WO2016103850A1 - Novolac type phenolic resin, photosensitive composition, resist material, coating film, and resist coating film - Google Patents
Novolac type phenolic resin, photosensitive composition, resist material, coating film, and resist coating film Download PDFInfo
- Publication number
- WO2016103850A1 WO2016103850A1 PCT/JP2015/078589 JP2015078589W WO2016103850A1 WO 2016103850 A1 WO2016103850 A1 WO 2016103850A1 JP 2015078589 W JP2015078589 W JP 2015078589W WO 2016103850 A1 WO2016103850 A1 WO 2016103850A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formula
- group
- general formula
- same
- compound
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/04—Condensation polymers of aldehydes or ketones with phenols only of aldehydes
- C08G8/08—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
- C08G8/20—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/023—Macromolecular quinonediazides; Macromolecular additives, e.g. binders
Definitions
- the present invention uses a novolak-type phenol resin suitable for obtaining a resist coating film excellent in heat resistance, flexibility, alkali developability, sensitivity, and resolution, a photosensitive composition containing the resin, and the photosensitive composition. And a coating film (resist coating film) using the resist material.
- One package format for highly integrated semiconductor components is wafer level packaging.
- wafer level packaging As the wiring density increases, for example, the electrochemical deposition method of electronic wiring described in Non-Patent Document 1 is used.
- gold bumps, copper posts, and copper wires need to be redistributed to form the final metal structure, but to do this, a resist type that is later electroplated (Mold) is required.
- This resist resist layer is much thicker than the resist used in the formation of critical layers in IC manufacturing.
- the size of the figure and the resist thickness are typically as thick as 2 ⁇ m to 100 ⁇ m.
- the photoresist with a high aspect ratio (resist thickness with respect to line size). And in order to pattern into a photoresist with a high aspect ratio, the resist composition from which the coating film which is excellent in a softness
- a resist composition containing a novolak resin using an aliphatic polyaldehyde as a nodule of metacresol or paracresol is known (for example, Patent Documents). 3).
- the problem to be solved by the present invention is a novolac type phenolic resin suitable for obtaining a coating film excellent in flexibility even in the case of a thick film and having excellent heat resistance, alkali developability, sensitivity, and resolution, It is providing the photosensitive composition containing resin, the resist material obtained using the said photosensitive composition, and the coating film (resist coating film) using the said resist material.
- the present inventors use a phenolic trinuclear compound instead of metacresol or paracresol, and further use both monoaldehydes and polyaldehydes as nodules.
- a novolac type phenol resin having excellent flexibility in the case of a thick film and having good heat resistance and alkali dissolution rate can be obtained, and the present invention has been completed.
- R 1 , R 2 , and R 3 each independently represents an alkyl group having 1 to 8 carbon atoms which may have a substituent. When a plurality of R 1 are present, they may be the same or different. When a plurality of R 2 are present, they may be the same or different. When a plurality of R 3 are present, May be the same or different. p and q are each independently an integer of 1 to 4, r is an integer of 0 to 4, and s is 1 or 2. However, the sum of r and s is 5 or less. ] And a compound represented by the following general formula (2)
- the present invention also comprises a photosensitive composition comprising the novolak-type phenolic resin and a photosensitive agent, a resist material comprising the photosensitive composition, and the photosensitive composition. And a resist coating film comprising the resist material.
- the novolac type phenolic resin and the photosensitive composition containing the resin according to the present invention provide a coating film that is excellent in flexibility even in the case of a thick film, and excellent in heat resistance, alkali developability, sensitivity, and resolution. Can do. For this reason, the said photosensitive composition can be used for a resist material.
- FIG. 6 is a GPC chart of a novolac resin (1) obtained in Synthesis Example 2.
- 6 is a GPC chart of a novolac resin (2) obtained in Synthesis Example 3.
- 6 is a GPC chart of a novolac resin (3) obtained in Synthesis Example 4.
- 3 is a GPC chart of a novolak resin (4) obtained in Comparative Synthesis Example 1.
- 6 is a GPC chart of a novolak resin (5) obtained in Comparative Synthesis Example 2.
- the novolak-type phenol resin according to the present invention is one or more phenolic trinuclear compounds selected from the group consisting of a compound represented by the following general formula (1) and a compound represented by the following general formula (2). It is characterized by being obtained by reacting (A), a monoaldehyde (B) and a polyaldehyde (C) in the presence of an acid catalyst.
- a compound represented by the general formula (1) (a trinuclear compound having a phenolic hydroxyl group in all three benzene rings) )
- a compound represented by the general formula (2) (a trinuclear compound composed of two benzene rings having a phenolic hydroxyl group and a benzene ring not having a phenolic hydroxyl group) in an appropriate ratio
- the amount of hydroxyl groups of the resulting novolak-type phenol resin can be controlled, and as a result, the alkali solubility can be easily controlled to a desired level.
- p and q are each independently an integer of 1 to 4
- r is an integer of 0 to 4
- s is 1 or 2.
- the sum of r and s is 5 or less.
- t is an integer of 0 to 5.
- R 1 , R 2 , and R 3 each independently represents an alkyl group having 1 to 8 carbon atoms that may have a substituent.
- R 1 When a plurality of R 1 are present, they may be the same or different.
- R 2 When a plurality of R 2 are present, they may be the same or different.
- R 3 When a plurality of R 3 are present, May be the same or different.
- the alkyl group may be linear, branched, or a group having a cyclic structure, but is preferably a linear group.
- the alkyl group of R 1 , R 2 , or R 3 is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and linear carbon More preferred is an alkyl group having 1 to 3 atoms.
- the hydrogen atom in the alkyl group of R 1 , R 2 , or R 3 in the general formulas (1) and (2) may be substituted with a substituent.
- the number of hydrogen atoms that can be substituted is not particularly limited, but is preferably 1 to 3, more preferably 1 or 2.
- each substituent may be the same as or different from each other.
- substituents examples include a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, an aryl group which may have a substituent, and a halogen atom.
- substituents of the alkyl group examples include a methoxy group, an ethoxy group, a propoxy group, an n-butyloxy group, a t-butyloxy group, a pentyloxy group, and an isoamyloxy group. Hexyloxy group, cyclohexyloxy group and the like.
- examples of the aryl group which may have a substituent include a phenyl group, a naphthyl group, an indenyl group, and a biphenyl group.
- examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
- alkyl group represented by R 1 , R 2 , and R 3 in the general formulas (1) and (2) include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, and an isobutyl group.
- T-butyl group pentyl group, isoamyl group, hexyl group, cyclohexyl group, hydroxyethyl group, hydroxypropyl group, fluoromethyl group, methoxyethyl group, ethoxyethyl group, methoxypropyl group, phenylmethyl group, hydroxyphenyl Methyl group, dihydroxyphenylmethyl group, tolylmethyl group, xylylmethyl group, naphthylmethyl group, hydroxynaphthylmethyl group, dihydroxynaphthylmethyl group, phenylethyl group, hydroxyphenylethyl group, dihydroxyphenylethyl group, tolylethyl group, xylylethyl group, naphthylethyl group Group, hydro And naphthylethyl group and dihydroxynaphthylethyl group.
- Methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, pentyl group, isoamyl group and hexyl group are preferable.
- Group or ethyl group is more preferable, and methyl group is still more preferable.
- R 1 and R 2 in general formulas (1) and (2) are preferably alkyl groups having the same number of carbon atoms. Further, each of R 1 and R 2 are, in the benzene ring of each R 1 and R 2 are bonded, attached to the carbon atom in the same position when viewed from the carbon atom to which phenolic hydroxyl group such as benzene ring has is attached It is preferable. A phenolic hydroxyl group is bonded to each of the benzene ring to which R 1 is bonded and the benzene ring to which R 2 is bonded. The position at which this phenolic hydroxyl group is bonded is also the same in each benzene ring. preferable. Furthermore, p and q are preferably the same number. As p and q, 2 is preferable.
- R in the general formulas (1) and (2) is an integer of 0 to 4. Among these, r is preferably 0.
- Examples of the compound represented by the general formula (1) include compounds represented by any one of the following general formulas (1-1) to (1-18).
- R 1 , R 2 , and R 3 are the same as those in the general formula (1), r1 represents an integer of 0 to 4, and r2 is 0 Represents an integer of ⁇ 3.
- the general formula (1-1) to the compound represented by the formula (1-18), Compound R 1 and R 2 are both methyl or ethyl group, and r1 and r2 is 0
- R 1 R 2 and R 2 are both methyl groups, and r1 and r2 are 0.
- the general formulas (1-1), (1-2), Compounds represented by (1-7), (1-8), (1-13), or (1-14) are preferred, and are represented by the general formulas (1-1), (1-7), or (1-
- the compound represented by 13) is more preferred, and the compound represented by formula (1-1) is more preferred.
- Examples of the compound represented by the general formula (2) include compounds represented by any one of the following general formulas (2-1) to (2-6).
- R 1 , R 2 , R 3 , and t are the same as those in the general formula (2).
- the general formula (2-1) to the compound represented by the formula (2-6) compound R 1 and R 2 are both methyl or ethyl group, and t is 0 are preferred, R 1 and R A compound in which both 2 are methyl groups and t is 0 is more preferable.
- the compound represented by the general formula (2) a novolac type phenol resin capable of obtaining a coating film having heat resistance and high resolution can be obtained. Therefore, the compound represented by the general formula (2-1) or (2-2) The compound represented by Formula (2-1) is more preferable.
- the compound represented by the general formula (1) includes, for example, an alkyl-substituted phenol (d1) and a hydroxyl group-containing aromatic aldehyde (d2), and a carbon atom on the aromatic hydrocarbon group of the alkyl-substituted phenol (d1). It can be obtained by carrying out the condensation under conditions where the difference in reaction activity energy can be utilized. Specifically, for example, the compound represented by the general formula (1) is obtained by polycondensing an alkyl-substituted phenol (d1) and a hydroxyl group-containing aromatic aldehyde (d2) in the presence of an acid catalyst. .
- the compound represented by the general formula (2) is, for example, alkyl-substituted phenol (d1) and an aromatic aldehyde having no hydroxyl group (hydroxyl-free aromatic aldehyde) (d′ 2). It can be obtained by performing condensation under conditions that can utilize the difference in the reaction activity energy of carbon atoms on the aromatic hydrocarbon group of phenol (d1).
- the compound represented by the general formula (1) is obtained by polycondensing an alkyl-substituted phenol (d1) and a hydroxyl group-free aromatic aldehyde (d′ 2) in the presence of an acid catalyst. Is obtained.
- the alkyl-substituted phenol (d1) is a compound in which part or all of the hydrogen atoms bonded to the phenol benzene ring are substituted with an alkyl group.
- alkyl group include alkyl groups having 1 to 8 carbon atoms, and a methyl group is particularly preferable.
- alkyl-substituted phenol (d1) examples include o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, p-octylphenol, pt-butylphenol, o Monoalkylphenols such as cyclohexylphenol, m-cyclohexylphenol and p-cyclohexylphenol; dialkyl such as 2,5-xylenol, 3,5-xylenol, 3,4-xylenol, 2,4-xylenol, 2,6-xylenol Examples include alkylphenols; trialkylphenols such as 2,3,5-trimethylphenol and 2,3,6-trimethylphenol.
- alkyl-substituted phenols those having a substitution number of alkyl groups on the benzene ring of phenol of 2 are preferable because of excellent balance between heat resistance and alkali solubility.
- Specific examples include 2,5- Xylenol and 2,6-xylenol are preferred.
- These alkyl-substituted phenols (d1) can be used alone or in combination of two or more, but preferably only one is used.
- the hydroxyl group-containing aromatic aldehyde (d2) is a compound having at least one aldehyde group and at least one hydroxyl group in the aromatic ring.
- the hydroxyl group-containing aromatic aldehyde (d2) include hydroxybenzaldehydes such as salicylaldehyde, m-hydroxybenzaldehyde and p-hydroxybenzaldehyde; dihydroxybenzaldehydes such as 2,4-dihydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde; vanillin And vanillin compounds such as ortho vanillin, isovanillin and ethyl vanillin;
- p-hydroxybenzaldehyde (4-hydroxybenzaldehyde) and 2,4-dihydroxybenzaldehyde are available because they are easily available industrially and have a good balance between heat resistance and alkali solubility.
- the hydroxyl group-free aromatic aldehyde (d′ 2) is a compound having at least one aldehyde group in the aromatic ring and not having a phenolic hydroxyl group.
- Examples of the hydroxyl group-free aromatic aldehyde (d′ 2) include benzaldehyde; alkylbenzaldehyde such as methylbenzaldehyde, ethylbenzaldehyde, dimethylbenzaldehyde, and diethylbenzaldehyde; alkoxybenzaldehyde such as methoxybenzaldehyde and ethoxybenzaldehyde; Among these hydroxyl group-free aromatic aldehydes (d′ 2), benzaldehyde is preferable.
- the compound represented by the general formula (1) or (2) includes, for example, the alkyl-substituted phenol (d1), the hydroxyl group-containing aromatic aldehyde (d2) or the hydroxyl group-free aromatic aldehyde (d′ 2), Can be obtained by polycondensation in the presence of an acid catalyst.
- an acid catalyst for example, by polycondensation of 2,5-xylenol and 4-hydroxybenzaldehyde in the presence of an acid catalyst, R 1 and R 2 in the general formula (1-1) are both methyl groups, and r A compound is obtained in which is 0.
- R 1 and R 2 are both methyl groups, and r is 0 Is obtained.
- the acid catalyst examples include acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, paratoluenesulfonic acid, zinc acetate, manganese acetate and the like. These acid catalysts can be used alone or in combination of two or more. Of these acid catalysts, sulfuric acid and paratoluenesulfonic acid are preferred because of their excellent activity.
- the acid catalyst may be added before the reaction or may be added during the reaction.
- the polycondensation of the alkyl-substituted phenol (d1) and the hydroxyl group-containing aromatic aldehyde (d2) or the hydroxyl group-free aromatic aldehyde (d′ 2) may be performed in the presence of an organic solvent, if necessary. .
- organic solvent examples include monoalcohols such as methanol, ethanol, and propanol; ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, , 6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin and other polyols; 2-ethoxyethanol, ethylene glycol monomethyl ether , Ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, ethylene Glycol ethers such as glycol ethyl methyl ether and ethylene glycol monophenyl ether
- the reaction temperature for polycondensing the alkyl-substituted phenol (d1) with the hydroxyl group-containing aromatic aldehyde (d2) or the hydroxyl group-free aromatic aldehyde (d′ 2) is, for example, 60 to 140 ° C.
- the reaction time is, for example, 0.5 to 100 hours.
- the charge ratio [(d1) / (d2)] is excellent in the removal of unreacted alkyl-substituted phenol (d1), the yield of the product and the purity of the reaction product.
- the ratio is preferably in the range of 1 / 0.2 to 1 / 0.5, more preferably in the range of 1 / 0.25 to 1 / 0.45.
- the general formula (1 ) Or (2) and the unreacted substance may remain.
- an unfavorable condensate other than the compound represented by the general formula (1) or (2) may be generated. Therefore, before being used as a raw material for the novolak-type phenol resin according to the present invention (phenolic trinuclear compound (A)), it is represented by the general formula (1) or (2) from the reaction solution after the polycondensation reaction. It is preferable to purify the compound.
- the purity of the compound represented by the general formula (1) or (2) used as the phenol trinuclear compound (A) is preferably 85% or more, more preferably 90% or more, still more preferably 94% or more, 98% or more is particularly preferable.
- the purity of the compound represented by the general formula (1) or (2) can be determined from the area ratio in the GPC chart.
- the reaction solution after the polycondensation reaction is converted to the compound represented by the general formula (1) or (2).
- the poor solvent (S1) which is insoluble or hardly soluble, and the resulting precipitate is dissolved in the compound represented by the general formula (1) or (2)
- there is a method in which the precipitate generated by dissolving in the solvent (S2) that is also mixed with the poor solvent (S1) and throwing again into the poor solvent (S1) is filtered.
- Examples of the poor solvent (S1) used in this case include water; monoalcohols such as methanol, ethanol, and propanol; aliphatic hydrocarbons such as n-hexane, n-heptane, n-octane, and cyclohyxane; toluene, xylene And aromatic hydrocarbons.
- water and methanol are preferable because the acid catalyst can be efficiently removed at the same time.
- examples of the solvent (S2) include monoalcohols such as methanol, ethanol, and propanol; ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5- Polyols such as pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin; 2-ethoxyethanol, Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether Glycol ethers such as ethylene glycol ethyl methyl ether and ethylene glycol mono
- one or more compounds represented by the general formula (1) may be used as the phenolic trinuclear compound (A).
- Two or more kinds of compounds represented by the general formula (2) may be used, and one kind or two or more kinds of compounds represented by the general formula (1) and one kind or two or more kinds of the general formula (2). You may use the compound represented by these.
- the phenolic trinuclear compound (A) by adjusting the ratio of the compound represented by the general formula (1) and the compound represented by the general formula (2), the resulting novolak-type phenol resin has a hydroxyl group. The amount can be adjusted.
- R 4 represents a hydrogen atom, an alkyl group that may have a substituent, or an aryl group that may have a substituent.
- the monoaldehydes (B) used as a raw material may be a single compound or a combination of two or more compounds.
- alkyl aldehydes such as acetaldehyde, propyl aldehyde, butyraldehyde, isobutyraldehyde, pentyl aldehyde, hexyl aldehyde; salicyl aldehyde, 3-hydroxybenzaldehyde, 4-hydroxybenzaldehyde 2-hydroxy-4-methylbenzaldehyde, 2,4-dihydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde and the like; 2-hydroxy-3-methoxybenzaldehyde, 3-hydroxy-4-methoxybenzaldehyde, 4-hydroxy- 3-methoxybenzaldehyde, 3-ethoxy-4-hydroxybenzaldehyde, 4-hydroxy-3,5-dimethoxybenzalde A benzaldehyde having both a hydroxy group and an alkoxy group such as alkoxide; an alkoxybenzaldeh
- formaldehyde When formaldehyde is used as the monoaldehydes (B), formaldehyde and other aldehydes may be used in combination. When formaldehyde and other aldehydes are used in combination, the amount of other aldehydes used is preferably in the range of 0.05 to 1 mole per mole of formaldehyde.
- the polyaldehyde (C) used as a raw material for the novolak type phenol resin according to the present invention is not particularly limited as long as it is a compound having two or more aldehyde groups in the molecule.
- Specific examples of polyaldehydes (C) include aliphatic dialdehydes such as glyoxal, malonaldehyde, succinaldehyde, glutaraldehyde and adipaldehyde; aromatic dialdehydes such as phthalaldehyde, isophthalaldehyde and terephthalaldehyde An aliphatic trialdehyde such as triformylmethane; an aromatic trialdehyde such as benzenetrialdehyde; Among them, terephthalaldehyde or glutaraldehyde is preferable as the polyaldehyde (C) because it is easily available and a higher heat-resistant novolak type phenol resin can be obtained.
- the novolak-type phenol resin according to the present invention is obtained, for example, by condensing a phenol trinuclear compound (A), a monoaldehyde (B), and a polyaldehyde (C) in the presence of an acid catalyst. .
- the charge ratio [(A) / (B)] of the phenolic trinuclear compound (A) and the monoaldehydes (B) can suppress excessive high molecular weight (gelation) and is suitable as a coating material. Since a molecular weight can be obtained, the molar ratio is preferably in the range of 1 / 0.5 to 1 / 1.2, and more preferably in the range of 1 / 0.6 to 1 / 0.9.
- the charging ratio (amount used) [(B) / (C)] of the monoaldehydes (B) and polyaldehydes (C) to be reacted with the phenol trinuclear compound (A) is 1 / (mass ratio).
- a range of 0.01 to 1 / 1.5 is preferable, and a range of 1 / 0.05 to 1 / 1.2 is more preferable.
- Acid catalysts used in the reaction include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, hydrobromic acid, perchloric acid and phosphoric acid, sulfonic acids such as p-toluenesulfonic acid, methanesulfonic acid and benzenesulfonic acid, and oxalic acid And organic acids such as succinic acid, malonic acid, monochloroacetic acid and dichloroacetic acid, and Lewis acids such as boron trifluoride, anhydrous aluminum chloride and zinc chloride.
- inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, hydrobromic acid, perchloric acid and phosphoric acid
- sulfonic acids such as p-toluenesulfonic acid, methanesulfonic acid and benzenesulfonic acid
- oxalic acid and organic acids
- organic acids such as succinic acid, malonic acid,
- the condensation reaction of the phenolic trinuclear compound (A), the monoaldehydes (B) and the polyaldehydes (C) may be performed in the presence of an organic solvent as necessary.
- the organic solvent include the same organic solvents that can be used in the polycondensation of the alkyl-substituted phenol (d1) and the hydroxyl group-containing aromatic aldehyde (d2).
- the organic solvent can be used alone or in combination of two or more. Further, 2-ethoxyethanol is preferred as the organic solvent from the viewpoint of excellent solubility of the resulting novolak type phenol resin.
- Examples of the novolak-type phenolic resin according to the present invention include, as repeating units, a structural unit (I-1) represented by the following general formula (I-1) and a structure represented by the following general formula (I-2). Group consisting of unit (I-2), structural unit (II-1) represented by the following general formula (II-1), and structural unit (II-2) represented by the following general formula (II-2) What has 1 or more types of structural site
- R 1 and R 2 are the same as those in the general formula (1), and R 4 is It is the same as the general formula (3).
- R 1 and R 2 are both the same group, and R 4 is preferably a hydrogen atom, R 1 and R 2 are both the same unsubstituted alkyl group having 1 to 3 carbon atoms, and R 4 is more preferably a hydrogen atom, and R 1 and More preferably, both R 2 are methyl groups and R 4 is a hydrogen atom.
- the weight average molecular weight of the novolak type phenolic resin according to the present invention is preferably 1,000 to 100,000, more preferably 1,000 to 70,000, and still more preferably 1,000 to 35,000.
- the molecular weight of the novolac type phenol resin having the structural unit represented by the general formula (I-1) or the structural unit represented by the general formula (II-1) as a repeating unit has a novolac having more excellent heat resistance.
- Type phenol resin is obtained, the weight average molecular weight (Mw) is preferably 5,000 to 100,000, more preferably 5,000 to 70,000, still more preferably 5,000 to 35,000, 000 to 25,000 is particularly preferred.
- the molecular weight of the novolac type phenol resin having the structural unit represented by the general formula (I-2) or the structural unit represented by the general formula (II-2) as a repeating unit has a novolak having more excellent heat resistance. Since a type phenol resin is obtained, the weight average molecular weight (Mw) is preferably 1,000 to 5,000, more preferably 2,000 to 4,000.
- the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the novolak type phenol resin are measured by gel permeation chromatography (hereinafter abbreviated as “GPC”) as follows. It is measured under conditions.
- the novolak type phenolic resin according to the present invention can be used for various electric and electronic member applications such as adhesives, paints, photoresists, printed wiring boards and the like.
- the novolak type phenolic resin according to the present invention is excellent in balance among flexibility, heat resistance, and alkali solubility, and also has good substrate followability.
- the novolak-type phenol resin according to the present invention is suitable as a resist material, particularly as a resist material for thick films.
- a photosensitive composition suitable as a thick film resist having sensitivity, resolution, heat resistance, substrate followability and flexibility can be obtained.
- the photosensitive composition according to the present invention is characterized by containing a photosensitive agent in addition to the novolac type phenol resin according to the present invention.
- the photosensitive agent include compounds having a quinonediazide group when the photosensitive composition according to the present invention is used as a positive resist material.
- a photo-acid generator etc. are mentioned.
- the compound having a quinonediazide group include, for example, an aromatic (poly) hydroxy compound, naphthoquinone-1,2-diazide-5-sulfonic acid, naphthoquinone-1,2-diazide-4-sulfonic acid, ortho Examples include complete ester compounds, partial ester compounds, amidated products, and partially amidated products with sulfonic acids having a quinonediazide group such as anthraquinone diazide sulfonic acid. These photosensitizers may be used alone or in combination of two or more.
- aromatic (poly) hydroxy compound used here examples include 2,3,4-trihydroxybenzophenone, 2,4,4′-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, 2,3,4, 6-trihydroxybenzophenone, 2,3,4-trihydroxy-2′-methylbenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2, 3 ′, 4,4 ′, 6-pentahydroxybenzophenone, 2,2 ′, 3,4,4′-pentahydroxybenzophenone, 2,2 ′, 3,4,5-pentahydroxybenzophenone, 2,3 ′, 4,4 ′, 5 ′, 6-hexahydroxybenzophenone, 2,3,3 ′, 4,4 ′, 5′-hexahydroxyben Polyhydroxy benzophenone compounds such phenone;
- a tris (hydroxyphenyl) methane compound such as phenyl) -3,4-dihydroxyphenylmethane, bis (4-hydroxy-3,5-dimethylphenyl) -3,4-dihydroxyphenylmethane, or a methyl-substituted product thereof;
- the amount of the compound becomes a composition with excellent photosensitivity, so that the novolac type phenol resin according to the present invention (according to the present invention)
- the photosensitive composition contains other resin components, the ratio is 5 to 50 parts by mass with respect to 100 parts by mass of the total resin component including the novolac type phenol resin according to the present invention.
- the ratio is preferably 5 to 30 parts by mass.
- Examples of the photoacid generator include onium salt compounds, halogen-containing compounds, sulfone compounds, sulfonic acid compounds, sulfonimide compounds, diazomethane compounds, and the like.
- onium salt compounds include iodonium salts, sulfonium salts, phosphonium salts, diazonium salts, and pyridinium salts.
- preferred onium salts include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium p-toluenesulfonate, diphenyliodonium hexafluoroantimonate, diphenyliodonium hexafluorophosphate, diphenyliodonium tetrafluoroborate, triphenylsulfonium trifluorochlorosulfonate, Phenylsulfonium p-toluenesulfonate, triphenylsulfonium hexafluoroantimonate, 4-t-butylphenyl diphenylsulfonium trifluoromethanesulfonate, 4-t-butylphenylpheny
- halogen-containing compound examples include haloalkyl group-containing hydrocarbon compounds and haloalkyl group-containing heterocyclic compounds.
- preferred halogen-containing compounds include 1,10-dibromo-n-decane, 1,1-bis (4-chlorophenyl) -2,2,2-trichloroethane, and phenyl-bis (trichloromethyl) -s-triazine.
- S-triazine derivatives such as 4-methoxyphenyl-bis (trichloromethyl) -s-triazine, styryl-bis (trichloromethyl) -s-triazine, naphthyl-bis (trichloromethyl) -s-triazine, and the like.
- sulfone compounds examples include ⁇ -ketosulfone compounds, ⁇ -sulfonylsulfone compounds, and ⁇ -diazo compounds of these compounds.
