次随机接入过程中的第一个前导序列时,获取与所述第一前导序列对应的前导接收目标功率;获取与所述重复因子N1对应的偏置常量offset(N1);根据所述UE的最大允许发送功率、所述与所述第一前导序列对应的前导接收目标功率、所述与所述重复因子N1对应的偏置常量offset(N1)以及对所在小区进行下行路损估计的估计值确定所述第一发送功率。
  38. 如权利要求37所述的装置,其特征在于,所述处理单元根据以下公式确定所述第一发送功率:
    PPRACH5=min{PMAX,PREAMBLE_RECEIVED_TARGET_POWER5+PL-10log(N1)+offset(N1)}
    其中,PPRACH5表示所述第一发送功率,min{}为取最小值操作,PMAX为所述UE的最大允许发送功率,PREAMBLE_RECEIVED_TARGET_POWER5为所述与所述第一前导序列对应的前导接收目标功率,PL为所述估计值,N1为所述重复因子N1
  39. 如权利要求28至38任一项所述的装置,其特征在于,所述处理单元还用于:在所述发送单元按照第一发送功率以重复因子N1发送第一前导序列之前,获取与所述重复因子N1对应的一组发送信息;所述发送信息包括前导索引和物理随机接入信道PRACH资源;
    所述发送单元具体用于:在所述PRACH资源上按照第一发送功率以重复因子N1发送与所述前导索引对应的第一前导序列。
  40. 如权利要求28所述的装置,其特征在于,所述处理单元具体用于:在所述发送单元按照第二发送功率以所述下一重复因子N2发送第二前导序列之前,通过以下公式确定所述第二发送功率:
    Figure PCTCN2016070390-appb-100004
    其中,pn+1为所述第二发送功率,pn为所述第一发送功率,ΔP0为功率调 整步长,Nl为所述重复因子N1,Nl+1为所述下一重复因子N2
  41. 如权利要求40所述的装置,其特征在于,所述处理单元还用于当所述第一前导序列为一次随机接入过程中的第一个前导序列时,通过以下公式确定所述第一发送功率:
    Preamble_Initial_Power=CPICH_TX_Power-CPICH_RSCP+UL_interference+Constant_Value+delta(Nl)
    其中,Preamble_Initial_Power为所述第一发送功率,CPICH_Tx_Power为下行导频信道的发射功率,CPICH_RSCP为下行导频信道的接收功率,UL_Interference为上行干扰,Constant_Value为常量,Nl为所述重复因子N1,delta(Nl)为所述重复因子N1的减函数。
  42. 如权利要求41所述的装置,其特征在于,delta(N1)为-10log(N1)或者-10log(N1)+offset(N1),所述offset(N1)为与所述重复因子N1对应的偏置常量。
  43. 如权利要求33至42任一项所述的装置,其特征在于,所述处理单元具体用于:确定第三发送功率,所述第三发送功率大于所述第一发送功率;当所述第三发送功率超过所述UE的最大允许发送功率时,切换到所述下一重复因子N2
  44. 如权利要求28至43任一项所述的装置,其特征在于,所述处理单元还用于:当所述重复因子N1为初始重复因子时,在所述发送单元按照第一发送功率以重复因子N1发送第一前导序列之前,确定第一重复因子和第二重复因子分别对应的前导序列功率;当第一重复因子对应的前导序列功率小于等于所述UE的最大允许发送功率和特定常数之差,并且第二重复因子对应的前导序列功率大于所述UE的最大功率和特定常数之差时,或者当第一重复因子对应的前导序列功率小于所述UE的最大允许发送功率和特定常数之差,并且第二重 复因子对应的前导序列功率大于等于所述UE的最大功率和特定常数之差时,确定所述第一重复因子作为重复因子N1;其中,所述第二重复因子小于所述第一重复因子且在重复因子中与所述第一重复因子相邻。
  45. 如权利要求28至44任一项所述的装置,其特征在于,所述重复因子N1对应所述UE的第一覆盖增强等级,所述下一重复因子N2对应所述UE的第二覆盖增强等级,所述第二覆盖增强等级高于所述第一覆盖增强等级。
  46. 如权利要求28至44任一项所述的装置,其特征在于,所述处理单元还用于:通过在所述重复因子N1上增加一个重复因子步长,获得所述下一重复因子N2;其中,所述重复因子N1对应所述UE的第一覆盖增强等级,当所述下一重复因子N2小于或等于所述第一覆盖增强等级对应的最大重复因子时,所述下一重复因子N2对应所述第一覆盖增强等级;当所述下一重复因子N2大于所述最大重复因子时,所述下一重复因子N2对应所述UE的第二覆盖增强等级;所述第二覆盖增强等级高于所述第一覆盖增强等级。
