[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016104733A1 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
WO2016104733A1
WO2016104733A1 PCT/JP2015/086298 JP2015086298W WO2016104733A1 WO 2016104733 A1 WO2016104733 A1 WO 2016104733A1 JP 2015086298 W JP2015086298 W JP 2015086298W WO 2016104733 A1 WO2016104733 A1 WO 2016104733A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
valve
internal combustion
intake
combustion engine
Prior art date
Application number
PCT/JP2015/086298
Other languages
French (fr)
Japanese (ja)
Inventor
大也 白井
守人 浅野
智也 太田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2016104733A1 publication Critical patent/WO2016104733A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for controlling an internal combustion engine with a variable valve timing mechanism that can change the valve opening timing and / or valve closing timing of an intake valve.
  • the engine rotation is accelerated by burning the fuel while performing cranking for rotationally driving the internal combustion engine with an electric motor. The shorter the time spent for this starting process, the better.
  • the purpose of the present invention is to obtain good combustion from the initial stage of cranking and realize quick start of the internal combustion engine.
  • the present invention controls an internal combustion engine attached with a variable valve timing mechanism capable of changing the valve opening timing and / or the valve closing timing of the intake valve.
  • a variable valve timing mechanism capable of changing the valve opening timing and / or the valve closing timing of the intake valve.
  • the engine speed It is preferable that the valve opening timing and / or valve closing timing of the intake valve at a time when the engine speed is less than the predetermined rotational speed be equal to that at the time when the engine rotational speed is equal to or higher than the predetermined rotational speed.
  • good combustion can be obtained from the initial stage of cranking, and the internal combustion engine can be started quickly.
  • FIG. 1 shows an outline of an internal combustion engine for a vehicle in the present embodiment.
  • the internal combustion engine in the present embodiment is a spark ignition type 4-stroke gasoline engine, and includes a plurality of cylinders 1 (one of which is shown in FIG. 1). In the vicinity of the intake port of each cylinder 1, an injector 11 for injecting fuel is provided.
  • a spark plug 12 is attached to the ceiling of the combustion chamber of each cylinder 1.
  • the spark plug 12 receives spark voltage generated by the ignition coil and causes spark discharge between the center electrode and the ground electrode.
  • the ignition coil is integrally incorporated in a coil case together with an igniter that is a semiconductor switching element.
  • the intake passage 3 for supplying intake air takes in air from the outside and guides it to the intake port of each cylinder 1.
  • an air cleaner 31 On the intake passage 3, an air cleaner 31, an electronic throttle valve 32, a surge tank 33, and an intake manifold 34 are arranged in this order from the upstream.
  • the exhaust passage 4 for exhausting exhaust guides the exhaust generated by burning the fuel in the cylinder 1 from the exhaust port of each cylinder 1 to the outside.
  • An exhaust manifold 42 and an exhaust purification three-way catalyst 41 are disposed on the exhaust passage 4.
  • the exhaust gas recirculation (Exhaust Gas Recirculation) device 2 realizes a so-called high pressure loop EGR, and an external EGR that communicates the upstream side of the catalyst 41 in the exhaust passage 4 and the downstream side of the throttle valve 32 in the intake passage 3.
  • the passage 21, an EGR cooler 22 provided on the EGR passage 21, and an EGR valve 23 that opens and closes the EGR passage 21 and controls the flow rate of EGR gas flowing through the EGR passage 21 are used as elements.
  • the inlet of the EGR passage 21 is connected to the exhaust manifold 42 in the exhaust passage 4 or a predetermined location downstream thereof.
  • the outlet of the EGR passage 21 is connected to a predetermined location downstream of the throttle valve 32 in the intake passage 3, particularly to the surge tank 33.
  • the internal combustion engine of this embodiment is accompanied by a VVT mechanism 6 that can variably control the opening / closing timing of the intake valve of each cylinder 1.
  • the VVT mechanism 6 is a known one (motor drive VVT) in which the rotation phase of the intake camshaft that drives the intake valve of each cylinder 1 with respect to the crankshaft is changed by an electric motor.
  • an intake camshaft of an internal combustion engine is supplied with a rotational driving force from a crankshaft that is an output shaft of the internal combustion engine, and rotates following the crankshaft.
  • a winding transmission device (not shown) for transmitting a rotational driving force is interposed between the crankshaft and the intake camshaft.
  • the winding transmission includes a crank sprocket (or pulley) provided on the crankshaft side, a cam sprocket (or pulley) provided on the intake camshaft side, and a timing chain (or pulley) wound around these sprockets (or pulleys). Or a belt) as an element.
  • the VVT mechanism 6 changes the rotation phase of the intake camshaft relative to the crankshaft by rotating the intake camshaft relative to the cam sprocket, thereby changing the opening / closing timing of the intake valve.
  • the internal combustion engine in the present embodiment performs mirror cycle (Atkinson cycle) operation by delaying the closing timing of the intake valve larger than the intake bottom dead center (for example, 55 ° CA (crank angle) or more) as necessary. Can do.
  • the opening timing of the intake valve when the mirror cycle operation is performed is delayed until the exhaust top dead center or a timing slightly delayed (for example, about 5 ° CA) from the exhaust top dead center.
  • ECU Electronic Control which is a control device of the internal combustion engine of the present embodiment (Unit) 0 is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like.
  • the input interface of the ECU 0 includes a vehicle speed signal a output from a vehicle speed sensor that detects the actual vehicle speed of the vehicle, a crank angle signal b output from an engine rotation sensor that detects the rotation angle of the crankshaft and the engine speed, and an accelerator pedal.
  • Accelerator opening signal c output from a sensor that detects the amount of depression of the engine or the opening of the throttle valve 32 as an accelerator opening (so-called required load), output from a water temperature sensor that detects a cooling water temperature that indicates the temperature of the internal combustion engine
  • intake air temperature / intake pressure signal f output from the temperature / pressure sensor for detecting intake pressure
  • intake camshaft Cam angle signal g output from the cam angle sensor at multiple cam angles, output from a sensor (such as a brake switch or a master cylinder pressure sensor) that detects whether the brake pedal is depressed or the brake pedal is depressed
  • a brake signal h or the like is input.
  • the crank angle sensor senses the rotation angle of a rotor that is fixed to the shaft end of the crankshaft and rotates together with the crankshaft.
  • the rotor is formed with teeth or protrusions at predetermined angles along the rotation direction of the crankshaft. Typically, each time the crankshaft rotates 10 °, teeth or protrusions are placed.
  • the crank angle sensor faces the outer periphery of the rotor, detects that individual teeth or protrusions pass near the sensor, and transmits a pulse signal as a crank angle signal b each time. However, the crank angle sensor does not output 36 pulses during one revolution of the crankshaft. Some of the teeth or protrusions of the rotor of the crankshaft are missing.
  • Each missing tooth portion corresponds to a specific rotational phase angle of the crankshaft. Due to the missing tooth portion, a part of the pulse train of the crank angle signal b is also lost. Based on this missing pulse, the absolute angle (posture) of the crankshaft, in other words, the current position of the piston of each cylinder 1 can be known.
  • the cam angle sensor senses the rotation angle of the rotor fixed to the shaft end of the intake camshaft and rotating integrally with the intake camshaft. Teeth or protrusions are formed on the rotor at predetermined angles along the rotation direction of the intake camshaft.
  • the cam angle sensor faces the outer periphery of the rotor, detects that individual teeth or protrusions pass near the sensor, and transmits a pulse signal as the cam angle signal g each time. If both the crank angle signal b and the cam angle signal g are referred to, the current stroke of each cylinder 1 can be determined and known, and the current intake valve timing (the advance angle of the VVT mechanism 6) is realized. Amount) becomes clear.
  • the ignition signal i for the igniter From the output interface of the ECU 0, the ignition signal i for the igniter, the fuel injection signal j for the injector 11, the opening operation signal k for the throttle valve 32, the opening operation signal l for the EGR valve 23, VVT.
  • An intake valve timing control signal n or the like is output to the mechanism 6.
  • the processor of the ECU 0 interprets and executes a program stored in the memory in advance, calculates operation parameters, and controls the operation of the internal combustion engine.
  • the ECU 0 acquires various information a, b, c, d, e, f, g, and h necessary for operation control of the internal combustion engine via the input interface, knows the engine speed, and is filled in the cylinder 1.
  • Estimate the intake volume Based on the engine speed, the intake air amount, etc., the required fuel injection amount, fuel injection timing (including the number of times of fuel injection for one combustion), fuel injection pressure, ignition timing, required EGR rate (or EGR rate) Volume), opening / closing timing of the intake valve, and the like.
  • the ECU 0 applies various control signals i, j, k, l, and n corresponding to the operation parameters via the output interface.
  • the ECU0 executes an idle stop that stops the idle rotation of the internal combustion engine when a predetermined idle stop condition is satisfied.
  • the ECU 0 indicates that the brake pedal depression amount or the master cylinder pressure is equal to or greater than a threshold value (the brake pedal is depressed), the cooling water temperature of the internal combustion engine is higher than a predetermined value, and the charge amount or terminal voltage of the in-vehicle battery exceeds a predetermined value.
  • the shift range is the traveling range
  • the idle stop condition is established because all the conditions such as (the vehicle speed has decreased from 13.5 km / h to 13 km / h, or from 9.5 km / h to 7 km / h) are all established. Judgment is made.
  • the ECU 0 determines that the brake pedal depression amount or the master cylinder pressure is 0 or less than a threshold value close to 0 (the brake pedal is no longer depressed), and conversely, the brake pedal depression amount or the master cylinder pressure further increases (brake The idle stop termination condition is met when the pedal is depressed more), the accelerator opening is increased (the accelerator pedal is depressed), or the predetermined time (3 minutes) has elapsed in the idle stop state. Judge that it was done.
  • the ECU 0 controls an electric motor (starter motor or ISG (Integrated Starter Generator), not shown).
  • the signal o is input and cranking is performed by rotating the crankshaft by the electric motor. Cranking ends when the internal combustion engine starts from the first explosion to a continuous explosion and the engine speed, that is, the rotation speed of the crankshaft, exceeds a judgment value determined according to the coolant temperature, etc. (assuming that the explosion has been completed) To do.
  • the opening / closing timing of the intake valve is changed via the VVT mechanism 6 during cranking for starting the internal combustion engine, and fuel injection during cranking is performed according to the changed intake valve timing.
  • the amount and ignition timing are changed.
  • FIG. 2 shows an example of the control executed by the ECU 0 when starting the stopped internal combustion engine. While the internal combustion engine is stopped, the VVT mechanism 6 returns the rotational phase of the intake camshaft to the crankshaft to the most retarded position. Thereby, the opening / closing timing of the intake valve becomes the most delayed timing. At this most retarded angle timing, the intake valve opens at a timing near exhaust top dead center or slightly delayed from exhaust top dead center, and closes at timing greatly delayed from intake bottom dead center.
  • the ECU 0 starts the control of the VVT mechanism 6 almost simultaneously with starting the electric motor for rotationally driving the crankshaft of the internal combustion engine, and the rotational phase of the intake camshaft with respect to the crankshaft is more than a certain degree from the most retarded position (for example, 20 (° CA to 25 ° CA) Displace to the advanced position.
  • time t 0 is the start time of cranking. After the time t 0 , the opening / closing timing of the intake valve during cranking gradually advances from the most retarded timing.
  • the intake valve opening timing is earlier than the exhaust top dead center. Further, as the intake valve timing is advanced from the most retarded timing, the intake valve closing timing approaches the intake bottom dead center, and the amount of intake gas charged into the cylinder 1 increases. Therefore, the ECU 0 increases the amount of fuel injected from the injector 11 to the cylinder 1 that reaches the intake stroke during cranking as the advance amount from the most retarded timing of the intake valve timing increases.
  • the advance amount of the current intake valve timing can be obtained by referring to the crank angle signal b and the cam angle signal g.
  • the fuel injection amount from the injector 11 is determined on the basis of the advance amount of the intake valve timing at the exhaust top dead center of the target cylinder 1 or at the timing just before that.
  • the intake amount to be filled in the current intake stroke of the cylinder 1 is predicted from the advance amount of the intake valve timing at the exhaust top dead center of the target cylinder 1 or the timing immediately before it, the engine speed, etc.
  • An amount of fuel commensurate with the anticipated intake amount may be injected.
  • the relationship between the advance amount of the intake valve timing and the engine speed in the memory of the ECU 0 and the expected value of the intake amount that is charged into the cylinder 1 through the intake stroke (or the fuel injection amount that matches the expected intake amount)
  • the map data or function formula that prescribes is stored in advance.
  • the intake air that is filled in that cylinder 1 by searching the map with the advance amount of the current intake valve timing and the engine speed as keys. Knowing the expected amount of fuel (or fuel injection amount) or substituting the current intake valve timing advance amount and engine speed into the function equation, and predicting the amount of intake air that will fill the cylinder 1 The value (or fuel injection amount) is calculated. Then, the amount of fuel injected from the injector 11 to the cylinder 1 is determined.
  • the fuel injection amount from the injector 11 in accordance with the current temperature of the internal combustion engine and the temperature of the intake air. Specifically, as the cooling water temperature of the internal combustion engine obtained by referring to the cooling water temperature signal d is lower, the port wet (the fuel injected from the injector 11 becomes liquid and adheres to the inner wall surface of the intake port). ) Increases, the fuel injection amount is corrected to increase. And / or the lower the intake air temperature known with reference to the intake air temperature signal f, the greater the amount of oxygen contained in the intake air charged into the cylinder 1 (the higher the oxygen density), so the fuel injection amount Correct the increase.
  • the intake valve timing is advanced from the most retarded timing, the intake amount and the fuel injection amount charged into the cylinder 1 increase, so that the combustion speed in the expansion stroke of the cylinder 1 becomes faster.
  • the timing at which spark ignition by the spark plug 12 is performed on the cylinder 1 that reaches the expansion stroke during cranking is delayed as the advance amount from the most retarded timing of the intake valve timing increases.
  • the spark ignition timing is determined based on the advance amount of the intake valve timing at the exhaust top dead center of the target cylinder 1 or the timing just before it.
  • the intake amount to be filled in the current intake stroke of the cylinder 1 is predicted from the advance amount of the intake valve timing at the exhaust top dead center of the target cylinder 1 or the timing immediately before it, the engine speed, etc. You may make it perform spark ignition at the timing according to the estimated intake amount. For example, in the memory of the ECU 0, the advance amount of the intake valve timing, the engine speed, and the like, the expected value of the intake amount that is charged into the cylinder 1 through the intake stroke (or an appropriate ignition timing for the expected intake amount), and Map data or a function expression that defines the relationship is stored in advance.
  • the intake air that is filled in that cylinder 1 by searching the map with the advance amount of the current intake valve timing and the engine speed as keys. Knowing the expected value (or ignition timing) of the quantity, or substituting the current advance amount of the intake valve timing and the engine speed into the function formula, the expected value of the intake quantity filled in the cylinder 1 (Or ignition timing) is calculated. And the timing which performs spark ignition with the spark plug 12 attached to the said cylinder 1 is determined.
  • the spark plug 12 it is also preferable to correct the timing of spark ignition by the spark plug 12 according to the current intake air temperature level. Specifically, the lower the intake air temperature obtained with reference to the intake air temperature signal f, the slower the combustion speed of the air-fuel mixture filled in the cylinder 1, so the ignition timing is corrected to advance.
  • the idle operation region or idle operation is performed at the time when the engine speed has increased to a predetermined speed, or after time t 1 when the engine speed exceeds the complete explosion determination value and cranking ends.
  • the opening / closing timing of the intake valve in the low load operation region close to is controlled to a normal timing, that is, a timing advanced by a certain degree (for example, 20 ° CA to 25 ° CA) from the most retarded timing.
  • the VVT mechanism 6 capable of changing the opening / closing timing of the intake valve is controlled, and when starting the internal combustion engine, the crankshaft of the internal combustion engine is rotationally driven by an electric motor. While performing cranking, the intake valve opening / closing timing is changed via the VVT mechanism 6 during the cranking, and the fuel injection amount and ignition timing during cranking are adjusted according to the changing intake valve opening / closing timing.
  • the control device 0 for the internal combustion engine is configured.
  • the fuel injection amount and the ignition timing can be set in accordance with the intake air amount actually charged in the cylinder 1 during cranking for starting, it is favorable from the initial stage to the final stage of cranking. You can get combustion. As a result of stabilization of combustion, engine rotation can be accelerated quickly, and the cranking period can be shortened.
  • the present invention is not limited to the embodiment described in detail above.
  • the specific mode of the VVT mechanism 6 for changing the valve opening timing and / or the valve closing timing of the intake valve of each cylinder 1 of the internal combustion engine is arbitrary and is not uniquely limited.
  • multiple cams that drive the intake valve to open are prepared and used appropriately.
  • the lever ratio of the rocker arm Are known, and the intake valve is an electromagnetic solenoid valve, etc., and it is allowed to be selected from these various mechanisms.
  • the valve opening timing and the valve closing timing of the intake valve change synchronously, but the VVT mechanism 6 in other aspects Is mounted on the internal combustion engine, the valve opening timing and the valve closing timing of the intake valve can be changed asynchronously, or only the valve opening timing or only the valve closing timing can be changed. Therefore, the advance amount from the most retarded timing of the intake valve opening timing may be different from the advance amount from the most retarded timing of the same intake valve closing timing.
  • the fuel injection amount and ignition timing during cranking are adjusted according to the valve opening timing or valve closing timing (advancing amount) of the intake valve that changes during cranking. do it. That is, the fuel injection amount is increased and the ignition timing is delayed as the opening timing or closing timing of the intake valve is advanced, in other words, as the intake amount charged into the cylinder 1 is increased.
  • the present invention can be applied to control of an internal combustion engine mounted on a vehicle or the like.
  • Control unit DESCRIPTION OF SYMBOLS 1 ... Cylinder 11 ... Injector 12 ... Spark plug 6 ... Variable valve timing (VVT) mechanism b ... Crank angle signal g ... Cam angle signal i ... Ignition signal j ... Fuel injection signal n ... Control signal of intake valve timing o ... Cranking Motor control signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The objective is to obtain suitable combustion from the beginning of cranking, and achieve rapid starting of an internal combustion engine. This control device, which controls an internal combustion engine equipped with a variable valve timing mechanism capable of changing the valve-opening timing or the valve-closing timing of an intake valve, is configured such that cranking, in which the crankshaft of the internal combustion engine is rotationally driven by an electric motor, is executed when the internal combustion engine is started, the valve-opening timing or the valve-closing timing of the intake valve is changed by means of the variable valve timing mechanism during cranking, and the fuel injection amount and the ignition timing are adjusted during cranking in accordance with the changing valve-opening timing or valve-closing timing of the intake valve.

Description

内燃機関の制御装置Control device for internal combustion engine
 本発明は、吸気バルブの開弁タイミング及び/または閉弁タイミングを変化させることのできる可変バルブタイミング(Variable Valve Timing)機構が付帯した内燃機関を制御する制御装置に関する。 The present invention relates to a control device for controlling an internal combustion engine with a variable valve timing mechanism that can change the valve opening timing and / or valve closing timing of an intake valve.
 車両等に搭載される内燃機関について、吸気バルブの開閉タイミングを可変制御できるVVT機構を備えたものが公知である(例えば、下記特許文献を参照)。 2. Description of the Related Art An internal combustion engine mounted on a vehicle or the like is known with a VVT mechanism that can variably control the opening / closing timing of an intake valve (see, for example, the following patent document).
特開2014-066227号公報JP 2014-066627 A
 内燃機関を始動する際には、電動機により内燃機関を回転駆動するクランキングを実行しつつ燃料を燃焼させてエンジン回転を加速させるが、この始動処理に費やす時間は短いほどよい。 When starting the internal combustion engine, the engine rotation is accelerated by burning the fuel while performing cranking for rotationally driving the internal combustion engine with an electric motor. The shorter the time spent for this starting process, the better.
 本発明は、クランキングの初期から良好な燃焼を得、内燃機関の速やかなる始動を実現することを所期の目的としている。 The purpose of the present invention is to obtain good combustion from the initial stage of cranking and realize quick start of the internal combustion engine.
 上述した課題を解決するべく、本発明では、吸気バルブの開弁タイミング及び/または閉弁タイミングを変化させることのできる可変バルブタイミング機構が付帯した内燃機関を制御するものであって、内燃機関のクランクシャフトを電動機により回転駆動するクランキングを伴う内燃機関の始動に際し、エンジン回転数が所定回転数未満の時期における吸気バルブの開弁タイミング及び/または閉弁タイミングを、エンジン回転数が所定回転数以上となった時期におけるそれと比較して進角させるとともに、前者の時期における吸気バルブの開弁タイミング及び/または閉弁タイミングの進角量を、内燃機関の温度及び/または吸気の温度に応じて変更する内燃機関の制御装置を構成した。 In order to solve the above-described problems, the present invention controls an internal combustion engine attached with a variable valve timing mechanism capable of changing the valve opening timing and / or the valve closing timing of the intake valve. When starting an internal combustion engine with cranking that rotationally drives the crankshaft by an electric motor, the opening and / or closing timing of the intake valve at a time when the engine speed is less than the predetermined speed, and the engine speed is the predetermined speed The advance angle is made in comparison with that at the above timing, and the advance amount of the opening timing and / or closing timing of the intake valve at the former timing depends on the temperature of the internal combustion engine and / or the temperature of the intake air. A control device for the internal combustion engine to be changed is configured.
 なお、アイドルストップ条件が成立して内燃機関のアイドルストップ処理を開始した後、エンジン回転が完全に停止する前にアイドルストップ終了条件が成立して内燃機関を再始動する場合には、エンジン回転数が所定回転数未満の時期における吸気バルブの開弁タイミング及び/または閉弁タイミングと、エンジン回転数が所定回転数以上となった時期におけるそれとを同等とすることが好ましい。 If the idle stop end condition is satisfied and the internal combustion engine is restarted after the idle stop condition is satisfied and the idle stop process of the internal combustion engine is started and before the engine rotation is completely stopped, the engine speed It is preferable that the valve opening timing and / or valve closing timing of the intake valve at a time when the engine speed is less than the predetermined rotational speed be equal to that at the time when the engine rotational speed is equal to or higher than the predetermined rotational speed.
 本発明によれば、クランキングの初期から良好な燃焼を得られ、内燃機関の速やかなる始動を実現することができる。 According to the present invention, good combustion can be obtained from the initial stage of cranking, and the internal combustion engine can be started quickly.
本発明の一実施形態における内燃機関及び制御装置の概略構成を示す図。The figure which shows schematic structure of the internal combustion engine and control apparatus in one Embodiment of this invention. 同実施形態の制御装置が実施する制御の内容を説明するタイミング図。The timing diagram explaining the content of the control which the control apparatus of the embodiment implements.
 本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態における内燃機関は、火花点火式の4ストロークガソリンエンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を具備している。各気筒1の吸気ポート近傍には、燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。点火コイルは、半導体スイッチング素子であるイグナイタとともに、コイルケースに一体的に内蔵される。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an internal combustion engine for a vehicle in the present embodiment. The internal combustion engine in the present embodiment is a spark ignition type 4-stroke gasoline engine, and includes a plurality of cylinders 1 (one of which is shown in FIG. 1). In the vicinity of the intake port of each cylinder 1, an injector 11 for injecting fuel is provided. A spark plug 12 is attached to the ceiling of the combustion chamber of each cylinder 1. The spark plug 12 receives spark voltage generated by the ignition coil and causes spark discharge between the center electrode and the ground electrode. The ignition coil is integrally incorporated in a coil case together with an igniter that is a semiconductor switching element.
 吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。 The intake passage 3 for supplying intake air takes in air from the outside and guides it to the intake port of each cylinder 1. On the intake passage 3, an air cleaner 31, an electronic throttle valve 32, a surge tank 33, and an intake manifold 34 are arranged in this order from the upstream.
 排気を排出するための排気通路4は、気筒1内で燃料を燃焼させたことで生じる排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。 The exhaust passage 4 for exhausting exhaust guides the exhaust generated by burning the fuel in the cylinder 1 from the exhaust port of each cylinder 1 to the outside. An exhaust manifold 42 and an exhaust purification three-way catalyst 41 are disposed on the exhaust passage 4.
 排気ガス再循環(Exhaust Gas Recirculation)装置2は、いわゆる高圧ループEGRを実現するものであり、排気通路4における触媒41の上流側と吸気通路3におけるスロットルバルブ32の下流側とを連通する外部EGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における排気マニホルド42またはその下流の所定箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の所定箇所、特にサージタンク33に接続している。 The exhaust gas recirculation (Exhaust Gas Recirculation) device 2 realizes a so-called high pressure loop EGR, and an external EGR that communicates the upstream side of the catalyst 41 in the exhaust passage 4 and the downstream side of the throttle valve 32 in the intake passage 3. The passage 21, an EGR cooler 22 provided on the EGR passage 21, and an EGR valve 23 that opens and closes the EGR passage 21 and controls the flow rate of EGR gas flowing through the EGR passage 21 are used as elements. The inlet of the EGR passage 21 is connected to the exhaust manifold 42 in the exhaust passage 4 or a predetermined location downstream thereof. The outlet of the EGR passage 21 is connected to a predetermined location downstream of the throttle valve 32 in the intake passage 3, particularly to the surge tank 33.
 本実施形態の内燃機関には、各気筒1の吸気バルブの開閉タイミングを可変制御できるVVT機構6が付随している。VVT機構6は、各気筒1の吸気バルブを駆動する吸気カムシャフトのクランクシャフトに対する回転位相を電動機によって変化させる既知のもの(モータドライブVVT)である。周知の通り、内燃機関の吸気カムシャフトは、内燃機関の出力軸であるクランクシャフトから回転駆動力の供給を受け、クランクシャフトに従動して回転する。クランクシャフトと吸気カムシャフトとの間には、回転駆動力を伝達するための巻掛伝動装置(図示せず)が介在している。巻掛伝動装置は、クランクシャフト側に設けたクランクスプロケット(または、プーリ)と、吸気カムシャフト側に設けたカムスプロケット(または、プーリ)と、これらスプロケット(または、プーリ)に巻き掛けるタイミングチェーン(または、ベルト)とを要素とする。VVT機構6は、吸気カムシャフトをカムスプロケットに対し相対的に回動させることを通じて、吸気カムシャフトのクランクシャフトに対する回転位相を変化させ、以て吸気バルブの開閉タイミングを変更する。 The internal combustion engine of this embodiment is accompanied by a VVT mechanism 6 that can variably control the opening / closing timing of the intake valve of each cylinder 1. The VVT mechanism 6 is a known one (motor drive VVT) in which the rotation phase of the intake camshaft that drives the intake valve of each cylinder 1 with respect to the crankshaft is changed by an electric motor. As is well known, an intake camshaft of an internal combustion engine is supplied with a rotational driving force from a crankshaft that is an output shaft of the internal combustion engine, and rotates following the crankshaft. A winding transmission device (not shown) for transmitting a rotational driving force is interposed between the crankshaft and the intake camshaft. The winding transmission includes a crank sprocket (or pulley) provided on the crankshaft side, a cam sprocket (or pulley) provided on the intake camshaft side, and a timing chain (or pulley) wound around these sprockets (or pulleys). Or a belt) as an element. The VVT mechanism 6 changes the rotation phase of the intake camshaft relative to the crankshaft by rotating the intake camshaft relative to the cam sprocket, thereby changing the opening / closing timing of the intake valve.
 本実施形態における内燃機関は、必要に応じ、吸気バルブの閉弁タイミングを吸気下死点よりも大きく(例えば、55°CA(クランク角度)以上)遅らせてミラーサイクル(アトキンソンサイクル)運転を行うことができる。ミラーサイクル運転を行うときの吸気バルブの開弁タイミングは、排気上死点近傍ないし排気上死点から若干(例えば、5°CA程度)遅れたタイミングまで遅角する。 The internal combustion engine in the present embodiment performs mirror cycle (Atkinson cycle) operation by delaying the closing timing of the intake valve larger than the intake bottom dead center (for example, 55 ° CA (crank angle) or more) as necessary. Can do. The opening timing of the intake valve when the mirror cycle operation is performed is delayed until the exhaust top dead center or a timing slightly delayed (for example, about 5 ° CA) from the exhaust top dead center.
 本実施形態の内燃機関の制御装置たるECU(Electronic Control
 Unit)0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。
ECU (Electronic Control) which is a control device of the internal combustion engine of the present embodiment
(Unit) 0 is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like.
 ECU0の入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、クランクシャフトの回転角度及びエンジン回転数を検出するエンジン回転センサから出力されるクランク角信号b、アクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度(いわば、要求負荷)として検出するセンサから出力されるアクセル開度信号c、内燃機関の温度を示唆する冷却水温を検出する水温センサから出力される冷却水温信号d、車載のバッテリの端子電流及び/または端子電圧を検出する電流/電圧センサから出力されるバッテリ電流/電圧信号e、吸気通路3(特に、サージタンク33)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号f、吸気カムシャフトの複数のカム角にてカム角センサから出力されるカム角信号g、ブレーキペダルが踏まれていることまたはブレーキペダルの踏込量を検出するセンサ(ブレーキスイッチやマスタシリンダ圧センサ等)から出力されるブレーキ信号h等が入力される。 The input interface of the ECU 0 includes a vehicle speed signal a output from a vehicle speed sensor that detects the actual vehicle speed of the vehicle, a crank angle signal b output from an engine rotation sensor that detects the rotation angle of the crankshaft and the engine speed, and an accelerator pedal. Accelerator opening signal c output from a sensor that detects the amount of depression of the engine or the opening of the throttle valve 32 as an accelerator opening (so-called required load), output from a water temperature sensor that detects a cooling water temperature that indicates the temperature of the internal combustion engine The cooling water temperature signal d, the battery current / voltage signal e output from the current / voltage sensor that detects the terminal current and / or terminal voltage of the vehicle battery, and the intake air temperature in the intake passage 3 (particularly, the surge tank 33) And intake air temperature / intake pressure signal f output from the temperature / pressure sensor for detecting intake pressure, intake camshaft Cam angle signal g output from the cam angle sensor at multiple cam angles, output from a sensor (such as a brake switch or a master cylinder pressure sensor) that detects whether the brake pedal is depressed or the brake pedal is depressed A brake signal h or the like is input.
 クランク角センサは、クランクシャフトの軸端部に固定されクランクシャフトと一体となって回転するロータの回転角度をセンシングするものである。そのロータには、クランクシャフトの回転方向に沿った所定角度毎に、歯または突起が形成されている。典型的には、クランクシャフトが10°回転する都度、歯または突起が配置される。クランク角センサは、ロータの外周に臨み、個々の歯または突起が当該センサの近傍を通過することを検知して、その都度クランク角信号bとしてパルス信号を発信する。尤も、クランク角センサは、クランクシャフトが一回転する間に三十六回のパルスを出力するわけではない。クランクシャフトのロータの歯または突起は、その一部が欠損している。欠歯部分はそれぞれ、クランクシャフトの特定の回転位相角に対応する。そして、欠歯部分に起因して、クランク角信号bのパルス列もまた一部が欠損する。このパルスの欠損を基にして、クランクシャフトの絶対的な角度(姿勢)、換言すれば各気筒1のピストンの現在位置を知ることが可能である。 The crank angle sensor senses the rotation angle of a rotor that is fixed to the shaft end of the crankshaft and rotates together with the crankshaft. The rotor is formed with teeth or protrusions at predetermined angles along the rotation direction of the crankshaft. Typically, each time the crankshaft rotates 10 °, teeth or protrusions are placed. The crank angle sensor faces the outer periphery of the rotor, detects that individual teeth or protrusions pass near the sensor, and transmits a pulse signal as a crank angle signal b each time. However, the crank angle sensor does not output 36 pulses during one revolution of the crankshaft. Some of the teeth or protrusions of the rotor of the crankshaft are missing. Each missing tooth portion corresponds to a specific rotational phase angle of the crankshaft. Due to the missing tooth portion, a part of the pulse train of the crank angle signal b is also lost. Based on this missing pulse, the absolute angle (posture) of the crankshaft, in other words, the current position of the piston of each cylinder 1 can be known.
 また、カム角センサは、吸気カムシャフトの軸端部に固定され吸気カムシャフトと一体となって回転するロータの回転角度をセンシングするものである。そのロータには、吸気カムシャフトの回転方向に沿った所定角度毎に、歯または突起が形成されている。カム角センサは、ロータの外周に臨み、個々の歯または突起が当該センサの近傍を通過することを検知して、その都度カム角信号gとしてパルス信号を発信する。クランク角信号b及びカム角信号gをともに参照すれば、各気筒1の現在の行程を判別して知得できることに加えて、VVT機構6が具現している現在の吸気バルブタイミング(の進角量)が明らかとなる。 The cam angle sensor senses the rotation angle of the rotor fixed to the shaft end of the intake camshaft and rotating integrally with the intake camshaft. Teeth or protrusions are formed on the rotor at predetermined angles along the rotation direction of the intake camshaft. The cam angle sensor faces the outer periphery of the rotor, detects that individual teeth or protrusions pass near the sensor, and transmits a pulse signal as the cam angle signal g each time. If both the crank angle signal b and the cam angle signal g are referred to, the current stroke of each cylinder 1 can be determined and known, and the current intake valve timing (the advance angle of the VVT mechanism 6) is realized. Amount) becomes clear.
 ECU0の出力インタフェースからは、イグナイタに対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l、VVT機構6に対して吸気バルブタイミングの制御信号n等を出力する。 From the output interface of the ECU 0, the ignition signal i for the igniter, the fuel injection signal j for the injector 11, the opening operation signal k for the throttle valve 32, the opening operation signal l for the EGR valve 23, VVT. An intake valve timing control signal n or the like is output to the mechanism 6.
 ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に充填される吸気量を推算する。そして、それらエンジン回転数及び吸気量等に基づき、要求される燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、点火タイミング、要求EGR率(または、EGR量)、吸気バルブの開閉タイミング等といった各種運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、l、nを出力インタフェースを介して印加する。 The processor of the ECU 0 interprets and executes a program stored in the memory in advance, calculates operation parameters, and controls the operation of the internal combustion engine. The ECU 0 acquires various information a, b, c, d, e, f, g, and h necessary for operation control of the internal combustion engine via the input interface, knows the engine speed, and is filled in the cylinder 1. Estimate the intake volume. Based on the engine speed, the intake air amount, etc., the required fuel injection amount, fuel injection timing (including the number of times of fuel injection for one combustion), fuel injection pressure, ignition timing, required EGR rate (or EGR rate) Volume), opening / closing timing of the intake valve, and the like. The ECU 0 applies various control signals i, j, k, l, and n corresponding to the operation parameters via the output interface.
 ECU0は、所定のアイドルストップ条件が成立したときに、内燃機関のアイドル回転を停止させるアイドルストップを実行する。ECU0は、ブレーキペダルの踏込量またはマスタシリンダ圧が閾値以上であり(ブレーキペダルが踏まれた)、内燃機関の冷却水温が所定以上に高く、車載のバッテリの充電量または端子電圧が所定以上に高く、エアコンディショナの冷媒圧縮用コンプレッサが稼働しておらず、シフトレンジが走行レンジであり、前回のアイドルストップ終了からある車速以上まで加速した経歴があり、かつ現在の車速がある車速以下である(例えば、車速が13.5km/h以上から13km/hまで低下した、または9.5km/h以上から7km/hまで低下した)、といった諸条件がおしなべて成立したことを以て、アイドルストップ条件が成立したものと判断する。 ECU0 executes an idle stop that stops the idle rotation of the internal combustion engine when a predetermined idle stop condition is satisfied. The ECU 0 indicates that the brake pedal depression amount or the master cylinder pressure is equal to or greater than a threshold value (the brake pedal is depressed), the cooling water temperature of the internal combustion engine is higher than a predetermined value, and the charge amount or terminal voltage of the in-vehicle battery exceeds a predetermined value. High, the air conditioner's refrigerant compression compressor is not operating, the shift range is the traveling range, there is a history of acceleration from the end of the previous idle stop to a certain vehicle speed and below the current vehicle speed The idle stop condition is established because all the conditions such as (the vehicle speed has decreased from 13.5 km / h to 13 km / h, or from 9.5 km / h to 7 km / h) are all established. Judgment is made.
 アイドルストップ条件の成立後、所定のアイドルストップ終了条件が成立したときには、内燃機関を再始動する。ECU0は、ブレーキペダルの踏込量またはマスタシリンダ圧が0または0に近い閾値未満となった(ブレーキペダルが踏まれなくなった)、逆にブレーキペダルの踏込量またはマスタシリンダ圧がさらに増大した(ブレーキペダルがさらに強く踏み込まれた)、アクセル開度が増大した(アクセルペダルが踏まれた)、アイドルストップ状態で所定時間(3分)が経過した等のうち何れかを以て、アイドルストップ終了条件が成立したものと判断する。 When the predetermined idle stop termination condition is satisfied after the idle stop condition is satisfied, the internal combustion engine is restarted. The ECU 0 determines that the brake pedal depression amount or the master cylinder pressure is 0 or less than a threshold value close to 0 (the brake pedal is no longer depressed), and conversely, the brake pedal depression amount or the master cylinder pressure further increases (brake The idle stop termination condition is met when the pedal is depressed more), the accelerator opening is increased (the accelerator pedal is depressed), or the predetermined time (3 minutes) has elapsed in the idle stop state. Judge that it was done.
 停止した内燃機関を始動(冷間始動であることもあれば、アイドリングストップからの復帰であることもある)するに際し、ECU0は、電動機(スタータモータまたはISG(Integrated Starter Generator)。図示せず)に制御信号oを入力し、当該電動機によりクランクシャフトを回転させるクランキングを行う。クランキングは、内燃機関が初爆から連爆へと至り、エンジン回転数即ちクランクシャフトの回転速度が冷却水温等に応じて定まる判定値を超えたときに(完爆したものと見なして)終了する。 When starting the stopped internal combustion engine (a cold start or a return from an idling stop), the ECU 0 controls an electric motor (starter motor or ISG (Integrated Starter Generator), not shown). The signal o is input and cranking is performed by rotating the crankshaft by the electric motor. Cranking ends when the internal combustion engine starts from the first explosion to a continuous explosion and the engine speed, that is, the rotation speed of the crankshaft, exceeds a judgment value determined according to the coolant temperature, etc. (assuming that the explosion has been completed) To do.
 しかして、本実施形態では、内燃機関の始動のためのクランキング中にVVT機構6を介して吸気バルブの開閉タイミングを変化させるとともに、その変化する吸気バルブタイミングに応じてクランキング中の燃料噴射量及び点火タイミングを変更するようにしている。 Thus, in the present embodiment, the opening / closing timing of the intake valve is changed via the VVT mechanism 6 during cranking for starting the internal combustion engine, and fuel injection during cranking is performed according to the changed intake valve timing. The amount and ignition timing are changed.
 図2に、停止した内燃機関の始動に際してECU0が実行する制御の模様を例示する。内燃機関の停止中、VVT機構6は、吸気カムシャフトのクランクシャフトに対する回転位相を最も遅角した位置に戻す。これにより、吸気バルブの開閉タイミングは最も遅角したタイミングとなる。この最遅角タイミングでは、吸気バルブが排気上死点近傍ないし排気上死点から若干遅れたタイミングで開弁し、吸気下死点から大きく遅れたタイミングで閉弁する。 FIG. 2 shows an example of the control executed by the ECU 0 when starting the stopped internal combustion engine. While the internal combustion engine is stopped, the VVT mechanism 6 returns the rotational phase of the intake camshaft to the crankshaft to the most retarded position. Thereby, the opening / closing timing of the intake valve becomes the most delayed timing. At this most retarded angle timing, the intake valve opens at a timing near exhaust top dead center or slightly delayed from exhaust top dead center, and closes at timing greatly delayed from intake bottom dead center.
 ECU0は、内燃機関のクランクシャフトを回転駆動する電動機を起動すると略同時にVVT機構6の制御を開始し、吸気カムシャフトのクランクシャフトに対する回転位相を、最も遅角した位置からある程度以上(例えば、20°CAないし25°CA)進角した位置まで変位させてゆく。図2において、時点t0がクランキングの開始時点である。当
該時点t0以降、クランキング中の吸気バルブの開閉タイミングは、最遅角タイミングか
ら徐々に進角してゆく。
The ECU 0 starts the control of the VVT mechanism 6 almost simultaneously with starting the electric motor for rotationally driving the crankshaft of the internal combustion engine, and the rotational phase of the intake camshaft with respect to the crankshaft is more than a certain degree from the most retarded position (for example, 20 (° CA to 25 ° CA) Displace to the advanced position. In FIG. 2, time t 0 is the start time of cranking. After the time t 0 , the opening / closing timing of the intake valve during cranking gradually advances from the most retarded timing.
 吸気バルブタイミングを最遅角タイミングから進角すると、吸気バルブの開弁タイミングが排気上死点よりも早くなる。さらに、吸気バルブタイミングが最遅角タイミングから進角するほど、吸気バルブの閉弁タイミングが吸気下死点に近づくことから、気筒1に充填される吸気量が増加する。従って、ECU0は、クランキング中に吸気行程を迎える気筒1に対してインジェクタ11から噴射する燃料の量を、吸気バルブタイミングの最遅角タイミングからの進角量が大きいほど増量する。既に述べた通り、現在の吸気バルブタイミングの進角量は、クランク角信号b及びカム角信号gを参照して知得できる。インジェクタ11からの燃料噴射量は、対象の気筒1の排気上死点またはその直前のタイミングにおける吸気バルブタイミングの進角量を基に決定する。 When the intake valve timing is advanced from the most retarded timing, the intake valve opening timing is earlier than the exhaust top dead center. Further, as the intake valve timing is advanced from the most retarded timing, the intake valve closing timing approaches the intake bottom dead center, and the amount of intake gas charged into the cylinder 1 increases. Therefore, the ECU 0 increases the amount of fuel injected from the injector 11 to the cylinder 1 that reaches the intake stroke during cranking as the advance amount from the most retarded timing of the intake valve timing increases. As already described, the advance amount of the current intake valve timing can be obtained by referring to the crank angle signal b and the cam angle signal g. The fuel injection amount from the injector 11 is determined on the basis of the advance amount of the intake valve timing at the exhaust top dead center of the target cylinder 1 or at the timing just before that.
 なお、対象の気筒1の排気上死点またはその直前のタイミングにおける吸気バルブタイミングの進角量及びエンジン回転数等から、当該気筒1の今回の吸気行程により充填される吸気量を予想し、その予想した吸気量に見合った量の燃料を噴射するようにしてもよい。例えば、ECU0のメモリに、吸気バルブタイミングの進角量及びエンジン回転数等と、吸気行程を通じて気筒1に充填される吸気量の予想値(あるいは、予想吸気量に見合う燃料噴射量)との関係を規定したマップデータまたは関数式を予め格納しておく。その上で、ある気筒1の排気上死点またはその直前のタイミングにおいて、現在の吸気バルブタイミングの進角量及びエンジン回転数をキーとして当該マップを検索することによりその気筒1に充填される吸気量の予想値(あるいは、燃料噴射量)を知得し、または、現在の吸気バルブタイミングの進角量及びエンジン回転数を当該関数式に代入してその気筒1に充填される吸気量の予想値(あるいは、燃料噴射量)を演算する。そして、当該気筒1に対してインジェクタ11から噴射する燃料の量を決定する。 Note that the intake amount to be filled in the current intake stroke of the cylinder 1 is predicted from the advance amount of the intake valve timing at the exhaust top dead center of the target cylinder 1 or the timing immediately before it, the engine speed, etc. An amount of fuel commensurate with the anticipated intake amount may be injected. For example, the relationship between the advance amount of the intake valve timing and the engine speed in the memory of the ECU 0 and the expected value of the intake amount that is charged into the cylinder 1 through the intake stroke (or the fuel injection amount that matches the expected intake amount) The map data or function formula that prescribes is stored in advance. Then, at the exhaust top dead center of a certain cylinder 1 or at the timing just before it, the intake air that is filled in that cylinder 1 by searching the map with the advance amount of the current intake valve timing and the engine speed as keys. Knowing the expected amount of fuel (or fuel injection amount) or substituting the current intake valve timing advance amount and engine speed into the function equation, and predicting the amount of intake air that will fill the cylinder 1 The value (or fuel injection amount) is calculated. Then, the amount of fuel injected from the injector 11 to the cylinder 1 is determined.
 このとき、現在の内燃機関の温度や吸気の温度の高低に応じて、インジェクタ11からの燃料噴射量を補正することも好ましい。具体的には、冷却水温信号dを参照して知得される内燃機関の冷却水温が低いほど、ポートウェット(インジェクタ11から噴射された燃料が液状となって吸気ポートの内壁面に付着する現象)の量が多くなるので、燃料噴射量を増量補正する。及び/または、吸気温信号fを参照して知得される吸気温が低いほど、気筒1に充填される吸気に含まれる酸素量が多くなる(酸素の密度が高くなる)ので、燃料噴射量を増量補正する。 At this time, it is also preferable to correct the fuel injection amount from the injector 11 in accordance with the current temperature of the internal combustion engine and the temperature of the intake air. Specifically, as the cooling water temperature of the internal combustion engine obtained by referring to the cooling water temperature signal d is lower, the port wet (the fuel injected from the injector 11 becomes liquid and adheres to the inner wall surface of the intake port). ) Increases, the fuel injection amount is corrected to increase. And / or the lower the intake air temperature known with reference to the intake air temperature signal f, the greater the amount of oxygen contained in the intake air charged into the cylinder 1 (the higher the oxygen density), so the fuel injection amount Correct the increase.
 また、吸気バルブタイミングが最遅角タイミングから進角するほど、気筒1に充填される吸気量及び燃料噴射量が増加するため、当該気筒1の膨張行程における燃焼速度が速くなる、従って、ECU0は、クランキング中に膨張行程を迎える気筒1に対して点火プラグ12による火花点火を行うタイミングを、吸気バルブタイミングの最遅角タイミングからの進角量が大きいほど遅角する。火花点火タイミングは、対象の気筒1の排気上死点またはその直前のタイミングにおける吸気バルブタイミングの進角量を基に決定する。 Further, as the intake valve timing is advanced from the most retarded timing, the intake amount and the fuel injection amount charged into the cylinder 1 increase, so that the combustion speed in the expansion stroke of the cylinder 1 becomes faster. The timing at which spark ignition by the spark plug 12 is performed on the cylinder 1 that reaches the expansion stroke during cranking is delayed as the advance amount from the most retarded timing of the intake valve timing increases. The spark ignition timing is determined based on the advance amount of the intake valve timing at the exhaust top dead center of the target cylinder 1 or the timing just before it.
 なお、対象の気筒1の排気上死点またはその直前のタイミングにおける吸気バルブタイミングの進角量及びエンジン回転数等から、当該気筒1の今回の吸気行程により充填される吸気量を予想し、その予想した吸気量に見合ったタイミングで火花点火を実行するようにしてもよい。例えば、ECU0のメモリに、吸気バルブタイミングの進角量及びエンジン回転数等と、吸気行程を通じて気筒1に充填される吸気量の予想値(あるいは、予想吸気量に対して適当な点火タイミング)との関係を規定したマップデータまたは関数式を予め格納しておく。その上で、ある気筒1の排気上死点またはその直前のタイミングにおいて、現在の吸気バルブタイミングの進角量及びエンジン回転数をキーとして当該マップを検索することによりその気筒1に充填される吸気量の予想値(あるいは、点火タイミング)を知得し、または、現在の吸気バルブタイミングの進角量及びエンジン回転数を当該関数式に代入してその気筒1に充填される吸気量の予想値(あるいは、点火タイミング)を演算する。そして、当該気筒1に付設した点火プラグ12により火花点火を行うタイミングを決定する。 Note that the intake amount to be filled in the current intake stroke of the cylinder 1 is predicted from the advance amount of the intake valve timing at the exhaust top dead center of the target cylinder 1 or the timing immediately before it, the engine speed, etc. You may make it perform spark ignition at the timing according to the estimated intake amount. For example, in the memory of the ECU 0, the advance amount of the intake valve timing, the engine speed, and the like, the expected value of the intake amount that is charged into the cylinder 1 through the intake stroke (or an appropriate ignition timing for the expected intake amount), and Map data or a function expression that defines the relationship is stored in advance. Then, at the exhaust top dead center of a certain cylinder 1 or at the timing just before it, the intake air that is filled in that cylinder 1 by searching the map with the advance amount of the current intake valve timing and the engine speed as keys. Knowing the expected value (or ignition timing) of the quantity, or substituting the current advance amount of the intake valve timing and the engine speed into the function formula, the expected value of the intake quantity filled in the cylinder 1 (Or ignition timing) is calculated. And the timing which performs spark ignition with the spark plug 12 attached to the said cylinder 1 is determined.
 このとき、現在の吸気の温度の高低に応じて、点火プラグ12による火花点火のタイミングを補正することも好ましい。具体的には、吸気温信号fを参照して知得される吸気温が低いほど、気筒1に充填された混合気の燃焼速度が遅くなるので、点火タイミングを進角補正する。 At this time, it is also preferable to correct the timing of spark ignition by the spark plug 12 according to the current intake air temperature level. Specifically, the lower the intake air temperature obtained with reference to the intake air temperature signal f, the slower the combustion speed of the air-fuel mixture filled in the cylinder 1, so the ignition timing is corrected to advance.
 図2に示しているように、エンジン回転数が所定回転数に上昇した時点、またはエンジン回転数が完爆判定値を超えてクランキングを終了する時点t1以降は、アイドル運転領
域またはアイドル運転に近い低負荷運転領域での吸気バルブの開閉タイミングを、平常のタイミング、即ち最遅角タイミングからある程度以上(例えば、20°CAないし25°CA)進角したタイミングに制御する。
As shown in FIG. 2, at the time when the engine speed has increased to a predetermined speed, or after time t 1 when the engine speed exceeds the complete explosion determination value and cranking ends, the idle operation region or idle operation is performed. The opening / closing timing of the intake valve in the low load operation region close to is controlled to a normal timing, that is, a timing advanced by a certain degree (for example, 20 ° CA to 25 ° CA) from the most retarded timing.
 本実施形態では、吸気バルブの開閉タイミングを変化させることのできるVVT機構6が付帯した内燃機関を制御するものであって、内燃機関を始動するに際し、内燃機関のクランクシャフトを電動機により回転駆動するクランキングを実行するとともに、そのクランキング中にVVT機構6を介して吸気バルブの開閉タイミングを変化させ、かつ変化する吸気バルブの開閉タイミングに応じてクランキング中の燃料噴射量及び点火タイミングを調整する内燃機関の制御装置0を構成した。 In this embodiment, the VVT mechanism 6 capable of changing the opening / closing timing of the intake valve is controlled, and when starting the internal combustion engine, the crankshaft of the internal combustion engine is rotationally driven by an electric motor. While performing cranking, the intake valve opening / closing timing is changed via the VVT mechanism 6 during the cranking, and the fuel injection amount and ignition timing during cranking are adjusted according to the changing intake valve opening / closing timing. The control device 0 for the internal combustion engine is configured.
 本実施形態によれば、始動のためのクランキング中に実際に気筒1に充填される吸気量に合わせて燃料噴射量及び点火タイミングを設定できるため、クランキングの初期から終期に亘って良好な燃焼を得られる。そして、燃焼が安定化する結果、エンジン回転を速やかに加速でき、クランキングの期間を短縮することが可能となる。 According to the present embodiment, since the fuel injection amount and the ignition timing can be set in accordance with the intake air amount actually charged in the cylinder 1 during cranking for starting, it is favorable from the initial stage to the final stage of cranking. You can get combustion. As a result of stabilization of combustion, engine rotation can be accelerated quickly, and the cranking period can be shortened.
 なお、本発明は以上に詳述した実施形態に限られるものではない。特に、内燃機関の各気筒1の吸気バルブの開弁タイミング及び/または閉弁タイミングを変化させるためのVVT機構6の具体的態様は任意であり、一意に限定されない。吸気カムシャフトのクランクシャフトに対する回転位相を進角/遅角させるもの以外にも、吸気バルブを開弁駆動するカムを複数用意しておきそれらカムを適宜使い分けるもの、ロッカーアームのレバー比を電動機を介して変化させるもの、吸気バルブを電磁ソレノイドバルブとしたもの等が知られており、それら種々の機構の中から選択して採用することが許される。 Note that the present invention is not limited to the embodiment described in detail above. In particular, the specific mode of the VVT mechanism 6 for changing the valve opening timing and / or the valve closing timing of the intake valve of each cylinder 1 of the internal combustion engine is arbitrary and is not uniquely limited. In addition to those that advance / retard the rotation phase of the intake camshaft with respect to the crankshaft, multiple cams that drive the intake valve to open are prepared and used appropriately. The lever ratio of the rocker arm Are known, and the intake valve is an electromagnetic solenoid valve, etc., and it is allowed to be selected from these various mechanisms.
 吸気カムシャフトのクランクシャフトに対する回転位相を進角/遅角させる態様のVVT機構6では、吸気バルブの開弁タイミングと閉弁タイミングとが同期して変化するが、これ以外の態様のVVT機構6を内燃機関に実装している場合には、吸気バルブの開弁タイミングと閉弁タイミングとを非同期に変化させたり、開弁タイミングのみまたは閉弁タイミングのみを変化させたりすることが可能である。それ故、吸気バルブの開弁タイミングの最遅角タイミングからの進角量と、同じ吸気バルブの閉弁タイミングの最遅角タイミングからの進角量とは、相異なることがある。 In the VVT mechanism 6 in which the rotation phase of the intake camshaft relative to the crankshaft is advanced / retarded, the valve opening timing and the valve closing timing of the intake valve change synchronously, but the VVT mechanism 6 in other aspects Is mounted on the internal combustion engine, the valve opening timing and the valve closing timing of the intake valve can be changed asynchronously, or only the valve opening timing or only the valve closing timing can be changed. Therefore, the advance amount from the most retarded timing of the intake valve opening timing may be different from the advance amount from the most retarded timing of the same intake valve closing timing.
 吸気バルブの閉弁タイミングのみを進角/遅角させても、気筒1の燃焼室に充填される吸気量を増量/減量することは可能である。また、吸気バルブの開弁タイミングを排気上死点よりも大きく遅らせてミラーサイクル運転を行うことのできる内燃機関であれば、吸気バルブの開弁タイミングのみを進角/遅角させることで、気筒1の燃焼室に充填される吸気量を増量/減量することが可能である。これらの場合にも、上記実施形態と同様、クランキング中に変化する吸気バルブの開弁タイミングまたは閉弁タイミング(の進角量)に応じて、クランキング中の燃料噴射量及び点火タイミングを調整すればよい。即ち、吸気バルブの開弁タイミングまたは閉弁タイミングが進角するほど、換言すれば気筒1に充填される吸気量が多くなるほど、燃料噴射量を増量し、点火タイミングを遅らせる。 It is possible to increase / decrease the intake air amount filled in the combustion chamber of the cylinder 1 even if only the intake valve closing timing is advanced / retarded. Further, if the internal combustion engine can perform the mirror cycle operation by delaying the opening timing of the intake valve largely from the exhaust top dead center, the cylinder opening / closing angle is set by advancing / retarding only the opening timing of the intake valve. It is possible to increase / decrease the amount of intake air charged in one combustion chamber. In these cases, as in the above embodiment, the fuel injection amount and ignition timing during cranking are adjusted according to the valve opening timing or valve closing timing (advancing amount) of the intake valve that changes during cranking. do it. That is, the fuel injection amount is increased and the ignition timing is delayed as the opening timing or closing timing of the intake valve is advanced, in other words, as the intake amount charged into the cylinder 1 is increased.
 その他各部の具体的構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 Other specific configurations of each part can be variously modified without departing from the gist of the present invention.
 本発明は、車両等に搭載される内燃機関の制御に適用することができる。 The present invention can be applied to control of an internal combustion engine mounted on a vehicle or the like.
 0…制御装置(ECU)
 1…気筒
 11…インジェクタ
 12…点火プラグ
 6…可変バルブタイミング(VVT)機構
 b…クランク角信号
 g…カム角信号
 i…点火信号
 j…燃料噴射信号
 n…吸気バルブタイミングの制御信号
 o…クランキング用電動機の制御信号
0 ... Control unit (ECU)
DESCRIPTION OF SYMBOLS 1 ... Cylinder 11 ... Injector 12 ... Spark plug 6 ... Variable valve timing (VVT) mechanism b ... Crank angle signal g ... Cam angle signal i ... Ignition signal j ... Fuel injection signal n ... Control signal of intake valve timing o ... Cranking Motor control signal

Claims (1)

  1. 吸気バルブの開弁タイミングまたは閉弁タイミングを変化させることのできる可変バルブタイミング機構が付帯した内燃機関を制御するものであって、
    内燃機関を始動するに際し、内燃機関のクランクシャフトを電動機により回転駆動するクランキングを実行するとともに、
    そのクランキング中に可変バルブタイミング機構を介して吸気バルブの開弁タイミングまたは閉弁タイミングを変化させ、
    かつ変化する吸気バルブの開弁タイミングまたは閉弁タイミングに応じてクランキング中の燃料噴射量及び点火タイミングを調整する内燃機関の制御装置。
    Controlling an internal combustion engine with a variable valve timing mechanism that can change the opening timing or closing timing of the intake valve,
    When starting the internal combustion engine, the crankshaft for rotating the crankshaft of the internal combustion engine by an electric motor is executed,
    During the cranking, the valve opening timing or valve closing timing of the intake valve is changed via the variable valve timing mechanism,
    A control device for an internal combustion engine that adjusts the fuel injection amount and the ignition timing during cranking according to the opening timing or closing timing of the intake valve that changes.
PCT/JP2015/086298 2014-12-26 2015-12-25 Control device for internal combustion engine WO2016104733A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014264508A JP2016125364A (en) 2014-12-26 2014-12-26 Control device of internal combustion engine
JP2014-264508 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016104733A1 true WO2016104733A1 (en) 2016-06-30

Family

ID=56150745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086298 WO2016104733A1 (en) 2014-12-26 2015-12-25 Control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2016125364A (en)
WO (1) WO2016104733A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200006A (en) * 2017-05-25 2018-12-20 アイシン精機株式会社 Controller of internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002242713A (en) * 2000-12-15 2002-08-28 Denso Corp Control device for internal combustion engine
JP2005264864A (en) * 2004-03-19 2005-09-29 Hitachi Ltd Control device for internal combustion engine
JP2006348774A (en) * 2005-06-13 2006-12-28 Mazda Motor Corp Intake control device for engine
JP2014098369A (en) * 2012-11-15 2014-05-29 Toyota Motor Corp Control device of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002242713A (en) * 2000-12-15 2002-08-28 Denso Corp Control device for internal combustion engine
JP2005264864A (en) * 2004-03-19 2005-09-29 Hitachi Ltd Control device for internal combustion engine
JP2006348774A (en) * 2005-06-13 2006-12-28 Mazda Motor Corp Intake control device for engine
JP2014098369A (en) * 2012-11-15 2014-05-29 Toyota Motor Corp Control device of internal combustion engine

Also Published As

Publication number Publication date
JP2016125364A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP5919697B2 (en) Diesel engine start control device
US8141533B2 (en) Control apparatus and method for internal combustion engine
RU2638118C2 (en) Method and system for engine start
US9719430B2 (en) Control system for internal combustion engine
US20050279323A1 (en) Internal combustion engine shut-down for engine having adjustable valves
WO2010052775A1 (en) Internal combustion engine controller
US11136927B2 (en) Internal combustion engine system
WO2016104733A1 (en) Control device for internal combustion engine
JP2019132196A (en) Controller of internal combustion engine
JP6585496B2 (en) Control device for internal combustion engine
JP2018172967A (en) Control device for internal combustion
JP7251900B2 (en) Control device for internal combustion engine
JP2017155597A (en) Control device of internal combustion engine
JP2018105164A (en) Device for controlling internal combustion engine
JP2016113909A (en) Control device for internal combustion engine
JP4325477B2 (en) Engine starter
JP6914592B2 (en) Internal combustion engine control device
JP7337585B2 (en) Control device for internal combustion engine
JP2020118058A (en) Control device of internal combustion engine
JP2014167265A (en) Control device of internal combustion engine
JP7341601B2 (en) Internal combustion engine control device
JP7391484B2 (en) Internal combustion engine control system
JP6548585B2 (en) Control device for internal combustion engine
JP2016070125A (en) Internal combustion engine control engine
JP2017172577A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873301

Country of ref document: EP

Kind code of ref document: A1