- Specific examples of preferred sulfone compounds include 4-trisphenacylsulfone, mesitylphenacylsulfone, and bis (phenacylsulfonyl) methane.
- sulfonic acid compound examples include alkyl sulfonic acid esters, haloalkyl sulfonic acid esters, aryl sulfonic acid esters, and imino sulfonates.
- Specific examples of preferred sulfonic acid compounds include benzoin tosylate, pyrogallol tris trifluoromethane sulfonate, o-nitrobenzyl trifluoromethane sulfonate, and o-nitrobenzyl p-toluene sulfonate.
- sulfonimide compound examples include N- (trifluoromethylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, N- (trifluoromethylsulfonyl).
- diazomethane compound examples include bis (trifluoromethylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, and bis (phenylsulfonyl) diazomethane.
- the amount of the photoacid generator is a composition having excellent photosensitivity, and therefore the novolak-type phenolic resin according to the present invention
- the ratio is 5 to 50 parts by mass with respect to 100 parts by mass of the total resin component including the novolac type phenol resin according to the present invention.
- the proportion is preferably 5 to 30 parts by mass.
- the photosensitive composition according to the present invention may contain an organic base compound for neutralizing the acid generated from the photoacid generator during exposure.
- the addition of the organic base compound has an effect of preventing the dimensional variation of the resist pattern due to the movement of the acid generated from the photoacid generator.
- Examples of the organic base compound used here include organic amine compounds selected from nitrogen-containing compounds.
- Pyridine compounds such as pyridine, 4-dimethylaminopyridine, 2,6-dimethylpyridine;
- Amine compounds substituted with a hydroxyalkyl group having 1 to 4 carbon atoms such as diethanolamine, triethanolamine, triisopropanolamine, tris (hydroxymethyl) aminomethane, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane ;
- Examples include aminophenol compounds such as 2-aminophenol, 3-aminophenol, and 4-aminophenol. These may be used alone or in combination of two or more. Among them, the pyrimidine compound, the pyridine compound, or the amine compound having a hydroxy group is preferable, and the amine compound having a hydroxy group is particularly preferable because of excellent dimensional stability of the resist pattern after exposure.
- the addition amount is preferably in the range of 0.1 to 100 mol%, preferably in the range of 1 to 50 mol%, with respect to the content of the photoacid generator. Is more preferable.
- the photosensitive composition according to the present invention may use other resins as the resin component in addition to the novolac type phenol resin according to the present invention.
- Other resins are preferably those that are soluble in an alkali developer, or those that are soluble in an alkali developer when used in combination with an additive such as an acid generator (alkali-soluble resin).
- resins used here include, for example, various novolak resins, addition polymerization resins of alicyclic diene compounds such as dicyclopentadiene and phenolic compounds, modified novolaks of phenolic hydroxyl group-containing compounds and alkoxy group-containing aromatic compounds.
- Resins phenol aralkyl resins (Zyloc resins), naphthol aralkyl resins, trimethylol methane resins, tetraphenylol ethane resins, biphenyl modified phenol resins, biphenyl modified naphthol resins, aminotriazine modified phenol resins, and various vinyl polymers It is done.
- the various novolak resins include phenolphenol, cresol, xylenol and other alkylphenols, phenylphenol, resorcinol, biphenyl, bisphenols such as bisphenol A and bisphenol F, phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene. And a polymer obtained by reacting an aldehyde compound with acid catalyst conditions.
- the various vinyl polymers include polyhydroxystyrene, polystyrene, polyvinyl naphthalene, polyvinyl anthracene, polyvinyl carbazole, polyindene, polyacenaphthylene, polynorbornene, polycyclodecene, polytetracyclododecene, polynortricyclene, poly ( A homopolymer of a vinyl compound such as (meth) acrylate or a copolymer thereof may be mentioned.
- the blending ratio of the novolac type phenol resin and the other resin according to the present invention can be arbitrarily adjusted depending on the desired application.
- the novolac type phenol resin according to the present invention is 60% by mass with respect to the total of the novolac type phenol resin according to the present invention and other resins. It is preferable to use more, and it is more preferable to use 80% by mass or more.
- the photosensitive composition according to the present invention may contain a surfactant for the purpose of improving the film forming property and pattern adhesion when used for resist applications, and reducing development defects.
- a surfactant for the purpose of improving the film forming property and pattern adhesion when used for resist applications, and reducing development defects.
- the surfactant used here include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ether compounds such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene Polyoxyethylene alkyl allyl ether compounds such as ethylene nonylphenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid ester compounds such as poly
- the amount of these surfactants to be added is 0.001 to 2 with respect to 100 parts by mass of the resin solid content (including the novolac type phenol resin according to the present invention as the resin solid content) in the photosensitive composition according to the present invention. It is preferable to use in the range of parts by mass.
- the photosensitive composition according to the present invention may further contain a filler.
- the filler can improve the hardness and thermal decomposition resistance of the coating film.
- the filler contained in the photosensitive composition according to the present invention may be an organic filler, but is preferably an inorganic filler.
- inorganic fillers include silica, mica, talc, clay, bentonite, montmorillonite, kaolinite, wollastonite, calcium carbonate, calcium hydroxide, magnesium carbonate, titanium oxide, alumina, aluminum hydroxide, barium sulfate, and titanium.
- Examples thereof include barium acid, potassium titanate, zinc oxide, and glass fiber. Among them, it is preferable to use silica because the coefficient of thermal expansion can be lowered.
- the photosensitive composition according to the present invention may further contain a curing agent.
- a curing agent contained in the photosensitive composition according to the present invention for example, a melamine compound substituted with at least one group selected from a methylol group, an alkoxymethyl group, and an acyloxymethyl group, a guanamine compound, a glycoluril compound, Examples include urea compounds, resol resins, epoxy compounds, isocyanate compounds, azide compounds, compounds containing double bonds such as alkenyl ether groups, acid anhydrides, and oxazoline compounds.
- the melamine compound examples include hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated, hexamethoxyethyl melamine, hexaacyloxymethyl melamine, hexamethylol melamine Examples thereof include compounds in which 1 to 6 methylol groups are acyloxymethylated.
- guanamine compound examples include tetramethylolguanamine, tetramethoxymethylguanamine, tetramethoxymethylbenzoguanamine, a compound in which 1 to 4 methylol groups of tetramethylolguanamine are methoxymethylated, tetramethoxyethylguanamine, tetraacyloxyguanamine, Examples thereof include compounds in which 1 to 4 methylol groups of tetramethylolguanamine are acyloxymethylated.
- glycoluril compound examples include 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis (butoxymethyl) glycoluril, 1,3,4,6-tetrakis. (Hydroxymethyl) glycoluril and the like.
- urea compound examples include 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxymethyl) urea and 1,1,3,3-tetrakis (methoxymethyl) urea. Can be mentioned.
- resole resins examples include phenols, alkylphenols such as cresol and xylenol, bisphenols such as phenylphenol, resorcinol, biphenyl, bisphenol A and bisphenol F, phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene, and aldehyde compounds.
- alkylphenols such as cresol and xylenol
- bisphenols such as phenylphenol, resorcinol, biphenyl, bisphenol A and bisphenol F
- phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene
- aldehyde compounds examples include polymers obtained by reacting under alkaline catalyst conditions.
- epoxy compound examples include tris (2,3-epoxypropyl) isocyanurate, trimethylolmethane triglycidyl ether, trimethylolpropane triglycidyl ether, triethylolethane triglycidyl ether, and the like.
- isocyanate compound examples include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, and cyclohexane diisocyanate.
- azide compound examples include 1,1′-biphenyl-4,4′-bisazide, 4,4′-methylidenebisazide, 4,4′-oxybisazide, and the like.
- Examples of the compound containing a double bond such as an alkenyl ether group include ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, and tetramethylene glycol divinyl ether.
- Vinyl ether neopentyl glycol divinyl ether, trimethylolpropane trivinyl ether, hexanediol divinyl ether, 1,4-cyclohexanediol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, sorbitol tetravinyl ether, sorbitol pentavinyl ether, trimethylolpropane tri Examples include vinyl ether.
- the acid anhydride examples include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, 4 , 4 ′-(isopropylidene) diphthalic anhydride, aromatic aromatic anhydrides such as 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride; tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydro anhydride Examples thereof include alicyclic carboxylic acid anhydrides such as phthalic acid, methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride dodecenyl succinic anhydride, and trialkyltetrahydrophthalic anhydride.
- a glycoluril compound, a urea compound, and a resole resin are preferable because the composition is excellent in curability and has excellent dry etching resistance and thermal decomposition resistance when used for resist underlayer film applications. Is particularly preferred.
- the blending amount of the curing agent is the novolak according to the present invention in order to maintain the excellent sensitivity of the novolak type phenol resin according to the present invention. It is 50 mass parts or less with respect to 100 mass parts of type phenol resins. Since the compounding amount of the curing agent of the photosensitive composition according to the present invention is a composition from which a film excellent in curability, heat decomposability, and alkali developability is obtained, the novolak type phenol resin 100 according to the present invention is obtained.
- the ratio is preferably 0.1 to 50 parts by mass with respect to part by mass, and further, the ratio is 0.1 to 30 parts by mass because a composition is obtained that provides a film with excellent photosensitivity. More preferably, the proportion is 0.5 to 20 parts by mass.
- the photosensitive composition according to the present invention is preferably obtained by dissolving or dispersing various additives such as dyes, pigments, cross-linking agents, and dissolution accelerators in an organic solvent, if necessary.
- a coating film can be formed by applying a material dissolved in an organic solvent to a substrate or the like.
- Dyes, pigments, crosslinking agents, and dissolution accelerators can be appropriately selected from those commonly used as additives for resist materials in consideration of the intended use.
- organic solvent examples include alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether propylene glycol monomethyl ether; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol diethylene ether.
- alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether propylene glycol monomethyl ether; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol diethylene ether.
- Dialkylene glycol dialkyl ethers such as propyl ether and diethylene glycol dibutyl ether; alkylene glycol alkyl ether acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate and propylene glycol monomethyl ether acetate; Ketone compounds such as methyl, methyl ethyl ketone, cyclohexanone and methyl amyl ketone; cyclic ethers such as dioxane; methyl 2-hydroxypropionate, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, Ester compounds such as ethyl oxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, ethyl formate, ethyl acetate, butyl
- the photosensitive composition according to the present invention can be prepared by blending the above components and mixing them using a stirrer or the like. Moreover, when a photosensitive composition contains a filler and a pigment, it can adjust by disperse
- dispersers such as a dissolver, a homogenizer, and a 3 roll mill.
- the photosensitive composition according to the present invention can be suitably used as a resist material.
- the photosensitive composition according to the present invention may be used as a resist material as it is dissolved / dispersed in an organic solvent, or may be removed by applying a film dissolved / dispersed in an organic solvent.
- a solvent may be used as a resist film.
- the support film used as the resist film include synthetic resin films such as polyethylene, polypropylene, polycarbonate, and polyethylene terephthalate, and may be a single layer film or a plurality of laminated films.
- the surface of the support film may be a corona-treated one or a release agent.
- Photolithographic methods using the photosensitive composition according to the present invention include, for example, applying a photosensitive composition (resist material) dissolved and dispersed in an organic solvent onto an object to be subjected to silicon substrate photolithography, Pre-bake at a temperature of 60 to 150 ° C.
- the coating method at this time may be any method such as spin coating, roll coating, flow coating, dip coating, spray coating, doctor blade coating and the like.
- Next is the creation of a resist pattern. If the photosensitive composition is positive, the target resist pattern is exposed through a predetermined mask, and the exposed portion is dissolved in an alkali developer. A resist pattern is formed. Since the photosensitive composition according to the present invention has high photosensitivity, it is possible to form a resist pattern with excellent resolution.
- Examples of the exposure light source here include infrared light, visible light, ultraviolet light, far-ultraviolet light, X-rays, and electron beams.
- Examples of ultraviolet light include g-line (wavelength 436 nm) and h-line (wavelength 436 nm) of a high-pressure mercury lamp. Examples include a wavelength 405 nm) i-line (wavelength 365 nm), a KrF excimer laser (wavelength 248 nm), an ArF excimer laser (wavelength 193 nm), an F2 excimer laser (wavelength 157 nm), and an EUV laser (wavelength 13.5 nm). Since the photosensitive composition according to the present invention has high photosensitivity and alkali developability, a resist pattern can be formed with high resolution when any light source is used.
- the film thickness of the coating film formed from the photosensitive composition (resist material) according to the present invention can be arbitrarily adjusted depending on the desired application. Even when a thick film is formed, the effect of the novolac-type phenolic resin according to the present invention that can form a coating film excellent in flexibility without sacrificing heat resistance or alkali solubility is sufficiently expressed.
- the thickness of the coating film is preferably from 100 nm to 100 ⁇ m, more preferably from 500 nm to 100 ⁇ m, further preferably from 2 to 100 ⁇ m, still more preferably from 2 to 20 ⁇ m.
- a GPC chart of the novolak resin (1) is shown in FIG.
- the number average molecular weight (Mn) 2,051
- the weight average molecular weight (Mw) 7,855
- the polydispersity (Mw / Mn) 3.83. .
- a GPC chart of the novolak resin (5) is shown in FIG.
- the number average molecular weight (Mn) 2,150
- the weight average molecular weight (Mw) 9,571
- the polydispersity (Mw / Mn) 4.45. .
- Examples 1 to 3, Comparative Examples 1 and 2 For the novolak resins (1) to (5) synthesized in Synthesis Examples 2 to 4 and Comparative Synthesis Examples 1 and 2, as shown in Table 1, novolak resins and photosensitizers (“P-200” manufactured by Toyo Gosei Co., Ltd.) 1 mol of 4,4 ′-[1- [4- [1- (4-hydroxyphenyl) -1methylethyl] phenyl] ethylidene] bisphenol and 2 mol of 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride And PGMEA were mixed and dissolved at 28/12/60 (parts by mass), followed by filtration using a 0.2 ⁇ m membrane filter to obtain a photosensitive composition. A coating film was prepared using these compositions, and alkali developability, sensitivity, resolution, heat resistance (Tg), substrate followability, and flexibility were evaluated according to the following. The evaluation results are shown in Table 1.
- the photosensitive composition was applied on a 5-inch silicon wafer with a spin coater to a thickness of about 1 ⁇ m and dried on a hot plate at 110 ° C. for 60 seconds to obtain a silicon wafer having a coating film.
- the obtained wafer was immersed in an alkali developer (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds, and then dried on a 110 ° C. hot plate for 60 seconds.
- the film thickness of the coating film of the photosensitive composition was measured before and after immersion in the developer, and the value obtained by dividing the difference by 60 was defined as the evaluation result of alkali developability (ADR ( ⁇ / sec)).
- a wafer subjected to PEB Post Exposure Bake
- PEB Post Exposure Bake
- a ghi line lamp manufactured by USHIO INC., Multi-light
- the ADR alkali developability was evaluated.
- the film thickness of the coating film was measured using a film thickness meter (“f-20” manufactured by Filmetrics Co., Ltd.).
- ⁇ Resolution evaluation> A photomask was placed on a 5-inch silicon wafer having a coating film on which the photosensitive composition had been applied and dried, and the film was exposed to 200 mJ / cm 2 with a ghi line lamp (manufactured by Ushio Inc., Multilight). The film after irradiation was developed and dried in the same manner as in ⁇ Alkali developability evaluation>.
- the heat resistance was evaluated by the glass transition temperature (Tg) of the coating film.
- Tg glass transition temperature
- a photosensitive composition is applied onto a 5-inch silicon wafer with a spin coater to a thickness of about 1 ⁇ m, and dried on a hot plate at 110 ° C. for 60 seconds to form a silicon wafer having a coating film. Obtained.
- the resin content was scraped from the obtained wafer and the glass transition temperature was measured.
- the glass transition temperature was measured using a differential scanning calorimeter (DSC) (TA Instruments, product name: Q100) under a nitrogen atmosphere, temperature range: ⁇ 100 to 200 ° C., temperature rising temperature: 10 ° C. Scanning was performed under the conditions of / min, and the measurement result was taken as the glass transition temperature.
- DSC differential scanning calorimeter
- ⁇ Substrate following evaluation> The photosensitive composition was coated on a 5-inch silicon wafer with a spin coater to a thickness of about 50 ⁇ m and dried on a hot plate at 110 ° C. for 300 seconds. The presence or absence of cracks on the coating film surface of the obtained wafer was observed using a laser microscope (VK-X200) manufactured by Keyence Corporation. In the evaluation, “ ⁇ ” indicates that no crack was observed, and “X” indicates that a crack was observed.
- the photosensitive composition was coated on a polyimide film having a thickness of 50 ⁇ m with a spin coater so as to have a thickness of about 5 ⁇ m, and dried on a hot plate at 110 ° C. for 300 seconds.
- the obtained film-like coating film was bent at 180 degrees, and the state of the bent portion was observed using a laser microscope (VK-X200) manufactured by Keyence Corporation. In the evaluation, “ ⁇ ” indicates that no crack was observed, and “X” indicates that a crack was observed.
- the coating films (Examples 1 to 3) of the photosensitive composition containing the novolak resins (1) to (3), which are novolak type phenol resins according to the present invention have an ADR of 1600 ⁇ / sec or more after exposure.
- the alkali developability was good, the sensitivity and resolution were high, the glass transition temperature was sufficiently high at 160 ° C. or higher, the heat resistance was good, and the substrate followability and flexibility were excellent.
- the coating film (Comparative Example 1) of the photosensitive composition containing the novolak resin (4) which is a novolak-type phenol resin synthesized using only monoaldehydes as the nodule, has an alkali developability and sensitivity.
- the coating film (comparative example 2) of the photosensitive composition containing the novolak resin (5) which is a cresol novolak resin synthesized using polyaldehydes as a nodule is excellent in substrate followability and flexibility.
- alkali developability, sensitivity, resolution, and heat resistance were all insufficient.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials For Photolithography (AREA)
- Phenolic Resins Or Amino Resins (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Provided are: a novolac type phenolic resin which is suitable for the achievement of a coating film that has excellent flexibility even if formed thick, while exhibiting excellent heat resistance, alkali developability, sensitivity and resolution; and the like. The present invention specifically provides a novolac type phenolic resin which is obtained by reacting (A) one or more phenolic trinuclear compounds selected from the group consisting of compounds represented by general formula (1) and compounds represented by general formula (2), (B) a monoaldehyde and (C) a polyaldehyde in the presence of an acid catalyst.
(In the formulae, each of R1, R2 and R3 independently represents an optionally substituted alkyl group having 1-8 carbon atoms; R4 represents a hydrogen atom, an optionally substituted alkyl group or an optionally substituted aryl group; each of p and q independently represents an integer of 1-4; r represents an integer of 0-4; and s represents 1 or 2. In this connection, the sum of r and s is 5 or less.)
Description
本発明は、耐熱性、柔軟性、アルカリ現像性、感度、及び解像度に優れるレジスト塗膜を得るために好適なノボラック型フェノール樹脂、当該樹脂を含む感光性組成物、当該感光性組成物を用いて得られるレジスト材料、並びに当該レジスト材料を用いた塗膜(レジスト塗膜)に関する。
The present invention uses a novolak-type phenol resin suitable for obtaining a resist coating film excellent in heat resistance, flexibility, alkali developability, sensitivity, and resolution, a photosensitive composition containing the resin, and the photosensitive composition. And a coating film (resist coating film) using the resist material.
IC、LSI等の半導体の製造、LCD等の表示装置の製造、印刷原版の製造などに用いられるレジストとして、アルカリ可溶性樹脂及び1,2-ナフトキノンジアジド化合物等の感光剤を用いたポジ型フォトレジストが知られている。具体的には、例えば、前記アルカリ可溶性樹脂として、m-クレゾールノボラック樹脂及びp-クレゾールノボラック樹脂からなる混合物を用いたポジ型フォトレジスト組成物が提案されている(例えば、特許文献1参照。)。
A positive photoresist using a photosensitive agent such as an alkali-soluble resin and a 1,2-naphthoquinonediazide compound as a resist used in the manufacture of semiconductors such as IC and LSI, the manufacture of display devices such as LCDs, and the manufacture of printing original plates It has been known. Specifically, for example, a positive photoresist composition using a mixture of m-cresol novolak resin and p-cresol novolak resin as the alkali-soluble resin has been proposed (see, for example, Patent Document 1). .
近年、半導体の高集積化が高まり、よりパターンが細線化する傾向にあり、より優れた感度が求められてきている。特許文献1に記載されたポジ型フォトレジスト組成物は、感度等の現像性の向上を目的に開発されたものではあるものの、細線化に対応する充分な感度は得られない問題があった。さらに、半導体等の製造工程において様々な熱処理が施されることから、より高い耐熱性も求められているが、特許文献1に記載されたポジ型フォトレジスト組成物は、耐熱性が充分ではない問題があった。
In recent years, higher integration of semiconductors has been increasing, and there is a tendency for patterns to become finer, and higher sensitivity has been demanded. Although the positive photoresist composition described in Patent Document 1 has been developed for the purpose of improving developability such as sensitivity, there is a problem that sufficient sensitivity corresponding to thinning cannot be obtained. Furthermore, since various heat treatments are performed in the manufacturing process of semiconductors and the like, higher heat resistance is also required. However, the positive photoresist composition described in Patent Document 1 does not have sufficient heat resistance. There was a problem.
この問題を解決するために、フェノール系3核体化合物とホルムアルデヒドとを縮合して得られるノボラック型フェノール樹脂を含有するポジ型フォトレジスト組成物が提案されている(例えば、特許文献2参照。)。
In order to solve this problem, a positive photoresist composition containing a novolac-type phenol resin obtained by condensing a phenolic trinuclear compound and formaldehyde has been proposed (see, for example, Patent Document 2). .
また、近年、半導体分野において、より高集積化が進んでいる。高集積化した半導体部品のパッケージ形式の1つとしてウェハレベルパッケージングが挙げられる。ウェハレベルパッケージングでは、配線密度が高まるにつれて、例えば、非特許文献1に記載された電子配線の電子化学的堆積法が使用されている。ウェハレベルパッケージングでは、最終の金属構造体を形成するために、金バンプ、銅ポスト及び銅ワイヤを再配線する必要があるが、これを行うためには、後で電気メッキされるレジストの型(mold)を必要とする。このレジスト(レジスト層)は、IC製造においてクリティカル層(critical layers)の形成で使用されるレジストと比べると、非常に厚い。図形の大きさ及びレジスト厚さは、典型的には、2μm~100μmと厚く、そのため高いアスペクト比(ラインサイズに対するレジスト厚さ)でフォトレジストにパターン化する必要がある。そして、高いアスペクト比でフォトレジストにパターン化するためには、膜厚を厚くしても柔軟性に優れる塗膜が得られるレジスト組成物が必要である。
In recent years, higher integration has been advanced in the semiconductor field. One package format for highly integrated semiconductor components is wafer level packaging. In wafer level packaging, as the wiring density increases, for example, the electrochemical deposition method of electronic wiring described in Non-Patent Document 1 is used. In wafer level packaging, gold bumps, copper posts, and copper wires need to be redistributed to form the final metal structure, but to do this, a resist type that is later electroplated (Mold) is required. This resist (resist layer) is much thicker than the resist used in the formation of critical layers in IC manufacturing. The size of the figure and the resist thickness are typically as thick as 2 μm to 100 μm. Therefore, it is necessary to pattern the photoresist with a high aspect ratio (resist thickness with respect to line size). And in order to pattern into a photoresist with a high aspect ratio, the resist composition from which the coating film which is excellent in a softness | flexibility is obtained even if it thickens is required.
厚膜でも柔軟性に優れるレジスト塗膜を得るために、例えば、メタクレゾール又はパラクレゾールの結節剤として脂肪族ポリアルデヒドを使用したノボラック樹脂を含むレジスト組成物が知られている(例えば、特許文献3参照。)。
In order to obtain a resist coating film having excellent flexibility even with a thick film, for example, a resist composition containing a novolak resin using an aliphatic polyaldehyde as a nodule of metacresol or paracresol is known (for example, Patent Documents). 3).
しかしながら、特許文献3に記載されたレジスト組成物を用いて得られるレジスト塗膜は、耐熱性とアルカリ溶解速度の両立の達成が困難であった。
However, it has been difficult for the resist coating film obtained using the resist composition described in Patent Document 3 to achieve both heat resistance and alkali dissolution rate.
本発明が解決しようとする課題は、厚膜とした場合でも柔軟性に優れ、しかも、耐熱性、アルカリ現像性、感度、及び解像度に優れる塗膜を得るために好適なノボラック型フェノール樹脂、当該樹脂を含む感光性組成物、当該感光性組成物を用いて得られるレジスト材料、並びに当該レジスト材料を用いた塗膜(レジスト塗膜)を提供することにある。
The problem to be solved by the present invention is a novolac type phenolic resin suitable for obtaining a coating film excellent in flexibility even in the case of a thick film and having excellent heat resistance, alkali developability, sensitivity, and resolution, It is providing the photosensitive composition containing resin, the resist material obtained using the said photosensitive composition, and the coating film (resist coating film) using the said resist material.
本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、メタクレゾール又はパラクレゾールに代えてフェノール系3核体化合物を用い、さらに結節剤としてモノアルデヒド類とポリアルデヒド類を共に用いることにより、厚膜とした場合の柔軟性に優れる上に、耐熱性とアルカリ溶解速度も良好なノボラック型フェノール樹脂が得られることを見出し、本発明を完成するに至った。
As a result of intensive studies to solve the above problems, the present inventors use a phenolic trinuclear compound instead of metacresol or paracresol, and further use both monoaldehydes and polyaldehydes as nodules. As a result, it was found that a novolac type phenol resin having excellent flexibility in the case of a thick film and having good heat resistance and alkali dissolution rate can be obtained, and the present invention has been completed.