  47. 如权利要求46所述的装置,其特征在于,所述处理单元还用于:当所述重复因子N1为初始重复因子时,接收所述第一前导序列的前导接收目标功率;UE根据所述前导接收目标功率、所述UE的最大允许发送功率以及所述UE对所在小区进行下行路损估计的估计值,确定所述重复因子N1
  48. 如权利要求47所述的装置,其特征在于,所述处理单元具体通过以下公式确定所述重复因子N1
    Figure PCTCN2016070390-appb-100005
    其中,Preamble_Initial_Repetition_Number为所述重复因子N1,Ceil()为上取整函数;PREAMBLE_RECEIVED_TARGET_POWER为所述前导接收目标功率,PL为所述估计值,PMAX为所述最大允许发送功率。
  49. 如权利要求47所述的装置,其特征在于,所述装置还包括接收单元,用于接收与所述第一覆盖增强等级对应的偏置常量offset(Nk);Nk为所述第一覆盖增强等级对应的最大重复因子;
    所述处理单元还用于:根据所述前导接收目标功率、所述偏置常量offset(Nk)、所述UE的最大允许发送功率以及所述UE对所在小区进行下行路损估计的估计值,确定所述重复因子N1
  50. 如权利要求46所述的装置,其特征在于,所述装置还包括接收单元,用于当所述重复因子N1为初始重复因子时,接收所述UE的最大允许发送功率、常数和上行干扰;
    所述处理单元还用于通过测量获得下行导频信道的接收功率;获得所述下行导频信道的发射功率;根据所述最大允许发送功率、所述常数、所述上行干扰、所述下行导频信道的接收功率、所述下行导频信道的发射功率确定所述重复因子N1
  51. 如权利要求50所述的装置,其特征在于,所述处理单元具体通过以下公式确定所述重复因子N1
    Figure PCTCN2016070390-appb-100006
    其中,Preamble_Initial_Repetition_Number为所述重复因子N1,Ceil()为上取整函数;Maximum_Allowed_Power为所述最大允许发送功率;CPICH_RSCP为所述下行导频信道的接收功率;CPICH_Tx_Power为所述下行导频信道的发射功率,UL_Interference为所述上行干扰,Constant_Value为所述常数。
  52. 如权利要求50所述的装置,其特征在于,所述接收单元还用于:接收与所述第一覆盖增强等级对应的偏置常量offset(Nk);Nk为所述第一覆盖 增强等级对应的最大重复因子;
    所述处理单元还用于:根据所述最大允许发送功率、所述常数、所述上行干扰、所述下行导频信道的接收功率、所述下行导频信道的发射功率以及所述偏置常量offset(Nk)确定所述重复因子N1
  53. 如权利要求46至52任一项所述的装置,其特征在于,所述第一发送功率和所述第二发送功率均为所述UE的最大允许发送功率。
  54. 如权利要求28至53任一项所述的装置,其特征在于,所述装置为用户设备UE。
PCT/CN2016/070390 2015-01-30 2016-01-07 一种前导序列的发送方法及装置 WO2016119583A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16742645.1A EP3223573B1 (en) 2015-01-30 2016-01-07 Preamble sequence sending method and apparatus
US15/637,505 US10420032B2 (en) 2015-01-30 2017-06-29 Preamble sequence sending method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510052923.6A CN105992328B (zh) 2015-01-30 2015-01-30 一种前导序列的发送方法及装置
CN201510052923.6 2015-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/637,505 Continuation US10420032B2 (en) 2015-01-30 2017-06-29 Preamble sequence sending method and apparatus

