[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016119470A1 - 一种信号发送方法和装置 - Google Patents

一种信号发送方法和装置 Download PDF

Info

Publication number
WO2016119470A1
WO2016119470A1 PCT/CN2015/089872 CN2015089872W WO2016119470A1 WO 2016119470 A1 WO2016119470 A1 WO 2016119470A1 CN 2015089872 W CN2015089872 W CN 2015089872W WO 2016119470 A1 WO2016119470 A1 WO 2016119470A1
Authority
WO
WIPO (PCT)
Prior art keywords
scs
signal
laa
send
configuration information
Prior art date
Application number
PCT/CN2015/089872
Other languages
English (en)
French (fr)
Inventor
徐汉青
赵亚军
莫林梅
苟伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510040772.2A external-priority patent/CN105991254A/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016119470A1 publication Critical patent/WO2016119470A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a signal transmitting method and apparatus.
  • LTE uses UnLTE-U (Long Term Evolution–Unlicensed) to deploy LTE in unlicensed carriers to meet the increasing capacity requirements of LTE systems and improve the efficiency of unlicensed spectrum. It is LTE and the future. An important evolutionary direction of wireless communication is possible.
  • LTE-U it is necessary to consider how to conduct data transmission with a fair and friendly competitive unlicensed carrier between the wireless system (Wireless Fidelity), radar and other different systems and the LTE-U system. Does not affect and retain LTE technology features.
  • the LTE-U system may also be referred to as an LTE Licensed Assisted Access (LAA) system.
  • LAA LTE Licensed Assisted Access
  • the LAA access point or the base station After the LAA access point or the base station preempts the resources, it needs to perform a series of processes such as cell discovery, synchronization, uplink/downlink reception and measurement, channel state information (CSI, Channel State Information) feedback, and scheduling, which takes a lot of time. (several ms, even 10ms), that is to say, a considerable part of the time resources occupied by the LAA access point or base station are used to handle operations other than data transmission, which will greatly reduce the spectrum usage of the LAA system. Efficiency and performance.
  • CSI Channel State Information
  • the embodiments of the present invention provide:
  • a signal transmission method is applied to an LTE authorized carrier assisted access LAA access point or a LAA base station, including:
  • the signal is transmitted using the SCS based on the determined configuration information.
  • the method further includes: transmitting, to the other LAA access point or the LAA base station, the configuration information that uses the SCS to send a signal,
  • the method further includes: before the non-authorized carrier non-occupation period uses configuration information of the SCS transmission signal, the method further includes:
  • the configuration information of the other LAA access point or the LAA base station received by the SCA in the first preset time period whether to use the SCS to send a signal, determine whether to use the SCS to send a signal, and then perform a subsequent process to determine to use the short control signal.
  • the configuration information that causes the SCS to send a signal is not limited to the configuration information of the other LAA access point or the LAA base station received by the SCA in the first preset time period.
  • the method further includes: before the non-authorized carrier non-occupation period uses configuration information of the SCS transmission signal, the method further includes:
  • the determining, by using the SCS, the configuration information that is sent by the SCS during the non-authorized carrier non-occupation period includes:
  • the preset usage of the resource for the SCS transmission is monitored, and when the preset resource for the SCS transmission is capable of signaling, the preset resource for the SCS transmission is used to send a signal.
  • the method further includes: performing a clear channel assessment CCA on the resources other than the preset or the determined resources for SCS transmission, and determining, for the SCS transmission, Resources.
  • the determining, by using the SCS, the configuration information of the signal includes:
  • one or more carriers are selected for SCS signal transmission.
  • the method further includes: before the non-authorized carrier non-occupation period uses configuration information of the SCS transmission signal, the method further includes:
  • a coordination request is sent to one or more other LAA access points or LAA base stations.
  • the method further includes:
  • the use of the SCS to transmit the signal is stopped, or the configuration information of the signal transmitted using the SCS is adjusted.
  • the method further includes: when the configuration information of the signal sent by the SCS is changed, the LAA access point or the LAA base station sends a notification message to the other LAA access point or the LAA base station, and carries the changed configuration information.
  • the signal includes one or more of the following: a primary synchronization signal PSS/secondary synchronization signal SSS, a cell-specific reference signal CRS, a positioning reference signal PRS, a channel sounding reference signal SRS, a discovery signal DRS, and a channel state.
  • the reference signal CSI-RS and the physical downlink control channel PDCCH bearer signal are indicated.
  • the configuration information includes one or more of the following: period, offset, duration, port, power, time-frequency resources.
  • the method further includes:
  • the reference signal is periodically transmitted according to a preset period.
  • the reference signal is sent on a preset resource before the unlicensed carrier is occupied.
  • the method further includes:
  • the configuration information is continuously used to transmit signals.
  • the method further includes:
  • the signal is stopped when the unlicensed carrier is occupied, or the signal is continuously transmitted on the preset resource.
  • the embodiment of the present invention further provides a signal sending apparatus, which is disposed at a LAA access point or a LAA base station, where the apparatus includes: a first processing module and a first sending module;
  • the first processing module is configured to determine configuration information that uses an SCS to send a signal during an unlicensed carrier non-occupation period;
  • the first sending module is configured to send the signal by using an SCS according to the determined configuration information.
  • the apparatus further includes a second sending module, a receiving module, and a second processing module;
  • the second sending module is configured to send the configuration information that uses the SCS to send a signal to another LAA access point or a LAA base station;
  • the receiving module is configured to receive configuration information that is sent by using a SCS from another LAA access point or a LAA base station;
  • the second processing module is configured to determine, according to configuration information of the other LAA access point or the LAA base station that the receiving module receives in the first preset time period, whether to use the SCS to send a signal, and determine to use the SCS to send a signal. Then, the first processing module is notified to perform processing.
  • the apparatus further includes a third processing module and a fourth processing module,
  • the third processing module is configured to listen to or detect information that other LAA access points or LAA base stations use the SCS to send signals in the second preset time period;
  • the fourth processing module is configured to determine, according to the intercepted or detected information, whether to use the SCS to send a signal, and determine to use the SCS to send a signal, and then notify the first processing module to perform processing.
  • the first processing module is specifically configured to obtain a preset for SCS The resource information sent; and the occupancy of the preset resource for SCS transmission, where the preset resource for SCS transmission can be used for signaling, and the preset is used for SCS transmission.
  • the resource sends a signal.
  • the first processing module is specifically configured to perform a clear channel assessment CCA on resources other than the preset or the determined resources for SCS transmission, and determine the SCS for sending Resources.
  • the first processing module is specifically configured to select one or more carriers for SCS signal transmission according to a preset selection algorithm.
  • the apparatus further includes a third transmitting module,
  • the third sending module is configured to send a coordination request to another one or more LAA access points or LAA base stations.
  • the apparatus further includes an adjustment module,
  • the adjusting module is configured to stop using the SCS to send a signal when the current LAA access point or the LAA base station does not send the service data in the third preset time period, or adjust configuration information using the SC sending signal to avoid resources. waste.
  • the apparatus further includes a fourth sending module,
  • the fourth sending module is configured to send a notification message to the other LAA access point or the LAA base station to carry the changed configuration information when the current LAA access point or the configuration information of the LAA base station using the SC transmission signal changes.
  • the device periodically transmits a reference signal according to a preset period in an unlicensed carrier non-occupancy period, and/or transmits a reference signal on a preset resource before occupying the unlicensed carrier.
  • the device continues to use the configuration information to transmit signals during an unlicensed carrier occupancy period.
  • the device stops transmitting the signal during an unlicensed carrier occupation period.
  • the signal is continuously transmitted on a preset resource.
  • the third sending module, the adjusting module, and the fourth sending module may use a central processing unit (CPU), a digital signal processor (DSP), or a programmable logic array when performing processing.
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA Field-Programmable Gate Array
  • the method and device for transmitting a signal according to the embodiment of the present invention are applied to a LAA access point or a LAA base station, and specifically, determining configuration information for transmitting a signal by using a short control signaling SCS during an unlicensed carrier non-occupation period;
  • the configuration information is sent using the SCS.
  • the embodiment of the present invention implements signal transmission before occupying an unlicensed carrier, and can improve spectrum utilization efficiency and performance of the LAA system.
  • FIG. 1 is a schematic flowchart of a signal sending method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a signal sending apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of still another signal sending apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of still another signal sending apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of still another signal sending apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of still another signal sending apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of still another signal sending apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a carrier occupancy situation in Embodiment 5 of the present invention.
  • FIG. 9 is a schematic diagram of a carrier occupancy situation in Embodiment 6 of the present invention.
  • the unlicensed spectrum of the general control has a maximum occupation time of about 10 ms (generally geographical difference), so the reference signals for cell discovery, synchronization, and measurement, such as the primary synchronization signal (PSS, Primary), are transmitted after occupying the unlicensed carrier.
  • Synchronous Signal /Secondary Synchronous Signal (SSS), Cell-specific Reference Signal (CRS), Positioning Reference Signal (PRS), Channel Sounding Reference Signal (SRS, Sounding Reference Signal)
  • the discovery signal DRS, Discovery Reference Signal
  • the channel state indication reference signal CSI-RS, Channel State Indication RS
  • PDCCH Physical Downlink Control Channel
  • Physical Downlink Control Channel Physical Downlink Control Channel
  • the unlicensed carrier is required to support the LBT (Listen before Talk) function.
  • LBT Listen before Talk
  • a clear channel assessment (CCA) function needs to be performed. If the device is found to be using the unlicensed carrier, or the detected signal energy exceeds the CCA threshold, the access is delayed. If the channel is found to be idle, or the detected signal energy is lower than the CCA threshold, the unlicensed carrier is occupied.
  • the LBT/CCA will restrict the LAA reference signal from being sent before occupying the unlicensed carrier.
  • ETSI European Telecommunications Standards Institute
  • SCS Short Control Signalling
  • management and control frames such as ACK/NACK signals
  • SCS transmission has strict limits: if SCS is used, the short signaling transmission duty of the adaptive device does not exceed 5%, which is 2.5 ms, during the observation period of 50 ms. This limitation has little effect on WLAN/WiFi, but for multiple LAA sites, how to coordinate the transmission of various reference signals in such a short limited time is an urgent problem to be solved.
  • the technical problem to be solved by the present invention is to provide a transmission message before the unlicensed carrier is occupied.
  • FIG. 1 is a schematic flowchart of a signal sending method according to an embodiment of the present invention. The method is applied to a LAA access point or a LAA base station. As shown in FIG. 1 , the method includes:
  • Step 11 Determine configuration information for transmitting a signal using the short control signaling SCS during the non-authorized carrier non-occupation period.
  • the short control signaling SCS mentioned in the present invention refers not only to the SCS in the ETSI specification, but also to the specified non-occupation period special duration for transmitting short-term signals and channels.
  • the signal and channel are transmitted within the SCS duration, and the LAA access point does not need to perform the Clear Channel Assessment (CCA) and Listen-Before-Talk (LBT) functions.
  • CCA Clear Channel Assessment
  • LBT Listen-Before-Talk
  • the SCS transmission duration needs to meet certain regulatory requirements, otherwise it violates the principle of friendly coexistence of different systems and devices in the unlicensed frequency band.
  • Some regions and countries may have additional names and definitions for SCS, collectively referred to herein as SCS. In some regions and countries, SCS may not be defined. For these regions and countries, SCS and similar rules may be defined (for example, the requirements for the length of transmission, and the duration of the fixed period of observation shall not be greater than the set ratio) for the non-occupied period.
  • the signal is sent.
  • Step 12 Send the signal using the SCS according to the determined configuration information.
  • the system can coordinate transmission, that is, whether the interaction between the LAA access point or the LAA base station sends DRS and DRS configuration information.
  • the LAA access point or the LAA base station transmits its own configuration information for transmitting signals using the SCS to other LAA access points or LAA base stations.
  • the method further includes: before the non-authorized carrier non-occupation period uses the configuration information of the SCS transmission signal, the method further includes:
  • the method further includes: before the non-authorized carrier non-occupation period uses configuration information of the SCS transmission signal, the method further includes:
  • the determining, by using the SCS, the configuration information that is sent by the SCS during the non-authorized carrier non-occupation period includes:
  • the preset usage of the resource for the SCS transmission is monitored, and when the preset resource for the SCS transmission is capable of signaling, the preset resource for the SCS transmission is used to send a signal.
  • the method further includes: performing a clear channel assessment (CCA) on the resources other than the preset or the determined resources for SCS transmission, and determining resources used for SCS transmission.
  • CCA clear channel assessment
  • the signals may be continuously transmitted on these resources by means of frequency domain multiplexing.
  • the resources described in this embodiment include, but are not limited to, a radio frame, a subframe, a slot, an OFDM symbol, and a resource unit (RE).
  • a radio frame a subframe
  • a slot a slot
  • OFDM symbol a resource unit
  • each LAA access point or LAA base station can be preset (limited, coordinated) to ensure that it is sent at least once in 160 ms (that is, the transmission pattern of the DRS is solidified to ensure compliance with the regulatory requirements of the SCS), if it is desired to shorten If the DRS period is sent, then CCA needs to be performed. If it is idle, of course, DRS can be sent.
  • the CCA does not send data after listening, but sends a DRS for cell detection, T/F tracking, and RRM measurement.
  • the determining, by using the short control signaling, the configuration information of the signal sent by the SCS includes:
  • one or more carriers are selected for SCS signal transmission.
  • one or more low-load carriers may be selected for SCS signal transmission according to carrier load.
  • the determining, by using the SCS, the configuration information that is sent by the SCS during the non-authorized carrier non-occupation period includes:
  • the SCS resource that uses the SCS to send the signal is determined randomly or according to the preset minimum occupancy information
  • the idle and/or occupied SCS resources are selected to transmit signals.
  • the method further includes: before the non-authorized carrier non-occupation period uses configuration information of the SCS transmission signal, the method further includes:
  • a coordination request is sent to one or more other LAA access points or LAA base stations.
  • the method further includes:
  • the LAA access point or the LAA base station does not send the service data within the third preset time period, stop using the SCS to send a signal, or adjust the configuration information of the signal sent using the SCS to avoid waste of resources.
  • the DRS can be adjusted. Send configuration to reduce the occupation of SCS. Or, stop sending DRS. Each time the preemption is completed, a certain time is reserved to send the DRS to maintain synchronization.
  • the method further includes: when the configuration information of the signal sent by the SCS is changed, the LAA access point or the LAA base station sends a notification message to the other LAA access point or the LAA base station, and carries the changed configuration information.
  • the signal includes one or more of the following: a primary synchronization signal PSS/secondary synchronization signal SSS, a cell-specific reference signal CRS, a positioning reference signal PRS, a channel sounding reference signal SRS, a downlink dedicated reference signal DRS,
  • the physical downlink control channel PDCCH carries a signal.
  • the configuration information includes one or more of the following: period, offset, duration, port, power, time-frequency resources.
  • the method further includes:
  • the reference signal is periodically transmitted according to a preset period.
  • the reference signal is sent on a preset resource before the unlicensed carrier is occupied.
  • the method further includes:
  • the configuration information is continuously used to transmit signals.
  • the method further includes:
  • the signal is stopped when the unlicensed carrier is occupied, or the signal is continuously transmitted on the preset resource.
  • the embodiment of the present invention further provides a signal sending device, which is disposed at a LAA access point or a LAA base station. As shown in FIG. 2, the device includes: a first processing module 201 and a first a sending module 202; wherein
  • the first processing module 201 is configured to determine configuration information that uses an SCS to send a signal during an unlicensed carrier non-occupation period;
  • the first sending module 202 is configured to send the signal by using an SCS according to the determined configuration information.
  • the device further includes a second sending module 203, a receiving module 204, and a second processing module 205;
  • the second sending module 203 is configured to send the configuration information that uses the SCS to send signals to other LAA access points or LAA base stations;
  • the receiving module 204 is configured to receive configuration information that is sent by using a SCS from another LAA access point or a LAA base station;
  • the second processing module 205 is configured to determine, according to configuration information of the other LAA access point or the LAA base station that the receiving module 204 receives in the first preset time period, whether to use the SCS to send a signal, and determine to use the SCS.
  • the first processing module 201 is notified to perform processing.
  • the apparatus further includes a third processing module 206 and a fourth processing module 207.
  • the third processing module 206 is configured to listen to or detect information that other LAA access points or LAA base stations use the SCS to send signals in the second preset time period;
  • the fourth processing module 207 is configured to determine whether to use the SCS to send a signal according to the intercepted or detected information, and determine to use the SCS to send a signal, and then notify the first processing module 201 to perform processing.
  • the first processing module is configured to acquire preset resource information for SCS transmission, and listen to the preset usage of resources for SCS transmission, where the preset When the resource for SCS transmission can be signaled, the preset use is used.
  • the resource sent by the SCS sends a signal.
  • the first processing module is specifically configured to perform a clear channel assessment CCA on resources other than the preset or the determined resources for SCS transmission, and determine the SCS for sending Resources.
  • the first processing module is specifically configured to select one or more carriers for SCS signal transmission according to a preset selection algorithm.
  • the first processing module is specifically configured to determine, when the other LAA access point or the LAA base station does not use the SCS to send a signal, determine whether to use the SCS to send a signal randomly or according to preset minimum occupancy information.
  • SCS resources in the case where other LAA access points or LAA base stations use SCS to transmit signals, the idle and/or occupied SCS resources are selected to transmit signals.
  • the apparatus further includes a third sending module 208.
  • the third sending module 208 is configured to send a coordination request to another one or more LAA access points or LAA base stations.
  • the device further includes an adjustment module 209,
  • the adjusting module 209 is configured to stop using the SCS to send a signal when the current LAA access point or the LAA base station does not send the service data in the third preset time period, or adjust configuration information of the signal sent by using the SCS to avoid Waste of resources.
  • the apparatus further includes a fourth sending module 210,
  • the fourth sending module 210 is configured to send a notification message to the other LAA access point or the LAA base station to carry the changed configuration information when the configuration information of the current LAA access point or the LAA base station using the SCS transmission signal changes.
  • the device periodically transmits the reference signal according to a preset period in an unlicensed carrier non-occupancy period, and/or transmits the reference signal in a preset subframe before occupying the unlicensed carrier.
  • transmitting DRS is a solution to cell discovery, coarse synchronization, and RRM measurement problems.
  • DRS can follow a long week The period is periodically transmitted (for example, 40 ms, 80 ms, 1 ms in the 160 ms period, and the coarse synchronization is maintained). If the fine synchronization and CSI acquisition are to be solved, it is necessary to transmit CRS, CSI-RS (5ms, or 5ms-10ms) in the first few subframes occupying the unlicensed carrier, which is bursty.
  • the device continues to use the configuration information to transmit signals during an unlicensed carrier occupancy period.
  • the device stops transmitting the signal during an unlicensed carrier occupation period, or continues to transmit the signal on a preset resource.
  • the solution of the present invention is equally suitable for transmitting other signals or channels, including newly designed signals, before the unlicensed carrier is occupied.
  • This embodiment takes the ETSI regulations and regulatory requirements as an example, that is, before using an unlicensed carrier, the LBT/CCA function needs to be performed.
  • short control signaling SCS can be used to transmit management and control frames (such as ACK/NACK signals), and LBT/CCA does not need to be executed before transmission. If SCS is used, the short signaling transmission duty cycle of the adaptive device does not exceed 5%, which is 2.5 ms, during the 50 ms observation period.
  • SCS short signaling transmission duty cycle of the adaptive device does not exceed 5%, which is 2.5 ms, during the 50 ms observation period.
  • the DRS includes PSS/SSS, CRS, and CSI-RS (configurable).
  • PSS/SSS and CRS are used for cell discovery and synchronization, and CRS and CSI-RS are used for RRM measurements.
  • CRS and CSI-RS are single port configurations.
  • CRS in each subframe The symbols that appear are: symbol 0, symbol 4, symbol 7, symbol 11.
  • SS appears in symbol 0 and symbol 6 of subframe 0 and subframe 5.
  • the symbols appearing in the CSI-RS are: symbol 9, symbol 10.
  • the meanings of the symbols appearing in the following are the same as the OFDM symbols specified in the LTE protocol (1 subframe is 1 ms, and 1 subframe contains 14 or 12 OFDM symbols depending on the length of the CP. ).
  • the duration of the DRS is 1 subframe, the number of symbols actually transmitted is 8 symbols; if the duration of the DRS is 2 subframes, the number of symbols actually transmitted is 12 (SS and CSI-RS within 2 subframes)
  • the number of occupied symbols is the same as the number of occupied symbols in one subframe, and so on;
  • This embodiment describes a pre-signal coordination mechanism, including:
  • Step 1 Before the LAA access point sends the DRS, it needs to perform an inter-cell transmission coordination mechanism.
  • the DRS parameters may include one or more of the following: period, offset, duration, port, power, time-frequency resources, and the like.
  • the notification method can be transmitted through a wired connection or a wireless air interface between LAA access points.
  • the wireless mode can be transmitted on the licensed spectrum or through other unlicensed carriers that have obtained the occupied rights.
  • the LAA access point Before sending a DRS, the LAA access point needs to determine whether it can send and send parameters according to the number of received DRS LAAs and the corresponding parameter configuration.
  • LAA access point When the LAA access point is ready to initially transmit the DRS or change the DRS transmission configuration, it is necessary to determine a new DRS transmission configuration according to the information that has been exchanged between the cells. LAA access point sends normally In the process of DRS, there is no need to perform an inter-cell transmission coordination mechanism in each cycle.
  • LAA access points there are 5 LAA access points as neighboring access points (APs), which are AP1, AP2, AP3, AP4, and AP5, respectively.
  • CASE 1 The LAA access point does not receive any proximity access point notifications and will send DRS. At this time, the DRS configuration mode of the LAA access point has the greatest flexibility.
  • AP5 is ready to send DRS, and it will send DRS without receiving any neighbor AP notification before sending. Therefore, AP5 can send DRS through ETSI SCS mode, but it needs to comply with the SCS control requirements, and should consider the need to send DRS to neighboring APs in the future. Under the condition of satisfying its own requirements, it is better to send DRS according to the minimum occupancy. For example, a 50 ms period, a 1 ms duration, and a 0 subframe offset can be selected to transmit the DRS. At this time, the AP5's DRS configuration mode has maximum flexibility.
  • the LAA access point receives a notification that the neighboring access point sends a DRS, and the available time of the SCS is partially available. At this time, the DRS configuration mode of the LAA access point is limited.
  • AP5 is ready to send DRS. Before sending, it is known that AP1 and AP2 are sending DRS.
  • the parameter sent by AP1 to AP5DRS is: the period is 50ms, the duration is 2ms, and the offset is 0 subframe.
  • AP2 notifies AP5DRS that the parameters are: period is 50ms, duration is 2ms, offset is 2 subframes; then AP1
  • AP5 cannot occupy 2 subframes (857us) independently within 50ms, and can occupy 1 subframe (571us) independently.
  • the AP5 period is set to be greater than or equal to 50ms, the independent duration is 1 subframe, and the offset is arbitrarily configurable.
  • AP5 and AP1 or AP2 occupy all or part of the same symbol, but are distinguished by frequency division or code division. If the time domain is the same, the frequency domain is staggered. The duration may be 1 subframe, 2 subframes, or 3 subframes. At this time, the DRS configuration mode of AP5 is greatly restricted.
  • the LAA access point receives the notification that the neighboring access point sends the DRS, and the SCS can occupy The elapsed time is nearly full or has been occupied. At this time, the LAA access point can only be repeatedly occupied on the occupied SCS subframe or symbol, and cannot occupy new sub-frames or symbols. Or perform other coordination mechanisms below.
  • AP5 is ready to send DRS. Before sending, it is known that AP1, AP2 and AP3 are sending DRS.
  • the parameters sent by AP1 to AP5DRS are: the period is 50ms, the duration is 2ms, and the offset is 0.
  • the parameters sent by AP2 to AP5DRS are: period is 50ms, duration is 2ms, offset is 2 subframes; AP3 notification
  • the parameters sent by the AP5DRS are: the period is 50ms, the duration is 1ms, and the offset is 4 subframes.
  • AP5 is not enough to occupy 1 subframe independently. It can only occupy the same symbol as AP1, AP2, or AP3. At this time, AP5 can only be repeatedly occupied on the occupied subframe or symbol, and cannot occupy new subframes or symbols.
  • the inter-cell transmission coordination is performed in order not to violate the SCS control requirements. If the duration of 2.5ms available for SCS transmission is close to full or has been occupied during the observation period of 50ms, the LAA access point that prepares to send DRS before the unlicensed carrier is occupied can only be used to send DRS. The DRS of the access point is sent on the time domain resource, and the new time domain resource cannot be used to send the DRS within the 50 ms period. To satisfy such conditions, the LAA access point does not need to perform the LBT/CCA function before transmitting the DRS before the unlicensed carrier is occupied.
  • DRS can also be sent through coordination.
  • the same operator can allocate DRS transmission modes of several LAA access points in the same deployment location.
  • a DRS transmission request command can be sent to the neighboring access point.
  • the access point that has no service for a long time can stop sending the DRS signal; or the LAA access point with short DRS transmission period and long time can adjust its parameter configuration and let some time domain resources send DRS requests.
  • the instruction's access point is used.
  • the LAA access point that stops transmitting the DRS signal or the LAA access point that adjusts the DRS transmission configuration needs to resend the new configuration mode (or terminate the transmission signal) to the neighboring access point after the DRS transmission mode is updated.
  • the LAA access point can also query the neighboring LAA access point for transmission before sending the DRS. According to the response situation of the neighboring access point, it is determined whether the DRS is sent before the carrier is occupied, and the configuration parameters are sent.
  • the transmission coordination mechanism for transmitting the DRS or other necessary signals between the cells includes at least one or more of the following:
  • the interaction of whether to send the DRS information and/or the parameter configuration of the DRS can be divided into two ways: the first is to notify the neighboring access point, and the neighboring access point does not need to respond.
  • the second similar handshake mechanism notifies the neighboring access point, and the neighboring access point gives the confirmation information.
  • the access point that sends the DRS actively notifies the neighboring access point, and when the neighboring access point is ready to send the DRS, it only needs to count the received information to decide whether to send or not.
  • the DAS access point Before the DAS access point sends the DRS, it needs to determine whether it can send according to the parameter configuration of the DRS that has been sent by the neighboring access point, and specifically send the parameters;
  • a LAA access point observes that the occupied duration of the SCS has been occupied or nearly full, and may send a DRS transmission request command to the neighboring access point for coordination;
  • the LAA with no service for a long time can stop sending DRS signals; or the LAA access point with short DRS transmission period and long time can adjust its parameter configuration, and let some time domain resources be used by the access point that sends the DRS request command. ;
  • the LAA access point that stops transmitting the DRS signal, or the LAA access point that adjusts the DRS transmission configuration needs to resend the new configuration mode (or terminate the transmission) after the DRS transmission mode is updated. Signal) to neighboring access points.
  • multiple neighboring LAA access points can be coordinated with the carrier system to send DRS.
  • the LAA access point may also query the neighboring LAA access point for transmission before sending the DRS. According to the response situation of the neighboring access point, it is determined whether the DRS is sent before the carrier is occupied, and the configuration parameters are sent. h. Another method is to coordinate the power of the SCS between the LAA access points. For example, two LAA access points that are far apart from each other, and another access point already occupying 2.5 ms SCS transmission time in 50 ms, the access point may not comply with the regulatory requirements. There are also two methods: First, the neighboring LAA access point interactively transmits the power parameter configuration of the DRS to perform transmission coordination. Second, the LAA access point measures the signal in the SCS. If it is lower than the detection threshold, the LAA access point does not consider this to be an effective occupation of the SCS. Therefore, the signal occupation time below the detection threshold is not counted in the SCS.
  • Step 2 The LAA access point starts to send the DRS after determining the DRS transmission configuration according to step 1, and needs to notify the neighboring LAA access point of the DRS transmission information and/or the DRS parameter configuration.
  • the LAA access point that sends the DRS needs to notify the neighboring LAA access point to start transmitting the DRS and the parameters of the sent DRS before sending the DRS or starting to send the DRS.
  • the DRS parameters may include one or more of the following: period, offset, duration, port, power, time-frequency resources, and the like.
  • the notification method can be transmitted through a wired connection or a wireless air interface between LAA access points.
  • the wireless mode can be transmitted on the licensed spectrum or through other unlicensed carriers that have obtained the occupied rights.
  • the LAA access point does not notify the neighboring access point of its own DRS transmission information, and/or DRS parameter configuration after determining that the DRS can be transmitted through the SCS. After receiving the inquiry information sent by the neighboring LAA access point, the above information is sent to the neighboring LAA access point.
  • Step 3 There is no service transmission or competition requirement for a long time, and the transmission configuration of the DRS can be changed. You can even stop sending DRS.
  • the first possible option is that the LAA access point can stop sending DRS. For example, if there are many access points and an access point does not send data for a long time, it will be used for the last time, start the timer, and keep a certain time to send the DRS to maintain synchronization to prevent re-occupying demand in the short term. After a certain period of time, the DRS can be stopped and the SCS can be sent to other sites. The first competing access after not transmitting data for a long time may pay a synchronization cost.
  • the transmission configuration of the DRS can be changed. For example, after the last occupation is completed, the timer is started. After a certain timing, the transmission configuration of the DRS can be updated to reduce the occupation of the available SCS. For example, the transmission configuration of the original DRS is 25 ms, the duration is 2 ms, and the offset is 0 subframes. After a certain timing, there is no new service access, and the updateable DRS transmission configuration is 100 ms, and the duration is 1ms, offset to 0 subframes.
  • the LAA access point that stops transmitting the DRS signal or the LAA access point that adjusts the DRS transmission configuration needs to resend the new configuration mode (or the information that terminates the transmission signal) to the neighboring access point.
  • Step 4 The UE performs cell detection, time-frequency tracking, and RRM measurement according to the received DRS signal.
  • the DRS includes PSS/SSS, CRS, and CSI-RS (configurable).
  • PSS/SSS and CRS are used for cell discovery and synchronization
  • CRS and CSI-RS are used for RRM measurements.
  • the embodiment relates to a pre-signaling listening mechanism, which specifically includes:
  • Step 1 Before the LAA access point sends the DRS, the interception mechanism needs to be performed.
  • the LAA access point performs the listening statistics before sending the DRS.
  • the timer can be started to count the DRSs that occur within a certain period of time (for example, at least the maximum period of the DRS, such as 200 ms), and determine the number of LAA access points that are sending DRS. , DRS transmission pattern and other information.
  • the LAA access point Before the LAA access point sends the DRS, it needs to send the number of DRS LAAs according to the detected number. And the corresponding parameter configuration, to decide whether you can send, and send parameters.
  • the LAA access point When the LAA access point is ready to initially transmit the DRS, or change the DRS transmission configuration, it is necessary to determine a new DRS transmission configuration based on the interception and detection information. During the normal transmission of the DRS by the LAA access point, there is no need to listen every cycle.
  • LAA access points there are five LAA access points as neighboring access points, namely AP1, AP2, AP3, AP4, and AP5.
  • AP5 is ready to send DRS. Before sending, it does not hear any neighboring access point notifications and will send DRS. Therefore, AP5 can send DRS through ETSI SCS mode, but it needs to comply with the SCS control requirements, and should consider the need to send DRS to neighboring APs in the future. Under the condition of satisfying its own requirements, it is better to send DRS according to the minimum occupancy. For example, a 50 ms period, a 1 ms duration, and a 0 subframe offset can be selected to transmit the DRS. At this time, the AP5's DRS configuration mode has maximum flexibility.
  • CASE 2 During the listening time, the LAA access point detects that there is a neighboring access point to send DRS, and the available time of the SCS is partially available. At this time, the DRS configuration mode of the LAA access point is limited.
  • AP5 is ready to send DRS, and it is detected that AP1 and AP2 are sending DRS before sending.
  • the parameter sent by AP1 to AP5DRS is: the period is 50ms, the duration is 2ms, and the offset is 0 subframe.
  • AP2 notifies AP5DRS that the parameters are: period is 50ms, duration is 2ms, offset is 2 subframes; then AP1
  • AP5 cannot occupy 2 subframes (857us) independently within 50ms, and can occupy 1 subframe (571us) independently.
  • the AP5 period is set to be greater than or equal to 50ms
  • the independent duration is 1 subframe
  • the offset is arbitrarily configurable.
  • AP5 and AP1 or AP2 occupy all or part of the same symbol, but are distinguished by frequency division or code division, and the duration may be 1 subframe, 2 subframes, or 3 subframes.
  • the DRS configuration mode of AP5 is greatly restricted.
  • the LAA access point detects that there is a neighboring access point sending DRS, and the available time of the SCS is close to full or has been occupied. At this time, the LAA access point can only be in the The occupied SCS subframe or symbol is repeatedly occupied, and cannot occupy new subframes or symbols.
  • AP5 is ready to send DRS, and it has been detected that AP1, AP2 and AP3 are transmitting DRS before sending.
  • the parameters sent by AP1 to AP5DRS are: the period is 50ms, the duration is 2ms, and the offset is 0.
  • the parameters sent by AP2 to AP5DRS are: period is 50ms, duration is 2ms, offset is 2 subframes; AP3 notification
  • the parameters sent by the AP5DRS are: the period is 50ms, the duration is 1ms, and the offset is 4 subframes.
  • AP5 is not enough to occupy 1 subframe independently. It can only occupy the same symbol as AP1, AP2, or AP3. At this time, AP5 can only be repeatedly occupied on the occupied subframe or symbol, and cannot occupy new subframes or symbols.
  • the AP5 cannot clearly determine the number of LAA stations and the transmission pattern of the DRS, it can determine whether the unlicensed carrier is occupied by means of energy detection. If it is not occupied, it can determine the SCS. Time-frequency resources.
  • the LAA access point listens and detects before sending, in order not to violate the SCS control requirements. If the duration of 2.5ms available for SCS transmission is close to full or has been occupied during the observation period of 50ms, the LAA access point that prepares to send DRS before the unlicensed carrier is occupied can only be used to send DRS. The DRS of the access point is sent on the time domain resource, and the new time domain resource cannot be used to send the DRS within the 50 ms period. To satisfy such conditions, the LAA access point does not need to perform the LBT/CCA function before transmitting the DRS before the unlicensed carrier is occupied.
  • the DRS can also be transmitted through coordination with the operator or the same access system. For example with the operator The DRS transmission mode of several LAA access points under the same deployment location can be assigned. Even when a LAA access point detects that the SCS occupiable time has been occupied or nearly full, it can send a DRS transmission request command to the neighboring access point. After receiving the command, the access point that has no service for a long time can stop sending the DRS signal; or the LAA access point with short DRS transmission period and long time can adjust its parameter configuration and let some time domain resources send DRS requests. The instruction's access point is used. The LAA access point that stops transmitting the DRS signal or the LAA access point that adjusts the DRS transmission configuration needs to resend the new configuration mode (or terminate the transmission signal) to the neighboring access point after the DRS transmission mode is updated.
  • Step 2 The LAA access point starts to send the DRS after determining the DRS transmission configuration according to step 1.
  • Step 3 There is no service transmission or competition requirement for a long time, and the transmission configuration of the DRS can be changed, and even the DRS can be stopped.
  • the first possible option is that the LAA access point can stop sending DRS. For example, if there are many access points and an access point does not send data for a long time, it will be used for the last time, start the timer, and keep a certain time to send the DRS to maintain synchronization to prevent re-occupying demand in the short term. After a certain period of time, the DRS can be stopped and the SCS can be sent to other sites. The first competing access after not transmitting data for a long time must pay the synchronization cost.
  • the transmission configuration of the DRS can be changed. For example, after the last occupation is completed, the timer is started. After a certain timing, the transmission configuration of the DRS can be updated to reduce the occupation of the available SCS. For example, the transmission configuration of the original DRS is 25 ms, the duration is 2 ms, and the offset is 0 subframes. After a certain timing, there is no new service access, and the updateable DRS transmission configuration is 100 ms, and the duration is 1ms, offset to 0 subframes.
  • the LAA access point that stops transmitting the DRS signal or the LAA access point that adjusts the DRS transmission configuration may also resend the new configuration mode (or the information that terminates the transmission signal) to the neighboring access point after the DRS transmission mode is updated.
  • Step 4 The UE performs cell detection, time-frequency tracking, and RRM measurement according to the received DRS signal.
  • the DRS includes PSS/SSS, CRS, and CSI-RS (configurable).
  • PSS/SSS and CRS are used for cell discovery and synchronization
  • CRS and CSI-RS are used for RRM measurements.
  • the embodiment relates to a hybrid mechanism for transmitting DRS (short control signaling (SCS) and idle channel assessment (CCA) combining mechanism), specifically:
  • the LAA may use a short control signaling (SCS) and a clear channel assessment (CCA) combining mechanism in an unlicensed carrier to transmit DRS or other necessary signals.
  • LTE/LAA can pre-establish strict criteria for transmitting signals using SCS before unlicensed carrier occupancy, including defining the period, duration, etc. of these symbols/channels, and meeting the regulatory requirements of ETSI or other countries and regions. If the LAA access point is to send a reference signal to a symbol other than the transmission pattern, the CCA function needs to be performed, and the reference signal can only be transmitted when the channel is idle, and the CCA function needs to be performed once for each transmission.
  • the LTE standard may be limited to 25 ms before the unlicensed carrier is occupied, and the SCS is sent.
  • the duration of each SCS is 1 subframe.
  • a subframe in which an SCS may occur may only be subframe 0, subframe 25, subframe 50, subframe 75, and the like.
  • a LAA access point is ready to send a DRS or other signal/channel, and if it wants to send through the SCS before listening, it can only send on those subframes. It can listen on these subframes before sending, and choose to send DRS on the idle SCS subframe. If the above SCS subframes are all signaled, it can only multiplex these time domain resources to send DRS (if the time domain is the same, the frequency domain is staggered).
  • the CCA function does not need to be performed, and only the occupancy of the SCS subframe needs to be monitored and evaluated before the initial transmission.
  • multiple LAA access points Before transmitting a signal on an SCS subframe, multiple LAA access points can coordinate in multiple aspects of time domain, frequency domain, airspace, and power. For occupied APs, some interference avoidance methods can be performed on these subframes, such as muting.
  • a certain LAA access point is ready to send a DRS, and the above-mentioned DRS subframe 0, subframe 25, subframe 50, subframe 75, etc. are all occupied, or the access point is intended to
  • a smaller period such as 5 ms to transmit DRS, can perform the CCA function, and can only transmit the reference signal when the channel is idle, and the CCA function needs to be performed once for each transmission, and the above SCS subframe does not need to perform the CCA function.
  • the embodiment relates to a mechanism for implementing DRS and other necessary signal transmission by using a channel selection algorithm, specifically:
  • a LAA access point is ready to send DRS, which can select one or several cleanest channels or carriers to send DRS through long-term energy detection and carrier sensing, as priority preemption and transmission.
  • the set of candidate carriers for the service, while the DRS is not sent on other carriers.
  • the set of carriers that transmit the DRS also serves as a set of carriers that are preferentially contending and used.
  • LAA access points there are five neighboring LAA access points, which are AP1, AP2, AP3, AP4, and AP5. These five LAA access points support multiple unlicensed carrier transmissions. There are 20 unlicensed carriers available, which are UCC1, UCC2, ..., UCC20 (in fact, there may be as many as 24 20M unlicensed carriers in the 5G spectrum).
  • AP1, AP2, AP3, AP4, and AP5 can select one or several cleanest channels or carriers to transmit DRS through long-term energy detection and carrier sensing, as a candidate carrier for preferential preemption and transmission services, and on other carriers. Do not send DRS.
  • the DRS and other necessary signals may be transmitted using CCA or in combination with methods in other embodiments.
  • This embodiment relates to a new frame format or a transmission pattern, specifically:
  • the unlicensed carrier In order to use the unlicensed carrier to transmit data and improve the spectrum utilization efficiency of the unlicensed carrier, it is necessary to further solve the problem of unlicensed carrier fine synchronization and CSI fast acquisition. question. If the problem of fine synchronization and fast CSI acquisition is to be solved, it is preferable to transmit downlink reference signals, such as CRS and CSI-RS, in a period of 5 ms to 10 ms, in the first few subframes occupying the unlicensed carrier. This is bursty, unlike DRS periodic regular transmission for effects such as coarse synchronization. DRS long-period transmission cannot maintain fine synchronization and channel condition measurement, and if DRS short-cycle intensive transmission violates the unlicensed carrier usage control requirements. Before being used for non-authorization, it can only be sent through the short control signaling SCS. Otherwise, it does not meet the LBT regulatory requirements, and it will also interfere with the competition and use of other devices, and does not conform to the principle of friendly coexistence.
  • downlink reference signals
  • a part of the SCS control duration can be divided for fine synchronization and CSI fast acquisition.
  • a reference signal of 1 ms for transmitting fine synchronization and CSI measurement such as CRS and CSI-RS, is allocated in the 2.5 ms SCS available duration in the 50 ms observation period.
  • CRS can be used for AGC and fine synchronization (time-frequency tracking), and CSI-RS is used for CSI measurement and feedback.
  • Other durations (such as 1.5ms) can be used for signals such as DRS to be transmitted using SCS before occupying an unlicensed carrier.
  • b Define a new frame format, and define one or several OFDM symbols as SCS symbols before or after the CCA for transmitting reference signals such as CRS and CSI-RS.
  • the purpose of transmitting these reference signals is to perform AGC, time-frequency synchronization and CSI measurements. Sending these reference signals with SCS symbols does not require performing CCA functions.
  • FBE Frame-based Equipment
  • LBE Load-based Equipment
  • FBE has strict frame format requirements, including carrier occupancy period and idle period. At the end of the idle period, it is divided into CCA durations.
  • the carrier idle period cannot exceed or exceed the regulatory requirements (for example, the European limit is 1ms to 10ms).
  • the carrier idle period is further divided into: SCS symbols Duration, CCA duration, and remaining idle period.
  • the carrier idle period also needs to meet regulatory requirements (for example, Europe is not less than 5% of the carrier occupancy duration).
  • the symbol occupied by the carrier idle period can be designed at the front end of the subframe or frame; it can also be designed at the end of the subframe or frame; or the partial idle period symbol can be designed at the front end of the subframe or frame, and another part of the idle period symbol is designed at The end of a subframe or frame.
  • the SCS symbol can be placed before the CCA or after the CCA, preferably before the CCA. Regardless of the location of the SCS symbol, there is no need to perform a CCA function to transmit a reference signal using the SCS symbol.
  • the entire unlicensed carrier can be set to use a fixed frame period of 10 LTE subframes, that is, 10 ms.
  • the carrier idle period shall not be less than 5% of the carrier occupation duration. Therefore, it may be assumed that the carrier occupation duration is X OFDM symbols, and the carrier idle duration is Y OFDM symbols. There is the following formula:
  • the carrier idle period is set at the front end of the fixed frame, occupying symbols 0 to 6.
  • Symbol 0 and symbol 1 are SCS symbols and occupy a duration of about 140 us. It should be noted that the SCS occupation time needs to meet the SCS control requirement, that is, the short signaling transmission duty of the adaptive device does not exceed 5%, that is, 2.5 ms, within the observation period of 50 ms.
  • Symbols 2 through 5 are other idle periods.
  • Symbol 6 is the CCA duration, used for idle channel estimation, for interception and contention of unlicensed carriers. If the listening result is idle, the remainder of the fixed frame as shown can be occupied by the device.
  • the SCS symbol is used to transmit reference signals such as CRS and CSI-RS, and is used for performing AGC, time-frequency synchronization, and CSI measurement.
  • each LAA access point can do so without the need to perform the LBT/CCA mechanism.
  • the LAA access point competing for the resource can quickly send the service without spending a lot of time on relevant steps such as AGC, coarse synchronization, fine synchronization, and CSI measurement, which improves the LAA utilization.
  • the spectrum efficiency of the weight carrier transmission service is used to transmit reference signals such as CRS and CSI-RS, and is used for performing AGC, time-frequency synchronization, and CSI measurement.
  • the SCS symbol, the CCA symbol, the carrier occupation period, the carrier idle period, the fixed frame, and the like in the frame format have a large occupation time and a specific position.
  • the SCS part has a large occupation time and a specific position.
  • CASDL Carrier Aggregation Supplemental Downlink
  • CA DL+UL Carrier Aggregation Downlink and Uplink spectrum aggregation downlink and uplink
  • Standalone Standalone deployment
  • SDL and DL+UL are the current mainstream methods. Therefore, for pure downlink transmission and similar TDD transmission, there are many possibilities for the duration of the SCS symbol, the CCA symbol, the carrier occupation period, the carrier idle period, the fixed frame, and the like in the frame format. For example, based on a similar TDD method, the SCS symbol can be combined with the structure of a special subframe (DwPTS, GP, UpPTS) to design.
  • DwPTS special subframe
  • the SCS duration has regulatory requirements, there are generally only a few symbols for SCS transmission in a fixed frame. If the CRS and CSI-RS time-frequency formats of the current LTE standard are used, it may be difficult to transmit the two reference signals within several symbols, for example, the CRS of the current time-frequency format cannot be transmitted within one or two SCS symbols. CSI-RS.
  • the first is to design the appropriate number of SCS symbols, the disadvantage is limited by regulatory requirements.
  • the second is to modify the existing format of the reference signal, or to redesign a reference signal for fine synchronization and measurement.
  • the time-frequency format of CRS and CSI-RS needs to be modified.
  • the symbols appearing in CRS are: symbol 0, symbol 4, symbol 7 , symbol 11. It can be modified to transmit the CRS in the manner of symbol 0 and symbol 3 in the manner of the previous symbols 0 and 4.
  • the RE of the CSI-RS can be designed with the symbol 1 and the symbol in the first time slot. No. 2.
  • This embodiment relates to a new frame format or a transmission pattern, specifically:
  • the unlicensed carrier In order to use the unlicensed carrier to quickly transmit data and improve the spectrum utilization efficiency of the unlicensed carrier, it is necessary to further solve the problem of unlicensed carrier fine synchronization and CSI fast acquisition. If the problem of fine synchronization and fast CSI acquisition is to be solved, it is preferable to transmit downlink reference signals, such as CRS and CSI-RS, in a period of 5 ms to 10 ms, in the first few subframes occupying the unlicensed carrier. This is bursty, unlike DRS periodic regular transmission for effects such as coarse synchronization. DRS long-period transmission cannot maintain fine synchronization and channel condition measurement, and if DRS short-cycle intensive transmission violates the unlicensed carrier usage control requirements. Before being used for non-authorization, it can only be sent through the short control signaling SCS. Otherwise, it does not meet the LBT regulatory requirements, and it will also interfere with the competition and use of other devices, and does not conform to the principle of friendly coexistence.
  • downlink reference signals such
  • a part of the SCS control duration can be divided for fine synchronization and CSI fast acquisition.
  • a reference signal of 1 ms for transmitting fine synchronization and CSI measurement such as CRS and CSI-RS, is allocated in the 2.5 ms SCS available duration in the 50 ms observation period.
  • CRS can be used for AGC and fine synchronization (time-frequency tracking), and CSI-RS is used for CSI measurement and feedback.
  • Other durations (such as 1.5ms) can be used for signals such as DRS to be transmitted using SCS before occupying an unlicensed carrier.
  • b Define a new frame format, and define one or several OFDM symbols as SCS symbols before or after the CCA for transmitting reference signals such as CRS and CSI-RS.
  • the purpose of transmitting these reference signals is to perform AGC, time-frequency synchronization and CSI measurements. Sending these reference signals with SCS symbols does not require performing CCA functions.
  • the symbol position of the SCS may be at the beginning of the frame, at the end of the frame, before the CCA, or after the CCA, and not necessarily adjacent to the CCA.
  • FBE Frame-based Equipment
  • LBE load-based equipment
  • FBE has strict frame format requirements, including carrier occupancy period and idle period. At the end of the idle period, it is divided into CCA durations.
  • the carrier occupancy period can have multiple meanings:
  • the first meaning of the carrier occupation period is that for a specific device, after a device evaluates a channel/carrier by a similar method such as LBT or CCA, it finds a period of time when the channel is idle or available and successfully occupied. If the device finds that the channel/carrier is not available or does not occupy the channel/carrier, the duration of the device is the non-occupied period of the device.
  • the SCS generally refers to a special period of time or segments that occurs during the non-occupation period of the device, that is, the short signaling is forcibly transmitted without obtaining the right to use through the LBT or CCA. However, the length or duration of the SCS itself can be counted in the carrier occupation time (or the carrier occupation period). It can also be counted in the carrier non-occupation duration, which can be understood.
  • the carrier occupation period is that, for the frame format, a segment defined by the frame format is used for a plurality of devices to compete for the duration of the occupation.
  • each device in the occupation period needs to evaluate or compete for the channel/carrier through a similar method such as LBT or CCA, and find that the channel is idle or available before it can be occupied.
  • the carrier occupation period on the frame format may be the occupation period of the device (the device competes for resources), or it may be the non-occupancy period of the device (the device does not compete for resources).
  • SCS does not need to obtain usage rights through LBT or CCA.
  • the length or duration of the SCS itself can be counted in the carrier occupation time (or the carrier occupation period). It can also be counted in the carrier non-occupancy duration (or carrier idle period).
  • the carrier idle period cannot exceed or exceed the regulatory requirements (for example, the European limit is 1ms to 10ms).
  • the carrier idle period is further divided into: CCA duration and remaining idle period.
  • the carrier idle period also needs to meet regulatory requirements (for example, Europe does not Less than 5% of the carrier occupancy time).
  • the symbol occupied by the carrier idle period can be designed at the front end of the subframe or frame; it can also be designed at the end of the subframe or frame; or the partial idle period symbol can be designed at the front end of the subframe or frame, and another part of the idle period symbol is designed at The end of a subframe or frame.
  • the SCS symbol can be placed before the CCA, or after the CCA, and not necessarily adjacent to the CCA symbol, preferably before the CCA. Regardless of the location of the SCS symbol, there is no need to perform a CCA function to transmit a reference signal using the SCS symbol.
  • the following is an example in which the SCS duration is considered to be part of the carrier occupancy period.
  • the entire unlicensed carrier can be set to use a fixed frame period of 10 LTE subframes, that is, 10 ms.
  • the carrier idle period shall not be less than 5% of the carrier occupation duration. Therefore, it may be assumed that the carrier occupation duration is X OFDM symbols, and the carrier idle duration is Y OFDM symbols. There is the following formula:
  • the SCS duration can be considered as part of the carrier idle period or carrier idle duration, and can also be considered as part of the carrier occupation period or carrier occupation duration. If the SCS duration is considered to be part of the carrier idle duration, the carrier idle period including the SCS duration is at least 7 symbols, as in Embodiment 5; if the SCS duration is considered to be part of the carrier occupation duration, the carrier without the SCS duration is not included.
  • the idle time is at least 7 symbols.
  • the SCS symbol sends short signaling and may not perform LBT or CCA.
  • the front end of the frame, symbol 0 and symbol 1 is the SCS symbol and takes up about 140 us. Need Note that the SCS occupancy time needs to meet the SCS control requirements (countries may be inconsistent). For example, within a 50ms observation period, the short signaling transmission duty cycle of the adaptive device does not exceed 5%, which is 2.5ms.
  • the carrier idle period is set at the front end of the fixed frame, occupying symbols 2 through 8. Symbols 2 through 7 are other idle periods. Symbol 8 is the CCA duration, used for idle channel estimation, for interception and contention of unlicensed carriers. If the listening result is idle, the remainder of the fixed frame as shown can be occupied by the device.
  • the SCS symbol is used to transmit reference signals such as CRS and CSI-RS and necessary short signaling, and is used for performing AGC, time-frequency synchronization, and CSI measurement.
  • each LAA access point can do so without the need to perform the LBT/CCA mechanism.
  • the LAA access point competing for resources can quickly send services without spending a lot of time on related steps such as AGC, coarse synchronization, fine synchronization, and CSI measurement, which improves the LAA utilization non-authorization.
  • the spectrum efficiency of the carrier transmission service is used to transmit reference signals such as CRS and CSI-RS and necessary short signaling, and is used for performing AGC, time-frequency synchronization, and CSI measurement.
  • the SCS symbol, the CCA symbol, the carrier occupation period, the carrier idle period, the fixed frame, and the like in the frame format have a large occupation time and a specific position.
  • the SCS part has a large occupation time and a specific position.
  • CASDL Carrier Aggregation Supplemental Downlink
  • CA DL+UL Carrier Aggregation Downlink and Uplink spectrum aggregation downlink and uplink
  • Standalone Standalone deployment
  • SDL and DL+UL are the current mainstream methods. Therefore, for pure downlink transmission and similar TDD transmission, there are many possibilities for the duration of the SCS symbol, the CCA symbol, the carrier occupation period, the carrier idle period, the fixed frame, and the like in the frame format. For example, based on a similar TDD method, the SCS symbol can be combined with the structure of a special subframe (DwPTS, GP, UpPTS) to design.
  • DwPTS special subframe
  • the SCS duration has regulatory requirements, there are generally only a few symbols for SCS transmission in a fixed frame. If the CRS and CSI-RS time-frequency formats of the current LTE standard are used, it may be difficult to transmit the two reference signals within several symbols, for example, the CRS of the current time-frequency format cannot be transmitted within one or two SCS symbols. CSI-RS.
  • the first is to design the appropriate number of SCS symbols, the disadvantage is limited by regulatory requirements.
  • the second is to modify the existing format of the reference signal, or to redesign a reference signal for fine synchronization and measurement.
  • the time-frequency format of CRS and CSI-RS needs to be modified.
  • the symbols appearing in CRS are: symbol 0, symbol 4, symbol 7 , symbol 11. It can be modified to transmit the CRS in the manner of symbol 0 and symbol 3 in the manner of the previous symbols 0 and 4.
  • the RE of the CSI-RS can be designed with symbols 1 and 2 in the first time slot.
  • the unlicensed carrier usage is the SDL (Carrier Aggregation Supplemental Downlink) or the DL+UL (Downlink and Uplink spectrum aggregation downlink and uplink) mode
  • the access point competes for the unlicensed carrier
  • the measurement signal CSI-RS or CRS By transmitting the measurement signal CSI-RS or CRS and then based on the 4ms delay of the UE measurement feedback, it will make it difficult for the eNB to obtain and use CSI within the current occupied time, for example, Japan has a maximum occupancy time of 4ms. Therefore, the uplink SRS or the like can be sent by the UE, and it is a feasible method for the access point to obtain the downlink CSI through channel reciprocity.
  • the CSI measurement feedback delay problem may be reduced by sending the SRS in advance.
  • the UE may periodically send the SRS through the SCS, similar to the periodic DRS transmission, as in Embodiment 1 to Embodiment 4,
  • the SRS may be transmitted on a preset resource before occupying the unlicensed carrier, as in Embodiments 5 and 6, for example, sending SRS (single or multiple transmissions) by using SCS in one subframe or several subframes before occupying the unlicensed carrier. This is different from the periodic law of DRS used for the maintenance of coarse synchronization. send.
  • the access point After receiving the SRS sent by the UE, the access point obtains the downlink CSI based on the channel dissimilarity, so that the data is quickly scheduled after occupying the unlicensed carrier, and the 4 ms delay of the UE measurement feedback is avoided.
  • Each of the above units may be implemented by a central processing unit (CPU), a digital signal processor (DSP), or a field-programmable gate array (FPGA) in an electronic device.
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA field-programmable gate array
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device. Instructions are provided for implementation The steps of a function specified in a block or blocks of a flow or a flow and/or a block diagram of a flow chart.
  • the method and device for transmitting a signal according to the embodiment of the present invention are applied to a LAA access point or a LAA base station, and specifically, determining configuration information for transmitting a signal by using a short control signaling SCS during an unlicensed carrier non-occupation period;
  • the configuration information is sent using the SCS.
  • the embodiment of the present invention implements signal transmission before occupying an unlicensed carrier, and can improve spectrum utilization efficiency and performance of the LAA system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种信号发送方法和装置,应用于LAA接入点或LAA基站,该方法包括:确定在非授权载波非占用期使用短控制信令SCS发送信号的配置信息;根据所述确定的配置信息,使用SCS发送所述信号。本发明实施例实现在占用非授权载波之前的信号发送,能够提高LAA系统的频谱使用效率和性能。

Description

一种信号发送方法和装置 技术领域
本发明涉及无线通信领域,尤其涉及一种信号发送方法和装置。
背景技术
LTE使用非授权载波(LTE-U,Long Term Evolution–Unlicensed)是指在非授权的载波中部署LTE,用来满足LTE系统日益增长的容量需求和提高非授权频谱的使用效率,是LTE以及未来无线通信可能的一个重要演进方向。在设计LTE-U时,需要考虑如何与无线保真(WiFi,Wireless Fidelity)、雷达等异系统以及LTE-U同系统之间公平友好的竞争非授权载波来进行数据传输,同时需要尽可能的不影响和保留LTE技术特性。根据3GPP标准会议的表述,LTE-U系统也可称为LTE授权载波辅助接入(LAA,LTE Licensed Assisted Access)系统。
LAA接入点或基站每次抢占到资源后,要进行小区发现、同步、上/下行接收和测量、信道状况信息(CSI,Channel State Information)反馈以及调度等一系列过程,这会占用大量时间(几ms,甚至数10ms),也就是说,LAA接入点或基站每次抢占到的时间资源中相当一部分都用于处理数据发送以外的操作,这会极大的降低LAA系统的频谱使用效率和性能.
发明内容
有鉴于此,为解决现有存在的技术问题,本发明实施例提供:
一种信号发送方法,应用于LTE授权载波辅助接入LAA接入点或LAA基站,包括:
确定在非授权载波非占用期使用短控制信令SCS发送信号的配置信 息;
根据所述确定的配置信息,使用SCS发送所述信号。
一具体实施例中,该方法还包括:将所述使用SCS发送信号的配置信息发送给其他LAA接入点或LAA基站,
所述确定在非授权载波非占用期使用SCS发送信号的配置信息之前,该方法还包括:
接收来自其他LAA接入点或LAA基站使用SCS发送信号的配置信息;
根据第一预设时间段内接收的其他LAA接入点或LAA基站使用SCS发送信号的配置信息,判断是否使用SCS发送信号,确定使用SCS发送信号时,再执行后续流程,确定使用短控制信令SCS发送信号的配置信息。
一具体实施例中,所述确定在非授权载波非占用期使用SCS发送信号的配置信息之前,该方法还包括:
侦听或检测第二预设时间段内其他LAA接入点或LAA基站使用SCS发送信号的信息;
根据所述侦听或检测到的信息,判断是否使用SCS发送信号,确定使用SCS发送信号时,再执行后续流程,确定使用短控制信令SCS发送信号的配置信息。
一具体实施例中,所述确定在非授权载波非占用期使用SCS发送信号的配置信息,包括:
获取预设的用于SCS发送的资源信息;
侦听所述预设的用于SCS发送的资源的占用情况,所述预设的用于SCS发送的资源能够进行信号发送时,使用所述预设的用于SCS发送的资源发送信号。
一具体实施例中,该方法还包括:对除所述预设的或所述确定的用于SCS发送的资源之外的资源进行空闲信道评估CCA,确定用于SCS发送的 资源。
一具体实施例中,所述确定使用SCS发送信号的配置信息,包括:
根据预设的选择算法,选择一个或多个载波进行SCS信号发送。
一具体实施例中,所述确定在非授权载波非占用期使用SCS发送信号的配置信息之前,该方法还包括:
向其他一个或多个LAA接入点或LAA基站发送协调请求。
一具体实施例中,该方法还包括:
如果所述LAA接入点或LAA基站在第三预设时间段内未发送业务数据,则停止使用SCS发送信号,或者,调整使用SCS发送信号的配置信息。
一具体实施例中,该方法还包括:LAA接入点或LAA基站在使用SCS发送信号的配置信息发生变化时,向其他LAA接入点或LAA基站发送通知消息,携带变化后的配置信息。
一具体实施例中,所述信号包括以下一种或多种:主同步信号PSS/辅同步信号SSS、小区专用参考信号CRS、定位参考信号PRS、信道探测参考信号SRS、发现信号DRS、信道状态指示参考信号CSI-RS、物理下行控制信道PDCCH承载信号。
一具体实施例中,所述配置信息包括以下一项或多项:周期,偏置,持续时间,端口,功率,时频资源。
一具体实施例中,该方法还包括:
在非授权载波非占用期,按照预设的周期,周期性发送参考信号,
和/或,
在占用非授权载波前的预设资源上发送参考信号。
一具体实施例中,该方法还包括:
在非授权载波占用期,继续使用所述配置信息发送信号。
一具体实施例中,该方法还包括:
非授权载波占用期内,停止发送所述信号,或者,在预设资源上继续发送所述信号。
本发明实施例还提供一种信号发送装置,设置于LAA接入点或LAA基站,该装置包括:第一处理模块和第一发送模块;其中,
所述第一处理模块,配置为确定在非授权载波非占用期使用SCS发送信号的配置信息;
所述第一发送模块,配置为根据所述确定的配置信息,使用SCS发送所述信号。
一具体实施例中,该装置还包括第二发送模块、接收模块和第二处理模块;其中,
所述第二发送模块,配置为将所述使用SCS发送信号的配置信息发送给其他LAA接入点或LAA基站;
所述接收模块,配置为接收来自其他LAA接入点或LAA基站使用SCS发送信号的配置信息;
所述第二处理模块,配置为根据接收模块在第一预设时间段内接收的其他LAA接入点或LAA基站使用SCS发送信号的配置信息,判断是否使用SCS发送信号,确定使用SCS发送信号时,再通知第一处理模块进行处理。
一具体实施例中,该装置还包括第三处理模块和第四处理模块,
所述第三处理模块,配置为侦听或检测第二预设时间段内其他LAA接入点或LAA基站使用SCS发送信号的信息;
所述第四处理模块,配置为根据所述侦听或检测到的信息,判断是否使用SCS发送信号,确定使用SCS发送信号时,再通知第一处理模块进行处理。
一具体实施例中,所述第一处理模块,具体配置为获取预设的用于SCS 发送的资源信息;以及侦听所述预设的用于SCS发送的资源的占用情况,所述预设的用于SCS发送的资源能够进行信号发送时,使用所述预设的用于SCS发送的资源发送信号。
一具体实施例中,所述第一处理模块,具体配置为对除所述预设的或所述确定的用于SCS发送的资源之外的资源进行空闲信道评估CCA,确定用于SCS发送的资源。
一具体实施例中,所述第一处理模块,具体配置为根据预设的选择算法,选择一个或多个载波进行SCS信号发送。
一具体实施例中,该装置还包括第三发送模块,
所述第三发送模块,配置为向其他一个或多个LAA接入点或LAA基站发送协调请求。
一具体实施例中,该装置还包括调整模块,
所述调整模块,配置为当当前LAA接入点或LAA基站在第三预设时间段内未发送业务数据,则停止使用SCS发送信号,或者,调整使用SC发送信号的配置信息,以避免资源浪费。
一具体实施例中,该装置还包括第四发送模块,
所述第四发送模块,配置为在当前LAA接入点或LAA基站使用SC发送信号的配置信息发生变化时,向其他LAA接入点或LAA基站发送通知消息,携带变化后的配置信息。
一具体实施例中,该装置在非授权载波非占用期,按照预设的周期,周期性发送参考信号,和/或,在占用非授权载波前的预设资源上发送参考信号。
一具体实施例中,该装置在非授权载波占用期,继续使用所述配置信息发送信号。
一具体实施例中,该装置在非授权载波占用期内,停止发送所述信号, 或者,在预设资源上继续发送所述信号。
所述第一处理模块、所述第一发送模块、所述第二发送模块、所述接收模块、所述第二处理模块、所述第三处理模块、所述第四处理模块、所述第三发送模块、所述调整模块、所述第四发送模块在执行处理时,可以采用中央处理器(CPU,Central Processing Unit)、数字信号处理器(DSP,Digital Singnal Processor)或可编程逻辑阵列(FPGA,Field-Programmable Gate Array)实现。
本发明实施例所述的信号发送方法和装置,应用于LAA接入点或LAA基站,具体的,确定在非授权载波非占用期使用短控制信令SCS发送信号的配置信息;根据所述确定的配置信息,使用SCS发送所述信号。本发明实施例实现在占用非授权载波之前的信号发送,能够提高LAA系统的频谱使用效率和性能。
具体实施方式
图1为本发明实施例一种信号发送方法流程示意图;
图2为本发明实施例一种信号发送装置结构示意图;
图3为本发明实施例再一种信号发送装置结构示意图;
图4为本发明实施例再一种信号发送装置结构示意图;
图5为本发明实施例再一种信号发送装置结构示意图;
图6为本发明实施例再一种信号发送装置结构示意图;
图7为本发明实施例再一种信号发送装置结构示意图;
图8所示为本发明实施例5中一载波占用情况示意图;
图9所示为本发明实施例6中一载波占用情况示意图。
具体实施方式
在本发明的各种实施例中:
一般管制的非授权频谱每次最大占用时长约为10ms(一般有地域差异),因此在占用非授权载波后再发送用于小区发现、同步和测量的参考信号,如主同步信号(PSS,Primary Synchronous Signal)/辅同步信号(SSS,Secondary Synchronous Signal)、小区专用参考信号(CRS,Cell-specific reference signals)、定位参考信号(PRS,Positioning Reference Signal)、信道探测参考信号(SRS,Sounding Reference Signal)、发现信号(DRS,Discovery Reference Signal)、信道状态指示参考信号(CSI-RS,Channel State Indication RS)、物理下行控制信道(PDCCH,Physical Downlink Control Channel)等,并进行上述操作不太现实。
同时,对于使用非授权载波的通信系统,需要避免使用在非授权载波中已有站点正在使用的非授权载波,否则会造成系统间彼此干扰。所以在一些国家(如欧洲和日本),对于非授权载波强制要求支持先听后说(LBT,Listen before Talk)功能。在使用某个非授权载波之前,需要执行空闲信道评估(CCA,clear channel assessment)功能,如果发现有设备正在使用该非授权载波,或者检测的信号能量超过CCA门限,则延迟接入。如果发现信道空闲,或者检测的信号能量低于CCA门限,则占用该非授权载波。
因此,LBT/CCA会限制LAA参考信号在占用非授权载波之前发送。欧洲电信标准协会(ETSI,ETSI EN 301893)规定,可以利用短控制信令(SCS,Short Control Signalling)来发送管理和控制帧(如ACK/NACK信号),并且不需要感知当前信道空闲,也即发送前不需要执行LBT/CCA。但是SCS发送有严格的限定:如果使用SCS,在50ms的观察周期内,自适应设备的短信令传输占空比最大不超过5%,也即2.5ms。这个限定对于WLAN/WiFi的影响不大,但是对于多个LAA站点来说,如何在这么短的限定时间内协调发送各种参考信号是个亟待解决的问题。
本发明所要解决的技术问题是:提供一种在非授权载波占用前发送信 号的方法,降低LAA接入点或LAA基站每次抢占到资源后处理数据发送以外(如小区发现、同步、CSI获取等)的时间,同时又能满足非授权载波发送管制的要求。
图1为本发明实施例一种信号发送方法流程示意图,该方法应用于LAA接入点或LAA基站,如图1所示,该方法包括:
步骤11:确定在非授权载波非占用期使用短控制信令SCS发送信号的配置信息。
需要说明的是,本发明中提及的短控制信令SCS不单单指ETSI规定中的SCS,而泛指规定的非占用期特殊时长用于发送短时的信号、信道。在SCS时长内发送信号、信道,LAA接入点不需要执行空闲信道评估(CCA)和先听后说(LBT)功能。SCS发送时长需要满足一定的管制要求,否则就违背了非授权频段不同系统和设备友好共存的原则。有些地区和国家对于SCS可能有另外的名称和定义,这里统称为SCS。还有些地区和国家可能没有定义SCS,针对这些地区和国家可以定义SCS以及类似规则要求(例如对发送时长的要求,在固定时长的观察期内发送时长不得大于设定比例)来进行非占用期的信号发送。
步骤12:根据所述确定的配置信息,使用SCS发送所述信号。
以发送DRS为例,同系统可以协调发送,即LAA接入点或LAA基站之间交互是否发送DRS、以及DRS配置信息。一具体实施例中,LAA接入点或LAA基站将自身使用SCS发送信号的配置信息发送给其他LAA接入点或LAA基站。
相应的,所述确定在非授权载波非占用期使用SCS发送信号的配置信息之前,该方法还包括:
接收来自其他LAA接入点或LAA基站使用SCS发送信号的配置信息;
根据接收的其他LAA接入点或LAA基站使用SCS发送信号的配置信 息,判断是否使用SCS发送信号,确定使用SCS发送信号时,再执行后续流程,确定使用短控制信令SCS发送信号的配置信息。
需要说明的是,无论LAA接入点或LAA基站开始使用SCS发送信号、停止使用SCS发送信号或更改使用SCS发送信号的配置信息,都会向其他LAA接入点或LAA基站发送通知消息,携带相应的配置信息。
以发送DRS为例,还可以在DRS发送之前侦听统计,例如,发送前先侦听50ms*X,X>1,统计50ms*X里出现的DRS数目和/或LAA接入点或LAA基站数量来决定自己发不发DRS。一具体实施例中,所述确定在非授权载波非占用期使用SCS发送信号的配置信息之前,该方法还包括:
侦听或检测第二预设时间段内其他LAA接入点或LAA基站使用SCS发送信号的信息;
根据所述侦听或检测到的信息,判断是否使用SCS发送信号,确定使用SCS发送信号时,再执行后续流程,确定使用短控制信令SCS发送信号的配置信息。
一具体实施例中,所述确定在非授权载波非占用期使用SCS发送信号的配置信息,包括:
获取预设的用于SCS发送的资源信息;
侦听所述预设的用于SCS发送的资源的占用情况,所述预设的用于SCS发送的资源能够进行信号发送时,使用所述预设的用于SCS发送的资源发送信号。
本发明一实施例中,该方法还包括:对除所述预设的或所述确定的用于SCS发送的资源之外的资源进行空闲信道评估(CCA),确定用于SCS发送的资源。
需要说明的是,当预设的用于SCS发送的资源均被占用时,可以通过频域复用的方式继续在这些资源上发送信号。
需要说明的是,本实施例中所述的资源包括但不限于:无线帧、子帧、时隙、OFDM符号、资源单元(RE)。
以发送DRS为例,可以预设每个LAA接入点或LAA基站(有限制,有协调)保证在160ms至少发一次(即固化DRS的发送图样,保证符合SCS的管制要求),如果想缩短发送DRS周期,那么需要进行CCA,如果是空闲的话,当然可以发送DRS。这里的CCA不是侦听后就发送数据,而是为了发送DRS进行cell detection、T/F tracking、RRM measurement。
一具体实施例中,所述确定使用短控制信令SCS发送信号的配置信息,包括:
根据预设的选择算法,选择一个或多个载波进行SCS信号发送,例如,可以根据载波负荷,选择一个或多个低负荷载波进行SCS信号发送。
一具体实施例中,所述确定在非授权载波非占用期使用SCS发送信号的配置信息,包括:
其他LAA接入点或LAA基站未使用SCS发送信号的情况下,随机或者按照预设的最低占用度信息确定使用SCS发送信号的SCS资源;
其他LAA接入点或LAA基站使用SCS发送信号的情况下,选择空闲的和/或已被占用的SCS资源发送信号。
一具体实施例中,所述确定在非授权载波非占用期使用SCS发送信号的配置信息之前,该方法还包括:
向其他一个或多个LAA接入点或LAA基站发送协调请求。
一具体实施例中,该方法还包括:
如果所述LAA接入点或LAA基站在第三预设时间段内未发送业务数据,则停止使用SCS发送信号,或者,调整使用SCS发送信号的配置信息,以避免资源浪费。这里,以发送DRS为例,为了避免资源浪费,如果LAA接入点或LAA基站长时间内没有业务发送或竞争需求,则可以调整DRS 发送配置,降低对SCS的占用。或者,停发DRS。每次抢占完,保留一定时间来发送DRS维持同步。(例如,如果接入点较多,而某个接入点长期不发数据,那么它在最后一次占用完毕,并经过一定定时之后,需停发DRS,让出SCS给其他站点发送。长期不发送数据后的第一次竞争接入必须付出同步代价)。
一具体实施例中,该方法还包括:LAA接入点或LAA基站在使用SCS发送信号的配置信息发生变化时,向其他LAA接入点或LAA基站发送通知消息,携带变化后的配置信息。
一具体实施例中,所述信号包括以下一种或多种:主同步信号PSS/辅同步信号SSS、小区专用参考信号CRS、定位参考信号PRS、信道探测参考信号SRS、下行专用参考信号DRS、物理下行控制信道PDCCH承载信号。
一具体实施例中,所述配置信息包括以下一项或多项:周期,偏置,持续时间,端口,功率,时频资源。
一具体实施例中,该方法还包括:
在非授权载波非占用期,按照预设的周期,周期性发送参考信号,
和/或,
在占用非授权载波前的预设资源上发送参考信号。
一具体实施例中,该方法还包括:
在非授权载波占用期,继续使用所述配置信息发送信号。
一具体实施例中,该方法还包括:
非授权载波占用期内,停止发送所述信号,或者,在预设资源上继续发送所述信号。
本发明实施例还相应地提供了一种信号发送装置,该装置设置于LAA接入点或LAA基站,如图2所示,该装置包括:第一处理模块201和第一 发送模块202;其中,
所述第一处理模块201,配置为确定在非授权载波非占用期使用SCS发送信号的配置信息;
所述第一发送模块202,配置为根据所述确定的配置信息,使用SCS发送所述信号。
一具体实施例中,如图3所示,该装置还包括第二发送模块203、接收模块204和第二处理模块205;其中,
所述第二发送模块203,配置为将所述使用SCS发送信号的配置信息发送给其他LAA接入点或LAA基站;
所述接收模块204,配置为接收来自其他LAA接入点或LAA基站使用SCS发送信号的配置信息;
所述第二处理模块205,配置为根据接收模块204在第一预设时间段内接收的其他LAA接入点或LAA基站使用SCS发送信号的配置信息,判断是否使用SCS发送信号,确定使用SCS发送信号时,再通知第一处理模块201进行处理。
一具体实施例中,如图4所示,该装置还包括第三处理模块206和第四处理模块207,
所述第三处理模块206,配置为侦听或检测第二预设时间段内其他LAA接入点或LAA基站使用SCS发送信号的信息;
所述第四处理模块207,配置为根据所述侦听或检测到的信息,判断是否使用SCS发送信号,确定使用SCS发送信号时,再通知第一处理模块201进行处理。
一具体实施例中,所述第一处理模块,具体配置为获取预设的用于SCS发送的资源信息;以及侦听所述预设的用于SCS发送的资源的占用情况,所述预设的用于SCS发送的资源能够进行信号发送时,使用所述预设的用 于SCS发送的资源发送信号。
一具体实施例中,所述第一处理模块,具体配置为对除所述预设的或所述确定的用于SCS发送的资源之外的资源进行空闲信道评估CCA,确定用于SCS发送的资源。
一具体实施例中,所述第一处理模块,具体配置为根据预设的选择算法,选择一个或多个载波进行SCS信号发送。
一具体实施例中,所述第一处理模块,具体配置为在其他LAA接入点或LAA基站未使用SCS发送信号的情况下,随机或者按照预设的最低占用度信息确定使用SCS发送信号的SCS资源;在其他LAA接入点或LAA基站使用SCS发送信号的情况下,选择空闲的和/或已被占用的SCS资源发送信号。
一具体实施例中,如图5所示,该装置还包括第三发送模块208,
所述第三发送模块208,配置为向其他一个或多个LAA接入点或LAA基站发送协调请求。
一具体实施例中,如图6所示,该装置还包括调整模块209,
所述调整模块209,配置为当当前LAA接入点或LAA基站在第三预设时间段内未发送业务数据,则停止使用SCS发送信号,或者,调整使用SCS发送信号的配置信息,以避免资源浪费。
一具体实施例中,如图7所示,该装置还包括第四发送模块210,
所述第四发送模块210,配置为在当前LAA接入点或LAA基站使用SCS发送信号的配置信息发生变化时,向其他LAA接入点或LAA基站发送通知消息,携带变化后的配置信息。
该装置在非授权载波非占用期,按照预设的周期,周期性发送参考信号,和/或,在占用非授权载波前的预设子帧内发送参考信号。例如,发送DRS是解决小区发现、粗同步和RRM测量问题。DRS可以按照一个长周 期进行规律的周期发送(例如40ms,80ms,160ms周期内发1个ms,维持粗同步)。如果要解决精同步和CSI获取,则需要在占用非授权载波前几个子帧内发送CRS、CSI-RS(5ms,或5ms-10ms),这具有突发性。
一具体实施例中,该装置在非授权载波占用期,继续使用所述配置信息发送信号。
一具体实施例中,该装置在非授权载波占用期内,停止发送所述信号,或者,在预设资源上继续发送所述信号。
下面通过具体实施例对本发明的技术方案作进一步详细说明。
在获得非授权载波占用权之前,为了进行小区发现、同步和测量,需要发送必要的上下行参考信号以及信道,如:PSS/SSS、CRS、PRS、SRS、DRS、PDCCH等。根据实际需求,需要发送上述信号中的一种或多种。本实施例以DRS为例,来说明多个LAA接入点如何在满足管制要求下、并且在占用非授权载波之前发送信号或信道,来实现小区发现、同步和测量的解决方案。因此,本发明的解决方案同样适合在非授权载波占用前发送其他信号或信道,包括新设计的信号。
不同的国家或地区有不同的非授权载波使用管制要求。本实施例以ETSI的规定和管制要求为例,即在使用某个非授权载波之前,需要执行LBT/CCA功能。特殊情况下可以利用短控制信令SCS来发送管理和控制帧(如ACK/NACK信号),并且发送前不需要执行LBT/CCA。如果使用SCS,在50ms的观察周期内,自适应设备的短信令传输占空比最大不超过5%,也即2.5ms。其他的国家或地区具体的管制要求有可能存在差异,但是本实施例的解决思路同样适合解决类似问题。
假设DRS包括PSS/SSS、CRS以及CSI-RS(可配置)。PSS/SSS和CRS用于小区发现和同步,CRS和CSI-RS用于RRM测量。
简单起见,假设CRS和CSI-RS都是单端口配置。每个子帧中,CRS 出现的符号为:符号0、符号4、符号7、符号11。SS出现在子帧0和子帧5的符号5、符号6。CSI-RS出现的符号为:符号9、符号10。如果没有特殊说明,下文中出现的符号含义与此处相同,都是指LTE协议中规定的OFDM符号(1个子帧为1ms,根据CP长度的不同,1个子帧包含14个或12个OFDM符号)。
假设DRS的发送周期可以为10ms、25ms、50ms、100ms或200ms;DRS的发送偏置可以为0个子帧到X个子帧(X<=周期-1);DRS的持续时间(duration)可以为1个子帧到5个子帧(对于TDD模式,为2个子帧到5个子帧)。
如果DRS的持续时间为1个子帧,那么实际发送的符号数为8个符号;如果DRS的持续时间为2个子帧,那么实际发送的符号数为12个(SS与CSI-RS 2个子帧内占用符号数与1个子帧内占用符号数相同),依次类推;
实施例1
本实施例描述一种信号发送前协调机制,包括:
步骤1、LAA接入点发送DRS前,需要执行小区间发送协调机制。
首先,对于已发送DRS的LAA接入点,需要在发送DRS前或开始发送DRS时,通知邻近LAA接入点自己开始发送DRS,以及所发DRS的参数。DRS参数可以包括下面一种或多种:周期,偏置,持续时间,端口,功率,时频资源等。通知方式可以通过LAA接入点间的有线连接或无线空口传输。无线方式可以在授权频谱上或通过其他已获得占用权的非授权载波传输。
LAA接入点在发送DRS前,需要根据已收到的发送DRS LAA数目以及相应参数配置,来决定自己是否可以发送,以及发送参数。
当LAA接入点准备初始发送DRS,或更改DRS发送配置时,需要根据小区间已交互的信息来确定新的DRS发送配置。LAA接入点正常发送 DRS的过程中,不需要在每个周期都进行小区间发送协调机制。
简单起见,假设存在5个LAA接入点为邻近接入点(AP),分别为AP1、AP2、AP3、AP4、AP5。
CASE 1:LAA接入点没有接收到邻近任何接入点通知会发送DRS。此时,该LAA接入点的DRS配置方式具有最大的灵活性。
例如:AP5准备发送DRS,在发送前,没有收到邻近任何AP通知会发送DRS。因此AP5可以通过ETSI SCS方式来发送DRS,但需要遵守SCS的管制要求,且应考虑到将来邻近AP发送DRS的需求,在满足自身要求的条件下,最好按最低占用度来发送DRS。例如可以选择50ms的周期,1ms的持续时间,0子帧的偏置来发送DRS。此时,AP5的DRS配置方式具有最大的灵活性。
CASE 2:LAA接入点接收到邻近接入点发送DRS的通知,SCS的可占用时间部分可用。此时,该LAA接入点的DRS配置方式受到限制。
例如:AP5准备发送DRS,在发送前,已获知AP1和AP2正在发送DRS。AP1通知AP5DRS发送的参数为:周期为50ms,持续时间为2ms,偏置为0子帧;AP2通知AP5DRS发送的参数为:周期为50ms,持续时间为2ms,偏置为2子帧;那么AP1和AP2实际发送DRS的时间为1ms/14个符号*12个符号=857us,两个AP共占用857us+857us=1714us。那么AP5最大独立占用时长为2500us-1717us=786us。也就是说AP5在50ms内不能独立占用2个子帧(857us),可以独立占用1个子帧(571us)。一个方式是AP5周期设为或大于50ms,独立持续时间为1个子帧,偏置为任意可配置。另外一个方式AP5与AP1或AP2占用全部或部分同样的符号,但是通过频分或码分来区分,如时域相同,频域错开。持续时间可以为1个子帧、2个子帧、或3个子帧。此时,AP5的DRS配置方式受到较大约束。
CASE 3:LAA接入点接收到邻近接入点发送DRS的通知,SCS的可占 用时间已接近占满或已被占满,此时,该LAA接入点只能在已被占用的SCS子帧或符号上重复占用,不能占用新的子帧或符号。或执行下文中其他的协调机制。
例如:AP5准备发送DRS,在发送前,已获知AP1、AP2和AP3正在发送DRS。AP1通知AP5DRS发送的参数为:周期为50ms,持续时间为2ms,偏置为0子帧;AP2通知AP5DRS发送的参数为:周期为50ms,持续时间为2ms,偏置为2子帧;AP3通知AP5DRS发送的参数为:周期为50ms,持续时间为1ms,偏置为4子帧。那么AP1、AP2、AP3发送DRS共占用时长为:857us+857us+571us=2285us,那么AP5最大独立占用时长为215us。AP5尚不足独立占用1个子帧,只能与AP1、或AP2、或AP3占用同样的符号。此时,AP5只能在已被占用的子帧或符号上重复占用,不能占用新的子帧或符号。
LAA接入点在发送前,进行小区间发送协调是为了不能违背SCS管制要求。如果50ms的观察期内,2.5ms可用于SCS发送的时长已接近占满或已被占满,后续准备在非授权载波占用前发送DRS的LAA接入点,只能在已用于发送DRS的时域资源上发送本接入点的DRS,而不能在该50ms周期内,占用新的时域资源来发送DRS。满足此类条件,LAA接入点在非授权载波占用前发送DRS不需要执行LBT/CCA功能。
除了约束DRS发送配置方式外,还可以执行如下的其他的协调机制:
如同运营商系统内还可以通过协调来发送DRS。例如同运营商可以分配同一部署地点下几个LAA接入点的DRS发送方式。
甚至,当某一LAA接入点观察到SCS可占用时长已被占满或接近占满,可以发送DRS发送请求指令给邻近接入点。长期没有业务的接入点收到该指令后,可以停止发送DRS信号;或者DRS发送周期短、占用时长大的LAA接入点可以调整它的参数配置,让出一部分时域资源给发送DRS请求 指令的接入点使用。停止发送DRS信号的LAA接入点、或调整DRS发送配置的LAA接入点在DRS发送方式更新后,需要重新发送新的配置方式(或终止发送信号)给邻近接入点。
LAA接入点在发送DRS之前,还可以询问邻近LAA接入点发送情况。根据邻近接入点的回应情况,来决定DRS是否在载波占用前发送,以及发送的配置参数。
根据上述描述,在占用非授权载波之前,小区间发送DRS或其他必要信号的发送协调机制至少包括下面一种或多种:
a.LAA接入点之间交互是否发送DRS的信息、和/或DRS的参数配置(如果所有LAA接入点发送DRS的参数配置固化,则不需交互参数配置情况);
是否发送DRS的信息和/或DRS的参数配置的交互又可分为两种方式:第一种是通知给邻近接入点,不需邻近接入点响应。第二种类似握手机制,通知给邻近接入点,邻近接入点给予确认信息。
基于该机制,发送DRS的接入点主动通知信息给邻近接入点,邻近接入点准备发送DRS时,只要统计一下接收到的信息来决定是否发送即可。
b.LAA接入点在发送DRS前,需要根据邻近接入点已发送DRS的参数配置,来决定自己是否可以发送,以及具体发送参数;
c.某一LAA接入点观察到SCS可占用时长已被占满或接近占满,可以发送DRS发送请求指令给邻近接入点进行协调;
d.长期没有业务的LAA可以停止发送DRS信号;或者DRS发送周期短、占用时长大的LAA接入点可以调整它的参数配置,让出一部分时域资源给发送DRS请求指令的接入点使用;
e.停止发送DRS信号的LAA接入点、或调整DRS发送配置的LAA接入点在DRS发送方式更新后,需要重新发送新的配置方式(或终止发送 信号)给邻近接入点。
f.另外,同运营商系统内还可以协调多个邻近LAA接入点来发送DRS。
g.除机制a外,LAA接入点还可以在发送DRS之前,询问邻近LAA接入点发送情况。根据邻近接入点的回应情况,来决定DRS是否在载波占用前发送,以及发送的配置参数。h.还有一种方法是LAA接入点之间发送SCS的功率协调。例如两个相距很远的LAA接入点,另外一个接入点已经占用了50ms中的2.5ms SCS发送时长,本接入点可以不遵循该管制要求。这同样有两种方法:一是相邻LAA接入点交互发送DRS的功率参数配置,进行发送协调。二是LAA接入点对SCS中的信号进行测量,如果低于检测门限值,则该LAA接入点不认为这是对SCS的有效占用。因此不会把低于检测门限值的信号占用时长算在SCS里面。
步骤2、LAA接入点根据步骤1,确定DRS发送配置后开始发送DRS,并且需要把DRS发送信息、和/或DRS参数配置通知给邻近LAA接入点。
发送DRS的LAA接入点,需要在发送DRS前或开始发送DRS时,通知邻近LAA接入点自己开始发送DRS,以及所发DRS的参数。DRS参数可以包括下面一种或多种:周期,偏置,持续时间,端口,功率,时频资源等。通知方式可以通过LAA接入点间的有线连接或无线空口传输。无线方式可以在授权频谱上或通过其他已获得占用权的非授权载波传输。
对于另外一种可能机制(对应步骤1中的机制g),LAA接入点在确定可以通过SCS发送DRS后,不通知邻近接入点自己的DRS发送信息、和/或DRS参数配置。而在接收到邻近LAA接入点发送的询问信息后,再发送如上信息给邻近LAA接入点。
步骤3、长时间内没有业务发送或竞争需求,可更改DRS的发送配置, 甚至可以停发DRS。
第一种可能选择是LAA接入点可以停发DRS。例如如果接入点较多,而某个接入点长期不发数据,那么它在最后一次占用完毕,启动定时器,保留一定时间来发送DRS维持同步,防止短期内有重新占用需求。经过一定定时之后,可停发DRS,让出SCS给其他站点发送。长期不发送数据后的第一次竞争接入可能付出同步代价。
或者可以更改DRS的发送配置,例如在最后一次占用完毕,启动定时器,经过一定定时之后,可更新DRS的发送配置,降低对SCS可利用时长的占用。例如原来DRS的发送配置为周期为25ms,持续时间为2ms,偏置为0子帧,经过一定定时之后,始终无新的业务接入,可更新DRS的发送配置为周期为100ms,持续时间为1ms,偏置为0子帧。
停止发送DRS信号的LAA接入点、或调整DRS发送配置的LAA接入点在DRS发送方式更新后,需要重新发送新的配置方式(或终止发送信号的信息)给邻近接入点。
步骤4、UE根据接收到的DRS信号,执行小区检测、时频跟踪和RRM测量。
DRS包括PSS/SSS、CRS以及CSI-RS(可配置)。PSS/SSS和CRS用于小区发现和同步,CRS和CSI-RS用于RRM测量。
实施例2
本实施例涉及一种信号发送前侦听机制,具体包括:
步骤1、LAA接入点发送DRS前,需要执行侦听机制。
LAA接入点在准备发送DRS前进行侦听统计,可启动定时器,统计一定时长(例如至少为DRS的最大周期,如200ms)内出现的DRS,判断出正在发送DRS的LAA接入点数量、DRS的发送图样等信息。
LAA接入点在发送DRS前,需要根据检测到的发送DRS LAA数目以 及相应参数配置,来决定自己是否可以发送,以及发送参数。
当LAA接入点准备初始发送DRS,或更改DRS发送配置时,需要根据侦听和检测信息来确定新的DRS发送配置。LAA接入点正常发送DRS的过程中,不需要在每个周期都进行侦听。
简单起见,假设存在5个LAA接入点为邻近接入点,分别为AP1、AP2、AP3、AP4、AP5。
CASE 1:在侦听时间内,LAA接入点没有侦听到邻近任何接入点发送DRS。此时,该LAA接入点的DRS配置方式具有最大的灵活性。
例如:AP5准备发送DRS,在发送前,没有侦听到邻近任何接入点通知会发送DRS。因此AP5可以通过ETSI SCS方式来发送DRS,但需要遵守SCS的管制要求,且应考虑到将来邻近AP发送DRS的需求,在满足自身要求的条件下,最好按最低占用度来发送DRS。例如可以选择50ms的周期,1ms的持续时间,0子帧的偏置来发送DRS。此时,AP5的DRS配置方式具有最大的灵活性。
CASE 2:在侦听时间内,LAA接入点侦听到有邻近接入点发送DRS,SCS的可占用时间部分可用。此时,该LAA接入点的DRS配置方式受到限制。
例如:AP5准备发送DRS,在发送前,已检测到AP1和AP2正在发送DRS。AP1通知AP5DRS发送的参数为:周期为50ms,持续时间为2ms,偏置为0子帧;AP2通知AP5DRS发送的参数为:周期为50ms,持续时间为2ms,偏置为2子帧;那么AP1和AP2实际发送DRS的时间为1ms/14个符号*12个符号=857us,两个AP共占用857us+857us=1714us。那么AP5最大独立占用时长为2500us-1717us=786us。也就是说AP5在50ms内不能独立占用2个子帧(857us),可以独立占用1个子帧(571us)。一个方式是AP5周期设为或大于50ms,独立持续时间为1个子帧,偏置为任意可配置。 另外一个方式AP5与AP1或AP2占用全部或部分同样的符号,但是通过频分或码分来区分,持续时间可以为1个子帧、2个子帧、或3个子帧。此时,AP5的DRS配置方式受到较大约束。
CASE 3:在侦听时间内,LAA接入点侦听到有邻近接入点发送DRS,SCS的可占用时间已接近占满或已被占满,此时,该LAA接入点只能在已被占用的SCS子帧或符号上重复占用,不能占用新的子帧或符号。
例如:AP5准备发送DRS,在发送前,已检测到AP1、AP2和AP3正在发送DRS。AP1通知AP5DRS发送的参数为:周期为50ms,持续时间为2ms,偏置为0子帧;AP2通知AP5DRS发送的参数为:周期为50ms,持续时间为2ms,偏置为2子帧;AP3通知AP5DRS发送的参数为:周期为50ms,持续时间为1ms,偏置为4子帧。那么AP1、AP2、AP3发送DRS共占用时长为:857us+857us+571us=2285us,那么AP5最大独立占用时长为215us。AP5尚不足独立占用1个子帧,只能与AP1、或AP2、或AP3占用同样的符号。此时,AP5只能在已被占用的子帧或符号上重复占用,不能占用新的子帧或符号。
对于上述三种情况,如果AP5不能明确判断LAA站点数和DRS的发送图样,它可以通过能量检测的方式来判断该非授权载波是否被占用,如果未被占用,则可以判断出用于SCS的时频资源。
LAA接入点在发送前,进行侦听和检测是为了不能违背SCS管制要求。如果50ms的观察期内,2.5ms可用于SCS发送的时长已接近占满或已被占满,后续准备在非授权载波占用前发送DRS的LAA接入点,只能在已用于发送DRS的时域资源上发送本接入点的DRS,而不能在该50ms周期内,占用新的时域资源来发送DRS。满足此类条件,LAA接入点在非授权载波占用前发送DRS不需要执行LBT/CCA功能。
同运营商或同接入系统内还可以通过协调来发送DRS。例如同运营商 可以分配同一部署地点下几个LAA接入点的DRS发送方式。甚至,当某一LAA接入点侦听到SCS可占用时长已被占满或接近占满,可以发送DRS发送请求指令给邻近接入点。长期没有业务的接入点收到该指令后,可以停止发送DRS信号;或者DRS发送周期短、占用时长大的LAA接入点可以调整它的参数配置,让出一部分时域资源给发送DRS请求指令的接入点使用。停止发送DRS信号的LAA接入点、或调整DRS发送配置的LAA接入点在DRS发送方式更新后,需要重新发送新的配置方式(或终止发送信号)给邻近接入点。
需要说明的是,本实施例中,可应用如实施例1所述的功率协调机制。
步骤2、LAA接入点根据步骤1,确定DRS发送配置后开始发送DRS。
步骤3、长时间内没有业务发送或竞争需求,可更改DRS的发送配置,甚至可以停发DRS。
第一种可能选择是LAA接入点可以停发DRS。例如如果接入点较多,而某个接入点长期不发数据,那么它在最后一次占用完毕,启动定时器,保留一定时间来发送DRS维持同步,防止短期内有重新占用需求。经过一定定时之后,可停发DRS,让出SCS给其他站点发送。长期不发送数据后的第一次竞争接入必须付出同步代价。
或者可以更改DRS的发送配置,例如在最后一次占用完毕,启动定时器,经过一定定时之后,可更新DRS的发送配置,降低对SCS可利用时长的占用。例如原来DRS的发送配置为周期为25ms,持续时间为2ms,偏置为0子帧,经过一定定时之后,始终无新的业务接入,可更新DRS的发送配置为周期为100ms,持续时间为1ms,偏置为0子帧。
停止发送DRS信号的LAA接入点、或调整DRS发送配置的LAA接入点在DRS发送方式更新后,还可以重新发送新的配置方式(或终止发送信号的信息)给邻近接入点。
步骤4、UE根据接收到的DRS信号,执行小区检测、时频跟踪和RRM测量。
DRS包括PSS/SSS、CRS以及CSI-RS(可配置)。PSS/SSS和CRS用于小区发现和同步,CRS和CSI-RS用于RRM测量。
实施例3
本实施例涉及一种发送DRS的混合机制(短控制信令(SCS)和空闲信道评估(CCA)结合机制),具体的:
LAA可以采用一种非授权载波中短控制信令(SCS)和空闲信道评估(CCA)结合机制来发送DRS或其他必要信号。LTE/LAA可以事先制定严格的非授权载波占用前利用SCS发送信号的标准,包括限定这些符号/信道出现的周期、持续时间等等,同时需要满足ETSI或其他国家和地区的管制要求。如果LAA接入点准备在这些发送图样之外的符号发送参考信号,则需执行CCA功能,只能在信道空闲的情况下发送参考信号,且每发送一次就需要执行一次CCA功能。
例如,LTE标准可以限定在非授权载波占用前,发送SCS的周期为25ms。每个SCS的持续时间为1个子帧。例如,可能出现SCS的子帧只能为子帧0、子帧25、子帧50、子帧75等等。某个LAA接入点准备发送DRS或其他信号/信道,如果它想在侦听前通过SCS发送,它只能在这些子帧上发送。发送前它可以在这些子帧上侦听,选择在空闲SCS子帧上发送DRS。如果上述SCS子帧都有信号发送,它只能复用这些时域资源来发送DRS(如时域相同,频域错开)。按照SCS方式来发送DRS不需要执行CCA功能,只需要在初始发送前侦听和评估SCS子帧的占用情况。
在SCS子帧上发送信号前,多个LAA接入点可以在时域、频域、空域和功率多个方面进行协调。对于占用的AP,在这些子帧上可以做一些干扰规避的方式,如muting等。
或者通过如下方式发送信号,例如某个LAA接入点准备发送DRS,上述可能出现DRS的子帧0、子帧25、子帧50、子帧75等都被占用,或者该接入点打算以一个更小的周期如5ms来发送DRS,可以执行CCA功能,只能在信道空闲的情况下发送参考信号,且每发送一次就需要执行一次CCA功能,上述SCS子帧可以不需要执行CCA功能。
实施例4
本实施例涉及一种通过信道选择算法来实现DRS和其他必要信号发送的机制,具体的:
对于存在多个非授权载波的场景,某个LAA接入点准备发送DRS,它可以通过长期的能量检测和载波感知来选择一个或几个最干净的信道或载波发送DRS,作为优先抢占和发送业务的候选载波集合,而在其他载波上不发送DRS。发送DRS的载波集合也作为优先竞争和使用的载波集合。
例如存在五个邻近LAA接入点,分别为AP1、AP2、AP3、AP4、AP5。这5个LAA接入点都支持多非授权载波发送。可供使用的非授权载波有20个,分别为UCC1、UCC2、...、UCC20(实际上在5G频谱有可能存在多达24个20M的非授权载波)。AP1、AP2、AP3、AP4、AP5都可以通过长期的能量检测和载波感知来选择一个或几个最干净的信道或载波发送DRS,作为一个优先抢占和发送业务的候选载波,而在其他载波上不发送DRS。
当多非授权载波信道都占用频繁、负载较重的情况下,可使用CCA或结合其他实施例中的方法来发送DRS和其他必要信号。
实施例5
本实施例涉及一种新的帧格式或发送图样,具体的:
为了占用非授权载波后,快速利用非授权载波发送数据,提高非授权载波频谱利用效率,需要进一步解决非授权载波精同步和CSI快速获取问 题。如果要解决精同步和CSI快速获取问题,则最好在占用非授权载波前几个子帧内发送下行参考信号,如CRS、CSI-RS,一般为5ms到10ms的周期。这具有突发性,不同于用于粗同步等作用的DRS周期性规律发送。DRS长周期发送不能维持精同步和信道状况测量,如果DRS短周期密集发送又违背非授权载波使用管制要求。在占用非授权之前发送,目前只能通过短控制信令SCS发送,否则不符合LBT的管制要求,也会对其他设备的竞争和使用造成干扰,不符合友好共存的原则。
本实施例中:
a.首先,可以划分出一部分SCS管制时长用于精同步和CSI快速获取的信号发送。例如在50ms观察期内的2.5ms SCS可用时长中划分出1ms用于发送精同步和CSI测量的参考信号,如CRS和CSI-RS。CRS可以用于AGC和精同步(时频跟踪),CSI-RS用于CSI测量和反馈。其他时长(如1.5ms)可用于DRS等信号在占用非授权载波前利用SCS发送。
b.定义一种新的帧格式,在CCA之前或CCA之后定义一个或几个OFDM符号为SCS符号,用于发送CRS和CSI-RS等参考信号。发送这些参考信号的作用是进行AGC,时频同步和CSI测量。利用SCS符号发送这些参考信号不需要执行CCA功能。
关于非授权载波的侦听和占用目前有两种设备,第一种是基于帧的设备(Frame-based Equipment,FBE),另外一种是基于负载的设备(Load-based Equipment,LBE)。
目前,FBE有严格的帧格式要求,包括载波占用期、空闲期。在空闲期的末端又划分成CCA时长。
针对FBE,结合LTE的现有架构,我们定义出一种新的用于LAA的帧结构,包括:载波空闲期、载波占用期。载波占用期时长不能超过和低于管制要求(例如欧洲限制为1ms到10ms)。载波空闲期又分为:SCS符号 时长、CCA时长和剩余空闲期。载波空闲期也需要满足管制要求(例如欧洲为不低于载波占用时长的5%)。载波空闲期所占用的符号可以设计在子帧或帧的前端;也可设计在子帧或帧的末端;也可以部分空闲期符号设计在子帧或帧的前端,另外一部分空闲期符号设计在子帧或帧的末端。SCS符号可以放在CCA之前,也可放在CCA之后,优选放在CCA之前。无论SCS符号的位置如何,利用SCS符号发送参考信号都不需要执行CCA功能。
例如,如图8所示,可设定整个非授权载波使用固定帧周期(fixed frame period)为10个LTE子帧,即10ms。
根据管制要求,载波空闲期不得低于载波占用时长的5%,那么可假设载波占用时长为X个OFDM符号,载波空闲时长为Y个OFDM符号。有下式:
X+Y=14symbols*10subframes
Y>=X*5%
可以解得Y>=6.66个symbols,所以对于10ms时长的固定帧周期,载波空闲期至少为7个符号。
设定载波空闲期位于固定帧的前端,占用符号0到符号6。符号0和符号1为SCS符号,占用时长约140us。需要注意的是这里SCS占用时长需要满足SCS管制要求,即在50ms的观察周期内,自适应设备的短信令传输占空比最大不超过5%,也即2.5ms。符号2到符号5为其他的空闲期。符号6为CCA时长,用于空闲信道评估,进行非授权载波的侦听和竞争。如果侦听结果是空闲,如图所示固定帧的剩余部分可为本设备占用。
SCS符号用于发送CRS、CSI-RS等参考信号,作用是进行AGC,时频同步和CSI测量。在每个固定帧的SCS符号部分,各个LAA接入点都可以进行如此发送,而不需要执行LBT/CCA机制。在竞争到非授权载波后,竞争到资源的LAA接入点可以迅速发送业务,而不需要再花费大量的时间进行AGC、粗同步、精同步和CSI测量等相关步骤,提高了LAA利用非授 权载波发送业务的频谱效率。
需要说明的是,上述例子仅是本发明的一个示例,在实际应用中,帧格式中的SCS符号、CCA符号、载波占用期、载波空闲期、固定帧等等占用时长和具体位置都有多种可能,但是至少需要包括SCS部分。
另外,目前对于LAA利用非授权频谱的方式有CA SDL(Carrier Aggregation Supplemental Downlink,频谱聚合补充下行链路)、CA DL+UL(Carrier Aggregation Downlink and Uplink频谱聚合下行和上行)、Standalone(独立部署)。其中SDL和DL+UL是目前的主流方式。因此针对纯下行发送和类似TDD方式的发送,帧格式中的SCS符号、CCA符号、载波占用期、载波空闲期、固定帧等等占用时长和具体位置都有多种可能。例如基于类似TDD方式,SCS符号可以与特殊子帧(DwPTS,GP,UpPTS)的结构相结合,进行设计。
c.修改用于精同步和CSI快速获取的信号如CRS和CSI-RS的RE格式,减少对时域的占用。
由于SCS时长有管制要求,一般在固定帧中用于SCS发送只能有几个符号。如果按照目前LTE标准的CRS和CSI-RS的时频格式,在几个符号内发送这两种参考信号可能比较困难,例如在1个或2个SCS符号内不能发送目前时频格式的CRS和CSI-RS。
有两种解决方案:第一种是设计适当数量的SCS符号,缺点是受到管制要求的限制。第二种是修改参考信号的现有格式,或重新设计一种用于精同步和测量的参考信号。
例如,如果需要在4个SCS符号内发送CRS和CSI-RS,需要对CRS和CSI-RS的时频格式进行修改,每个子帧中,CRS出现的符号为:符号0、符号4、符号7、符号11。可以修改为符号0和符号3按照之前符号0和符号4的方式发送CRS。CSI-RS的RE可设计在第一个时隙中的符号1和符 号2。
实施例6
本实施例涉及一种新的帧格式或发送图样,具体的:
为了占用非授权载波后,快速利用非授权载波发送数据,提高非授权载波频谱利用效率,需要进一步解决非授权载波精同步和CSI快速获取问题。如果要解决精同步和CSI快速获取问题,则最好在占用非授权载波前几个子帧内发送下行参考信号,如CRS、CSI-RS,一般为5ms到10ms的周期。这具有突发性,不同于用于粗同步等作用的DRS周期性规律发送。DRS长周期发送不能维持精同步和信道状况测量,如果DRS短周期密集发送又违背非授权载波使用管制要求。在占用非授权之前发送,目前只能通过短控制信令SCS发送,否则不符合LBT的管制要求,也会对其他设备的竞争和使用造成干扰,不符合友好共存的原则。
本实施例中:
a.首先,可以划分出一部分SCS管制时长用于精同步和CSI快速获取的信号发送。例如在50ms观察期内的2.5ms SCS可用时长中划分出1ms用于发送精同步和CSI测量的参考信号,如CRS和CSI-RS。CRS可以用于AGC和精同步(时频跟踪),CSI-RS用于CSI测量和反馈。其他时长(如1.5ms)可用于DRS等信号在占用非授权载波前利用SCS发送。
b.定义一种新的帧格式,在CCA之前或CCA之后定义一个或几个OFDM符号为SCS符号,用于发送CRS和CSI-RS等参考信号。发送这些参考信号的作用是进行AGC,时频同步和CSI测量。利用SCS符号发送这些参考信号不需要执行CCA功能。SCS的符号位置可以在帧头、也可以在帧尾、可以在CCA之前、也可以在CCA之后,并且不一定与CCA相邻。
关于非授权载波的侦听和占用目前有两种设备,第一种是基于帧的设备(Frame-based Equipment,FBE),另外一种是基于负载的设备(Load-based  Equipment,LBE)。
目前,FBE有严格的帧格式要求,包括载波占用期、空闲期。在空闲期的末端又划分成CCA时长。
另外,需要注意的是,载波占用期可以有多种含义:
载波占用期第一个含义是针对具体设备而言,某设备通过LBT或CCA等类似方法对信道/载波进行评估后,发现信道空闲或可用并成功占用的一段时长。如果设备发现信道/载波不可用、或没有占用该信道/载波,就该设备而言,这段时长为该设备的非占用期。SCS一般是指发生在该设备非占用期的一段或几段特殊时长,即没有通过LBT或CCA来获得使用权而强行发送短信令。但是SCS本身使用的这段或几段短时长可以算在载波占用时长(或和载波占用期合称为载波占用期)里面,也可算在载波非占用时长里面,可以有多种理解。
载波占用期另外一个含义是针对帧格式而言,是帧格式定义出的一段被用于多个设备来竞争占用的时长。一般来讲,该占用期各设备需要通过LBT或CCA等类似方法对信道/载波进行评估或竞争,发现信道空闲或可用然后才能占用。对具体设备而言,帧格式上的载波占用期有可能是该设备的占用期(该设备竞争到资源),也有可能是该设备的非占用期(该设备没有竞争到资源)。SCS不需要通过LBT或CCA来获得使用权。SCS本身使用的这段或几段短时长可以算在载波占用时长(或和载波占用期合称为载波占用期)里面,也可算在载波非占用时长(或载波空闲期)里面,可以有多种理解。
参考FBE,结合LTE的现有架构,我们定义出一种新的用于LAA的帧结构,包括:载波空闲期、载波占用期、SCS时长。载波占用期时长不能超过和低于管制要求(例如欧洲限制为1ms到10ms)。载波空闲期又分为:CCA时长和剩余空闲期。载波空闲期也需要满足管制要求(例如欧洲为不 低于载波占用时长的5%)。载波空闲期所占用的符号可以设计在子帧或帧的前端;也可设计在子帧或帧的末端;也可以部分空闲期符号设计在子帧或帧的前端,另外一部分空闲期符号设计在子帧或帧的末端。
SCS符号可以放在CCA之前,也可放在CCA之后,并且不一定与CCA符号相邻,优选放在CCA之前。无论SCS符号的位置如何,利用SCS符号发送参考信号都不需要执行CCA功能。
下面以SCS时长被认为是载波占用期的一部分为例进行说明。
例如,如图9所示,可设定整个非授权载波使用固定帧周期(fixed frame period)为10个LTE子帧,即10ms。
根据管制要求,载波空闲期不得低于载波占用时长的5%,那么可假设载波占用时长为X个OFDM符号,载波空闲时长为Y个OFDM符号。有下式:
X+Y=14symbols*10subframes
Y>=X*5%
可以解得Y>=6.66个symbols,所以对于10ms时长的固定帧周期,载波空闲期至少为7个符号。
SCS时长可以认为是载波空闲期或载波空闲时长的一部分,也可以认为是载波占用期或载波占用时长的一部分。如果SCS时长被认为是载波空闲时长的一部分,则包括SCS时长的载波空闲期至少为7个符号,如实施例五;如果SCS时长被认为是载波占用时长的一部分,则不包括SCS时长的载波空闲时长至少为7个符号。
需要说明的是,无论SCS时长如何认定、以及载波空闲期和载波占用期的时长关系如何、以及未来规定是否变化、各国规则是否一致等,不影响本发明的特征,即引入包括SCS的帧格式。SCS符号发送短信令可以不进行LBT或CCA。
帧的最前端即符号0和符号1为SCS符号,占用时长约140us。需要 注意的是这里SCS占用时长需要满足SCS管制要求(各国有可能不一致),如在50ms的观察周期内,自适应设备的短信令传输占空比最大不超过5%,也即2.5ms。
设定载波空闲期位于固定帧的前端,占用符号2到符号8。符号2到符号7为其他的空闲期。符号8为CCA时长,用于空闲信道评估,进行非授权载波的侦听和竞争。如果侦听结果是空闲,如图所示固定帧的剩余部分可为本设备占用。
SCS符号用于发送CRS、CSI-RS等参考信号和必要短信令,作用是进行AGC,时频同步和CSI测量等。在每个固定帧的SCS符号部分,各个LAA接入点都可以进行如此发送,而不需要执行LBT/CCA机制。在竞争到非授权载波后,竞争到资源的LAA接入点可以迅速发送业务,而不需要再花费大量的时间进行AGC、粗同步、精同步和CSI测量等相关步骤,提高了LAA利用非授权载波发送业务的频谱效率。
需要说明的是,上述例子仅是本发明的一个示例,在实际应用中,帧格式中的SCS符号、CCA符号、载波占用期、载波空闲期、固定帧等等占用时长和具体位置都有多种可能,但是至少需要包括SCS部分。
另外,目前对于LAA利用非授权频谱的方式有CA SDL(Carrier Aggregation Supplemental Downlink,频谱聚合补充下行链路)、CA DL+UL(Carrier Aggregation Downlink and Uplink频谱聚合下行和上行)、Standalone(独立部署)。其中SDL和DL+UL是目前的主流方式。因此针对纯下行发送和类似TDD方式的发送,帧格式中的SCS符号、CCA符号、载波占用期、载波空闲期、固定帧等等占用时长和具体位置都有多种可能。例如基于类似TDD方式,SCS符号可以与特殊子帧(DwPTS,GP,UpPTS)的结构相结合,进行设计。
c.修改用于精同步和CSI快速获取的信号如CRS和CSI-RS的RE格 式,减少对时域的占用。
由于SCS时长有管制要求,一般在固定帧中用于SCS发送只能有几个符号。如果按照目前LTE标准的CRS和CSI-RS的时频格式,在几个符号内发送这两种参考信号可能比较困难,例如在1个或2个SCS符号内不能发送目前时频格式的CRS和CSI-RS。
有两种解决方案:第一种是设计适当数量的SCS符号,缺点是受到管制要求的限制。第二种是修改参考信号的现有格式,或重新设计一种用于精同步和测量的参考信号。
例如,如果需要在4个SCS符号内发送CRS和CSI-RS,需要对CRS和CSI-RS的时频格式进行修改,每个子帧中,CRS出现的符号为:符号0、符号4、符号7、符号11。可以修改为符号0和符号3按照之前符号0和符号4的方式发送CRS。CSI-RS的RE可设计在第一个时隙中的符号1和符号2。
需要说明的是,无论非授权载波使用是SDL(Carrier Aggregation Supplemental Downlink补充下行链路)方式、还是DL+UL(Downlink and Uplink频谱聚合下行和上行)方式,通过接入点竞争到非授权载波之后,通过发送测量信号CSI-RS或CRS,然后基于UE测量反馈的4ms时延,将会使得eNB很难在当前占用时间内获得并使用CSI,例如日本有最大占用时间为4ms的限制。所以可以通过UE发送上行SRS或类似信号,接入点通过信道互易性来获得下行CSI是一种可行方法。本发明实施例可以通过提前发送SRS的方式来降低CSI测量反馈时延问题,具体的,UE可以通过SCS进行周期性发送SRS,类似周期性的DRS发送,如实施例1到实施例4,也可以通过在占用非授权载波前的预设资源上发送SRS,如实施例5和6,例如在占用非授权载波前一个子帧或几个子帧内利用SCS发送SRS(单次或多次发送),这不同于用于粗同步维持等作用的DRS周期性规律 发送。接入点接收到UE发送的SRS后,基于信道互异性获得下行CSI,从而在占用非授权载波后迅速调度数据,避免了UE测量反馈的4ms时延。
上述各单元可以由电子设备中的中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)或可编程逻辑阵列(Field-Programmable Gate Array,FPGA)实现。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现 在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本发明实施例所述的信号发送方法和装置,应用于LAA接入点或LAA基站,具体的,确定在非授权载波非占用期使用短控制信令SCS发送信号的配置信息;根据所述确定的配置信息,使用SCS发送所述信号。本发明实施例实现在占用非授权载波之前的信号发送,能够提高LAA系统的频谱使用效率和性能。