即ち、本発明は、下記一般式(1)
That is, the present invention has the following general formula (1)
[式(1)中、R1、R2、及びR3は、それぞれ独立して置換基を有していてもよい炭素原子数1~8のアルキル基を表す。R1が複数存在する場合は、それらは同一でもよく異なっていてもよく、R2が複数存在する場合は、それらは同一でもよく異なっていてもよく、R3が複数存在する場合は、それらは同一でもよく異なっていてもよい。p及びqはそれぞれ独立して1~4の整数であり、rは0~4の整数であり、sは1又は2である。ただし、rとsの和は5以下である。]
で表される化合物及び下記一般式(2) [In Formula (1), R 1 , R 2 , and R 3 each independently represents an alkyl group having 1 to 8 carbon atoms which may have a substituent. When a plurality of R 1 are present, they may be the same or different. When a plurality of R 2 are present, they may be the same or different. When a plurality of R 3 are present, May be the same or different. p and q are each independently an integer of 1 to 4, r is an integer of 0 to 4, and s is 1 or 2. However, the sum of r and s is 5 or less. ]
And a compound represented by the following general formula (2)
で表される化合物及び下記一般式(2) [In Formula (1), R 1 , R 2 , and R 3 each independently represents an alkyl group having 1 to 8 carbon atoms which may have a substituent. When a plurality of R 1 are present, they may be the same or different. When a plurality of R 2 are present, they may be the same or different. When a plurality of R 3 are present, May be the same or different. p and q are each independently an integer of 1 to 4, r is an integer of 0 to 4, and s is 1 or 2. However, the sum of r and s is 5 or less. ]
And a compound represented by the following general formula (2)
[式(2)中、R1、R2、R3、p、及びqは、前記式(1)と同じであり、tは0~5の整数を表す。]
で表される化合物からなる群より選択される1種以上のフェノール系3核体化合物(A)とモノアルデヒド類(B)とポリアルデヒド類(C)とを、酸触媒下で反応させて得られることを特徴とする、ノボラック型フェノール樹脂に関する。 [In Formula (2), R 1 , R 2 , R 3 , p, and q are the same as those in Formula (1), and t represents an integer of 0 to 5. ]
Obtained by reacting one or more phenolic trinuclear compounds (A), monoaldehydes (B), and polyaldehydes (C) selected from the group consisting of compounds represented by It is related with the novolak-type phenol resin characterized by the above-mentioned.
で表される化合物からなる群より選択される1種以上のフェノール系3核体化合物(A)とモノアルデヒド類(B)とポリアルデヒド類(C)とを、酸触媒下で反応させて得られることを特徴とする、ノボラック型フェノール樹脂に関する。 [In Formula (2), R 1 , R 2 , R 3 , p, and q are the same as those in Formula (1), and t represents an integer of 0 to 5. ]
Obtained by reacting one or more phenolic trinuclear compounds (A), monoaldehydes (B), and polyaldehydes (C) selected from the group consisting of compounds represented by It is related with the novolak-type phenol resin characterized by the above-mentioned.
本発明はまた、前記ノボラック型フェノール樹脂と感光剤とを含有することを特徴とする感光性組成物、前記感光性組成物からなることを特徴とするレジスト材料、前記感光性組成物からなることを特徴とする塗膜、及び前記レジスト材料からなることを特徴とするレジスト塗膜に関する。
The present invention also comprises a photosensitive composition comprising the novolak-type phenolic resin and a photosensitive agent, a resist material comprising the photosensitive composition, and the photosensitive composition. And a resist coating film comprising the resist material.
本発明に係るノボラック型フェノール樹脂及び当該樹脂を含む感光性組成物により、厚膜とした場合でも柔軟性に優れ、しかも、耐熱性、アルカリ現像性、感度、及び解像度に優れる塗膜を得ることができる。このため、当該感光性組成物は、レジスト材料に用いることができる。
The novolac type phenolic resin and the photosensitive composition containing the resin according to the present invention provide a coating film that is excellent in flexibility even in the case of a thick film, and excellent in heat resistance, alkali developability, sensitivity, and resolution. Can do. For this reason, the said photosensitive composition can be used for a resist material.
本発明に係るノボラック型フェノール樹脂は、下記一般式(1)で表される化合物及び下記一般式(2)で表される化合物からなる群より選択される1種以上のフェノール系3核体化合物(A)とモノアルデヒド類(B)とポリアルデヒド類(C)とを、酸触媒下で反応させて得られることを特徴とする。本発明に係るノボラック型フェノール樹脂の原料となるフェノール系3核体化合物(A)として、一般式(1)で表される化合物(3つのベンゼン環の全てにフェノール性水酸基を有する3核体化合物)と一般式(2)で表される化合物(フェノール性水酸基を有する2つのベンゼン環とフェノール性水酸基を有さないベンゼン環とからなる3核体化合物)とを適当な比率で組み合わせることにより、得られるノボラック型フェノール樹脂の水酸基量を制御することができ、ひいてはアルカリ溶解性を所望の程度に制御することが容易である。
The novolak-type phenol resin according to the present invention is one or more phenolic trinuclear compounds selected from the group consisting of a compound represented by the following general formula (1) and a compound represented by the following general formula (2). It is characterized by being obtained by reacting (A), a monoaldehyde (B) and a polyaldehyde (C) in the presence of an acid catalyst. As a phenol type trinuclear compound (A) used as a raw material of the novolak type phenol resin according to the present invention, a compound represented by the general formula (1) (a trinuclear compound having a phenolic hydroxyl group in all three benzene rings) ) And a compound represented by the general formula (2) (a trinuclear compound composed of two benzene rings having a phenolic hydroxyl group and a benzene ring not having a phenolic hydroxyl group) in an appropriate ratio, The amount of hydroxyl groups of the resulting novolak-type phenol resin can be controlled, and as a result, the alkali solubility can be easily controlled to a desired level.
一般式(1)及び(2)中、p、q、は、それぞれ独立して1~4の整数であり、rは0~4の整数であり、sは1又は2である。ただし、rとsの和は5以下である。一般式(2)中、tは0~5の整数である。
In the general formulas (1) and (2), p and q are each independently an integer of 1 to 4, r is an integer of 0 to 4, and s is 1 or 2. However, the sum of r and s is 5 or less. In the general formula (2), t is an integer of 0 to 5.
一般式(1)及び(2)中、R1、R2、及びR3は、それぞれ独立して置換基を有していてもよい炭素原子数1~8のアルキル基を表す。R1が複数存在する場合は、それらは同一でもよく異なっていてもよく、R2が複数存在する場合は、それらは同一でもよく異なっていてもよく、R3が複数存在する場合は、それらは同一でもよく異なっていてもよい。
In general formulas (1) and (2), R 1 , R 2 , and R 3 each independently represents an alkyl group having 1 to 8 carbon atoms that may have a substituent. When a plurality of R 1 are present, they may be the same or different. When a plurality of R 2 are present, they may be the same or different. When a plurality of R 3 are present, May be the same or different.
当該アルキル基は、直鎖状であってもよく、分岐鎖状であってもよく、環状構造を有する基であってもよいが、直鎖状の基であることが好ましい。本発明においては、R1、R2、又はR3のアルキル基としては、炭素原子数1~6のアルキル基が好ましく、炭素原子数1~3のアルキル基がより好ましく、直鎖状の炭素原子数1~3のアルキル基がさらに好ましい。
The alkyl group may be linear, branched, or a group having a cyclic structure, but is preferably a linear group. In the present invention, the alkyl group of R 1 , R 2 , or R 3 is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and linear carbon More preferred is an alkyl group having 1 to 3 atoms.
一般式(1)及び(2)中のR1、R2、又はR3のアルキル基中の水素原子は、置換基によって置換されていてもよい。置換され得る水素原子の数は、特に制限されるものではないが、好ましくは1~3個であり、より好ましくは1又は2個である。また、1のアルキル基が複数の置換基を有する場合、それぞれの置換基は、互いに同一でもよく、異なっていてもよい。
The hydrogen atom in the alkyl group of R 1 , R 2 , or R 3 in the general formulas (1) and (2) may be substituted with a substituent. The number of hydrogen atoms that can be substituted is not particularly limited, but is preferably 1 to 3, more preferably 1 or 2. When one alkyl group has a plurality of substituents, each substituent may be the same as or different from each other.
当該置換基としては、水酸基、炭素原子数1~6のアルコキシ基、置換基を有していてもよいアリール基、ハロゲン原子等が挙げられる。当該アルキル基が有する置換基のうち、炭素原子数1~6のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、n-ブチルオキシ基、t-ブチルオキシ基、ペンチルオキシ基、イソアミルオキシ基、ヘキシルオキシ基、シクロへキシルオキシ基等が挙げられる。また、置換基を有していてもよいアリール基としては、フェニル基、ナフチル基、インデニル基、ビフェニル基等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子が挙げられる。
Examples of the substituent include a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, an aryl group which may have a substituent, and a halogen atom. Among the substituents of the alkyl group, examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, an n-butyloxy group, a t-butyloxy group, a pentyloxy group, and an isoamyloxy group. Hexyloxy group, cyclohexyloxy group and the like. In addition, examples of the aryl group which may have a substituent include a phenyl group, a naphthyl group, an indenyl group, and a biphenyl group. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
一般式(1)及び(2)中のR1、R2、及びR3のアルキル基としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロへキシル基、ヒドロキシエチル基、ヒドロキシプロピル基、フルオロメチル基、メトキシエチル基、エトキシエチル基、メトキシプロピル基、フェニルメチル基、ヒドロキシフェニルメチル基、ジヒドロキシフェニルメチル基、トリルメチル基、キシリルメチル基、ナフチルメチル基、ヒドロキシナフチルメチル基、ジヒドロキシナフチルメチル基、フェニルエチル基、ヒドロキシフェニルエチル基、ジヒドロキシフェニルエチル基、トリルエチル基、キシリルエチル基、ナフチルエチル基、ヒドロキシナフチルエチル基、ジヒドロキシナフチルエチル基が挙げられ、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソアミル基、ヘキシル基が好ましく、メチル基又はエチル基がさらに好ましく、メチル基がよりさらに好ましい。
Specific examples of the alkyl group represented by R 1 , R 2 , and R 3 in the general formulas (1) and (2) include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, and an isobutyl group. , T-butyl group, pentyl group, isoamyl group, hexyl group, cyclohexyl group, hydroxyethyl group, hydroxypropyl group, fluoromethyl group, methoxyethyl group, ethoxyethyl group, methoxypropyl group, phenylmethyl group, hydroxyphenyl Methyl group, dihydroxyphenylmethyl group, tolylmethyl group, xylylmethyl group, naphthylmethyl group, hydroxynaphthylmethyl group, dihydroxynaphthylmethyl group, phenylethyl group, hydroxyphenylethyl group, dihydroxyphenylethyl group, tolylethyl group, xylylethyl group, naphthylethyl group Group, hydro And naphthylethyl group and dihydroxynaphthylethyl group. Methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, pentyl group, isoamyl group and hexyl group are preferable. Group or ethyl group is more preferable, and methyl group is still more preferable.
一般式(1)及び(2)中のR1とR2は、同じ炭素原子数を有するアルキル基が好ましい。また、R1とR2はそれぞれ、R1とR2が結合する各々のベンゼン環において、当該ベンゼン環が有するフェノール性水酸基が結合している炭素原子から見て同じ位置にある炭素原子に結合していることが好ましい。R1が結合しているベンゼン環とR2が結合しているベンゼン環にはそれぞれフェノール性水酸基が結合しているが、このフェノール性水酸基が結合する位置も、各々のベンゼン環において同じ位置が好ましい。さらに、pとqも同じ数が好ましい。pとqとしては、2が好ましい。
R 1 and R 2 in general formulas (1) and (2) are preferably alkyl groups having the same number of carbon atoms. Further, each of R 1 and R 2 are, in the benzene ring of each R 1 and R 2 are bonded, attached to the carbon atom in the same position when viewed from the carbon atom to which phenolic hydroxyl group such as benzene ring has is attached It is preferable. A phenolic hydroxyl group is bonded to each of the benzene ring to which R 1 is bonded and the benzene ring to which R 2 is bonded. The position at which this phenolic hydroxyl group is bonded is also the same in each benzene ring. preferable. Furthermore, p and q are preferably the same number. As p and q, 2 is preferable.
一般式(1)及び(2)中のrは、0~4の整数である。中でも、rは0が好ましい。
R in the general formulas (1) and (2) is an integer of 0 to 4. Among these, r is preferably 0.
前記一般式(1)で表される化合物としては、例えば、下記一般式(1-1)~(1-18)のいずれかで表される化合物が挙げられる。一般式(1-1)~(1-18)中、R1、R2、及びR3は、前記一般式(1)と同じであり、r1は0~4の整数を表し、r2は0~3の整数を表す。一般式(1-1)~(1-18)で表される化合物としては、R1及びR2が共にメチル基又はエチル基であり、かつr1及びr2が0である化合物が好ましく、R1及びR2が共にメチル基であり、かつr1及びr2が0である化合物がより好ましい。
Examples of the compound represented by the general formula (1) include compounds represented by any one of the following general formulas (1-1) to (1-18). In the general formulas (1-1) to (1-18), R 1 , R 2 , and R 3 are the same as those in the general formula (1), r1 represents an integer of 0 to 4, and r2 is 0 Represents an integer of ~ 3. The general formula (1-1) to the compound represented by the formula (1-18), Compound R 1 and R 2 are both methyl or ethyl group, and r1 and r2 is 0 Preferably, R 1 R 2 and R 2 are both methyl groups, and r1 and r2 are 0.
前記一般式(1)で表される化合物としては、耐熱性と高い解像度を有する塗膜が得られるノボラック型フェノール樹脂が得られることから、一般式(1-1)、(1-2)、(1-7)、(1-8)、(1-13)、又は(1-14)で表される化合物が好ましく、一般式(1-1)、(1-7)、又は(1-13)で表される化合物がより好ましく、一般式(1-1)で表される化合物がさらに好ましい。
As the compound represented by the general formula (1), since a novolac type phenol resin capable of obtaining a coating film having heat resistance and high resolution is obtained, the general formulas (1-1), (1-2), Compounds represented by (1-7), (1-8), (1-13), or (1-14) are preferred, and are represented by the general formulas (1-1), (1-7), or (1- The compound represented by 13) is more preferred, and the compound represented by formula (1-1) is more preferred.
前記一般式(2)で表される化合物としては、例えば、下記一般式(2-1)~(2-6)のいずれかで表される化合物が挙げられる。一般式(2-1)~(2-6)中、R1、R2、R3、及びtは、前記一般式(2)と同じである。一般式(2-1)~(2-6)で表される化合物としては、R1及びR2が共にメチル基又はエチル基であり、かつtが0である化合物が好ましく、R1及びR2が共にメチル基であり、かつtが0である化合物がより好ましい。
Examples of the compound represented by the general formula (2) include compounds represented by any one of the following general formulas (2-1) to (2-6). In the general formulas (2-1) to (2-6), R 1 , R 2 , R 3 , and t are the same as those in the general formula (2). The general formula (2-1) to the compound represented by the formula (2-6), compound R 1 and R 2 are both methyl or ethyl group, and t is 0 are preferred, R 1 and R A compound in which both 2 are methyl groups and t is 0 is more preferable.
前記一般式(2)で表される化合物としては、耐熱性と高い解像度を有する塗膜が得られるノボラック型フェノール樹脂が得られることから、一般式(2-1)又は(2-2)で表される化合物が好ましく、一般式(2-1)で表される化合物がより好ましい。
As the compound represented by the general formula (2), a novolac type phenol resin capable of obtaining a coating film having heat resistance and high resolution can be obtained. Therefore, the compound represented by the general formula (2-1) or (2-2) The compound represented by Formula (2-1) is more preferable.
前記一般式(1)で表される化合物は、例えば、アルキル置換フェノール(d1)と水酸基含有芳香族アルデヒド(d2)とを、アルキル置換フェノール(d1)の芳香族炭化水素基上の炭素原子の反応活性エネルギーの差を利用できる条件下で縮合を行うことにより得られる。具体的には、例えば、前記一般式(1)で表される化合物は、アルキル置換フェノール(d1)と水酸基含有芳香族アルデヒド(d2)とを、酸触媒存在下で重縮合することにより得られる。
The compound represented by the general formula (1) includes, for example, an alkyl-substituted phenol (d1) and a hydroxyl group-containing aromatic aldehyde (d2), and a carbon atom on the aromatic hydrocarbon group of the alkyl-substituted phenol (d1). It can be obtained by carrying out the condensation under conditions where the difference in reaction activity energy can be utilized. Specifically, for example, the compound represented by the general formula (1) is obtained by polycondensing an alkyl-substituted phenol (d1) and a hydroxyl group-containing aromatic aldehyde (d2) in the presence of an acid catalyst. .
前記一般式(2)で表される化合物は、例えば、アルキル置換フェノール(d1)と、水酸基を有していない芳香族アルデヒド(水酸基非含有芳香族アルデヒド)(d’2)とを、アルキル置換フェノール(d1)の芳香族炭化水素基上の炭素原子の反応活性エネルギーの差を利用できる条件下で縮合を行うことにより得られる。具体的には、例えば、前記一般式(1)で表される化合物は、アルキル置換フェノール(d1)と水酸基非含有芳香族アルデヒド(d’2)とを、酸触媒存在下で重縮合することにより得られる。
The compound represented by the general formula (2) is, for example, alkyl-substituted phenol (d1) and an aromatic aldehyde having no hydroxyl group (hydroxyl-free aromatic aldehyde) (d′ 2). It can be obtained by performing condensation under conditions that can utilize the difference in the reaction activity energy of carbon atoms on the aromatic hydrocarbon group of phenol (d1). Specifically, for example, the compound represented by the general formula (1) is obtained by polycondensing an alkyl-substituted phenol (d1) and a hydroxyl group-free aromatic aldehyde (d′ 2) in the presence of an acid catalyst. Is obtained.
前記アルキル置換フェノール(d1)は、フェノールのベンゼン環に結合している水素原子の一部又は全部がアルキル基に置換している化合物である。このアルキル基としては、炭素原子数1~8のアルキル基が挙げられ、特にメチル基が好ましい。前記アルキル置換フェノール(d1)としては、例えば、o-クレゾール、m-クレゾール、p-クレゾール、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール、p-オクチルフェノール、p-t-ブチルフェノール、o-シクロヘキシルフェノール、m-シクロヘキシルフェノール、p-シクロヘキシルフェノール等のモノアルキルフェノール;2,5-キシレノール、3,5-キシレノール、3,4-キシレノール、2,4-キシレノール、2,6-キシレノール等のジアルキルフェノール;2,3,5-トリメチルフェノール、2,3,6-トリメチルフェノール等のトリアルキルフェノールなどが挙げられる。また、これらのアルキル置換フェノールの中でも、耐熱性とアルカリ溶解性のバランスに優れることから、フェノールのベンゼン環へのアルキル基の置換数が2のものが好ましく、具体例としては、2,5-キシレノール、2,6-キシレノールが好ましい。これらのアルキル置換フェノール(d1)は、1種類のみで用いることも2種類以上併用することもできるが、1種類のみ用いることが好ましい。
The alkyl-substituted phenol (d1) is a compound in which part or all of the hydrogen atoms bonded to the phenol benzene ring are substituted with an alkyl group. Examples of the alkyl group include alkyl groups having 1 to 8 carbon atoms, and a methyl group is particularly preferable. Examples of the alkyl-substituted phenol (d1) include o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, p-octylphenol, pt-butylphenol, o Monoalkylphenols such as cyclohexylphenol, m-cyclohexylphenol and p-cyclohexylphenol; dialkyl such as 2,5-xylenol, 3,5-xylenol, 3,4-xylenol, 2,4-xylenol, 2,6-xylenol Examples include alkylphenols; trialkylphenols such as 2,3,5-trimethylphenol and 2,3,6-trimethylphenol. Among these alkyl-substituted phenols, those having a substitution number of alkyl groups on the benzene ring of phenol of 2 are preferable because of excellent balance between heat resistance and alkali solubility. Specific examples include 2,5- Xylenol and 2,6-xylenol are preferred. These alkyl-substituted phenols (d1) can be used alone or in combination of two or more, but preferably only one is used.
前記水酸基含有芳香族アルデヒド(d2)は、芳香環に少なくとも1つのアルデヒド基と少なくとも一つの水酸基を有する化合物である。前記水酸基含有芳香族アルデヒド(d2)としては、例えば、サリチルアルデヒド、m-ヒドロキシベンズアルデヒド、p-ヒドロキシベンズアルデヒド等のヒドロキシベンズアルデヒド;2,4-ジヒドロキシベンズアルデヒド、3,4-ジヒドロキシベンズアルデヒド等のジヒドロキシベンズアルデヒド;バニリン、オルトバニリン、イソバニリン、エチルバニリン等のバニリン系化合物;等が挙げられる。これらの水酸基含有芳香族アルデヒド(d2)の中でも、工業的入手の容易さ、耐熱性とアルカリ溶解性のバランスに優れることから、p-ヒドロキシベンズアルデヒド(4-ヒドロキシベンズアルデヒド)、2,4-ジヒドロキシベンズアルデヒド、3,4-ジヒドロキシベンズアルデヒドが好ましく、p-ヒドロキシベンズアルデヒドがより好ましい。
The hydroxyl group-containing aromatic aldehyde (d2) is a compound having at least one aldehyde group and at least one hydroxyl group in the aromatic ring. Examples of the hydroxyl group-containing aromatic aldehyde (d2) include hydroxybenzaldehydes such as salicylaldehyde, m-hydroxybenzaldehyde and p-hydroxybenzaldehyde; dihydroxybenzaldehydes such as 2,4-dihydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde; vanillin And vanillin compounds such as ortho vanillin, isovanillin and ethyl vanillin; Among these hydroxyl group-containing aromatic aldehydes (d2), p-hydroxybenzaldehyde (4-hydroxybenzaldehyde) and 2,4-dihydroxybenzaldehyde are available because they are easily available industrially and have a good balance between heat resistance and alkali solubility. 3,4-dihydroxybenzaldehyde is preferred, and p-hydroxybenzaldehyde is more preferred.
前記水酸基非含有芳香族アルデヒド(d’2)は、芳香環に少なくとも1つのアルデヒド基を有し、かつフェノール性水酸基を有していない化合物である。前記水酸基非含有芳香族アルデヒド(d’2)としては、例えば、ベンズアルデヒド;メチルベンズアルデヒド、エチルベンズアルデヒド、ジメチルベンズアルデヒド、ジエチルベンズアルデヒド等のアルキルベンズアルデヒド;メトキシベンズアルデヒド、エトキシベンズアルデヒド等のアルコキシベンズアルデヒド;等が挙げられる。これらの水酸基非含有芳香族アルデヒド(d’2)の中でも、ベンズアルデヒドが好ましい。
The hydroxyl group-free aromatic aldehyde (d′ 2) is a compound having at least one aldehyde group in the aromatic ring and not having a phenolic hydroxyl group. Examples of the hydroxyl group-free aromatic aldehyde (d′ 2) include benzaldehyde; alkylbenzaldehyde such as methylbenzaldehyde, ethylbenzaldehyde, dimethylbenzaldehyde, and diethylbenzaldehyde; alkoxybenzaldehyde such as methoxybenzaldehyde and ethoxybenzaldehyde; Among these hydroxyl group-free aromatic aldehydes (d′ 2), benzaldehyde is preferable.
前記一般式(1)又は(2)で表される化合物は、例えば、前記アルキル置換フェノール(d1)と、前記水酸基含有芳香族アルデヒド(d2)又は水酸基非含有芳香族アルデヒド(d’2)とを、酸触媒存在下で重縮合することにより得られる。例えば、2,5-キシレノールと4-ヒドロキシベンズアルデヒドとを酸触媒存在下で重縮合することにより、前記一般式(1-1)のうち、R1及びR2が共にメチル基であり、かつrが0である化合物が得られる。2,6-キシレノールと4-ヒドロキシベンズアルデヒドとを酸触媒存在下で重縮合することにより、前記一般式(1-2)のうち、R1及びR2が共にメチル基であり、かつrが0である化合物が得られる。
The compound represented by the general formula (1) or (2) includes, for example, the alkyl-substituted phenol (d1), the hydroxyl group-containing aromatic aldehyde (d2) or the hydroxyl group-free aromatic aldehyde (d′ 2), Can be obtained by polycondensation in the presence of an acid catalyst. For example, by polycondensation of 2,5-xylenol and 4-hydroxybenzaldehyde in the presence of an acid catalyst, R 1 and R 2 in the general formula (1-1) are both methyl groups, and r A compound is obtained in which is 0. By polycondensation of 2,6-xylenol and 4-hydroxybenzaldehyde in the presence of an acid catalyst, in the general formula (1-2), R 1 and R 2 are both methyl groups, and r is 0 Is obtained.
当該酸触媒としては、例えば、酢酸、シュウ酸、硫酸、塩酸、フェノールスルホン酸、パラトルエンスルホン酸、酢酸亜鉛、酢酸マンガン等が挙げられる。これらの酸触媒は、1種類のみで用いることもでき、2種類以上併用することもできる。また、これらの酸触媒の中でも、活性に優れる点から、硫酸、パラトルエンスルホン酸が好ましい。酸触媒は、反応前に加えてもよく、反応途中で加えてもよい。
Examples of the acid catalyst include acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, paratoluenesulfonic acid, zinc acetate, manganese acetate and the like. These acid catalysts can be used alone or in combination of two or more. Of these acid catalysts, sulfuric acid and paratoluenesulfonic acid are preferred because of their excellent activity. The acid catalyst may be added before the reaction or may be added during the reaction.
前記アルキル置換フェノール(d1)と、前記水酸基含有芳香族アルデヒド(d2)又は水酸基非含有芳香族アルデヒド(d’2)との重縮合は、必要に応じて有機溶剤の存在下で行ってもよい。当該有機溶剤としては、例えば、メタノール、エタノール、プロパノール等のモノアルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、トリメチレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン等のポリオール;2-エトキシエタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル等のグリコールエーテル;1,3-ジオキサン、1,4-ジオキサン等の環状エーテル;エチレングリコールアセテート等のグリコールエステル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトンなどが挙げられる。これらの有機溶剤は、1種類のみで用いることも2種類以上併用することもできる。また、これらの有機溶剤の中でも、得られる化合物の溶解性に優れる点から、2-エトキシエタノールが好ましい。
The polycondensation of the alkyl-substituted phenol (d1) and the hydroxyl group-containing aromatic aldehyde (d2) or the hydroxyl group-free aromatic aldehyde (d′ 2) may be performed in the presence of an organic solvent, if necessary. . Examples of the organic solvent include monoalcohols such as methanol, ethanol, and propanol; ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, , 6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin and other polyols; 2-ethoxyethanol, ethylene glycol monomethyl ether , Ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, ethylene Glycol ethers such as glycol ethyl methyl ether and ethylene glycol monophenyl ether; Cyclic ethers such as 1,3-dioxane and 1,4-dioxane; Glycol esters such as ethylene glycol acetate; Ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone Is mentioned. These organic solvents can be used alone or in combination of two or more. Among these organic solvents, 2-ethoxyethanol is preferable because the resulting compound has excellent solubility.
前記アルキル置換フェノール(d1)と前記水酸基含有芳香族アルデヒド(d2)又は水酸基非含有芳香族アルデヒド(d’2)とを重縮合させる際の反応温度としては、例えば、60~140℃である。また、反応時間は、例えば、0.5~100時間である。
The reaction temperature for polycondensing the alkyl-substituted phenol (d1) with the hydroxyl group-containing aromatic aldehyde (d2) or the hydroxyl group-free aromatic aldehyde (d′ 2) is, for example, 60 to 140 ° C. The reaction time is, for example, 0.5 to 100 hours.
前記アルキル置換フェノール(d1)と前記水酸基含有芳香族アルデヒド(d2)との仕込み比率[(d1)/(d2)]及び前記アルキル置換フェノール(d1)と前記水酸基非含有芳香族アルデヒド(d’2)との仕込み比率[(d1)/(d’2)]は、未反応のアルキル置換フェノール(d1)の除去性、生成物の収率及び反応生成物の純度に優れることから、それぞれ、モル比で1/0.2~1/0.5の範囲が好ましく、1/0.25~1/0.45の範囲がより好ましい。
Charge ratio [(d1) / (d2)] of the alkyl-substituted phenol (d1) and the hydroxyl group-containing aromatic aldehyde (d2) and the alkyl-substituted phenol (d1) and the hydroxyl group-free aromatic aldehyde (d′ 2) ), The charge ratio [(d1) / (d′ 2)] is excellent in the removal of unreacted alkyl-substituted phenol (d1), the yield of the product and the purity of the reaction product. The ratio is preferably in the range of 1 / 0.2 to 1 / 0.5, more preferably in the range of 1 / 0.25 to 1 / 0.45.
前記アルキル置換フェノール(d1)と前記水酸基含有芳香族アルデヒド(d2)又は水酸基非含有芳香族アルデヒド(d’2)との重縮合の反応溶液中には、重縮合物である前記一般式(1)又は(2)で表される化合物と共に、未反応物が残存している可能性がある。また、前記一般式(1)又は(2)で表される化合物以外の好ましくない縮合物が生成されている可能性もある。そこで、本発明に係るノボラック型フェノール樹脂の原料(フェノール系3核体化合物(A))として用いる前に、重縮合反応後の反応溶液から、前記一般式(1)又は(2)で表される化合物を精製しておくことが好ましい。フェノール系3核体化合物(A)として用いる前記一般式(1)又は(2)で表される化合物の純度は、85%以上が好ましく、90%以上がより好ましく、94%以上がさらに好ましく、98%以上が特に好ましい。一般式(1)又は(2)で表される化合物の純度はGPCチャートにおいて面積比から求めることができる。
In the reaction solution of the polycondensation of the alkyl-substituted phenol (d1) and the hydroxyl group-containing aromatic aldehyde (d2) or the hydroxyl group-free aromatic aldehyde (d′ 2), the general formula (1 ) Or (2) and the unreacted substance may remain. Moreover, an unfavorable condensate other than the compound represented by the general formula (1) or (2) may be generated. Therefore, before being used as a raw material for the novolak-type phenol resin according to the present invention (phenolic trinuclear compound (A)), it is represented by the general formula (1) or (2) from the reaction solution after the polycondensation reaction. It is preferable to purify the compound. The purity of the compound represented by the general formula (1) or (2) used as the phenol trinuclear compound (A) is preferably 85% or more, more preferably 90% or more, still more preferably 94% or more, 98% or more is particularly preferable. The purity of the compound represented by the general formula (1) or (2) can be determined from the area ratio in the GPC chart.
一般式(1)又は(2)で表される化合物を精製して純度を高める方法としては、例えば、重縮合反応後の反応溶液を、一般式(1)又は(2)で表される化合物が不溶又は難溶である貧溶媒(S1)に投入して得られた沈殿物を濾別した後、得られた沈殿物を、一般式(1)又は(2)で表される化合物を溶解し貧溶媒(S1)にも混和する溶媒(S2)に溶解し、再度貧溶媒(S1)に投入して生じた沈殿物を濾別する方法が挙げられる。この際に用いる前記貧溶媒(S1)としては、例えば、水;メタノール、エタノール、プロパノール等のモノアルコール;n-ヘキサン、n-ヘプタン、n-オクタン、シクロヒキサン等の脂肪族炭化水素;トルエン、キシレン等の芳香族炭化水素が挙げられる。これらの貧溶媒(S1)の中でも、効率よく酸触媒の除去も同時に行えることから、水、メタノールが好ましい。一方、前記溶媒(S2)としては、例えば、メタノール、エタノール、プロパノール等のモノアルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、トリメチレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン等のポリオール;2-エトキシエタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル等のグリコールエーテル;1,3-ジオキサン、1,4-ジオキサン等の環状エーテル;エチレングリコールアセテート等のグリコールエステル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトンなどが挙げられる。また、前記貧溶媒(S1)として水を用いた場合には、前記(S2)としては、アセトンが好ましい。なお、前記貧溶媒(S1)及び溶媒(S2)は、それぞれ1種類のみで用いることも2種類以上併用することもできる。
As a method for purifying the compound represented by the general formula (1) or (2) to increase the purity, for example, the reaction solution after the polycondensation reaction is converted to the compound represented by the general formula (1) or (2). Is filtered into the poor solvent (S1), which is insoluble or hardly soluble, and the resulting precipitate is dissolved in the compound represented by the general formula (1) or (2) In addition, there is a method in which the precipitate generated by dissolving in the solvent (S2) that is also mixed with the poor solvent (S1) and throwing again into the poor solvent (S1) is filtered. Examples of the poor solvent (S1) used in this case include water; monoalcohols such as methanol, ethanol, and propanol; aliphatic hydrocarbons such as n-hexane, n-heptane, n-octane, and cyclohyxane; toluene, xylene And aromatic hydrocarbons. Among these poor solvents (S1), water and methanol are preferable because the acid catalyst can be efficiently removed at the same time. On the other hand, examples of the solvent (S2) include monoalcohols such as methanol, ethanol, and propanol; ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5- Polyols such as pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin; 2-ethoxyethanol, Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether Glycol ethers such as ethylene glycol ethyl methyl ether and ethylene glycol monophenyl ether; cyclic ethers such as 1,3-dioxane and 1,4-dioxane; glycol esters such as ethylene glycol acetate; acetone, methyl ethyl ketone, methyl isobutyl ketone and the like Examples include ketones. When water is used as the poor solvent (S1), acetone is preferable as the (S2). The poor solvent (S1) and the solvent (S2) can be used alone or in combination of two or more.
本発明に係るノボラック型フェノール樹脂の原料としては、フェノール系3核体化合物(A)として、1種類又は2種類以上の一般式(1)で表される化合物を用いてもよく、1種類又は2種類以上の一般式(2)で表される化合物を用いてもよく、1種類又は2種類以上の一般式(1)で表される化合物と1種類又は2種類以上の一般式(2)で表される化合物を用いてもよい。フェノール系3核体化合物(A)のうち、一般式(1)で表される化合物と一般式(2)で表される化合物の比率を調整することにより、得られるノボラック型フェノール樹脂の水酸基含有量を調整することができる。例えば、フェノール系3核体化合物(A)における一般式(1)で表される化合物の比率が多いほど、水酸基が多く、アルカリ溶解性の高いノボラック型フェノール樹脂が得られる。逆に、フェノール系3核体化合物(A)における一般式(2)で表される化合物の比率が多いほど、水酸基が少なく、アルカリ溶解性の低いノボラック型フェノール樹脂が得られる。
As a raw material of the novolak-type phenol resin according to the present invention, one or more compounds represented by the general formula (1) may be used as the phenolic trinuclear compound (A). Two or more kinds of compounds represented by the general formula (2) may be used, and one kind or two or more kinds of compounds represented by the general formula (1) and one kind or two or more kinds of the general formula (2). You may use the compound represented by these. Of the phenolic trinuclear compound (A), by adjusting the ratio of the compound represented by the general formula (1) and the compound represented by the general formula (2), the resulting novolak-type phenol resin has a hydroxyl group. The amount can be adjusted. For example, as the ratio of the compound represented by the general formula (1) in the phenol trinuclear compound (A) is larger, a novolac type phenol resin having a higher hydroxyl solubility and higher alkali solubility is obtained. On the contrary, as the ratio of the compound represented by the general formula (2) in the phenol trinuclear compound (A) is larger, a novolak type phenol resin having a lower hydroxyl group and lower alkali solubility is obtained.
本発明に係るノボラック型フェノール樹脂の原料として用いるモノアルデヒド類(B)としては、例えば、下記一般式(3)で表される化合物を使用できる。一般式(3)中、R4は水素原子、置換基を有していてもよいアルキル基、又は置換基を有していてもよいアリール基を表す。なお、原料として用いるモノアルデヒド類(B)は、1種類の化合物であってもよく、2種類以上の化合物を組み合わせて用いてもよい。
As monoaldehyde (B) used as a raw material of the novolak-type phenol resin which concerns on this invention, the compound represented by following General formula (3) can be used, for example. In General Formula (3), R 4 represents a hydrogen atom, an alkyl group that may have a substituent, or an aryl group that may have a substituent. Note that the monoaldehydes (B) used as a raw material may be a single compound or a combination of two or more compounds.
前記一般式(3)で表される化合物の中でも、ホルムアルデヒド;アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、イソブチルアルデヒド、ペンチルアルデヒド、へキシルアルデヒド等のアルキルアルデヒド;サリチルアルデヒド、3-ヒドロキシベンズアルデヒド、4-ヒドロキシベンズアルデヒド、2-ヒドロキシ-4-メチルベンズアルデヒド、2,4-ジヒドロキシベンズアルデヒド、3,4-ジヒドロキシベンズアルデヒド等のヒドロキシベンズアルデヒド;2-ヒドロキシ-3-メトキシベンズアルデヒド、3-ヒドロキシ-4-メトキシベンズアルデヒド、4-ヒドロキシ-3-メトキシベンズアルデヒド、3-エトキシ-4-ヒドロキシベンズアルデヒド、4-ヒドロキシ-3,5-ジメトキシベンズアルデヒド等のヒドロキシ基とアルコキシ基の両方を有するベンズアルデヒド;メトキシベンズアルデヒド、エトキシベンズアルデヒド等のアルコキシベンズアルデヒド;1-ヒドロキシ-2-ナフトアルデヒド、2-ヒドロキシ-1-ナフトアルデヒド、6-ヒドロキシ-2-ナフトアルデヒド等のヒドロキシナフトアルデヒド;ブロムベンズアルデヒド等のハロゲン化ベンズアルデヒド等が好ましく、ホルムアルデヒド又はアルキルアルデヒドがより好ましく、ホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、イソブチルアルデヒド、ペンチルアルデヒド、又はへキシルアルデヒドがさらに好ましく、ホルムアルデヒドが特に好ましい。モノアルデヒド類(B)としてホルムアルデヒドを用いる場合、ホルムアルデヒドとその他のアルデヒド類を併用してもよい。ホルムアルデヒドとその他のアルデヒド類を併用する場合、その他のアルデヒド類の使用量は、ホルムアルデヒド1モルに対して、0.05~1モルの範囲とすることが好ましい。
Among the compounds represented by the general formula (3), formaldehyde; alkyl aldehydes such as acetaldehyde, propyl aldehyde, butyraldehyde, isobutyraldehyde, pentyl aldehyde, hexyl aldehyde; salicyl aldehyde, 3-hydroxybenzaldehyde, 4-hydroxybenzaldehyde 2-hydroxy-4-methylbenzaldehyde, 2,4-dihydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde and the like; 2-hydroxy-3-methoxybenzaldehyde, 3-hydroxy-4-methoxybenzaldehyde, 4-hydroxy- 3-methoxybenzaldehyde, 3-ethoxy-4-hydroxybenzaldehyde, 4-hydroxy-3,5-dimethoxybenzalde A benzaldehyde having both a hydroxy group and an alkoxy group such as alkoxide; an alkoxybenzaldehyde such as methoxybenzaldehyde and ethoxybenzaldehyde; 1-hydroxy-2-naphthaldehyde, 2-hydroxy-1-naphthaldehyde, 6-hydroxy-2-naphthaldehyde Hydroxynaphthaldehydes such as halogenated benzaldehydes such as bromobenzaldehyde are preferred, formaldehyde or alkyl aldehydes are more preferred, formaldehyde, acetaldehyde, propyl aldehyde, butyraldehyde, isobutyraldehyde, pentyl aldehyde, or hexyl aldehyde are more preferred, Is particularly preferred. When formaldehyde is used as the monoaldehydes (B), formaldehyde and other aldehydes may be used in combination. When formaldehyde and other aldehydes are used in combination, the amount of other aldehydes used is preferably in the range of 0.05 to 1 mole per mole of formaldehyde.
本発明に係るノボラック型フェノール樹脂の原料として用いるポリアルデヒド類(C)としては、分子中に2個以上のアルデヒド基を有する化合物であればよく、特に限定されない。ポリアルデヒド類(C)としては、具体的には、グリオキサール、マロンアルデヒド、スクシンアルデヒド、グルタルアルデヒド、アジポアルデヒド等の脂肪族ジアルデヒド;フタルアルデヒド、イソフタルアルデヒド、テレフタルアルデヒド等の芳香族ジアルデヒド;トリホルミルメタン等の脂肪族トリアルデヒド;ベンゼントリアルデヒド等の芳香族トリアルデヒド等が挙げられる。ポリアルデヒド類(C)としては、中でも、入手が容易であり、またより高い耐熱性のノボラック型フェノール樹脂が得られることから、テレフタルアルデヒド、又はグルタルアルデヒドが好ましい。原料として用いるポリアルデヒド類(C)は、1種類の化合物であってもよく、2種類以上の化合物を組み合わせて用いてもよい。
The polyaldehyde (C) used as a raw material for the novolak type phenol resin according to the present invention is not particularly limited as long as it is a compound having two or more aldehyde groups in the molecule. Specific examples of polyaldehydes (C) include aliphatic dialdehydes such as glyoxal, malonaldehyde, succinaldehyde, glutaraldehyde and adipaldehyde; aromatic dialdehydes such as phthalaldehyde, isophthalaldehyde and terephthalaldehyde An aliphatic trialdehyde such as triformylmethane; an aromatic trialdehyde such as benzenetrialdehyde; Among them, terephthalaldehyde or glutaraldehyde is preferable as the polyaldehyde (C) because it is easily available and a higher heat-resistant novolak type phenol resin can be obtained. The polyaldehyde (C) used as a raw material may be a single compound or a combination of two or more compounds.
本発明に係るノボラック型フェノール樹脂は、例えば、フェノール系3核体化合物(A)とモノアルデヒド類(B)とポリアルデヒド類(C)とを、酸触媒の存在下で縮合させることにより得られる。フェノール系3核体化合物(A)とモノアルデヒド類(B)との仕込み比率[(A)/(B)]は、過剰な高分子量化(ゲル化)を抑制でき、塗膜の材料として適正な分子量のものが得られることから、モル比で1/0.5~1/1.2の範囲が好ましく、1/0.6~1/0.9の範囲がより好ましい。また、フェノール系3核体化合物(A)と反応させるモノアルデヒド類(B)とポリアルデヒド類(C)の仕込み比率(使用量)〔(B)/(C)〕が、質量比で1/0.01~1/1.5の範囲が好ましく、1/0.05~1/1.2の範囲がより好ましい。
The novolak-type phenol resin according to the present invention is obtained, for example, by condensing a phenol trinuclear compound (A), a monoaldehyde (B), and a polyaldehyde (C) in the presence of an acid catalyst. . The charge ratio [(A) / (B)] of the phenolic trinuclear compound (A) and the monoaldehydes (B) can suppress excessive high molecular weight (gelation) and is suitable as a coating material. Since a molecular weight can be obtained, the molar ratio is preferably in the range of 1 / 0.5 to 1 / 1.2, and more preferably in the range of 1 / 0.6 to 1 / 0.9. In addition, the charging ratio (amount used) [(B) / (C)] of the monoaldehydes (B) and polyaldehydes (C) to be reacted with the phenol trinuclear compound (A) is 1 / (mass ratio). A range of 0.01 to 1 / 1.5 is preferable, and a range of 1 / 0.05 to 1 / 1.2 is more preferable.
反応に用いる酸触媒としては、硫酸、塩酸、硝酸、臭化水素酸、過塩素酸、リン酸等の無機酸、p-トルエンスルホン酸、メタンスルホン酸、ベンゼンスルホン酸等のスルホン酸、シュウ酸、コハク酸、マロン酸、モノクロ酢酸、ジクロル酢酸等の有機酸、三フッ化ホウ素、無水塩化アルミニウム、塩化亜鉛等のルイス酸等が挙げられる。中でも、強酸性を示し、フェノール系3核体化合物(A)とモノアルデヒド類(B)とポリアルデヒド類(C)との反応を高活性で促進することから、硫酸又はp-トルエンスルホン酸が好ましい。これら酸触媒の使用量は、反応原料の総質量に対し0.1~25質量%の範囲で用いることが好ましい。
Acid catalysts used in the reaction include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, hydrobromic acid, perchloric acid and phosphoric acid, sulfonic acids such as p-toluenesulfonic acid, methanesulfonic acid and benzenesulfonic acid, and oxalic acid And organic acids such as succinic acid, malonic acid, monochloroacetic acid and dichloroacetic acid, and Lewis acids such as boron trifluoride, anhydrous aluminum chloride and zinc chloride. Among these, since it shows strong acidity and promotes the reaction of the phenolic trinuclear compound (A), monoaldehydes (B) and polyaldehydes (C) with high activity, sulfuric acid or p-toluenesulfonic acid is used. preferable. The amount of these acid catalysts used is preferably in the range of 0.1 to 25% by mass relative to the total mass of the reaction raw materials.
フェノール系3核体化合物(A)とモノアルデヒド類(B)とポリアルデヒド類(C)との縮合反応は、必要に応じて有機溶剤の存在下で行ってもよい。当該有機溶剤としては、前記アルキル置換フェノール(d1)と前記水酸基含有芳香族アルデヒド(d2)との重縮合において用いられ得る有機溶剤と同様のものが挙げられる。当該有機溶剤は、1種類のみで用いることも2種類以上併用することもできる。また、得られるノボラック型フェノール樹脂の溶解性に優れる点から、当該有機溶剤としては2-エトキシエタノールが好ましい。
The condensation reaction of the phenolic trinuclear compound (A), the monoaldehydes (B) and the polyaldehydes (C) may be performed in the presence of an organic solvent as necessary. Examples of the organic solvent include the same organic solvents that can be used in the polycondensation of the alkyl-substituted phenol (d1) and the hydroxyl group-containing aromatic aldehyde (d2). The organic solvent can be used alone or in combination of two or more. Further, 2-ethoxyethanol is preferred as the organic solvent from the viewpoint of excellent solubility of the resulting novolak type phenol resin.
本発明に係るノボラック型フェノール樹脂としては、例えば、繰り返し単位として、下記一般式(I-1)で表される構造単位(I-1)、下記一般式(I-2)で表される構造単位(I-2)、下記一般式(II-1)で表される構造単位(II-1)、及び下記一般式(II-2)で表される構造単位(II-2)からなる群より選択される1種以上の構造部位を有するものが好ましい。一般式(I-1)、(I-2)、(II-1)、及び(II-2)中、R1及びR2は、前記一般式(1)と同じであり、R4は、前記一般式(3)と同じである。一般式(I-1)、(I-2)、(II-1)、又は(II-2)で表される構造単位としては、R1及びR2がいずれも同じ基であり、かつR4が水素原子であるものが好ましく、R1及びR2がいずれも同じ無置換の炭素原子数1~3のアルキル基であり、かつR4が水素原子であるものがより好ましく、R1及びR2が共にメチル基であり、かつR4が水素原子であるものがさらに好ましい。
Examples of the novolak-type phenolic resin according to the present invention include, as repeating units, a structural unit (I-1) represented by the following general formula (I-1) and a structure represented by the following general formula (I-2). Group consisting of unit (I-2), structural unit (II-1) represented by the following general formula (II-1), and structural unit (II-2) represented by the following general formula (II-2) What has 1 or more types of structural site | parts selected more is preferable. In the general formulas (I-1), (I-2), (II-1), and (II-2), R 1 and R 2 are the same as those in the general formula (1), and R 4 is It is the same as the general formula (3). As the structural unit represented by the general formula (I-1), (I-2), (II-1), or (II-2), R 1 and R 2 are both the same group, and R 4 is preferably a hydrogen atom, R 1 and R 2 are both the same unsubstituted alkyl group having 1 to 3 carbon atoms, and R 4 is more preferably a hydrogen atom, and R 1 and More preferably, both R 2 are methyl groups and R 4 is a hydrogen atom.
本発明に係るノボラック型フェノール樹脂の重量平均分子量は、1,000~100,000が好ましく、1,000~70,000がより好ましく、1,000~35,000がさらに好ましい。中でも、前記一般式(I-1)で表される構造単位又は前記一般式(II-1)で表される構造単位を繰り返し単位として有するノボラック型フェノール樹脂の分子量は、より耐熱性に優れるノボラック型フェノール樹脂が得られることから、重量平均分子量(Mw)で5,000~100,000が好ましく、5,000~70,000がより好ましく、5,000~35,000がさらに好ましく、5,000~25,000が特に好ましい。また、前記一般式(I-2)で表される構造単位又は前記一般式(II-2)で表される構造単位を繰り返し単位として有するノボラック型フェノール樹脂の分子量は、より耐熱性に優れるノボラック型フェノール樹脂が得られることから、重量平均分子量(Mw)で1,000~5,000が好ましく、2,000~4,000がより好ましい。
The weight average molecular weight of the novolak type phenolic resin according to the present invention is preferably 1,000 to 100,000, more preferably 1,000 to 70,000, and still more preferably 1,000 to 35,000. Among them, the molecular weight of the novolac type phenol resin having the structural unit represented by the general formula (I-1) or the structural unit represented by the general formula (II-1) as a repeating unit has a novolac having more excellent heat resistance. Type phenol resin is obtained, the weight average molecular weight (Mw) is preferably 5,000 to 100,000, more preferably 5,000 to 70,000, still more preferably 5,000 to 35,000, 000 to 25,000 is particularly preferred. In addition, the molecular weight of the novolac type phenol resin having the structural unit represented by the general formula (I-2) or the structural unit represented by the general formula (II-2) as a repeating unit has a novolak having more excellent heat resistance. Since a type phenol resin is obtained, the weight average molecular weight (Mw) is preferably 1,000 to 5,000, more preferably 2,000 to 4,000.
本発明及び本願明細書において、ノボラック型フェノール樹脂の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲル浸透クロマトグラフィー(以下、「GPC」と略記する。)を用いて、下記の測定条件で測定したものである。
In the present invention and the present specification, the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the novolak type phenol resin are measured by gel permeation chromatography (hereinafter abbreviated as “GPC”) as follows. It is measured under conditions.
[GPCの測定条件]
測定装置:東ソー株式会社製「HLC-8220 GPC」
カラム:昭和電工株式会社製「Shodex KF802」(8.0mmI.D.×300mm)+昭和電工株式会社製「Shodex KF802」(8.0mmI.D.×300mm)+昭和電工株式会社製「Shodex KF803」(8.0mmI.D.×300mm)+昭和電工株式会社製「Shodex KF804」(8.0mmI.D.×300mm)、
カラム温度:40℃、
検出器: RI(示差屈折計)、
データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.30」、
展開溶媒:テトラヒドロフラン、
流速:1.0mL/分、
試料:樹脂固形分換算で0.5質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの、
注入量:0.1mL、
標準試料:下記単分散ポリスチレン [GPC measurement conditions]
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: “Shodex KF802” (8.0 mm ID × 300 mm) manufactured by Showa Denko KK + “Shodex KF802” (8.0 mm ID × 300 mm) manufactured by Showa Denko KK + “Shodex KF803” manufactured by Showa Denko KK (8.0 mm ID × 300 mm) + “Shodex KF804” (8.0 mm ID × 300 mm) manufactured by Showa Denko KK
Column temperature: 40 ° C
Detector: RI (differential refractometer),
Data processing: “GPC-8020 Model II version 4.30” manufactured by Tosoh Corporation
Developing solvent: tetrahydrofuran,
Flow rate: 1.0 mL / min,
Sample: 0.5% by mass tetrahydrofuran solution in terms of resin solid content filtered through a microfilter,
Injection volume: 0.1 mL,
Standard sample: Monodispersed polystyrene below
測定装置:東ソー株式会社製「HLC-8220 GPC」
カラム:昭和電工株式会社製「Shodex KF802」(8.0mmI.D.×300mm)+昭和電工株式会社製「Shodex KF802」(8.0mmI.D.×300mm)+昭和電工株式会社製「Shodex KF803」(8.0mmI.D.×300mm)+昭和電工株式会社製「Shodex KF804」(8.0mmI.D.×300mm)、
カラム温度:40℃、
検出器: RI(示差屈折計)、
データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.30」、
展開溶媒:テトラヒドロフラン、
流速:1.0mL/分、
試料:樹脂固形分換算で0.5質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの、
注入量:0.1mL、
標準試料:下記単分散ポリスチレン [GPC measurement conditions]
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: “Shodex KF802” (8.0 mm ID × 300 mm) manufactured by Showa Denko KK + “Shodex KF802” (8.0 mm ID × 300 mm) manufactured by Showa Denko KK + “Shodex KF803” manufactured by Showa Denko KK (8.0 mm ID × 300 mm) + “Shodex KF804” (8.0 mm ID × 300 mm) manufactured by Showa Denko KK
Column temperature: 40 ° C
Detector: RI (differential refractometer),
Data processing: “GPC-8020 Model II version 4.30” manufactured by Tosoh Corporation
Developing solvent: tetrahydrofuran,
Flow rate: 1.0 mL / min,
Sample: 0.5% by mass tetrahydrofuran solution in terms of resin solid content filtered through a microfilter,
Injection volume: 0.1 mL,
Standard sample: Monodispersed polystyrene below
(標準試料:単分散ポリスチレン)
東ソー株式会社製「A-500」
東ソー株式会社製「A-2500」
東ソー株式会社製「A-5000」
東ソー株式会社製「F-1」
東ソー株式会社製「F-2」
東ソー株式会社製「F-4」
東ソー株式会社製「F-10」
東ソー株式会社製「F-20」 (Standard sample: monodisperse polystyrene)
“A-500” manufactured by Tosoh Corporation
“A-2500” manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
“F-2” manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
東ソー株式会社製「A-500」
東ソー株式会社製「A-2500」
東ソー株式会社製「A-5000」
東ソー株式会社製「F-1」
東ソー株式会社製「F-2」
東ソー株式会社製「F-4」
東ソー株式会社製「F-10」
東ソー株式会社製「F-20」 (Standard sample: monodisperse polystyrene)
“A-500” manufactured by Tosoh Corporation
“A-2500” manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
“F-2” manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
本発明に係るノボラック型フェノール樹脂は、接着剤や塗料、フォトレジスト、プリント配線基板等の各種の電気・電子部材用途に用いることができる。特に、本発明に係るノボラック型フェノール樹脂は、柔軟性、耐熱性、及びアルカリ溶解性のいずれもバランスよく優れており、さらに基板追従性も良好である。このため、本発明に係るノボラック型フェノール樹脂は、レジスト材料、特に厚膜用のレジスト材料として好適である。本発明に係るノボラック型フェノール樹脂を用いることにより、感度、解像度、耐熱性、基板追従性、柔軟性を兼備した、厚膜レジストとして好適な感光性組成物が得られる。
The novolak type phenolic resin according to the present invention can be used for various electric and electronic member applications such as adhesives, paints, photoresists, printed wiring boards and the like. In particular, the novolak type phenolic resin according to the present invention is excellent in balance among flexibility, heat resistance, and alkali solubility, and also has good substrate followability. For this reason, the novolak-type phenol resin according to the present invention is suitable as a resist material, particularly as a resist material for thick films. By using the novolak type phenol resin according to the present invention, a photosensitive composition suitable as a thick film resist having sensitivity, resolution, heat resistance, substrate followability and flexibility can be obtained.
本発明に係る感光性組成物は、本発明に係るノボラック型フェノール樹脂に加えて、感光剤を含有することを特徴とする。当該感光剤としては、例えば、本発明に係る感光性組成物をポジ型のレジスト材料として用いる場合は、キノンジアジド基を有する化合物が挙げられる。また、本発明に係る感光性組成物をネガ型のレジスト材料として用いる場合は、光酸発生剤等が挙げられる。
The photosensitive composition according to the present invention is characterized by containing a photosensitive agent in addition to the novolac type phenol resin according to the present invention. Examples of the photosensitive agent include compounds having a quinonediazide group when the photosensitive composition according to the present invention is used as a positive resist material. Moreover, when using the photosensitive composition concerning this invention as a negative resist material, a photo-acid generator etc. are mentioned.
前記キノンジアジド基を有する化合物の具体例としては、例えば、芳香族(ポリ)ヒドロキシ化合物と、ナフトキノン-1,2-ジアジド-5-スルホン酸、ナフトキノン-1,2-ジアジド-4-スルホン酸、オルトアントラキノンジアジドスルホン酸等のキノンジアジド基を有するスルホン酸との完全エステル化合物、部分エステル化合物、アミド化物又は部分アミド化物などが挙げられる。これらの感光剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
Specific examples of the compound having a quinonediazide group include, for example, an aromatic (poly) hydroxy compound, naphthoquinone-1,2-diazide-5-sulfonic acid, naphthoquinone-1,2-diazide-4-sulfonic acid, ortho Examples include complete ester compounds, partial ester compounds, amidated products, and partially amidated products with sulfonic acids having a quinonediazide group such as anthraquinone diazide sulfonic acid. These photosensitizers may be used alone or in combination of two or more.
ここで用いる前記芳香族(ポリ)ヒドロキシ化合物は、例えば、2,3,4-トリヒドロキシベンゾフェノン、2,4,4’-トリヒドロキシベンゾフェノン、2,4,6-トリヒドロキシベンゾフェノン、2,3,6-トリヒドロキシベンゾフェノン、2,3,4-トリヒドロキシ-2’-メチルベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,3’,4,4’,6-ペンタヒドロキシベンゾフェノン、2,2’,3,4,4’-ペンタヒドロキシベンゾフェノン、2,2’,3,4,5-ペンタヒドロキシベンゾフェノン、2,3’,4,4’,5’,6-ヘキサヒドロキシベンゾフェノン、2,3,3’,4,4’,5’-ヘキサヒドロキシベンゾフェノン等のポリヒドロキシベンゾフェノン化合物;
Examples of the aromatic (poly) hydroxy compound used here include 2,3,4-trihydroxybenzophenone, 2,4,4′-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, 2,3,4, 6-trihydroxybenzophenone, 2,3,4-trihydroxy-2′-methylbenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2, 3 ′, 4,4 ′, 6-pentahydroxybenzophenone, 2,2 ′, 3,4,4′-pentahydroxybenzophenone, 2,2 ′, 3,4,5-pentahydroxybenzophenone, 2,3 ′, 4,4 ′, 5 ′, 6-hexahydroxybenzophenone, 2,3,3 ′, 4,4 ′, 5′-hexahydroxyben Polyhydroxy benzophenone compounds such phenone;
ビス(2,4-ジヒドロキシフェニル)メタン、ビス(2,3,4-トリヒドロキシフェニル)メタン、2-(4-ヒドロキシフェニル)-2-(4’-ヒドロキシフェニル)プロパン、2-(2,4-ジヒドロキシフェニル)-2-(2’,4’-ジヒドロキシフェニル)プロパン、2-(2,3,4-トリヒドロキシフェニル)-2-(2’,3’,4’-トリヒドロキシフェニル)プロパン、4,4’-{1-[4-〔2-(4-ヒドロキシフェニル)-2-プロピル〕フェニル]エチリデン}ビスフェノール,3,3’-ジメチル-{1-[4-〔2-(3-メチル-4-ヒドロキシフェニル)-2-プロピル〕フェニル]エチリデン}ビスフェノール等のビス[(ポリ)ヒドロキシフェニル]アルカン化合物;
Bis (2,4-dihydroxyphenyl) methane, bis (2,3,4-trihydroxyphenyl) methane, 2- (4-hydroxyphenyl) -2- (4′-hydroxyphenyl) propane, 2- (2, 4-dihydroxyphenyl) -2- (2 ′, 4′-dihydroxyphenyl) propane, 2- (2,3,4-trihydroxyphenyl) -2- (2 ′, 3 ′, 4′-trihydroxyphenyl) Propane, 4,4 '-{1- [4- [2- (4-hydroxyphenyl) -2-propyl] phenyl] ethylidene} bisphenol, 3,3'-dimethyl- {1- [4- [2- ( Bis [(poly) hydroxyphenyl] alkane compounds such as 3-methyl-4-hydroxyphenyl) -2-propyl] phenyl] ethylidene} bisphenol;
トリス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-3、5-ジメチルフェニル)-4-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-4-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-2-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-2-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-3,4-ジヒドロキシフェニルメタン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,4-ジヒドロキシフェニルメタン等のトリス(ヒドロキシフェニル)メタン化合物又はそのメチル置換体;
Tris (4-hydroxyphenyl) methane, bis (4-hydroxy-3,5-dimethylphenyl) -4-hydroxyphenylmethane, bis (4-hydroxy-2,5-dimethylphenyl) -4-hydroxyphenylmethane, bis (4-hydroxy-3,5-dimethylphenyl) -2-hydroxyphenylmethane, bis (4-hydroxy-2,5-dimethylphenyl) -2-hydroxyphenylmethane, bis (4-hydroxy-2,5-dimethyl) A tris (hydroxyphenyl) methane compound such as phenyl) -3,4-dihydroxyphenylmethane, bis (4-hydroxy-3,5-dimethylphenyl) -3,4-dihydroxyphenylmethane, or a methyl-substituted product thereof;
ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-3-ヒドロキシフェニルメタン,ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-2-ヒドロキシフェニルメタン,ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-4-ヒドロキシフェニルメタン,ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-2-ヒドロキシフェニルメタン,ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-3-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-4-ヒドロキシフェニルメタン、ビス(3-シクロヘキシル-2-ヒドロキシフェニル)-3-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-4-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-3-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-2-ヒドロキシフェニルメタン、ビス(3-シクロヘキシル-2-ヒドロキシフェニル)-4-ヒドロキシフェニルメタン、ビス(3-シクロヘキシル-2-ヒドロキシフェニル)-2-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-2-ヒドロキシ-4-メチルフェニル)-2-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-2-ヒドロキシ-4-メチルフェニル)-4-ヒドロキシフェニルメタンなどの、ビス(シクロヘキシルヒドロキシフェニル)(ヒドロキシフェニル)メタン化合物又はそのメチル置換体等が挙げられる。
Bis (3-cyclohexyl-4-hydroxyphenyl) -3-hydroxyphenylmethane, bis (3-cyclohexyl-4-hydroxyphenyl) -2-hydroxyphenylmethane, bis (3-cyclohexyl-4-hydroxyphenyl) -4- Hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-2-methylphenyl) -2-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-2-methylphenyl) -3-hydroxyphenylmethane, bis ( 5-cyclohexyl-4-hydroxy-2-methylphenyl) -4-hydroxyphenylmethane, bis (3-cyclohexyl-2-hydroxyphenyl) -3-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-3- Methylph Nyl) -4-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-3-methylphenyl) -3-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-3-methylphenyl) -2-hydroxy Phenylmethane, bis (3-cyclohexyl-2-hydroxyphenyl) -4-hydroxyphenylmethane, bis (3-cyclohexyl-2-hydroxyphenyl) -2-hydroxyphenylmethane, bis (5-cyclohexyl-2-hydroxy-4) -Methylphenyl) -2-hydroxyphenylmethane, bis (5-cyclohexyl-2-hydroxy-4-methylphenyl) -4-hydroxyphenylmethane and the like, bis (cyclohexylhydroxyphenyl) (hydroxyphenyl) methane compounds Methyl-substituted products thereof.
本発明に係る感光性組成物における感光剤としてキノンジアジド基を有する化合物を用いる場合、その配合量は、光感度に優れる組成物となることから、本発明に係るノボラック型フェノール樹脂(本発明に係る感光性組成物が、他の樹脂成分を含有する場合には、本発明に係るノボラック型フェノール樹脂を含む樹脂成分全体の固形分)100質量部に対し、5~50質量部となる割合であることが好ましく、5~30質量部となる割合であることがより好ましい。
When a compound having a quinonediazide group is used as a photosensitizer in the photosensitive composition according to the present invention, the amount of the compound becomes a composition with excellent photosensitivity, so that the novolac type phenol resin according to the present invention (according to the present invention) When the photosensitive composition contains other resin components, the ratio is 5 to 50 parts by mass with respect to 100 parts by mass of the total resin component including the novolac type phenol resin according to the present invention. The ratio is preferably 5 to 30 parts by mass.
前記光酸発生剤としては、例えば、オニウム塩化合物、ハロゲン含有化合物、スルホン化合物、スルホン酸化合物、スルホンイミド化合物、ジアゾメタン化合物等が挙げられる。
Examples of the photoacid generator include onium salt compounds, halogen-containing compounds, sulfone compounds, sulfonic acid compounds, sulfonimide compounds, diazomethane compounds, and the like.
前記オニウム塩化合物としては、例えば、ヨードニウム塩、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩が挙げられる。好ましいオニウム塩の具体例としては、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムp-トルエンスルホネート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムテトラフルオロボレート、トリフェニルスルホニウムトリフリオロメタンスルホネート、トリフェニルスルホニウムp-トルエンスルホネート、トリフェニルスルホニウムヘキサフルオロアンチモネート、4-t-ブチルフェニル・ジフェニルスルホニウムトリフルオロメタンスルホネート、4-t-ブチルフェニル・ジフェニルスルホニウムp-トルエンスルホネート、4,7-ジ-n-ブトキシナフチルテトラヒドロチオフェニウムトリフリオロメタンスルホネートが挙げられる。
Examples of the onium salt compounds include iodonium salts, sulfonium salts, phosphonium salts, diazonium salts, and pyridinium salts. Specific examples of preferred onium salts include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium p-toluenesulfonate, diphenyliodonium hexafluoroantimonate, diphenyliodonium hexafluorophosphate, diphenyliodonium tetrafluoroborate, triphenylsulfonium trifluorochlorosulfonate, Phenylsulfonium p-toluenesulfonate, triphenylsulfonium hexafluoroantimonate, 4-t-butylphenyl diphenylsulfonium trifluoromethanesulfonate, 4-t-butylphenyl diphenylsulfonium p-toluenesulfonate, 4,7-di-n- Butoxynaphthyltetrahydrothiophenium trifluorolo Tan sulfonates.
前記ハロゲン含有化合物としては、例えば、ハロアルキル基含有炭化水素化合物、ハロアルキル基含有複素環式化合物が挙げられる。好ましいハロゲン含有化合物の具体例としては、1,10-ジブロモ-n-デカン、1,1-ビス(4-クロロフェニル)-2,2,2-トリクロロエタン、フェニル-ビス(トリクロロメチル)-s-トリアジン、4-メトキシフェニル-ビス(トリクロロメチル)-s-トリアジン、スチリル-ビス(トリクロロメチル)-s-トリアジン、ナフチル-ビス(トリクロロメチル)-s-トリアジン等のs-トリアジン誘導体が挙げられる。
Examples of the halogen-containing compound include haloalkyl group-containing hydrocarbon compounds and haloalkyl group-containing heterocyclic compounds. Specific examples of preferred halogen-containing compounds include 1,10-dibromo-n-decane, 1,1-bis (4-chlorophenyl) -2,2,2-trichloroethane, and phenyl-bis (trichloromethyl) -s-triazine. S-triazine derivatives such as 4-methoxyphenyl-bis (trichloromethyl) -s-triazine, styryl-bis (trichloromethyl) -s-triazine, naphthyl-bis (trichloromethyl) -s-triazine, and the like.
前記スルホン化合物としては、例えば、β-ケトスルホン化合物、β-スルホニルスルホン化合物およびこれらの化合物のα-ジアゾ化合物が挙げられる。好ましいスルホン化合物の具体例としては、4-トリスフェナシルスルホン、メシチルフェナシルスルホン、ビス(フェナシルスルホニル)メタンが挙げられる。
Examples of the sulfone compounds include β-ketosulfone compounds, β-sulfonylsulfone compounds, and α-diazo compounds of these compounds. Specific examples of preferred sulfone compounds include 4-trisphenacylsulfone, mesitylphenacylsulfone, and bis (phenacylsulfonyl) methane.
前記スルホン酸化合物としては、例えば、アルキルスルホン酸エステル類、ハロアルキルスルホン酸エステル類、アリールスルホン酸エステル類、イミノスルホネート類が挙げられる。好ましいスルホン酸化合物の具体例としては、ベンゾイントシレート、ピロガロールトリストリフルオロメタンスルホネート、o-ニトロベンジルトリフルオロメタンスルホネート、o-ニトロベンジルp-トルエンスルホネートが挙げられる。
Examples of the sulfonic acid compound include alkyl sulfonic acid esters, haloalkyl sulfonic acid esters, aryl sulfonic acid esters, and imino sulfonates. Specific examples of preferred sulfonic acid compounds include benzoin tosylate, pyrogallol tris trifluoromethane sulfonate, o-nitrobenzyl trifluoromethane sulfonate, and o-nitrobenzyl p-toluene sulfonate.
前記スルホンイミド化合物としては、例えば、N-(トリフルオロメチルスルホニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フタルイミド、N-(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N-(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(トリフルオロメチルスルホニルオキシ)ナフチルイミドが挙げられる。
Examples of the sulfonimide compound include N- (trifluoromethylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, N- (trifluoromethylsulfonyl). Oxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (trifluoromethylsulfonyloxy) naphthylimide.
前記ジアゾメタン化合物としては、例えば、ビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタンが挙げられる。
Examples of the diazomethane compound include bis (trifluoromethylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, and bis (phenylsulfonyl) diazomethane.
本発明に係る感光性組成物における感光剤として光酸発生剤を用いる場合、その配合量は、光感度に優れる組成物となることから、本発明に係るノボラック型フェノール樹脂(本発明に係る感光性組成物が、他の樹脂成分を含有する場合には、本発明に係るノボラック型フェノール樹脂を含む樹脂成分全体の固形分)100質量部に対し、5~50質量部となる割合であることが好ましく、5~30質量部となる割合であることがより好ましい。
When a photoacid generator is used as the photosensitizer in the photosensitive composition according to the present invention, the amount of the photoacid generator is a composition having excellent photosensitivity, and therefore the novolak-type phenolic resin according to the present invention In the case where the adhesive composition contains other resin components, the ratio is 5 to 50 parts by mass with respect to 100 parts by mass of the total resin component including the novolac type phenol resin according to the present invention. The proportion is preferably 5 to 30 parts by mass.
本発明に係る感光性組成物は、露光時に前記光酸発生剤から生じた酸を中和するための有機塩基化合物を含有してもよい。有機塩基化合物の添加は、光酸発生剤から発生した酸の移動によるレジストパターンの寸法変動を防止する効果がある。ここで用いる有機塩基化合物は、例えば、含窒素化合物から選ばれる有機アミン化合物が挙げられる。具体的には、ピリミジン、2-アミノピリミジン、4-アミノピリミジン、5-アミノピリミジン、2,4-ジアミノピリミジン、2,5-ジアミノピリミジン、4,5-ジアミノピリミジン、4,6-ジアミノピリミジン、2,4,5-トリアミノピリミジン、2,4,6-トリアミノピリミジン、4,5,6-トリアミノピリミジン、2,4,5,6-テトラアミノピリミジン、2-ヒドロキシピリミジン、4-ヒドロキシピリミジン、5-ヒドロキシピリミジン、2,4-ジヒドロキシピリミジン、2,5-ジヒドロキシピリミジン、4,5-ジヒドロキシピリミジン、4,6-ジヒドロキシピリミジン、2,4,5-トリヒドロキシピリミジン、2,4,6-トリヒドロキシピリミジン、4,5,6-トリヒドロキシピリミジン、2,4,5,6-テトラヒドロキシピリミジン、2-アミノ-4-ヒドロキシピリミジン、2-アミノ-5-ヒドロキシピリミジン、2-アミノ-4,5-ジヒドロキシピリミジン、2-アミノ-4,6-ジヒドロキシピリミジン、4-アミノ-2,5-ジヒドロキシピリミジン、4-アミノ-2,6-ジヒドロキシピリミジン、2-アミノ-4-メチルピリミジン、2-アミノ-5-メチルピリミジン、2-アミノ-4,5-ジメチルピリミジン、2-アミノ-4,6-ジメチルピリミジン、4-アミノ-2,5-ジメチルピリミジン、4-アミノ-2,6-ジメチルピリミジン、2-アミノ-4-メトキシピリミジン、2-アミノ-5-メトキシピリミジン、2-アミノ-4,5-ジメトキシピリミジン、2-アミノ-4,6-ジメトキシピリミジン、4-アミノ-2,5-ジメトキシピリミジン、4-アミノ-2,6-ジメトキシピリミジン、2-ヒドロキシ-4-メチルピリミジン、2-ヒドロキシ-5-メチルピリミジン、2-ヒドロキシ-4,5-ジメチルピリミジン、2-ヒドロキシ-4,6-ジメチルピリミジン、4-ヒドロキシ-2,5-ジメチルピリミジン、4-ヒドロキシ-2,6-ジメチルピリミジン、2-ヒドロキシ-4-メトキシピリミジン、2-ヒドロキシ-4-メトキシピリミジン、2-ヒドロキシ-5-メトキシピリミジン、2-ヒドロキシ-4,5-ジメトキシピリミジン、2-ヒドロキシ-4,6-ジメトキシピリミジン、4-ヒドロキシ-2,5-ジメトキシピリミジン、4-ヒドロキシ-2,6-ジメトキシピリミジンなどのピリミジン化合物;
The photosensitive composition according to the present invention may contain an organic base compound for neutralizing the acid generated from the photoacid generator during exposure. The addition of the organic base compound has an effect of preventing the dimensional variation of the resist pattern due to the movement of the acid generated from the photoacid generator. Examples of the organic base compound used here include organic amine compounds selected from nitrogen-containing compounds. Specifically, pyrimidine, 2-aminopyrimidine, 4-aminopyrimidine, 5-aminopyrimidine, 2,4-diaminopyrimidine, 2,5-diaminopyrimidine, 4,5-diaminopyrimidine, 4,6-diaminopyrimidine, 2,4,5-triaminopyrimidine, 2,4,6-triaminopyrimidine, 4,5,6-triaminopyrimidine, 2,4,5,6-tetraaminopyrimidine, 2-hydroxypyrimidine, 4-hydroxy Pyrimidine, 5-hydroxypyrimidine, 2,4-dihydroxypyrimidine, 2,5-dihydroxypyrimidine, 4,5-dihydroxypyrimidine, 4,6-dihydroxypyrimidine, 2,4,5-trihydroxypyrimidine, 2,4,6 -Trihydroxypyrimidine, 4,5,6-trihydroxypyrimidine, 2 4,5,6-tetrahydroxypyrimidine, 2-amino-4-hydroxypyrimidine, 2-amino-5-hydroxypyrimidine, 2-amino-4,5-dihydroxypyrimidine, 2-amino-4,6-dihydroxypyrimidine, 4-amino-2,5-dihydroxypyrimidine, 4-amino-2,6-dihydroxypyrimidine, 2-amino-4-methylpyrimidine, 2-amino-5-methylpyrimidine, 2-amino-4,5-dimethylpyrimidine 2-amino-4,6-dimethylpyrimidine, 4-amino-2,5-dimethylpyrimidine, 4-amino-2,6-dimethylpyrimidine, 2-amino-4-methoxypyrimidine, 2-amino-5-methoxy Pyrimidine, 2-amino-4,5-dimethoxypyrimidine, 2-amino-4,6-dimethoxy Limidine, 4-amino-2,5-dimethoxypyrimidine, 4-amino-2,6-dimethoxypyrimidine, 2-hydroxy-4-methylpyrimidine, 2-hydroxy-5-methylpyrimidine, 2-hydroxy-4,5- Dimethylpyrimidine, 2-hydroxy-4,6-dimethylpyrimidine, 4-hydroxy-2,5-dimethylpyrimidine, 4-hydroxy-2,6-dimethylpyrimidine, 2-hydroxy-4-methoxypyrimidine, 2-hydroxy-4 -Methoxypyrimidine, 2-hydroxy-5-methoxypyrimidine, 2-hydroxy-4,5-dimethoxypyrimidine, 2-hydroxy-4,6-dimethoxypyrimidine, 4-hydroxy-2,5-dimethoxypyrimidine, 4-hydroxy- Pyrimidines such as 2,6-dimethoxypyrimidine Compound;
ピリジン、4-ジメチルアミノピリジン、2,6-ジメチルピリジン等のピリジン化合物;
Pyridine compounds such as pyridine, 4-dimethylaminopyridine, 2,6-dimethylpyridine;
ジエタノールアミン、トリエタノールアミン、トリイソプロパノールアミン、トリス(ヒドロキシメチル)アミノメタン、ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタンなどの炭素原子数1以上4以下のヒドロキシアルキル基で置換されたアミン化合物;
Amine compounds substituted with a hydroxyalkyl group having 1 to 4 carbon atoms, such as diethanolamine, triethanolamine, triisopropanolamine, tris (hydroxymethyl) aminomethane, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane ;
2-アミノフェノール、3-アミノフェノール、4-アミノフェノールなどのアミノフェノール化合物などが挙げられる。これらはそれぞれ単独で用いてもよく、2種類以上を併用してもよい。中でも、露光後のレジストパターンの寸法安定性に優れることから、前記ピリミジン化合物、ピリジン化合物、又はヒドロキシ基をもつアミン化合物が好ましく、特にヒドロキシ基をもつアミン化合物が好ましい。
Examples include aminophenol compounds such as 2-aminophenol, 3-aminophenol, and 4-aminophenol. These may be used alone or in combination of two or more. Among them, the pyrimidine compound, the pyridine compound, or the amine compound having a hydroxy group is preferable, and the amine compound having a hydroxy group is particularly preferable because of excellent dimensional stability of the resist pattern after exposure.
前記有機塩基化合物を添加する場合、その添加量は、光酸発生剤の含有量に対して、0.1~100モル%の範囲であることが好ましく、1~50モル%の範囲であることがより好ましい。
When the organic base compound is added, the addition amount is preferably in the range of 0.1 to 100 mol%, preferably in the range of 1 to 50 mol%, with respect to the content of the photoacid generator. Is more preferable.
本発明に係る感光性組成物は、樹脂成分として、本発明に係るノボラック型フェノール樹脂以外に、その他の樹脂を併用してもよい。その他の樹脂としては、アルカリ現像液に可溶なもの、或いは、酸発生剤等の添加剤と組み合わせて用いることによりアルカリ現像液へ溶解するもの(アルカリ溶解性樹脂)が好ましい。
The photosensitive composition according to the present invention may use other resins as the resin component in addition to the novolac type phenol resin according to the present invention. Other resins are preferably those that are soluble in an alkali developer, or those that are soluble in an alkali developer when used in combination with an additive such as an acid generator (alkali-soluble resin).
ここで用いるその他の樹脂は、例えば、各種のノボラック樹脂、ジシクロペンタジエン等の脂環式ジエン化合物とフェノール化合物との付加重合樹脂、フェノール性水酸基含有化合物とアルコキシ基含有芳香族化合物との変性ノボラック樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂、及び各種のビニル重合体等が挙げられる。
Other resins used here include, for example, various novolak resins, addition polymerization resins of alicyclic diene compounds such as dicyclopentadiene and phenolic compounds, modified novolaks of phenolic hydroxyl group-containing compounds and alkoxy group-containing aromatic compounds. Resins, phenol aralkyl resins (Zyloc resins), naphthol aralkyl resins, trimethylol methane resins, tetraphenylol ethane resins, biphenyl modified phenol resins, biphenyl modified naphthol resins, aminotriazine modified phenol resins, and various vinyl polymers It is done.
前記各種のノボラック樹脂は、より具体的には、フェノールェノール、クレゾールやキシレノール等のアルキルフェノール、フェニルフェノール、レゾルシノール、ビフェニル、ビスフェノールAやビスフェノールF等のビスフェノール、ナフトール、ジヒドロキシナフタレン等のフェノール性水酸基含有化合物と、アルデヒド化合物とを酸触媒条件下で反応させて得られる重合体が挙げられる。
More specifically, the various novolak resins include phenolphenol, cresol, xylenol and other alkylphenols, phenylphenol, resorcinol, biphenyl, bisphenols such as bisphenol A and bisphenol F, phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene. And a polymer obtained by reacting an aldehyde compound with acid catalyst conditions.
前記各種のビニル重合体は、ポリヒドロキシスチレン、ポリスチレン、ポリビニルナフタレン、ポリビニルアントラセン、ポリビニルカルバゾール、ポリインデン、ポリアセナフチレン、ポリノルボルネン、ポリシクロデセン、ポリテトラシクロドデセン、ポリノルトリシクレン、ポリ(メタ)アクリレート等のビニル化合物の単独重合体或いはこれらの共重合体が挙げられる。
The various vinyl polymers include polyhydroxystyrene, polystyrene, polyvinyl naphthalene, polyvinyl anthracene, polyvinyl carbazole, polyindene, polyacenaphthylene, polynorbornene, polycyclodecene, polytetracyclododecene, polynortricyclene, poly ( A homopolymer of a vinyl compound such as (meth) acrylate or a copolymer thereof may be mentioned.
前記その他の樹脂を用いる場合、本発明に係るノボラック型フェノール樹脂とその他の樹脂との配合割合は、所望の用途により任意に調整することができる。中でも、本発明に係るノボラック型フェノール樹脂による効果が充分に発現することから、本発明に係るノボラック型フェノール樹脂とその他の樹脂との合計に対し、本発明に係るノボラック型フェノール樹脂を60質量%以上用いることが好ましく、80質量%以上用いることがより好ましい。
When the other resin is used, the blending ratio of the novolac type phenol resin and the other resin according to the present invention can be arbitrarily adjusted depending on the desired application. Among them, since the effect of the novolac type phenol resin according to the present invention is sufficiently exhibited, the novolac type phenol resin according to the present invention is 60% by mass with respect to the total of the novolac type phenol resin according to the present invention and other resins. It is preferable to use more, and it is more preferable to use 80% by mass or more.
本発明に係る感光性組成物は、レジスト用途に用いた場合の製膜性やパターンの密着性の向上、現像欠陥を低減するなどの目的で界面活性剤を含有していてもよい。ここで用いる界面活性剤は、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル化合物、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリルエーテル化合物、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル化合物、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテ-ト、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル化合物等のノニオン系界面活性剤;フルオロ脂肪族基を有する重合性単量体と[ポリ(オキシアルキレン)](メタ)アクリレートとの共重合体など分子構造中にフッ素原子を有するフッ素系界面活性剤;分子構造中にシリコーン構造部位を有するシリコーン系界面活性剤等が挙げられる。これらはそれぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの界面活性剤の配合量は、本発明に係る感光性組成物中の樹脂固形分(本発明に係るノボラック型フェノール樹脂を樹脂固形分として含む。)100質量部に対し0.001~2質量部の範囲で用いることが好ましい。
The photosensitive composition according to the present invention may contain a surfactant for the purpose of improving the film forming property and pattern adhesion when used for resist applications, and reducing development defects. Examples of the surfactant used here include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ether compounds such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene Polyoxyethylene alkyl allyl ether compounds such as ethylene nonylphenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid ester compounds such as polyoxyethylene sorbitan monolaurate, poly Nonionic surfactants such as polyoxyethylene sorbitan fatty acid ester compounds such as xylethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate; fluoro fat Fluorosurfactants having a fluorine atom in the molecular structure such as a copolymer of a polymerizable monomer having a group and [poly (oxyalkylene)] (meth) acrylate; having a silicone structure site in the molecular structure Examples thereof include silicone surfactants. These may be used alone or in combination of two or more. The amount of these surfactants to be added is 0.001 to 2 with respect to 100 parts by mass of the resin solid content (including the novolac type phenol resin according to the present invention as the resin solid content) in the photosensitive composition according to the present invention. It is preferable to use in the range of parts by mass.
本発明に係る感光性組成物は、さらに、充填材を含有していてもよい。充填材により、塗膜の硬度や耐熱分解性を向上させることができる。本発明に係る感光性組成物が含有する充填材としては、有機充填材であってもよいが、無機充填材が好ましい。無機充填材としては、例えば、シリカ、マイカ、タルク、クレー、ベントナイト、モンモリロナイト、カオリナイト、ワラストナイト、炭酸カルシウム、水酸化カルシウム、炭酸マグネシウム、酸化チタン、アルミナ、水酸化アルミニウム、硫酸バリウム、チタン酸バリウム、チタン酸カリウム、酸化亜鉛、ガラス繊維等が挙げられる。中でも、熱膨張率を低くすることができるため、シリカを用いることが好ましい。
The photosensitive composition according to the present invention may further contain a filler. The filler can improve the hardness and thermal decomposition resistance of the coating film. The filler contained in the photosensitive composition according to the present invention may be an organic filler, but is preferably an inorganic filler. Examples of inorganic fillers include silica, mica, talc, clay, bentonite, montmorillonite, kaolinite, wollastonite, calcium carbonate, calcium hydroxide, magnesium carbonate, titanium oxide, alumina, aluminum hydroxide, barium sulfate, and titanium. Examples thereof include barium acid, potassium titanate, zinc oxide, and glass fiber. Among them, it is preferable to use silica because the coefficient of thermal expansion can be lowered.
本発明に係る感光性組成物は、さらに、硬化剤を含有していてもよい。本発明に係る感光性組成物が含有する硬化剤としては、例えば、メチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも一つの基で置換されたメラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、レゾール樹脂、エポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基等の二重結合を含む化合物、酸無水物、オキサゾリン化合物等が挙げられる。
The photosensitive composition according to the present invention may further contain a curing agent. As the curing agent contained in the photosensitive composition according to the present invention, for example, a melamine compound substituted with at least one group selected from a methylol group, an alkoxymethyl group, and an acyloxymethyl group, a guanamine compound, a glycoluril compound, Examples include urea compounds, resol resins, epoxy compounds, isocyanate compounds, azide compounds, compounds containing double bonds such as alkenyl ether groups, acid anhydrides, and oxazoline compounds.
前記メラミン化合物としては、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物等が挙げられる。
Examples of the melamine compound include hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated, hexamethoxyethyl melamine, hexaacyloxymethyl melamine, hexamethylol melamine Examples thereof include compounds in which 1 to 6 methylol groups are acyloxymethylated.
前記グアナミン化合物としては、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメトキシメチルベンゾグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物等が挙げられる。
Examples of the guanamine compound include tetramethylolguanamine, tetramethoxymethylguanamine, tetramethoxymethylbenzoguanamine, a compound in which 1 to 4 methylol groups of tetramethylolguanamine are methoxymethylated, tetramethoxyethylguanamine, tetraacyloxyguanamine, Examples thereof include compounds in which 1 to 4 methylol groups of tetramethylolguanamine are acyloxymethylated.
前記グリコールウリル化合物としては、例えば、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル等が挙げられる。
Examples of the glycoluril compound include 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis (butoxymethyl) glycoluril, 1,3,4,6-tetrakis. (Hydroxymethyl) glycoluril and the like.
前記ウレア化合物としては、例えば、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素及び1,1,3,3-テトラキス(メトキシメチル)尿素等が挙げられる。
Examples of the urea compound include 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxymethyl) urea and 1,1,3,3-tetrakis (methoxymethyl) urea. Can be mentioned.
前記レゾール樹脂としては、例えば、フェノール、クレゾールやキシレノール等のアルキルフェノール、フェニルフェノール、レゾルシノール、ビフェニル、ビスフェノールAやビスフェノールF等のビスフェノール、ナフトール、ジヒドロキシナフタレン等のフェノール性水酸基含有化合物と、アルデヒド化合物とをアルカリ性触媒条件下で反応させて得られる重合体が挙げられる。
Examples of the resole resins include phenols, alkylphenols such as cresol and xylenol, bisphenols such as phenylphenol, resorcinol, biphenyl, bisphenol A and bisphenol F, phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene, and aldehyde compounds. Examples thereof include polymers obtained by reacting under alkaline catalyst conditions.
前記エポキシ化合物としては、例えば、トリス(2,3-エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテル等が挙げられる。
Examples of the epoxy compound include tris (2,3-epoxypropyl) isocyanurate, trimethylolmethane triglycidyl ether, trimethylolpropane triglycidyl ether, triethylolethane triglycidyl ether, and the like.
前記イソシアネート化合物としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート等が挙げられる。
Examples of the isocyanate compound include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, and cyclohexane diisocyanate.
前記アジド化合物としては、例えば、1,1’-ビフェニル-4,4’-ビスアジド、4,4’-メチリデンビスアジド、4,4’-オキシビスアジド等が挙げられる。
Examples of the azide compound include 1,1′-biphenyl-4,4′-bisazide, 4,4′-methylidenebisazide, 4,4′-oxybisazide, and the like.
前記アルケニルエーテル基等の二重結合を含む化合物としては、例えば、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2-プロパンジオールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテル等が挙げられる。
Examples of the compound containing a double bond such as an alkenyl ether group include ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, and tetramethylene glycol divinyl ether. Vinyl ether, neopentyl glycol divinyl ether, trimethylolpropane trivinyl ether, hexanediol divinyl ether, 1,4-cyclohexanediol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, sorbitol tetravinyl ether, sorbitol pentavinyl ether, trimethylolpropane tri Examples include vinyl ether.
前記酸無水物としては、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、4,4’-(イソプロピリデン)ジフタル酸無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等の芳香族酸無水物;無水テトラヒドロフタル酸、無水メチルテトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水メチルヘキサヒドロフタル酸、無水エンドメチレンテトラヒドロフタル酸無水ドデセニルコハク酸、無水トリアルキルテトラヒドロフタル酸等の脂環式カルボン酸無水物等が挙げられる。
Examples of the acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, 4 , 4 ′-(isopropylidene) diphthalic anhydride, aromatic aromatic anhydrides such as 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride; tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydro anhydride Examples thereof include alicyclic carboxylic acid anhydrides such as phthalic acid, methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride dodecenyl succinic anhydride, and trialkyltetrahydrophthalic anhydride.
これらの中でも、硬化性に優れ、レジスト下層膜用途に用いた場合のドライエッチング耐性及び耐熱分解性がより優れる組成物となることから、グリコールウリル化合物、ウレア化合物、レゾール樹脂が好ましく、グリコールウリル化合物が特に好ましい。
Among these, a glycoluril compound, a urea compound, and a resole resin are preferable because the composition is excellent in curability and has excellent dry etching resistance and thermal decomposition resistance when used for resist underlayer film applications. Is particularly preferred.
本発明に係る感光性組成物が前記硬化剤を含有する場合には、当該硬化剤の配合量は、本発明に係るノボラック型フェノール樹脂による優れた感度を維持するために、本発明に係るノボラック型フェノール樹脂100質量部に対し、50質量部以下である。本発明に係る感光性組成物の前記硬化剤の配合量は、硬化性、耐熱分解性、及びアルカリ現像性に優れる膜が得られる組成物となることから、本発明に係るノボラック型フェノール樹脂100質量部に対し、0.1~50質量部となる割合であることが好ましく、さらに光感度にも優れる膜が得られる組成物となることから、0.1~30質量部となる割合であることがさらに好ましく、0.5~20質量部となる割合であることがよりさらに好ましい。
When the photosensitive composition according to the present invention contains the curing agent, the blending amount of the curing agent is the novolak according to the present invention in order to maintain the excellent sensitivity of the novolak type phenol resin according to the present invention. It is 50 mass parts or less with respect to 100 mass parts of type phenol resins. Since the compounding amount of the curing agent of the photosensitive composition according to the present invention is a composition from which a film excellent in curability, heat decomposability, and alkali developability is obtained, the novolak type phenol resin 100 according to the present invention is obtained. The ratio is preferably 0.1 to 50 parts by mass with respect to part by mass, and further, the ratio is 0.1 to 30 parts by mass because a composition is obtained that provides a film with excellent photosensitivity. More preferably, the proportion is 0.5 to 20 parts by mass.
本発明に係る感光性組成物は、その他にも必要に応じて、染料、顔料、架橋剤、溶解促進剤など各種の添加剤を、有機溶剤に溶解又は分散させたものであることが好ましい。有機溶剤に溶解等させたものを基板等に塗布することにより、塗膜を形成することができる。染料、顔料、架橋剤、溶解促進剤は、使用する用途等を考慮して、レジスト材料の添加剤として汎用されているものの中から適宜選択して用いることができる。
The photosensitive composition according to the present invention is preferably obtained by dissolving or dispersing various additives such as dyes, pigments, cross-linking agents, and dissolution accelerators in an organic solvent, if necessary. A coating film can be formed by applying a material dissolved in an organic solvent to a substrate or the like. Dyes, pigments, crosslinking agents, and dissolution accelerators can be appropriately selected from those commonly used as additives for resist materials in consideration of the intended use.
当該有機溶剤としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテルプロピレングリコールモノメチルエーテル等のアルキレングリコールモノアルキルエーテル;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル等のジアルキレングリコールジアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のアルキレングリコールアルキルエーテルアセテート;アセトン、メチルエチルケトン、シクロヘキサノン、メチルアミルケトン等のケトン化合物;ジオキサン等の環式エーテル;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、オキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸エチル、酢酸エチル、酢酸ブチル、アセト酢酸メチル、アセト酢酸エチル等のエステル化合物が挙げられる、これらはそれぞれ単独で用いてもよく、2種類以上を併用してもよい。
Examples of the organic solvent include alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether propylene glycol monomethyl ether; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol diethylene ether. Dialkylene glycol dialkyl ethers such as propyl ether and diethylene glycol dibutyl ether; alkylene glycol alkyl ether acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate and propylene glycol monomethyl ether acetate; Ketone compounds such as methyl, methyl ethyl ketone, cyclohexanone and methyl amyl ketone; cyclic ethers such as dioxane; methyl 2-hydroxypropionate, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, Ester compounds such as ethyl oxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, ethyl formate, ethyl acetate, butyl acetate, methyl acetoacetate, ethyl acetoacetate These may be used alone or in combination of two or more.
本発明に係る感光性組成物は、上記各成分を配合し、攪拌機等を用いて混合することにより調製できる。また、感光性組成物が充填材や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散或いは混合して調整することができる。
The photosensitive composition according to the present invention can be prepared by blending the above components and mixing them using a stirrer or the like. Moreover, when a photosensitive composition contains a filler and a pigment, it can adjust by disperse | distributing or mixing using dispersers, such as a dissolver, a homogenizer, and a 3 roll mill.
本発明に係る感光性組成物は、レジスト材料として好適に用いることができる。本発明に係る感光性組成物は、有機溶剤に溶解・分散させた状態のものをそのままレジスト材料として用いてもよく、有機溶剤に溶解・分散させた状態のものをフィルム状に塗布して脱溶剤させたものをレジストフィルムとして用いてもよい。レジストフィルムとして用いる際の支持フィルムは、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエチレンテレフタレート等の合成樹脂フィルムが挙げられ、単層フィルムでも複数の積層フィルムでもよい。また、該支持フィルムの表面はコロナ処理されたものや剥離剤が塗布されたものでもよい。
The photosensitive composition according to the present invention can be suitably used as a resist material. The photosensitive composition according to the present invention may be used as a resist material as it is dissolved / dispersed in an organic solvent, or may be removed by applying a film dissolved / dispersed in an organic solvent. A solvent may be used as a resist film. Examples of the support film used as the resist film include synthetic resin films such as polyethylene, polypropylene, polycarbonate, and polyethylene terephthalate, and may be a single layer film or a plurality of laminated films. The surface of the support film may be a corona-treated one or a release agent.
本発明に係る感光性組成物を用いたフォトリソグラフィーの方法は、例えば、有機溶剤に溶解・分散させた感光性組成物(レジスト材料)を、シリコン基板フォトリソグラフィーを行う対象物上に塗布し、60~150℃の温度条件でプリベークする。このときの塗布方法は、スピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターブレードコート等の何れの方法でもよい。次にレジストパターンの作成であるが、当該感光性組成物がポジ型の場合には、目的とするレジストパターンを所定のマスクを通じて露光し、露光した箇所をアルカリ現像液にて溶解することにより、レジストパターンを形成する。本発明に係る感光性組成物は、光感度が高いため、解像度に優れるレジストパターンの形成が可能となる。
Photolithographic methods using the photosensitive composition according to the present invention include, for example, applying a photosensitive composition (resist material) dissolved and dispersed in an organic solvent onto an object to be subjected to silicon substrate photolithography, Pre-bake at a temperature of 60 to 150 ° C. The coating method at this time may be any method such as spin coating, roll coating, flow coating, dip coating, spray coating, doctor blade coating and the like. Next is the creation of a resist pattern.If the photosensitive composition is positive, the target resist pattern is exposed through a predetermined mask, and the exposed portion is dissolved in an alkali developer. A resist pattern is formed. Since the photosensitive composition according to the present invention has high photosensitivity, it is possible to form a resist pattern with excellent resolution.
ここでの露光光源は、例えば、赤外光、可視光、紫外光、遠紫外光、X線、電子線等が挙げられ、紫外光としては高圧水銀灯のg線(波長436nm)、h線(波長405nm)i線(波長365nm)、KrFエキシマレーザー(波長248nm)、ArFエキシマレーザー(波長193nm)、F2エキシマレーザー(波長157nm)、EUVレーザー(波長13.5nm)等が挙げられる。本発明に係る感光性組成物は光感度及びアルカリ現像性が高いことから、何れの光源を用いた場合にも高い解像度でのレジストパターン作成が可能となる。
Examples of the exposure light source here include infrared light, visible light, ultraviolet light, far-ultraviolet light, X-rays, and electron beams. Examples of ultraviolet light include g-line (wavelength 436 nm) and h-line (wavelength 436 nm) of a high-pressure mercury lamp. Examples include a wavelength 405 nm) i-line (wavelength 365 nm), a KrF excimer laser (wavelength 248 nm), an ArF excimer laser (wavelength 193 nm), an F2 excimer laser (wavelength 157 nm), and an EUV laser (wavelength 13.5 nm). Since the photosensitive composition according to the present invention has high photosensitivity and alkali developability, a resist pattern can be formed with high resolution when any light source is used.
本発明に係る感光性組成物(レジスト材料)により形成される塗膜の膜厚は、所望の用途により任意に調整することができる。厚膜を形成した場合でも、耐熱性やアルカリ溶解性を犠牲にすることなく柔軟性に優れた塗膜を形成できるという本発明に係るノボラック型フェノール樹脂による効果が充分に発現することから、当該塗膜の膜厚は、100nm~100μmが好ましく、500nm~100μmがより好ましく、2~100μmがさらに好ましく、2~20μmがよりさらに好ましい。
The film thickness of the coating film formed from the photosensitive composition (resist material) according to the present invention can be arbitrarily adjusted depending on the desired application. Even when a thick film is formed, the effect of the novolac-type phenolic resin according to the present invention that can form a coating film excellent in flexibility without sacrificing heat resistance or alkali solubility is sufficiently expressed. The thickness of the coating film is preferably from 100 nm to 100 μm, more preferably from 500 nm to 100 μm, further preferably from 2 to 100 μm, still more preferably from 2 to 20 μm.
以下、実施例等を挙げて本発明を更に詳述するが、本発明はこれらの実施例等に限定されるものではない。以下において、「部」及び「%」は特に断わりのない限り質量基準である。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the following, “part” and “%” are based on mass unless otherwise specified.
<樹脂のGPC測定>
樹脂の分子量分布は、GPCにより、ポリスチレン標準法において、以下の測定条件にて測定した。 <GPC measurement of resin>
The molecular weight distribution of the resin was measured by GPC under the following measurement conditions in the polystyrene standard method.
樹脂の分子量分布は、GPCにより、ポリスチレン標準法において、以下の測定条件にて測定した。 <GPC measurement of resin>
The molecular weight distribution of the resin was measured by GPC under the following measurement conditions in the polystyrene standard method.
(GPCの測定条件)
測定装置:東ソー株式会社製「HLC-8220 GPC」、
カラム:昭和電工株式会社製「Shodex KF802」(8.0mmI.D.×300mm)+昭和電工株式会社製「Shodex KF802」(8.0mmI.D.×300mm)+昭和電工株式会社製「Shodex KF803」(8.0mmI.D.×300mm)+昭和電工株式会社製「Shodex KF804」(8.0mmI.D.×300mm)、
検出器: RI(示差屈折計)、
測定条件:カラム温度 40℃
展開溶媒 テトラヒドロフラン(THF)
流速 1.0mL/分
試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(5μL)、
データ処理:東ソー株式会社製「GPC-8020モデルIIデータ解析バージョン4.30」、
標準試料:前記「GPC-8020モデルIIデータ解析バージョン4.30」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。 (GPC measurement conditions)
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: “Shodex KF802” (8.0 mm ID × 300 mm) manufactured by Showa Denko KK + “Shodex KF802” (8.0 mm ID × 300 mm) manufactured by Showa Denko KK + “Shodex KF803” manufactured by Showa Denko KK (8.0 mm ID × 300 mm) + “Shodex KF804” (8.0 mm ID × 300 mm) manufactured by Showa Denko KK
Detector: RI (differential refractometer),
Measurement conditions:Column temperature 40 ° C
Developing solvent Tetrahydrofuran (THF)
Flow rate 1.0 mL / min Sample: 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids with a microfilter (5 μL),
Data processing: “GPC-8020 Model II data analysis version 4.30” manufactured by Tosoh Corporation
Standard sample: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8020 Model II Data Analysis Version 4.30”.
測定装置:東ソー株式会社製「HLC-8220 GPC」、
カラム:昭和電工株式会社製「Shodex KF802」(8.0mmI.D.×300mm)+昭和電工株式会社製「Shodex KF802」(8.0mmI.D.×300mm)+昭和電工株式会社製「Shodex KF803」(8.0mmI.D.×300mm)+昭和電工株式会社製「Shodex KF804」(8.0mmI.D.×300mm)、
検出器: RI(示差屈折計)、
測定条件:カラム温度 40℃
展開溶媒 テトラヒドロフラン(THF)
流速 1.0mL/分
試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(5μL)、
データ処理:東ソー株式会社製「GPC-8020モデルIIデータ解析バージョン4.30」、
標準試料:前記「GPC-8020モデルIIデータ解析バージョン4.30」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。 (GPC measurement conditions)
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: “Shodex KF802” (8.0 mm ID × 300 mm) manufactured by Showa Denko KK + “Shodex KF802” (8.0 mm ID × 300 mm) manufactured by Showa Denko KK + “Shodex KF803” manufactured by Showa Denko KK (8.0 mm ID × 300 mm) + “Shodex KF804” (8.0 mm ID × 300 mm) manufactured by Showa Denko KK
Detector: RI (differential refractometer),
Measurement conditions:
Developing solvent Tetrahydrofuran (THF)
Flow rate 1.0 mL / min Sample: 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids with a microfilter (5 μL),
Data processing: “GPC-8020 Model II data analysis version 4.30” manufactured by Tosoh Corporation
Standard sample: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8020 Model II Data Analysis Version 4.30”.
(単分散ポリスチレン)
東ソー株式会社製「A-500」
東ソー株式会社製「A-1000」
東ソー株式会社製「A-2500」
東ソー株式会社製「A-5000」
東ソー株式会社製「F-1」
東ソー株式会社製「F-2」
東ソー株式会社製「F-4」
東ソー株式会社製「F-10」
東ソー株式会社製「F-20」
東ソー株式会社製「F-40」
東ソー株式会社製「F-80」
東ソー株式会社製「F-128」
東ソー株式会社製「F-288」
東ソー株式会社製「F-550」 (Monodispersed polystyrene)
“A-500” manufactured by Tosoh Corporation
“A-1000” manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
“F-2” manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
“F-288” manufactured by Tosoh Corporation
“F-550” manufactured by Tosoh Corporation
東ソー株式会社製「A-500」
東ソー株式会社製「A-1000」
東ソー株式会社製「A-2500」
東ソー株式会社製「A-5000」
東ソー株式会社製「F-1」
東ソー株式会社製「F-2」
東ソー株式会社製「F-4」
東ソー株式会社製「F-10」
東ソー株式会社製「F-20」
東ソー株式会社製「F-40」
東ソー株式会社製「F-80」
東ソー株式会社製「F-128」
東ソー株式会社製「F-288」
東ソー株式会社製「F-550」 (Monodispersed polystyrene)
“A-500” manufactured by Tosoh Corporation
“A-1000” manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
“F-2” manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
“F-288” manufactured by Tosoh Corporation
“F-550” manufactured by Tosoh Corporation
<樹脂の13C-NMRスペクトル測定>
樹脂の13C-NMRスペクトルの測定は、日本電子株式会社製「JNM-LA300」を用い、試料のDMSO-d6溶液を分析して構造解析を行った。以下に、13C-NMRスペクトルの測定条件を示す。 <Measurement of 13 C-NMR spectrum of resin>
The 13 C-NMR spectrum of the resin was subjected to structural analysis by analyzing the DMSO-d 6 solution of the sample using “JNM-LA300” manufactured by JEOL Ltd. The measurement conditions for 13 C-NMR spectrum are shown below.
樹脂の13C-NMRスペクトルの測定は、日本電子株式会社製「JNM-LA300」を用い、試料のDMSO-d6溶液を分析して構造解析を行った。以下に、13C-NMRスペクトルの測定条件を示す。 <Measurement of 13 C-NMR spectrum of resin>
The 13 C-NMR spectrum of the resin was subjected to structural analysis by analyzing the DMSO-d 6 solution of the sample using “JNM-LA300” manufactured by JEOL Ltd. The measurement conditions for 13 C-NMR spectrum are shown below.
(13C-NMRスペクトル測定条件)
測定モード:SGNNE(NOE消去の1H完全デカップリング法)
パルス角度:45℃パルス
試料濃度:30wt%
積算回数:10000回 ( 13C -NMR spectrum measurement conditions)
Measurement mode: SGNNE (1H complete decoupling method of NOE elimination)
Pulse angle: 45 ° C Pulse sample concentration: 30 wt%
Integration count: 10,000 times
測定モード:SGNNE(NOE消去の1H完全デカップリング法)
パルス角度:45℃パルス
試料濃度:30wt%
積算回数:10000回 ( 13C -NMR spectrum measurement conditions)
Measurement mode: SGNNE (1H complete decoupling method of NOE elimination)
Pulse angle: 45 ° C Pulse sample concentration: 30 wt%
Integration count: 10,000 times
[合成例1]<フェノール系3核体化合物の合成>
冷却管を取り付けた2L容4つ口フラスコに、2,5-キシレノール293.2g(2.4モル)、4-ヒドロキシベンズアルデヒド122g(1モル)、及び2-エトキシエタノール500mLを仕込み、2-エトキシエタノールに2,5-キシレノール及び4-ヒドロキシベンズアルデヒドを溶解させた。続いて、当該4つ口フラスコ内の反応溶液に、氷浴中で冷却しながら硫酸10mLを添加した後、マントルヒーターで100℃、2時間加熱し、攪拌しながら反応させた。反応終了後の反応溶液に水を添加して再沈殿操作を行い、粗生成物を得た。当該粗生成物をアセトンに再溶解させた後、さらに水で再沈殿操作を行った。再沈殿操作により得られた生成物を濾別し、真空乾燥を行い、白色結晶の前駆体化合物(フェノール系3核体化合物(1))213gを得た。フェノール系3核体化合物(1)について、GPC及び13C-NMRスペクトル測定を行ったところ、目的の化合物であり、純度はGPCの面積比で98.2質量%であることを確認した。フェノール系3核体化合物(1)のGPCのチャート図を図1に、13C-NMRスペクトルのチャート図を図2に、それぞれ示す。 [Synthesis Example 1] <Synthesis of phenol trinuclear compound>
A 2 L four-necked flask equipped with a condenser was charged with 293.2 g (2.4 mol) of 2,5-xylenol, 122 g (1 mol) of 4-hydroxybenzaldehyde, and 500 mL of 2-ethoxyethanol. 2,5-xylenol and 4-hydroxybenzaldehyde were dissolved in ethanol. Subsequently, 10 mL of sulfuric acid was added to the reaction solution in the four-necked flask while cooling in an ice bath, and then the mixture was heated with a mantle heater at 100 ° C. for 2 hours, and reacted with stirring. Water was added to the reaction solution after completion of the reaction and reprecipitation was performed to obtain a crude product. The crude product was redissolved in acetone, and further reprecipitation operation was performed with water. The product obtained by the reprecipitation operation was filtered off and vacuum dried to obtain 213 g of a white crystal precursor compound (phenolic trinuclear compound (1)). The phenol trinuclear compound (1) was subjected to GPC and 13 C-NMR spectrum measurement. As a result, it was confirmed that the compound was the target compound and the purity was 98.2% by mass in terms of the area ratio of GPC. The GPC chart of the phenolic trinuclear compound (1) is shown in FIG. 1, and the 13 C-NMR spectrum chart is shown in FIG.
冷却管を取り付けた2L容4つ口フラスコに、2,5-キシレノール293.2g(2.4モル)、4-ヒドロキシベンズアルデヒド122g(1モル)、及び2-エトキシエタノール500mLを仕込み、2-エトキシエタノールに2,5-キシレノール及び4-ヒドロキシベンズアルデヒドを溶解させた。続いて、当該4つ口フラスコ内の反応溶液に、氷浴中で冷却しながら硫酸10mLを添加した後、マントルヒーターで100℃、2時間加熱し、攪拌しながら反応させた。反応終了後の反応溶液に水を添加して再沈殿操作を行い、粗生成物を得た。当該粗生成物をアセトンに再溶解させた後、さらに水で再沈殿操作を行った。再沈殿操作により得られた生成物を濾別し、真空乾燥を行い、白色結晶の前駆体化合物(フェノール系3核体化合物(1))213gを得た。フェノール系3核体化合物(1)について、GPC及び13C-NMRスペクトル測定を行ったところ、目的の化合物であり、純度はGPCの面積比で98.2質量%であることを確認した。フェノール系3核体化合物(1)のGPCのチャート図を図1に、13C-NMRスペクトルのチャート図を図2に、それぞれ示す。 [Synthesis Example 1] <Synthesis of phenol trinuclear compound>
A 2 L four-necked flask equipped with a condenser was charged with 293.2 g (2.4 mol) of 2,5-xylenol, 122 g (1 mol) of 4-hydroxybenzaldehyde, and 500 mL of 2-ethoxyethanol. 2,5-xylenol and 4-hydroxybenzaldehyde were dissolved in ethanol. Subsequently, 10 mL of sulfuric acid was added to the reaction solution in the four-necked flask while cooling in an ice bath, and then the mixture was heated with a mantle heater at 100 ° C. for 2 hours, and reacted with stirring. Water was added to the reaction solution after completion of the reaction and reprecipitation was performed to obtain a crude product. The crude product was redissolved in acetone, and further reprecipitation operation was performed with water. The product obtained by the reprecipitation operation was filtered off and vacuum dried to obtain 213 g of a white crystal precursor compound (phenolic trinuclear compound (1)). The phenol trinuclear compound (1) was subjected to GPC and 13 C-NMR spectrum measurement. As a result, it was confirmed that the compound was the target compound and the purity was 98.2% by mass in terms of the area ratio of GPC. The GPC chart of the phenolic trinuclear compound (1) is shown in FIG. 1, and the 13 C-NMR spectrum chart is shown in FIG.
[合成例2]<ノボラック型フェノール樹脂の合成>
冷却管を取り付けた300mL容4つ口フラスコに、合成例1で得たフェノール系3核体化合物(1)34.8g(0.1モル)、50%グルタルアルデヒド8.0g(0.04モル)、2-エトキシエタノール15mL、及び酢酸15mLを仕込み、2-エトキシエタノールと酢酸の混合溶媒中にフェノール系3核体化合物(1)及びグルタルアルデヒドを溶解させた。続いて、当該4つ口フラスコ内の反応溶液に、氷浴中で冷却しながら硫酸10mLを添加した後、92%パラホルムアルデヒド3.0g(0.09モル)を仕込み、オイルバスで80℃に昇温し、10時間加熱し、攪拌しながら反応させた。反応終了後の反応溶液に水を添加して再沈殿操作を行い、粗生成物を得た。当該粗生成物をアセトンに再溶解させた後、さらに水で再沈殿操作を行った。再沈殿操作により得られた生成物を濾別し、真空乾燥を行い、赤色粉末のノボラック型フェノール樹脂(ノボラック樹脂(1))32.9gを得た。ノボラック樹脂(1)のGPCチャートを図3に示す。ノボラック樹脂(1)について、GPCを行ったところ、数平均分子量(Mn)=2,051、重量平均分子量(Mw)=7,855、多分散度(Mw/Mn)=3.83であった。 [Synthesis Example 2] <Synthesis of novolac type phenol resin>
In a 300 mL four-necked flask equipped with a condenser, 34.8 g (0.1 mol) of the phenolic trinuclear compound (1) obtained in Synthesis Example 1 and 8.0 g (0.04 mol) of 50% glutaraldehyde. ), 15 mL of 2-ethoxyethanol and 15 mL of acetic acid were charged, and the phenol trinuclear compound (1) and glutaraldehyde were dissolved in a mixed solvent of 2-ethoxyethanol and acetic acid. Subsequently, 10 mL of sulfuric acid was added to the reaction solution in the four-necked flask while cooling in an ice bath, and then 3.0 g (0.09 mol) of 92% paraformaldehyde was added to the reaction solution at 80 ° C. with an oil bath. The temperature was raised, heated for 10 hours, and allowed to react with stirring. Water was added to the reaction solution after completion of the reaction and reprecipitation was performed to obtain a crude product. The crude product was redissolved in acetone, and further reprecipitation operation was performed with water. The product obtained by the reprecipitation operation was filtered off and vacuum-dried to obtain 32.9 g of a novolac type phenol resin (novolac resin (1)) as a red powder. A GPC chart of the novolak resin (1) is shown in FIG. When GPC was performed on the novolak resin (1), the number average molecular weight (Mn) = 2,051, the weight average molecular weight (Mw) = 7,855, and the polydispersity (Mw / Mn) = 3.83. .
冷却管を取り付けた300mL容4つ口フラスコに、合成例1で得たフェノール系3核体化合物(1)34.8g(0.1モル)、50%グルタルアルデヒド8.0g(0.04モル)、2-エトキシエタノール15mL、及び酢酸15mLを仕込み、2-エトキシエタノールと酢酸の混合溶媒中にフェノール系3核体化合物(1)及びグルタルアルデヒドを溶解させた。続いて、当該4つ口フラスコ内の反応溶液に、氷浴中で冷却しながら硫酸10mLを添加した後、92%パラホルムアルデヒド3.0g(0.09モル)を仕込み、オイルバスで80℃に昇温し、10時間加熱し、攪拌しながら反応させた。反応終了後の反応溶液に水を添加して再沈殿操作を行い、粗生成物を得た。当該粗生成物をアセトンに再溶解させた後、さらに水で再沈殿操作を行った。再沈殿操作により得られた生成物を濾別し、真空乾燥を行い、赤色粉末のノボラック型フェノール樹脂(ノボラック樹脂(1))32.9gを得た。ノボラック樹脂(1)のGPCチャートを図3に示す。ノボラック樹脂(1)について、GPCを行ったところ、数平均分子量(Mn)=2,051、重量平均分子量(Mw)=7,855、多分散度(Mw/Mn)=3.83であった。 [Synthesis Example 2] <Synthesis of novolac type phenol resin>
In a 300 mL four-necked flask equipped with a condenser, 34.8 g (0.1 mol) of the phenolic trinuclear compound (1) obtained in Synthesis Example 1 and 8.0 g (0.04 mol) of 50% glutaraldehyde. ), 15 mL of 2-ethoxyethanol and 15 mL of acetic acid were charged, and the phenol trinuclear compound (1) and glutaraldehyde were dissolved in a mixed solvent of 2-ethoxyethanol and acetic acid. Subsequently, 10 mL of sulfuric acid was added to the reaction solution in the four-necked flask while cooling in an ice bath, and then 3.0 g (0.09 mol) of 92% paraformaldehyde was added to the reaction solution at 80 ° C. with an oil bath. The temperature was raised, heated for 10 hours, and allowed to react with stirring. Water was added to the reaction solution after completion of the reaction and reprecipitation was performed to obtain a crude product. The crude product was redissolved in acetone, and further reprecipitation operation was performed with water. The product obtained by the reprecipitation operation was filtered off and vacuum-dried to obtain 32.9 g of a novolac type phenol resin (novolac resin (1)) as a red powder. A GPC chart of the novolak resin (1) is shown in FIG. When GPC was performed on the novolak resin (1), the number average molecular weight (Mn) = 2,051, the weight average molecular weight (Mw) = 7,855, and the polydispersity (Mw / Mn) = 3.83. .
[合成例3]<ノボラック型フェノール樹脂の合成>
50%グルタルアルデヒドの仕込み量を4.0g(0.02モル)とした以外は、合成例2と同様にして、赤色粉末のノボラック型フェノール樹脂(ノボラック樹脂(2))31.3gを得た。ノボラック樹脂(2)のGPCチャートを図4に示す。ノボラック樹脂(2)について、GPCを行ったところ、数平均分子量(Mn)=1,889、重量平均分子量(Mw)=6,721、多分散度(Mw/Mn)=3.56であった。 [Synthesis Example 3] <Synthesis of novolac type phenol resin>
31.3 g of a novolac type phenol resin (novolac resin (2)) as a red powder was obtained in the same manner as in Synthesis Example 2, except that the amount of 50% glutaraldehyde charged was 4.0 g (0.02 mol). . A GPC chart of the novolak resin (2) is shown in FIG. When GPC was performed on the novolak resin (2), the number average molecular weight (Mn) = 1,889, the weight average molecular weight (Mw) = 6,721, and the polydispersity (Mw / Mn) = 3.56. .
50%グルタルアルデヒドの仕込み量を4.0g(0.02モル)とした以外は、合成例2と同様にして、赤色粉末のノボラック型フェノール樹脂(ノボラック樹脂(2))31.3gを得た。ノボラック樹脂(2)のGPCチャートを図4に示す。ノボラック樹脂(2)について、GPCを行ったところ、数平均分子量(Mn)=1,889、重量平均分子量(Mw)=6,721、多分散度(Mw/Mn)=3.56であった。 [Synthesis Example 3] <Synthesis of novolac type phenol resin>
31.3 g of a novolac type phenol resin (novolac resin (2)) as a red powder was obtained in the same manner as in Synthesis Example 2, except that the amount of 50% glutaraldehyde charged was 4.0 g (0.02 mol). . A GPC chart of the novolak resin (2) is shown in FIG. When GPC was performed on the novolak resin (2), the number average molecular weight (Mn) = 1,889, the weight average molecular weight (Mw) = 6,721, and the polydispersity (Mw / Mn) = 3.56. .
[合成例4]<ノボラック型フェノール樹脂の合成>
50%グルタルアルデヒドの仕込み量を20.0g(0.1モル)とした以外は、合成例2と同様にして、赤色粉末のノボラック型フェノール樹脂(ノボラック樹脂(3))34.1gを得た。ノボラック樹脂(3)のGPCチャートを図5に示す。ノボラック樹脂(3)について、GPCを行ったところ、数平均分子量(Mn)=1,504、重量平均分子量(Mw)=5,412、多分散度(Mw/Mn)=3.60であった。 [Synthesis Example 4] <Synthesis of novolac type phenol resin>
34.1 g of red powdered novolak-type phenol resin (novolak resin (3)) was obtained in the same manner as in Synthesis Example 2, except that the amount of 50% glutaraldehyde charged was 20.0 g (0.1 mol). . A GPC chart of the novolak resin (3) is shown in FIG. When GPC was performed on the novolak resin (3), the number average molecular weight (Mn) = 1,504, the weight average molecular weight (Mw) = 5,412 and the polydispersity (Mw / Mn) = 3.60. .
50%グルタルアルデヒドの仕込み量を20.0g(0.1モル)とした以外は、合成例2と同様にして、赤色粉末のノボラック型フェノール樹脂(ノボラック樹脂(3))34.1gを得た。ノボラック樹脂(3)のGPCチャートを図5に示す。ノボラック樹脂(3)について、GPCを行ったところ、数平均分子量(Mn)=1,504、重量平均分子量(Mw)=5,412、多分散度(Mw/Mn)=3.60であった。 [Synthesis Example 4] <Synthesis of novolac type phenol resin>
34.1 g of red powdered novolak-type phenol resin (novolak resin (3)) was obtained in the same manner as in Synthesis Example 2, except that the amount of 50% glutaraldehyde charged was 20.0 g (0.1 mol). . A GPC chart of the novolak resin (3) is shown in FIG. When GPC was performed on the novolak resin (3), the number average molecular weight (Mn) = 1,504, the weight average molecular weight (Mw) = 5,412 and the polydispersity (Mw / Mn) = 3.60. .
[比較合成例1]<(非柔軟性)ノボラック型フェノール樹脂の合成>
冷却管を取り付けた300mL容4つ口フラスコに、合成例1で得たフェノール系3核体化合物(1)17.4g(0.05モル)、92%パラホルムアルデヒド1.6g(0.05モル)、2-エトキシエタノール15mL、及び酢酸15mLを仕込み、2-エトキシエタノールと酢酸の混合溶媒中にフェノール系3核体化合物(1)及びパラホルムアルデヒドを溶解させた。続いて、当該4つ口フラスコ内の反応溶液に、氷浴中で冷却しながら硫酸10mLを添加した後、オイルバスで80℃に昇温し、4時間加熱し、攪拌しながら反応させた。反応終了後の反応溶液に水を添加して再沈殿操作を行い、粗生成物を得た。当該粗生成物をアセトンに再溶解させた後、さらに水で再沈殿操作を行った。再沈殿操作により得られた生成物を濾別し、真空乾燥を行い、赤色粉末のノボラック型フェノール樹脂(ノボラック樹脂(4))16.8gを得た。ノボラック樹脂(4)のGPCチャートを図6に示す。ノボラック樹脂(4)について、GPCを行ったところ、数平均分子量(Mn)=1,994、重量平均分子量(Mw)=7,603、多分散度(Mw/Mn)=3.81であった。 [Comparative Synthesis Example 1] <Synthesis of (non-flexible) novolac type phenolic resin>
In a 300 mL four-necked flask equipped with a condenser, 17.4 g (0.05 mol) of the phenolic trinuclear compound (1) obtained in Synthesis Example 1 and 1.6 g (0.05 mol) of 92% paraformaldehyde ), 15 mL of 2-ethoxyethanol and 15 mL of acetic acid were charged, and the phenolic trinuclear compound (1) and paraformaldehyde were dissolved in a mixed solvent of 2-ethoxyethanol and acetic acid. Subsequently, 10 mL of sulfuric acid was added to the reaction solution in the four-necked flask while cooling in an ice bath, and then the temperature was raised to 80 ° C. in an oil bath, heated for 4 hours, and reacted while stirring. Water was added to the reaction solution after completion of the reaction and reprecipitation was performed to obtain a crude product. The crude product was redissolved in acetone, and further reprecipitation operation was performed with water. The product obtained by the reprecipitation operation was separated by filtration and vacuum-dried to obtain 16.8 g of a red powder novolac type phenol resin (novolak resin (4)). A GPC chart of the novolak resin (4) is shown in FIG. When GPC was performed on the novolak resin (4), the number average molecular weight (Mn) = 1,994, the weight average molecular weight (Mw) = 7,603, and the polydispersity (Mw / Mn) = 3.81. .
冷却管を取り付けた300mL容4つ口フラスコに、合成例1で得たフェノール系3核体化合物(1)17.4g(0.05モル)、92%パラホルムアルデヒド1.6g(0.05モル)、2-エトキシエタノール15mL、及び酢酸15mLを仕込み、2-エトキシエタノールと酢酸の混合溶媒中にフェノール系3核体化合物(1)及びパラホルムアルデヒドを溶解させた。続いて、当該4つ口フラスコ内の反応溶液に、氷浴中で冷却しながら硫酸10mLを添加した後、オイルバスで80℃に昇温し、4時間加熱し、攪拌しながら反応させた。反応終了後の反応溶液に水を添加して再沈殿操作を行い、粗生成物を得た。当該粗生成物をアセトンに再溶解させた後、さらに水で再沈殿操作を行った。再沈殿操作により得られた生成物を濾別し、真空乾燥を行い、赤色粉末のノボラック型フェノール樹脂(ノボラック樹脂(4))16.8gを得た。ノボラック樹脂(4)のGPCチャートを図6に示す。ノボラック樹脂(4)について、GPCを行ったところ、数平均分子量(Mn)=1,994、重量平均分子量(Mw)=7,603、多分散度(Mw/Mn)=3.81であった。 [Comparative Synthesis Example 1] <Synthesis of (non-flexible) novolac type phenolic resin>
In a 300 mL four-necked flask equipped with a condenser, 17.4 g (0.05 mol) of the phenolic trinuclear compound (1) obtained in Synthesis Example 1 and 1.6 g (0.05 mol) of 92% paraformaldehyde ), 15 mL of 2-ethoxyethanol and 15 mL of acetic acid were charged, and the phenolic trinuclear compound (1) and paraformaldehyde were dissolved in a mixed solvent of 2-ethoxyethanol and acetic acid. Subsequently, 10 mL of sulfuric acid was added to the reaction solution in the four-necked flask while cooling in an ice bath, and then the temperature was raised to 80 ° C. in an oil bath, heated for 4 hours, and reacted while stirring. Water was added to the reaction solution after completion of the reaction and reprecipitation was performed to obtain a crude product. The crude product was redissolved in acetone, and further reprecipitation operation was performed with water. The product obtained by the reprecipitation operation was separated by filtration and vacuum-dried to obtain 16.8 g of a red powder novolac type phenol resin (novolak resin (4)). A GPC chart of the novolak resin (4) is shown in FIG. When GPC was performed on the novolak resin (4), the number average molecular weight (Mn) = 1,994, the weight average molecular weight (Mw) = 7,603, and the polydispersity (Mw / Mn) = 3.81. .
[比較合成例2]<(柔軟性)クレゾールノボラック樹脂の合成>
冷却管を取り付けた300mL容4つ口フラスコに、メタクレゾール13.0g(0.12モル)、パラクレゾール8.6g(0.08モル)、50%グルタルアルデヒド16.0g(0.08モル)、2-エトキシエタノール15mL、及び酢酸15mLを仕込み、2-エトキシエタノールと酢酸の混合溶媒中にメタクレゾール、パラクレゾール、及びグルタルアルデヒドを溶解させた。続いて、当該4つ口フラスコ内の反応溶液に、氷浴中で冷却しながら硫酸10mLを添加した後、92%パラホルムアルデヒド3.3g(0.1モル)を仕込み、オイルバスで80℃に昇温し、10時間加熱し、攪拌しながら反応させた。反応終了後の反応溶液に水を添加して再沈殿操作を行い、粗生成物を得た。当該粗生成物をアセトンに再溶解させた後、さらに水で再沈殿操作を行った。再沈殿操作により得られた生成物を濾別し、真空乾燥を行い、橙色粉末のクレゾールノボラック樹脂(ノボラック樹脂(5))20.6gを得た。ノボラック樹脂(5)のGPCチャートを図7に示す。ノボラック樹脂(5)について、GPCを行ったところ、数平均分子量(Mn)=2,150、重量平均分子量(Mw)=9,571、多分散度(Mw/Mn)=4.45であった。 [Comparative Synthesis Example 2] <Synthesis of (flexibility) cresol novolac resin>
In a 300 mL four-necked flask equipped with a condenser, 13.0 g (0.12 mol) of metacresol, 8.6 g (0.08 mol) of paracresol, 16.0 g of 50% glutaraldehyde (0.08 mol) Then, 15 mL of 2-ethoxyethanol and 15 mL of acetic acid were charged, and metacresol, para-cresol, and glutaraldehyde were dissolved in a mixed solvent of 2-ethoxyethanol and acetic acid. Subsequently, 10 mL of sulfuric acid was added to the reaction solution in the four-necked flask while cooling in an ice bath, and then 3.3 g (0.1 mol) of 92% paraformaldehyde was charged and the oil bath was heated to 80 ° C. The temperature was raised, heated for 10 hours, and allowed to react with stirring. Water was added to the reaction solution after completion of the reaction and reprecipitation was performed to obtain a crude product. The crude product was redissolved in acetone, and further reprecipitation operation was performed with water. The product obtained by the reprecipitation operation was separated by filtration and vacuum-dried to obtain 20.6 g of an orange powder of cresol novolak resin (novolak resin (5)). A GPC chart of the novolak resin (5) is shown in FIG. When GPC was performed on the novolak resin (5), the number average molecular weight (Mn) = 2,150, the weight average molecular weight (Mw) = 9,571, and the polydispersity (Mw / Mn) = 4.45. .
冷却管を取り付けた300mL容4つ口フラスコに、メタクレゾール13.0g(0.12モル)、パラクレゾール8.6g(0.08モル)、50%グルタルアルデヒド16.0g(0.08モル)、2-エトキシエタノール15mL、及び酢酸15mLを仕込み、2-エトキシエタノールと酢酸の混合溶媒中にメタクレゾール、パラクレゾール、及びグルタルアルデヒドを溶解させた。続いて、当該4つ口フラスコ内の反応溶液に、氷浴中で冷却しながら硫酸10mLを添加した後、92%パラホルムアルデヒド3.3g(0.1モル)を仕込み、オイルバスで80℃に昇温し、10時間加熱し、攪拌しながら反応させた。反応終了後の反応溶液に水を添加して再沈殿操作を行い、粗生成物を得た。当該粗生成物をアセトンに再溶解させた後、さらに水で再沈殿操作を行った。再沈殿操作により得られた生成物を濾別し、真空乾燥を行い、橙色粉末のクレゾールノボラック樹脂(ノボラック樹脂(5))20.6gを得た。ノボラック樹脂(5)のGPCチャートを図7に示す。ノボラック樹脂(5)について、GPCを行ったところ、数平均分子量(Mn)=2,150、重量平均分子量(Mw)=9,571、多分散度(Mw/Mn)=4.45であった。 [Comparative Synthesis Example 2] <Synthesis of (flexibility) cresol novolac resin>
In a 300 mL four-necked flask equipped with a condenser, 13.0 g (0.12 mol) of metacresol, 8.6 g (0.08 mol) of paracresol, 16.0 g of 50% glutaraldehyde (0.08 mol) Then, 15 mL of 2-ethoxyethanol and 15 mL of acetic acid were charged, and metacresol, para-cresol, and glutaraldehyde were dissolved in a mixed solvent of 2-ethoxyethanol and acetic acid. Subsequently, 10 mL of sulfuric acid was added to the reaction solution in the four-necked flask while cooling in an ice bath, and then 3.3 g (0.1 mol) of 92% paraformaldehyde was charged and the oil bath was heated to 80 ° C. The temperature was raised, heated for 10 hours, and allowed to react with stirring. Water was added to the reaction solution after completion of the reaction and reprecipitation was performed to obtain a crude product. The crude product was redissolved in acetone, and further reprecipitation operation was performed with water. The product obtained by the reprecipitation operation was separated by filtration and vacuum-dried to obtain 20.6 g of an orange powder of cresol novolak resin (novolak resin (5)). A GPC chart of the novolak resin (5) is shown in FIG. When GPC was performed on the novolak resin (5), the number average molecular weight (Mn) = 2,150, the weight average molecular weight (Mw) = 9,571, and the polydispersity (Mw / Mn) = 4.45. .
[実施例1~3、比較例1~2]
合成例2~4及び比較合成例1~2で合成したノボラック樹脂(1)~(5)について、表1に示すように、ノボラック樹脂、感光剤(東洋合成工業株式会社製「P-200」;4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1メチルエチル]フェニル]エチリデン]ビスフェノール1モルと1,2-ナフトキノン-2-ジアジド-5-スルホニルクロリド2モルとの縮合物)、及びPGMEAを28/12/60(質量部)で混合して溶解させた後、0.2μmメンブランフィルターを用いて濾過し、感光性組成物を得た。これらの組成物を用いて塗膜を作成し、下記に従ってアルカリ現像性、感度、解像度、耐熱性(Tg)、基板追従性、及び柔軟性を評価した。評価結果を表1に示す。 [Examples 1 to 3, Comparative Examples 1 and 2]
For the novolak resins (1) to (5) synthesized in Synthesis Examples 2 to 4 and Comparative Synthesis Examples 1 and 2, as shown in Table 1, novolak resins and photosensitizers (“P-200” manufactured by Toyo Gosei Co., Ltd.) 1 mol of 4,4 ′-[1- [4- [1- (4-hydroxyphenyl) -1methylethyl] phenyl] ethylidene] bisphenol and 2 mol of 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride And PGMEA were mixed and dissolved at 28/12/60 (parts by mass), followed by filtration using a 0.2 μm membrane filter to obtain a photosensitive composition. A coating film was prepared using these compositions, and alkali developability, sensitivity, resolution, heat resistance (Tg), substrate followability, and flexibility were evaluated according to the following. The evaluation results are shown in Table 1.
合成例2~4及び比較合成例1~2で合成したノボラック樹脂(1)~(5)について、表1に示すように、ノボラック樹脂、感光剤(東洋合成工業株式会社製「P-200」;4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1メチルエチル]フェニル]エチリデン]ビスフェノール1モルと1,2-ナフトキノン-2-ジアジド-5-スルホニルクロリド2モルとの縮合物)、及びPGMEAを28/12/60(質量部)で混合して溶解させた後、0.2μmメンブランフィルターを用いて濾過し、感光性組成物を得た。これらの組成物を用いて塗膜を作成し、下記に従ってアルカリ現像性、感度、解像度、耐熱性(Tg)、基板追従性、及び柔軟性を評価した。評価結果を表1に示す。 [Examples 1 to 3, Comparative Examples 1 and 2]
For the novolak resins (1) to (5) synthesized in Synthesis Examples 2 to 4 and Comparative Synthesis Examples 1 and 2, as shown in Table 1, novolak resins and photosensitizers (“P-200” manufactured by Toyo Gosei Co., Ltd.) 1 mol of 4,4 ′-[1- [4- [1- (4-hydroxyphenyl) -1methylethyl] phenyl] ethylidene] bisphenol and 2 mol of 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride And PGMEA were mixed and dissolved at 28/12/60 (parts by mass), followed by filtration using a 0.2 μm membrane filter to obtain a photosensitive composition. A coating film was prepared using these compositions, and alkali developability, sensitivity, resolution, heat resistance (Tg), substrate followability, and flexibility were evaluated according to the following. The evaluation results are shown in Table 1.