Publications (1)

Publication Number Publication Date
WO2016119583A1 true WO2016119583A1 (zh) 2016-08-04

Family

ID=56542376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070390 WO2016119583A1 (zh) 2015-01-30 2016-01-07 一种前导序列的发送方法及装置

Country Status (4)

Country Link
US (1) US10420032B2 (zh)
EP (1) EP3223573B1 (zh)
CN (1) CN105992328B (zh)
WO (1) WO2016119583A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113597019A (zh) * 2017-06-16 2021-11-02 维沃移动通信有限公司 一种随机接入过程前导码重传计数的方法及终端
CN113726712A (zh) * 2018-04-03 2021-11-30 赛普拉斯半导体公司 扩展无线网络的范围的系统和方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10383150B2 (en) * 2016-05-11 2019-08-13 Ofinno, Llc Random access process in a wireless device and wireeless network
CN108551666B (zh) * 2016-11-04 2020-06-02 中兴通讯股份有限公司 一种网络选择及接入方法和装置
RU2735729C1 (ru) * 2016-12-16 2020-11-06 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ и оборудование произвольного доступа
US11178696B2 (en) * 2017-01-03 2021-11-16 Lg Electronics Inc. Method for performing random access process and user equipment
CN110213834B (zh) 2017-01-06 2020-09-29 华为技术有限公司 随机接入方法、用户设备和网络设备
CN108512626B (zh) * 2017-02-24 2020-04-17 中国移动通信有限公司研究院 一种信息传输方法、用户设备及基站
CN110692270A (zh) * 2017-06-05 2020-01-14 华为技术有限公司 传输信号的方法、终端设备和网络设备
US10849076B2 (en) * 2017-06-26 2020-11-24 Mediatek Inc. Physical random access channel preamble retransmission for NR
CN109392071B (zh) * 2017-08-11 2021-06-08 中兴通讯股份有限公司 一种功率控制的方法及装置
CN111770584B (zh) * 2017-11-14 2022-05-31 Oppo广东移动通信有限公司 用于竞争随机接入的方法、网络设备和终端设备
EP3735051B1 (en) * 2017-12-26 2021-12-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for controlling random access power of ue, ue, and computer storage medium
CN109587780B (zh) * 2018-01-12 2019-11-19 华为技术有限公司 通信方法及装置
WO2020082215A1 (zh) * 2018-10-22 2020-04-30 Oppo广东移动通信有限公司 确定前导序列发射功率的方法和通信设备
US11910445B2 (en) * 2019-01-10 2024-02-20 Beijing Xiaomi Mobile Software Co., Ltd. Random access method and device
CN114499803B (zh) * 2019-04-04 2024-06-28 华为技术有限公司 发送数据的方法、通信装置、计算机存储介质
JP7520883B2 (ja) * 2019-04-30 2024-07-23 富士通株式会社 ランダムアクセス方法、装置及び通信システム
CN114449630B (zh) * 2022-01-25 2023-08-15 Tcl通讯科技(成都)有限公司 通信建立方法、装置、计算机设备及可读存储介质
DE102022210364A1 (de) * 2022-09-29 2024-04-04 Continental Automotive Technologies GmbH Verfahren und drahtloses Kommunikationssystem zur Verbesserung einer energieeffizienten Abdeckung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102724746A (zh) * 2011-03-29 2012-10-10 中兴通讯股份有限公司 随机接入过程中前导码发送功率的控制、确定方法及系统
US20130188473A1 (en) * 2012-01-25 2013-07-25 Esmael Hejazi Dinan Random Access Failure in Wireless Device Multiple Timing Advance Groups
CN103782647A (zh) * 2011-08-05 2014-05-07 苹果公司 自适应随机接入信道重传
CN103828447A (zh) * 2013-10-24 2014-05-28 华为技术有限公司 上行功率控制方法和装置
CN103916974A (zh) * 2013-01-07 2014-07-09 华为技术有限公司 一种前导序列的传输方法、装置及系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4757314B2 (ja) 2006-12-28 2011-08-24 富士通株式会社 無線通信システム及び基地局並びにランダムアクセスチャネル送信方法
WO2014110805A1 (en) * 2013-01-18 2014-07-24 Broadcom Corporation Random access for coverage improvement
CN104254135B (zh) * 2013-06-27 2020-03-31 夏普株式会社 基站和用户设备及其方法
US20150001631A1 (en) * 2013-06-28 2015-01-01 Qualcomm Incorporated Cmos technology integration
US9451639B2 (en) * 2013-07-10 2016-09-20 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement for a random access process
US20150078188A1 (en) * 2013-09-13 2015-03-19 Qualcomm Incorporated Uplink channel design with coverage enhancements
EP3079431B1 (en) * 2013-12-05 2019-06-19 LG Electronics Inc. Method and mtc device for performing random access procedure for coverage enhancement
US9491712B2 (en) * 2013-12-20 2016-11-08 Qualcomm Incorporated PUSCH and PUCCH power control under coverage enhancements in LTE
ES2667805T3 (es) * 2014-01-28 2018-05-14 Huawei Technologies Co., Ltd. Método y aparato para determinar potencia de transmisión en escenario de aumento de cobertura
KR102029082B1 (ko) * 2014-01-28 2019-10-07 후아웨이 테크놀러지 컴퍼니 리미티드 물리 랜덤 액세스 채널 강화 전송 방법, 네트워크 장치 및 단말
US20160353440A1 (en) * 2014-01-29 2016-12-01 Interdigital Patent Holdings, Inc. Method of access and link adaptation for coverage enhanced wireless transmissions
CA2946636A1 (en) * 2014-04-23 2015-10-29 Huawei Technologies Co., Ltd. Data transmission method and apparatus
WO2016033778A1 (zh) 2014-09-04 2016-03-10 华为技术有限公司 定时传输方法和设备
WO2016033989A1 (zh) 2014-09-04 2016-03-10 华为技术有限公司 信息传输方法、用户侧设备及网络侧设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102724746A (zh) * 2011-03-29 2012-10-10 中兴通讯股份有限公司 随机接入过程中前导码发送功率的控制、确定方法及系统
CN103782647A (zh) * 2011-08-05 2014-05-07 苹果公司 自适应随机接入信道重传
US20130188473A1 (en) * 2012-01-25 2013-07-25 Esmael Hejazi Dinan Random Access Failure in Wireless Device Multiple Timing Advance Groups
CN103916974A (zh) * 2013-01-07 2014-07-09 华为技术有限公司 一种前导序列的传输方法、装置及系统
CN103828447A (zh) * 2013-10-24 2014-05-28 华为技术有限公司 上行功率控制方法和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113597019A (zh) * 2017-06-16 2021-11-02 维沃移动通信有限公司 一种随机接入过程前导码重传计数的方法及终端
CN113597019B (zh) * 2017-06-16 2023-11-17 维沃移动通信有限公司 一种随机接入过程前导码重传计数的方法及终端
CN113726712A (zh) * 2018-04-03 2021-11-30 赛普拉斯半导体公司 扩展无线网络的范围的系统和方法
CN113726712B (zh) * 2018-04-03 2023-11-21 赛普拉斯半导体公司 扩展无线网络的范围的系统和方法

