[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016112499A1 - 资源指示的方法、接入点和终端 - Google Patents

资源指示的方法、接入点和终端 Download PDF

Info

Publication number
WO2016112499A1
WO2016112499A1 PCT/CN2015/070632 CN2015070632W WO2016112499A1 WO 2016112499 A1 WO2016112499 A1 WO 2016112499A1 CN 2015070632 W CN2015070632 W CN 2015070632W WO 2016112499 A1 WO2016112499 A1 WO 2016112499A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
field
identifier
time
radio frame
Prior art date
Application number
PCT/CN2015/070632
Other languages
English (en)
French (fr)
Inventor
朱俊
林英沛
罗俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/070632 priority Critical patent/WO2016112499A1/zh
Priority to CN201580060913.5A priority patent/CN107079441A/zh
Publication of WO2016112499A1 publication Critical patent/WO2016112499A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications and, more particularly, to methods, access points and terminals for resource indication.
  • Wireless transmission has a lower bit transmission rate than wired data transmission.
  • D2D Device to Device
  • the introduction of D2D communication technology can improve the spectrum utilization efficiency of the mobile network and increase the capacity of the air interface. The spectrum efficiency improvement is especially noticeable when multiple D2D communication links use the same resources.
  • the embodiments of the present invention provide a resource indication method, an access point, and a terminal, which can reduce the overhead of resource indication for D2D transmission and improve system throughput.
  • the first aspect provides a method for indicating a resource, where the access point AP generates a radio frame that carries the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate that the AP is the first terminal and the first a first time-frequency resource for the D2D communication, where the D2D identifier is used to indicate that the AP is the first D2D identifier allocated by the first terminal and the second terminal;
  • the first terminal and the second terminal send the radio frame, so that the first terminal and the second terminal perform D2D communication by using the first time-frequency resource.
  • the radio frame includes a D2D configuration field and a D2D mapping field, where the D2D configuration field is used to indicate that the radio frame includes the D2D mapping field and a The location information of the D2D mapping field, where the D2D mapping field includes location information of the first time-frequency resource and the first D2D identifier, where the first time-frequency resource is located in a subsequent uplink frame of the radio frame.
  • the D2D configuration field and the D2D mapping field are located after a traditional preamble field of the radio frame Non-traditional signaling fields.
  • the D2D configuration field is located in a HEW-SIG A part of the non-legacy signaling field or the non-legacy signaling field
  • the D2D mapping field is located in the HEW-SIG B portion of the non-legacy signaling field.
  • the D2D configuration field is located in a non-legacy signaling field of the radio frame or a data part of the radio frame
  • the D2D The mapping field is located in the data portion of the radio frame.
  • the radio frame includes a mapping field, where the mapping field is located in a HEW-SIG B part of the radio frame or the radio frame
  • the data portion, the at least one bit of the start of the mapping field is used to identify that the mapping field is a D2D mapping field
  • the D2D mapping field includes location information of the first time-frequency resource and the first D2D identifier.
  • the first time-frequency resource is located in a subsequent uplink frame of the radio frame.
  • the D2D mapping field includes only the resource configuration information and the D2D identifier.
  • the D2D mapping field includes only the resource configuration information, the D2D identifier, and D2D power control information.
  • the method before the access point AP generates the radio frame that carries the resource configuration information and the D2D identifier, the method further includes: receiving the first a request message sent by the terminal, the request message is used to request to establish a D2D communication link with the second terminal; send the request message to the second terminal; and receive a response message sent by the second terminal The response message is used to indicate that the second terminal agrees to establish a D2D communication link with the first terminal.
  • the request message carries a first information list of the neighboring terminal detected by the first terminal, where the response message carries The second information list of the neighboring terminal detected by the second terminal, after receiving the response message sent by the second terminal, the method further includes: determining a time-frequency resource and a D2D identifier in the existing D2D list of the AP Whether being occupied by the terminal in the first information list and the second information list, wherein the existing D2D list of the AP includes an established D2D communication connection The time-frequency resource and the D2D identifier occupied by the terminal; when the time-frequency resource and the D2D identifier in the existing D2D list of the AP are all occupied by the terminal in the first information list and the second information list, Allocating, to the first terminal and the second terminal, the first time-frequency resource and the first D2D identifier that are different from a time-frequency resource and a D2D
  • the first time-frequency resource and the first D2D identifier is allocated the same or different from the time-frequency resource and the D2D identifier in the existing D2D list of the AP.
  • the method further includes: respectively Sending a D2D link setup confirmation message to the first terminal and the second terminal, where the D2D link setup confirmation message includes the first D2D identifier.
  • the method further includes: receiving a D2D link release request sent by the first terminal or the second terminal; The first terminal and the second terminal send a D2D link release message.
  • the method further includes: when the AP determines that the first terminal or the second terminal is disconnected from the AP When the connection is opened, or the duration of the D2D link between the first terminal and the second terminal reaches a threshold, a D2D link release message is sent to the first terminal and the second terminal.
  • a second aspect provides a method for indicating a resource, where the first terminal receives a radio frame that is sent by an access point AP and carries the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate that the AP is a first time-frequency resource allocated by the first terminal and the second terminal for D2D communication, where the D2D identifier is used to indicate that the AP is the first D2D identifier allocated by the first terminal and the second terminal.
  • the first terminal negotiates a coded modulation mode with the second terminal by using the first time-frequency resource; the first terminal passes the time-frequency according to the coded modulation mode.
  • the resource performs D2D communication with the second terminal.
  • the radio frame includes a D2D configuration field and a D2D mapping field, where the D2D configuration field is used to indicate that the radio frame includes the D2D mapping field and The location information of the D2D mapping field, where the D2D mapping field includes location information of the first time-frequency resource and the first D2D identifier, where the first time-frequency resource is located in a subsequent uplink frame of the radio frame.
  • the D2D configuration field and the D2D mapping field are located in a non-legacy signaling field subsequent to a traditional preamble field of the radio frame.
  • the D2D configuration field is located in a HEW-SIG A part of the non-legacy signaling field or the non-legacy signaling field
  • the D2D mapping field is located in the HEW-SIG B portion of the non-legacy signaling field.
  • the D2D configuration field is located in a non-legacy signaling field of the radio frame or a data part of the radio frame
  • the D2D The mapping field is located in the data portion of the radio frame.
  • the radio frame includes a mapping field, where the mapping field is located in a HEW-SIG B part of the radio frame or the radio frame
  • the data portion, the at least one bit of the start of the mapping field is used to identify that the mapping field is a D2D mapping field
  • the D2D mapping field includes location information of the first time-frequency resource and the first D2D identifier.
  • the first time-frequency resource is located in a subsequent uplink frame of the radio frame.
  • the D2D mapping field includes only the resource configuration information and the D2D identifier.
  • the D2D mapping field includes only the resource configuration information, the D2D identifier, and D2D power control information.
  • the method before the receiving, by the first terminal, the radio frame sent by the access point AP, the method further includes: sending, to the AP, the request for establishing a request message of a D2D communication link with the second terminal, such that the AP sends the request message to the second terminal, and receives the second terminal according to the request And a response message sent by the message, the response message is used to indicate that the second terminal agrees to establish a D2D communication link with the first terminal.
  • the request message carries a first information list of the neighboring terminal detected by the first terminal, where the response message carries The second information list of the neighboring terminal detected by the second terminal, so that the AP is the first according to the first information list, the second information list, and the existing D2D list of the AP.
  • the terminal and the second terminal allocate the first time-frequency resource and the first D2D identifier for D2D communication, where the existing D2D list of the AP includes a time occupied by a terminal that has established a D2D communication connection Frequency resources and D2D identification.
  • the method before the receiving, by the first terminal, the radio frame sent by the access point AP, the method further includes: receiving the D2D link sent by the AP And establishing a confirmation message, where the D2D link setup confirmation message carries the first D2D identifier.
  • an access point AP including: a generating unit, configured to generate a radio frame that carries resource configuration information and a D2D identifier, where the resource configuration information is used to indicate that the AP is a first terminal and a first time-frequency resource for D2D communication, where the D2D identifier is used to indicate that the AP is a first D2D identifier allocated by the first terminal and the second terminal, and a sending unit is configured to: Transmitting the radio frame to the first terminal and the second terminal, so that the first terminal and the second terminal perform D2D communication by using the first time-frequency.
  • the radio frame includes a D2D configuration field and a D2D mapping field, where the D2D configuration field is used to indicate that the radio frame includes the D2D mapping field and a The location information of the D2D mapping field, where the D2D mapping field includes location information of the first time-frequency resource and the first D2D identifier, where the first time-frequency resource is located in a subsequent uplink frame of the radio frame.
  • the D2D configuration field and the D2D mapping field are located in a non-legacy signaling field subsequent to a traditional preamble field of the radio frame.
  • the D2D configuration field is located in a HEW-SIG A part of the non-legacy signaling field or the non-legacy signaling field
  • the D2D mapping field is located in the HEW-SIG B portion of the non-legacy signaling field.
  • the D2D configuration field is located in a non-legacy signaling field of the radio frame or a data part of the radio frame
  • the D2D The mapping field is located in the data portion of the radio frame.
  • the radio frame includes a mapping field, where the mapping field is located in a HEW-SIG B part of the radio frame or the radio frame
  • the data portion, the at least one bit of the start of the mapping field is used to identify that the mapping field is a D2D mapping field
  • the D2D mapping field includes location information of the first time-frequency resource and the first D2D identifier.
  • the first time-frequency resource is located in a subsequent uplink frame of the radio frame.
  • the D2D mapping field includes only the resource configuration information and the D2D identifier.
  • the D2D mapping field includes only the resource configuration information, the D2D identifier, and D2D power control information.
  • the AP further includes a receiving unit, where the determining unit is specifically configured to: receive, by using the receiving unit, the first terminal a request message for requesting establishment of a D2D communication link with the second terminal; transmitting, by the sending unit, the request message to the second terminal; And receiving a response message sent by the second terminal, where the response message is used to indicate that the second terminal agrees to establish a D2D communication link with the first terminal.
  • the request message carries a first information list of the neighboring terminal detected by the first terminal
  • the response message carries The second information list of the neighboring terminal detected by the second terminal
  • the determining unit is further configured to: determine whether the time-frequency resource and the D2D identifier in the existing D2D list of the AP are listed by the first information And occupying, by the terminal in the second information list, where the existing D2D list of the AP includes a time-frequency resource and a D2D identifier occupied by the terminal that has established the D2D communication connection; when the AP has an existing D2D list.
  • the first terminal and the second terminal are allocated with the existing D2D of the AP.
  • the first time-frequency resource and the first D2D identifier of the time-frequency resource and the D2D identifier in the list are different; when the time-frequency resource and the D2D identifier in the existing D2D list of the AP are partially a list of information and a list of the second information middle
  • the first terminal and the second terminal are allocated time-frequency resources that are not occupied by the terminals in the first information list and the second information list in the existing D2D list of the AP.
  • One of the D2D identifiers is used as the first time-frequency resource and the first D2D identifier, or the first terminal and the second terminal are allocated with time-frequency resources in an existing D2D list of the AP.
  • the D2D identifies the first time-frequency resource and the first D2D identifier that are different; when the time-frequency resource and the D2D identifier in the existing D2D list of the AP are not the first information list and the first When the terminal in the second information list is occupied, the first terminal and the second terminal are allocated the first time frequency that is the same as or different from the time-frequency resource and the D2D identifier in the existing D2D list of the AP. Resources and the first D2D identity.
  • the sending unit is further configured to: send a D2D link setup confirmation message to the first terminal and the second terminal, respectively.
  • the D2D link setup confirmation message includes the first D2D identifier.
  • the AP further includes a receiving unit, where the receiving unit is configured to: receive the first terminal or the second terminal And sending, by the sending unit, a D2D link release message to the first terminal and the second terminal.
  • the sending unit is further configured to: when the AP determines the first terminal or the second terminal, When the AP disconnects or the D2D link between the first terminal and the second terminal reaches a threshold, the D2D link release message is sent to the first terminal and the second terminal.
  • a fourth aspect provides a terminal, including: a receiving unit, configured to receive a radio frame that is sent by an access point AP and that carries resource configuration information and a D2D identifier, where the resource configuration information is used to indicate that the AP is Determining, by the terminal and the second terminal, a first time-frequency resource for D2D communication, where the D2D identifier is used to indicate that the AP is the first D2D identifier allocated by the terminal and the second terminal; The coding and modulation mode is negotiated with the second terminal by using the first time-frequency resource; and the communication unit is configured to perform D2D communication with the second terminal by using the time-frequency resource according to the code modulation mode.
  • the radio frame includes a D2D configuration field and a D2D mapping field, where the D2D configuration field is used to indicate that the radio frame includes the D2D mapping field and Position information of the D2D mapping field, where the D2D mapping field includes location information of the first time-frequency resource and the first D2D identifier, where the first time The frequency resource is located in a subsequent uplink frame of the radio frame.
  • the D2D configuration field and the D2D mapping field are located in a non-legacy signaling field subsequent to a traditional preamble field of the radio frame.
  • the D2D configuration field is located in a HEW-SIG A part of the non-legacy signaling field or the non-legacy signaling field
  • the D2D mapping field is located in the HEW-SIG B portion of the non-legacy signaling field.
  • the D2D configuration field is located in a non-legacy signaling field of the radio frame or a data part of the radio frame
  • the D2D The mapping field is located in the data portion of the radio frame.
  • the radio frame includes a mapping field, where the mapping field is located in a HEW-SIG B part of the radio frame or the radio frame
  • the data portion, the at least one bit of the start of the mapping field is used to identify that the mapping field is a D2D mapping field
  • the D2D mapping field includes location information of the first time-frequency resource and the first D2D identifier.
  • the first time-frequency resource is located in a subsequent uplink frame of the radio frame.
  • the D2D mapping field includes only the resource configuration information and the D2D identifier.
  • the D2D mapping field includes only the resource configuration information, the D2D identifier, and D2D power control information.
  • the communication unit is further configured to: send, to the AP, a request for establishing D2D communication with the second terminal a request message of the link, so that the AP sends the request message to the second terminal, and receives a response message sent by the second terminal according to the request message, where the response message is used to indicate the The second terminal agrees to establish a D2D communication link with the first terminal.
  • the request message carries a first information list of a neighboring terminal detected by the terminal, where the response message carries the a second information list of the neighboring terminal detected by the second terminal, so that the AP is configured according to the first information list, the second information list, and the existing D2D list of the AP.
  • the terminal and the second terminal allocate the first time-frequency resource and the first D2D identifier for D2D communication, where the existing D2D list of the AP includes the terminal occupied by the established D2D communication connection. Time-frequency resources and D2D identification.
  • the communication unit is further configured to: receive a D2D link setup confirmation message sent by the AP, where the D2D link The establishment confirmation message carries the first D2D identifier.
  • the embodiment of the present invention generates a radio frame carrying the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate that the AP allocates the first time-frequency resource for the D2D communication to the first terminal and the second terminal.
  • the D2D identifier is used to indicate that the AP allocates the first D2D identifier to the first terminal and the second terminal, and the AP sends the radio frame to the first terminal and the second terminal, so that the first terminal and the second terminal pass the first time frequency.
  • the resource negotiates the coding modulation mode and performs D2D communication, thereby providing a feasible resource allocation indication mechanism.
  • FIG. 1 is a flow chart of a method of resource indication in accordance with an embodiment of the present invention.
  • FIG. 2 is a flow chart of a method of resource indication in accordance with an embodiment of the present invention.
  • FIG. 3 is a structural diagram of a radio frame according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a radio frame according to another embodiment of the present invention.
  • FIG. 5 is a structural diagram of a radio frame according to another embodiment of the present invention.
  • FIG. 6 is a flow chart of D2D link setup in accordance with an embodiment of the present invention.
  • FIG. 7 is a flow diagram of D2D link release in accordance with one embodiment of the present invention.
  • FIG. 8 is a flowchart of D2D link release according to another embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of an access point in accordance with one embodiment of the present invention.
  • Figure 10 is a schematic block diagram of a terminal in accordance with one embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of an access point according to another embodiment of the present invention.
  • Figure 12 is a schematic block diagram of a terminal in accordance with another embodiment of the present invention.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • a User Equipment which may also be called a Mobile Terminal, a mobile user equipment, or the like, may communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network).
  • the user equipment may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device,
  • the wireless access network exchanges languages and/or data.
  • the terminal may be a user station (STA, Station) in the WLAN, and the user station may also be referred to as a system, a subscriber unit, an access terminal, a mobile station, a mobile station, a remote station, a remote terminal, and a mobile device.
  • STA User station
  • terminal wireless communication device, user agent, user device or UE (User Equipment).
  • the STA may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), and a wireless local area network ( A handheld device such as a Wi-Fi) communication function, a computing device, or other processing device connected to a wireless modem.
  • An access point (AP) can be used to communicate with the access terminal over the wireless local area network, and transmit data of the access terminal to the network side, or transmit data from the network side to the access terminal.
  • the frame structure of the Wi-Fi system mainly consists of a preamble, a service field, a data field, a tail field, and the like.
  • the preamble mainly implements frame detection, automatic gain control, frequency offset estimation, time synchronization, channel estimation and other functions.
  • the preamble can be divided into a traditional field part and a non-traditional field part.
  • L-STF Legacy-Short Training Field
  • L-LTF Traditional Long Training Field
  • L-SIG Legacy-Signal
  • AGC automatic gain control
  • L-LTF L-Long Training Field
  • AGC Automatic Gain Control
  • L-LTF L-Long Training Field
  • the L-SIG field is mainly used for carrying the data rate information and the data length information, so that the receiving device can determine the data according to the data rate information and the data length information.
  • the preamble carries the length of the data of the same frame, which in turn enables the determination of the appropriate time to remain idle.
  • the non-traditional field portion may be other fields in the preamble other than the above-described conventional portion.
  • the non-traditional part specifically includes which fields depend on the version of the 802.11 standard.
  • the 802.11 standard version has evolved from 802.11a/b to 802.11g, 802.11n, 802.11ac, and the newly proposed 802.11ax.
  • a MF (Mixed Format) preamble (hereinafter referred to as a preamble) is defined starting from 802.11n.
  • the legacy field portion of the preamble is identical to the preamble field of 802.11a, and includes both a legacy short training field, a legacy long training field, and a legacy signaling field.
  • the preamble after 802.11n includes non-traditional field parts in addition to the traditional field part, and specifically includes non-legacy signaling fields, non-traditional short training fields, and non-traditional long training fields.
  • the non-traditional field part of 802.11n is named by High Throughput (HT), that is, the non-traditional field part includes a high throughput signaling field, a high throughput short training field, and a high throughput long training field.
  • HT High Throughput
  • the non-traditional field part of 802.11ac is named after VHT (Very High Throughput), that is, the non-traditional field part includes, very high throughput signaling field A, very high throughput short training field, and very high throughput rate. Training field and very high throughput signaling field B.
  • VHT Very High Throughput
  • the differentiation of different protocol versions and the automatic detection of the receiving end can be realized by the modulation of symbols after the preamble conventional field.
  • FIG. 1 is a flow chart of a method of resource indication in accordance with an embodiment of the present invention.
  • the method of Figure 1 can be performed by an access point AP in a WLAN system.
  • the AP generates a radio frame that carries resource configuration information and a D2D identifier, where the resource configuration information is used to indicate that the AP allocates a first time-frequency resource for D2D communication for the first terminal and the second terminal, where the D2D identifier is used to indicate The AP allocates a first D2D identifier to the first terminal and the second terminal.
  • the AP sends a radio frame to the first terminal and the second terminal, so that the first terminal and the second terminal
  • the terminal negotiates the coding modulation mode through the first time-frequency resource and performs D2D communication.
  • the embodiment of the present invention generates a radio frame carrying the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate that the AP allocates the first time-frequency resource for the D2D communication to the first terminal and the second terminal.
  • the D2D identifier is used to indicate that the AP is the first D2D identifier that is allocated by the first terminal and the second terminal, and the AP sends the radio frame to the first terminal and the second terminal, so that the first terminal and the second terminal pass the first time-frequency resource.
  • Negotiating the coded modulation mode and performing D2D communication can reduce the overhead of resource indication for D2D transmission and improve system throughput.
  • the radio frame includes a D2D configuration field and a D2D mapping field, where the D2D configuration field is used to indicate that the radio frame includes a D2D mapping field and location information of the D2D mapping field, where the D2D mapping field includes the first time-frequency resource.
  • the radio frame of the WLAN system is mainly composed of a traditional preamble portion, a non-legacy preamble portion, an uplink subframe, and a downlink subframe.
  • the traditional preamble portion may be composed of three fields: L-STF, L-LTF, and L-SIG.
  • the non-legacy preamble portion may be composed of non-legacy signaling fields, non-traditional short training fields, and non-traditional long training fields.
  • the D2D configuration field and the D2D mapping field may be carried by the foregoing non-legacy signaling field. It should be understood that the specific name and structure of the non-legacy preamble portion may be determined by the Wi-Fi protocol version, which is not limited by the present invention.
  • the D2D configuration field may specifically include two sub-fields for indicating whether a D2D mapping field exists in the radio frame and location information of the D2D mapping field in the radio frame.
  • the first bit of the D2D configuration field may be used to indicate whether a D2D mapping field exists in the radio frame.
  • the first bit of the D2D configuration field may be set to "1" to indicate the wireless.
  • a D2D mapping field exists in the frame, and the "0" indicates that the D2D mapping field does not exist in the radio frame; the subsequent multiple bits of the D2D configuration field may be used to indicate the location information of the D2D mapping field in the radio frame, specifically The specific location of the D2D mapping field is explicitly indicated by indicating the location and offset of the start bit of the D2D mapping field in the radio frame.
  • the D2D mapping field may include one or more of resource configuration information, D2D identification, and D2D power control information.
  • the information based on the D2D terminal such as the modulation mode, the encoding format, and the number of space-time streams, is not included.
  • the resource configuration information may be composed of a subframe index (SF index) bit, a start resource block (Start RB) bit, and an offset (offset) bit.
  • the subframe index bit is used to indicate that the time-frequency resource allocated to the D2D transmission is located in the subframe of the radio frame
  • the start resource block bit is used to indicate that the start position of the time-frequency resource allocated to the D2D transmission is located in the subframe.
  • the resource block, the offset bit is used to indicate the time-frequency duration of the time-frequency resource allocated to the D2D transmission and the bandwidth information in the frequency domain.
  • the radio frame in this embodiment is an uplink-downlink cascading subframe structure, that is, the time-frequency resource allocated to the D2D transmission indicated by the D2D mapping field is located in the uplink subframe.
  • the D2D configuration field and the D2D mapping field are located in a non-legacy signaling field following a legacy preamble field of the radio frame.
  • the D2D configuration field and the D2D mapping field may be carried by a non-legacy signaling field, more specifically, 802.11ax, which may be the first part of its non-legacy signaling field (HEW-SIG A) and the second part (HEW- SIG B) bearer.
  • 802.11ax may be the first part of its non-legacy signaling field (HEW-SIG A) and the second part (HEW- SIG B) bearer.
  • the non-traditional field may be named by High Efficiency WLAN (HEW) or High Efficiency (HE), that is, the non-traditional field part includes, the high efficiency wireless local area network letter HEW-SIG field, High Efficiency Wireless LAN Short Training (HEW-STF) field, and High Efficiency Wireless LAN Long Training (HEW-LTF) field, or High Efficiency Signaling (HE-SIG) field, high efficiency short training (HE-STF) field and High Efficiency Long Training (HE-LTF) field.
  • HEW-SIG High Efficiency Wireless LAN Short Training
  • HEW-LTF High Efficiency Wireless LAN Long Training
  • the naming of the non-traditional field of the 802.11ax preamble is not limited. For convenience of description, the following embodiments mainly use the HEW-SIG as an example for description.
  • the D2D configuration field is located in the HEW-SIG A part of the non-legacy signaling field or the HEW-SIG B part of the non-legacy signaling field, and the D2D mapping field is located in the HEW-SIG of the non-legacy signaling field. Part B.
  • the D2D configuration field may be located in the HEW-SIG A portion and the D2D mapping field may be located in the HEW-SIG B portion.
  • both the D2D configuration field and the D2D mapping field bits may be located in the HEW-SIG B portion.
  • the D2D configuration field is located in a non-legacy signaling field of the radio frame or a data portion of the radio frame, and the D2D mapping field is located in a data portion of the radio frame.
  • the D2D configuration field may be located in a non-legacy signaling field of the trigger frame or a data portion after the trigger frame, and the D2D mapping field may be located in the data of the radio frame. section.
  • the D2D configuration field is used to indicate whether the trigger frame includes a D2D mapping field and location information of a D2D mapping field, and the D2D mapping field is used to indicate a location and a D2D identifier of a time-frequency resource allocated to the D2D transmission, where The time-frequency resource indicated by the D2D mapping field is located in the uplink frame subsequent to the trigger frame.
  • the D2D mapping field can To include one or more of resource configuration information, D2D identification, and D2D power control information.
  • the information based on the D2D terminal such as the modulation mode, the encoding format, and the number of space-time streams, is not included.
  • the radio frame includes a mapping field, where the mapping field is located in a HEW-SIG B part of the radio frame or a data part of the radio frame, and at least one bit of the start of the mapping field is used to identify the mapping field as a D2D mapping.
  • the field, the D2D mapping field includes location information of the first time-frequency resource and a first D2D identifier, where the first time-frequency resource is located in a subsequent uplink frame of the radio frame.
  • the radio frame may also include only the D2D mapping field, and does not include the D2D configuration field.
  • the D2D mapping field can be used as a subclass, identified by one or more bits starting from the field.
  • the specific identification method can be as shown in Table 1:
  • the mapping field can be identified as a specific subclass. For example, when the D2D device reads the “10” identification bit, it is confirmed as a D2D mapping field, and can continue to read the subsequent bit to learn the allocated D2D.
  • the specific location of the resource if the D2D device reads the "00" identification bit, it can choose to discard. It should be understood that, for convenience of explanation, Table 1 is merely an example, and the specific identification manner is not limited thereto.
  • the D2D mapping field includes only resource configuration information and a D2D identifier.
  • the D2D terminal-based information such as the modulation mode, the coding format, and the number of space-time streams, is not included.
  • the modulation mode and the coding format may be negotiated and determined by the D2D communication terminal after the D2D connection is established, thereby saving the D2D resource allocation indication. Resource overhead, and can increase the speed at which the D2D terminal reads the D2D mapping field (D2D resource mapping information), thereby increasing the speed of D2D connection establishment.
  • the D2D mapping field includes only resource configuration information, D2D identifier, and D2D power control information.
  • the D2D terminal-based information such as the modulation mode, the coding format, and the number of space-time streams, is not included.
  • the modulation mode and the coding format may be negotiated and determined by the D2D communication terminal after the D2D connection is established, thereby saving the D2D resource allocation indication.
  • Resource overhead and can improve D2D terminal reading D2D mapping field (D2D resource mapping information) Speed, which increases the speed at which D2D connections are established.
  • the method before the AP generates the radio frame that carries the resource configuration information and the D2D identifier, the method further includes: receiving a request message sent by the first terminal, where the request message is used to request to establish a D2D with the second terminal. a communication link; sending a request message to the second terminal; receiving a response message sent by the second terminal, the response message being used to indicate that the second terminal agrees to establish a D2D communication link with the first terminal.
  • STA1 When the first terminal (STA1) needs to perform D2D communication with the second terminal (STA2), and STA1 detects that STA2 meets the condition (distance, signal quality, etc.) with which D2D communication is performed, STA1 may send a D2D with STA2 to the AP.
  • a request message for the link which may include measurement information of STA1 during the D2D discovery phase (such as a list of neighboring terminals).
  • the AP After receiving the D2D link setup request message sent by STA1, the AP sends a request message for establishing a D2D link between STA1 and STA2 to the D2D target station STA2.
  • STA2 After receiving the request message, STA2 determines whether it agrees to establish a D2D link with STA1 and returns a response message to the AP. Specifically, if the STA2 agrees to establish a D2D link with the STA1, the response message may include the measurement information of the STA2 in the D2D discovery phase (such as the neighboring terminal list), and otherwise does not include the measurement information of the STA2 in the D2D discovery phase (such as the neighboring terminal list). ).
  • the AP After receiving the response message from STA2, the AP determines whether STA2 agrees to establish a D2D communication link with STA1. If it is judged that STA2 does not agree, the AP replies to the STA2 with a D2D link setup response to reject the D2D link request of STA1. If it is determined that the STA1 agrees, the AP checks whether the STAs in the existing D2D list of the AP are in the neighboring terminal list reported by the STA1 and the STA2 according to the measurement information of the STA1 and the STA2, such as the neighboring terminal list.
  • the request message carries a first information list of the neighboring terminal detected by the first terminal
  • the response message carries the second information list of the neighboring terminal detected by the second terminal
  • the second terminal sends the second information.
  • the method further includes: determining whether the time-frequency resource and the D2D identifier in the existing D2D list of the AP are occupied by the terminal in the first information list and the second information list, wherein the existing D2D list of the AP includes The time-frequency resource and the D2D identifier occupied by the terminal that establishes the D2D communication connection; when the time-frequency resource and the D2D identifier in the existing D2D list of the AP are all occupied by the terminal in the first information list and the second information list, The first terminal and the second terminal allocate a first time-frequency resource and a first D2D identifier that are different from the time-frequency resource and the D2D identifier in the existing D2D list of the AP; and the time
  • the terminal allocates a first time-frequency resource and a first D2D identifier that are different from the time-frequency resource and the D2D identifier in the existing D2D list of the AP; when the time-frequency resource and the D2D identifier in the existing D2D list of the AP are not
  • the first terminal and the second terminal are allocated the same first time frequency resource and the same as the time-frequency resource and the D2D identifier in the existing D2D list of the AP.
  • a D2D logo
  • the first information list and the second information list are neighbor list information of STA1 and STA2, respectively, which respectively record information of sites adjacent to STA1 and STA2, if STA1 or STA2 and the first information list and the second information list Any site with the same time-frequency resources for D2D communication will cause large interference.
  • the existing D2D list of the AP may include the information of the terminal that has established the D2D connection and has not released the connected D2D communication pair, the occupied D2D identifier, and the corresponding time-frequency resource.
  • the AP detects whether the STAs in the local D2D list are in the neighboring terminal list (the first information list and the second information list) reported by STA1 and STA2, and also determines which D2D identifiers and corresponding times in the existing D2D list of the AP.
  • the frequency resource has been occupied by the terminal in the first information list and the second information list, thereby being able to ensure that these occupied D2D identifiers and time-frequency resources are not allocated to STA1 and STA2, thereby causing D2D communication interference.
  • the D2D identifier and the time-frequency resource that are not occupied by the terminal in the first information list and the second information list may be preferentially allocated to STA1 and STA2, thereby It can improve the utilization of spectrum resources and improve system throughput.
  • the access point AP further includes: sending a D2D link setup confirmation message to the first terminal and the second terminal, respectively.
  • the D2D link setup confirmation message includes a first D2D identifier.
  • the D2D identifier may be notified to STA1 and STA2, so that STA1 and STA2 are receiving the indication for D2D transmission.
  • the D2D identifier in the identified radio frame can be matched.
  • the method further includes: receiving a D2D link release request sent by the first terminal or the second terminal; and sending a D2D link release message to the first terminal and the second terminal.
  • the release of the D2D link can be initiated by the terminal side.
  • the STA may initiate a D2D link release request.
  • the AP sends a D2D link release message to STA1 and STA2, informing that the D2D link between STA1 and STA2 is invalid, and releasing the corresponding time-frequency resource and D2D identifier. Accordingly, the AP can delete information about the D2D links of STA1 and STA2 in its local D2D list.
  • the method further includes: when the AP determines that the first terminal or the second terminal is disconnected from the AP, or the D2D link between the first terminal and the second terminal reaches a threshold, The first terminal and the second terminal send a D2D link release message.
  • the release of the D2D link can also be initiated by the AP side.
  • the AP finds that the party (STA1 or STA2) of the D2D communication leaves the current BSS or disconnects from the current AP, or the D2D link exists for a certain time (the maximum duration), the AP may initiate the D2D link release.
  • the embodiment of the present invention generates a radio frame carrying the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate that the AP allocates the first time-frequency resource for the D2D communication to the first terminal and the second terminal.
  • the D2D identifier is used to indicate that the AP is the first D2D identifier that is allocated by the first terminal and the second terminal, and the AP sends the radio frame to the first terminal and the second terminal, so that the first terminal and the second terminal pass the first time-frequency resource.
  • Negotiating the coded modulation mode and performing D2D communication can reduce the overhead of resource indication for D2D transmission and improve system throughput.
  • the D2D resource indication does not include information based on the D2D terminal, such as a modulation mode, an encoding format, and a space-time stream number, the modulation mode, the encoding format, and the like may be negotiated and determined by the D2D communication terminal after the D2D connection is established, thereby saving
  • the D2D resource allocation indicates the resource overhead, and can improve the speed at which the D2D terminal reads the D2D mapping field (D2D resource mapping information), thereby improving the speed of D2D connection establishment.
  • D2D resource mapping information D2D resource mapping information
  • FIG. 2 is a flow chart of a method of resource indication in accordance with an embodiment of the present invention.
  • the first terminal receives the radio frame that is sent by the access point AP and carries the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate that the AP allocates the first time for the D2D communication to the first terminal and the second terminal.
  • the frequency resource, the D2D identifier is used to indicate that the AP is the first D2D identifier allocated by the first terminal and the second terminal.
  • the first terminal negotiates a coded modulation mode with the second terminal by using the first time-frequency resource.
  • the first terminal performs D2D with the second terminal by using a time-frequency resource according to the code modulation mode. Communication.
  • the embodiment of the present invention generates a radio frame carrying the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate that the AP allocates the first time-frequency resource for the D2D communication to the first terminal and the second terminal.
  • the D2D identifier is used to indicate that the AP is the first D2D identifier that is allocated by the first terminal and the second terminal, and the AP sends the radio frame to the first terminal and the second terminal, so that the first terminal and the second terminal pass the first time-frequency resource.
  • Negotiating the coded modulation mode and performing D2D communication can reduce the overhead of resource indication for D2D transmission and improve system throughput.
  • the radio frame includes a D2D configuration field and a D2D mapping field, where the D2D configuration field is used to indicate that the radio frame includes a D2D mapping field and location information of the D2D mapping field, where the D2D mapping field includes the first time-frequency resource.
  • the radio frame of the WLAN system is mainly composed of a traditional preamble portion, a non-legacy preamble portion, an uplink subframe, and a downlink subframe.
  • the traditional preamble portion may be composed of three fields: L-STF, L-LTF, and L-SIG.
  • the non-legacy preamble portion may be composed of non-legacy signaling fields, non-traditional short training fields, and non-traditional long training fields.
  • the D2D configuration field and the D2D mapping field may be carried by the foregoing non-legacy signaling field. It should be understood that the specific name and structure of the non-legacy preamble portion may be determined by the Wi-Fi protocol version, which is not limited by the present invention.
  • the D2D configuration field may specifically include two sub-fields for indicating whether a D2D mapping field exists in the radio frame and location information of the D2D mapping field in the radio frame.
  • the first bit of the D2D configuration field may be used to indicate whether a D2D mapping field exists in the radio frame.
  • the first bit of the D2D configuration field may be set to "1".
  • a D2D mapping field exists in the radio frame, and “0” indicates that there is no D2D mapping field in the radio frame; subsequent bits of the D2D configuration field may be used to indicate location information of the D2D mapping field in the radio frame, specifically The specific location of the D2D mapping field may be explicitly indicated by indicating the location and offset of the start bit of the D2D mapping field in the radio frame.
  • the D2D mapping field may include one or more of resource configuration information, D2D identification, and D2D power control information.
  • the information based on the D2D terminal such as the modulation mode, the encoding format, and the number of space-time streams, is not included.
  • the resource configuration information may be composed of a subframe index (SF index) bit, a start resource block (Start RB) bit, and an offset (offset) bit.
  • the subframe index bit is used to indicate that the time-frequency resource allocated to the D2D transmission is located in the subframe of the radio frame
  • the start resource block bit is used to indicate that the start position of the time-frequency resource allocated to the D2D transmission is located in the subframe.
  • the resource block, the offset bit is used to indicate the time-frequency duration of the time-frequency resource allocated to the D2D transmission and the bandwidth information in the frequency domain.
  • the radio frame in this embodiment is an uplink-downlink cascading subframe structure, that is, the time-frequency resource allocated to the D2D transmission indicated by the D2D mapping field is located in the uplink subframe.
  • the D2D configuration field and the D2D mapping field are located in a non-legacy signaling field following a legacy preamble field of the radio frame.
  • the D2D configuration field and the D2D mapping field may be carried by a non-legacy signaling field, more specifically, 802.11ax, which may be the first part of its non-legacy signaling field (HEW-SIG A) and the second part (HEW- SIG B) bearer.
  • 802.11ax may be the first part of its non-legacy signaling field (HEW-SIG A) and the second part (HEW- SIG B) bearer.
  • the non-traditional field may be named by High Efficiency WLAN (HEW) or High Efficiency (HE), that is, the non-traditional field part includes, the high efficiency wireless local area network letter HEW-SIG field, High Efficiency Wireless LAN Short Training (HEW-STF) field, and High Efficiency Wireless LAN Long Training (HEW-LTF) field, or High Efficiency Signaling (HE-SIG) field, high efficiency short training (HE-STF) field and High Efficiency Long Training (HE-LTF) field.
  • HEW-SIG High Efficiency Wireless LAN Short Training
  • HEW-LTF High Efficiency Wireless LAN Long Training
  • the naming of the non-traditional field of the 802.11ax preamble is not limited. For convenience of description, the following embodiments mainly use the HEW-SIG as an example for description.
  • the D2D configuration field is located in the HEW-SIG A part of the non-legacy signaling field or the HEW-SIG B part of the non-legacy signaling field, and the D2D mapping field is located in the non-legacy signaling field.
  • HEW-SIG Part B the D2D mapping field is located in the non-legacy signaling field.
  • the D2D configuration field may be located in the HEW-SIG A portion and the D2D mapping field may be located in the HEW-SIG B portion.
  • both the D2D configuration field and the D2D mapping field bits may be located in the HEW-SIG B portion.
  • the D2D configuration field is located in a non-legacy signaling field of the radio frame or a data portion of the radio frame, and the D2D mapping field is located in a data portion of the radio frame.
  • the D2D configuration field may be located in a non-legacy signaling field or a data portion of the radio frame, and the D2D mapping field may be located in a data portion of the radio frame.
  • the D2D configuration field is used to indicate whether the trigger frame includes a D2D mapping field and location information of a D2D mapping field, and the D2D mapping field is used to indicate a location and a D2D identifier of a time-frequency resource allocated to the D2D transmission, where The time-frequency resource indicated by the D2D mapping field is located in the uplink frame subsequent to the trigger frame.
  • the D2D mapping field may include resource configuration information, One or more of the D2D identification and D2D power control information. However, the information based on the D2D terminal, such as the modulation mode, the encoding format, and the number of space-time streams, is not included.
  • the radio frame includes a mapping field, where the mapping field is located in a HEW-SIG B part of the radio frame or a data part of the radio frame, and at least one bit of the start of the mapping field is used to identify the mapping field as a D2D mapping.
  • the field, the D2D mapping field includes location information of the first time-frequency resource and a first D2D identifier, where the first time-frequency resource is located in a subsequent uplink frame of the radio frame.
  • the radio frame may also include only the D2D mapping field, and does not include the D2D configuration field.
  • the D2D mapping field can be used as a subclass, identified by one or more bits starting from the field.
  • the specific identification method can be as shown in Table 1 above.
  • the mapping field can be identified as a specific subclass. For example, when the D2D device reads the “10” identification bit, it is confirmed as a D2D mapping field, and can continue to read the subsequent bit to learn the allocated D2D.
  • the specific location of the resource if the D2D device reads the "00" identification bit, it can choose to discard. It should be understood that, for convenience of explanation, Table 1 is merely an example, and the specific identification manner is not limited thereto.
  • the D2D mapping field includes only resource configuration information and a D2D identifier.
  • the D2D terminal-based information such as the modulation mode, the coding format, and the number of space-time streams, is not included.
  • the modulation mode and the coding format may be negotiated and determined by the D2D communication terminal after the D2D connection is established, thereby saving the D2D resource allocation indication. Resource overhead, and can increase the speed at which the D2D terminal reads the D2D mapping field (D2D resource mapping information), thereby increasing the speed of D2D connection establishment.
  • the D2D mapping field includes only resource configuration information, D2D identifier, and D2D power control information.
  • the D2D terminal-based information such as the modulation mode, the coding format, and the number of space-time streams, is not included.
  • the modulation mode and the coding format may be negotiated and determined by the D2D communication terminal after the D2D connection is established, thereby saving the D2D resource allocation indication. Resource overhead, and can increase the speed at which the D2D terminal reads the D2D mapping field (D2D resource mapping information), thereby increasing the speed of D2D connection establishment.
  • the method before the first terminal receives the radio frame sent by the access point AP, the method further includes: sending, to the AP, a request message for requesting to establish a D2D communication link with the second terminal, so that The AP sends a request message to the second terminal, and receives a response message sent by the second terminal according to the request message, where the response message is used to indicate that the second terminal agrees to establish a D2D communication link with the first terminal.
  • the first terminal (STA1) needs to perform D2D communication with the second terminal (STA2), and When STA1 detects that STA2 meets the conditions (distance, signal quality, etc.) with which D2D communication is performed, STA1 may send a request message for establishing a D2D link with STA2 to the AP, and the request message may include measurement information of STA1 in the D2D discovery phase (such as a list of neighboring terminals). After receiving the D2D link setup request message sent by STA1, the AP sends a request message for establishing a D2D link between STA1 and STA2 to the D2D target station STA2.
  • STA2 After receiving the request message, STA2 determines whether it agrees to establish a D2D link with STA1 and replies with a response message. Specifically, if the STA2 agrees to establish a D2D link with the STA1, the response message may include the measurement information of the STA2 in the D2D discovery phase (such as the neighboring terminal list), and otherwise does not include the measurement information of the STA2 in the D2D discovery phase (such as the neighboring terminal list). ).
  • the AP After receiving the response message from STA2, the AP determines whether STA2 agrees to establish a D2D communication link with STA1. If it is judged that STA2 does not agree, the AP replies to the STA2 with a D2D link setup response to reject the D2D link request of STA1. If it is determined that the STA1 agrees, the AP checks whether the STAs in the existing D2D list of the AP are in the neighboring terminal list reported by the STA1 and the STA2 according to the measurement information of the STA1 and the STA2, such as the neighboring terminal list.
  • the request message carries a first information list of the neighboring terminals detected by the first terminal
  • the response message carries a second information list of the neighboring terminals detected by the second terminal
  • the AP is configured according to the An information list, a second information list, and an existing D2D list of the AP
  • the first time and the second terminal are allocated a first time-frequency resource and a first D2D identifier for the D2D communication
  • the existing D2D list of the AP includes The time-frequency resource and the D2D identifier occupied by the terminal that has established the D2D communication connection.
  • the first information list and the second information list are neighbor list information of STA1 and STA2, respectively, which respectively record information of sites adjacent to STA1 and STA2, if STA1 or STA2 and the first information list and the second information list Any site with the same time-frequency resources for D2D communication will cause large interference.
  • the existing D2D list of the AP may include the information of the terminal that has established the D2D connection and has not released the connected D2D communication pair, the occupied D2D identifier, and the corresponding time-frequency resource.
  • the AP detects whether the STAs in the local D2D list are in the neighboring terminal list (the first information list and the second information list) reported by STA1 and STA2, and also determines which D2D identifiers and corresponding times in the existing D2D list of the AP.
  • the frequency resource has been occupied by the terminal in the first information list and the second information list, thereby being able to ensure that these occupied D2D identifiers and time-frequency resources are not allocated to STA1 and STA2, thereby causing D2D communication interference.
  • the D2D identifier and the time-frequency resource that are not occupied by the terminal in the first information list and the second information list may be preferentially allocated to STA1 and STA2, thereby It can improve the utilization of spectrum resources and improve system throughput.
  • the method before the first terminal receives the radio frame sent by the access point AP, the method further includes: receiving a D2D link setup confirmation message sent by the AP, where the D2D link setup confirmation message carries the first D2D Logo.
  • the D2D identifier may be notified to STA1 and STA2, so that STA1 and STA2 are receiving the indication for D2D transmission.
  • the radio frame of the resource location information is matched, the D2D identifier in the identified radio frame can be matched.
  • the embodiment of the present invention generates a radio frame carrying the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate that the AP allocates the first time-frequency resource for the D2D communication to the first terminal and the second terminal.
  • the D2D identifier is used to indicate that the AP is the first D2D identifier that is allocated by the first terminal and the second terminal, and the AP sends the radio frame to the first terminal and the second terminal, so that the first terminal and the second terminal pass the first time-frequency resource.
  • Negotiating the coded modulation mode and performing D2D communication can reduce the overhead of resource indication for D2D transmission and improve system throughput.
  • the D2D resource indication does not include information based on the D2D terminal, such as a modulation mode, an encoding format, and a space-time stream number, the modulation mode, the encoding format, and the like may be negotiated and determined by the D2D communication terminal after the D2D connection is established, thereby saving
  • the D2D resource allocation indicates the resource overhead, and can improve the speed at which the D2D terminal reads the D2D mapping field (D2D resource mapping information), thereby improving the speed of D2D connection establishment.
  • D2D resource mapping information D2D resource mapping information
  • FIG. 3 is a structural diagram of a radio frame according to an embodiment of the present invention.
  • the radio frame is mainly composed of a traditional preamble portion, an unconventional preamble portion, an uplink subframe, and a downlink subframe.
  • the D2D configuration field is located in the HEW-SIG A field of the non-legacy preamble portion; the D2D mapping field is located in the HEW-SIG B field of the non-legacy preamble portion.
  • the D2D configuration field may specifically include two sub-fields for indicating whether a D2D mapping field exists in the radio frame and location information of the D2D mapping field.
  • the D2D mapping field may include resource configuration information, D2D identification, and D2D power control information, wherein the D2D power control information is optional.
  • the resource configuration information may be indexed by a subframe (SF) Index) Bit, Start RB bit and offset bits.
  • the subframe index bit is used to indicate that the time-frequency resource allocated to the D2D transmission is located in the subframe of the radio frame
  • the start resource block bit is used to indicate that the start position of the time-frequency resource allocated to the D2D transmission is located in the subframe.
  • Which resource block, the offset bit is used to indicate the time-frequency duration of the time-frequency resource allocated to the D2D transmission and the bandwidth information in the frequency domain.
  • FIG. 4 is a structural diagram of a radio frame according to another embodiment of the present invention.
  • the radio frame is mainly composed of a legacy preamble portion, an unconventional preamble portion, an uplink subframe, and a downlink subframe.
  • the D2D configuration field and the D2D mapping field are both located in the HEW-SIG B field of the non-legacy preamble. For the specific format of the field, refer to FIG. 3 above, and details are not described herein again.
  • FIG. 5 is a structural diagram of a radio frame according to another embodiment of the present invention.
  • the D2D configuration field and the D2D mapping field are located in the data portion (trigger frame) of the radio frame, similar to the above embodiment, and the D2D configuration field is used to indicate whether the trigger frame includes the D2D mapping field and the position of the D2D mapping field.
  • the information, the D2D mapping field is used to indicate the location of the time-frequency resource allocated to the D2D transmission and the D2D identifier, where the time-frequency resource indicated by the D2D mapping field is located in the uplink frame subsequent to the trigger frame.
  • FIG. 6 is a flow chart of D2D link setup in accordance with an embodiment of the present invention.
  • the first terminal sends a request message to the access point AP.
  • STA1 When the first terminal (STA1) needs to perform D2D communication with the second terminal (STA2), and STA1 detects that STA2 meets the condition (distance, signal quality, etc.) with which D2D communication is performed, STA1 may send a D2D with STA2 to the AP.
  • a request message for the link which may include measurement information of STA1 during the D2D discovery phase (such as a list of neighboring terminals).
  • the AP After receiving the D2D link setup request message sent by STA1, the AP sends a request message for establishing a D2D link between STA1 and STA2 to the D2D target station STA2.
  • the second terminal sends a response message to the AP.
  • STA2 After receiving the request message, STA2 determines whether it agrees to establish a D2D link with STA1 and replies with a response message. Specifically, if the STA2 agrees to establish a D2D link with the STA1, the response message may include the measurement information of the STA2 in the D2D discovery phase (such as the neighboring terminal list), and otherwise does not include the measurement information of the STA2 in the D2D discovery phase (such as the neighboring terminal list). ).
  • the AP After receiving the response message from STA2, the AP determines whether STA2 agrees to establish a D2D communication link with STA1. If it is judged that STA2 does not agree, the AP replies to the STA2 with a D2D link setup response to reject the D2D link request of STA1. If it is judged that STA1 agrees, the process proceeds to S603.
  • the existing D2D list of the AP includes the time-frequency resource and the D2D identifier occupied by the terminal that has established the D2D communication connection.
  • the AP allocates time-frequency resources and D2D identifiers to STA1 and STA2.
  • the AP determines, according to the judgment result of the step S603, a policy for allocating the time-frequency resource and the D2D identifier to the STA1 and the STA2, which may be:
  • the first terminal and the second terminal are allocated with the existing D2D of the AP.
  • the first time-frequency resource and the first D2D identifier of the time-frequency resource and the D2D identifier in the list are different;
  • the existing terminal and the second terminal are allocated the existing D2D list of the AP.
  • the time-frequency resource and the D2D identifier that are not occupied by the terminal in the first information list and the second information list are used as the first time-frequency resource and the first D2D identifier, or the first terminal and the second terminal are allocated with the existing AP.
  • the first time-frequency resource and the first D2D identifier of the time-frequency resource and the D2D identifier in the D2D list are different;
  • the first terminal and the second terminal are allocated with the existing D2D of the AP.
  • the first time-frequency resource and the first D2D identifier of the time-frequency resource and the D2D identifier in the list are the same or different.
  • the D2D identifier can be notified to STA1 and STA2, so that STA1 and STA2 Upon receiving the radio frame indicating the D2D transmission resource location information, the D2D identity in the identified radio frame can be matched.
  • the AP sends a radio frame to the first terminal and the second terminal.
  • the radio frame includes a D2D configuration field and a D2D mapping field, where the D2D configuration field is used to indicate whether the radio frame includes a D2D mapping field and location information of the D2D mapping field, where the D2D mapping field includes location information of the first time-frequency resource and a first D2D identifier.
  • the first time-frequency resource is located in a subsequent uplink frame of the radio frame.
  • the first terminal and the second terminal negotiate a coded modulation mode by using a first time-frequency resource and perform D2D communication.
  • the embodiment of the present invention generates a radio frame carrying the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate that the AP allocates the first time-frequency resource for the D2D communication to the first terminal and the second terminal.
  • the D2D identifier is used to indicate that the AP is the first D2D identifier that is allocated by the first terminal and the second terminal, and the AP sends the radio frame to the first terminal and the second terminal, so that the first terminal and the second terminal pass the first time-frequency resource.
  • Negotiating the coded modulation mode and performing D2D communication can reduce the overhead of resource indication for D2D transmission and improve system throughput.
  • the D2D resource indication does not include information based on the D2D terminal, such as a modulation mode, an encoding format, and a space-time stream number, the modulation mode, the encoding format, and the like may be negotiated and determined by the D2D communication terminal after the D2D connection is established, thereby saving
  • the D2D resource allocation indicates the resource overhead, and can improve the speed at which the D2D terminal reads the D2D mapping field (D2D resource mapping information), thereby improving the speed of D2D connection establishment.
  • D2D resource mapping information D2D resource mapping information
  • FIG. 7 is a flow diagram of D2D link release in accordance with one embodiment of the present invention.
  • the release of the D2D link can be initiated by the terminal side.
  • the STA may initiate a D2D link release request.
  • the AP sends a D2D link release message to STA1 and STA2, informing that the D2D link between STA1 and STA2 is invalid, and releasing the corresponding time-frequency resource and D2D identifier. Accordingly, the AP can delete information about the D2D links of STA1 and STA2 in its local D2D list.
  • FIG. 8 is a flowchart of D2D link release according to another embodiment of the present invention.
  • the release of the D2D link can also be initiated by the AP side.
  • the AP discovers that the party (STA1 or STA2) of the D2D communication has left the current BSS or disconnected from the current AP, or the D2D link exists.
  • the AP can initiate a D2D link release.
  • a D2D link release message is sent to STA1 and STA2, and the D2D link between STA1 and STA2 is notified to be invalid, and the corresponding time-frequency resource and D2D identifier are released. Accordingly, the AP can delete information about the D2D links of STA1 and STA2 in its local D2D list.
  • the access point AP 90 of FIG. 9 includes a generating unit 91 and a transmitting unit 92.
  • the generating unit 91 generates a radio frame carrying the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate the first time-frequency resource allocated by the AP for the first terminal and the second terminal for D2D communication, and the D2D identifier is used to indicate
  • the AP 90 is the first D2D identifier allocated by the first terminal and the second terminal; the sending unit 92 sends the radio frame to the first terminal and the second terminal, so that the first terminal and the second terminal perform D2D communication by using the first time-frequency resource. .
  • the access point AP 90 of the embodiment of the present invention generates a radio frame carrying the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate that the AP 90 allocates the first time for the D2D communication to the first terminal and the second terminal.
  • the frequency resource, the D2D identifier is used to indicate that the AP 90 is the first D2D identifier allocated by the first terminal and the second terminal, and the AP 90 sends the radio frame to the first terminal and the second terminal, so that the first terminal and the second terminal pass the first
  • the one-time frequency resource negotiates the coded modulation mode and performs D2D communication, thereby reducing the overhead of resource indication for D2D transmission and improving system throughput.
  • the radio frame includes a D2D configuration field and a D2D mapping field, where the D2D configuration field is used to indicate that the radio frame includes a D2D mapping field and location information of the D2D mapping field, where the D2D mapping field includes the first time-frequency resource.
  • the radio frame of the WLAN system is mainly composed of a traditional preamble portion, a non-legacy preamble portion, an uplink subframe, and a downlink subframe.
  • the traditional preamble portion may be composed of three fields: L-STF, L-LTF, and L-SIG.
  • the non-legacy preamble portion may be composed of non-legacy signaling fields, non-traditional short training fields, and non-traditional long training fields.
  • the D2D configuration field and the D2D mapping field may be carried by the foregoing non-legacy signaling field. It should be understood that the specific name and structure of the non-legacy preamble portion may be determined by the Wi-Fi protocol version, which is not limited by the present invention.
  • the D2D configuration field may specifically include two sub-fields for indicating whether a D2D mapping field exists in the radio frame and location information of the D2D mapping field.
  • the first bit of the D2D configuration field may be used to indicate whether a D2D mapping field exists in the radio frame.
  • the first bit of the D2D configuration field may be set to "1" to indicate the wireless.
  • a D2D mapping field exists in the frame, and a "0" indicates that the D2D mapping field does not exist in the radio frame.
  • the subsequent multiple bits of the D2D configuration field may be used to indicate the location information of the D2D mapping field, specifically by indicating the D2D mapping field.
  • the location and offset of the start bit in the radio frame explicitly indicates the specific location of the D2D map field.
  • the D2D mapping field may include one or more of resource configuration information, D2D identification, and D2D power control information.
  • the information based on the D2D terminal such as the modulation mode, the encoding format, and the number of space-time streams, is not included.
  • the resource configuration information may be composed of a subframe index (SF index) bit, a start resource block (Start RB) bit, and an offset (offset) bit.
  • the subframe index bit is used to indicate that the time-frequency resource allocated to the D2D transmission is located in the subframe of the radio frame
  • the start resource block bit is used to indicate that the start position of the time-frequency resource allocated to the D2D transmission is located in the subframe.
  • Which resource block, the offset bit is used to indicate the time-frequency duration of the time-frequency resource allocated to the D2D transmission and the bandwidth information in the frequency domain.
  • the radio frame in this embodiment is an uplink-downlink cascading subframe structure, that is, the time-frequency resource allocated to the D2D transmission indicated by the D2D mapping field is located in the uplink subframe.
  • the D2D configuration field and the D2D mapping field are located in a non-legacy signaling field following a legacy preamble field of the radio frame.
  • the D2D configuration field and the D2D mapping field may be carried by a non-legacy signaling field, more specifically, 802.11ax, which may be the first part of its non-legacy signaling field (HEW-SIG A) and the second part (HEW- SIG B) bearer.
  • 802.11ax may be the first part of its non-legacy signaling field (HEW-SIG A) and the second part (HEW- SIG B) bearer.
  • the non-traditional field may be named by High Efficiency WLAN (HEW) or High Efficiency (HE), that is, the non-traditional field part includes, the high efficiency wireless local area network letter HEW-SIG field, High Efficiency Wireless LAN Short Training (HEW-STF) field, and High Efficiency Wireless LAN Long Training (HEW-LTF) field, or High Efficiency Signaling (HE-SIG) field, high efficiency short training (HE-STF) field and High Efficiency Long Training (HE-LTF) field.
  • HEW-SIG High Efficiency Wireless LAN Short Training
  • HEW-LTF High Efficiency Wireless LAN Long Training
  • the naming of the non-traditional field of the 802.11ax preamble is not limited. For convenience of description, the following embodiments mainly use the HEW-SIG as an example for description.
  • the D2D configuration field is located in the HEW-SIG A part of the non-legacy signaling field or the HEW-SIG B part of the non-legacy signaling field, and the D2D mapping field is located in the HEW-SIG of the non-legacy signaling field. Part B.
  • the D2D configuration field may be located in the HEW-SIG A portion and the D2D mapping field may be located in the HEW-SIG B portion.
  • both the D2D configuration field and the D2D mapping field bits may be located in the HEW-SIG B portion.
  • the D2D configuration field is located in a non-legacy signaling field of the radio frame or a data portion of the radio frame, and the D2D mapping field is located in a data portion of the radio frame.
  • the D2D configuration field may be located in a non-legacy signaling field of the trigger frame or a data portion after the trigger frame, and the D2D mapping field may be located in the data of the radio frame. section.
  • the D2D configuration field is used to indicate whether the trigger frame includes a D2D mapping field and location information of a D2D mapping field, and the D2D mapping field is used to indicate a location and a D2D identifier of a time-frequency resource allocated to the D2D transmission, where The time-frequency resource indicated by the D2D mapping field is located in the uplink frame subsequent to the trigger frame.
  • the D2D mapping field may include one or more of resource configuration information, D2D identification, and D2D power control information.
  • the information based on the D2D terminal such as the modulation mode, the encoding format, and the number of space-time streams, is not included.
  • the radio frame includes a mapping field, where the mapping field is located in a HEW-SIG B part of the radio frame or a data part of the radio frame, and at least one bit of the start of the mapping field is used to identify the mapping field as a D2D mapping.
  • the field, the D2D mapping field includes location information of the first time-frequency resource and a first D2D identifier, where the first time-frequency resource is located in a subsequent uplink frame of the radio frame.
  • the radio frame may also include only the D2D mapping field, and does not include the D2D configuration field.
  • the D2D mapping field can be used as a subclass, identified by one or more bits starting from the field. For a specific example, reference may be made to Table 1 above, and details are not described herein again.
  • the D2D mapping field includes only resource configuration information and a D2D identifier.
  • the D2D terminal-based information such as the modulation mode, the coding format, and the number of space-time streams, is not included.
  • the modulation mode and the coding format may be negotiated and determined by the D2D communication terminal after the D2D connection is established, thereby saving the D2D resource allocation indication. Resource overhead, and can increase the speed at which the D2D terminal reads the D2D mapping field (D2D resource mapping information), thereby increasing the speed of D2D connection establishment.
  • the D2D mapping field includes only resource configuration information, D2D identifier, and D2D power control information.
  • the D2D terminal-based information such as the modulation mode, the coding format, and the number of space-time streams, is not included.
  • the modulation mode and the coding format may be negotiated and determined by the D2D communication terminal after the D2D connection is established, thereby saving the D2D resource allocation indication. Resource overhead, and can increase the speed at which the D2D terminal reads the D2D mapping field (D2D resource mapping information), thereby increasing the speed of D2D connection establishment.
  • the AP 90 further includes a receiving unit, where the receiving unit is specifically configured to: receive a request message sent by the first terminal, where the request message is used to request to establish a D2D communication link with the second terminal;
  • the sending unit 92 sends a request message to the second terminal, and receives a response message sent by the second terminal, where the response message is used to indicate that the second terminal agrees to establish a D2D communication link with the first terminal.
  • the first terminal (STA1) needs to perform D2D communication with the second terminal (STA2), and STA1 detects that STA2 meets the condition (distance, signal quality, etc.) with which D2D communication is performed, and then STA1 can transmit to STA 90 to establish with STA2.
  • a request message of the D2D link which may include measurement information of STA1 in the D2D discovery phase (such as a list of neighboring terminals).
  • the AP 90 After receiving the D2D link setup request message sent by STA1, the AP 90 sends a request message for establishing a D2D link between STA1 and STA2 to the D2D target station STA2.
  • STA2 After receiving the request message, STA2 determines whether it agrees to establish a D2D link with STA1 and replies with a response message. Specifically, if the STA2 agrees to establish a D2D link with the STA1, the response message may include the measurement information of the STA2 in the D2D discovery phase (such as the neighboring terminal list), and otherwise does not include the measurement information of the STA2 in the D2D discovery phase (such as the neighboring terminal list). ).
  • the AP 90 After receiving the response message of STA2, the AP 90 determines whether STA2 agrees to establish a D2D communication link with STA1. If it is determined that STA2 does not agree, the AP 90 replies to the STA2 with a D2D link setup response to reject the D2D link request of STA1. If it is determined that STA1 agrees, the AP 90 checks whether the STAs in the existing D2D list of the AP 90 are in the neighboring terminal list reported by STA1 and STA2 according to the measurement information of STA1 and STA2, such as the neighboring terminal list.
  • the request message carries a first information list of the neighboring terminals detected by the first terminal
  • the response message carries a second information list of the neighboring terminals detected by the second terminal
  • the AP further includes a determining unit.
  • the determining unit is configured to: determine whether the time-frequency resource and the D2D identifier in the existing D2D list of the AP 90 are occupied by the terminal in the first information list and the second information list, where the existing D2D list of the AP 90 includes The time-frequency resource and the D2D identifier occupied by the terminal that establishes the D2D communication connection; when the time-frequency resource and the D2D identifier in the existing D2D list of the AP 90 are all occupied by the terminal in the first information list and the second information list, Assigning, to the first terminal and the second terminal, a first time-frequency resource and a first D2D identifier different from the time-frequency resource and the D2D identifier in the existing D2D list of the AP 90; when the AP 90 has an existing D2D list When the frequency resource and the D2D identifier are partially occupied by the terminal in the first information list and the second information list, the first terminal and the second terminal are allocated the first information list and the second
  • the time-frequency resource and the D2D identifier occupied by the terminal are used as the first time-frequency resource and the first D2D identifier, or the first terminal and the second terminal are allocated with the time-frequency resource and the D2D in the existing D2D list of the AP 90.
  • the first terminal and the second terminal allocate a first time-frequency resource and a first D2D identifier that are the same as or different from the time-frequency resource and the D2D identifier in the existing D2D list of the AP 90.
  • the first information list and the second information list are neighbor list information of STA1 and STA2, respectively, which respectively record information of sites adjacent to STA1 and STA2, if STA1 or STA2 and the first information list and the second information list Any site with the same time-frequency resources for D2D communication will cause large interference.
  • the existing D2D list of the AP 90 may include the information of the terminal that has established the D2D connection and has not released the connected D2D communication pair, the occupied D2D identifier, and the corresponding time-frequency resource.
  • the AP 90 detects whether the STAs in the local D2D list are in the neighboring terminal list (the first information list and the second information list) reported by STA1 and STA2, and also determines which D2D identifiers and corresponding D2D identifiers in the existing D2D list of the AP 90.
  • the time-frequency resources have been occupied by the terminals in the first information list and the second information list, thereby being able to ensure that the occupied D2D identifiers and time-frequency resources are not allocated to STA1 and STA2, thereby causing D2D communication interference.
  • the D2D identifier and the time-frequency resource that are not occupied by the terminal in the first information list and the second information list may be preferentially allocated to STA1 and STA2.
  • the sending unit 92 is further configured to: send a D2D link setup confirmation message to the first terminal and the second terminal, respectively, where the D2D link setup confirmation message includes the first D2D identifier.
  • the D2D identifier can be notified to STA1 and STA2, so that STA1 and STA2 are receiving the indication for D2D.
  • the radio frame of the resource location information is transmitted, the D2D identifier in the identified radio frame can be matched.
  • the AP 90 further includes a receiving unit, where the receiving unit is configured to: receive a D2D link release request sent by the first terminal or the second terminal; the sending unit 92 is further configured to: use the first terminal and the first terminal The second terminal sends a D2D link release message.
  • the release of the D2D link can be initiated by the terminal side.
  • the STA may initiate a D2D link release request.
  • the AP 90 sends a D2D link release message to STA1 and STA2, informing that the D2D link between STA1 and STA2 is invalid, and releasing the corresponding time-frequency resource and D2D identifier. Accordingly, the AP 90 can delete information about the D2D links of STA1 and STA2 in its local D2D list.
  • the sending unit 92 is further configured to: when the AP 90 determines that the first terminal or the second terminal is disconnected from the AP 90, or the D2D link between the first terminal and the second terminal exists When the threshold is reached, a D2D link release message is sent to the first terminal and the second terminal. It should be understood that the release of the D2D link can also be initiated by the AP 90 side. When the AP 90 finds that the party (STA1 or STA2) of the D2D communication leaves the current BSS or disconnects from the current AP 90, or the duration of the D2D link has reached the threshold (the maximum duration), the AP 90 may initiate the D2D link release. .
  • the embodiment of the present invention generates a radio frame carrying the resource configuration information and the D2D identifier by using the access point AP 90, where the resource configuration information is used to indicate that the AP 90 allocates the first time for the D2D communication to the first terminal and the second terminal.
  • the frequency resource, the D2D identifier is used to indicate that the AP 90 is the first D2D identifier allocated by the first terminal and the second terminal, and the AP 90 sends the radio frame to the first terminal and the second terminal, so that the first terminal and the second terminal pass the first
  • the one-time frequency resource negotiates the coded modulation mode and performs D2D communication, thereby reducing the overhead of resource indication for D2D transmission and improving system throughput.
  • the D2D resource indication does not include information based on the D2D terminal, such as a modulation mode, an encoding format, and a space-time stream number, the modulation mode, the encoding format, and the like may be negotiated and determined by the D2D communication terminal after the D2D connection is established, thereby saving
  • the D2D resource allocation indicates the resource overhead, and can improve the speed at which the D2D terminal reads the D2D mapping field (D2D resource mapping information), thereby improving the speed of D2D connection establishment.
  • D2D resource mapping information D2D resource mapping information
  • FIG. 10 is a schematic block diagram of a terminal in accordance with one embodiment of the present invention.
  • the terminal 100 of FIG. 10 includes a receiving unit 101, a negotiating unit 102, and a communication unit 103.
  • the receiving unit 101 receives the radio frame that is sent by the access point AP and carries the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate that the AP allocates the first time-frequency resource for D2D communication for the terminal and the second terminal, D2D
  • the first D2D identifier is used to indicate that the AP is allocated to the terminal and the second terminal
  • the negotiation unit 102 negotiates a coded modulation mode with the second terminal by using the first time-frequency resource
  • the communication unit 103 uses the time-frequency resource according to the code modulation mode.
  • the second terminal performs D2D communication.
  • the terminal 100 may be a first terminal that establishes a D2D communication connection with the second terminal.
  • the embodiment of the present invention generates a radio frame carrying the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate that the AP allocates the first time-frequency resource for the D2D communication to the first terminal and the second terminal.
  • the D2D identifier is used to indicate that the AP is the first D2D identifier that is allocated by the first terminal and the second terminal, and the AP sends the radio frame to the first terminal and the second terminal, so that the first terminal and the second terminal pass the first time-frequency resource.
  • Negotiating the coded modulation mode and performing D2D communication can reduce the overhead of resource indication for D2D transmission and improve system throughput.
  • the radio frame includes a D2D configuration field and a D2D mapping field, where the D2D configuration field is used to indicate that the radio frame includes a D2D mapping field and location information of the D2D mapping field, where the D2D mapping field includes the first time-frequency resource.
  • the radio frame of the WLAN system is mainly composed of a traditional preamble portion, a non-legacy preamble portion, an uplink subframe, and a downlink subframe.
  • the traditional preamble portion may be composed of three fields: L-STF, L-LTF, and L-SIG.
  • the non-legacy preamble portion may be composed of non-legacy signaling fields, non-traditional short training fields, and non-traditional long training fields.
  • the D2D configuration field and the D2D mapping field may be carried by the foregoing non-legacy signaling field. It should be understood that the specific name and structure of the non-legacy preamble portion may be determined by the Wi-Fi protocol version, which is not limited by the present invention.
  • the D2D configuration field may specifically include two sub-fields for indicating whether a D2D mapping field exists in the radio frame and location information of the D2D mapping field.
  • the first bit of the D2D configuration field may be used to indicate whether a D2D mapping field exists in the radio frame.
  • the first bit of the D2D configuration field may be set to "1".
  • a D2D mapping field exists in the radio frame, and a “0” indicates that the D2D mapping field does not exist in the radio frame; subsequent bits of the D2D configuration field may be used to indicate location information of the D2D mapping field, specifically by indicating D2D.
  • the position and offset of the start bit of the mapping field in the radio frame to explicitly indicate the specific location of the D2D mapping field.
  • the D2D mapping field may include one or more of resource configuration information, D2D identification, and D2D power control information.
  • the information based on the D2D terminal such as the modulation mode, the encoding format, and the number of space-time streams, is not included.
  • the resource configuration information may be composed of a subframe index (SF index) bit, a start resource block (Start RB) bit, and an offset (offset) bit.
  • the subframe index bit is used to indicate that the time-frequency resource allocated to the D2D transmission is located in the subframe of the radio frame
  • the start resource block bit is used to indicate that the start position of the time-frequency resource allocated to the D2D transmission is located in the subframe.
  • the resource block, the offset bit is used to indicate the time-frequency duration of the time-frequency resource allocated to the D2D transmission and the bandwidth information in the frequency domain.
  • the radio frame in this embodiment is an uplink-downlink cascading subframe structure, that is, the time-frequency resource allocated to the D2D transmission indicated by the D2D mapping field is located in the uplink subframe.
  • the D2D configuration field and the D2D mapping field are located in a non-legacy signaling field following a legacy preamble field of the radio frame.
  • the D2D configuration field and the D2D mapping field may be carried by a non-legacy signaling field, more specifically, 802.11ax, which may be the first part of its non-legacy signaling field (HEW-SIG A) and the second part (HEW- SIG B) bearer.
  • the non-traditional field may be named by High Efficiency WLAN (HEW) or High Efficiency (HE), that is, the non-traditional field part includes, the high efficiency wireless local area network letter HEW-SIG field, High Efficiency Wireless LAN Short Training (HEW-STF) field, and High Efficiency Wireless LAN Long Training (HEW-LTF) field, or High Efficiency Signaling (HE-SIG) field, high efficiency short training (HE-STF) field and High Efficiency Long Training (HE-LTF) field.
  • HEW-SIG High Efficiency Wireless LAN Short Training
  • HEW-LTF High Efficiency Wireless LAN Long Training
  • the naming of the non-traditional field of the 802.11ax preamble is not limited. For convenience of description, the following embodiments mainly use the HEW-SIG as an example for description.
  • the D2D configuration field is located in the HEW-SIG A part of the non-legacy signaling field or the HEW-SIG B part of the non-legacy signaling field, and the D2D mapping field is located in the HEW-SIG of the non-legacy signaling field. Part B.
  • the D2D configuration field may be located in the HEW-SIG A portion and the D2D mapping field may be located in the HEW-SIG B portion.
  • both the D2D configuration field and the D2D mapping field bits may be located in the HEW-SIG B portion.
  • the D2D configuration field is located in a non-legacy signaling field of the radio frame or a data portion of the radio frame
  • the D2D mapping field is located in a data portion of the radio frame.
  • the D2D configuration field may be located in a non-legacy signaling field or a data portion of the radio frame, and the D2D mapping field may be located in a data portion of the radio frame.
  • the D2D configuration field is used to indicate whether the trigger frame includes a D2D mapping field and location information of a D2D mapping field, and the D2D mapping field is used to indicate a location and a D2D identifier of a time-frequency resource allocated to the D2D transmission, where The time-frequency resource indicated by the D2D mapping field is located in the uplink frame subsequent to the trigger frame.
  • the D2D mapping field may include one or more of resource configuration information, D2D identification, and D2D power control information. But does not contain tune The method based on the D2D terminal, such as the system mode, the encoding format, and the number of space-time streams.
  • the radio frame includes a mapping field, where the mapping field is located in a HEW-SIG B part of the radio frame or a data part of the radio frame, and at least one bit of the start of the mapping field is used to identify the mapping field as a D2D mapping.
  • the field, the D2D mapping field includes location information of the first time-frequency resource and a first D2D identifier, where the first time-frequency resource is located in a subsequent uplink frame of the radio frame.
  • the radio frame may also include only the D2D mapping field, and does not include the D2D configuration field.
  • the D2D mapping field can be used as a subclass, identified by one or more bits starting from the field.
  • the specific identification method can be as shown in Table 1 above.
  • the mapping field can be identified as a specific subclass. For example, when the D2D device reads the “10” identification bit, it is confirmed as a D2D mapping field, and can continue to read the subsequent bit to learn the allocated D2D.
  • the specific location of the resource if the D2D device reads the "00" identification bit, it can choose to discard. It should be understood that, for convenience of explanation, Table 1 is merely an example, and the specific identification manner is not limited thereto.
  • the D2D mapping field includes only resource configuration information and a D2D identifier.
  • the D2D terminal-based information such as the modulation mode, the coding format, and the number of space-time streams, is not included.
  • the modulation mode and the coding format may be negotiated and determined by the D2D communication terminal after the D2D connection is established, thereby saving the D2D resource allocation indication. Resource overhead, and can increase the speed at which the D2D terminal reads the D2D mapping field (D2D resource mapping information), thereby increasing the speed of D2D connection establishment.
  • the D2D mapping field includes only resource configuration information, D2D identifier, and D2D power control information.
  • the D2D terminal-based information such as the modulation mode, the coding format, and the number of space-time streams, is not included.
  • the modulation mode and the coding format may be negotiated and determined by the D2D communication terminal after the D2D connection is established, thereby saving the D2D resource allocation indication. Resource overhead, and can increase the speed at which the D2D terminal reads the D2D mapping field (D2D resource mapping information), thereby increasing the speed of D2D connection establishment.
  • the communication unit 103 is further configured to: send a request message for requesting to establish a D2D communication link with the second terminal to the AP, so that the AP sends the request message to the second terminal, and And receiving, by the second terminal, a response message sent according to the request message, where the response message is used to indicate that the second terminal agrees to establish a D2D communication link with the first terminal.
  • the first terminal 101 needs to perform D2D communication with the second terminal (STA2), and STA1 detects that STA2 meets the condition (distance, signal quality, etc.) with which D2D communication is performed, and then STA1 can transmit to STA and establish with STA2.
  • Request message for the D2D link the request is cancelled
  • the information may include measurement information of STA1 in the D2D discovery phase (such as a list of neighboring terminals).
  • the AP After receiving the D2D link setup request message sent by STA1, the AP sends a request message for establishing a D2D link between STA1 and STA2 to the D2D target station STA2.
  • STA2 After receiving the request message, STA2 determines whether it agrees to establish a D2D link with STA1 and replies with a response message. Specifically, if the STA2 agrees to establish a D2D link with the STA1, the response message may include the measurement information of the STA2 in the D2D discovery phase (such as the neighboring terminal list), and otherwise does not include the measurement information of the STA2 in the D2D discovery phase (such as the neighboring terminal list). ).
  • the AP After receiving the response message from STA2, the AP determines whether STA2 agrees to establish a D2D communication link with STA1. If it is judged that STA2 does not agree, the AP replies to the STA2 with a D2D link setup response to reject the D2D link request of STA1. If it is determined that the STA1 agrees, the AP checks whether the STAs in the existing D2D list of the AP are in the neighboring terminal list reported by the STA1 and the STA2 according to the measurement information of the STA1 and the STA2, such as the neighboring terminal list.
  • the request message carries a first information list of the neighboring terminals detected by the terminal
  • the response message carries a second information list of the neighboring terminals detected by the second terminal, so that the AP is configured according to the first information.
  • the list, the second information list, and the existing D2D list of the AP, the terminal and the second terminal are allocated a first time-frequency resource and a first D2D identifier for D2D communication, wherein the existing D2D list of the AP includes the established D2D communication Time-frequency resources and D2D identifiers occupied by connected terminals.
  • the first information list and the second information list are neighbor list information of STA1 and STA2, respectively, which respectively record information of sites adjacent to STA1 and STA2, if STA1 or STA2 and the first information list and the second information list Any site with the same time-frequency resources for D2D communication will cause large interference.
  • the existing D2D list of the AP may include the information of the terminal that has established the D2D connection and has not released the connected D2D communication pair, the occupied D2D identifier, and the corresponding time-frequency resource.
  • the AP detects whether the STAs in the local D2D list are in the neighboring terminal list (the first information list and the second information list) reported by STA1 and STA2, and also determines which D2D identifiers and corresponding times in the existing D2D list of the AP.
  • the frequency resource has been occupied by the terminal in the first information list and the second information list, thereby being able to ensure that these occupied D2D identifiers and time-frequency resources are not allocated to STA1 and STA2, thereby causing D2D communication interference.
  • the D2D identifier and the time-frequency resource that are not occupied by the terminal in the first information list and the second information list may be prioritized. It is allocated to STA1 and STA2, which can improve spectrum resource utilization and improve system throughput.
  • the communication unit 103 is further configured to: receive a D2D link setup confirmation message sent by the AP, where the D2D link setup acknowledgement message carries the first D2D identifier.
  • the D2D identifier may be notified to STA1 and STA2, so that STA1 and STA2 are receiving the indication for D2D transmission.
  • the D2D identifier in the identified radio frame can be matched.
  • the embodiment of the present invention generates a radio frame carrying the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate that the AP allocates the first time-frequency resource for the D2D communication to the first terminal and the second terminal.
  • the D2D identifier is used to indicate that the AP is the first D2D identifier that is allocated by the first terminal and the second terminal, and the AP sends the radio frame to the first terminal and the second terminal, so that the first terminal and the second terminal pass the first time-frequency resource.
  • Negotiating the coded modulation mode and performing D2D communication can reduce the overhead of resource indication for D2D transmission and improve system throughput.
  • the D2D resource indication does not include information based on the D2D terminal, such as a modulation mode, an encoding format, and a space-time stream number, the modulation mode, the encoding format, and the like may be negotiated and determined by the D2D communication terminal after the D2D connection is established, thereby saving
  • the D2D resource allocation indicates the resource overhead, and can improve the speed at which the D2D terminal reads the D2D mapping field (D2D resource mapping information), thereby improving the speed of D2D connection establishment.
  • D2D resource mapping information D2D resource mapping information
  • FIG. 11 is a schematic block diagram of an access point according to another embodiment of the present invention.
  • the access point AP 110 of FIG. 11 includes a processor 111 and a memory 112.
  • the processor 111 and the memory 112 are connected by a bus system 113.
  • the memory 112 is configured to store an instruction for causing the processor 111 to: generate a radio frame carrying the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate that the AP allocates the D2D communication for the first terminal and the second terminal.
  • the first time-frequency resource, the D2D identifier is used to indicate that the AP allocates the first D2D identifier for the first terminal and the second terminal. Transmitting a radio frame to the first terminal and the second terminal, so that the first terminal and the second terminal perform D2D communication by using the first time-frequency resource.
  • the access point AP 110 generates a radio frame that carries the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate that the AP is allocated to the first terminal and the second terminal.
  • the first time-frequency resource for the D2D communication, the D2D identifier is used to indicate that the AP is the first D2D identifier allocated by the first terminal and the second terminal, and the AP sends the radio frame to the first terminal and the second terminal, so that the first terminal and the The second terminal negotiates the coding and modulation mode by using the first time-frequency resource and performs D2D communication, thereby reducing the overhead of resource indication for D2D transmission and improving system throughput.
  • the AP 110 may further include a transmitting circuit 114, a receiving circuit 115, an antenna 116, and the like.
  • the processor 111 controls the operation of the AP 110, which may also be referred to as a CPU (Central Processing Unit).
  • Memory 112 can include read only memory and random access memory and provides instructions and data to processor 111. A portion of the memory 112 may also include non-volatile random access memory (NVRAM).
  • transmit circuitry 114 and receive circuitry 115 can be coupled to antenna 116.
  • the various components of the AP 110 are coupled together by a bus system 113, which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as the bus system 113 in the figure.
  • the method disclosed in the foregoing embodiments of the present invention may be applied to the processor 111 or implemented by the processor 111.
  • the processor 111 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 111 or an instruction in a form of software.
  • the processor 111 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 112, and the processor 111 reads the information in the memory 112 and performs the steps of the above method in combination with its hardware.
  • the radio frame includes a D2D configuration field and a D2D mapping field, where the D2D configuration field is used to indicate that the radio frame includes a D2D mapping field and location information of the D2D mapping field, where the D2D mapping field includes the first time-frequency resource.
  • the D2D configuration field and the D2D mapping field are located in the radio frame.
  • Non-legacy signaling fields after the traditional preamble field are located in the radio frame.
  • the D2D configuration field is located in the HEW-SIG A part of the non-legacy signaling field or the HEW-SIG B part of the non-legacy signaling field, and the D2D mapping field is located in the HEW-SIG of the non-legacy signaling field. Part B.
  • the D2D configuration field is located in a non-legacy signaling field of the radio frame or a data portion of the radio frame
  • the D2D mapping field is located in a data portion of the radio frame.
  • the radio frame includes a mapping field, where the mapping field is located in a HEW-SIG B part of the radio frame or a data part of the radio frame, and at least one bit of the start of the mapping field is used to identify the mapping field as a D2D mapping.
  • the field, the D2D mapping field includes location information of the first time-frequency resource and a first D2D identifier, where the first time-frequency resource is located in a subsequent uplink frame of the radio frame.
  • the method before generating the radio frame carrying the resource configuration information and the D2D identifier, the method further includes: receiving, by the receiving circuit 115, a request message sent by the first terminal, where the request message is used to request to establish a second terminal.
  • the D2D communication link is sent to the second terminal by the transmitting circuit 114; the response message sent by the second terminal is received by the receiving circuit 115, and the response message is used to indicate that the second terminal agrees to establish a D2D communication link with the first terminal.
  • the request message carries a first information list of the neighboring terminals detected by the first terminal
  • the response message carries a second information list of the neighboring terminals detected by the second terminal
  • the receiving circuit 115 receives the After the response message sent by the second terminal, the method further includes:
  • the processor 111 determines whether the time-frequency resource and the D2D identifier in the existing D2D list of the AP 110 are occupied by the terminal in the first information list and the second information list, wherein the existing D2D list of the AP 110 includes the established Time-frequency resources and D2D identifiers occupied by terminals connected by D2D communication;
  • the processor 111 allocates the existing terminal of the AP to the first terminal and the second terminal.
  • the first time-frequency resource and the first D2D identifier of the time-frequency resource and the D2D identifier in the D2D list are different;
  • the processor 111 allocates the AP 110 to the first terminal and the second terminal.
  • One of the time-frequency resource and the D2D identifier that is not occupied by the terminal in the first information list and the second information list in the D2D list is used as the first time-frequency resource and the first D2D identifier, or is the first terminal and the second terminal. Allocating time-frequency resources in the existing D2D list of AP 110 and The D2D identifies the first time-frequency resource and the first D2D identifier that are different;
  • the processor 111 allocates the AP 110 to the first terminal and the second terminal.
  • the first time-frequency resource and the first D2D identifier of the same or different D2D identifiers in the D2D list are already present.
  • the access point AP 110 further includes: sending, by using the transmitting circuit 115, the first terminal and the second terminal, respectively.
  • the D2D link setup acknowledgement message wherein the D2D link setup acknowledgement message includes the first D2D identifier.
  • the method further includes: receiving, by the receiving circuit 115, a D2D link release request sent by the first terminal or the second terminal; and transmitting, by using the transmitting circuit 114, the D2D link release message to the first terminal and the second terminal. .
  • the method further includes: when the AP 110 determines that the first terminal or the second terminal is disconnected from the AP, or the D2D link between the first terminal and the second terminal reaches a threshold, The transmitting circuit 114 transmits a D2D link release message to the first terminal and the second terminal.
  • the embodiment of the present invention generates a radio frame carrying the resource configuration information and the D2D identifier by using the access point AP 110, where the resource configuration information is used to indicate that the AP 110 allocates the first time for the D2D communication to the first terminal and the second terminal.
  • the frequency resource, the D2D identifier is used to indicate that the AP 110 is the first D2D identifier allocated by the first terminal and the second terminal, and the AP 110 sends the radio frame to the first terminal and the second terminal, so that the first terminal and the second terminal pass the first
  • the one-time frequency resource negotiates the coded modulation mode and performs D2D communication, thereby reducing the overhead of resource indication for D2D transmission and improving system throughput.
  • the D2D resource indication does not include information based on the D2D terminal, such as a modulation mode, an encoding format, and a space-time stream number, the modulation mode, the encoding format, and the like may be negotiated and determined by the D2D communication terminal after the D2D connection is established, thereby saving
  • the D2D resource allocation indicates the resource overhead, and can improve the speed at which the D2D terminal reads the D2D mapping field (D2D resource mapping information), thereby improving the speed of D2D connection establishment.
  • D2D resource mapping information D2D resource mapping information
  • FIG. 12 is a schematic block diagram of a terminal in accordance with another embodiment of the present invention.
  • the terminal 120 of FIG. 12 includes a processor 121 and a memory 122.
  • the processor 121 and the memory 122 are connected by a bus system 123.
  • the memory 122 is configured to store an instruction that causes the processor 121 to: receive an access point The radio frame that is sent by the AP and carries the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate that the AP allocates the first time-frequency resource for D2D communication allocated by the first terminal and the second terminal, and the D2D identifier is used to indicate the AP.
  • the first terminal is the terminal 120.
  • the embodiment of the present invention generates a radio frame carrying the resource configuration information and the D2D identifier by using the access point AP, where the resource configuration information is used to indicate that the AP allocates the first time-frequency for the D2D communication to the first terminal 120 and the second terminal.
  • the D2D identifier is used to indicate that the AP is the first D2D identifier that is allocated by the first terminal and the second terminal, and the AP sends the radio frame to the first terminal and the second terminal, so that the first terminal and the second terminal pass the first time frequency.
  • the resource negotiation code modulation mode and D2D communication can reduce the overhead of resource indication for D2D transmission and improve system throughput.
  • the terminal 120 may further include a transmitting circuit 124, a receiving circuit 125, an antenna 126, and the like.
  • the processor 121 controls the operation of the terminal 120, and the processor 121 may also be referred to as a CPU (Central Processing Unit).
  • Memory 122 can include read only memory and random access memory and provides instructions and data to processor 121. A portion of the memory 122 may also include non-volatile random access memory (NVRAM).
  • transmit circuitry 124 and receive circuitry 125 can be coupled to antenna 126.
  • the various components of terminal 120 are coupled together by a bus system 123, which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as the bus system 123 in the figure.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 121 or implemented by the processor 121.
  • the processor 121 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 121 or an instruction in a form of software.
  • the processor 121 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, Registers and other mature storage media in the field.
  • the storage medium is located in the memory 122, and the processor 121 reads the information in the memory 122 and completes the steps of the above method in combination with its hardware.
  • the radio frame includes a D2D configuration field and a D2D mapping field, where the D2D configuration field is used to indicate that the radio frame includes a D2D mapping field and location information of the D2D mapping field, where the D2D mapping field includes the first time-frequency resource.
  • the D2D configuration field and the D2D mapping field are located in a non-legacy signaling field following a legacy preamble field of the radio frame.
  • the D2D configuration field is located in the HEW-SIG A part of the non-legacy signaling field or the HEW-SIG B part of the non-legacy signaling field, and the D2D mapping field is located in the HEW-SIG of the non-legacy signaling field. Part B.
  • the D2D configuration field is located in a non-legacy signaling field of the radio frame or a data portion of the radio frame
  • the D2D mapping field is located in a data portion of the radio frame.
  • the radio frame includes a mapping field, where the mapping field is located in a HEW-SIG B part of the radio frame or a data part of the radio frame, and at least one bit of the start of the mapping field is used to identify the mapping field as a D2D mapping.
  • the field, the D2D mapping field includes location information of the first time-frequency resource and a first D2D identifier, where the first time-frequency resource is located in a subsequent uplink frame of the radio frame.
  • the method before the first terminal receives the radio frame sent by the access point AP, the method further includes: sending, by using the transmitting circuit 124, a request for establishing a D2D communication link with the second terminal to the AP. Message.
  • the request message carries a first information list of the neighboring terminals detected by the first terminal
  • the response message carries a second information list of the neighboring terminals detected by the second terminal
  • the AP is configured according to the An information list, a second information list, and an existing D2D list of the AP
  • the first time and the second terminal are allocated a first time-frequency resource and a first D2D identifier for the D2D communication
  • the existing D2D list of the AP includes The time-frequency resource and the D2D identifier occupied by the terminal that has established the D2D communication connection.
  • the method before the first terminal receives the radio frame sent by the access point AP, the method further includes: receiving, by the receiving circuit 125, a D2D link setup acknowledgement message sent by the AP, where the D2D link setup acknowledgement message carries There is a first D2D logo.
  • the embodiment of the present invention generates, by using the access point AP, a radio frame that carries the resource configuration information and the D2D identifier, where the resource configuration information is used to indicate that the AP is allocated for the first terminal and the second terminal.
  • the first time-frequency resource of the D2D communication, the D2D identifier is used to indicate that the AP is the first D2D identifier allocated by the first terminal and the second terminal, and the AP sends the radio frame to the first terminal and the second terminal, so that the first terminal and the first terminal
  • the two terminals negotiate the coded modulation mode by the first time-frequency resource and perform D2D communication, thereby reducing the overhead of resource indication for D2D transmission and improving system throughput.
  • the D2D resource indication does not include information based on the D2D terminal, such as a modulation mode, an encoding format, and a space-time stream number, the modulation mode, the encoding format, and the like may be negotiated and determined by the D2D communication terminal after the D2D connection is established, thereby saving
  • the D2D resource allocation indicates the resource overhead, and can improve the speed at which the D2D terminal reads the D2D mapping field (D2D resource mapping information), thereby improving the speed of D2D connection establishment.
  • D2D resource mapping information D2D resource mapping information
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • Another point that is shown or discussed between each other The coupling or direct coupling or communication connection may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种资源指示的方法、接入点和终端,能够降低用于D2D传输的资源指示的开销、提高系统吞吐率。该方法包括:接入点AP生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP为第一终端和第二终端分配的第一D2D标识。AP向第一终端和第二终端发送无线帧,以使得第一终端和第二终端通过第一时频资源进行D2D通信。本发明实施例的D2D资源指示不包含调制方式、编码格式、空时流数目等基于D2D终端的信息,从而能够节省D2D资源分配指示的资源开销。

Description

资源指示的方法、接入点和终端 技术领域
本发明涉及通信领域,并且更具体地,涉及资源指示的方法、接入点和终端。
背景技术
相比于有线数据传输,无线传输具有较低的比特传输速率。随着通信设备数量的不断增长,信号传输所用的频谱变得越来越拥挤,此时空中接口将会成为通信系统的主要限制因素。设备到设备(D2D,Device to Device)传输是指在无线网络中,两个通信设备间的直接通信。D2D通信技术的引入,能够提高移动网络的频谱利用效率,并且能够提升空中接口的容量。当多条D2D通信链路使用相同资源时,频谱效率的提升尤为明显。
然而,目前尚缺乏有效的D2D资源分配指示机制。
发明内容
本发明实施例提供一种资源指示的方法、接入点和终端,能够降低用于D2D传输的资源指示的开销、提高系统吞吐率。
第一方面,提供了一种资源指示的方法,包括:接入点AP生成携带有资源配置信息和D2D标识的无线帧,其中所述资源配置信息用于指示所述AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,所述D2D标识用于指示所述AP为所述第一终端和所述第二终端分配的第一D2D标识;所述AP向所述第一终端和所述第二终端发送所述无线帧,以使得所述第一终端和所述第二终端通过所述第一时频资源进行D2D通信。
结合第一方面,在第一方面的第一种实现方式中,所述无线帧包括D2D配置字段和D2D映射字段,所述D2D配置字段用于指示所述无线帧包括所述D2D映射字段以及所述D2D映射字段的位置信息,所述D2D映射字段包括所述第一时频资源的位置信息和所述第一D2D标识,其中所述第一时频资源位于所述无线帧的后续上行帧。
结合第一方面及其上述实现方式,在第一方面的第二种实现方式中,所述D2D配置字段和所述D2D映射字段位于所述无线帧的传统前导字段之后 的非传统信令字段。
结合第一方面及其上述实现方式,在第一方面的第三种实现方式中,所述D2D配置字段位于所述非传统信令字段的HEW-SIG A部分或者所述非传统信令字段的HEW-SIG B部分,所述D2D映射字段位于所述非传统信令字段的HEW-SIG B部分。
结合第一方面及其上述实现方式,在第一方面的第四种实现方式中,所述D2D配置字段位于所述无线帧的非传统信令字段或者所述无线帧的数据部分,所述D2D映射字段位于所述无线帧的数据部分。
结合第一方面及其上述实现方式,在第一方面的第五种实现方式中,所述无线帧包括映射字段,所述映射字段位于所述无线帧的HEW-SIG B部分或者所述无线帧的数据部分,所述映射字段的起始的至少一个比特用于标识所述映射字段为D2D映射字段,所述D2D映射字段包括所述第一时频资源的位置信息和所述第一D2D标识,其中所述第一时频资源位于所述无线帧的后续上行帧。
结合第一方面及其上述实现方式,在第一方面的第六种实现方式中,所述D2D映射字段仅包括所述资源配置信息和所述D2D标识。
结合第一方面及其上述实现方式,在第一方面的第七种实现方式中,所述D2D映射字段仅包括所述资源配置信息、所述D2D标识和D2D功率控制信息。
结合第一方面及其上述实现方式,在第一方面的第八种实现方式中,所述接入点AP生成携带有资源配置信息和D2D标识的无线帧之前,还包括:接收所述第一终端发送的请求消息,所述请求消息用于请求建立与所述第二终端之间的D2D通信链路;向所述第二终端发送所述请求消息;接收所述第二终端发送的响应消息,所述响应消息用于指示所述第二终端同意与所述第一终端建立D2D通信链路。
结合第一方面及其上述实现方式,在第一方面的第九种实现方式中,所述请求消息携带有所述第一终端检测到的邻近终端的第一信息列表,所述响应消息携带有所述第二终端检测到的邻近终端的第二信息列表,所述接收所述第二终端发送的响应消息之后,还包括:确定所述AP的已有D2D列表中的时频资源和D2D标识,是否被所述第一信息列表和所述第二信息列表中的终端占用,其中,所述AP的已有D2D列表包括已建立D2D通信连接的 终端所占用的时频资源和D2D标识;当所述AP的已有D2D列表中的时频资源和D2D标识,全部被所述第一信息列表和所述第二信息列表中的终端占用时,为所述第一终端和所述第二终端分配与所述AP的已有D2D列表中的时频资源和D2D标识相异的所述第一时频资源和所述第一D2D标识;当所述AP的已有D2D列表中的时频资源和D2D标识,部分被所述第一信息列表和所述第二信息列表中的终端占用时,为所述第一终端和所述第二终端分配所述AP的已有D2D列表中未被所述第一信息列表和所述第二信息列表中的终端占用的时频资源和D2D标识中的一个作为所述第一时频资源和所述第一D2D标识,或者为所述第一终端和所述第二终端分配与所述AP的已有D2D列表中的时频资源和D2D标识相异的所述第一时频资源和所述第一D2D标识;当所述AP的已有D2D列表中的时频资源和D2D标识,未被所述第一信息列表和所述第二信息列表中的终端占用时,为所述第一终端和所述第二终端分配与所述AP的已有D2D列表中的时频资源和D2D标识相同或者相异的所述第一时频资源和所述第一D2D标识。
结合第一方面及其上述实现方式,在第一方面的第十种实现方式中,所述接入点AP确定建立第一终端与第二终端之间的D2D通信链路之后,还包括:分别向所述第一终端和所述第二终端发送D2D链路建立确认消息,其中,所述D2D链路建立确认消息包括所述第一D2D标识。
结合第一方面及其上述实现方式,在第一方面的第十一种实现方式中,所述方法还包括:接收所述第一终端或者所述第二终端发送的D2D链路解除请求;向所述第一终端和所述第二终端发送D2D链路解除消息。
结合第一方面及其上述实现方式,在第一方面的第十二种实现方式中,所述方法还包括:当所述AP确定所述第一终端或所述第二终端与所述AP断开连接,或者所述第一终端与所述第二终端之间的D2D链路存在时长达到阈值时,向所述第一终端和所述第二终端发送D2D链路解除消息。
第二方面,提供了一种资源指示的方法,包括:第一终端接收接入点AP发送的携带有资源配置信息和D2D标识的无线帧,其中所述资源配置信息用于指示所述AP为所述第一终端和第二终端分配的用于D2D通信的第一时频资源,所述D2D标识用于指示所述AP为所述第一终端和所述第二终端分配的第一D2D标识;所述第一终端通过所述第一时频资源与所述第二终端协商编码调制方式;所述第一终端根据所述编码调制方式,通过所述时频 资源与所述第二终端进行D2D通信。
结合第二方面,在第二方面的第一种实现方式中,所述无线帧包括D2D配置字段和D2D映射字段,所述D2D配置字段用于指示所述无线帧包括所述D2D映射字段以及所述D2D映射字段的位置信息,所述D2D映射字段包括所述第一时频资源的位置信息和所述第一D2D标识,其中所述第一时频资源位于所述无线帧的后续上行帧。
结合第二方面及其上述实现方式,在第二方面的第二种实现方式中,所述D2D配置字段和所述D2D映射字段位于所述无线帧的传统前导字段之后的非传统信令字段。
结合第二方面及其上述实现方式,在第二方面的第三种实现方式中,所述D2D配置字段位于所述非传统信令字段的HEW-SIG A部分或者所述非传统信令字段的HEW-SIG B部分,所述D2D映射字段位于所述非传统信令字段的HEW-SIG B部分。
结合第二方面及其上述实现方式,在第二方面的第四种实现方式中,所述D2D配置字段位于所述无线帧的非传统信令字段或者所述无线帧的数据部分,所述D2D映射字段位于所述无线帧的数据部分。
结合第二方面及其上述实现方式,在第二方面的第五种实现方式中,所述无线帧包括映射字段,所述映射字段位于所述无线帧的HEW-SIG B部分或者所述无线帧的数据部分,所述映射字段的起始的至少一个比特用于标识所述映射字段为D2D映射字段,所述D2D映射字段包括所述第一时频资源的位置信息和所述第一D2D标识,其中所述第一时频资源位于所述无线帧的后续上行帧。
结合第二方面及其上述实现方式,在第二方面的第六种实现方式中,所述D2D映射字段仅包括所述资源配置信息和所述D2D标识。
结合第二方面及其上述实现方式,在第二方面的第七种实现方式中,所述D2D映射字段仅包括所述资源配置信息、所述D2D标识和D2D功率控制信息。
结合第二方面及其上述实现方式,在第二方面的第八种实现方式中,所述第一终端接收接入点AP发送的无线帧之前,还包括:向所述AP发送用于请求建立与所述第二终端之间的D2D通信链路的请求消息,以使得所述AP向所述第二终端发送所述请求消息,并接收所述第二终端根据所述请求 消息发送的响应消息,所述响应消息用于指示所述第二终端同意与所述第一终端建立D2D通信链路。
结合第二方面及其上述实现方式,在第二方面的第九种实现方式中,所述请求消息携带有所述第一终端检测到的邻近终端的第一信息列表,所述响应消息携带有所述第二终端检测到的邻近终端的第二信息列表,以便于所述AP根据所述第一信息列表、所述第二信息列表和所述AP的已有D2D列表,为所述第一终端和所述第二终端分配用于D2D通信的所述第一时频资源和所述第一D2D标识,其中,所述AP的已有D2D列表包括已建立D2D通信连接的终端所占用的时频资源和D2D标识。
结合第二方面及其上述实现方式,在第二方面的第十种实现方式中,所述第一终端接收接入点AP发送的无线帧之前,还包括:接收所述AP发送的D2D链路建立确认消息,其中,所述D2D链路建立确认消息携带有所述第一D2D标识。
第三方面,提供了一种接入点AP,包括:生成单元,用于生成携带有资源配置信息和D2D标识的无线帧,其中所述资源配置信息用于指示所述AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,所述D2D标识用于指示所述AP为所述第一终端和所述第二终端分配的第一D2D标识;发送单元,用于向所述第一终端和所述第二终端发送所述无线帧,以使得所述第一终端和所述第二终端通过所述第一时频进行D2D通信。
结合第三方面,在第三方面的第一种实现方式中,所述无线帧包括D2D配置字段和D2D映射字段,所述D2D配置字段用于指示所述无线帧包括所述D2D映射字段以及所述D2D映射字段的位置信息,所述D2D映射字段包括所述第一时频资源的位置信息和所述第一D2D标识,其中所述第一时频资源位于所述无线帧的后续上行帧。
结合第三方面及其上述实现方式,在第三方面的第二种实现方式中,所述D2D配置字段和所述D2D映射字段位于所述无线帧的传统前导字段之后的非传统信令字段。
结合第三方面及其上述实现方式,在第三方面的第三种实现方式中,所述D2D配置字段位于所述非传统信令字段的HEW-SIG A部分或者所述非传统信令字段的HEW-SIG B部分,所述D2D映射字段位于所述非传统信令字段的HEW-SIG B部分。
结合第三方面及其上述实现方式,在第三方面的第四种实现方式中,所述D2D配置字段位于所述无线帧的非传统信令字段或者所述无线帧的数据部分,所述D2D映射字段位于所述无线帧的数据部分。
结合第三方面及其上述实现方式,在第三方面的第五种实现方式中,所述无线帧包括映射字段,所述映射字段位于所述无线帧的HEW-SIG B部分或者所述无线帧的数据部分,所述映射字段的起始的至少一个比特用于标识所述映射字段为D2D映射字段,所述D2D映射字段包括所述第一时频资源的位置信息和所述第一D2D标识,其中所述第一时频资源位于所述无线帧的后续上行帧。
结合第三方面及其上述实现方式,在第三方面的第六种实现方式中,所述D2D映射字段仅包括所述资源配置信息和所述D2D标识。
结合第三方面及其上述实现方式,在第三方面的第七种实现方式中,所述D2D映射字段仅包括所述资源配置信息、所述D2D标识和D2D功率控制信息。
结合第三方面及其上述实现方式,在第三方面的第八种实现方式中,所述AP还包括接收单元,所述确定单元具体用于:通过所述接收单元,接收所述第一终端发送的请求消息,所述请求消息用于请求建立与所述第二终端之间的D2D通信链路;通过所述发送单元,向所述第二终端发送所述请求消息;通过所述接收单元,接收所述第二终端发送的响应消息,所述响应消息用于指示所述第二终端同意与所述第一终端建立D2D通信链路。
结合第三方面及其上述实现方式,在第三方面的第九种实现方式中,所述请求消息携带有所述第一终端检测到的邻近终端的第一信息列表,所述响应消息携带有所述第二终端检测到的邻近终端的第二信息列表,所述确定单元还用于:确定所述AP的已有D2D列表中的时频资源和D2D标识,是否被所述第一信息列表和所述第二信息列表中的终端占用,其中,所述AP的已有D2D列表包括已建立D2D通信连接的终端所占用的时频资源和D2D标识;当所述AP的已有D2D列表中的时频资源和D2D标识,全部被所述第一信息列表和所述第二信息列表中的终端占用时,为所述第一终端和所述第二终端分配与所述AP的已有D2D列表中的时频资源和D2D标识相异的所述第一时频资源和所述第一D2D标识;当所述AP的已有D2D列表中的时频资源和D2D标识,部分被所述第一信息列表和所述第二信息列表中的 终端占用时,为所述第一终端和所述第二终端分配所述AP的已有D2D列表中未被所述第一信息列表和所述第二信息列表中的终端占用的时频资源和D2D标识中的一个作为所述第一时频资源和所述第一D2D标识,或者为所述第一终端和所述第二终端分配与所述AP的已有D2D列表中的时频资源和D2D标识相异的所述第一时频资源和所述第一D2D标识;当所述AP的已有D2D列表中的时频资源和D2D标识,未被所述第一信息列表和所述第二信息列表中的终端占用时,为所述第一终端和所述第二终端分配与所述AP的已有D2D列表中的时频资源和D2D标识相同或者相异的所述第一时频资源和所述第一D2D标识。
结合第三方面及其上述实现方式,在第三方面的第十种实现方式中,所述发送单元还用于:分别向所述第一终端和所述第二终端发送D2D链路建立确认消息,其中,所述D2D链路建立确认消息包括所述第一D2D标识。
结合第三方面及其上述实现方式,在第三方面的第十一种实现方式中,所述AP还包括接收单元,所述接收单元用于:接收所述第一终端或者所述第二终端发送的D2D链路解除请求;所述发送单元还用于,向所述第一终端和所述第二终端发送D2D链路解除消息。
结合第三方面及其上述实现方式,在第三方面的第十二种实现方式中,所述发送单元还用于:当所述AP确定所述第一终端或所述第二终端与所述AP断开连接,或者所述第一终端与所述第二终端之间的D2D链路存在时长达到阈值时,向所述第一终端和所述第二终端发送D2D链路解除消息。
第四方面,提供了一种终端,包括:接收单元,用于接收接入点AP发送的携带有资源配置信息和D2D标识的无线帧,其中所述资源配置信息用于指示所述AP为所述终端和第二终端分配的用于D2D通信的第一时频资源,所述D2D标识用于指示所述AP为所述终端和所述第二终端分配的第一D2D标识;协商单元,用于通过所述第一时频资源与所述第二终端协商编码调制方式;通信单元,用于根据所述编码调制方式,通过所述时频资源与所述第二终端进行D2D通信。
结合第四方面,在第四方面的第一种实现方式中,所述无线帧包括D2D配置字段和D2D映射字段,所述D2D配置字段用于指示所述无线帧包括所述D2D映射字段以及所述D2D映射字段的位置信息,所述D2D映射字段包括所述第一时频资源的位置信息和所述第一D2D标识,其中所述第一时 频资源位于所述无线帧的后续上行帧。
结合第四方面及其上述实现方式,在第四方面的第二种实现方式中,所述D2D配置字段和所述D2D映射字段位于所述无线帧的传统前导字段之后的非传统信令字段。
结合第四方面及其上述实现方式,在第四方面的第三种实现方式中,所述D2D配置字段位于所述非传统信令字段的HEW-SIG A部分或者所述非传统信令字段的HEW-SIG B部分,所述D2D映射字段位于所述非传统信令字段的HEW-SIG B部分。
结合第四方面及其上述实现方式,在第四方面的第四种实现方式中,所述D2D配置字段位于所述无线帧的非传统信令字段或者所述无线帧的数据部分,所述D2D映射字段位于所述无线帧的数据部分。
结合第四方面及其上述实现方式,在第四方面的第五种实现方式中,所述无线帧包括映射字段,所述映射字段位于所述无线帧的HEW-SIG B部分或者所述无线帧的数据部分,所述映射字段的起始的至少一个比特用于标识所述映射字段为D2D映射字段,所述D2D映射字段包括所述第一时频资源的位置信息和所述第一D2D标识,其中所述第一时频资源位于所述无线帧的后续上行帧。
结合第四方面及其上述实现方式,在第四方面的第六种实现方式中,所述D2D映射字段仅包括所述资源配置信息和所述D2D标识。
结合第四方面及其上述实现方式,在第四方面的第七种实现方式中,所述D2D映射字段仅包括所述资源配置信息、所述D2D标识和D2D功率控制信息。
结合第四方面及其上述实现方式,在第四方面的第八种实现方式中,所述通信单元还用于:向所述AP发送用于请求建立与所述第二终端之间的D2D通信链路的请求消息,以使得所述AP向所述第二终端发送所述请求消息,并接收所述第二终端根据所述请求消息发送的响应消息,所述响应消息用于指示所述第二终端同意与所述第一终端建立D2D通信链路。
结合第四方面及其上述实现方式,在第四方面的第九种实现方式中,所述请求消息携带有所述终端检测到的邻近终端的第一信息列表,所述响应消息携带有所述第二终端检测到的邻近终端的第二信息列表,以便于所述AP根据所述第一信息列表、所述第二信息列表和所述AP的已有D2D列表,为 所述终端和所述第二终端分配用于D2D通信的所述第一时频资源和所述第一D2D标识,其中,所述AP的已有D2D列表包括已建立D2D通信连接的终端所占用的时频资源和D2D标识。
结合第四方面及其上述实现方式,在第四方面的第十种实现方式中,所述通信单元还用于:接收所述AP发送的D2D链路建立确认消息,其中,所述D2D链路建立确认消息携带有所述第一D2D标识。
本发明实施例通过接入点AP生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP为第一终端和第二终端分配的第一D2D标识,AP向第一终端和第二终端发送该无线帧,以使得第一终端和第二终端通过第一时频资源协商编码调制方式并进行D2D通信,从而提供了一种可行的资源分配指示机制。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例的资源指示的方法的流程图。
图2是本发明一个实施例的资源指示的方法的流程图。
图3是本发明一个实施例的无线帧的结构图。
图4是本发明另一实施例的无线帧的结构图。
图5是本发明另一实施例的无线帧的结构图。
图6是本发明一个实施例的D2D链路建立的流程图。
图7是本发明一个实施例的D2D链路解除的流程图。
图8是本发明另一实施例的D2D链路解除的流程图。
图9是本发明一个实施例的接入点的示意框图。
图10是本发明一个实施例的终端的示意框图。
图11是本发明另一实施例的接入点的示意框图。
图12是本发明另一实施例的终端的示意框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
本发明的技术方案,可以应用于各种通信系统,例如:全球移动通讯系统(GSM,Global System of Mobile communication),码分多址(CDMA,Code Division Multiple Access)系统,宽带码分多址(WCDMA,Wideband Code Division Multiple Access Wireless),通用分组无线业务(GPRS,General Packet Radio Service),长期演进(LTE,Long Term Evolution)等。
用户设备(UE,User Equipment),也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
本发明的技术方案中,终端可以是WLAN中用户站点(STA,Station),该用户站点也可以称为系统、用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或UE(User Equipment,用户设备)。该STA可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线局域网(例如Wi-Fi)通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备。接入点(AP,Access Point)可用于与接入终端通过无线局域网进行通信,并将接入终端的数据传输至网络侧,或将来自网络侧的数据传输至接入终端。
以下,为了便于理解和说明,作为示例而非限定,以将本发明的传输数据的方法和装置在Wi-Fi系统中的执行过程和动作进行说明。
Wi-Fi系统帧结构主要由前导码,服务字段,数据字段,尾部字段等组成。其中前导码主要实现帧检测,自动增益控制,频偏估计,时间同步,信道估计等功能。前导码可以分为传统字段部分和非传统字段部分。
通常来说,前导码的传统字段部分包含三个字段,即:传统短训练字段(L-STF,Legacy-Short Training Field),传统长训练字段(L-LTF,Legacy-Long Training Field)以及传统信令(L-SIG,Legacy-Signal)字段。其中,L-STF字段用于帧起始检测、自动增益控制(AGC,Auto Gain Control)设置、初始频率偏移估计以及初始时间同步;L-LTF用于更精确的频率偏移估计和时间同步,也用来为接收及匀衡L-SIG生成信道估计;L-SIG字段主要用于承载数据速率信息及数据长度信息,以使接收端设备能够根据该数据速率信息及数据长度信息,确定与该前导码承载于同一帧的数据的长度,进而能够确定保持空闲的适当时间。
非传统字段部分可以是前导码中除了上述传统部分之外的其他字段。非传统部分具体包括哪些字段取决于802.11标准的版本。目前,802.11标准的版本已从802.11a/b演进到802.11g、802.11n、802.11ac以及最新提出的802.11ax。为了保证不同802.11标准版本的产品之间的后向兼容性与互操作性,从802.11n开始,定义了混合格式(MF,Mixed Format)前导码(以下简称前导码)。前导码的传统字段部分与802.11a的前导码字段相同,都包括传统短训练字段、传统长训练字段、以及传统信令字段。802.11n之后的前导码除了传统字段部分之外,还包括非传统字段部分,具体包括非传统信令字段、非传统短训练字段和非传统长训练字段等。其中802.11n的非传统字段部分以高吞吐率(HT,High Throughput)命名,即非传统字段部分包括,高吞吐率信令字段、高吞吐率短训练字段以及高吞吐率长训练字段。802.11ac的非传统字段部分以甚高吞吐率(VHT,Very High Throughput)命名,即非传统字段部分包括,甚高吞吐率信令字段A、甚高吞吐率短训练字段,甚高吞吐率长训练字段以及甚高吞吐率信令字段B。现有802.11标准的几个版本中,可以通过前导码传统字段之后的符号的调制方式来实现不同协议版本的区分和接收端的自动检测。
图1是本发明一个实施例的资源指示的方法的流程图。图1的方法可以由WLAN系统中的接入点AP执行。
101,AP生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP为第一终端和第二终端分配的第一D2D标识。
102,AP向第一终端和第二终端发送无线帧,以使得第一终端和第二终 端通过第一时频资源协商编码调制方式并进行D2D通信。
本发明实施例通过接入点AP生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP为第一终端和第二终端分配的第一D2D标识,AP向第一终端和第二终端发送无线帧,以使得第一终端和第二终端通过第一时频资源协商编码调制方式并进行D2D通信,从而能够降低用于D2D传输的资源指示的开销、提高系统吞吐率。
可选地,作为一个实施例,无线帧包括D2D配置字段和D2D映射字段,D2D配置字段用于指示无线帧包括D2D映射字段以及D2D映射字段的位置信息,D2D映射字段包括第一时频资源的位置信息和第一D2D标识,其中第一时频资源位于无线帧的后续上行帧。
具体地,WLAN系统的无线帧主要由传统前导部分、非传统前导部分、上行子帧和下行子帧构成。其中传统前导部分可以由L-STF、L-LTF和L-SIG三个字段组成,非传统前导部分可以由非传统信令字段、非传统短训练字段和非传统长训练字段组成。本发明实施例中,D2D配置字段和D2D映射字段可以由上述非传统信令字段承载。应理解,非传统前导部分的具体名称和结构可以由Wi-Fi协议版本所决定,本发明对此并不限定。
D2D配置字段具体可以包括两个子字段,分别用来指示该无线帧中是否存在D2D映射字段,以及D2D映射字段在该无线帧中的位置信息。例如,D2D配置字段的第一个比特位可以用来指示该无线帧中是否存在D2D映射字段,作为一个具体的例子,可以将D2D配置字段的第一个比特位设为“1”表示该无线帧中存在D2D映射字段,设为“0”表示该无线帧中不存在D2D映射字段;D2D配置字段的后续多个比特位可以用来指示D2D映射字段在该无线帧中的位置信息,具体可以通过指示D2D映射字段在无线帧中的起始比特位的位置和偏移量来明确指示D2D映射字段的具体位置。
D2D映射字段可以包括资源配置信息、D2D标识和D2D功率控制信息中的一项或多项。但不包含调制方式、编码格式、空时流数目等基于D2D终端的信息。具体地,资源配置信息可以由子帧索引(SF index)比特,起始资源块(Start RB)比特和偏移量(offset)比特组成。其中子帧索引比特用于指示分配给D2D传输的时频资源位于无线帧的第几个子帧,起始资源块比特用于指示分配给D2D传输的时频资源的起始位置位于该子帧的哪个 资源块,偏移量比特用于指示分配给D2D传输的时频资源在时域持续时间和在频域的带宽信息。
本实施例中的无线帧为上下行级联子帧结构,也就是说,D2D映射字段所指示的分配给D2D传输的时频资源位于上行子帧中。
可选地,作为一个实施例,D2D配置字段和D2D映射字段位于无线帧的传统前导字段之后的非传统信令字段。
D2D配置字段和D2D映射字段可以由非传统信令字段承载,更具体地,以802.11ax为例,可以由其非传统信令字段的第一部分(HEW-SIG A)和第二部分(HEW-SIG B)承载。应理解,对于802.11ax前导码,其非传统字段可以以高效率无线局域网(HEW,High Efficiency WLAN)、或者高效率(HE,High Efficiency)命名,即非传统字段部分包括,高效率无线局域网信令(HEW-SIG)字段、高效率无线局域网短训练(HEW-STF)字段以及高效率无线局域网长训练(HEW-LTF)字段,或者高效率信令(HE-SIG)字段、高效率短训练(HE-STF)字段以及高效率长训练(HE-LTF)字段。本发明对于802.11ax前导码的非传统字段的命名并不限定,为了方便描述,以下实施例主要以HEW-SIG为例进行说明。
可选地,作为一个实施例,D2D配置字段位于非传统信令字段的HEW-SIG A部分或者非传统信令字段的HEW-SIG B部分,D2D映射字段位于非传统信令字段的HEW-SIG B部分。
在一个实施例当中,D2D配置字段可以位于HEW-SIG A部分,D2D映射字段可以位于HEW-SIG B部分。
在另一个实施例当中,D2D配置字段和D2D映射字段位可以都位于HEW-SIG B部分。
可选地,作为一个实施例,D2D配置字段位于无线帧的非传统信令字段或者无线帧的数据部分,D2D映射字段位于无线帧的数据部分。具体地,在采用触发帧的方式建立上行传输的场景下,D2D配置字段既可以位于触发帧的非传统信令字段,也可以位于触发帧之后的数据部分,D2D映射字段可以位于无线帧的数据部分。与上述实施例相类似地,D2D配置字段用于指示触发帧是否包括D2D映射字段以及D2D映射字段的位置信息,D2D映射字段用于指示分配给D2D传输的时频资源的位置和D2D标识,其中D2D映射字段所指示的时频资源位于触发帧后续的上行帧。同样地,D2D映射字段可 以包括资源配置信息、D2D标识和D2D功率控制信息中的一项或多项。但不包含调制方式、编码格式、空时流数目等基于D2D终端的信息。
可选地,作为一个实施例,无线帧包括映射字段,映射字段位于无线帧的HEW-SIG B部分或者无线帧的数据部分,映射字段的起始的至少一个比特用于标识映射字段为D2D映射字段,D2D映射字段包括第一时频资源的位置信息和第一D2D标识,其中第一时频资源位于无线帧的后续上行帧。
具体地,无线帧也可以只包含D2D映射字段,而不包含D2D配置字段。其中D2D映射字段可以作为一个子类,由字段起始的一个或多个比特进行标识。作为一个例子,具体标识方法可以如表一所示:
表一
标识比特 映射字段子类
00 下行映射
01 上行映射
10 D2D映射
11 预留
当接收端读取到标识比特,则可以识别该映射字段具体地子类,例如当D2D设备读取到“10”标识比特,则确认为D2D映射字段,可以继续读取后续比特获知分配的D2D资源的具体位置,若D2D设备读取到“00”标识比特,则可以选择丢弃。应理解,为了方便阐述,表一仅仅为一个示例,具体标识方式并不限于此。
可选地,作为一个实施例,D2D映射字段仅包括资源配置信息和D2D标识。但不包含调制方式、编码格式、空时流数目等基于D2D终端的信息,具体地调制方式、编码格式等可以在D2D连接建立后由D2D通信终端自行协商确定,从而能够节省D2D资源分配指示的资源开销,并且能够提高D2D终端读取D2D映射字段(D2D资源映射信息)的速度,从而提高D2D连接建立的速度。
可选地,作为一个实施例,D2D映射字段仅包括资源配置信息、D2D标识和D2D功率控制信息。但不包含调制方式、编码格式、空时流数目等基于D2D终端的信息,具体地调制方式、编码格式等可以在D2D连接建立后由D2D通信终端自行协商确定,从而能够节省D2D资源分配指示的资源开销,并且能够提高D2D终端读取D2D映射字段(D2D资源映射信息)的 速度,从而提高D2D连接建立的速度。
可选地,作为一个实施例,AP生成携带有资源配置信息和D2D标识的无线帧之前,还包括:接收第一终端发送的请求消息,请求消息用于请求建立与第二终端之间的D2D通信链路;向第二终端发送请求消息;接收第二终端发送的响应消息,响应消息用于指示第二终端同意与第一终端建立D2D通信链路。
第一终端(STA1)在需要与第二终端(STA2)进行D2D通信,并且STA1检测到STA2符合与其进行D2D通信的条件(距离、信号质量等)时,则STA1可以向AP发送与STA2建立D2D链路的请求消息,该请求消息可以包含STA1在D2D发现阶段的测量信息(如邻近终端的列表)。AP收到STA1发送的D2D链路建立请求消息后,向D2D目标站点STA2发送STA1与STA2建立D2D链路的请求消息。
STA2在收到该请求消息后,确定是否同意与STA1建立D2D链路,并且向AP回复响应消息。具体地,如果STA2同意和STA1建立D2D链路,则该响应消息可以包含STA2在D2D发现阶段的测量信息(如邻近终端列表),否则不包含STA2在D2D发现阶段的测量信息(如邻近终端列表)。
AP在收到STA2的响应消息后,判断STA2是否同意与STA1建立D2D通信链路。如果判断STA2不同意,则AP向STA1回复D2D链路建立响应以拒绝STA1的D2D链路请求。如果判断STA1同意,则AP根据STA1和STA2的测量信息(如邻近终端列表)查看AP本地已有的D2D列表中的STA是否在STA1及STA2上报的邻近终端列表中。
可选地,作为一个实施例,请求消息携带有第一终端检测到的邻近终端的第一信息列表,响应消息携带有第二终端检测到的邻近终端的第二信息列表,接收第二终端发送的响应消息之后,还包括:确定AP的已有D2D列表中的时频资源和D2D标识,是否被第一信息列表和第二信息列表中的终端占用,其中,AP的已有D2D列表包括已建立D2D通信连接的终端所占用的时频资源和D2D标识;当AP的已有D2D列表中的时频资源和D2D标识,全部被第一信息列表和第二信息列表中的终端占用时,为第一终端和第二终端分配与AP的已有D2D列表中的时频资源和D2D标识相异的第一时频资源和第一D2D标识;当AP的已有D2D列表中的时频资源和D2D标识,部分被第一信息列表和第二信息列表中的终端占用时,为第一终端和第二终端 分配AP的已有D2D列表中未被第一信息列表和第二信息列表中的终端占用的时频资源和D2D标识作为第一时频资源和第一D2D标识,或者为第一终端和第二终端分配与AP的已有D2D列表中的时频资源和D2D标识相异的第一时频资源和第一D2D标识;当AP的已有D2D列表中的时频资源和D2D标识,未被第一信息列表和第二信息列表中的终端占用时,为第一终端和第二终端分配与AP的已有D2D列表中的时频资源和D2D标识相同或者相异的第一时频资源和第一D2D标识。
具体地,第一信息列表和第二信息列表分别为STA1和STA2的邻居列表信息,其分别记录与STA1和STA2相邻的站点的信息,如果STA1或STA2与第一信息列表和第二信息列表中任意站点采用相同的时频资源进行D2D通信,都会造成较大干扰。
AP本地已有的D2D列表可以包括已建立D2D连接,并且还未释放连接的D2D通信对的终端的信息、占用的D2D标识以及对应的时频资源。
AP检测本地已有的D2D列表中的STA是否在STA1及STA2上报的邻近终端列表(第一信息列表和第二信息列表)中,也是确定AP已有的D2D列表中哪些D2D标识以及对应的时频资源已经被第一信息列表和第二信息列表中的终端所占用,从而能够确保这些已被占用的D2D标识和时频资源不分配给STA1和STA2从而造成D2D通信干扰。
作为一个优选的实施例,对于AP本地已有的D2D列表中,未被第一信息列表和第二信息列表中的终端所占用的D2D标识和时频资源,可以优先分配给STA1和STA2,从而能够提高频谱资源利用率,使得系统吞吐量得以提升。
可选地,作为一个实施例,接入点AP确定建立第一终端与第二终端之间的D2D通信链路之后,还包括:分别向第一终端和第二终端发送D2D链路建立确认消息,其中,D2D链路建立确认消息包括第一D2D标识。
应理解,在AP确认建立STA1和STA2之间的D2D链路,并完成D2D标识和时频资源分配后,可以将D2D标识通知给STA1和STA2,使得STA1和STA2在接收到用于指示D2D传输资源位置信息的无线帧时,能够匹配识别无线帧中的D2D标识。
可选地,作为一个实施例,方法还包括:接收第一终端或者第二终端发送的D2D链路解除请求;向第一终端和第二终端发送D2D链路解除消息。
D2D链路的解除可以由终端侧发起。当D2D链路的某一方(STA1或STA2)不想再接收D2D数据时,该STA可以发起D2D链路解除请求。AP在收到该请求后,向STA1和STA2发送D2D链路解除消息,告知STA1和STA2间的D2D链路失效,释放相应的时频资源和D2D标识。相应地,AP可以在其本地D2D列表中删除STA1和STA2的D2D链路的相关信息。
可选地,作为一个实施例,方法还包括:当AP确定第一终端或第二终端与AP断开连接,或者第一终端与第二终端之间的D2D链路存在时长达到阈值时,向第一终端和第二终端发送D2D链路解除消息。
应理解,D2D链路的解除也可以由AP侧发起。当AP发现D2D通信的一方(STA1或STA2)离开了当前BSS或者与当前AP断开连接,或者D2D链路存在时长已达到阈值(最大持续时长)时,AP可以发起D2D链路解除。
本发明实施例通过接入点AP生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP为第一终端和第二终端分配的第一D2D标识,AP向第一终端和第二终端发送无线帧,以使得第一终端和第二终端通过第一时频资源协商编码调制方式并进行D2D通信,从而能够降低用于D2D传输的资源指示的开销、提高系统吞吐率。并且,由于D2D资源指示不包含调制方式、编码格式、空时流数目等基于D2D终端的信息,具体地调制方式、编码格式等可以在D2D连接建立后由D2D通信终端自行协商确定,从而能够节省D2D资源分配指示的资源开销,并且能够提高D2D终端读取D2D映射字段(D2D资源映射信息)的速度,从而提高D2D连接建立的速度。此外,在分配D2D资源时,优先复用已被使用但是不会造成干扰的时频资源,能够显著地提高频谱资源利用率,使得系统吞吐量得以提升。
图2是本发明一个实施例的资源指示的方法的流程图。
201,第一终端接收接入点AP发送的携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP为第一终端和第二终端分配的第一D2D标识。
202,第一终端通过第一时频资源与第二终端协商编码调制方式。
203,第一终端根据编码调制方式,通过时频资源与第二终端进行D2D 通信。
本发明实施例通过接入点AP生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP为第一终端和第二终端分配的第一D2D标识,AP向第一终端和第二终端发送无线帧,以使得第一终端和第二终端通过第一时频资源协商编码调制方式并进行D2D通信,从而能够降低用于D2D传输的资源指示的开销、提高系统吞吐率。
可选地,作为一个实施例,无线帧包括D2D配置字段和D2D映射字段,D2D配置字段用于指示无线帧包括D2D映射字段以及D2D映射字段的位置信息,D2D映射字段包括第一时频资源的位置信息和第一D2D标识,其中第一时频资源位于无线帧的后续上行帧。
具体地,WLAN系统的无线帧主要由传统前导部分、非传统前导部分、上行子帧和下行子帧构成。其中传统前导部分可以由L-STF、L-LTF和L-SIG三个字段组成,非传统前导部分可以由非传统信令字段、非传统短训练字段和非传统长训练字段组成。本发明实施例中,D2D配置字段和D2D映射字段可以由上述非传统信令字段承载。应理解,非传统前导部分的具体名称和结构可以由Wi-Fi协议版本所决定,本发明对此并不限定。
D2D配置字段具体可以包括两个子字段,分别用来指示该无线帧中是否存在D2D映射字段,以及D2D映射字段在无线帧中的位置信息。例如,例如,D2D配置字段的第一个比特位可以用来指示该无线帧中是否存在D2D映射字段,作为一个具体的例子,可以将D2D配置字段的第一个比特位设为“1”表示该无线帧中存在D2D映射字段,设为“0”表示该无线帧中不存在D2D映射字段;D2D配置字段的后续多个比特位可以用来指示D2D映射字段在无线帧中的位置信息,具体可以通过指示D2D映射字段在无线帧中的起始比特位的位置和偏移量来明确指示D2D映射字段的具体位置。
D2D映射字段可以包括资源配置信息、D2D标识和D2D功率控制信息中的一项或多项。但不包含调制方式、编码格式、空时流数目等基于D2D终端的信息。具体地,资源配置信息可以由子帧索引(SF index)比特,起始资源块(Start RB)比特和偏移量(offset)比特组成。其中子帧索引比特用于指示分配给D2D传输的时频资源位于无线帧的第几个子帧,起始资源块比特用于指示分配给D2D传输的时频资源的起始位置位于该子帧的哪个 资源块,偏移量比特用于指示分配给D2D传输的时频资源在时域持续时间和在频域的带宽信息。
本实施例中的无线帧为上下行级联子帧结构,也就是说,D2D映射字段所指示的分配给D2D传输的时频资源位于上行子帧中。
可选地,作为一个实施例,D2D配置字段和D2D映射字段位于无线帧的传统前导字段之后的非传统信令字段。
D2D配置字段和D2D映射字段可以由非传统信令字段承载,更具体地,以802.11ax为例,可以由其非传统信令字段的第一部分(HEW-SIG A)和第二部分(HEW-SIG B)承载。应理解,对于802.11ax前导码,其非传统字段可以以高效率无线局域网(HEW,High Efficiency WLAN)、或者高效率(HE,High Efficiency)命名,即非传统字段部分包括,高效率无线局域网信令(HEW-SIG)字段、高效率无线局域网短训练(HEW-STF)字段以及高效率无线局域网长训练(HEW-LTF)字段,或者高效率信令(HE-SIG)字段、高效率短训练(HE-STF)字段以及高效率长训练(HE-LTF)字段。本发明对于802.11ax前导码的非传统字段的命名并不限定,为了方便描述,以下实施例主要以HEW-SIG为例进行说明。
可选地,作为一个实施例,其特征在于,D2D配置字段位于非传统信令字段的HEW-SIG A部分或者非传统信令字段的HEW-SIG B部分,D2D映射字段位于非传统信令字段的HEW-SIG B部分。
在一个实施例当中,D2D配置字段可以位于HEW-SIG A部分,D2D映射字段可以位于HEW-SIG B部分。
在另一个实施例当中,D2D配置字段和D2D映射字段位可以都位于HEW-SIG B部分。
可选地,作为一个实施例,D2D配置字段位于无线帧的非传统信令字段或者无线帧的数据部分,D2D映射字段位于无线帧的数据部分。具体地,在采用触发帧的方式建立上行传输的场景下,D2D配置字段可以位于无线帧的非传统信令字段或者数据部分,D2D映射字段可以位于无线帧的数据部分。与上述实施例相类似地,D2D配置字段用于指示触发帧是否包括D2D映射字段以及D2D映射字段的位置信息,D2D映射字段用于指示分配给D2D传输的时频资源的位置和D2D标识,其中D2D映射字段所指示的时频资源位于触发帧后续的上行帧。同样地,D2D映射字段可以包括资源配置信息、 D2D标识和D2D功率控制信息中的一项或多项。但不包含调制方式、编码格式、空时流数目等基于D2D终端的信息。
可选地,作为一个实施例,无线帧包括映射字段,映射字段位于无线帧的HEW-SIG B部分或者无线帧的数据部分,映射字段的起始的至少一个比特用于标识映射字段为D2D映射字段,D2D映射字段包括第一时频资源的位置信息和第一D2D标识,其中第一时频资源位于无线帧的后续上行帧。
具体地,无线帧也可以只包含D2D映射字段,而不包含D2D配置字段。其中D2D映射字段可以作为一个子类,由字段起始的一个或多个比特进行标识。作为一个例子,具体标识方法可以如上述表一所示。当接收端读取到标识比特,则可以识别该映射字段具体地子类,例如当D2D设备读取到“10”标识比特,则确认为D2D映射字段,可以继续读取后续比特获知分配的D2D资源的具体位置,若D2D设备读取到“00”标识比特,则可以选择丢弃。应理解,为了方便阐述,表一仅仅为一个示例,具体标识方式并不限于此。
可选地,作为一个实施例,D2D映射字段仅包括资源配置信息和D2D标识。但不包含调制方式、编码格式、空时流数目等基于D2D终端的信息,具体地调制方式、编码格式等可以在D2D连接建立后由D2D通信终端自行协商确定,从而能够节省D2D资源分配指示的资源开销,并且能够提高D2D终端读取D2D映射字段(D2D资源映射信息)的速度,从而提高D2D连接建立的速度。
可选地,作为一个实施例,D2D映射字段仅包括资源配置信息、D2D标识和D2D功率控制信息。但不包含调制方式、编码格式、空时流数目等基于D2D终端的信息,具体地调制方式、编码格式等可以在D2D连接建立后由D2D通信终端自行协商确定,从而能够节省D2D资源分配指示的资源开销,并且能够提高D2D终端读取D2D映射字段(D2D资源映射信息)的速度,从而提高D2D连接建立的速度。
可选地,作为一个实施例,第一终端接收接入点AP发送的无线帧之前,还包括:向AP发送用于请求建立与第二终端之间的D2D通信链路的请求消息,以使得AP向第二终端发送请求消息,并接收第二终端根据请求消息发送的响应消息,响应消息用于指示第二终端同意与第一终端建立D2D通信链路。
第一终端(STA1)在需要与第二终端(STA2)进行D2D通信,并且 STA1检测到STA2符合与其进行D2D通信的条件(距离、信号质量等)时,则STA1可以向AP发送与STA2建立D2D链路的请求消息,该请求消息可以包含STA1在D2D发现阶段的测量信息(如邻近终端的列表)。AP收到STA1发送的D2D链路建立请求消息后,向D2D目标站点STA2发送STA1与STA2建立D2D链路的请求消息。
STA2在收到该请求消息后,确定是否同意与STA1建立D2D链路,并回复响应消息。具体地,如果STA2同意和STA1建立D2D链路,则该响应消息可以包含STA2在D2D发现阶段的测量信息(如邻近终端列表),否则不包含STA2在D2D发现阶段的测量信息(如邻近终端列表)。
AP在收到STA2的响应消息后,判断STA2是否同意与STA1建立D2D通信链路。如果判断STA2不同意,则AP向STA1回复D2D链路建立响应以拒绝STA1的D2D链路请求。如果判断STA1同意,则AP根据STA1和STA2的测量信息(如邻近终端列表)查看AP本地已有的D2D列表中的STA是否在STA1及STA2上报的邻近终端列表中。
可选地,作为一个实施例,请求消息携带有第一终端检测到的邻近终端的第一信息列表,响应消息携带有第二终端检测到的邻近终端的第二信息列表,以便于AP根据第一信息列表、第二信息列表和AP的已有D2D列表,为第一终端和第二终端分配用于D2D通信的第一时频资源和第一D2D标识,其中,AP的已有D2D列表包括已建立D2D通信连接的终端所占用的时频资源和D2D标识。
具体地,第一信息列表和第二信息列表分别为STA1和STA2的邻居列表信息,其分别记录与STA1和STA2相邻的站点的信息,如果STA1或STA2与第一信息列表和第二信息列表中任意站点采用相同的时频资源进行D2D通信,都会造成较大干扰。
AP本地已有的D2D列表可以包括已建立D2D连接,并且还未释放连接的D2D通信对的终端的信息、占用的D2D标识以及对应的时频资源。
AP检测本地已有的D2D列表中的STA是否在STA1及STA2上报的邻近终端列表(第一信息列表和第二信息列表)中,也是确定AP已有的D2D列表中哪些D2D标识以及对应的时频资源已经被第一信息列表和第二信息列表中的终端所占用,从而能够确保这些已被占用的D2D标识和时频资源不分配给STA1和STA2从而造成D2D通信干扰。
作为一个优选的实施例,对于AP本地已有的D2D列表中,未被第一信息列表和第二信息列表中的终端所占用的D2D标识和时频资源,可以优先分配给STA1和STA2,从而能够提高频谱资源利用率,使得系统吞吐量得以提升。
可选地,作为一个实施例,第一终端接收接入点AP发送的无线帧之前,还包括:接收AP发送的D2D链路建立确认消息,其中,D2D链路建立确认消息携带有第一D2D标识。应理解,在AP确认建立STA1和STA2之间的D2D链路,并完成D2D标识和时频资源分配后,可以将D2D标识通知给STA1和STA2,使得STA1和STA2在接收到用于指示D2D传输资源位置信息的无线帧时,能够匹配识别无线帧中的D2D标识。
本发明实施例通过接入点AP生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP为第一终端和第二终端分配的第一D2D标识,AP向第一终端和第二终端发送无线帧,以使得第一终端和第二终端通过第一时频资源协商编码调制方式并进行D2D通信,从而能够降低用于D2D传输的资源指示的开销、提高系统吞吐率。并且,由于D2D资源指示不包含调制方式、编码格式、空时流数目等基于D2D终端的信息,具体地调制方式、编码格式等可以在D2D连接建立后由D2D通信终端自行协商确定,从而能够节省D2D资源分配指示的资源开销,并且能够提高D2D终端读取D2D映射字段(D2D资源映射信息)的速度,从而提高D2D连接建立的速度。此外,在分配D2D资源时,优先复用已被使用但是不会造成干扰的时频资源,能够显著地提高频谱资源利用率,使得系统吞吐量得以提升。
图3是本发明一个实施例的无线帧的结构图。
如图3所示,无线帧主要由传统前导部分、非传统前导部分、上行子帧和下行子帧构成。其中,D2D配置字段位于非传统前导部分的HEW-SIG A字段;D2D映射字段位于非传统前导部分的HEW-SIG B字段。
D2D配置字段具体可以包括两个子字段,分别用来指示该无线帧中是否存在D2D映射字段,以及D2D映射字段的位置信息。
D2D映射字段可以包括资源配置信息、D2D标识和D2D功率控制信息,其中D2D功率控制信息可选。具体地,资源配置信息可以由子帧索引(SF  index)比特,起始资源块(Start RB)比特和偏移量(offset)比特组成。其中子帧索引比特用于指示分配给D2D传输的时频资源位于无线帧的第几个子帧,起始资源块比特用于指示分配给D2D传输的时频资源的起始位置位于该子帧的哪个资源块,偏移量比特用于指示分配给D2D传输的时频资源在时域持续时间和在频域的带宽信息。
图4是本发明另一实施例的无线帧的结构图。
如图4所示,无线帧主要由传统前导部分、非传统前导部分、上行子帧和下行子帧构成。其中,D2D配置字段和D2D映射字段都位于非传统前导部分的HEW-SIG B字段。字段具体格式可以参照上述图3,此处不再赘述。
图5是本发明另一实施例的无线帧的结构图。
如图5所示,D2D配置字段和D2D映射字段位于无线帧的数据部分(触发帧)与上述实施例相类似地,D2D配置字段用于指示触发帧是否包括D2D映射字段以及D2D映射字段的位置信息,D2D映射字段用于指示分配给D2D传输的时频资源的位置和D2D标识,其中D2D映射字段所指示的时频资源位于触发帧后续的上行帧。
图6是本发明一个实施例的D2D链路建立的流程图。
S601,第一终端向接入点AP发送请求消息。
第一终端(STA1)在需要与第二终端(STA2)进行D2D通信,并且STA1检测到STA2符合与其进行D2D通信的条件(距离、信号质量等)时,则STA1可以向AP发送与STA2建立D2D链路的请求消息,该请求消息可以包含STA1在D2D发现阶段的测量信息(如邻近终端的列表)。
AP收到STA1发送的D2D链路建立请求消息后,向D2D目标站点STA2发送STA1与STA2建立D2D链路的请求消息。
S602,第二终端向AP发送响应消息。
STA2在收到该请求消息后,确定是否同意与STA1建立D2D链路,并回复响应消息。具体地,如果STA2同意和STA1建立D2D链路,则该响应消息可以包含STA2在D2D发现阶段的测量信息(如邻近终端列表),否则不包含STA2在D2D发现阶段的测量信息(如邻近终端列表)。
AP在收到STA2的响应消息后,判断STA2是否同意与STA1建立D2D通信链路。如果判断STA2不同意,则AP向STA1回复D2D链路建立响应以拒绝STA1的D2D链路请求。如果判断STA1同意则转入S603。
S603,确定AP的已有D2D列表中的时频资源和D2D标识,是否被第一信息列表和第二信息列表中的终端占用。
AP的已有D2D列表包括已建立D2D通信连接的终端所占用的时频资源和D2D标识。
判断结果可以分为以下三种情况:
1)AP的已有D2D列表中的时频资源和D2D标识,全部被第一信息列表和第二信息列表中的终端占用;
2)AP的已有D2D列表中的时频资源和D2D标识,部分被第一信息列表和第二信息列表中的终端占用;
3)AP的已有D2D列表中的时频资源和D2D标识,未被第一信息列表和第二信息列表中的终端占用。
S604,AP为STA1和STA2分配时频资源和D2D标识。
AP根据步骤S603的判断结果,确定为STA1和STA2分配时频资源和D2D标识的策略,具体可以为:
1)当AP的已有D2D列表中的时频资源和D2D标识,全部被第一信息列表和第二信息列表中的终端占用时,为第一终端和第二终端分配与AP的已有D2D列表中的时频资源和D2D标识相异的第一时频资源和第一D2D标识;
2)当AP的已有D2D列表中的时频资源和D2D标识,部分被第一信息列表和第二信息列表中的终端占用时,为第一终端和第二终端分配AP的已有D2D列表中未被第一信息列表和第二信息列表中的终端占用的时频资源和D2D标识作为第一时频资源和第一D2D标识,或者为第一终端和第二终端分配与AP的已有D2D列表中的时频资源和D2D标识相异的第一时频资源和第一D2D标识;
3)当AP的已有D2D列表中的时频资源和D2D标识,未被第一信息列表和第二信息列表中的终端占用时,为第一终端和第二终端分配与AP的已有D2D列表中的时频资源和D2D标识相同或者相异的第一时频资源和第一D2D标识。
S605,分别向第一终端和第二终端发送D2D链路建立确认消息。
在AP确认建立STA1和STA2之间的D2D链路,并完成D2D标识和时频资源分配后,可以将D2D标识通知给STA1和STA2,使得STA1和STA2 在接收到用于指示D2D传输资源位置信息的无线帧时,能够匹配识别无线帧中的D2D标识。
S606,AP向第一终端和第二终端发送无线帧。
无线帧包括D2D配置字段和D2D映射字段,D2D配置字段用于指示无线帧是否包括D2D映射字段以及D2D映射字段的位置信息,D2D映射字段包括第一时频资源的位置信息和第一D2D标识,其中第一时频资源位于无线帧的后续上行帧。
S607,第一终端和第二终端通过第一时频资源协商编码调制方式并进行D2D通信。
本发明实施例通过接入点AP生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP为第一终端和第二终端分配的第一D2D标识,AP向第一终端和第二终端发送无线帧,以使得第一终端和第二终端通过第一时频资源协商编码调制方式并进行D2D通信,从而能够降低用于D2D传输的资源指示的开销、提高系统吞吐率。并且,由于D2D资源指示不包含调制方式、编码格式、空时流数目等基于D2D终端的信息,具体地调制方式、编码格式等可以在D2D连接建立后由D2D通信终端自行协商确定,从而能够节省D2D资源分配指示的资源开销,并且能够提高D2D终端读取D2D映射字段(D2D资源映射信息)的速度,从而提高D2D连接建立的速度。此外,在分配D2D资源时,优先复用已被使用但是不会造成干扰的时频资源,能够显著地提高频谱资源利用率,使得系统吞吐量得以提升。
图7是本发明一个实施例的D2D链路解除的流程图。
D2D链路的解除可以由终端侧发起。当D2D链路的某一方(STA1或STA2)不想再接收D2D数据时,该STA可以发起D2D链路解除请求。AP在收到该请求后,向STA1和STA2发送D2D链路解除消息,告知STA1和STA2间的D2D链路失效,释放相应的时频资源和D2D标识。相应地,AP可以在其本地D2D列表中删除STA1和STA2的D2D链路的相关信息。
图8是本发明另一实施例的D2D链路解除的流程图。
D2D链路的解除也可以由AP侧发起。当AP发现D2D通信的一方(STA1或STA2)离开了当前BSS或者与当前AP断开连接,或者D2D链路存在时 长已达到阈值(最大持续时长)时,AP可以发起D2D链路解除。向STA1和STA2发送D2D链路解除消息,告知STA1和STA2间的D2D链路失效,释放相应的时频资源和D2D标识。相应地,AP可以在其本地D2D列表中删除STA1和STA2的D2D链路的相关信息。
图9是本发明一个实施例的接入点的示意框图。图9的接入点AP 90包括生成单元91和发送单元92。
生成单元91生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP 90为第一终端和第二终端分配的第一D2D标识;发送单元92向第一终端和第二终端发送无线帧,以使得第一终端和第二终端通过第一时频资源进行D2D通信。
本发明实施例的接入点AP 90生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP 90为第一终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP 90为第一终端和第二终端分配的第一D2D标识,AP 90向第一终端和第二终端发送无线帧,以使得第一终端和第二终端通过第一时频资源协商编码调制方式并进行D2D通信,从而能够降低用于D2D传输的资源指示的开销、提高系统吞吐率。
可选地,作为一个实施例,无线帧包括D2D配置字段和D2D映射字段,D2D配置字段用于指示无线帧包括D2D映射字段以及D2D映射字段的位置信息,D2D映射字段包括第一时频资源的位置信息和第一D2D标识,其中第一时频资源位于无线帧的后续上行帧。
具体地,WLAN系统的无线帧主要由传统前导部分、非传统前导部分、上行子帧和下行子帧构成。其中传统前导部分可以由L-STF、L-LTF和L-SIG三个字段组成,非传统前导部分可以由非传统信令字段、非传统短训练字段和非传统长训练字段组成。本发明实施例中,D2D配置字段和D2D映射字段可以由上述非传统信令字段承载。应理解,非传统前导部分的具体名称和结构可以由Wi-Fi协议版本所决定,本发明对此并不限定。
D2D配置字段具体可以包括两个子字段,分别用来指示该无线帧中是否存在D2D映射字段,以及D2D映射字段的位置信息。例如,D2D配置字段的第一个比特位可以用来指示该无线帧中是否存在D2D映射字段,作为一个具体的例子,可以将D2D配置字段的第一个比特位设为“1”表示该无线 帧中存在D2D映射字段,设为“0”表示该无线帧中不存在D2D映射字段;D2D配置字段的后续多个比特位可以用来指示D2D映射字段的位置信息,具体可以通过指示D2D映射字段在无线帧中的起始比特位的位置和偏移量来明确指示D2D映射字段的具体位置。
D2D映射字段可以包括资源配置信息、D2D标识和D2D功率控制信息中的一项或多项。但不包含调制方式、编码格式、空时流数目等基于D2D终端的信息。具体地,资源配置信息可以由子帧索引(SF index)比特,起始资源块(Start RB)比特和偏移量(offset)比特组成。其中子帧索引比特用于指示分配给D2D传输的时频资源位于无线帧的第几个子帧,起始资源块比特用于指示分配给D2D传输的时频资源的起始位置位于该子帧的哪个资源块,偏移量比特用于指示分配给D2D传输的时频资源在时域持续时间和在频域的带宽信息。
本实施例中的无线帧为上下行级联子帧结构,也就是说,D2D映射字段所指示的分配给D2D传输的时频资源位于上行子帧中。
可选地,作为一个实施例,D2D配置字段和D2D映射字段位于无线帧的传统前导字段之后的非传统信令字段。
D2D配置字段和D2D映射字段可以由非传统信令字段承载,更具体地,以802.11ax为例,可以由其非传统信令字段的第一部分(HEW-SIG A)和第二部分(HEW-SIG B)承载。应理解,对于802.11ax前导码,其非传统字段可以以高效率无线局域网(HEW,High Efficiency WLAN)、或者高效率(HE,High Efficiency)命名,即非传统字段部分包括,高效率无线局域网信令(HEW-SIG)字段、高效率无线局域网短训练(HEW-STF)字段以及高效率无线局域网长训练(HEW-LTF)字段,或者高效率信令(HE-SIG)字段、高效率短训练(HE-STF)字段以及高效率长训练(HE-LTF)字段。本发明对于802.11ax前导码的非传统字段的命名并不限定,为了方便描述,以下实施例主要以HEW-SIG为例进行说明。
可选地,作为一个实施例,D2D配置字段位于非传统信令字段的HEW-SIG A部分或者非传统信令字段的HEW-SIG B部分,D2D映射字段位于非传统信令字段的HEW-SIG B部分。
在一个实施例当中,D2D配置字段可以位于HEW-SIG A部分,D2D映射字段可以位于HEW-SIG B部分。
在另一个实施例当中,D2D配置字段和D2D映射字段位可以都位于HEW-SIG B部分。
可选地,作为一个实施例,D2D配置字段位于无线帧的非传统信令字段或者无线帧的数据部分,D2D映射字段位于无线帧的数据部分。具体地,在采用触发帧的方式建立上行传输的场景下,D2D配置字段既可以位于触发帧的非传统信令字段,也可以位于触发帧之后的数据部分,D2D映射字段可以位于无线帧的数据部分。与上述实施例相类似地,D2D配置字段用于指示触发帧是否包括D2D映射字段以及D2D映射字段的位置信息,D2D映射字段用于指示分配给D2D传输的时频资源的位置和D2D标识,其中D2D映射字段所指示的时频资源位于触发帧后续的上行帧。同样地,D2D映射字段可以包括资源配置信息、D2D标识和D2D功率控制信息中的一项或多项。但不包含调制方式、编码格式、空时流数目等基于D2D终端的信息。
可选地,作为一个实施例,无线帧包括映射字段,映射字段位于无线帧的HEW-SIG B部分或者无线帧的数据部分,映射字段的起始的至少一个比特用于标识映射字段为D2D映射字段,D2D映射字段包括第一时频资源的位置信息和第一D2D标识,其中第一时频资源位于无线帧的后续上行帧。
具体地,无线帧也可以只包含D2D映射字段,而不包含D2D配置字段。其中D2D映射字段可以作为一个子类,由字段起始的一个或多个比特进行标识。具体例子可以参照上述表一,此处不再赘述。
可选地,作为一个实施例,D2D映射字段仅包括资源配置信息和D2D标识。但不包含调制方式、编码格式、空时流数目等基于D2D终端的信息,具体地调制方式、编码格式等可以在D2D连接建立后由D2D通信终端自行协商确定,从而能够节省D2D资源分配指示的资源开销,并且能够提高D2D终端读取D2D映射字段(D2D资源映射信息)的速度,从而提高D2D连接建立的速度。
可选地,作为一个实施例,D2D映射字段仅包括资源配置信息、D2D标识和D2D功率控制信息。但不包含调制方式、编码格式、空时流数目等基于D2D终端的信息,具体地调制方式、编码格式等可以在D2D连接建立后由D2D通信终端自行协商确定,从而能够节省D2D资源分配指示的资源开销,并且能够提高D2D终端读取D2D映射字段(D2D资源映射信息)的速度,从而提高D2D连接建立的速度。
可选地,作为一个实施例,AP 90还包括接收单元,接收单元具体用于:接收第一终端发送的请求消息,请求消息用于请求建立与第二终端之间的D2D通信链路;通过发送单元92向第二终端发送请求消息;接收第二终端发送的响应消息,响应消息用于指示第二终端同意与第一终端建立D2D通信链路。
第一终端(STA1)在需要与第二终端(STA2)进行D2D通信,并且STA1检测到STA2符合与其进行D2D通信的条件(距离、信号质量等)时,则STA1可以向AP 90发送与STA2建立D2D链路的请求消息,该请求消息可以包含STA1在D2D发现阶段的测量信息(如邻近终端的列表)。AP 90收到STA1发送的D2D链路建立请求消息后,向D2D目标站点STA2发送STA1与STA2建立D2D链路的请求消息。
STA2在收到该请求消息后,确定是否同意与STA1建立D2D链路,并回复响应消息。具体地,如果STA2同意和STA1建立D2D链路,则该响应消息可以包含STA2在D2D发现阶段的测量信息(如邻近终端列表),否则不包含STA2在D2D发现阶段的测量信息(如邻近终端列表)。
AP 90在收到STA2的响应消息后,判断STA2是否同意与STA1建立D2D通信链路。如果判断STA2不同意,则AP 90向STA1回复D2D链路建立响应以拒绝STA1的D2D链路请求。如果判断STA1同意,则AP 90根据STA1和STA2的测量信息(如邻近终端列表)查看AP 90本地已有的D2D列表中的STA是否在STA1及STA2上报的邻近终端列表中。
可选地,作为一个实施例,请求消息携带有第一终端检测到的邻近终端的第一信息列表,响应消息携带有第二终端检测到的邻近终端的第二信息列表,AP还包括确定单元,确定单元用于:确定AP 90的已有D2D列表中的时频资源和D2D标识,是否被第一信息列表和第二信息列表中的终端占用,其中,AP 90的已有D2D列表包括已建立D2D通信连接的终端所占用的时频资源和D2D标识;当AP 90的已有D2D列表中的时频资源和D2D标识,全部被第一信息列表和第二信息列表中的终端占用时,为第一终端和第二终端分配与AP 90的已有D2D列表中的时频资源和D2D标识相异的第一时频资源和第一D2D标识;当AP 90的已有D2D列表中的时频资源和D2D标识,部分被第一信息列表和第二信息列表中的终端占用时,为第一终端和第二终端分配AP 90的已有D2D列表中未被第一信息列表和第二信息列表中 的终端占用的时频资源和D2D标识中的一个作为第一时频资源和第一D2D标识,或者为第一终端和第二终端分配与AP 90的已有D2D列表中的时频资源和D2D标识相异的第一时频资源和第一D2D标识;当AP 90的已有D2D列表中的时频资源和D2D标识,未被第一信息列表和第二信息列表中的终端占用时,为第一终端和第二终端分配与AP 90的已有D2D列表中的时频资源和D2D标识相同或者相异的第一时频资源和第一D2D标识。
具体地,第一信息列表和第二信息列表分别为STA1和STA2的邻居列表信息,其分别记录与STA1和STA2相邻的站点的信息,如果STA1或STA2与第一信息列表和第二信息列表中任意站点采用相同的时频资源进行D2D通信,都会造成较大干扰。
AP 90本地已有的D2D列表可以包括已建立D2D连接,并且还未释放连接的D2D通信对的终端的信息、占用的D2D标识以及对应的时频资源。
AP 90检测本地已有的D2D列表中的STA是否在STA1及STA2上报的邻近终端列表(第一信息列表和第二信息列表)中,也是确定AP 90已有的D2D列表中哪些D2D标识以及对应的时频资源已经被第一信息列表和第二信息列表中的终端所占用,从而能够确保这些已被占用的D2D标识和时频资源不分配给STA1和STA2从而造成D2D通信干扰。
作为一个优选的实施例,对于AP 90本地已有的D2D列表中,未被第一信息列表和第二信息列表中的终端所占用的D2D标识和时频资源,可以优先分配给STA1和STA2,从而能够提高频谱资源利用率,使得系统吞吐量得以提升。
可选地,作为一个实施例,发送单元92还用于:分别向第一终端和第二终端发送D2D链路建立确认消息,其中,D2D链路建立确认消息包括第一D2D标识。应理解,在AP 90确认建立STA1和STA2之间的D2D链路,并完成D2D标识和时频资源分配后,可以将D2D标识通知给STA1和STA2,使得STA1和STA2在接收到用于指示D2D传输资源位置信息的无线帧时,能够匹配识别无线帧中的D2D标识。
可选地,作为一个实施例,AP 90还包括接收单元,接收单元用于:接收第一终端或者第二终端发送的D2D链路解除请求;发送单元92还用于,向第一终端和第二终端发送D2D链路解除消息。
D2D链路的解除可以由终端侧发起。当D2D链路的某一方(STA1或 STA2)不想再接收D2D数据时,该STA可以发起D2D链路解除请求。AP 90在收到该请求后,向STA1和STA2发送D2D链路解除消息,告知STA1和STA2间的D2D链路失效,释放相应的时频资源和D2D标识。相应地,AP 90可以在其本地D2D列表中删除STA1和STA2的D2D链路的相关信息。
可选地,作为一个实施例,发送单元92还用于:当AP 90确定第一终端或第二终端与AP 90断开连接,或者第一终端与第二终端之间的D2D链路存在时长达到阈值时,向第一终端和第二终端发送D2D链路解除消息。应理解,D2D链路的解除也可以由AP 90侧发起。当AP 90发现D2D通信的一方(STA1或STA2)离开了当前BSS或者与当前AP 90断开连接,或者D2D链路存在时长已达到阈值(最大持续时长)时,AP 90可以发起D2D链路解除。
本发明实施例通过接入点AP 90生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP 90为第一终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP 90为第一终端和第二终端分配的第一D2D标识,AP 90向第一终端和第二终端发送无线帧,以使得第一终端和第二终端通过第一时频资源协商编码调制方式并进行D2D通信,从而能够降低用于D2D传输的资源指示的开销、提高系统吞吐率。并且,由于D2D资源指示不包含调制方式、编码格式、空时流数目等基于D2D终端的信息,具体地调制方式、编码格式等可以在D2D连接建立后由D2D通信终端自行协商确定,从而能够节省D2D资源分配指示的资源开销,并且能够提高D2D终端读取D2D映射字段(D2D资源映射信息)的速度,从而提高D2D连接建立的速度。此外,在分配D2D资源时,优先复用已被使用但是不会造成干扰的时频资源,能够显著地提高频谱资源利用率,使得系统吞吐量得以提升。
图10是本发明一个实施例的终端的示意框图。图10的终端100包括接收单元101、协商单元102和通信单元103。
接收单元101接收接入点AP发送的携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP为终端和第二终端分配的第一D2D标识;协商单元102通过第一时频资源与第二终端协商编码调制方式;通信单元103根据编码调制方式,通过时频资源与第二终端进行D2D通信。
其中,终端100可以是与第二终端建立D2D通信连接的第一终端。
本发明实施例通过接入点AP生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP为第一终端和第二终端分配的第一D2D标识,AP向第一终端和第二终端发送无线帧,以使得第一终端和第二终端通过第一时频资源协商编码调制方式并进行D2D通信,从而能够降低用于D2D传输的资源指示的开销、提高系统吞吐率。
可选地,作为一个实施例,无线帧包括D2D配置字段和D2D映射字段,D2D配置字段用于指示无线帧包括D2D映射字段以及D2D映射字段的位置信息,D2D映射字段包括第一时频资源的位置信息和第一D2D标识,其中第一时频资源位于无线帧的后续上行帧。
具体地,WLAN系统的无线帧主要由传统前导部分、非传统前导部分、上行子帧和下行子帧构成。其中传统前导部分可以由L-STF、L-LTF和L-SIG三个字段组成,非传统前导部分可以由非传统信令字段、非传统短训练字段和非传统长训练字段组成。本发明实施例中,D2D配置字段和D2D映射字段可以由上述非传统信令字段承载。应理解,非传统前导部分的具体名称和结构可以由Wi-Fi协议版本所决定,本发明对此并不限定。
D2D配置字段具体可以包括两个子字段,分别用来指示该无线帧中是否存在D2D映射字段,以及D2D映射字段的位置信息。例如,例如,D2D配置字段的第一个比特位可以用来指示该无线帧中是否存在D2D映射字段,作为一个具体的例子,可以将D2D配置字段的第一个比特位设为“1”表示该无线帧中存在D2D映射字段,设为“0”表示该无线帧中不存在D2D映射字段;D2D配置字段的后续多个比特位可以用来指示D2D映射字段的位置信息,具体可以通过指示D2D映射字段在无线帧中的起始比特位的位置和偏移量来明确指示D2D映射字段的具体位置。
D2D映射字段可以包括资源配置信息、D2D标识和D2D功率控制信息中的一项或多项。但不包含调制方式、编码格式、空时流数目等基于D2D终端的信息。具体地,资源配置信息可以由子帧索引(SF index)比特,起始资源块(Start RB)比特和偏移量(offset)比特组成。其中子帧索引比特用于指示分配给D2D传输的时频资源位于无线帧的第几个子帧,起始资源块比特用于指示分配给D2D传输的时频资源的起始位置位于该子帧的哪个 资源块,偏移量比特用于指示分配给D2D传输的时频资源在时域持续时间和在频域的带宽信息。
本实施例中的无线帧为上下行级联子帧结构,也就是说,D2D映射字段所指示的分配给D2D传输的时频资源位于上行子帧中。
可选地,作为一个实施例,D2D配置字段和D2D映射字段位于无线帧的传统前导字段之后的非传统信令字段。D2D配置字段和D2D映射字段可以由非传统信令字段承载,更具体地,以802.11ax为例,可以由其非传统信令字段的第一部分(HEW-SIG A)和第二部分(HEW-SIG B)承载。应理解,对于802.11ax前导码,其非传统字段可以以高效率无线局域网(HEW,High Efficiency WLAN)、或者高效率(HE,High Efficiency)命名,即非传统字段部分包括,高效率无线局域网信令(HEW-SIG)字段、高效率无线局域网短训练(HEW-STF)字段以及高效率无线局域网长训练(HEW-LTF)字段,或者高效率信令(HE-SIG)字段、高效率短训练(HE-STF)字段以及高效率长训练(HE-LTF)字段。本发明对于802.11ax前导码的非传统字段的命名并不限定,为了方便描述,以下实施例主要以HEW-SIG为例进行说明。
可选地,作为一个实施例,D2D配置字段位于非传统信令字段的HEW-SIG A部分或者非传统信令字段的HEW-SIG B部分,D2D映射字段位于非传统信令字段的HEW-SIG B部分。
在一个实施例当中,D2D配置字段可以位于HEW-SIG A部分,D2D映射字段可以位于HEW-SIG B部分。
在另一个实施例当中,D2D配置字段和D2D映射字段位可以都位于HEW-SIG B部分。
可选地,作为一个实施例,D2D配置字段位于无线帧的非传统信令字段或者无线帧的数据部分,D2D映射字段位于无线帧的数据部分。
具体地,在采用触发帧的方式建立上行传输的场景下,D2D配置字段可以位于无线帧的非传统信令字段或者数据部分,D2D映射字段可以位于无线帧的数据部分。与上述实施例相类似地,D2D配置字段用于指示触发帧是否包括D2D映射字段以及D2D映射字段的位置信息,D2D映射字段用于指示分配给D2D传输的时频资源的位置和D2D标识,其中D2D映射字段所指示的时频资源位于触发帧后续的上行帧。同样地,D2D映射字段可以包括资源配置信息、D2D标识和D2D功率控制信息中的一项或多项。但不包含调 制方式、编码格式、空时流数目等基于D2D终端的信息。
可选地,作为一个实施例,无线帧包括映射字段,映射字段位于无线帧的HEW-SIG B部分或者无线帧的数据部分,映射字段的起始的至少一个比特用于标识映射字段为D2D映射字段,D2D映射字段包括第一时频资源的位置信息和第一D2D标识,其中第一时频资源位于无线帧的后续上行帧。
具体地,无线帧也可以只包含D2D映射字段,而不包含D2D配置字段。其中D2D映射字段可以作为一个子类,由字段起始的一个或多个比特进行标识。作为一个例子,具体标识方法可以如上述表一所示。当接收端读取到标识比特,则可以识别该映射字段具体地子类,例如当D2D设备读取到“10”标识比特,则确认为D2D映射字段,可以继续读取后续比特获知分配的D2D资源的具体位置,若D2D设备读取到“00”标识比特,则可以选择丢弃。应理解,为了方便阐述,表一仅仅为一个示例,具体标识方式并不限于此。
可选地,作为一个实施例,D2D映射字段仅包括资源配置信息和D2D标识。但不包含调制方式、编码格式、空时流数目等基于D2D终端的信息,具体地调制方式、编码格式等可以在D2D连接建立后由D2D通信终端自行协商确定,从而能够节省D2D资源分配指示的资源开销,并且能够提高D2D终端读取D2D映射字段(D2D资源映射信息)的速度,从而提高D2D连接建立的速度。
可选地,作为一个实施例,D2D映射字段仅包括资源配置信息、D2D标识和D2D功率控制信息。但不包含调制方式、编码格式、空时流数目等基于D2D终端的信息,具体地调制方式、编码格式等可以在D2D连接建立后由D2D通信终端自行协商确定,从而能够节省D2D资源分配指示的资源开销,并且能够提高D2D终端读取D2D映射字段(D2D资源映射信息)的速度,从而提高D2D连接建立的速度。
可选地,作为一个实施例,通信单元103还用于:向AP发送用于请求建立与第二终端之间的D2D通信链路的请求消息,以使得AP向第二终端发送请求消息,并接收第二终端根据请求消息发送的响应消息,响应消息用于指示第二终端同意与第一终端建立D2D通信链路。
第一终端101(STA1)在需要与第二终端(STA2)进行D2D通信,并且STA1检测到STA2符合与其进行D2D通信的条件(距离、信号质量等)时,则STA1可以向AP发送与STA2建立D2D链路的请求消息,该请求消 息可以包含STA1在D2D发现阶段的测量信息(如邻近终端的列表)。AP收到STA1发送的D2D链路建立请求消息后,向D2D目标站点STA2发送STA1与STA2建立D2D链路的请求消息。
STA2在收到该请求消息后,确定是否同意与STA1建立D2D链路,并回复响应消息。具体地,如果STA2同意和STA1建立D2D链路,则该响应消息可以包含STA2在D2D发现阶段的测量信息(如邻近终端列表),否则不包含STA2在D2D发现阶段的测量信息(如邻近终端列表)。
AP在收到STA2的响应消息后,判断STA2是否同意与STA1建立D2D通信链路。如果判断STA2不同意,则AP向STA1回复D2D链路建立响应以拒绝STA1的D2D链路请求。如果判断STA1同意,则AP根据STA1和STA2的测量信息(如邻近终端列表)查看AP本地已有的D2D列表中的STA是否在STA1及STA2上报的邻近终端列表中。
可选地,作为一个实施例,请求消息携带有终端检测到的邻近终端的第一信息列表,响应消息携带有第二终端检测到的邻近终端的第二信息列表,以便于AP根据第一信息列表、第二信息列表和AP的已有D2D列表,为终端和第二终端分配用于D2D通信的第一时频资源和第一D2D标识,其中,AP的已有D2D列表包括已建立D2D通信连接的终端所占用的时频资源和D2D标识。
具体地,第一信息列表和第二信息列表分别为STA1和STA2的邻居列表信息,其分别记录与STA1和STA2相邻的站点的信息,如果STA1或STA2与第一信息列表和第二信息列表中任意站点采用相同的时频资源进行D2D通信,都会造成较大干扰。
AP本地已有的D2D列表可以包括已建立D2D连接,并且还未释放连接的D2D通信对的终端的信息、占用的D2D标识以及对应的时频资源。
AP检测本地已有的D2D列表中的STA是否在STA1及STA2上报的邻近终端列表(第一信息列表和第二信息列表)中,也是确定AP已有的D2D列表中哪些D2D标识以及对应的时频资源已经被第一信息列表和第二信息列表中的终端所占用,从而能够确保这些已被占用的D2D标识和时频资源不分配给STA1和STA2从而造成D2D通信干扰。
作为一个优选的实施例,对于AP本地已有的D2D列表中,未被第一信息列表和第二信息列表中的终端所占用的D2D标识和时频资源,可以优先 分配给STA1和STA2,从而能够提高频谱资源利用率,使得系统吞吐量得以提升。
可选地,作为一个实施例,通信单元103还用于:接收AP发送的D2D链路建立确认消息,其中,D2D链路建立确认消息携带有第一D2D标识。
应理解,在AP确认建立STA1和STA2之间的D2D链路,并完成D2D标识和时频资源分配后,可以将D2D标识通知给STA1和STA2,使得STA1和STA2在接收到用于指示D2D传输资源位置信息的无线帧时,能够匹配识别无线帧中的D2D标识。
本发明实施例通过接入点AP生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP为第一终端和第二终端分配的第一D2D标识,AP向第一终端和第二终端发送无线帧,以使得第一终端和第二终端通过第一时频资源协商编码调制方式并进行D2D通信,从而能够降低用于D2D传输的资源指示的开销、提高系统吞吐率。并且,由于D2D资源指示不包含调制方式、编码格式、空时流数目等基于D2D终端的信息,具体地调制方式、编码格式等可以在D2D连接建立后由D2D通信终端自行协商确定,从而能够节省D2D资源分配指示的资源开销,并且能够提高D2D终端读取D2D映射字段(D2D资源映射信息)的速度,从而提高D2D连接建立的速度。此外,在分配D2D资源时,优先复用已被使用但是不会造成干扰的时频资源,能够显著地提高频谱资源利用率,使得系统吞吐量得以提升。
图11是本发明另一实施例的接入点的示意框图。图11的接入点AP 110包括处理器111和存储器112。处理器111和存储器112通过总线系统113相连。
存储器112用于存储使得处理器111执行以下操作的指令:生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP为第一终端和第二终端分配的第一D2D标识。向第一终端和第二终端发送无线帧,以使得第一终端和第二终端通过第一时频资源进行D2D通信。
本发明实施例通过接入点AP 110生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为第一终端和第二终端分配的用 于D2D通信的第一时频资源,D2D标识用于指示AP为第一终端和第二终端分配的第一D2D标识,AP向第一终端和第二终端发送无线帧,以使得第一终端和第二终端通过第一时频资源协商编码调制方式并进行D2D通信,从而能够降低用于D2D传输的资源指示的开销、提高系统吞吐率。
此外,AP 110还可以包括发射电路114、接收电路115及天线116等。处理器111控制AP 110的操作,处理器111还可以称为CPU(Central Processing Unit,中央处理单元)。存储器112可以包括只读存储器和随机存取存储器,并向处理器111提供指令和数据。存储器112的一部分还可以包括非易失性随机存取存储器(NVRAM)。具体的应用中,发射电路114和接收电路115可以耦合到天线116。AP 110的各个组件通过总线系统113耦合在一起,其中总线系统113除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统113。
上述本发明实施例揭示的方法可以应用于处理器111中,或者由处理器111实现。处理器111可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器111中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器111可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器112,处理器111读取存储器112中的信息,结合其硬件完成上述方法的步骤。
可选地,作为一个实施例,无线帧包括D2D配置字段和D2D映射字段,D2D配置字段用于指示无线帧包括D2D映射字段以及D2D映射字段的位置信息,D2D映射字段包括第一时频资源的位置信息和第一D2D标识,其中第一时频资源位于无线帧的后续上行帧。
可选地,作为一个实施例,D2D配置字段和D2D映射字段位于无线帧 的传统前导字段之后的非传统信令字段。
可选地,作为一个实施例,D2D配置字段位于非传统信令字段的HEW-SIG A部分或者非传统信令字段的HEW-SIG B部分,D2D映射字段位于非传统信令字段的HEW-SIG B部分。
可选地,作为一个实施例,D2D配置字段位于无线帧的非传统信令字段或者无线帧的数据部分,D2D映射字段位于无线帧的数据部分。
可选地,作为一个实施例,无线帧包括映射字段,映射字段位于无线帧的HEW-SIG B部分或者无线帧的数据部分,映射字段的起始的至少一个比特用于标识映射字段为D2D映射字段,D2D映射字段包括第一时频资源的位置信息和第一D2D标识,其中第一时频资源位于无线帧的后续上行帧。
可选地,作为一个实施例,生成携带有资源配置信息和D2D标识的无线帧之前,还包括:通过接收电路115接收第一终端发送的请求消息,请求消息用于请求建立与第二终端之间的D2D通信链路;通过发射电路114向第二终端发送请求消息;通过接收电路115接收第二终端发送的响应消息,响应消息用于指示第二终端同意与第一终端建立D2D通信链路。
可选地,作为一个实施例,请求消息携带有第一终端检测到的邻近终端的第一信息列表,响应消息携带有第二终端检测到的邻近终端的第二信息列表,接收电路115接收第二终端发送的响应消息之后,还包括:
通过处理器111,确定AP 110的已有D2D列表中的时频资源和D2D标识,是否被第一信息列表和第二信息列表中的终端占用,其中,AP 110的已有D2D列表包括已建立D2D通信连接的终端所占用的时频资源和D2D标识;
当AP110的已有D2D列表中的时频资源和D2D标识,全部被第一信息列表和第二信息列表中的终端占用时,处理器111为第一终端和第二终端分配与AP的已有D2D列表中的时频资源和D2D标识相异的第一时频资源和第一D2D标识;
当AP 110的已有D2D列表中的时频资源和D2D标识,部分被第一信息列表和第二信息列表中的终端占用时,处理器111为第一终端和第二终端分配AP 110的已有D2D列表中未被第一信息列表和第二信息列表中的终端占用的时频资源和D2D标识中的一个作为第一时频资源和第一D2D标识,或者为第一终端和第二终端分配与AP 110的已有D2D列表中的时频资源和 D2D标识相异的第一时频资源和第一D2D标识;
当AP 110的已有D2D列表中的时频资源和D2D标识,未被第一信息列表和第二信息列表中的终端占用时,处理器111为第一终端和第二终端分配与AP 110的已有D2D列表中的时频资源和D2D标识相同或者相异的第一时频资源和第一D2D标识。
可选地,作为一个实施例,接入点AP 110确定建立第一终端与第二终端之间的D2D通信链路之后,还包括:通过发射电路115,分别向第一终端和第二终端发送D2D链路建立确认消息,其中,D2D链路建立确认消息包括第一D2D标识。
可选地,作为一个实施例,还包括:通过接收电路115接收第一终端或者第二终端发送的D2D链路解除请求;通过发射电路114向第一终端和第二终端发送D2D链路解除消息。
可选地,作为一个实施例,还包括:当AP 110确定第一终端或第二终端与AP断开连接,或者第一终端与第二终端之间的D2D链路存在时长达到阈值时,通过发射电路114向第一终端和第二终端发送D2D链路解除消息。
本发明实施例通过接入点AP 110生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP 110为第一终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP 110为第一终端和第二终端分配的第一D2D标识,AP 110向第一终端和第二终端发送无线帧,以使得第一终端和第二终端通过第一时频资源协商编码调制方式并进行D2D通信,从而能够降低用于D2D传输的资源指示的开销、提高系统吞吐率。并且,由于D2D资源指示不包含调制方式、编码格式、空时流数目等基于D2D终端的信息,具体地调制方式、编码格式等可以在D2D连接建立后由D2D通信终端自行协商确定,从而能够节省D2D资源分配指示的资源开销,并且能够提高D2D终端读取D2D映射字段(D2D资源映射信息)的速度,从而提高D2D连接建立的速度。此外,在分配D2D资源时,优先复用已被使用但是不会造成干扰的时频资源,能够显著地提高频谱资源利用率,使得系统吞吐量得以提升。
图12是本发明另一实施例的终端的示意框图。图12的终端120包括处理器121和存储器122。处理器121和存储器122通过总线系统123相连。
存储器122用于存储使得处理器121执行以下操作的指令:接收接入点 AP发送的携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP为第一终端和第二终端分配的第一D2D标识;通过第一时频资源与第二终端协商编码调制方式;根据编码调制方式,通过时频资源与第二终端进行D2D通信。其中第一终端为终端120。
本发明实施例通过接入点AP生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为第一终端120和第二终端分配的用于D2D通信的第一时频资源,D2D标识用于指示AP为第一终端和第二终端分配的第一D2D标识,AP向第一终端和第二终端发送无线帧,以使得第一终端和第二终端通过第一时频资源协商编码调制方式并进行D2D通信,从而能够降低用于D2D传输的资源指示的开销、提高系统吞吐率。
此外,终端120还可以包括发射电路124、接收电路125及天线126等。处理器121控制终端120的操作,处理器121还可以称为CPU(Central Processing Unit,中央处理单元)。存储器122可以包括只读存储器和随机存取存储器,并向处理器121提供指令和数据。存储器122的一部分还可以包括非易失性随机存取存储器(NVRAM)。具体的应用中,发射电路124和接收电路125可以耦合到天线126。终端120的各个组件通过总线系统123耦合在一起,其中总线系统123除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统123。
上述本发明实施例揭示的方法可以应用于处理器121中,或者由处理器121实现。处理器121可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器121中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器121可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。该存储介质位于存储器122,处理器121读取存储器122中的信息,结合其硬件完成上述方法的步骤。
可选地,作为一个实施例,无线帧包括D2D配置字段和D2D映射字段,D2D配置字段用于指示无线帧包括D2D映射字段以及D2D映射字段的位置信息,D2D映射字段包括第一时频资源的位置信息和第一D2D标识,其中第一时频资源位于无线帧的后续上行帧。
可选地,作为一个实施例,D2D配置字段和D2D映射字段位于无线帧的传统前导字段之后的非传统信令字段。
可选地,作为一个实施例,D2D配置字段位于非传统信令字段的HEW-SIG A部分或者非传统信令字段的HEW-SIG B部分,D2D映射字段位于非传统信令字段的HEW-SIG B部分。
可选地,作为一个实施例,D2D配置字段位于无线帧的非传统信令字段或者无线帧的数据部分,D2D映射字段位于无线帧的数据部分。
可选地,作为一个实施例,无线帧包括映射字段,映射字段位于无线帧的HEW-SIG B部分或者无线帧的数据部分,映射字段的起始的至少一个比特用于标识映射字段为D2D映射字段,D2D映射字段包括第一时频资源的位置信息和第一D2D标识,其中第一时频资源位于无线帧的后续上行帧。
可选地,作为一个实施例,第一终端接收接入点AP发送的无线帧之前,还包括:通过发射电路124向AP发送用于请求建立与第二终端之间的D2D通信链路的请求消息。
可选地,作为一个实施例,请求消息携带有第一终端检测到的邻近终端的第一信息列表,响应消息携带有第二终端检测到的邻近终端的第二信息列表,以便于AP根据第一信息列表、第二信息列表和AP的已有D2D列表,为第一终端和第二终端分配用于D2D通信的第一时频资源和第一D2D标识,其中,AP的已有D2D列表包括已建立D2D通信连接的终端所占用的时频资源和D2D标识。
可选地,作为一个实施例,第一终端接收接入点AP发送的无线帧之前,还包括:通过接收电路125接收AP发送的D2D链路建立确认消息,其中,D2D链路建立确认消息携带有第一D2D标识。
本发明实施例通过接入点AP生成携带有资源配置信息和D2D标识的无线帧,其中资源配置信息用于指示AP为第一终端和第二终端分配的用于 D2D通信的第一时频资源,D2D标识用于指示AP为第一终端和第二终端分配的第一D2D标识,AP向第一终端和第二终端发送无线帧,以使得第一终端和第二终端通过第一时频资源协商编码调制方式并进行D2D通信,从而能够降低用于D2D传输的资源指示的开销、提高系统吞吐率。并且,由于D2D资源指示不包含调制方式、编码格式、空时流数目等基于D2D终端的信息,具体地调制方式、编码格式等可以在D2D连接建立后由D2D通信终端自行协商确定,从而能够节省D2D资源分配指示的资源开销,并且能够提高D2D终端读取D2D映射字段(D2D资源映射信息)的速度,从而提高D2D连接建立的速度。此外,在分配D2D资源时,优先复用已被使用但是不会造成干扰的时频资源,能够显著地提高频谱资源利用率,使得系统吞吐量得以提升。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (48)

  1. 一种资源指示的方法,其特征在于,包括:
    接入点AP生成携带有资源配置信息和D2D标识的无线帧,其中所述资源配置信息用于指示所述AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,所述D2D标识用于指示所述AP为所述第一终端和所述第二终端分配的第一D2D标识;
    所述AP向所述第一终端和所述第二终端发送所述无线帧,以使得所述第一终端和所述第二终端通过所述第一时频资源进行D2D通信。
  2. 根据权利要求1所述的方法,其特征在于,所述无线帧包括D2D配置字段和D2D映射字段,所述D2D配置字段用于指示所述无线帧包括所述D2D映射字段以及所述D2D映射字段的位置信息,所述D2D映射字段包括所述第一时频资源的位置信息和所述第一D2D标识,其中所述第一时频资源位于所述无线帧的后续上行帧。
  3. 根据权利要求2所述的方法,其特征在于,所述D2D配置字段和所述D2D映射字段位于所述无线帧的传统前导字段之后的非传统信令字段。
  4. 根据权利要求3所述的方法,其特征在于,所述D2D配置字段位于所述非传统信令字段的HEW-SIG A部分或者所述非传统信令字段的HEW-SIG B部分,所述D2D映射字段位于所述非传统信令字段的HEW-SIG B部分。
  5. 根据权利要求2所述的方法,其特征在于,所述D2D配置字段位于所述无线帧的非传统信令字段或者所述无线帧的数据部分,所述D2D映射字段位于所述无线帧的数据部分。
  6. 根据权利要求1所述的方法,其特征在于,所述无线帧包括映射字段,所述映射字段位于所述无线帧的HEW-SIG B部分或者所述无线帧的数据部分,所述映射字段的起始的至少一个比特用于标识所述映射字段为D2D映射字段,所述D2D映射字段包括所述第一时频资源的位置信息和所述第一 D2D标识,其中所述第一时频资源位于所述无线帧的后续上行帧。
  7. 根据权利要求2或6所述的方法,其特征在于,所述D2D映射字段仅包括所述资源配置信息和所述D2D标识。
  8. 根据权利要求2或6所述的方法,其特征在于,所述D2D映射字段仅包括所述资源配置信息、所述D2D标识和D2D功率控制信息。
  9. 根据权利要求1所述的方法,其特征在于,所述接入点AP生成携带有资源配置信息和D2D标识的无线帧之前,还包括:
    接收所述第一终端发送的请求消息,所述请求消息用于请求建立与所述第二终端之间的D2D通信链路;
    向所述第二终端发送所述请求消息;
    接收所述第二终端发送的响应消息,所述响应消息用于指示所述第二终端同意与所述第一终端建立D2D通信链路。
  10. 根据权利要求9所述的方法,其特征在于,所述请求消息携带有所述第一终端检测到的邻近终端的第一信息列表,所述响应消息携带有所述第二终端检测到的邻近终端的第二信息列表,
    所述接收所述第二终端发送的响应消息之后,还包括:
    确定所述AP的已有D2D列表中的时频资源和D2D标识,是否被所述第一信息列表和所述第二信息列表中的终端占用,其中,所述AP的已有D2D列表包括已建立D2D通信连接的终端所占用的时频资源和D2D标识;
    当所述AP的已有D2D列表中的时频资源和D2D标识,全部被所述第一信息列表和所述第二信息列表中的终端占用时,为所述第一终端和所述第二终端分配与所述AP的已有D2D列表中的时频资源和D2D标识相异的所述第一时频资源和所述第一D2D标识;
    当所述AP的已有D2D列表中的时频资源和D2D标识,部分被所述第一信息列表和所述第二信息列表中的终端占用时,为所述第一终端和所述第二终端分配所述AP的已有D2D列表中未被所述第一信息列表和所述第二信息列表中的终端占用的时频资源和D2D标识中的一个作为所述第一时频资 源和所述第一D2D标识,或者为所述第一终端和所述第二终端分配与所述AP的已有D2D列表中的时频资源和D2D标识相异的所述第一时频资源和所述第一D2D标识;
    当所述AP的已有D2D列表中的时频资源和D2D标识,未被所述第一信息列表和所述第二信息列表中的终端占用时,为所述第一终端和所述第二终端分配与所述AP的已有D2D列表中的时频资源和D2D标识相同或者相异的所述第一时频资源和所述第一D2D标识。
  11. 根据权利要求10所述的方法,其特征在于,所述接入点AP确定建立第一终端与第二终端之间的D2D通信链路之后,还包括:分别向所述第一终端和所述第二终端发送D2D链路建立确认消息,其中,所述D2D链路建立确认消息包括所述第一D2D标识。
  12. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述第一终端或者所述第二终端发送的D2D链路解除请求;
    向所述第一终端和所述第二终端发送D2D链路解除消息。
  13. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述AP确定所述第一终端或所述第二终端与所述AP断开连接,或者所述第一终端与所述第二终端之间的D2D链路存在时长达到阈值时,向所述第一终端和所述第二终端发送D2D链路解除消息。
  14. 一种资源指示的方法,其特征在于,包括:
    第一终端接收接入点AP发送的携带有资源配置信息和D2D标识的无线帧,其中所述资源配置信息用于指示所述AP为所述第一终端和第二终端分配的用于D2D通信的第一时频资源,所述D2D标识用于指示所述AP为所述第一终端和所述第二终端分配的第一D2D标识;
    所述第一终端通过所述第一时频资源与所述第二终端协商编码调制方式;
    所述第一终端根据所述编码调制方式,通过所述时频资源与所述第二终端进行D2D通信。
  15. 根据权利要求14所述的方法,其特征在于,所述无线帧包括D2D配置字段和D2D映射字段,所述D2D配置字段用于指示所述无线帧包括所述D2D映射字段以及所述D2D映射字段的位置信息,所述D2D映射字段包括所述第一时频资源的位置信息和所述第一D2D标识,其中所述第一时频资源位于所述无线帧的后续上行帧。
  16. 根据权利要求14所述的方法,其特征在于,所述D2D配置字段和所述D2D映射字段位于所述无线帧的传统前导字段之后的非传统信令字段。
  17. 根据权利要求16所述的方法,其特征在于,所述D2D配置字段位于所述非传统信令字段的HEW-SIG A部分或者所述非传统信令字段的HEW-SIG B部分,所述D2D映射字段位于所述非传统信令字段的HEW-SIG B部分。
  18. 根据权利要求15所述的方法,其特征在于,所述D2D配置字段位于所述无线帧的非传统信令字段或者所述无线帧的数据部分,所述D2D映射字段位于所述无线帧的数据部分。
  19. 根据权利要求14所述的方法,其特征在于,所述无线帧包括映射字段,所述映射字段位于所述无线帧的HEW-SIG B部分或者所述无线帧的数据部分,所述映射字段的起始的至少一个比特用于标识所述映射字段为D2D映射字段,所述D2D映射字段包括所述第一时频资源的位置信息和所述第一D2D标识,其中所述第一时频资源位于所述无线帧的后续上行帧。
  20. 根据权利要求15或19所述的方法,其特征在于,所述D2D映射字段仅包括所述资源配置信息和所述D2D标识。
  21. 根据权利要求15或19所述的方法,其特征在于,所述D2D映射字段仅包括所述资源配置信息、所述D2D标识和D2D功率控制信息。
  22. 根据权利要求14所述的方法,其特征在于,所述第一终端接收接入点AP发送的无线帧之前,还包括:向所述AP发送用于请求建立与所述第二终端之间的D2D通信链路的请求消息,以使得所述AP向所述第二终端发送所述请求消息,并接收所述第二终端根据所述请求消息发送的响应消息,所述响应消息用于指示所述第二终端同意与所述第一终端建立D2D通信链路。
  23. 根据权利要求22所述的方法,其特征在于,所述请求消息携带有所述第一终端检测到的邻近终端的第一信息列表,所述响应消息携带有所述第二终端检测到的邻近终端的第二信息列表,以便于所述AP根据所述第一信息列表、所述第二信息列表和所述AP的已有D2D列表,为所述第一终端和所述第二终端分配用于D2D通信的所述第一时频资源和所述第一D2D标识,其中,所述AP的已有D2D列表包括已建立D2D通信连接的终端所占用的时频资源和D2D标识。
  24. 根据权利要求23所述的方法,其特征在于,所述第一终端接收接入点AP发送的无线帧之前,还包括:
    接收所述AP发送的D2D链路建立确认消息,其中,所述D2D链路建立确认消息携带有所述第一D2D标识。
  25. 一种接入点AP,其特征在于,包括:
    生成单元,用于生成携带有资源配置信息和D2D标识的无线帧,其中所述资源配置信息用于指示所述AP为第一终端和第二终端分配的用于D2D通信的第一时频资源,所述D2D标识用于指示所述AP为所述第一终端和所述第二终端分配的第一D2D标识;
    发送单元,用于向所述第一终端和所述第二终端发送所述无线帧,以使得所述第一终端和所述第二终端通过所述第一时频资源进行D2D通信。
  26. 根据权利要求25所述的AP,其特征在于,所述无线帧包括D2D配置字段和D2D映射字段,所述D2D配置字段用于指示所述无线帧包括所述D2D映射字段以及所述D2D映射字段的位置信息,所述D2D映射字段包括 所述第一时频资源的位置信息和所述第一D2D标识,其中所述第一时频资源位于所述无线帧的后续上行帧。
  27. 根据权利要求26所述的AP,其特征在于,所述D2D配置字段和所述D2D映射字段位于所述无线帧的传统前导字段之后的非传统信令字段。
  28. 根据权利要求27所述的AP,其特征在于,所述D2D配置字段位于所述非传统信令字段的HEW-SIG A部分或者所述非传统信令字段的HEW-SIG B部分,所述D2D映射字段位于所述非传统信令字段的HEW-SIG B部分。
  29. 根据权利要求26所述的AP,其特征在于,所述D2D配置字段位于所述无线帧的非传统信令字段或者所述无线帧的数据部分,所述D2D映射字段位于所述无线帧的数据部分。
  30. 根据权利要求25所述的AP,其特征在于,所述无线帧包括映射字段,所述映射字段位于所述无线帧的HEW-SIG B部分或者所述无线帧的数据部分,所述映射字段的起始的至少一个比特用于标识所述映射字段为D2D映射字段,所述D2D映射字段包括所述第一时频资源的位置信息和所述第一D2D标识,其中所述第一时频资源位于所述无线帧的后续上行帧。
  31. 根据权利要求26或28所述的AP,其特征在于,所述D2D映射字段仅包括所述资源配置信息和所述D2D标识。
  32. 根据权利要求26或30所述的AP,其特征在于,所述D2D映射字段仅包括所述资源配置信息、所述D2D标识和D2D功率控制信息。
  33. 根据权利要求25所述的AP,其特征在于,所述AP还包括接收单元,所述接收单元具体用于:
    接收所述第一终端发送的请求消息,所述请求消息用于请求建立与所述第二终端之间的D2D通信链路;
    通过所述发送单元,向所述第二终端发送所述请求消息;
    接收所述第二终端发送的响应消息,所述响应消息用于指示所述第二终端同意与所述第一终端建立D2D通信链路。
  34. 根据权利要求33所述的AP,其特征在于,所述请求消息携带有所述第一终端检测到的邻近终端的第一信息列表,所述响应消息携带有所述第二终端检测到的邻近终端的第二信息列表,
    所述AP还包括确定单元,所述确定单元用于:
    确定所述AP的已有D2D列表中的时频资源和D2D标识,是否被所述第一信息列表和所述第二信息列表中的终端占用,其中,所述AP的已有D2D列表包括已建立D2D通信连接的终端所占用的时频资源和D2D标识;
    当所述AP的已有D2D列表中的时频资源和D2D标识,全部被所述第一信息列表和所述第二信息列表中的终端占用时,为所述第一终端和所述第二终端分配与所述AP的已有D2D列表中的时频资源和D2D标识相异的所述第一时频资源和所述第一D2D标识;
    当所述AP的已有D2D列表中的时频资源和D2D标识,部分被所述第一信息列表和所述第二信息列表中的终端占用时,为所述第一终端和所述第二终端分配所述AP的已有D2D列表中未被所述第一信息列表和所述第二信息列表中的终端占用的时频资源和D2D标识中的一个作为所述第一时频资源和所述第一D2D标识,或者为所述第一终端和所述第二终端分配与所述AP的已有D2D列表中的时频资源和D2D标识相异的所述第一时频资源和所述第一D2D标识;
    当所述AP的已有D2D列表中的时频资源和D2D标识,未被所述第一信息列表和所述第二信息列表中的终端占用时,为所述第一终端和所述第二终端分配与所述AP的已有D2D列表中的时频资源和D2D标识相同或者相异的所述第一时频资源和所述第一D2D标识。
  35. 根据权利要求34所述的AP,其特征在于,所述发送单元还用于:分别向所述第一终端和所述第二终端发送D2D链路建立确认消息,其中,所述D2D链路建立确认消息包括所述第一D2D标识。
  36. 根据权利要求25所述的AP,其特征在于,所述AP还包括接收单元,所述接收单元用于:
    接收所述第一终端或者所述第二终端发送的D2D链路解除请求;
    所述发送单元还用于,向所述第一终端和所述第二终端发送D2D链路解除消息。
  37. 根据权利要求25所述的AP,其特征在于,所述发送单元还用于:
    当所述AP确定所述第一终端或所述第二终端与所述AP断开连接,或者所述第一终端与所述第二终端之间的D2D链路存在时长达到阈值时,向所述第一终端和所述第二终端发送D2D链路解除消息。
  38. 一种终端,其特征在于,包括:
    接收单元,用于接收接入点AP发送的携带有资源配置信息和D2D标识的无线帧,其中所述资源配置信息用于指示所述AP为所述终端和第二终端分配的用于D2D通信的第一时频资源,所述D2D标识用于指示所述AP为所述终端和所述第二终端分配的第一D2D标识;
    协商单元,用于通过所述第一时频资源与所述第二终端协商编码调制方式;
    通信单元,用于根据所述编码调制方式,通过所述时频资源与所述第二终端进行D2D通信。
  39. 根据权利要求38所述的终端,其特征在于,所述无线帧包括D2D配置字段和D2D映射字段,所述D2D配置字段用于指示所述无线帧包括所述D2D映射字段以及所述D2D映射字段的位置信息,所述D2D映射字段包括所述第一时频资源的位置信息和所述第一D2D标识,其中所述第一时频资源位于所述无线帧的后续上行帧。
  40. 根据权利要求38所述的终端,其特征在于,所述D2D配置字段和所述D2D映射字段位于所述无线帧的传统前导字段之后的非传统信令字段。
  41. 根据权利要求40所述的终端,其特征在于,所述D2D配置字段位 于所述非传统信令字段的HEW-SIG A部分或者所述非传统信令字段的HEW-SIG B部分,所述D2D映射字段位于所述非传统信令字段的HEW-SIGB部分。
  42. 根据权利要求39所述的终端,其特征在于,所述D2D配置字段位于所述无线帧的非传统信令字段或者所述无线帧的数据部分,所述D2D映射字段位于所述无线帧的数据部分。
  43. 根据权利要求38所述的终端,其特征在于,所述无线帧包括映射字段,所述映射字段位于所述无线帧的HEW-SIG B部分或者所述无线帧的数据部分,所述映射字段的起始的至少一个比特用于标识所述映射字段为D2D映射字段,所述D2D映射字段包括所述第一时频资源的位置信息和所述第一D2D标识,其中所述第一时频资源位于所述无线帧的后续上行帧。
  44. 根据权利要求39或43所述的终端,其特征在于,所述D2D映射字段仅包括所述资源配置信息和所述D2D标识。
  45. 根据权利要求39或43所述的终端,其特征在于,所述D2D映射字段仅包括所述资源配置信息、所述D2D标识和D2D功率控制信息。
  46. 根据权利要求38所述的终端,其特征在于,所述通信单元还用于:
    向所述AP发送用于请求建立与所述第二终端之间的D2D通信链路的请求消息,以使得所述AP向所述第二终端发送所述请求消息,并接收所述第二终端根据所述请求消息发送的响应消息,所述响应消息用于指示所述第二终端同意与所述第一终端建立D2D通信链路。
  47. 根据权利要求46所述的终端,其特征在于,所述请求消息携带有所述终端检测到的邻近终端的第一信息列表,所述响应消息携带有所述第二终端检测到的邻近终端的第二信息列表,以便于所述AP根据所述第一信息列表、所述第二信息列表和所述AP的已有D2D列表,为所述终端和所述第二终端分配用于D2D通信的所述第一时频资源和所述第一D2D标识,其中, 所述AP的已有D2D列表包括已建立D2D通信连接的终端所占用的时频资源和D2D标识。
  48. 根据权利要求47所述的终端,其特征在于,所述通信单元还用于:
    接收所述AP发送的D2D链路建立确认消息,其中,所述D2D链路建立确认消息携带有所述第一D2D标识。
PCT/CN2015/070632 2015-01-13 2015-01-13 资源指示的方法、接入点和终端 WO2016112499A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/070632 WO2016112499A1 (zh) 2015-01-13 2015-01-13 资源指示的方法、接入点和终端
CN201580060913.5A CN107079441A (zh) 2015-01-13 2015-01-13 资源指示的方法、接入点和终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/070632 WO2016112499A1 (zh) 2015-01-13 2015-01-13 资源指示的方法、接入点和终端

Publications (1)

Publication Number Publication Date
WO2016112499A1 true WO2016112499A1 (zh) 2016-07-21

Family

ID=56405105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070632 WO2016112499A1 (zh) 2015-01-13 2015-01-13 资源指示的方法、接入点和终端

Country Status (2)

Country Link
CN (1) CN107079441A (zh)
WO (1) WO2016112499A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114257362A (zh) * 2020-09-25 2022-03-29 北京紫光展锐通信技术有限公司 资源指示方法及相关装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111629438B (zh) * 2019-02-27 2023-09-26 华为技术有限公司 一种资源分配方法及装置
CN112584358A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 一种设备到设备通信的方法及通信装置
US12082184B2 (en) * 2020-10-21 2024-09-03 Mediatek Inc. TCI state activation for downlink transmission and uplink transmission
CN114827962B (zh) * 2021-01-28 2025-04-18 华为技术有限公司 侧行链路通信的资源协商方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103428679A (zh) * 2012-05-14 2013-12-04 中国移动通信集团公司 一种d2d通信方法、设备及系统
CN103517276A (zh) * 2012-06-29 2014-01-15 华为技术有限公司 设备间通信方法、用户设备和基站
CN103517371A (zh) * 2012-06-18 2014-01-15 中国移动通信集团公司 一种设备到设备的通信方法、装置及系统
CN103841649A (zh) * 2014-03-19 2014-06-04 宇龙计算机通信科技(深圳)有限公司 终端直连通信方法和终端直连通信系统
CN104066112A (zh) * 2013-03-21 2014-09-24 中兴通讯股份有限公司 一种终端间直接通信的方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188742B (zh) * 2011-12-29 2015-11-25 华为技术有限公司 通信切换方法、用户设备与基站
CN104054282B (zh) * 2012-01-18 2018-02-09 Lg电子株式会社 装置对装置通信方法及其装置
CN104066078A (zh) * 2013-03-21 2014-09-24 中兴通讯股份有限公司 一种设备标识的分配方法及系统
WO2014182065A1 (ko) * 2013-05-07 2014-11-13 엘지전자 주식회사 데이터 유닛을 전송하는 방법 및 장치
CN103491647B (zh) * 2013-09-09 2016-08-10 北京邮电大学 一种减小寻呼信令开销的方法
CN103634812B (zh) * 2013-11-27 2017-03-15 西安电子科技大学 一种基于用户设备中继同小区设备到设备直传通信的方法
CN103974288B (zh) * 2014-05-23 2017-06-06 电子科技大学 蜂窝网中d2d资源分配方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103428679A (zh) * 2012-05-14 2013-12-04 中国移动通信集团公司 一种d2d通信方法、设备及系统
CN103517371A (zh) * 2012-06-18 2014-01-15 中国移动通信集团公司 一种设备到设备的通信方法、装置及系统
CN103517276A (zh) * 2012-06-29 2014-01-15 华为技术有限公司 设备间通信方法、用户设备和基站
CN104066112A (zh) * 2013-03-21 2014-09-24 中兴通讯股份有限公司 一种终端间直接通信的方法及系统
CN103841649A (zh) * 2014-03-19 2014-06-04 宇龙计算机通信科技(深圳)有限公司 终端直连通信方法和终端直连通信系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114257362A (zh) * 2020-09-25 2022-03-29 北京紫光展锐通信技术有限公司 资源指示方法及相关装置
CN114257362B (zh) * 2020-09-25 2024-09-20 北京紫光展锐通信技术有限公司 资源指示方法及相关装置

Also Published As

Publication number Publication date
CN107079441A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
US12052651B2 (en) Facilitating fast passive discovery
CN108605320B (zh) 用于建立无线资源控制连接的方法和装置
WO2021027872A1 (zh) 信号发送、接收、信息反馈方法、装置、通信节点及介质
US11343802B2 (en) Semi-persistent scheduling method and apparatus
JP5292510B2 (ja) マルチキャストフレーム処理方法及び装置
CN108282906B (zh) 处理移动性中的分组数据网络连接的装置及方法
CN114466461A (zh) 数据传输的方法和设备
US11489760B2 (en) Multicast group creation method, multicast group joining method, and apparatus
WO2016112499A1 (zh) 资源指示的方法、接入点和终端
CN107872838B (zh) 中继指示方法及接入点ap
WO2013091510A1 (zh) 传输数据帧的方法和装置
WO2017067208A1 (zh) 无线局域网中站点间直接通信的方法及相关设备
CN108282833A (zh) 处理系统间移动中的分组数据流的装置及方法
WO2022141465A1 (zh) 一种资源选择的方法和装置
CN104144465A (zh) 一种服务发现方法及装置
CN104982062B (zh) 传输数据的方法、装置和系统
CN119054353A (zh) 改进的针对P2P流的基于r-TWT的通信方法
US8315192B2 (en) Method and system for configuring a media access control header to reduce a header overhead
WO2023185786A1 (zh) 终端调度方法、装置、基站及介质
CN114208365A (zh) 定时器设置方法及相关设备
WO2024131809A1 (zh) 一种通信的方法和通信装置
CN103095364B (zh) 数据传送方法和装置
WO2016192066A1 (zh) 资源指示方法和装置
CN116528212A (zh) 通信方法、接入点多链路设备和非接入点多链路设备
WO2024028353A1 (en) Multi-link p2p communication method with tid-to-link mapping dedicated to p2p links

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877418

Country of ref document: EP

Kind code of ref document: A1