Claims (25)

  1. 一种信号发送方法,应用于LTE授权载波辅助接入LAA接入点或LAA基站,该方法包括:
    确定在非授权载波非占用期使用短控制信令SCS发送信号的配置信息;
    根据所述确定的配置信息,使用SCS发送所述信号。
  2. 根据权利要求1所述的方法,其中,该方法还包括:将所述使用SCS发送信号的配置信息发送给其他LAA接入点或LAA基站,
    所述确定在非授权载波非占用期使用SCS发送信号的配置信息之前,该方法还包括:
    接收来自其他LAA接入点或LAA基站使用SCS发送信号的配置信息;
    根据第一预设时间段内接收的其他LAA接入点或LAA基站使用SCS发送信号的配置信息,判断是否使用SCS发送信号,确定使用SCS发送信号时,再执行后续流程,确定使用短控制信令SCS发送信号的配置信息。
  3. 根据权利要求1所述的方法,其中,所述确定在非授权载波非占用期使用SCS发送信号的配置信息之前,该方法还包括:
    侦听或检测第二预设时间段内其他LAA接入点或LAA基站使用SCS发送信号的信息;
    根据所述侦听或检测到的信息,判断是否使用SCS发送信号,确定使用SCS发送信号时,再执行后续流程,确定使用短控制信令SCS发送信号的配置信息。
  4. 根据权利要求1所述的方法,其中,所述确定在非授权载波非占用期使用SCS发送信号的配置信息,包括:
    获取预设的用于SCS发送的资源信息;
    侦听所述预设的用于SCS发送的资源的占用情况,所述预设的用于SCS发送的资源能够进行信号发送时,使用所述预设的用于SCS发送的资源发送 信号。
  5. 根据权利要求2至4任一项所述的方法,其中,该方法还包括:对除所述预设的或所述确定的用于SCS发送的资源之外的资源进行空闲信道评估CCA,确定用于SCS发送的资源。
  6. 根据权利要求1至4任一项所述的方法,其中,所述确定使用SCS发送信号的配置信息,包括:
    根据预设的选择算法,选择一个或多个载波进行SCS信号发送。
  7. 根据权利要求1至4任一项所述的方法,其中,所述确定在非授权载波非占用期使用SCS发送信号的配置信息之前,该方法还包括:
    向其他一个或多个LAA接入点或LAA基站发送协调请求。
  8. 根据权利要求1至4任一项所述的方法,其中,该方法还包括:
    如果所述LAA接入点或LAA基站在第三预设时间段内未发送业务数据,则停止使用SCS发送信号,或者,调整使用SCS发送信号的配置信息。
  9. 根据权利要求1至4任一项所述的方法,其中,该方法还包括:LAA接入点或LAA基站在使用SCS发送信号的配置信息发生变化时,向其他LAA接入点或LAA基站发送通知消息,携带变化后的配置信息。
  10. 根据权利要求1至4任一项所述的方法,其中,所述信号包括以下一种或多种:主同步信号PSS/辅同步信号SSS、小区专用参考信号CRS、定位参考信号PRS、信道探测参考信号SRS、发现信号DRS、信道状态指示参考信号CSI-RS、物理下行控制信道PDCCH承载信号。
  11. 根据权利要求1至4任一项所述的方法,其中,所述配置信息包括以下一项或多项:周期,偏置,持续时间,端口,功率,时频资源。
  12. 根据权利要求1至4任一项所述的方法,其中,该方法还包括:
    在非授权载波非占用期,按照预设的周期,周期性发送参考信号,
    和/或,
    在占用非授权载波前的预设资源上发送参考信号。
  13. 根据权利要求1至4任一项所述的方法,其中,该方法还包括:
    在非授权载波占用期,继续使用所述配置信息发送信号。
  14. 根据权利要求1至4任一项所述的方法,其中,该方法还包括:
    非授权载波占用期内,停止发送所述信号,或者,在预设资源上继续发送所述信号。
  15. 一种信号发送装置,设置于LAA接入点或LAA基站,该装置包括:第一处理模块和第一发送模块;其中,
    所述第一处理模块,配置为确定在非授权载波非占用期使用SCS发送信号的配置信息;
    所述第一发送模块,配置为根据所述确定的配置信息,使用SCS发送所述信号。
  16. 根据权利要求15所述的装置,其中,该装置还包括第二发送模块、接收模块和第二处理模块;其中,
    所述第二发送模块,配置为将所述使用SCS发送信号的配置信息发送给其他LAA接入点或LAA基站;
    所述接收模块,配置为接收来自其他LAA接入点或LAA基站使用SCS发送信号的配置信息;
    所述第二处理模块,配置为根据接收模块在第一预设时间段内接收的其他LAA接入点或LAA基站使用SCS发送信号的配置信息,判断是否使用SCS发送信号,确定使用SCS发送信号时,再通知第一处理模块进行处理。
  17. 根据权利要求15所述的装置,其中,该装置还包括第三处理模块和第四处理模块,
    所述第三处理模块,配置为侦听或检测第二预设时间段内其他LAA接入点或LAA基站使用SCS发送信号的信息;
    所述第四处理模块,配置为根据所述侦听或检测到的信息,判断是否使用SCS发送信号,确定使用SCS发送信号时,再通知第一处理模块进行处理。
  18. 根据权利要求15所述的装置,其中,
    所述第一处理模块,配置为获取预设的用于SCS发送的资源信息;以及侦听所述预设的用于SCS发送的资源的占用情况,所述预设的用于SCS发送的资源能够进行信号发送时,使用所述预设的用于SCS发送的资源发送信号;
    一具体实施例中,所述第一处理模块,配置为对除所述预设的或所述确定的用于SCS发送的资源之外的资源进行空闲信道评估CCA,确定用于SCS发送的资源。
  19. 根据权利要求15至18任一项所述的装置,其中,
    所述第一处理模块,配置为根据预设的选择算法,选择一个或多个载波进行SCS信号发送。
  20. 根据权利要求15至18任一项所述的装置,其中,该装置还包括第三发送模块,
    所述第三发送模块,配置为向其他一个或多个LAA接入点或LAA基站发送协调请求。
  21. 根据权利要求15至18任一项所述的装置,其中,该装置还包括调整模块,
    所述调整模块,配置为当当前LAA接入点或LAA基站在第三预设时间段内未发送业务数据,则停止使用SCS发送信号,或者,调整使用SCS发送信号的配置信息,以避免资源浪费。
  22. 根据权利要求15至18任一项所述的装置,其中,该装置还包括第四发送模块,
    所述第四发送模块,配置为在当前LAA接入点或LAA基站使用SCS发送信号的配置信息发生变化时,向其他LAA接入点或LAA基站发送通知消息,携带变化后的配置信息。
  23. 根据权利要求15至18任一项所述的装置,其中,该装置在非授权载波非占用期,按照预设的周期,周期性发送参考信号,和/或,在占用非授权载波前的预设资源上发送参考信号。
  24. 根据权利要求15至18任一项所述的装置,其中,该装置在非授权载波占用期,继续使用所述配置信息发送信号。
  25. 根据权利要求15至18任一项所述的装置,其中,该装置在非授权载波占用期内,停止发送所述信号,或者,在预设资源上继续发送所述信号。
PCT/CN2015/089872 2015-01-27 2015-09-17 一种信号发送方法和装置 WO2016119470A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510040772.2A CN105991254A (zh) 2014-11-07 2015-01-27 一种信号发送方法和装置
CN201510040772.2 2015-01-27

Publications (1)

Publication Number Publication Date
WO2016119470A1 true WO2016119470A1 (zh) 2016-08-04

Family

ID=56542331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089872 WO2016119470A1 (zh) 2015-01-27 2015-09-17 一种信号发送方法和装置

Country Status (1)

Country Link
WO (1) WO2016119470A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115038127A (zh) * 2022-06-02 2022-09-09 中国电信股份有限公司 资源调度方法及装置、存储介质和电子设备
WO2022213942A1 (zh) * 2021-04-06 2022-10-13 展讯通信(上海)有限公司 一种同步信号块接收方法和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202028A (zh) * 2010-03-26 2011-09-28 北京邮电大学 离散频谱条件的认知高速无线通信系统设计方法
CN102917456A (zh) * 2011-08-02 2013-02-06 华为技术有限公司 一种通信方法、多模终端和基站及系统
CN103580840A (zh) * 2012-08-10 2014-02-12 捷讯研究有限公司 未授权频带中的td lte辅分量载波
CN104301273A (zh) * 2014-08-25 2015-01-21 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法、基站及用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202028A (zh) * 2010-03-26 2011-09-28 北京邮电大学 离散频谱条件的认知高速无线通信系统设计方法
CN102917456A (zh) * 2011-08-02 2013-02-06 华为技术有限公司 一种通信方法、多模终端和基站及系统
CN103580840A (zh) * 2012-08-10 2014-02-12 捷讯研究有限公司 未授权频带中的td lte辅分量载波
CN104301273A (zh) * 2014-08-25 2015-01-21 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法、基站及用户设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022213942A1 (zh) * 2021-04-06 2022-10-13 展讯通信(上海)有限公司 一种同步信号块接收方法和电子设备
CN115038127A (zh) * 2022-06-02 2022-09-09 中国电信股份有限公司 资源调度方法及装置、存储介质和电子设备
CN115038127B (zh) * 2022-06-02 2023-09-26 中国电信股份有限公司 资源调度方法及装置、存储介质和电子设备

Similar Documents

Publication Publication Date Title
US11678383B2 (en) Method and apparatus for UE signal transmission in 5G cellular communications
US10548157B2 (en) Unlicensed spectrum scheduling method and device, and user equipment UE
JP6754897B2 (ja) 自律送信システムのための衝突回避適応
TWI811410B (zh) 終端裝置、基地台裝置、無線通訊方法及電腦程式
CN106455117B (zh) 一种竞争接入方法和装置
US20180352573A1 (en) Method and device for determining lbt mode, and method for implementing lbt mode switch
WO2017125009A1 (zh) 一种探测参考信号的发送方法和装置
US11528695B2 (en) First communication device and methods therein, for sending one or more control signals to a second communication device
WO2017025000A1 (zh) 前导发送方法和装置
JP6546185B2 (ja) 基地局及びユーザ端末
US20160143014A1 (en) Channel access in listen before talk systems
JP7486471B2 (ja) ユーザ機器、方法及び集積回路
WO2017024629A1 (zh) 一种非授权频谱信道检测方法和装置
KR20170015251A (ko) 비면허 대역 채널에서 클리어 채널 평가에 근거한 신호 전송 방법 및 이동 통신 시스템
US10045374B2 (en) Low latency WLAN medium access
US10230503B2 (en) Methods and devices for determining or acquiring radio resources
US20180288802A1 (en) Method and device for preempting transmission resources on unlicensed carriers
WO2016070614A1 (zh) 一种信号发送方法、装置及计算机存储介质
KR20230030650A (ko) 업링크 신호 송수신 방법 및 장치
WO2016119470A1 (zh) 一种信号发送方法和装置
KR20220004160A (ko) 비면허 스펙트럼에서 셀룰러 통신 네트워크에 액세스하기 위한 방법
KR101714592B1 (ko) 비면허 대역을 이용하여 캐리어 집적을 수행하기 위한 방법 및 장치
US20220400514A1 (en) Controlling transmission medium access in an open spectrum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879668

Country of ref document: EP

Kind code of ref document: A1