Also Published As

Publication number Publication date
CN105992328B (zh) 2019-07-09
CN105992328A (zh) 2016-10-05
EP3223573A4 (en) 2017-12-20
EP3223573B1 (en) 2019-03-06
EP3223573A1 (en) 2017-09-27
US20170303204A1 (en) 2017-10-19
US10420032B2 (en) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2016119583A1 (zh) 一种前导序列的发送方法及装置
US11672020B2 (en) Wireless communication system and method of controlling a transmission power
JP6865267B2 (ja) 電力クラスを基準にしたカバレッジ拡張レベルの選択
US8359038B2 (en) Channel access for local heterogeneous communication in a cellular network
CN105309010B (zh) 一种覆盖增强场景下确定发射功率的方法和设备
EP3358776B1 (en) Method and device for transmitting data
US8761826B2 (en) Uplink power control in coordinated multi-point wireless communication system
US8385966B2 (en) Method, apparatus and computer program for power control related to random access procedures
US10142996B2 (en) Sensitivity tuning in wireless networks
US20150117366A1 (en) Systems and methods for improved communication efficiency in high efficiency wireless networks
WO2018192310A1 (zh) 物理随机接入信道参数的配置方法、物理随机接入信道参数信息的选择方法、网络侧设备及终端
WO2014179456A1 (en) Systems and methods for reuse of a wireless medium for high efficiency wifi
EP3039937A1 (en) Adaptive rts/cts in high-efficiency wireless communications
US10257859B1 (en) Method and apparatus for clear channel assessment
EP3448094B1 (en) Terminal device, base station device and communication method
WO2018058438A1 (zh) 通信方法、终端设备和网络设备
WO2019029695A1 (zh) 功率控制的方法及装置
CN108886753B (zh) 终端装置、基站装置以及通信方法
CN105191430B (zh) 控制用户设备的设备至设备链路的发射功率的方法
WO2018223274A1 (zh) 传输信号的方法、终端设备和网络设备
EP2557862B1 (en) Joint power control method in multi-user multiplexing technique and apparatus thereof
WO2014206317A1 (zh) 一种功率控制方法及装置
KR20180002669A (ko) 동적 감도 제어를 위한 기법들
GB2472362A (en) Changing transmission power information regarding a random access channel according to received access delay information
WO2013071665A1 (zh) 一种上行功率控制方法、装置、基站及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742645

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016742645

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE