[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016115816A1 - 奥灰顶部充填带结构判别指标及确定方法 - Google Patents

奥灰顶部充填带结构判别指标及确定方法 Download PDF

Info

Publication number
WO2016115816A1
WO2016115816A1 PCT/CN2015/081603 CN2015081603W WO2016115816A1 WO 2016115816 A1 WO2016115816 A1 WO 2016115816A1 CN 2015081603 W CN2015081603 W CN 2015081603W WO 2016115816 A1 WO2016115816 A1 WO 2016115816A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
filling
interval
depth
belt
Prior art date
Application number
PCT/CN2015/081603
Other languages
English (en)
French (fr)
Inventor
李文平
官云章
柴辉婵
刘瑞新
乔伟
胡东祥
王宗胜
刘强强
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to RU2016134036A priority Critical patent/RU2671502C2/ru
Priority to PL418845A priority patent/PL237727B1/pl
Publication of WO2016115816A1 publication Critical patent/WO2016115816A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Definitions

  • the invention relates to a water-bearing geological structure discriminating index and a determining method, in particular to a discriminating index and a determining method for an ash top filling belt structure.
  • Ordovician limestone has always been a strong aquifer in the area of coal-bearing coalfields in North China, and it is the main target of the threat of water pollution in the next group of coal mining. And as the depth of mining increases, the water pressure increases and the danger becomes greater and greater. It is estimated that China's North China coalfield is threatened by deep high-pressure Ordovician water (the water inrush coefficient is greater than 0.1MPa/m) with a coal geological reserve of about 15 billion tons. Therefore, how to realize the lower coal seam pressure belt mining and reduce the mining cost is the goal of exploration in the North China coal field in recent years.
  • the type division of the top filling belt of the ash and its water-repellent utilization have been gradually recognized and confirmed by a few mining practice mines.
  • how to determine the type of filling belt is mainly based on the method of drilling core observation and fracture statistics, and the types of filling belts are roughly and qualitatively divided. The subjective factors are large, and the quantitative index determination method is lacking.
  • the object of the present invention is to provide a discriminating index and determining method for the top filling belt structure of the ash, and to solve the observation and description of the drilling core, the statistical method of the crack, and the type of the filling belt, and the subjective factors are large, and the quantitative index is determined. Method problem.
  • the present invention includes a structure discrimination index and a structure determination method
  • the structure discriminating index Firstly, the three filling belt structures of continuous filling, intermittent filling and non-filling are determined. According to the three filling belt structures, the discriminating indexes are determined as follows: drilling unit water inflow q, downhole water discharge Q and Austrian The permeability coefficient of the gray layer segment is K; then the threshold values of each index are determined according to the different water-blocking properties of the three structures;
  • the indicators are obtained by the following methods, as follows:
  • the filling belt is filled according to the degree of filling of the crack, which can be identified as: continuous filling, intermittent filling and no filling. Structure; the types of filling belts corresponding to the three types of filling belt structures are water-blocking type, weakly permeable type and water-rich type;
  • the three indicators of the filling belt structure are determined according to the pumping and discharging experiments, namely: the water inflow amount q of the drilling unit, the water discharge amount Q in the underground and the permeability coefficient K in the Austrian ash layer;
  • the ground drilling is based on the core take-up rate, the flushing fluid consumption and the degree of shale development, and comprehensively determine the development termination depth of the filling belt; determine the lithology adoption rate is less than 50%.
  • the depth of the shale development is the depth of development of the filling zone; thus, the interval of the pumping test is determined to be the interval from the entry of the ash to the depth, and the q value of the interval is calculated according to formula (1);
  • Q is the well flow, m3/s;
  • M is the thickness of the pumping interval, m;
  • sw is the depth of the water level in the well, m;
  • R is the radius of influence, m;
  • rw is the radius of the pumping well, m;
  • K is the permeability coefficient, cm/s; other parameters have the same meaning as formula (1);
  • the layer is a weakly permeable filling belt; because the unfilled structure is rich in water, when the pumping test is q>0.01L/sm, the pumping interval is rich in water, and the interval of q>0.01L/sm is determined to be rich in water.
  • Type filling belt
  • the water richness of the structure of the filling belt is the same as that of the 3-1 step.
  • the threshold of the Q threshold determined by the step 1 and the depth of the buried depth is greater than the average depth of the 300 m, and the threshold of Q is obtained;
  • the location of the coal with a depth of more than 300m is determined, and the water pressure value of the ash is determined to be 4 levels, which are 3MPa, 4MPa, 5MPa, 6MPa respectively, and the water level drop in the pumping and discharging test is assumed to be the maximum depth, ie 300m, 400m, 500m, 600m respectively;
  • the threshold of the amount of water in the hole
  • the water-rich structure of the filling belt is the same as the 3-1 step.
  • the permeability coefficient is K ⁇ 10 -5 cm/s in the pumping test, the test interval is water-tight, and the K is determined.
  • ⁇ 10 -5 cm/s is a water-filling type filling belt; when the permeability coefficient is 10 -5 ⁇ K ⁇ 10 -4 cm/s in the pumping test, the test interval is weakly permeable, and it is determined that 10 -5 ⁇ K ⁇ 10 -4 cm/s is a weakly permeable filling belt; in the pumping test, when the permeability coefficient is K>10 -4 cm/s, the test interval is rich in water, and it is determined that K>10 -4 cm/s is water-rich. Filling tape
  • the above evaluation index and its threshold value comprehensively determine the type of filling belt and the thickness of each type.
  • the water-proof filling belt it can be directly used as the water-repellent layer;
  • the weak-permeable filling belt after the grouting transformation It is used;
  • the water-rich filling belt has the same permeability as the underlying ash, and cannot be used as a water-repellent layer;
  • the structural discriminant index of the filling belt is given, which makes up for the problem that the filling belt is not easy to identify when the depth of the buried depth is more than 300m, that is, the large depth of the North China coal field; and the indicators are given.
  • the structural threshold gives the quantitative standard of each structure of the filling belt, which solves the problem of large subjectivity caused by the experience only to determine the filling belt.
  • the water-proof filling belt determined by the invention can be directly used as the water barrier.
  • the layer is used; for the weakly permeable filling belt, it can be used after grouting and transformation; the water-rich filling belt has the same permeability as the underlying ash, and can not be used as the aquifer; for the depth of the buried depth is more than 300m, that is, North China Technical support is provided for the coal mining under the coal mining area to achieve safe mining using the filling belt.