<アルカリ現像性評価>
感光性組成物を、5インチシリコンウェハー上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒間乾燥させて塗膜を有するシリコンウェハーを得た。得られたウェハーを、アルカリ現像液(2.38%水酸化テトラメチルアンモニウム水溶液)に60秒間浸漬させた後、110℃のホットプレート上で60秒間乾燥させた。当該感光性組成物の塗膜の膜厚を、現像液浸漬前後で測定し、その差分を60で除した値をアルカリ現像性(ADR(Å/秒))の評価結果とした。露光させる場合は、ghi線ランプ(ウシオ電機社製、マルチライト)で十分に露光される100mJ/cm2照射した後、140℃、60秒間の条件でPEB(Post Exposure Bake)を施したウェハーを用いてADRアルカリ現像性を評価した。塗膜の膜厚は、膜厚計(フィルメトリクス株式会社製「f-20」)を用いて測定した。 <Alkali developability evaluation>
The photosensitive composition was applied on a 5-inch silicon wafer with a spin coater to a thickness of about 1 μm and dried on a hot plate at 110 ° C. for 60 seconds to obtain a silicon wafer having a coating film. The obtained wafer was immersed in an alkali developer (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds, and then dried on a 110 ° C. hot plate for 60 seconds. The film thickness of the coating film of the photosensitive composition was measured before and after immersion in the developer, and the value obtained by dividing the difference by 60 was defined as the evaluation result of alkali developability (ADR (Å / sec)). In the case of exposure, a wafer subjected to PEB (Post Exposure Bake) under conditions of 140 ° C. and 60 seconds after irradiation with 100 mJ / cm 2 which is sufficiently exposed with a ghi line lamp (manufactured by USHIO INC., Multi-light). The ADR alkali developability was evaluated. The film thickness of the coating film was measured using a film thickness meter (“f-20” manufactured by Filmetrics Co., Ltd.).
感光性組成物を、5インチシリコンウェハー上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒間乾燥させて塗膜を有するシリコンウェハーを得た。得られたウェハーを、アルカリ現像液(2.38%水酸化テトラメチルアンモニウム水溶液)に60秒間浸漬させた後、110℃のホットプレート上で60秒間乾燥させた。当該感光性組成物の塗膜の膜厚を、現像液浸漬前後で測定し、その差分を60で除した値をアルカリ現像性(ADR(Å/秒))の評価結果とした。露光させる場合は、ghi線ランプ(ウシオ電機社製、マルチライト)で十分に露光される100mJ/cm2照射した後、140℃、60秒間の条件でPEB(Post Exposure Bake)を施したウェハーを用いてADRアルカリ現像性を評価した。塗膜の膜厚は、膜厚計(フィルメトリクス株式会社製「f-20」)を用いて測定した。 <Alkali developability evaluation>
The photosensitive composition was applied on a 5-inch silicon wafer with a spin coater to a thickness of about 1 μm and dried on a hot plate at 110 ° C. for 60 seconds to obtain a silicon wafer having a coating film. The obtained wafer was immersed in an alkali developer (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds, and then dried on a 110 ° C. hot plate for 60 seconds. The film thickness of the coating film of the photosensitive composition was measured before and after immersion in the developer, and the value obtained by dividing the difference by 60 was defined as the evaluation result of alkali developability (ADR (Å / sec)). In the case of exposure, a wafer subjected to PEB (Post Exposure Bake) under conditions of 140 ° C. and 60 seconds after irradiation with 100 mJ / cm 2 which is sufficiently exposed with a ghi line lamp (manufactured by USHIO INC., Multi-light). The ADR alkali developability was evaluated. The film thickness of the coating film was measured using a film thickness meter (“f-20” manufactured by Filmetrics Co., Ltd.).
<感度評価>
感光性組成物を約20μmの厚さで塗布し乾燥させた塗膜を有する5インチシリコンウェハー上に、ラインアンドスペースが1:1の1~10μmレジストパターン対応のマスクを密着させた後、ghi線ランプで3μmを忠実に再現することのできる露光量(Eop露光量)を求めた。 <Sensitivity evaluation>
After adhering a mask corresponding to a 1 to 10 μm resist pattern with a line and space of 1: 1 on a 5 inch silicon wafer having a coating film in which a photosensitive composition is applied to a thickness of about 20 μm and dried, ghi An exposure amount (Eop exposure amount) capable of faithfully reproducing 3 μm with a line lamp was determined.
感光性組成物を約20μmの厚さで塗布し乾燥させた塗膜を有する5インチシリコンウェハー上に、ラインアンドスペースが1:1の1~10μmレジストパターン対応のマスクを密着させた後、ghi線ランプで3μmを忠実に再現することのできる露光量(Eop露光量)を求めた。 <Sensitivity evaluation>
After adhering a mask corresponding to a 1 to 10 μm resist pattern with a line and space of 1: 1 on a 5 inch silicon wafer having a coating film in which a photosensitive composition is applied to a thickness of about 20 μm and dried, ghi An exposure amount (Eop exposure amount) capable of faithfully reproducing 3 μm with a line lamp was determined.
<解像度評価>
感光性組成物を塗布し乾燥させた塗膜を有する5インチシリコンウェハー上にフォトマスクを乗せ、ghi線ランプ(ウシオ電機社製、マルチライト)で200mJ/cm2照射し感光せしめた。照射後の塗膜を、<アルカリ現像性評価>と同様にして現像し乾燥させた。現像後のウェハー上のレジストパターンのパターン状態を、キーエンス社製レーザーマイクロスコープ(VK-X200)を用いて評価した。評価は、L/S=5μmで解像できているものを「○」、L/S=5μmで解像できていないものを「×」とした。 <Resolution evaluation>
A photomask was placed on a 5-inch silicon wafer having a coating film on which the photosensitive composition had been applied and dried, and the film was exposed to 200 mJ / cm 2 with a ghi line lamp (manufactured by Ushio Inc., Multilight). The film after irradiation was developed and dried in the same manner as in <Alkali developability evaluation>. The pattern state of the resist pattern on the wafer after development was evaluated using a laser microscope (VK-X200) manufactured by Keyence Corporation. In the evaluation, “◯” indicates that resolution was achieved at L / S = 5 μm, and “x” indicates that resolution was not possible at L / S = 5 μm.
感光性組成物を塗布し乾燥させた塗膜を有する5インチシリコンウェハー上にフォトマスクを乗せ、ghi線ランプ(ウシオ電機社製、マルチライト)で200mJ/cm2照射し感光せしめた。照射後の塗膜を、<アルカリ現像性評価>と同様にして現像し乾燥させた。現像後のウェハー上のレジストパターンのパターン状態を、キーエンス社製レーザーマイクロスコープ(VK-X200)を用いて評価した。評価は、L/S=5μmで解像できているものを「○」、L/S=5μmで解像できていないものを「×」とした。 <Resolution evaluation>
A photomask was placed on a 5-inch silicon wafer having a coating film on which the photosensitive composition had been applied and dried, and the film was exposed to 200 mJ / cm 2 with a ghi line lamp (manufactured by Ushio Inc., Multilight). The film after irradiation was developed and dried in the same manner as in <Alkali developability evaluation>. The pattern state of the resist pattern on the wafer after development was evaluated using a laser microscope (VK-X200) manufactured by Keyence Corporation. In the evaluation, “◯” indicates that resolution was achieved at L / S = 5 μm, and “x” indicates that resolution was not possible at L / S = 5 μm.
<耐熱性の評価>
耐熱性の評価は、塗膜のガラス転移温度(Tg)で評価した。具体的には、感光性組成物を5インチシリコンウェハー上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒間乾燥させて塗膜を有するシリコンウェハーを得た。得られたウェハーより樹脂分をかきとり、ガラス転移温度を測定した。ガラス転移温度の測定は、示差走査熱量計(DSC)(TAインスツルメント社製、製品名:Q100)を用いて、窒素雰囲気下、温度範囲:-100~200℃、昇温温度:10℃/分の条件で走査を行い、測定結果をガラス転移温度とした。 <Evaluation of heat resistance>
The heat resistance was evaluated by the glass transition temperature (Tg) of the coating film. Specifically, a photosensitive composition is applied onto a 5-inch silicon wafer with a spin coater to a thickness of about 1 μm, and dried on a hot plate at 110 ° C. for 60 seconds to form a silicon wafer having a coating film. Obtained. The resin content was scraped from the obtained wafer and the glass transition temperature was measured. The glass transition temperature was measured using a differential scanning calorimeter (DSC) (TA Instruments, product name: Q100) under a nitrogen atmosphere, temperature range: −100 to 200 ° C., temperature rising temperature: 10 ° C. Scanning was performed under the conditions of / min, and the measurement result was taken as the glass transition temperature.
耐熱性の評価は、塗膜のガラス転移温度(Tg)で評価した。具体的には、感光性組成物を5インチシリコンウェハー上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒間乾燥させて塗膜を有するシリコンウェハーを得た。得られたウェハーより樹脂分をかきとり、ガラス転移温度を測定した。ガラス転移温度の測定は、示差走査熱量計(DSC)(TAインスツルメント社製、製品名:Q100)を用いて、窒素雰囲気下、温度範囲:-100~200℃、昇温温度:10℃/分の条件で走査を行い、測定結果をガラス転移温度とした。 <Evaluation of heat resistance>
The heat resistance was evaluated by the glass transition temperature (Tg) of the coating film. Specifically, a photosensitive composition is applied onto a 5-inch silicon wafer with a spin coater to a thickness of about 1 μm, and dried on a hot plate at 110 ° C. for 60 seconds to form a silicon wafer having a coating film. Obtained. The resin content was scraped from the obtained wafer and the glass transition temperature was measured. The glass transition temperature was measured using a differential scanning calorimeter (DSC) (TA Instruments, product name: Q100) under a nitrogen atmosphere, temperature range: −100 to 200 ° C., temperature rising temperature: 10 ° C. Scanning was performed under the conditions of / min, and the measurement result was taken as the glass transition temperature.
<基板追従性評価>
感光性組成物を5インチシリコンウェハー上に約50μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で300秒間乾燥させた。得られたウェハーの塗膜表面のクラックの有無を、キーエンス社製レーザーマイクロスコープ(VK-X200)を用いて観察した。評価は、クラックが観察されなかったものを「○」、クラックが観察されたものを「×」とした。 <Substrate following evaluation>
The photosensitive composition was coated on a 5-inch silicon wafer with a spin coater to a thickness of about 50 μm and dried on a hot plate at 110 ° C. for 300 seconds. The presence or absence of cracks on the coating film surface of the obtained wafer was observed using a laser microscope (VK-X200) manufactured by Keyence Corporation. In the evaluation, “◯” indicates that no crack was observed, and “X” indicates that a crack was observed.
感光性組成物を5インチシリコンウェハー上に約50μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で300秒間乾燥させた。得られたウェハーの塗膜表面のクラックの有無を、キーエンス社製レーザーマイクロスコープ(VK-X200)を用いて観察した。評価は、クラックが観察されなかったものを「○」、クラックが観察されたものを「×」とした。 <Substrate following evaluation>
The photosensitive composition was coated on a 5-inch silicon wafer with a spin coater to a thickness of about 50 μm and dried on a hot plate at 110 ° C. for 300 seconds. The presence or absence of cracks on the coating film surface of the obtained wafer was observed using a laser microscope (VK-X200) manufactured by Keyence Corporation. In the evaluation, “◯” indicates that no crack was observed, and “X” indicates that a crack was observed.
<柔軟性>
感光性組成物を厚さ50μmのポリイミドフィルム上に約5μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で300秒間乾燥させた。得られたフィルム状塗膜を180度に折り曲げて、折り曲げ箇所の状態を、キーエンス社製レーザーマイクロスコープ(VK-X200)を用いて観察した。評価は、クラックが観察されなかったものを「○」、クラックが観察されたものを「×」とした。 <Flexibility>
The photosensitive composition was coated on a polyimide film having a thickness of 50 μm with a spin coater so as to have a thickness of about 5 μm, and dried on a hot plate at 110 ° C. for 300 seconds. The obtained film-like coating film was bent at 180 degrees, and the state of the bent portion was observed using a laser microscope (VK-X200) manufactured by Keyence Corporation. In the evaluation, “◯” indicates that no crack was observed, and “X” indicates that a crack was observed.
感光性組成物を厚さ50μmのポリイミドフィルム上に約5μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で300秒間乾燥させた。得られたフィルム状塗膜を180度に折り曲げて、折り曲げ箇所の状態を、キーエンス社製レーザーマイクロスコープ(VK-X200)を用いて観察した。評価は、クラックが観察されなかったものを「○」、クラックが観察されたものを「×」とした。 <Flexibility>
The photosensitive composition was coated on a polyimide film having a thickness of 50 μm with a spin coater so as to have a thickness of about 5 μm, and dried on a hot plate at 110 ° C. for 300 seconds. The obtained film-like coating film was bent at 180 degrees, and the state of the bent portion was observed using a laser microscope (VK-X200) manufactured by Keyence Corporation. In the evaluation, “◯” indicates that no crack was observed, and “X” indicates that a crack was observed.
この結果、本発明に係るノボラック型フェノール樹脂であるノボラック樹脂(1)~(3)を含有する感光性組成物の塗膜(実施例1~3)は、露光後のADRが1600Å/秒以上でありアルカリ現像性が良好であり、感度と解像度も高く、ガラス転移温度が160℃以上と充分に高く耐熱性も良好であり、基板追従性と柔軟性も優れていた。これに対して、結節剤としてモノアルデヒド類のみを用いて合成したノボラック型フェノール樹脂であるノボラック樹脂(4)を含有する感光性組成物の塗膜(比較例1)は、アルカリ現像性、感度、解像度、及び耐熱性は優れていたものの、基板追従性と柔軟性に劣っていた。また、結節剤としてポリアルデヒド類も併用して合成したクレゾールノボラック樹脂であるノボラック樹脂(5)を含有する感光性組成物の塗膜(比較例2)は、基板追従性と柔軟性は優れていたものの、アルカリ現像性、感度、解像度、及び耐熱性はいずれも不充分であった。
As a result, the coating films (Examples 1 to 3) of the photosensitive composition containing the novolak resins (1) to (3), which are novolak type phenol resins according to the present invention, have an ADR of 1600 Å / sec or more after exposure. The alkali developability was good, the sensitivity and resolution were high, the glass transition temperature was sufficiently high at 160 ° C. or higher, the heat resistance was good, and the substrate followability and flexibility were excellent. On the other hand, the coating film (Comparative Example 1) of the photosensitive composition containing the novolak resin (4), which is a novolak-type phenol resin synthesized using only monoaldehydes as the nodule, has an alkali developability and sensitivity. Although the resolution and heat resistance were excellent, the substrate followability and flexibility were inferior. Moreover, the coating film (comparative example 2) of the photosensitive composition containing the novolak resin (5) which is a cresol novolak resin synthesized using polyaldehydes as a nodule is excellent in substrate followability and flexibility. However, alkali developability, sensitivity, resolution, and heat resistance were all insufficient.
Claims (14)
- 下記一般式(1)
で表される化合物及び下記一般式(2)
で表される化合物からなる群より選択される1種以上のフェノール系3核体化合物(A)とモノアルデヒド類(B)とポリアルデヒド類(C)とを、酸触媒下で反応させて得られることを特徴とする、ノボラック型フェノール樹脂。 The following general formula (1)
And a compound represented by the following general formula (2)
Obtained by reacting one or more phenolic trinuclear compounds (A), monoaldehydes (B), and polyaldehydes (C) selected from the group consisting of compounds represented by A novolac-type phenolic resin, characterized in that - 前記ポリアルデヒド類(C)が、脂肪族ジアルデヒドである、請求項1に記載のノボラック型フェノール樹脂。 The novolak-type phenol resin according to claim 1, wherein the polyaldehyde (C) is an aliphatic dialdehyde.
- 前記脂肪族ジアルデヒドが、グルタルアルデヒド又はアジポアルデヒドである、請求項2に記載のノボラック型フェノール樹脂。 The novolak type phenol resin according to claim 2, wherein the aliphatic dialdehyde is glutaraldehyde or adipaldehyde.
- 前記モノアルデヒド類(B)が、ホルムアルデヒドである、請求項1~3のいずれか一項に記載のノボラック型フェノール樹脂。 The novolac type phenol resin according to any one of claims 1 to 3, wherein the monoaldehyde (B) is formaldehyde.
- 前記フェノール系3核体化合物(A)と反応させる前記モノアルデヒド類(B)と前記ポリアルデヒド類(C)の使用量が、質量比〔(B)/(C)〕で1/0.01~1/1.5である、請求項1~4のいずれか一項に記載のノボラック型フェノール樹脂。 The amount of the monoaldehydes (B) and the polyaldehydes (C) to be reacted with the phenol trinuclear compound (A) is 1 / 0.01 in a mass ratio [(B) / (C)]. The novolac type phenol resin according to any one of claims 1 to 4, which is ˜1 / 1.5.
- 前記フェノール系3核体化合物(A)が、下記一般式(1-1)、(1-2)、(1-7)、(1-8)、(1-13)、(1-14)、(2-1)又は(2-2)
- 繰り返し単位として、下記一般式(I-1)
で表される構造単位(I-1)、下記一般式(I-2)
で表される構造単位(I-2)、下記一般式(II-1)
で表される構造単位(II-1)、及び下記一般式(II-2)
で表される構造単位(II-2)からなる群より選択される1種以上の構造部位を有する、請求項1~5のいずれか一項に記載のノボラック型フェノール樹脂。 As a repeating unit, the following general formula (I-1)
A structural unit (I-1) represented by the following general formula (I-2)
A structural unit (I-2) represented by the following general formula (II-1)
A structural unit represented by formula (II-1) and the following general formula (II-2)
The novolak type phenol resin according to any one of claims 1 to 5, which has one or more structural sites selected from the group consisting of structural units (II-2) represented by - 前記R1及びR2が共にメチル基である、請求項7に記載のノボラック型フェノール樹脂。 The novolak type phenol resin according to claim 7, wherein both R 1 and R 2 are methyl groups.
- 前記一般式(I-1)で表される構造単位又は前記一般式(II-1)で表される構造単位を繰り返し単位として有し、かつ重量平均分子量が5,000~25,000である、請求項7に記載のノボラック型フェノール樹脂。 The structural unit represented by the general formula (I-1) or the structural unit represented by the general formula (II-1) is a repeating unit, and the weight average molecular weight is 5,000 to 25,000. The novolak type phenol resin according to claim 7.
- 前記一般式(I-2)で表される構造単位又は前記一般式(II-2)で表される構造単位を繰り返し単位として有し、かつ重量平均分子量が1,000~5,000である、請求項7に記載のノボラック型フェノール樹脂。 The structural unit represented by the general formula (I-2) or the structural unit represented by the general formula (II-2) is a repeating unit, and the weight average molecular weight is 1,000 to 5,000. The novolak type phenol resin according to claim 7.
- 請求項1~10のいずれか一項に記載のノボラック型フェノール樹脂と感光剤とを含有することを特徴とする、感光性組成物。 A photosensitive composition comprising the novolac-type phenolic resin according to any one of claims 1 to 10 and a photosensitive agent.
- 請求項11に記載の感光性組成物からなることを特徴とする、レジスト材料。 A resist material comprising the photosensitive composition according to claim 11.
- 請求項11に記載の感光性組成物からなることを特徴とする、塗膜。 A coating film comprising the photosensitive composition according to claim 11.
- 請求項12に記載のレジスト材料からなることを特徴とする、レジスト塗膜。 A resist coating film comprising the resist material according to claim 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016509804A JPWO2016103850A1 (en) | 2014-12-24 | 2015-10-08 | Novolac type phenolic resin, photosensitive composition, resist material, coating film, and resist coating film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014260059 | 2014-12-24 | ||
JP2014-260059 | 2014-12-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016103850A1 true WO2016103850A1 (en) | 2016-06-30 |
Family
ID=56149887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/078589 WO2016103850A1 (en) | 2014-12-24 | 2015-10-08 | Novolac type phenolic resin, photosensitive composition, resist material, coating film, and resist coating film |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2016103850A1 (en) |
TW (1) | TW201634508A (en) |
WO (1) | WO2016103850A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018101058A1 (en) * | 2016-12-01 | 2018-06-07 | Dic株式会社 | Phenolic hydroxy group-containing resin and resist material |
US20190339613A1 (en) * | 2018-05-07 | 2019-11-07 | Jeremy Golden | Photosensitive Material For Lift-Off Applications |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11223939A (en) * | 1998-02-05 | 1999-08-17 | Fuji Photo Film Co Ltd | Positive photoresist composition |
JP2005029504A (en) * | 2003-07-14 | 2005-02-03 | Asahi Organic Chem Ind Co Ltd | Method for producing phenol derivative |
JP2007031402A (en) * | 2005-07-29 | 2007-02-08 | Tokyo Ohka Kogyo Co Ltd | Polyphenol compound, compound, positive resist composition, and resist pattern-forming method |
WO2010050592A1 (en) * | 2008-10-31 | 2010-05-06 | 独立行政法人国立高等専門学校機構 | Phenol resin for photoresist, photoresist composition containing same, and method for producing same |
WO2012063636A1 (en) * | 2010-11-10 | 2012-05-18 | Dic株式会社 | Positive-type photoresist composition |
WO2012141165A1 (en) * | 2011-04-12 | 2012-10-18 | Dic株式会社 | Positive photoresist composition, coating film thereof, and novolac phenol resin |
JP2013174702A (en) * | 2012-02-24 | 2013-09-05 | Dic Corp | Positive photoresist composition |
WO2014017236A1 (en) * | 2012-07-25 | 2014-01-30 | Dic株式会社 | Radically curable compound, method for producing radically curable compound, radically curable composition, cured product thereof, and composition for resist material |
WO2014084097A1 (en) * | 2012-11-28 | 2014-06-05 | Dic株式会社 | Compound containing phenolic hydroxy group, composition containing phenolic hydroxy group, resin containing (meth)acryloyl group, curable composition and cured product thereof, and resist material |
WO2015141427A1 (en) * | 2014-03-20 | 2015-09-24 | Dic株式会社 | Novolac-type phenolic hydroxyl group-containing resin, production method thereof, curable composition, resist composition and color resist |
-
2015
- 2015-10-08 WO PCT/JP2015/078589 patent/WO2016103850A1/en active Application Filing
- 2015-10-08 JP JP2016509804A patent/JPWO2016103850A1/en active Pending
- 2015-11-09 TW TW104136834A patent/TW201634508A/en unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11223939A (en) * | 1998-02-05 | 1999-08-17 | Fuji Photo Film Co Ltd | Positive photoresist composition |
JP2005029504A (en) * | 2003-07-14 | 2005-02-03 | Asahi Organic Chem Ind Co Ltd | Method for producing phenol derivative |
JP2007031402A (en) * | 2005-07-29 | 2007-02-08 | Tokyo Ohka Kogyo Co Ltd | Polyphenol compound, compound, positive resist composition, and resist pattern-forming method |
WO2010050592A1 (en) * | 2008-10-31 | 2010-05-06 | 独立行政法人国立高等専門学校機構 | Phenol resin for photoresist, photoresist composition containing same, and method for producing same |
WO2012063636A1 (en) * | 2010-11-10 | 2012-05-18 | Dic株式会社 | Positive-type photoresist composition |
WO2012141165A1 (en) * | 2011-04-12 | 2012-10-18 | Dic株式会社 | Positive photoresist composition, coating film thereof, and novolac phenol resin |
JP5152447B2 (en) * | 2011-04-12 | 2013-02-27 | Dic株式会社 | Positive type photoresist composition, coating film thereof and novolac type phenol resin |
JP2013174702A (en) * | 2012-02-24 | 2013-09-05 | Dic Corp | Positive photoresist composition |
WO2014017236A1 (en) * | 2012-07-25 | 2014-01-30 | Dic株式会社 | Radically curable compound, method for producing radically curable compound, radically curable composition, cured product thereof, and composition for resist material |
WO2014084097A1 (en) * | 2012-11-28 | 2014-06-05 | Dic株式会社 | Compound containing phenolic hydroxy group, composition containing phenolic hydroxy group, resin containing (meth)acryloyl group, curable composition and cured product thereof, and resist material |
WO2015141427A1 (en) * | 2014-03-20 | 2015-09-24 | Dic株式会社 | Novolac-type phenolic hydroxyl group-containing resin, production method thereof, curable composition, resist composition and color resist |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018101058A1 (en) * | 2016-12-01 | 2018-06-07 | Dic株式会社 | Phenolic hydroxy group-containing resin and resist material |
JPWO2018101058A1 (en) * | 2016-12-01 | 2019-03-22 | Dic株式会社 | Phenolic hydroxyl group-containing resin and resist material |
US20190339613A1 (en) * | 2018-05-07 | 2019-11-07 | Jeremy Golden | Photosensitive Material For Lift-Off Applications |
Also Published As
Publication number | Publication date |
---|---|
TW201634508A (en) | 2016-10-01 |
JPWO2016103850A1 (en) | 2017-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6265123B2 (en) | Modified novolac type phenolic resin, resist material, coating film and resist permanent film | |
KR102313190B1 (en) | Naphthol type calixarene compound, method for producing same, photosensitive composition, resist material and coating film | |
WO2015174199A1 (en) | Compound containing modified phenolic hydroxy group, method for producing compound containing modified phenolic hydroxy group, photosensitive composition, resist material, and resist coating film | |
JP6076540B2 (en) | Curable resin composition and resist underlayer film | |
JP5950069B1 (en) | NOVOLAC TYPE PHENOL RESIN, PROCESS FOR PRODUCING THE SAME, PHOTOSENSITIVE COMPOSITION, RESIST MATERIAL, AND COAT | |
JP6304453B2 (en) | Novolac resin and resist film | |
JP6940834B2 (en) | Phenolic hydroxyl group-containing resin, photosensitive composition, resist film, curable composition and cured product | |
WO2016103850A1 (en) | Novolac type phenolic resin, photosensitive composition, resist material, coating film, and resist coating film | |
JP6274366B1 (en) | Novolac resin and resist material | |
JP6425078B2 (en) | Denatured novolac type phenolic resin, method of producing modified novolac type phenolic resin, photosensitive composition, resist material, and resist coating film | |
JP6241577B2 (en) | Novolac resin and resist film | |
JP2017088675A (en) | Novolac type phenolic hydroxyl group-containing resin and resist material | |
WO2017098881A1 (en) | Novolac resin and resist film | |
JP6828279B2 (en) | Novolac type resin and resist film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016509804 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15872419 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15872419 Country of ref document: EP Kind code of ref document: A1 |