  • the structural discriminating indexes proposed by the present invention are all obtained from conventional hydrological experiments, and the obtaining method is relatively simple, and is easy for field personnel to operate, and is convenient for field application practice.
  • the given structural discriminant index and threshold value are applicable to the filling belt of North China coalfield, and the scope of application is wide, and the application prospect is broad.
  • FIG. 1 is a schematic view showing the structure of the top filling belt of the Ordovician according to the present invention and its water-rich property.
  • FIG. 2 is a method for determining a structural index of a filling belt according to the present invention.
  • FIG 3 is a contour map of the thickness of the top filling belt of the ash in the Baodian coal mine according to an embodiment of the present invention.
  • FIG. 4 is a distribution diagram of the water inrush coefficient of the coal ash of the Baodian coal mine in the embodiment of the present invention.
  • FIG. 5 is a distribution diagram of the water inrush coefficient of the 17 coal plus filling belt in the Baodian coal mine of the embodiment of the present invention.
  • the invention includes a structure discrimination index and a structure determination method
  • the structure discriminating index Firstly, the three filling belt structures of continuous filling, intermittent filling and non-filling are determined. According to the three filling belt structures, the discriminating indexes are determined as follows: drilling unit water inflow q, downhole water discharge Q and Austrian The permeability coefficient of the gray layer segment is K; then the threshold values of each index are determined according to the different water-blocking properties of the three structures;
  • the indicators are obtained by the following methods, as follows:
  • the filling belt is filled according to the degree of filling of the crack, which can be identified as: continuous filling, intermittent filling and no filling. Structure; the types of filling belts corresponding to the three types of filling belt structures are water-blocking type, weakly permeable type and water-rich type;
  • the three indicators of the filling belt structure are determined according to the pumping and discharging experiments, namely: the water inflow amount q of the drilling unit, the water discharge amount Q in the underground and the permeability coefficient K in the Austrian ash layer;
  • the ground drilling is based on the core take-up rate, the flushing fluid consumption and the degree of shale development, and comprehensively determine the development termination depth of the filling belt; determine the lithology adoption rate is less than 50%.
  • the depth of the shale development is the depth of development of the filling zone; thus, the interval of the pumping test is determined to be the interval from the entry of the ash to the depth, and the q value of the interval is calculated according to formula (1);
  • Q is the well flow, m3/s;
  • M is the thickness of the pumping interval, m;
  • sw is the depth of the water level in the well, m;
  • R is the radius of influence, m;
  • rw is the radius of the pumping well, m;
  • K is the permeability coefficient, cm/s; other parameters have the same meaning as formula (1);
  • the layer is a weakly permeable filling belt; because the unfilled structure is rich in water, when the pumping test is q>0.01L/sm, the pumping interval is rich in water, and the interval of q>0.01L/sm is determined to be rich in water.
  • Type filling belt
  • the water richness of the structure of the filling belt is the same as that of the 3-1 step.
  • the threshold of the Q threshold determined by the step 1 and the depth of the buried depth is greater than the average depth of the 300 m, and the threshold of Q is obtained;
  • the location of the coal with a depth of more than 300m is determined, and the water pressure value of the ash is determined to be 4 levels, which are 3MPa, 4MPa, 5MPa, 6MPa respectively, and the water level drop in the pumping and discharging test is assumed to be the maximum depth, ie 300m, 400m, 500m, 600m respectively; determine the threshold of the amount of water inflow from the borehole;
  • the water-rich structure of the filling belt is the same as the 3-1 step.
  • the permeability coefficient is K ⁇ 10 -5 cm/s in the pumping test, the test interval is water-tight, and the K is determined.
  • ⁇ 10 -5 cm/s is a water-filling type filling belt; when the permeability coefficient is 10 -5 ⁇ K ⁇ 10 -4 cm/s in the pumping test, the test interval is weakly permeable, and it is determined that 10 -5 ⁇ K ⁇ 10 -4 cm/s is a weakly permeable filling belt; in the pumping test, when the permeability coefficient is K>10 -4 cm/s, the test interval is rich in water, and it is determined that K>10 -4 cm/s is water-rich. Filling tape
  • the above evaluation index and its threshold value comprehensively determine the type of filling belt and the thickness of each type.
  • the water-proof filling belt it can be directly used as the water-repellent layer;
  • the weak-permeable filling belt after the grouting transformation It is used;
  • the water-rich filling belt has the same permeability as the underlying ash, and cannot be used as a water-repellent layer;
  • Embodiment 1 The structural discrimination index: the drilling unit water inflow amount q, the downhole water discharge amount Q, and the permeability coefficient K are as follows:
  • the ground drilling hole comprehensively determines the development termination depth of the filling belt according to the core take-up rate, the flushing liquid consumption and the degree of shale development. It is determined that the lithology adoption rate is less than 50%, and the termination depth of the shale development is the development termination depth of the filling zone; thus, the interval of the pumping test is determined to be the interval from the entry of the ash to the depth, and is calculated according to formula (1). The q value of the interval;
  • the water discharge test is carried out on the underground drilling hole, and the water discharge amount of the interval is recorded every 2 m; for the previous underground water discharge test without such a large density record, the recorded water discharge amount Q is performed.
  • the fitting analysis is described by a fitting formula of a certain water drainage hole, such as formula (2), and the water discharge amount obtained from each depth of entering the ash is obtained;
  • the thresholds of the indicators are determined by the following methods, and the specific steps are as follows:
  • Table 2 Classification of the type of filling belt in the eastern mining area - Q threshold
  • O2X-8 3.18 38.62 O2X-9 87.95 10.59 O2X-10 17 ------- O2X-11 22.57 9.63 O2X-13 ------- 19.18
  • the safety zone of the 17 coals is increased by 8.09km 2 when considering the filling zone, the safety zone is mainly distributed in the first exploration zone, the increase is 13.55%, and the relative safety zone is increased by 13.66km 2 .
  • the increase was 22.88%; the danger zone decreased by 21.81km 2 , a decrease of 36.43%.
  • the filling belt is more advantageous for the 17 coal mining, which greatly increases the safety zone and the relative safety zone, and the dangerous zone is greatly reduced.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Remote Sensing (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

一种奥灰顶部充填带结构判别指标及确定方法,对埋深深度大于300m型煤田基底奥灰顶部充填带,依据钻孔单位涌水量q值、井下钻孔放水试验Q值、渗透试验K值结构判别指标,划分奥灰顶部隔水充填带三种类型:隔水充填带、弱隔水充填带、富水带。隔水充填带可直接作为隔水层利用,弱隔水充填带可以通过注浆改造为隔水层后加以利用。本方法的结构判别指标均是从常规水文试验中获取,获取方法相对简单,易于现场人员操作。

Description

奥灰顶部充填带结构判别指标及确定方法 技术领域
本发明涉及一种含水地质结构判别指标及确定方法,特别是一种奥灰顶部充填带结构判别指标及确定方法。
背景技术
奥陶系灰岩一直作为华北型煤田区域上强含水层,是下组煤开采水害威胁的主要对象。且随着采深增加,水压增高,危险性越来越大。据估算,我国华北型煤田受深部高承压奥灰水威胁(突水系数大于0.1MPa/m)的煤炭地质储量约150亿吨。因此,如何实现下组煤安全带压开采,降低开采成本是近年来华北型煤田探索的目标。
新世纪年以前,学者多把焦点放在下组煤开采奥灰突水危险性评价或突水的机理研究上,忽略了奥陶系灰岩顶部为古风化壳、其地质组成结构和充填特征在许多矿井(区)可作为隔水层、弱隔(透)水层(适宜注浆改造为隔水层)的意义。新世纪以来,随着华北型煤田一些矿井开采深度已接近奥灰突水系数临界值,这样导致很大一部分埋深较大的下组煤不能被释放出来。如何实现下组煤的安全开采成为该阶段所面临的问题。基于大量的现场抽(放)水试验,表明有些钻孔初进奥灰时水量很小或无水,表明奥灰顶部为低渗介质,可以作为隔水层直接加以利用。而现场抽、放水试验也表明,一部分钻孔在进入奥灰顶部时出水量中等或出水量与下伏奥灰强含水层无区别,这表明充填带的渗透性差异较大,不能笼统的当做隔水层加以利用。从岩体结构控制渗流角度出发,认为该带结构是控制充填带表现不同渗透性的关键因素。
奥灰顶部充填带的类型划分及其隔水性利用,已被逐渐认识和少数开采实践矿井证实。但如何确定充填带的类型,目前主要是利用钻探取芯观察描述、裂隙统计等方法大致、定性划分充填带类型,人为主观因素较大,缺乏定量指标确定方法。
发明内容
本发明的目的是要提供一种奥灰顶部充填带结构判别指标及确定方法,解决利用钻探取芯观察描述、裂隙统计方法大致、定性划分充填带类型,人为主观因素较大,缺乏定量指标确定方法的问题。
本发明的目的是这样实现的:本发明包括结构判别指标及结构确定方法;
一、所述的结构判别指标:首先确定连续充填、断续充填和无充填三种充填带结构,依据三种充填带结构确定判别指标为:钻孔单位涌水量q、井下放水量Q和奥灰层段渗透系数K;然后再根据三种结构对应不同的隔水性能分别确定各指标的阈值;
各指标的是用如下方法获取的,具体说明如下:
1、首先对充填带野外露头进行大量取样,调查充填带裂隙的被泥质充填情况,提出充填带依据裂隙被充填的程度,可识别为:连续充填、断续充填和无充填三种充填带结构;三种充填带结构所对应的充填带类型分别为隔水型、弱透水型和富水型;
2、当充填带埋深深度大于300m时,依据抽、放水试验而确定充填带结构的三种指标,即:钻孔单位涌水量q、井下放水量Q和奥灰层段渗透系数K;
2-1、钻孔单位涌水量q指标的获取:地面钻孔根据岩芯采取率、冲洗液消耗量及泥质发育程度,综合确定充填带的发育终止深度;确定岩性采取率小于50%,泥质发育的终止深度,为充填带的发育终止深度;从而确定抽水试验的层段为自进入奥灰至该深度的层段,依据公式(1)计算得该层段的q值;
Figure PCTCN2015081603-appb-000001
式中,Q为井流量,m3/s;M为抽水层段厚度,m;sw为井中水位降深,m;R为影响半径,m;rw为抽水井的半径,m;
2-2、井下放水量Q指标的获取:对井下钻孔进行放水试验,每2m记录该层段的放水量;对没有如此大密度记录的以往井下放水试验,对其所记录的放水量Q,进行拟合分析,以某一放水钻孔的拟合公式进行说明,公式(2)并得到自进入进奥灰各深度的放水量值;
Q=63.56ln(x)-483.8    (2)
式中,x为进入奥灰的深度,m;Q进入到奥灰各深度的涌水量,m3/s;
2-3、渗透系数K的获取:对井下钻孔进行放水试验,分别记录各层段的稳定水压P1、及放水过程中阀门关死时的瞬时水压P2,即代表该层段放水试验过程中的水压值,计算出放水过程中的实际降深值S,依据公式(3)(4),计算得出该层段的渗透系数K;
Figure PCTCN2015081603-appb-000002
Figure PCTCN2015081603-appb-000003
式中,K为渗透系数,cm/s;其他参数与公式(1)意义相同;
3、钻孔单位涌水量q指标、井下放水量Q指标与渗透系数K指标的阈值的确定方法,具体步骤如下:
3-1、确定钻孔单位涌水量q的阈值:因连续充填结构为隔水的,在抽水试验中q<0.001L/s.m时,抽水层段表现隔水,确定q<0.001L/s.m的层段为隔水型充填带;因断续充填结构为弱透水的,在抽水试验中0.001<q<0.01L/s.m时,抽水层段表现弱透水,确定0.001<q<0.01L/s.m的层段为弱透水型充填带;因无充填结构为富水的,在抽水试验中q>0.01L/s.m时,抽水层段表现富水,确定q>0.01L/s.m的层段为富水型充填带;
3-2、确定井下放水量Q的阈值:充填带的结构富水性与3-1步骤相同,依据步骤1确定的q阈值与埋深深度大于300m平均降深的乘积,得到Q的阈值;以埋深深度大于300m下组煤的赋存位置,确定其奥灰水压值为4个水平,分别为3MPa、4MPa、5MPa、6MPa,并假定抽、放水试验水位降深为最大降深,即分别为300m、400m、500m、600m;确定钻 孔涌水量的阈值;
3-3、确定渗透系数K的阈值:充填带的结构富水性与3-1步骤相同,在抽水试验中渗透系数K<10-5cm/s时,试验层段表现为隔水,确定K<10-5cm/s为隔水型充填带;在抽水试验中渗透系数10-5<K<10-4cm/s时,试验层段表现为弱透水,确定10-5<K<10-4cm/s为弱透水型充填带;在抽水试验中,渗透系数K>10-4cm/s时,试验层段表现为富水,确定K>10-4cm/s为富水型充填带;
二、所述的结构确定方法具体步骤如下:
1、依据上述评价指标及其阈值、综合确定充填带的类型及各类型的厚度,对于隔水型充填带直接可作为隔水层加以利用;对于弱透水型充填带,可经注浆改造后加以利用;富水型充填带与下伏奥灰渗透性无异,不可作为隔水层利用;
2、绘制隔水型充填带的厚度等值线图、未考虑隔水型充填带的突水系数等值线图、考虑隔水型充填带的突水系数等值线图;并把上述两张等值线图进行对比、分析,确定下组煤的安全开采区域。
有益效果,由于采用了上述方案,给出了充填带的结构判别指标,弥补了充填带在埋深深度大于300m即华北型煤田大埋深状态下不容易识别问题;并给出了各指标的结构阈值,给出了充填带的各结构的量化标准,解决了以往只依靠经验来确定充填带所带来的主观性较大问题;本发明所确定的隔水型充填带直接可作为隔水层加以利用;对于弱透水型充填带,可经注浆改造后加以利用;富水型充填带与下伏奥灰渗透性无异,不可作为隔水层利用;为埋深深度大于300m即华北型煤田开采下组煤利用充填带实现安全开采提供了技术基础支持。
优点:本发明所提出的结构判别指标均是从常规水文试验中获取,获取方法相对简单,易于现场人员操作,便于现场应用实践。给出的结构判别指标和阈值对华北型煤田充填带均适用,适用范围广,应用前景广阔。
附图说明:
图1为本发明奥陶系顶部充填带结构及其富水性示意图。
图2为本发明充填带结构指标确定方法。
图3为本发明实施例鲍店煤矿奥灰顶部充填带厚度等值线图。
图4为本发明实施例鲍店煤矿奥灰对17煤突水系数分布图。
图5为本发明实施例鲍店煤矿奥灰对17煤加充填带突水系数分布图。
具体实施方式
本发明包括结构判别指标及结构确定方法;
一、所述的结构判别指标:首先确定连续充填、断续充填和无充填三种充填带结构,依据三种充填带结构确定判别指标为:钻孔单位涌水量q、井下放水量Q和奥灰层段渗透系数K;然后再根据三种结构对应不同的隔水性能分别确定各指标的阈值;
各指标的是用如下方法获取的,具体说明如下:
1、首先对充填带野外露头进行大量取样,调查充填带裂隙的被泥质充填情况,提出充填带依据裂隙被充填的程度,可识别为:连续充填、断续充填和无充填三种充填带结构;三种充填带结构所对应的充填带类型分别为隔水型、弱透水型和富水型;
2、当充填带埋深深度大于300m时,依据抽、放水试验而确定充填带结构的三种指标,即:钻孔单位涌水量q、井下放水量Q和奥灰层段渗透系数K;
2-1、钻孔单位涌水量q指标的获取:地面钻孔根据岩芯采取率、冲洗液消耗量及泥质发育程度,综合确定充填带的发育终止深度;确定岩性采取率小于50%,泥质发育的终止深度,为充填带的发育终止深度;从而确定抽水试验的层段为自进入奥灰至该深度的层段,依据公式(1)计算得该层段的q值;
Figure PCTCN2015081603-appb-000004
式中,Q为井流量,m3/s;M为抽水层段厚度,m;sw为井中水位降深,m;R为影响半径,m;rw为抽水井的半径,m;
2-2、井下放水量Q指标的获取:对井下钻孔进行放水试验,每2m记录该层段的放水量;对没有如此大密度记录的以往井下放水试验,对其所记录的放水量Q,进行拟合分析,以某一放水钻孔的拟合公式进行说明,公式(2)并得到自进入进奥灰各深度的放水量值;
Q=63.56ln(x)-483.8    (2)
式中,x为进入奥灰的深度,m;Q进入到奥灰各深度的涌水量,m3/s;
2-3、渗透系数K的获取:对井下钻孔进行放水试验,分别记录各层段的稳定水压P1、及放水过程中阀门关死时的瞬时水压P2,即代表该层段放水试验过程中的水压值,计算出放水过程中的实际降深值S,依据公式(3)(4),计算得出该层段的渗透系数K;
Figure PCTCN2015081603-appb-000005
Figure PCTCN2015081603-appb-000006
式中,K为渗透系数,cm/s;其他参数与公式(1)意义相同;
3、钻孔单位涌水量q指标、井下放水量Q指标与渗透系数K指标的阈值的确定方法,具体步骤如下:
3-1、确定钻孔单位涌水量q的阈值:因连续充填结构为隔水的,在抽水试验中q<0.001L/s.m时,抽水层段表现隔水,确定q<0.001L/s.m的层段为隔水型充填带;因断续充填结构为弱透水的,在抽水试验中0.001<q<0.01L/s.m时,抽水层段表现弱透水,确定0.001<q<0.01L/s.m的层段为弱透水型充填带;因无充填结构为富水的,在抽水试验中q>0.01L/s.m时,抽水层段表现富水,确定q>0.01L/s.m的层段为富水型充填带;
3-2、确定井下放水量Q的阈值:充填带的结构富水性与3-1步骤相同,依据步骤1确定的q阈值与埋深深度大于300m平均降深的乘积,得到Q的阈值;以埋深深度大于300m下组煤的赋存位置,确定其奥灰水压值为4个水平,分别为3MPa、4MPa、5MPa、6MPa,并假定抽、放水试验水位降深为最大降深,即分别为300m、400m、500m、600m;确定钻孔涌水量的阈值;
3-3、确定渗透系数K的阈值:充填带的结构富水性与3-1步骤相同,在抽水试验中渗透系数K<10-5cm/s时,试验层段表现为隔水,确定K<10-5cm/s为隔水型充填带;在抽水试验中渗透系数10-5<K<10-4cm/s时,试验层段表现为弱透水,确定10-5<K<10-4cm/s为弱透水型充填带;在抽水试验中,渗透系数K>10-4cm/s时,试验层段表现为富水,确定K>10-4cm/s为富水型充填带;
二、所述的结构确定方法,具体步骤如下:
1、依据上述评价指标及其阈值、综合确定充填带的类型及各类型的厚度,对于隔水型充填带直接可作为隔水层加以利用;对于弱透水型充填带,可经注浆改造后加以利用;富水型充填带与下伏奥灰渗透性无异,不可作为隔水层利用;
2、绘制隔水型充填带的厚度等值线图、未考虑隔水型充填带的突水系数等值线图、考虑隔水型充填带的突水系数等值线图;并把上述两张等值线图进行对比、分析,确定下组煤的安全开采区域。
下面通过图、表及实施例对本发明进一步说明
实施例1:所述的结构判别指标:钻孔单位涌水量q、井下放水量Q、渗透系数K具体步骤如下:
1、钻孔单位涌水量q指标的获取:地面钻孔根据岩芯采取率、冲洗液消耗量及泥质发育程度,综合确定充填带的发育终止深度。确定岩性采取率小于50%,泥质发育的终止深度,为充填带的发育终止深度;从而确定抽水试验的层段为自进入奥灰至该深度的层段,依据公式(1)计算得该层段的q值;
2、井下放水量Q指标的获取:对井下钻孔进行放水试验,每2m记录该层段的放水量;对没有如此大密度记录的以往井下放水试验,对其所记录的放水量Q,进行拟合分析,以某一放水钻孔的拟合公式进行说明,如公式(2)并得到自进入进奥灰各深度的放水量值;
3、渗透系数K的获取:对井下钻孔进行放水试验,分别记录各层段的稳定水压P1、及放水过程中阀门关死时的瞬时水压P2,即代表该层段放水试验过程中的水压值,从而计算出放水过程中的实际降深值S,依据公式(3)(4),可以计算得出该层段的渗透系数K;
所述的各指标(q、Q与K)阈值是通过如下方法确定的,具体步骤如下:
4、确定钻孔单位涌水量q<0.001L/s.m的层段为隔水型充填带;0.001<q<0.01L/s.m为弱透水型充填带;q>0.01L/s.m的层段为富水型充填带;依据渗透系数K值,确定K<10-5cm/s为隔水型充填带;10-5<K<10-4cm/s为弱透水型充填带;K>10-4cm/s为富水型充填带;并依 据东部矿区下组煤的赋存位置,确定其奥灰水压值为4个水平,分别为3MPa、4MPa、5MPa、6MPa,并假定抽、放水试验水位降深为最大将深,即分别为300m、400m、500m、600m;确定钻孔涌水量的阈值;
如表1、表2
表1东部矿区充填带类型划分依据——q、K阈值
Figure PCTCN2015081603-appb-000007
表2东部矿区充填带类型划分依据——Q阈值
6、依据上述评价指标及其阈值、综合确定充填带的类型及各类型的厚度(如表3、4、5),为安全起见,确定充填带厚度为三种指标综合确定的最小厚度
表3鲍店煤矿奥灰钻孔单位涌水量数据统计表
孔号 钻孔单位涌水量估算值q(L/(s.m)) 厚度(m) 充填带类型
O2-2 0.0079 49.42 弱透水层
O2-3 0.0078 54.00 弱透水层
O2-7 0.0022 83.6 弱透水层
O2-8 0.006 75.47 弱透水层
表4鲍店煤矿井下放水孔涌水量统计表
钻孔 隔水型充填带厚度(m) 弱透水型充填带厚度(m)
O2X-1 10.10 81.75
O2X-2 0.23 13.73
O2X-3 1.63 6.89
O2X-4 7.04 0.89
O2X-5 7.09 94.08
O2X-6 103.10 -------
O2X-7 19.74 40.74
O2X-8 3.18 38.62
O2X-9 87.95 10.59
O2X-10 17 -------
O2X-11 22.57 9.63
O2X-13 ------- 19.18
表5鲍店煤矿依据抽、放水试验所得的渗透系数值
Figure PCTCN2015081603-appb-000009
7、绘制鲍店煤矿隔水型充填带的厚度等值线图(图3)。以及未考虑隔水型充填带的突水系数等值线图(图4)、考虑隔水型充填带的突水系数等值线图(图5);并把上述两张等值线图进行对比、分析,分析两图的突水系数变化(表6),确定鲍店煤矿下组煤的安全开采区域。
表6鲍店矿安全性评价面积(km2)
Figure PCTCN2015081603-appb-000010
由表6及图4、图5可见,17煤考虑充填带时安全区由无增加8.09km2,安全区分布主要在第一勘探区,增幅达13.55%;相对安全区大约增加13.66km2,增幅为22.88%;危险区减小21.81km2,减小36.43%。可见充填带对17煤开采比较有利,使得安全区和相对安全区大幅度增加,危险区大幅度减小。

Claims (1)

  1. 一种奥灰顶部充填带结构判别指标及确定方法,其特征是:本发明包括结构判别指标及结构确定方法;
    一、所述的结构判别指标:首先确定连续充填、断续充填和无充填三种充填带结构,依据三种充填带结构确定判别指标为:钻孔单位涌水量q、井下放水量Q和奥灰层段渗透系数K;然后再根据三种结构对应不同的隔水性能分别确定各指标的阈值;
    各指标的是用如下方法获取的,具体说明如下:
    1、首先对充填带野外露头进行大量取样,调查充填带裂隙的被泥质充填情况,提出充填带依据裂隙被充填的程度,可识别为:连续充填、断续充填和无充填三种充填带结构;三种充填带结构所对应的充填带类型分别为隔水型、弱透水型和富水型;
    2、当充填带埋深深度大于300m时,依据抽、放水试验而确定充填带结构的三种指标,即:钻孔单位涌水量q、井下放水量Q和奥灰层段渗透系数K;
    2-1、钻孔单位涌水量q指标的获取:地面钻孔根据岩芯采取率、冲洗液消耗量及泥质发育程度,综合确定充填带的发育终止深度;确定岩性采取率小于50%,泥质发育的终止深度,为充填带的发育终止深度;从而确定抽水试验的层段为自进入奥灰至该深度的层段,依据公式(1)计算得该层段的q值;
    Figure PCTCN2015081603-appb-100001
    式中,Q为井流量,m3/s;M为抽水层段厚度,m;sw为井中水位降深,m;R为影响半径,m;rw为抽水井的半径,m;
    2-2、井下放水量Q指标的获取:对井下钻孔进行放水试验,每2m记录该层段的放水量;对没有如此大密度记录的以往井下放水试验,对其所记录的放水量Q,进行拟合分析,以某一放水钻孔的拟合公式进行说明,公式(2)并得到自进入进奥灰各深度的放水量值;
    Q=63.56ln(x)-483.8 (2)
    式中,x为进入奥灰的深度,m;Q进入到奥灰各深度的涌水量,m3/s;
    2-3、渗透系数K的获取:对井下钻孔进行放水试验,分别记录各层段的稳定水压P1、及放水过程中阀门关死时的瞬时水压P2,即代表该层段放水试验过程中的水压值,计算出放水过程中的实际降深值S,依据公式(3)(4),计算得出该层段的渗透系数K;
    Figure PCTCN2015081603-appb-100002
    Figure PCTCN2015081603-appb-100003
    式中,K为渗透系数,cm/s;其他参数与公式(1)意义相同;
    3、钻孔单位涌水量q指标、井下放水量Q指标与渗透系数K指标的阈值的确定方法,具体步骤如下:
    3-1、确定钻孔单位涌水量q的阈值:因连续充填结构为隔水的,在抽水试验中q<0.001L/s.m时,抽水层段表现隔水,确定q<0.001L/s.m的层段为隔水型充填带;因断续充填结构 为弱透水的,在抽水试验中0.001<q<0.01L/s.m时,抽水层段表现弱透水,确定0.001<q<0.01L/s.m的层段为弱透水型充填带;因无充填结构为富水的,在抽水试验中q>0.01L/s.m时,抽水层段表现富水,确定q>0.01L/s.m的层段为富水型充填带;
    3-2、确定井下放水量Q的阈值:充填带的结构富水性与3-1步骤相同,依据步骤1确定的q阈值与埋深深度大于300m平均降深的乘积,得到Q的阈值;以埋深深度大于300m下组煤的赋存位置,确定其奥灰水压值为4个水平,分别为3MPa、4MPa、5MPa、6MPa,并假定抽、放水试验水位降深为最大降深,即分别为300m、400m、500m、600m;确定钻孔涌水量的阈值;
    3-3、确定渗透系数K的阈值:充填带的结构富水性与3-1步骤相同,在抽水试验中渗透系数K<10-5cm/s时,试验层段表现为隔水,确定K<10-5cm/s为隔水型充填带;在抽水试验中渗透系数10-5<K<10-4cm/s时,试验层段表现为弱透水,确定10-5<K<10-4cm/s为弱透水型充填带;在抽水试验中,渗透系数K>10-4cm/s时,试验层段表现为富水,确定K>10- 4cm/s为富水型充填带;
    二、所述的结构确定方法,具体步骤如下:
    1、依据上述评价指标及其阈值、综合确定充填带的类型及各类型的厚度,对于隔水型充填带直接可作为隔水层加以利用;对于弱透水型充填带,可经注浆改造后加以利用;富水型充填带与下伏奥灰渗透性无异,不可作为隔水层利用;
    2、绘制隔水型充填带的厚度等值线图、未考虑隔水型充填带的突水系数等值线图、考虑隔水型充填带的突水系数等值线图;并把上述两张等值线图进行对比、分析,确定下组煤的安全开采区域。
PCT/CN2015/081603 2015-01-23 2015-06-17 奥灰顶部充填带结构判别指标及确定方法 WO2016115816A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2016134036A RU2671502C2 (ru) 2015-01-23 2015-06-17 Индексы структурного различия верхних зон заполнения ордовикского известняка и способ их определения
PL418845A PL237727B1 (pl) 2015-01-23 2015-06-17 Sposób określania indeksów rozróżnienia strukturalnego górnych stref wypełnienia wapienia ordowiku

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510037370.7A CN104569352B (zh) 2015-01-23 2015-01-23 奥灰顶部充填带结构判别指标的确定方法
CN201510037370.7 2015-01-23

Publications (1)

Publication Number Publication Date
WO2016115816A1 true WO2016115816A1 (zh) 2016-07-28

Family

ID=53085908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081603 WO2016115816A1 (zh) 2015-01-23 2015-06-17 奥灰顶部充填带结构判别指标及确定方法

Country Status (4)

Country Link
CN (1) CN104569352B (zh)
PL (1) PL237727B1 (zh)
RU (1) RU2671502C2 (zh)
WO (1) WO2016115816A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109993459A (zh) * 2019-04-15 2019-07-09 安徽大学 一种复杂多含水层矿井突水水源识别方法
CN110501473A (zh) * 2019-09-19 2019-11-26 六盘水师范学院 一种采空区探放水实验装置及其工作方法
CN111460675A (zh) * 2020-04-10 2020-07-28 安徽理工大学 一种低渗透性含水层群孔疏降多目标优化方法
CN111767670A (zh) * 2020-07-17 2020-10-13 中煤科工集团西安研究院有限公司 基于井下仰斜单孔放水试验的含水层地质参数反演方法
CN112727452A (zh) * 2020-09-29 2021-04-30 中国石油天然气集团有限公司 一种致密砂岩气藏可动水分布的描述方法
CN112814737A (zh) * 2021-03-10 2021-05-18 淮南矿业(集团)有限责任公司 基于叠层多分支水平井的陷落柱超前治理方法及系统
CN113294143A (zh) * 2021-04-16 2021-08-24 中煤能源研究院有限责任公司 一种煤层底板灰岩水害地面超前区域探查治理效果评价方法
CN114991872A (zh) * 2022-06-23 2022-09-02 中煤能源研究院有限责任公司 富水煤矿井下工作面涌水量分段预计方法、系统及设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104569352B (zh) * 2015-01-23 2016-09-28 中国矿业大学 奥灰顶部充填带结构判别指标的确定方法
CN107740689A (zh) * 2017-10-09 2018-02-27 中国矿业大学 一种隔水层再造勘探评价方法
CN112749155B (zh) * 2021-01-29 2021-11-16 北京城建勘测设计研究院有限责任公司 基于离散度最小原则勘察试验数据自动处理的方法
CN113063709B (zh) * 2021-02-03 2023-06-30 中煤科工集团西安研究院有限公司 一种复杂含水层条件下帷幕的确定方法
CN113202459B (zh) * 2021-06-11 2022-02-15 中国矿业大学 一种利用钻孔自然伽马测井预测断层渗透性的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030307A (en) * 1976-06-14 1977-06-21 Avedisian Armen G Impermeable ecological barrier and process of making same from reconstituted shale
CN103926633A (zh) * 2013-01-16 2014-07-16 中国矿业大学(北京) 煤层底板煤系隔水层防突性能的定量评价方法
CN103984042A (zh) * 2014-05-30 2014-08-13 中国矿业大学(北京) 中奥陶统灰岩古风化壳隔水性指数评价方法
CN104569352A (zh) * 2015-01-23 2015-04-29 中国矿业大学 奥灰顶部充填带结构判别指标及确定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1539655A1 (ru) * 1986-12-29 1990-01-30 Восточный научно-исследовательский углехимический институт Способ определени структурных параметров зернистых материалов
SU1422104A1 (ru) * 1987-01-06 1988-09-07 Всесоюзный научно-исследовательский институт горной геомеханики и маркшейдерского дела Способ определени предела длительной прочности горных пород
CN102608263B (zh) * 2012-02-23 2014-11-19 徐德金 基于渗流场与应力场耦合的断裂突水研究试验方法
RU2491537C1 (ru) * 2012-02-29 2013-08-27 Шлюмберже Текнолоджи Б.В. Способ определения свойств пористых материалов
CN103163056B (zh) * 2013-03-15 2014-12-24 陕西煤业化工技术研究院有限责任公司 一种矿井水文地质条件的探测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030307A (en) * 1976-06-14 1977-06-21 Avedisian Armen G Impermeable ecological barrier and process of making same from reconstituted shale
CN103926633A (zh) * 2013-01-16 2014-07-16 中国矿业大学(北京) 煤层底板煤系隔水层防突性能的定量评价方法
CN103984042A (zh) * 2014-05-30 2014-08-13 中国矿业大学(北京) 中奥陶统灰岩古风化壳隔水性指数评价方法
CN104569352A (zh) * 2015-01-23 2015-04-29 中国矿业大学 奥灰顶部充填带结构判别指标及确定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIU, QIMENG ET AL.: "The Method of Actual Measurement Coefficient of Water- Resisting to Evaluate Dangerousness of Ordovician Limestone Water Invasion", COAL GEOLOGY & EXPLORATION, vol. 35, 31 August 2007 (2007-08-31), pages 38 - 41 *
QIU, FALIN.: "Prevention and Control of Ordovician Limestone Water with Thin Water-Resisting Layer and High Pressure", SHANDONG COAL SCIENCE AND TECHNOLOGY, 31 October 2003 (2003-10-31), pages 25 - 26 *
WU, ZHENLING ET AL.: "Analysis on Preventing Water Effect of Aquifer in Ordovician Limestone in Evaluation of Coal Floor Water Outburst Danger", SAFETY IN COAL MINES, vol. 2, 28 February 2009 (2009-02-28), pages 40 - 42 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109993459A (zh) * 2019-04-15 2019-07-09 安徽大学 一种复杂多含水层矿井突水水源识别方法
CN109993459B (zh) * 2019-04-15 2022-09-23 安徽大学 一种复杂多含水层矿井突水水源识别方法
CN110501473A (zh) * 2019-09-19 2019-11-26 六盘水师范学院 一种采空区探放水实验装置及其工作方法
CN110501473B (zh) * 2019-09-19 2024-04-30 六盘水师范学院 一种采空区探放水实验装置及其工作方法
CN111460675A (zh) * 2020-04-10 2020-07-28 安徽理工大学 一种低渗透性含水层群孔疏降多目标优化方法
CN111767670A (zh) * 2020-07-17 2020-10-13 中煤科工集团西安研究院有限公司 基于井下仰斜单孔放水试验的含水层地质参数反演方法
CN111767670B (zh) * 2020-07-17 2024-04-09 中煤科工集团西安研究院有限公司 基于井下仰斜单孔放水试验的含水层地质参数反演方法
CN112727452A (zh) * 2020-09-29 2021-04-30 中国石油天然气集团有限公司 一种致密砂岩气藏可动水分布的描述方法
CN112727452B (zh) * 2020-09-29 2024-06-07 中国石油天然气集团有限公司 一种致密砂岩气藏可动水分布的描述方法
CN112814737B (zh) * 2021-03-10 2023-03-14 淮南矿业(集团)有限责任公司 基于叠层多分支水平井的陷落柱超前治理方法及系统
CN112814737A (zh) * 2021-03-10 2021-05-18 淮南矿业(集团)有限责任公司 基于叠层多分支水平井的陷落柱超前治理方法及系统
CN113294143B (zh) * 2021-04-16 2023-09-26 中煤能源研究院有限责任公司 一种煤层底板灰岩水害地面超前区域探查治理效果评价方法
CN113294143A (zh) * 2021-04-16 2021-08-24 中煤能源研究院有限责任公司 一种煤层底板灰岩水害地面超前区域探查治理效果评价方法
CN114991872A (zh) * 2022-06-23 2022-09-02 中煤能源研究院有限责任公司 富水煤矿井下工作面涌水量分段预计方法、系统及设备

Also Published As

Publication number Publication date
CN104569352B (zh) 2016-09-28
CN104569352A (zh) 2015-04-29
PL418845A1 (pl) 2017-07-31
RU2671502C2 (ru) 2018-11-01
RU2016134036A (ru) 2018-02-21
PL237727B1 (pl) 2021-05-17

Similar Documents

Publication Publication Date Title
WO2016115816A1 (zh) 奥灰顶部充填带结构判别指标及确定方法
Yang et al. Theories and practices of carbonate reservoirs development in China
CN111191849B (zh) 一种西部矿区深埋工作面涌水量预测方法
CN103323887B (zh) 一种煤矿采动稳定区煤层气储量的评估方法及系统
CN104847379B (zh) 一种奥灰顶部注浆加固工作面底板的方法
CN106522928B (zh) 一种酸化压裂后停泵测井口压降不稳定试井方法
WO2013159749A1 (zh) 一种矿井地下水的分布式存储及利用方法
CN102410014B (zh) 含水围岩煤层瓦斯压力测试方法
CN109577929B (zh) 一种超低渗致密油藏水平井建立有效驱替的定量评价方法
CN103902827A (zh) 一种碳酸盐岩水平井流动单元划分方法
CN103291265A (zh) 注水井调剖充分程度判别方法
CN112508330A (zh) 西部矿区开采扰动下矿井水来源判别方法
CN110359895B (zh) 一种非均质巨厚砂岩水平井分段压裂的探放水方法
CN106285776A (zh) 一种基于定向钻进技术的顶板水疏放方法
CN112814737B (zh) 基于叠层多分支水平井的陷落柱超前治理方法及系统
CN110749533B (zh) 一种基于等效隔水层厚度的保水采煤判别方法
Kaijun et al. Sparse well pattern and high-efficient development of metamorphic buried hills reservoirs in Bohai Sea area, China
Du The impacts of longwall mining on groundwater systems
CN115201439A (zh) 一种煤矿采空区岩溶水串层污染识别预警方法
CN110080197B (zh) 一种兰州红砂岩的分类方法以及相应工程措施的选择方法
CN103376094A (zh) 河湖采沙探测仪及探测方法
KR102017208B1 (ko) 천부 가스전의 천부 가스 생산 장치
CN113898411A (zh) 一种煤层底板高承压灰岩水原位保护技术体系
CN114000827B (zh) 一种基于压力渗流原理及电磁响应特征的陷落柱探查方法
Davis et al. FACTORS INVOLVED IN EVALUATING GROUND WATER IMPACTS OF DEEP COAL MINE DRAINAGE 1

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016134036

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878489

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 418845

Country of ref document: PL

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878489

Country of ref document: EP

Kind code of ref document: A1